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Preface

Database management has evolved from a specialized computer application to a cen-
tral component of virtually all enterprises, and, as a result, knowledge about database
systems has become an essential part of an education in computer science. In this text,
we present the fundamental concepts of database management. These concepts include
aspects of database design, database languages, and database-system implementation.

This text is intended for a first course in databases at the junior or senior under-
graduate, or first-year graduate, level. In addition to basic material for a first course,
the text contains advanced material that can be used for course supplements, or as
introductory material for an advanced course.

We assume only a familiarity with basic data structures, computer organization,
and a high-level programming language such as Java, C, C++, or Python. We present
concepts as intuitive descriptions, many of which are based on our running example of
a university. Important theoretical results are covered, but formal proofs are omitted.
In place of proofs, figures and examples are used to suggest why a result is true. Formal
descriptions and proofs of theoretical results may be found in research papers and
advanced texts that are referenced in the bibliographical notes.

The fundamental concepts and algorithms covered in the book are often based
on those used in existing commercial or experimental database systems. Our aim is
to present these concepts and algorithms in a general setting that is not tied to one
particular database system, though we do provide references to specific systems where
appropriate.

In this, the seventh edition of Database System Concepts, we have retained the over-
all style of the prior editions while evolving the content and organization to reflect the
changes that are occurring in the way databases are designed, managed, and used. One
such major change is the extensive use of “Big Data” systems. We have also taken into
account trends in the teaching of database concepts and made adaptations to facilitate
these trends where appropriate.

xv
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Among the notable changes in this edition are:

• Extensive coverage of Big Data systems, from the user perspective (Chapter 10),
as well as from an internal perspective (Chapter 20 through Chapter 23), with
extensive additions and modifications compared to the sixth edition.

• A new chapter entitled “Blockchain Databases” (Chapter 26) that introduces
blockchain technology and its growing role in enterprise applications. An im-
portant focus in this chapter is the interaction between blockchain systems and
database systems.

• Updates to all chapters covering database internals (Chapter 12 through Chap-
ter 19) to reflect current-generation technology, such as solid-state disks, main-
memory databases, multi-core systems, and column-stores.

• Enhanced coverage of semi-structured data management using JSON, RDF, and
SPARQL (Section 8.1).

• Updated coverage of temporal data (in Section 7.10), data analytics (Chapter 11),
and advanced indexing techniques such as write-optimized indices (Section 14.8
and Section 24.2).

• Reorganization and update of chapters to better support courses with a significant
hands-on component (which we strongly recommend for any database course),
including use of current-generation application development tools and Big Data
systems such as Apache Hadoop and Spark.

These and other updates have arisen from the many comments and suggestions we
have received from readers of the sixth edition, our students at Yale University, Lehigh
University, and IIT Bombay, and our own observations and analyses of developments
in database technology.

Content of This Book

The text is organized in eleven major parts.

• Overview (Chapter 1). Chapter 1 provides a general overview of the nature and pur-
pose of database systems. We explain how the concept of a database system has
developed, what the common features of database systems are, what a database
system does for the user, and how a database system interfaces with operating
systems. We also introduce an example database application: a university organi-
zation consisting of multiple departments, instructors, students, and courses. This
application is used as a running example throughout the book. This chapter is
motivational, historical, and explanatory in nature.
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• Part 1: Relational Model and SQL (Chapter 2 through Chapter 5). Chapter 2 in-
troduces the relational model of data, covering basic concepts such as the struc-
ture of relational databases, database schemas, keys, schema diagrams, relational
query languages, relational operations, and the relational algebra. Chapter 3, Chap-
ter 4, and Chapter 5 focus on the most influential of the user-oriented relational
languages: SQL. The chapters in this part describe data manipulation: queries,
updates, insertions, and deletions, assuming a schema design has been provided.
Although data-definition syntax is covered in detail here, schema design issues are
deferred to Part 2.

• Part 2: Database Design (Chapter 6 and Chapter 7). Chapter 6 provides an
overview of the database-design process and a detailed description of the entity-
relationship data model. The entity-relationship data model provides a high-level
view of the issues in database design and of the problems encountered in capturing
the semantics of realistic applications within the constraints of a data model. UML
class-diagram notation is also covered in this chapter. Chapter 7 introduces rela-
tional database design. The theory of functional dependencies and normalization
is covered, with emphasis on the motivation and intuitive understanding of each
normal form. This chapter begins with an overview of relational design and relies
on an intuitive understanding of logical implication of functional dependencies.
This allows the concept of normalization to be introduced prior to full coverage of
functional-dependency theory, which is presented later in the chapter. Instructors
may choose to use only this initial coverage without loss of continuity. Instructors
covering the entire chapter will benefit from students having a good understand-
ing of normalization concepts to motivate them to learn some of the challenging
concepts of functional-dependency theory. The chapter ends with a section on
modeling of temporal data.

• Part 3: Application Design and Development (Chapter 8 and Chapter 9). Chapter
8 discusses several complex data types that are particularly important for appli-
cation design and development, including semi-structured data, object-based data,
textual data, and spatial data. Although the popularity of XML in a database con-
text has been diminishing, we retain an introduction to XML, while adding coverage
of JSON, RDF, and SPARQL. Chapter 9 discusses tools and technologies that are
used to build interactive web-based and mobile database applications. This chap-
ter includes detailed coverage on both the server side and the client side. Among
the topics covered are servlets, JSP, Django, JavaScript, and web services. Also
discussed are application architecture, object-relational mapping systems includ-
ing Hibernate and Django, performance (including caching using memcached and
Redis), and the unique challenges in ensuring web-application security.

• Part 4: Big Data Analytics (Chapter 10 and Chapter 11). Chapter 10 provides
an overview of large-scale data-analytic applications, with a focus on how those
applications place distinct demands on data management compared with the de-
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mands of traditional database applications. The chapter then discusses how those
demands are addressed. Among the topics covered are Big Data storage systems
including distributed file systems, key-value stores and NoSQL systems, MapRe-
duce, Apache Spark, streaming data, and graph databases. The connection of these
systems and concepts with database concepts introduced earlier is emphasized.
Chapter 11 discusses the structure and use of systems designed for large-scale data
analysis. After first explaining the concepts of data analytics, business intelligence,
and decision support, the chapter discusses the structure of a data warehouse and
the process of gathering data into a warehouse. The chapter next covers usage of
warehouse data in OLAP applications followed by a survey of data-mining algo-
rithms and techniques.

• Part 5: Storage Management and Indexing (Chapter 12 through Chapter 14). Chap-
ter 12 deals with storage devices and how the properties of those devices influ-
ence database physical organization and performance. Chapter 13 deals with data-
storage structures, including file organization and buffer management. A variety of
data-access techniques are presented in Chapter 14. Multilevel index-based access
is described, culminating in detailed coverage of B+-trees. The chapter then covers
index structures for applications where the B+-tree structure is less appropriate, in-
cluding write-optimized indices such as LSM trees and buffer trees, bitmap indices,
and the indexing of spatial data using k-d trees, quadtrees and R-trees.

• Part 6: Query Processing and Optimization (Chapter 15 and Chapter 16). Chap-
ter 15 and Chapter 16 address query-evaluation algorithms and query optimiza-
tion. Chapter 15 focuses on algorithms for the implementation of database opera-
tions, particularly the wide range of join algorithms, which are designed to work on
very large data that may not fit in main-memory. Query processing techniques for
main-memory databases are also covered in this chapter. Chapter 16 covers query
optimization, starting by showing how query plans can be transformed to other
equivalent plans by using transformation rules. The chapter then describes how
to generate estimates of query execution costs, and how to efficiently find query
execution plans with the lowest cost.

• Part 7: Transaction Management (Chapter 17 through Chapter 19). Chapter 17
focuses on the fundamentals of a transaction-processing system: atomicity, con-
sistency, isolation, and durability. It provides an overview of the methods used
to ensure these properties, including log-based recovery and concurrency control
using locking, timestamp-based techniques, and snapshot isolation. Courses re-
quiring only a survey of the transaction concept can use Chapter 17 on its own
without the other chapters in this part; those chapters provide significantly greater
depth. Chapter 18 focuses on concurrency control and presents several techniques
for ensuring serializability, including locking, timestamping, and optimistic (vali-
dation) techniques. Multiversion concurrency control techniques, including the
widely used snapshot isolation technique, and an extension of the technique that
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guarantees serializability, are also covered. This chapter also includes discussion
of weak levels of consistency, concurrency on index structures, concurrency in
main-memory database systems, long-duration transactions, operation-level con-
currency, and real-time transaction processing. Chapter 19 covers the primary
techniques for ensuring correct transaction execution despite system crashes and
storage failures. These techniques include logs, checkpoints, and database dumps,
as well as high availability using remote backup systems. Recovery with early lock
release, and the widely used ARIES algorithm are also presented. This chapter in-
cludes discussion of recovery in main-memory database systems and the use of
NVRAM.

• Part 8: Parallel and Distributed Databases (Chapter 20 through Chapter 23).
Chapter 20 covers computer-system architecture, and describes the influence of
the underlying computer system on the database system. We discuss centralized
systems, client–server systems, parallel and distributed architectures, and cloud-
based systems in this chapter. The remaining three chapters in this part address
distinct aspects of parallel and distributed databases, with Chapter 21 covering
storage and indexing, Chapter 22 covering query processing, and Chapter 23 cov-
ering transaction management. Chapter 21 includes discussion of partitioning and
data skew, replication, parallel indexing, distributed file systems (including the
Hadoop file system), and parallel key-value stores. Chapter 22 includes discussion
of parallelism both among multiple queries and within a single query. It covers par-
allel and distributed sort and join, MapReduce, pipelining, the Volcano exchange-
operator model, thread-level parallelism, streaming data, and the optimization of
geographically distributed queries. Chapter 23 includes discussion of traditional
distributed consensus such as two-phase commit and more sophisticated solutions
including Paxos and Raft. It covers a variety of algorithms for distributed concur-
rency control, including replica management and weaker degrees of consistency.
The trade-offs implied by the CAP theorem are discussed along with the means of
detecting inconsistency using version vectors and Merkle trees.

• Part 9: Advanced Topics (Chapter 24 through Chapter 26). Chapter 24 expands
upon the coverage of indexing in Chapter 14 with detailed coverage of the LSM
tree and its variants, bitmap indices, spatial indexing, and dynamic hashing tech-
niques. Chapter 25 expands upon the coverage of Chapter 9 with a discussion of
performance tuning, benchmarking, testing, and migration from legacy systems,
standardization, and distributed directory systems. Chapter 26 looks at blockchain
technology from a database perspective. It describes blockchain data structures
and the use of cryptographic hash functions and public-key encryption to ensure
the blockchain properties of anonymity, irrefutability, and tamper resistance. It
describes and compares the distributed consensus algorithms used to ensure de-
centralization, including proof-of-work, proof-of-stake, and Byzantine consensus.
Much of the chapter focuses on the features that make blockchain an important
database concept, including the role of permisssioned blockchains, the encoding
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of business logic and agreements in smart contracts, and interoperability across
blockchains. Techniques for achieving database-scale transaction-processing per-
formance are discussed. A final section surveys current and contemplated enter-
prise blockchain applications.

• Part 10: Appendix. Appendix A presents details of our university schema, including
the full schema, DDL, and all the tables.

• Part 11: Online Chapters (Chapter 27 through Chapter 32) available online at
db-book.com. We provide six chapters that cover material that is of historical
nature or is advanced; these chapters are available only online. Chapter 27 cov-
ers “pure” query languages: the tuple and domain relational calculus and Data-
log, which has a syntax modeled after the Prolog language. Chapter 28 covers
advanced topics in relational database design, including the theory of multivalued
dependencies and fourth normal form, as well as higher normal forms. Chapter
29 covers object-based databases and more complex data types such as array, and
multiset types, as well as tables that are not in 1NF. Chapter 30 expands on the cov-
erage in Chapter 8 of XML. Chapter 31 covers information retrieval, which deals
with querying of unstructured textual data. Chapter 32 provides an overview of the
PostgreSQL database system, and is targeted at courses focusing on database inter-
nals. The chapter is likely to be particularly useful for supporting student projects
that work with the open-source code base of the PostgreSQL database.

At the end of each chapter we provide references in a section titled Further Reading.
This section is intentionally abbreviated and provides references that allow students
to continue their study of the material covered in the chapter or to learn about new
developments in the area covered by the chapter. On occasion, the further reading
section includes original source papers that have become classics of which everyone
should be aware. Detailed bibliographical notes for each chapter are available online,
and provide references for readers who wish to go into further depth on any of the
topics covered in the chapter.

The Seventh Edition

The production of this seventh edition has been guided by the many comments and
suggestions we received concerning the earlier editions, by our own observations while
teaching at Yale University, Lehigh University, and IIT Bombay, and by our analysis of
the directions in which database technology is evolving.

We provided a list of the major new features of this edition earlier in this preface;
these include coverage of extensive coverage of Big Data, updates to all chapters to
reflect current generation hardware technology, semi-structured data management, ad-
vanced indexing techniques, and a new chapter on blockchain databases. Beyond these
major changes, we revised the material in each chapter, bringing the older material



Preface xxi

up-to-date, adding discussions on recent developments in database technology, and im-
proving descriptions of topics that students found difficult to understand. We have also
added new exercises and updated references.

For instructors who previously used the sixth edition, we list the more significant
changes below:

• Relational algebra has been moved into Chapter 2, to help students better under-
stand relational operations that form the basis of query languages such as SQL.
Deeper coverage of relational algebra also aids in understanding the algebraic op-
erators needed for discussion later of query processing and optimization. The two
variants of the relational calculus are now in an online chapter, since we believe
they are now of value only to more theoretically oriented courses, and can be omit-
ted by most database courses.

• The SQL chapters now include more details of database-system specific SQL vari-
ations, to aid students carrying out practical assignments. Connections between
SQL and the multiset relational algebra are also covered in more detail. Chapter
4 now covers all the material concerning joins, whereas previously natural join
was in the preceding chapter. Coverage of sequences used to generate unique key
values, and coverage of row-level security have also been added to this chapter.
Recent extensions to the JDBC API that are particularly useful are now covered in
Chapter 5; coverage of OLAP has been moved from this chapter to Chapter 11.

• Chapter 6 has been modified to cover E-R diagrams along with E-R concepts, in-
stead of first covering the concepts and then introducing E-R diagrams as was done
in earlier editions. We believe this will help students better comprehend the E-R
model.

• Chapter 7 now has improved coverage of temporal data modeling, including
SQL:2011 temporal database features.

• Chapter 8 is a new chapter that covers complex data types, including semi-
structured data, such as XML, JSON, RDF, and SPARQL, object-based data, textual
data, and spatial data. Object-based databases, XML, and information retrieval on
textual data were covered in detail in the sixth edition; these topics have been ab-
breviated and covered in Chapter 8, while the original chapters from the sixth
edition have now been made available online.

• Chapter 9 has been significantly updated to reflect modern application devel-
opment tools and techniques, including extended coverage of JavaScript and
JavaScript libraries for building dynamic web interfaces, application development
in Python using the Django framework, coverage of web services, and disconnec-
tion operations using HTML5. Object-relation mapping using Django has been
added, as also discussion of techniques for developing high-performance applica-
tions that can handle large transaction loads.
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• Chapter 10 is a new chapter on Big Data, covering Big Data concepts and tools
from a user perspective. Big Data storage systems, the MapReduce paradigm,
Apache Hadoop and Apache Spark, and streaming and graph databases are cov-
ered in this chapter. The goal is to enable readers to use Big Data systems, with
only a summary coverage of what happens behind the scenes. Big Data internals
are covered in detail in later chapters.

• The chapter on storage and file structure has been split into two chapters. Chap-
ter 12 which covers storage has been updated with new technology, including ex-
panded coverage of flash memory, column-oriented storage, and storage organiza-
tion in main-memory databases. Chapter 13, which covers data storage structures
has been expanded, and now covers details such as free-space maps, partitioning,
and most importantly column-oriented storage.

• Chapter 14 on indexing now covers write-optimized index structures including the
LSM tree and its variants, and the buffer tree, which are seeing increasing usage.
Spatial indices are now covered briefly in this chapter. More detailed coverage of
LSM trees and spatial indices is provided in Chapter 24, which covers advanced
indexing techniques. Bitmap indices are now covered in brief in Chapter 14, while
more detailed coverage has been moved to Chapter 24. Dynamic hashing tech-
niques have been moved into Chapter 24, since they are of limited practical im-
portance today.

• Chapter 15 on query processing has significantly expanded coverage of pipelining
in query processing, new material on query processing in main-memory, including
query compilation, as well as brief coverage of spatial joins. Chapter 16 on query
optimization has more examples of equivalence rules for operators such as outer
joins and aggregates, has updated material on statistics for cost estimation, an
improved presentation of the join-order optimization algorithm. Techniques for
decorrelating nested subqueries using semijoin and antijoin operations have also
been added.

• Chapter 18 on concurrency control has new material on concurrency control in
main-memory. Chapter 19 on recovery now gives more importance to high avail-
ability using remote backup systems.

• Our coverage of parallel and distributed databases has been completely revamped.
Because of the evolution of these two areas into a continuum from low-level paral-
lelism to geographically distributed systems, we now present these topics together.

° Chapter 20 on database architectures has been significantly updated from the
earlier edition, including new material on practical interconnection networks
like the tree-like (or fat-tree) architecture, and significantly expanded and up-
dated material on shared-memory architectures and cache coherency. There is
an entirely new section on cloud-based services, covering virtual machines and
containers, platform-as-a-service, software-as-a-service, and elasticity.
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° Chapter 21 covers parallel and distributed storage; while a few parts of this
chapter were present in the sixth edition, such as partitioning techniques, ev-
erything else in this chapter is new.

° Chapter 22 covers parallel and distributed query processing. Again only a few
sections of this chapter, such as parallel algorithms for sorting, join, and a few
other relational operations, were present in the sixth edition, almost everything
else in this chapter is new.

° Chapter 23 covers parallel and distributed transaction processing. A few parts
of this chapter, such as the sections on 2PC, persistent messaging, and concur-
rency control in distributed databases, are new but almost everything else in
this chapter is new.

As in the sixth edition, we facilitate the following of our running example by listing
the database schema and the sample relation instances for our university database to-
gether in Appendix A as well as where they are used in the various regular chapters. In
addition, we provide, on our web site db-book.com, SQL data-definition statements for
the entire example, along with SQL statements to create our example relation instances.
This encourages students to run example queries directly on a database system and to
experiment with modifying those queries. All topics not listed above are updated from
the sixth edition, though their overall organization is relatively unchanged.

End of Chapter Material

Each chapter has a list of review terms, in addition to a summary, which can help
readers review key topics covered in the chapter.

As in the sixth edition, the exercises are divided into two sets: practice exercises
and exercises. The solutions for the practice exercises are publicly available on the web
site of the book. Students are encouraged to solve the practice exercises on their own
and later use the solutions on the web site to check their own solutions. Solutions to
the other exercises are available only to instructors (see “Instructor’s Note,” below, for
information on how to get the solutions).

Many chapters have a tools section at the end of the chapter that provides infor-
mation on software tools related to the topic of the chapter; some of these tools can
be used for laboratory exercises. SQL DDL and sample data for the university database
and other relations used in the exercises are available on the web site of the book and
can be used for laboratory exercises.

Instructor’s Note

It is possible to design courses by using various subsets of the chapters. Some of the
chapters can also be covered in an order different from their order in the book. We
outline some of the possibilities here:
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• Chapter 5 (Advanced SQL). This chapter can be skipped or deferred to later with-
out loss of continuity. We expect most courses will cover at least Section 5.1.1 early,
as JDBC is likely to be a useful tool in student projects.

• Chapter 6 (E-R Model). This chapter can be covered ahead of Chapter 3, Chapter
4, and Chapter 5 if you so desire, since Chapter 6 does not have any dependency
on SQL. However, for courses with a programming emphasis, a richer variety of
laboratory exercises is possible after studying SQL, and we recommend that SQL
be covered before database design for such courses.

• Chapter 15 (Query Processing) and Chapter 16 (Query Optimization). These
chapters can be omitted from an introductory course without affecting coverage
of any other chapter.

• Part 7 (Transaction Management). Our coverage consists of an overview (Chapter
17) followed by chapters with details. You might choose to use Chapter 17 while
omitting Chapter 18 and Chapter 19, if you defer these latter chapters to an ad-
vanced course.

• Part 8 (Parallel and Distributed Databases). Our coverage consists of an overview
(Chapter 20), followed by chapters on the topics of storage, query processing,
and transactions. You might choose to use Chapter 20 while omitting Chapter 21
through Chapter 23 if you defer these latter chapters to an advanced course.

• Part 11 (Online chapters). Chapter 27 (Formal-Relational Query Languages). This
chapter can be covered immediately after Chapter 2, ahead of SQL. Alternatively,
this chapter may be omitted from an introductory course. The five other online
chapters (Advanced Relational Database Design, Object-Based Databases, XML,
Information Retrieval, and PostgreSQL) can be used as self-study material or omit-
ted from an introductory course.

Model course syllabi, based on the text, can be found on the web site of the book.

Web Site and Teaching Supplements

A web site for the book is available at the URL: db-book.com. The web site contains:

• Slides covering all the chapters of the book.

• Answers to the practice exercises.

• The six online chapters.

• Laboratory material, including SQL DDL and sample data for the university
schema and other relations used in exercises, and instructions for setting up and
using various database systems and tools.

• An up-to-date errata list.
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The following additional material is available only to faculty:

• An instructor’s manual containing solutions to all exercises in the book.

• A question bank containing extra exercises.

For more information about how to get a copy of the instructor’s manual and the

question bank, please send an email message to sem@mheducation.com. In the

United States, you may call 800-338-3987. The McGraw-Hill web site for this book

is www.mhhe.com/silberschatz.

Contacting Us

We have endeavored to eliminate typos, bugs, and the like from the text. But, as in new

releases of software, bugs almost surely remain; an up-to-date errata list is accessible

from the book’s web site. We would appreciate it if you would notify us of any errors

or omissions in the book that are not on the current list of errata.

We would be glad to receive suggestions on improvements to the book. We also

welcome any contributions to the book web site that could be of use to other read-

ers, such as programming exercises, project suggestions, online labs and tutorials, and

teaching tips.

Email should be addressed to db-book-authors@cs.yale.edu. Any other corre-

spondence should be sent to Avi Silberschatz, Department of Computer Science, Yale

University, 51 Prospect Street, P.O. Box 208285, New Haven, CT 06520-8285 USA.
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CHAP T E R 1
Introduction

A database-management system (DBMS) is a collection of interrelated data and a set
of programs to access those data. The collection of data, usually referred to as the
database, contains information relevant to an enterprise. The primary goal of a DBMS
is to provide a way to store and retrieve database information that is both convenient
and efficient.

Database systems are designed to manage large bodies of information. Manage-
ment of data involves both defining structures for storage of information and provid-
ing mechanisms for the manipulation of information. In addition, the database system
must ensure the safety of the information stored, despite system crashes or attempts
at unauthorized access. If data are to be shared among several users, the system must
avoid possible anomalous results.

Because information is so important in most organizations, computer scientists
have developed a large body of concepts and techniques for managing data. These
concepts and techniques form the focus of this book. This chapter briefly introduces
the principles of database systems.

1.1 Database-System Applications

The earliest database systems arose in the 1960s in response to the computerized man-
agement of commercial data. Those earlier applications were relatively simple com-
pared to modern database applications. Modern applications include highly sophisti-
cated, worldwide enterprises.

All database applications, old and new, share important common elements. The
central aspect of the application is not a program performing some calculation, but
rather the data themselves. Today, some of the most valuable corporations are valuable
not because of their physical assets, but rather because of the information they own.
Imagine a bank without its data on accounts and customers or a social-network site
that loses the connections among its users. Such companies’ value would be almost
totally lost under such circumstances.

1
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Database systems are used to manage collections of data that:

• are highly valuable,

• are relatively large, and

• are accessed by multiple users and applications, often at the same time.

The first database applications had only simple, precisely formatted, structured
data. Today, database applications may include data with complex relationships and a
more variable structure. As an example of an application with structured data, consider
a university’s records regarding courses, students, and course registration. The univer-
sity keeps the same type of information about each course: course-identifier, title, de-
partment, course number, etc., and similarly for students: student-identifier, name, ad-
dress, phone, etc. Course registration is a collection of pairs: one course identifier and
one student identifier. Information of this sort has a standard, repeating structure and
is representative of the type of database applications that go back to the 1960s. Con-
trast this simple university database application with a social-networking site. Users of
the site post varying types of information about themselves ranging from simple items
such as name or date of birth, to complex posts consisting of text, images, videos, and
links to other users. There is only a limited amount of common structure among these
data. Both of these applications, however, share the basic features of a database.

Modern database systems exploit commonalities in the structure of data to gain
efficiency but also allow for weakly structured data and for data whose formats are
highly variable. As a result, a database system is a large, complex software system whose
task is to manage a large, complex collection of data.

Managing complexity is challenging, not only in the management of data but in
any domain. Key to the management of complexity is the concept of abstraction. Ab-
straction allows a person to use a complex device or system without having to know the
details of how that device or system is constructed. A person is able, for example, to
drive a car by knowing how to operate its controls. However, the driver does not need
to know how the motor was built nor how it operates. All the driver needs to know is an
abstraction of what the motor does. Similarly, for a large, complex collection of data,
a database system provides a simpler, abstract view of the information so that users
and application programmers do not need to be aware of the underlying details of how
data are stored and organized. By providing a high level of abstraction, a database sys-
tem makes it possible for an enterprise to combine data of various types into a unified
repository of the information needed to run the enterprise.

Here are some representative applications:

• Enterprise Information

° Sales: For customer, product, and purchase information.
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° Accounting: For payments, receipts, account balances, assets, and other ac-
counting information.

° Human resources: For information about employees, salaries, payroll taxes, and
benefits, and for generation of paychecks.

• Manufacturing: For management of the supply chain and for tracking production
of items in factories, inventories of items in warehouses and stores, and orders for
items.

• Banking and Finance

° Banking: For customer information, accounts, loans, and banking transactions.

° Credit card transactions: For purchases on credit cards and generation of
monthly statements.

° Finance: For storing information about holdings, sales, and purchases of finan-
cial instruments such as stocks and bonds; also for storing real-time market
data to enable online trading by customers and automated trading by the firm.

• Universities: For student information, course registrations, and grades (in addition
to standard enterprise information such as human resources and accounting).

• Airlines: For reservations and schedule information. Airlines were among the first
to use databases in a geographically distributed manner.

• Telecommunication: For keeping records of calls, texts, and data usage, generating
monthly bills, maintaining balances on prepaid calling cards, and storing informa-
tion about the communication networks.

• Web-based services

° Social-media: For keeping records of users, connections between users (such as
friend/follows information), posts made by users, rating/like information about
posts, etc.

° Online retailers: For keeping records of sales data and orders as for any retailer,
but also for tracking a user’s product views, search terms, etc., for the purpose
of identifying the best items to recommend to that user.

° Online advertisements: For keeping records of click history to enable targeted
advertisements, product suggestions, news articles, etc. People access such
databases every time they do a web search, make an online purchase, or ac-
cess a social-networking site.

• Document databases: For maintaining collections of new articles, patents, pub-
lished research papers, etc.

• Navigation systems: For maintaining the locations of varies places of interest along
with the exact routes of roads, train systems, buses, etc.
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As this list illustrates, databases form an essential part not only of every enterprise but
also of a large part of a person’s daily activities.

The ways in which people interact with databases has changed over time. Early
databases were maintained as back-office systems with which users interacted via
printed reports and paper forms for input. As database systems became more sophisti-
cated, better languages were developed for programmers to use in interacting with the
data, along with user interfaces that allowed end users within the enterprise to query
and update data.

As the support for programmer interaction with databases improved, and computer
hardware performance increased even as hardware costs decreased, more sophisticated
applications emerged that brought database data into more direct contact not only with
end users within an enterprise but also with the general public. Whereas once bank
customers had to interact with a teller for every transaction, automated-teller machines
(ATMs) allowed direct customer interaction. Today, virtually every enterprise employs
web applications or mobile applications to allow its customers to interact directly with
the enterprise’s database, and, thus, with the enterprise itself.

The user, or customer, can focus on the product or service without being aware
of the details of the large database that makes the interaction possible. For instance,
when you read a social-media post, or access an online bookstore and browse a book or
music collection, you are accessing data stored in a database. When you enter an order
online, your order is stored in a database. When you access a bank web site and retrieve
your bank balance and transaction information, the information is retrieved from the
bank’s database system. When you access a web site, information about you may be
retrieved from a database to select which advertisements you should see. Almost every
interaction with a smartphone results in some sort of database access. Furthermore,
data about your web accesses may be stored in a database.

Thus, although user interfaces hide details of access to a database, and most people
are not even aware they are dealing with a database, accessing databases forms an
essential part of almost everyone’s life today.

Broadly speaking, there are two modes in which databases are used.

• The first mode is to support online transaction processing, where a large number
of users use the database, with each user retrieving relatively small amounts of
data, and performing small updates. This is the primary mode of use for the vast
majority of users of database applications such as those that we outlined earlier.

• The second mode is to support data analytics, that is, the processing of data to
draw conclusions, and infer rules or decision procedures, which are then used to
drive business decisions.

For example, banks need to decide whether to give a loan to a loan applicant,
online advertisers need to decide which advertisement to show to a particular user.
These tasks are addressed in two steps. First, data-analysis techniques attempt to
automatically discover rules and patterns from data and create predictive models.
These models take as input attributes (“features”) of individuals, and output pre-
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dictions such as likelihood of paying back a loan, or clicking on an advertisement,
which are then used to make the business decision.

As another example, manufacturers and retailers need to make decisions on
what items to manufacture or order in what quantities; these decisions are driven
significantly by techniques for analyzing past data, and predicting trends. The cost
of making wrong decisions can be very high, and organizations are therefore willing
to invest a lot of money to gather or purchase required data, and build systems that
can use the data to make accurate predictions.

The field of data mining combines knowledge-discovery techniques invented by
artificial intelligence researchers and statistical analysts with efficient implemen-
tation techniques that enable them to be used on extremely large databases.

1.2 Purpose of Database Systems

To understand the purpose of database systems, consider part of a university organiza-
tion that, among other data, keeps information about all instructors, students, depart-
ments, and course offerings. One way to keep the information on a computer is to store
it in operating-system files. To allow users to manipulate the information, the system
has a number of application programs that manipulate the files, including programs to:

• Add new students, instructors, and courses.

• Register students for courses and generate class rosters.

• Assign grades to students, compute grade point averages (GPA), and generate tran-
scripts.

Programmers develop these application programs to meet the needs of the university.
New application programs are added to the system as the need arises. For exam-

ple, suppose that a university decides to create a new major. As a result, the university
creates a new department and creates new permanent files (or adds information to
existing files) to record information about all the instructors in the department, stu-
dents in that major, course offerings, degree requirements, and so on. The university
may have to write new application programs to deal with rules specific to the new ma-
jor. New application programs may also have to be written to handle new rules in the
university. Thus, as time goes by, the system acquires more files and more application
programs.

This typical file-processing system is supported by a conventional operating system.
The system stores permanent records in various files, and it needs different application
programs to extract records from, and add records to, the appropriate files.

Keeping organizational information in a file-processing system has a number of
major disadvantages:
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• Data redundancy and inconsistency. Since different programmers create the files
and application programs over a long period, the various files are likely to have
different structures, and the programs may be written in several programming lan-
guages. Moreover, the same information may be duplicated in several places (files).
For example, if a student has a double major (say, music and mathematics), the
address and telephone number of that student may appear in a file that consists of
student records of students in the Music department and in a file that consists of
student records of students in the Mathematics department. This redundancy leads
to higher storage and access cost. In addition, it may lead to data inconsistency;
that is, the various copies of the same data may no longer agree. For example, a
changed student address may be reflected in the Music department records but
not elsewhere in the system.

• Difficulty in accessing data. Suppose that one of the university clerks needs to
find out the names of all students who live within a particular postal-code area.
The clerk asks the data-processing department to generate such a list. Because
the designers of the original system did not anticipate this request, there is no
application program on hand to meet it. There is, however, an application program
to generate the list of all students. The university clerk now has two choices: either
obtain the list of all students and extract the needed information manually or ask
a programmer to write the necessary application program. Both alternatives are
obviously unsatisfactory. Suppose that such a program is written and that, several
days later, the same clerk needs to trim that list to include only those students who
have taken at least 60 credit hours. As expected, a program to generate such a list
does not exist. Again, the clerk has the preceding two options, neither of which is
satisfactory.

The point here is that conventional file-processing environments do not allow
needed data to be retrieved in a convenient and efficient manner. More responsive
data-retrieval systems are required for general use.

• Data isolation. Because data are scattered in various files, and files may be in dif-
ferent formats, writing new application programs to retrieve the appropriate data
is difficult.

• Integrity problems. The data values stored in the database must satisfy certain types
of consistency constraints. Suppose the university maintains an account for each
department, and records the balance amount in each account. Suppose also that
the university requires that the account balance of a department may never fall
below zero. Developers enforce these constraints in the system by adding appro-
priate code in the various application programs. However, when new constraints
are added, it is difficult to change the programs to enforce them. The problem is
compounded when constraints involve several data items from different files.

• Atomicity problems. A computer system, like any other device, is subject to failure.
In many applications, it is crucial that, if a failure occurs, the data be restored to the
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consistent state that existed prior to the failure. Consider a banking system with a
program to transfer $500 from account A to account B. If a system failure occurs
during the execution of the program, it is possible that the $500 was removed
from the balance of account A but was not credited to the balance of account
B, resulting in an inconsistent database state. Clearly, it is essential to database
consistency that either both the credit and debit occur, or that neither occur. That
is, the funds transfer must be atomic—it must happen in its entirety or not at all. It
is difficult to ensure atomicity in a conventional file-processing system.

• Concurrent-access anomalies. For the sake of overall performance of the system
and faster response, many systems allow multiple users to update the data simulta-
neously. Indeed, today, the largest internet retailers may have millions of accesses
per day to their data by shoppers. In such an environment, interaction of concur-
rent updates is possible and may result in inconsistent data. Consider account A,
with a balance of $10,000. If two bank clerks debit the account balance (by say
$500 and $100, respectively) of account A at almost exactly the same time, the re-
sult of the concurrent executions may leave the account balance in an incorrect (or
inconsistent) state. Suppose that the programs executing on behalf of each with-
drawal read the old balance, reduce that value by the amount being withdrawn, and
write the result back. If the two programs run concurrently, they may both read
the value $10,000, and write back $9500 and $9900, respectively. Depending on
which one writes the value last, the balance of account A may contain either $9500
or $9900, rather than the correct value of $9400. To guard against this possibility,
the system must maintain some form of supervision. But supervision is difficult
to provide because data may be accessed by many different application programs
that have not been coordinated previously.

As another example, suppose a registration program maintains a count of
students registered for a course in order to enforce limits on the number of students
registered. When a student registers, the program reads the current count for the
courses, verifies that the count is not already at the limit, adds one to the count, and
stores the count back in the database. Suppose two students register concurrently,
with the count at 39. The two program executions may both read the value 39, and
both would then write back 40, leading to an incorrect increase of only 1, even
though two students successfully registered for the course and the count should
be 41. Furthermore, suppose the course registration limit was 40; in the above
case both students would be able to register, leading to a violation of the limit of
40 students.

• Security problems. Not every user of the database system should be able to access
all the data. For example, in a university, payroll personnel need to see only that
part of the database that has financial information. They do not need access to
information about academic records. But since application programs are added to
the file-processing system in an ad hoc manner, enforcing such security constraints
is difficult.
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These difficulties, among others, prompted both the initial development of
database systems and the transition of file-based applications to database systems, back
in the 1960s and 1970s.

In what follows, we shall see the concepts and algorithms that enable database
systems to solve the problems with file-processing systems. In most of this book, we use
a university organization as a running example of a typical data-processing application.

1.3 View of Data

A database system is a collection of interrelated data and a set of programs that allow
users to access and modify these data. A major purpose of a database system is to
provide users with an abstract view of the data. That is, the system hides certain details
of how the data are stored and maintained.

1.3.1 Data Models

Underlying the structure of a database is the data model: a collection of conceptual tools
for describing data, data relationships, data semantics, and consistency constraints.

There are a number of different data models that we shall cover in the text. The
data models can be classified into four different categories:

• Relational Model. The relational model uses a collection of tables to represent both
data and the relationships among those data. Each table has multiple columns, and
each column has a unique name. Tables are also known as relations. The relational
model is an example of a record-based model. Record-based models are so named
because the database is structured in fixed-format records of several types. Each
table contains records of a particular type. Each record type defines a fixed number
of fields, or attributes. The columns of the table correspond to the attributes of the
record type. The relational data model is the most widely used data model, and
a vast majority of current database systems are based on the relational model.
Chapter 2 and Chapter 7 cover the relational model in detail.

• Entity-Relationship Model. The entity-relationship (E-R) data model uses a collec-
tion of basic objects, called entities, and relationships among these objects. An en-
tity is a “thing” or “object” in the real world that is distinguishable from other
objects. The entity-relationship model is widely used in database design. Chapter
6 explores it in detail.

• Semi-structured Data Model. The semi-structured data model permits the specifi-
cation of data where individual data items of the same type may have different
sets of attributes. This is in contrast to the data models mentioned earlier, where
every data item of a particular type must have the same set of attributes. JSON and
Extensible Markup Language (XML) are widely used semi-structured data represen-
tations. Semi-structured data models are explored in detail in Chapter 8.
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• Object-Based Data Model. Object-oriented programming (especially in Java, C++,
or C#) has become the dominant software-development methodology. This led
initially to the development of a distinct object-oriented data model, but today the
concept of objects is well integrated into relational databases. Standards exist to
store objects in relational tables. Database systems allow procedures to be stored
in the database system and executed by the database system. This can be seen as
extending the relational model with notions of encapsulation, methods, and object
identity. Object-based data models are summarized in Chapter 8.

A large portion of this text is focused on the relational model because it serves as
the foundation for most database applications.

1.3.2 Relational Data Model

In the relational model, data are represented in the form of tables. Each table has mul-
tiple columns, and each column has a unique name. Each row of the table represents
one piece of information. Figure 1.1 presents a sample relational database comprising
two tables: one shows details of university instructors and the other shows details of
the various university departments.

The first table, the instructor table, shows, for example, that an instructor named
Einstein with ID 22222 is a member of the Physics department and has an annual
salary of $95,000. The second table, department, shows, for example, that the Biology
department is located in the Watson building and has a budget of $90,000. Of course,
a real-world university would have many more departments and instructors. We use
small tables in the text to illustrate concepts. A larger example for the same schema is
available online.

1.3.3 Data Abstraction

For the system to be usable, it must retrieve data efficiently. The need for efficiency has
led database system developers to use complex data structures to represent data in the
database. Since many database-system users are not computer trained, developers hide
the complexity from users through several levels of data abstraction, to simplify users’
interactions with the system:

• Physical level. The lowest level of abstraction describes how the data are actually
stored. The physical level describes complex low-level data structures in detail.

• Logical level. The next-higher level of abstraction describes what data are stored
in the database, and what relationships exist among those data. The logical level
thus describes the entire database in terms of a small number of relatively simple
structures. Although implementation of the simple structures at the logical level
may involve complex physical-level structures, the user of the logical level does not
need to be aware of this complexity. This is referred to as physical data indepen-
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ID name dept name salary

22222 Einstein Physics 95000
12121 Wu Finance 90000
32343 El Said History 60000
45565 Katz Comp. Sci. 75000
98345 Kim Elec. Eng. 80000
76766 Crick Biology 72000
10101 Srinivasan Comp. Sci. 65000
58583 Califieri History 62000
83821 Brandt Comp. Sci. 92000
15151 Mozart Music 40000
33456 Gold Physics 87000
76543 Singh Finance 80000

(a) The instructor table

dept name building budget

Comp. Sci. Taylor 100000
Biology Watson 90000
Elec. Eng. Taylor 85000
Music Packard 80000
Finance Painter 120000
History Painter 50000
Physics Watson 70000

(b) The department table

Figure 1.1 A sample relational database.

dence. Database administrators, who must decide what information to keep in the
database, use the logical level of abstraction.

• View level. The highest level of abstraction describes only part of the entire
database. Even though the logical level uses simpler structures, complexity remains
because of the variety of information stored in a large database. Many users of the
database system do not need all this information; instead, they need to access only
a part of the database. The view level of abstraction exists to simplify their interac-
tion with the system. The system may provide many views for the same database.

Figure 1.2 shows the relationship among the three levels of abstraction.
An important feature of data models, such as the relational model, is that they

hide such low-level implementation details from not just database users, but even from
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view 1 view 2

logical
level

physical
level

view n…

view level

Figure 1.2 The three levels of data abstraction.

database-application developers. The database system allows application developers
to store and retrieve data using the abstractions of the data model, and converts the
abstract operations into operations on the low-level implementation.

An analogy to the concept of data types in programming languages may clarify
the distinction among levels of abstraction. Many high-level programming languages
support the notion of a structured type. We may describe the type of a record abstractly
as follows:1

type instructor = record
ID : char (5);
name : char (20);
dept name : char (20);
salary : numeric (8,2);

end;

This code defines a new record type called instructor with four fields. Each field has a
name and a type associated with it. For example, char(20) specifies a string with 20
characters, while numeric(8,2) specifies a number with 8 digits, two of which are to
the right of the decimal point. A university organization may have several such record
types, including:

• department, with fields dept name, building, and budget.

• course, with fields course id, title, dept name, and credits.

• student, with fields ID, name, dept name, and tot cred.

1The actual type declaration depends on the language being used. C and C++ use struct declarations. Java does not
have such a declaration, but a simple class can be defined to the same effect.
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At the physical level, an instructor, department, or student record can be described
as a block of consecutive bytes. The compiler hides this level of detail from program-
mers. Similarly, the database system hides many of the lowest-level storage details from
database programmers. Database administrators, on the other hand, may be aware of
certain details of the physical organization of the data. For example, there are many
possible ways to store tables in files. One way is to store a table as a sequence of records
in a file, with a special character (such as a comma) used to delimit the different at-
tributes of a record, and another special character (such as a new-line character) may
be used to delimit records. If all attributes have fixed length, the lengths of attributes
may be stored separately, and delimiters may be omitted from the file. Variable length
attributes could be handled by storing the length, followed by the data. Databases use
a type of data structure called an index to support efficient retrieval of records; these
too form part of the physical level.

At the logical level, each such record is described by a type definition, as in the
previous code segment. The interrelationship of these record types is also defined at
the logical level; a requirement that the dept name value of an instructor record must
appear in the department table is an example of such an interrelationship. Programmers
using a programming language work at this level of abstraction. Similarly, database
administrators usually work at this level of abstraction.

Finally, at the view level, computer users see a set of application programs that hide
details of the data types. At the view level, several views of the database are defined, and
a database user sees some or all of these views. In addition to hiding details of the logical
level of the database, the views also provide a security mechanism to prevent users from
accessing certain parts of the database. For example, clerks in the university registrar
office can see only that part of the database that has information about students; they
cannot access information about salaries of instructors.

1.3.4 Instances and Schemas

Databases change over time as information is inserted and deleted. The collection of
information stored in the database at a particular moment is called an instance of the
database. The overall design of the database is called the database schema. The con-
cept of database schemas and instances can be understood by analogy to a program
written in a programming language. A database schema corresponds to the variable
declarations (along with associated type definitions) in a program. Each variable has
a particular value at a given instant. The values of the variables in a program at a point
in time correspond to an instance of a database schema.

Database systems have several schemas, partitioned according to the levels of ab-
straction. The physical schema describes the database design at the physical level, while
the logical schema describes the database design at the logical level. A database may
also have several schemas at the view level, sometimes called subschemas, that describe
different views of the database.

Of these, the logical schema is by far the most important in terms of its effect on
application programs, since programmers construct applications by using the logical
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schema. The physical schema is hidden beneath the logical schema and can usually be
changed easily without affecting application programs. Application programs are said
to exhibit physical data independence if they do not depend on the physical schema
and thus need not be rewritten if the physical schema changes.

We also note that it is possible to create schemas that have problems, such as
unnecessarily duplicated information. For example, suppose we store the department
budget as an attribute of the instructor record. Then, whenever the value of the budget
for a department (say the Physics department) changes, that change must be reflected
in the records of all instructors associated with the department. In Chapter 7, we shall
study how to distinguish good schema designs from bad schema designs.

Traditionally, logical schemas were changed infrequently, if at all. Many newer
database applications, however, require more flexible logical schemas where, for ex-
ample, different records in a single relation may have different attributes.

1.4 Database Languages

A database system provides a data-definition language (DDL) to specify the database
schema and a data-manipulation language (DML) to express database queries and up-
dates. In practice, the data-definition and data-manipulation languages are not two sep-
arate languages; instead they simply form parts of a single database language, such as
the SQL language. Almost all relational database systems employ the SQL language,
which we cover in great detail in Chapter 3, Chapter 4, and Chapter 5.

1.4.1 Data-Definition Language

We specify a database schema by a set of definitions expressed by a special language
called a data-definition language (DDL). The DDL is also used to specify additional
properties of the data.

We specify the storage structure and access methods used by the database system
by a set of statements in a special type of DDL called a data storage and definition
language. These statements define the implementation details of the database schemas,
which are usually hidden from the users.

The data values stored in the database must satisfy certain consistency constraints.
For example, suppose the university requires that the account balance of a department
must never be negative. The DDL provides facilities to specify such constraints. The
database system checks these constraints every time the database is updated. In general,
a constraint can be an arbitrary predicate pertaining to the database. However, arbitrary
predicates may be costly to test. Thus, database systems implement only those integrity
constraints that can be tested with minimal overhead:

• Domain Constraints. A domain of possible values must be associated with every
attribute (for example, integer types, character types, date/time types). Declaring
an attribute to be of a particular domain acts as a constraint on the values that it
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can take. Domain constraints are the most elementary form of integrity constraint.
They are tested easily by the system whenever a new data item is entered into the
database.

• Referential Integrity. There are cases where we wish to ensure that a value that
appears in one relation for a given set of attributes also appears in a certain set
of attributes in another relation (referential integrity). For example, the depart-
ment listed for each course must be one that actually exists in the university. More
precisely, the dept name value in a course record must appear in the dept name
attribute of some record of the department relation. Database modifications can
cause violations of referential integrity. When a referential-integrity constraint is
violated, the normal procedure is to reject the action that caused the violation.

• Authorization. We may want to differentiate among the users as far as the type of
access they are permitted on various data values in the database. These differentia-
tions are expressed in terms of authorization, the most common being: read autho-
rization, which allows reading, but not modification, of data; insert authorization,
which allows insertion of new data, but not modification of existing data; update
authorization, which allows modification, but not deletion, of data; and delete au-
thorization, which allows deletion of data. We may assign the user all, none, or a
combination of these types of authorization.

The processing of DDL statements, just like those of any other programming lan-
guage, generates some output. The output of the DDL is placed in the data dictionary,
which contains metadata—that is, data about data. The data dictionary is considered
to be a special type of table that can be accessed and updated only by the database sys-
tem itself (not a regular user). The database system consults the data dictionary before
reading or modifying actual data.

1.4.2 The SQL Data-Definition Language

SQL provides a rich DDL that allows one to define tables with data types and integrity
constraints.

For instance, the following SQL DDL statement defines the department table:

create table department
(dept name char (20),
building char (15),
budget numeric (12,2));

Execution of the preceding DDL statement creates the department table with three
columns: dept name, building, and budget, each of which has a specific data type asso-
ciated with it. We discuss data types in more detail in Chapter 3.

The SQL DDL also supports a number of types of integrity constraints. For exam-
ple, one can specify that the dept name attribute value is a primary key, ensuring that no
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two departments can have the same department name. As another example, one can
specify that the dept name attribute value appearing in any instructor record must also
appear in the dept name attribute of some record of the department table. We discuss
SQL support for integrity constraints and authorizations in Chapter 3 and Chapter 4.

1.4.3 Data-Manipulation Language

A data-manipulation language (DML) is a language that enables users to access or ma-
nipulate data as organized by the appropriate data model. The types of access are:

• Retrieval of information stored in the database.

• Insertion of new information into the database.

• Deletion of information from the database.

• Modification of information stored in the database.

There are basically two types of data-manipulation language:

• Procedural DMLs require a user to specify what data are needed and how to get
those data.

• Declarative DMLs (also referred to as nonprocedural DMLs) require a user to spec-
ify what data are needed without specifying how to get those data.

Declarative DMLs are usually easier to learn and use than are procedural DMLs.
However, since a user does not have to specify how to get the data, the database system
has to figure out an efficient means of accessing data.

A query is a statement requesting the retrieval of information. The portion of a
DML that involves information retrieval is called a query language. Although technically
incorrect, it is common practice to use the terms query language and data-manipulation
language synonymously.

There are a number of database query languages in use, either commercially or
experimentally. We study the most widely used query language, SQL, in Chapter 3
through Chapter 5.

The levels of abstraction that we discussed in Section 1.3 apply not only to defining
or structuring data, but also to manipulating data. At the physical level, we must define
algorithms that allow efficient access to data. At higher levels of abstraction, we em-
phasize ease of use. The goal is to allow humans to interact efficiently with the system.
The query processor component of the database system (which we study in Chapter
15 and Chapter 16) translates DML queries into sequences of actions at the physical
level of the database system. In Chapter 22, we study the processing of queries in the
increasingly common parallel and distributed settings.
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1.4.4 The SQL Data-Manipulation Language

The SQL query language is nonprocedural. A query takes as input several tables (pos-
sibly only one) and always returns a single table. Here is an example of an SQL query
that finds the names of all instructors in the History department:

select instructor.name
from instructor
where instructor.dept name = 'History';

The query specifies that those rows from the table instructor where the dept name is
History must be retrieved, and the name attribute of these rows must be displayed. The
result of executing this query is a table with a single column labeled name and a set of
rows, each of which contains the name of an instructor whose dept name is History. If
the query is run on the table in Figure 1.1, the result consists of two rows, one with the
name El Said and the other with the name Califieri.

Queries may involve information from more than one table. For instance, the fol-
lowing query finds the instructor ID and department name of all instructors associated
with a department with a budget of more than $95,000.

select instructor.ID, department.dept name
from instructor, department
where instructor.dept name= department.dept name and

department.budget > 95000;

If the preceding query were run on the tables in Figure 1.1, the system would find that
there are two departments with a budget of greater than $95,000—Computer Science
and Finance; there are five instructors in these departments. Thus, the result consists of
a table with two columns (ID, dept name) and five rows: (12121, Finance), (45565, Com-
puter Science), (10101, Computer Science), (83821, Computer Science), and (76543,
Finance).

1.4.5 Database Access from Application Programs

Non-procedural query languages such as SQL are not as powerful as a universal Turing
machine; that is, there are some computations that are possible using a general-purpose
programming language but are not possible using SQL. SQL also does not support ac-
tions such as input from users, output to displays, or communication over the network.
Such computations and actions must be written in a host language, such as C/C++,
Java, or Python, with embedded SQL queries that access the data in the database.
Application programs are programs that are used to interact with the database in this
fashion. Examples in a university system are programs that allow students to register
for courses, generate class rosters, calculate student GPA, generate payroll checks, and
perform other tasks.
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To access the database, DML statements need to be sent from the host to the
database where they will be executed. This is most commonly done by using an
application-program interface (set of procedures) that can be used to send DML and
DDL statements to the database and retrieve the results. The Open Database Con-
nectivity (ODBC) standard defines application program interfaces for use with C and
several other languages. The Java Database Connectivity (JDBC) standard defines a
corresponding interface for the Java language.

1.5 Database Design

Database systems are designed to manage large bodies of information. These large
bodies of information do not exist in isolation. They are part of the operation of some
enterprise whose end product may be information from the database or may be some
device or service for which the database plays only a supporting role.

Database design mainly involves the design of the database schema. The design of
a complete database application environment that meets the needs of the enterprise
being modeled requires attention to a broader set of issues. In this text, we focus on the
writing of database queries and the design of database schemas, but discuss application
design later, in Chapter 9.

A high-level data model provides the database designer with a conceptual frame-
work in which to specify the data requirements of the database users and how the
database will be structured to fulfill these requirements. The initial phase of database
design, then, is to characterize fully the data needs of the prospective database users.
The database designer needs to interact extensively with domain experts and users to
carry out this task. The outcome of this phase is a specification of user requirements.

Next, the designer chooses a data model, and by applying the concepts of the cho-
sen data model, translates these requirements into a conceptual schema of the database.
The schema developed at this conceptual-design phase provides a detailed overview of
the enterprise. The designer reviews the schema to confirm that all data requirements
are indeed satisfied and are not in conflict with one another. The designer can also
examine the design to remove any redundant features. The focus at this point is on
describing the data and their relationships, rather than on specifying physical storage
details.

In terms of the relational model, the conceptual-design process involves decisions
on what attributes we want to capture in the database and how to group these attributes
to form the various tables. The “what” part is basically a business decision, and we
shall not discuss it further in this text. The “how” part is mainly a computer-science
problem. There are principally two ways to tackle the problem. The first one is to use
the entity-relationship model (Chapter 6); the other is to employ a set of algorithms
(collectively known as normalization that takes as input the set of all attributes and
generates a set of tables (Chapter 7).

A fully developed conceptual schema indicates the functional requirements of the
enterprise. In a specification of functional requirements, users describe the kinds of oper-
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ations (or transactions) that will be performed on the data. Example operations include
modifying or updating data, searching for and retrieving specific data, and deleting
data. At this stage of conceptual design, the designer can review the schema to ensure
it meets functional requirements.

The process of moving from an abstract data model to the implementation of
the database proceeds in two final design phases. In the logical-design phase, the de-
signer maps the high-level conceptual schema onto the implementation data model of
the database system that will be used. The designer uses the resulting system-specific
database schema in the subsequent physical-design phase, in which the physical features
of the database are specified. These features include the form of file organization and
the internal storage structures; they are discussed in Chapter 13.

1.6 Database Engine

A database system is partitioned into modules that deal with each of the responsibilities
of the overall system. The functional components of a database system can be broadly
divided into the storage manager, the query processor components, and the transaction
management component.

The storage manager is important because databases typically require a large
amount of storage space. Corporate databases commonly range in size from hundreds
of gigabytes to terabytes of data. A gigabyte is approximately 1 billion bytes, or 1000
megabytes (more precisely, 1024 megabytes), while a terabyte is approximately 1 tril-
lion bytes or 1 million megabytes (more precisely, 1024 gigabytes). The largest enter-
prises have databases that reach into the multi-petabyte range (a petabyte is 1024 ter-
abytes). Since the main memory of computers cannot store this much information, and
since the contents of main memory are lost in a system crash, the information is stored
on disks. Data are moved between disk storage and main memory as needed. Since the
movement of data to and from disk is slow relative to the speed of the central process-
ing unit, it is imperative that the database system structure the data so as to minimize
the need to move data between disk and main memory. Increasingly, solid-state disks
(SSDs) are being used for database storage. SSDs are faster than traditional disks but
also more costly.

The query processor is important because it helps the database system to simplify
and facilitate access to data. The query processor allows database users to obtain good
performance while being able to work at the view level and not be burdened with un-
derstanding the physical-level details of the implementation of the system. It is the job
of the database system to translate updates and queries written in a nonprocedural
language, at the logical level, into an efficient sequence of operations at the physical
level.

The transaction manager is important because it allows application developers to
treat a sequence of database accesses as if they were a single unit that either happens in
its entirety or not at all. This permits application developers to think at a higher level of
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abstraction about the application without needing to be concerned with the lower-level
details of managing the effects of concurrent access to the data and of system failures.

While database engines were traditionally centralized computer systems, today
parallel processing is key for handling very large amounts of data efficiently. Modern
database engines pay a lot of attention to parallel data storage and parallel query pro-
cessing.

1.6.1 Storage Manager

The storage manager is the component of a database system that provides the interface
between the low-level data stored in the database and the application programs and
queries submitted to the system. The storage manager is responsible for the interaction
with the file manager. The raw data are stored on the disk using the file system provided
by the operating system. The storage manager translates the various DML statements
into low-level file-system commands. Thus, the storage manager is responsible for stor-
ing, retrieving, and updating data in the database.

The storage manager components include:

• Authorization and integrity manager, which tests for the satisfaction of integrity
constraints and checks the authority of users to access data.

• Transaction manager, which ensures that the database remains in a consistent (cor-
rect) state despite system failures, and that concurrent transaction executions pro-
ceed without conflicts.

• File manager, which manages the allocation of space on disk storage and the data
structures used to represent information stored on disk.

• Buffer manager, which is responsible for fetching data from disk storage into main
memory, and deciding what data to cache in main memory. The buffer manager is
a critical part of the database system, since it enables the database to handle data
sizes that are much larger than the size of main memory.

The storage manager implements several data structures as part of the physical
system implementation:

• Data files, which store the database itself.

• Data dictionary, which stores metadata about the structure of the database, in
particular the schema of the database.

• Indices, which can provide fast access to data items. Like the index in this textbook,
a database index provides pointers to those data items that hold a particular value.
For example, we could use an index to find the instructor record with a particular
ID, or all instructor records with a particular name.
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We discuss storage media, file structures, and buffer management in Chapter 12 and
Chapter 13. Methods of accessing data efficiently are discussed in Chapter 14.

1.6.2 The Query Processor

The query processor components include:

• DDL interpreter, which interprets DDL statements and records the definitions in
the data dictionary.

• DML compiler, which translates DML statements in a query language into an eval-
uation plan consisting of low-level instructions that the query-evaluation engine
understands.

A query can usually be translated into any of a number of alternative evalua-
tion plans that all give the same result. The DML compiler also performs query
optimization; that is, it picks the lowest cost evaluation plan from among the alter-
natives.

• Query evaluation engine, which executes low-level instructions generated by the
DML compiler.

Query evaluation is covered in Chapter 15, while the methods by which the query opti-
mizer chooses from among the possible evaluation strategies are discussed in Chapter
16.

1.6.3 Transaction Management

Often, several operations on the database form a single logical unit of work. An exam-
ple is a funds transfer, as in Section 1.2, in which one account A is debited and another
account B is credited. Clearly, it is essential that either both the credit and debit occur,
or that neither occur. That is, the funds transfer must happen in its entirety or not at
all. This all-or-none requirement is called atomicity. In addition, it is essential that the
execution of the funds transfer preserves the consistency of the database. That is, the
value of the sum of the balances of A and B must be preserved. This correctness require-
ment is called consistency. Finally, after the successful execution of a funds transfer,
the new values of the balances of accounts A and B must persist, despite the possibility
of system failure. This persistence requirement is called durability.

A transaction is a collection of operations that performs a single logical function
in a database application. Each transaction is a unit of both atomicity and consistency.
Thus, we require that transactions do not violate any database-consistency constraints.
That is, if the database was consistent when a transaction started, the database must
be consistent when the transaction successfully terminates. However, during the exe-
cution of a transaction, it may be necessary temporarily to allow inconsistency, since
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either the debit of A or the credit of B must be done before the other. This temporary
inconsistency, although necessary, may lead to difficulty if a failure occurs.

It is the programmer’s responsibility to properly define the various transactions so
that each preserves the consistency of the database. For example, the transaction to
transfer funds from account A to account B could be defined to be composed of two
separate programs: one that debits account A and another that credits account B. The
execution of these two programs one after the other will indeed preserve consistency.
However, each program by itself does not transform the database from a consistent
state to a new consistent state. Thus, those programs are not transactions.

Ensuring the atomicity and durability properties is the responsibility of the
database system itself—specifically, of the recovery manager. In the absence of failures,
all transactions complete successfully, and atomicity is achieved easily. However, be-
cause of various types of failure, a transaction may not always complete its execution
successfully. If we are to ensure the atomicity property, a failed transaction must have
no effect on the state of the database. Thus, the database must be restored to the state
in which it was before the transaction in question started executing. The database sys-
tem must therefore perform failure recovery, that is, it must detect system failures and
restore the database to the state that existed prior to the occurrence of the failure.

Finally, when several transactions update the database concurrently, the consis-
tency of data may no longer be preserved, even though each individual transaction is
correct. It is the responsibility of the concurrency-control manager to control the inter-
action among the concurrent transactions, to ensure the consistency of the database.
The transaction manager consists of the concurrency-control manager and the recovery
manager.

The basic concepts of transaction processing are covered in Chapter 17. The man-
agement of concurrent transactions is covered in Chapter 18. Chapter 19 covers failure
recovery in detail.

The concept of a transaction has been applied broadly in database systems and
applications. While the initial use of transactions was in financial applications, the
concept is now used in real-time applications in telecommunication, as well as in the
management of long-duration activities such as product design or administrative work-
flows.

1.7 Database and Application Architecture

We are now in a position to provide a single picture of the various components of a
database system and the connections among them. Figure 1.3 shows the architecture
of a database system that runs on a centralized server machine. The figure summarizes
how different types of users interact with a database, and how the different components
of a database engine are connected to each other.

The centralized architecture shown in Figure 1.3 is applicable to shared-memory
server architectures, which have multiple CPUs and exploit parallel processing, but all
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Figure 1.3 System structure.

the CPUs access a common shared memory. To scale up to even larger data volumes
and even higher processing speeds, parallel databases are designed to run on a cluster
consisting of multiple machines. Further, distributed databases allow data storage and
query processing across multiple geographically separated machines.
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In Chapter 20, we cover the general structure of modern computer systems, with a
focus on parallel system architectures. Chapter 21 and Chapter 22 describe how query
processing can be implemented to exploit parallel and distributed processing. Chapter
23 presents a number of issues that arise in processing transactions in a parallel or a
distributed database and describes how to deal with each issue. The issues include how
to store data, how to ensure atomicity of transactions that execute at multiple sites, how
to perform concurrency control, and how to provide high availability in the presence
of failures.

We now consider the architecture of applications that use databases as their back-
end. Database applications can be partitioned into two or three parts, as shown in
Figure 1.4. Earlier-generation database applications used a two-tier architecture, where
the application resides at the client machine, and invokes database system functionality
at the server machine through query language statements.

In contrast, modern database applications use a three-tier architecture, where the
client machine acts as merely a front end and does not contain any direct database calls;
web browsers and mobile applications are the most commonly used application clients
today. The front end communicates with an application server. The application server,
in turn, communicates with a database system to access data. The business logic of the
application, which says what actions to carry out under what conditions, is embedded
in the application server, instead of being distributed across multiple clients. Three-
tier applications provide better security as well as better performance than two-tier
applications.

user

application

database system

network

(a) Two-tier architecture

client

server

user

application client

database system

network

application server

(b) Three-tier architecture

Figure 1.4 Two-tier and three-tier architectures.
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1.8 Database Users and Administrators

A primary goal of a database system is to retrieve information from and store new
information in the database. People who work with a database can be categorized as
database users or database administrators.

1.8.1 Database Users and User Interfaces

There are four different types of database-system users, differentiated by the way they
expect to interact with the system. Different types of user interfaces have been designed
for the different types of users.

• Näıve users are unsophisticated users who interact with the system by using prede-
fined user interfaces, such as web or mobile applications. The typical user interface
for näıve users is a forms interface, where the user can fill in appropriate fields of
the form. Näıve users may also view read reports generated from the database.

As an example, consider a student, who during class registration period, wishes
to register for a class by using a web interface. Such a user connects to a web
application program that runs at a web server. The application first verifies the
identity of the user and then allows her to access a form where she enters the
desired information. The form information is sent back to the web application
at the server, which then determines if there is room in the class (by retrieving
information from the database) and if so adds the student information to the class
roster in the database.

• Application programmers are computer professionals who write application pro-
grams. Application programmers can choose from many tools to develop user in-
terfaces.

• Sophisticated users interact with the system without writing programs. Instead,
they form their requests either using a database query language or by using tools
such as data analysis software. Analysts who submit queries to explore data in the
database fall in this category.

1.8.2 Database Administrator

One of the main reasons for using DBMSs is to have central control of both the data
and the programs that access those data. A person who has such central control over
the system is called a database administrator (DBA). The functions of a DBA include:

• Schema definition. The DBA creates the original database schema by executing a
set of data definition statements in the DDL.

• Storage structure and access-method definition. The DBA may specify some param-
eters pertaining to the physical organization of the data and the indices to be cre-
ated.
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• Schema and physical-organization modification. The DBA carries out changes to the
schema and physical organization to reflect the changing needs of the organiza-
tion, or to alter the physical organization to improve performance.

• Granting of authorization for data access. By granting different types of authoriza-
tion, the database administrator can regulate which parts of the database various
users can access. The authorization information is kept in a special system struc-
ture that the database system consults whenever a user tries to access the data in
the system.

• Routine maintenance. Examples of the database administrator’s routine mainte-
nance activities are:

° Periodically backing up the database onto remote servers, to prevent loss of
data in case of disasters such as flooding.

° Ensuring that enough free disk space is available for normal operations, and
upgrading disk space as required.

° Monitoring jobs running on the database and ensuring that performance is not
degraded by very expensive tasks submitted by some users.

1.9 History of Database Systems

Information processing drives the growth of computers, as it has from the earliest days
of commercial computers. In fact, automation of data processing tasks predates com-
puters. Punched cards, invented by Herman Hollerith, were used at the very beginning
of the twentieth century to record U.S. census data, and mechanical systems were used
to process the cards and tabulate results. Punched cards were later widely used as a
means of entering data into computers.

Techniques for data storage and processing have evolved over the years:

• 1950s and early 1960s: Magnetic tapes were developed for data storage. Data-
processing tasks such as payroll were automated, with data stored on tapes. Pro-
cessing of data consisted of reading data from one or more tapes and writing data
to a new tape. Data could also be input from punched card decks and output
to printers. For example, salary raises were processed by entering the raises on
punched cards and reading the punched card deck in synchronization with a tape
containing the master salary details. The records had to be in the same sorted or-
der. The salary raises would be added to the salary read from the master tape and
written to a new tape; the new tape would become the new master tape.

Tapes (and card decks) could be read only sequentially, and data sizes were
much larger than main memory; thus, data-processing programs were forced to
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process data in a particular order by reading and merging data from tapes and
card decks.

• Late 1960s and early 1970s: Widespread use of hard disks in the late 1960s changed
the scenario for data processing greatly, since hard disks allowed direct access to
data. The position of data on disk was immaterial, since any location on disk could
be accessed in just tens of milliseconds. Data were thus freed from the tyranny of
sequentiality. With the advent of disks, the network and hierarchical data models
were developed, which allowed data structures such as lists and trees to be stored
on disk. Programmers could construct and manipulate these data structures.

A landmark paper by Edgar Codd in 1970 defined the relational model and non-
procedural ways of querying data in the relational model, and relational databases
were born. The simplicity of the relational model and the possibility of hiding im-
plementation details completely from the programmer were enticing indeed. Codd
later won the prestigious Association of Computing Machinery Turing Award for
his work.

• Late 1970s and 1980s: Although academically interesting, the relational model was
not used in practice initially because of its perceived performance disadvantages;
relational databases could not match the performance of existing network and
hierarchical databases. That changed with System R, a groundbreaking project
at IBM Research that developed techniques for the construction of an efficient
relational database system. The fully functional System R prototype led to IBM’s
first relational database product, SQL/DS. At the same time, the Ingres system was
being developed at the University of California at Berkeley. It led to a commercial
product of the same name. Also around this time, the first version of Oracle was
released. Initial commercial relational database systems, such as IBM DB2, Oracle,
Ingres, and DEC Rdb, played a major role in advancing techniques for efficient
processing of declarative queries.

By the early 1980s, relational databases had become competitive with network
and hierarchical database systems even in the area of performance. Relational
databases were so easy to use that they eventually replaced network and hierar-
chical databases. Programmers using those older models were forced to deal with
many low-level implementation details, and they had to code their queries in a
procedural fashion. Most importantly, they had to keep efficiency in mind when
designing their programs, which involved a lot of effort. In contrast, in a rela-
tional database, almost all these low-level tasks are carried out automatically by the
database system, leaving the programmer free to work at a logical level. Since at-
taining dominance in the 1980s, the relational model has reigned supreme among
data models.

The 1980s also saw much research on parallel and distributed databases, as
well as initial work on object-oriented databases.
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• 1990s: The SQL language was designed primarily for decision support applica-
tions, which are query-intensive, yet the mainstay of databases in the 1980s was
transaction-processing applications, which are update-intensive.

In the early 1990s, decision support and querying re-emerged as a major ap-
plication area for databases. Tools for analyzing large amounts of data saw a large
growth in usage. Many database vendors introduced parallel database products in
this period. Database vendors also began to add object-relational support to their
databases.

The major event of the 1990s was the explosive growth of the World Wide
Web. Databases were deployed much more extensively than ever before. Database
systems now had to support very high transaction-processing rates, as well as very
high reliability and 24 × 7 availability (availability 24 hours a day, 7 days a week,
meaning no downtime for scheduled maintenance activities). Database systems
also had to support web interfaces to data.

• 2000s: The types of data stored in database systems evolved rapidly during this
period. Semi-structured data became increasingly important. XML emerged as a
data-exchange standard. JSON, a more compact data-exchange format well suited
for storing objects from JavaScript or other programming languages subsequently
grew increasingly important. Increasingly, such data were stored in relational
database systems as support for the XML and JSON formats was added to the
major commercial systems. Spatial data (that is, data that include geographic in-
formation) saw widespread use in navigation systems and advanced applications.
Database systems added support for such data.

Open-source database systems, notably PostgreSQL and MySQL saw increased
use. “Auto-admin” features were added to database systems in order to allow au-
tomatic reconfiguration to adapt to changing workloads. This helped reduce the
human workload in administering a database.

Social network platforms grew at a rapid pace, creating a need to manage data
about connections between people and their posted data, that did not fit well into
a tabular row-and-column format. This led to the development of graph databases.

In the latter part of the decade, the use of data analytics and data mining in
enterprises became ubiquitous. Database systems were developed specifically to
serve this market. These systems featured physical data organizations suitable for
analytic processing, such as “column-stores,” in which tables are stored by column
rather than the traditional row-oriented storage of the major commercial database
systems.

The huge volumes of data, as well as the fact that much of the data used for
analytics was textual or semi-structured, led to the development of programming
frameworks, such as map-reduce, to facilitate application programmers’ use of par-
allelism in analyzing data. In time, support for these features migrated into tradi-
tional database systems. Even in the late 2010s, debate continued in the database
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research community over the relative merits of a single database system serving
both traditional transaction processing applications and the newer data-analysis
applications versus maintaining separate systems for these roles.

The variety of new data-intensive applications and the need for rapid devel-
opment, particularly by startup firms, led to “NoSQL” systems that provide a
lightweight form of data management. The name was derived from those systems’
lack of support for the ubiquitous database query language SQL, though the name
is now often viewed as meaning “not only SQL.” The lack of a high-level query lan-
guage based on the relational model gave programmers greater flexibility to work
with new types of data. The lack of traditional database systems’ support for strict
data consistency provided more flexibility in an application’s use of distributed
data stores. The NoSQL model of “eventual consistency” allowed for distributed
copies of data to be inconsistent as long they would eventually converge in the
absence of further updates.

• 2010s: The limitations of NoSQL systems, such as lack of support for consistency,
and lack of support for declarative querying, were found acceptable by many ap-
plications (e.g., social networks), in return for the benefits they provided such as
scalability and availability. However, by the early 2010s it was clear that the lim-
itations made life significantly more complicated for programmers and database
administrators. As a result, these systems evolved to provide features to support
stricter notions of consistency, while continuing to support high scalability and
availability. Additionally, these systems increasingly support higher levels of ab-
straction to avoid the need for programmers to have to reimplement features that
are standard in a traditional database system.

Enterprises are increasingly outsourcing the storage and management of their
data. Rather than maintaining in-house systems and expertise, enterprises may
store their data in “cloud” services that host data for various clients in multiple,
widely distributed server farms. Data are delivered to users via web-based services.
Other enterprises are outsourcing not only the storage of their data but also whole
applications. In such cases, termed “software as a service,” the vendor not only
stores the data for an enterprise but also runs (and maintains) the application
software. These trends result in significant savings in costs, but they create new
issues not only in responsibility for security breaches, but also in data ownership,
particularly in cases where a government requests access to data.

The huge influence of data and data analytics in daily life has made the man-
agement of data a frequent aspect of the news. There is an unresolved tradeoff
between an individual’s right of privacy and society’s need to know. Various na-
tional governments have put regulations on privacy in place. High-profile security
breaches have created a public awareness of the challenges in cybersecurity and
the risks of storing data.
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1.10 Summary

• A database-management system (DBMS) consists of a collection of interrelated
data and a collection of programs to access those data. The data describe one
particular enterprise.

• The primary goal of a DBMS is to provide an environment that is both convenient
and efficient for people to use in retrieving and storing information.

• Database systems are ubiquitous today, and most people interact, either directly
or indirectly, with databases many times every day.

• Database systems are designed to store large bodies of information. The manage-
ment of data involves both the definition of structures for the storage of infor-
mation and the provision of mechanisms for the manipulation of information. In
addition, the database system must provide for the safety of the information stored
in the face of system crashes or attempts at unauthorized access. If data are to be
shared among several users, the system must avoid possible anomalous results.

• A major purpose of a database system is to provide users with an abstract view of
the data. That is, the system hides certain details of how the data are stored and
maintained.

• Underlying the structure of a database is the data model: a collection of conceptual
tools for describing data, data relationships, data semantics, and data constraints.

• The relational data model is the most widely deployed model for storing data in
databases. Other data models are the object-oriented model, the object-relational
model, and semi-structured data models.

• A data-manipulation language (DML) is a language that enables users to access or
manipulate data. Nonprocedural DMLs, which require a user to specify only what
data are needed, without specifying exactly how to get those data, are widely used
today.

• A data-definition language (DDL) is a language for specifying the database schema
and other properties of the data.

• Database design mainly involves the design of the database schema. The entity-
relationship (E-R) data model is a widely used model for database design. It pro-
vides a convenient graphical representation to view data, relationships, and con-
straints.

• A database system has several subsystems.

° The storage manager subsystem provides the interface between the low-level
data stored in the database and the application programs and queries submitted
to the system.
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° The query processor subsystem compiles and executes DDL and DML state-
ments.

• Transaction management ensures that the database remains in a consistent (cor-
rect) state despite system failures. The transaction manager ensures that concur-
rent transaction executions proceed without conflicts.

• The architecture of a database system is greatly influenced by the underlying com-
puter system on which the database system runs. Database systems can be central-
ized, or parallel, involving multiple machines. Distributed databases span multiple
geographically separated machines.

• Database applications are typically broken up into a front-end part that runs at
client machines and a part that runs at the backend. In two-tier architectures, the
front end directly communicates with a database running at the back end. In three-
tier architectures, the back end part is itself broken up into an application server
and a database server.

• There are four different types of database-system users, differentiated by the way
they expect to interact with the system. Different types of user interfaces have been
designed for the different types of users.

• Data-analysis techniques attempt to automatically discover rules and patterns from
data. The field of data mining combines knowledge-discovery techniques invented
by artificial intelligence researchers and statistical analysts with efficient imple-
mentation techniques that enable them to be used on extremely large databases.

Review Terms

• Database-management system
(DBMS)

• Database-system applications

• Online transaction processing

• Data analytics

• File-processing systems

• Data inconsistency

• Consistency constraints

• Data abstraction

° Physical level

° Logical level

° View level

• Instance

• Schema

° Physical schema

° Logical schema

° Subschema

• Physical data independence

• Data models

° Entity-relationship model

° Relational data model

° Semi-structured data model

° Object-based data model
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• Database languages

° Data-definition language

° Data-manipulation language
⋄ Procedural DML

⋄ Declarative DML

⋄ nonprocedural DML

° Query language

• Data-definition language

° Domain Constraints

° Referential Integrity

° Authorization
⋄ Read authorization
⋄ Insert authorization
⋄ Update authorization
⋄ Delete authorization

• Metadata

• Application program

• Database design

° Conceptual design

° Normalization

° Specification of functional re-
quirements

° Physical-design phase

• Database Engine

° Storage manager
⋄ Authorization and integrity

manager

⋄ Transaction manager
⋄ File manager
⋄ Buffer manager
⋄ Data files
⋄ Data dictionary
⋄ Indices

° Query processor
⋄ DDL interpreter
⋄ DML compiler
⋄ Query optimization
⋄ Query evaluation engine

° Transactions
⋄ Atomicity
⋄ Consistency
⋄ Durability
⋄ Recovery manager
⋄ Failure recovery
⋄ Concurrency-control manager

• Database Architecture

° Centralized

° Parallel

° Distributed

• Database Application Architecture

° Two-tier

° Three-tier

° Application server

• Database administrator (DBA)

Practice Exercises

1.1 This chapter has described several major advantages of a database system. What
are two disadvantages?

1.2 List five ways in which the type declaration system of a language such as Java
or C++ differs from the data definition language used in a database.
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1.3 List six major steps that you would take in setting up a database for a particular
enterprise.

1.4 Suppose you want to build a video site similar to YouTube. Consider each of the
points listed in Section 1.2 as disadvantages of keeping data in a file-processing
system. Discuss the relevance of each of these points to the storage of actual
video data, and to metadata about the video, such as title, the user who uploaded
it, tags, and which users viewed it.

1.5 Keyword queries used in web search are quite different from database queries.
List key differences between the two, in terms of the way the queries are specified
and in terms of what is the result of a query.

Exercises

1.6 List four applications you have used that most likely employed a database system
to store persistent data.

1.7 List four significant differences between a file-processing system and a DBMS.

1.8 Explain the concept of physical data independence and its importance in
database systems.

1.9 List five responsibilities of a database-management system. For each responsi-
bility, explain the problems that would arise if the responsibility were not dis-
charged.

1.10 List at least two reasons why database systems support data manipulation using
a declarative query language such as SQL, instead of just providing a library of
C or C++ functions to carry out data manipulation.

1.11 Assume that two students are trying to register for a course in which there is only
one open seat. What component of a database system prevents both students
from being given that last seat?

1.12 Explain the difference between two-tier and three-tier application architectures.
Which is better suited for web applications? Why?

1.13 List two features developed in the 2000s and that help database systems handle
data-analytics workloads.

1.14 Explain why NoSQL systems emerged in the 2000s, and briefly contrast their
features with traditional database systems.

1.15 Describe at least three tables that might be used to store information in a social-
networking system such as Facebook.
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Tools

There are a large number of commercial database systems in use today.
The major ones include: IBM DB2 (www.ibm.com/software/data/db2), Ora-
cle (www.oracle.com), Microsoft SQL Server (www.microsoft.com/sql), IBM In-
formix (www.ibm.com/software/data/informix), SAP Adaptive Server Enterprise
(formerly Sybase) (www.sap.com/products/sybase-ase.html), and SAP HANA
(www.sap.com/products/hana.html). Some of these systems are available free for
personal or non-commercial use, or for development, but are not free for actual deploy-
ment.

There are also a number of free/public domain database systems; widely used ones
include MySQL (www.mysql.com), PostgreSQL (www.postgresql.org), and the em-
bedded database SQLite (www.sqlite.org).

A more complete list of links to vendor web sites and other information is available
from the home page of this book, at db-book.com.

Further Reading

[Codd (1970)] is the landmark paper that introduced the relational model. Textbook
coverage of database systems is provided by [O’Neil and O’Neil (2000)], [Ramakrish-
nan and Gehrke (2002)], [Date (2003)], [Kifer et al. (2005)], [Garcia-Molina et al.
(2008)], and [Elmasri and Navathe (2016)], in addition to this textbook,

A review of accomplishments in database management and an assessment of future
research challenges appears in [Abadi et al. (2016)]. The home page of the ACM Special
Interest Group on Management of Data (www.acm.org/sigmod) provides a wealth of
information about database research. Database vendor web sites (see the Tools section
above) provide details about their respective products.
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PART 1

RELATIONAL LANGUAGES
A data model is a collection of conceptual tools for describing data, data relationships,
data semantics, and consistency constraints. The relational model uses a collection of
tables to represent both data and the relationships among those data. Its conceptual
simplicity has led to its widespread adoption; today a vast majority of database products
are based on the relational model. The relational model describes data at the logical
and view levels, abstracting away low-level details of data storage.

To make data from a relational database available to users, we have to address how
users specify requests for retrieving and updating data. Several query languages have
been developed for this task, which are covered in this part.

Chapter 2 introduces the basic concepts underlying relational databases, including
the coverage of relational algebra—a formal query language that forms the basis for
SQL. The language SQL is the most widely used relational query language today and is
covered in great detail in this part.

Chapter 3 provides an overview of the SQL query language, including the SQL
data definition, the basic structure of SQL queries, set operations, aggregate functions,
nested subqueries, and modification of the database.

Chapter 4 provides further details of SQL, including join expressions, views, trans-
actions, integrity constraints that are enforced by the database, and authorization
mechanisms that control what access and update actions can be carried out by a user.

Chapter 5 covers advanced topics related to SQL including access to SQL from pro-
gramming languages, functions, procedures, triggers, recursive queries, and advanced
aggregation features.
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CHAP T E R 2
Introduction to the Relational
Model

The relational model remains the primary data model for commercial data-processing
applications. It attained its primary position because of its simplicity, which eases the
job of the programmer, compared to earlier data models such as the network model
or the hierarchical model. It has retained this position by incorporating various new
features and capabilities over its half-century of existence. Among those additions are
object-relational features such as complex data types and stored procedures, support for
XML data, and various tools to support semi-structured data. The relational model’s
independence from any specific underlying low-level data structures has allowed it to
persist despite the advent of new approaches to data storage, including modern column-
stores that are designed for large-scale data mining.

In this chapter, we first study the fundamentals of the relational model. A substan-
tial theory exists for relational databases. In Chapter 6 and Chapter 7, we shall examine
aspects of database theory that help in the design of relational database schemas, while
in Chapter 15 and Chapter 16 we discuss aspects of the theory dealing with efficient
processing of queries. In Chapter 27, we study aspects of formal relational languages
beyond our basic coverage in this chapter.

2.1 Structure of Relational Databases

A relational database consists of a collection of tables, each of which is assigned a
unique name. For example, consider the instructor table of Figure 2.1, which stores
information about instructors. The table has four column headers: ID, name, dept name,
and salary. Each row of this table records information about an instructor, consisting of
the instructor’s ID, name, dept name, and salary. Similarly, the course table of Figure 2.2
stores information about courses, consisting of a course id, title, dept name, and credits,
for each course. Note that each instructor is identified by the value of the column ID,
while each course is identified by the value of the column course id.

37
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ID name dept name salary

10101 Srinivasan Comp. Sci. 65000
12121 Wu Finance 90000
15151 Mozart Music 40000
22222 Einstein Physics 95000
32343 El Said History 60000
33456 Gold Physics 87000
45565 Katz Comp. Sci. 75000
58583 Califieri History 62000
76543 Singh Finance 80000
76766 Crick Biology 72000
83821 Brandt Comp. Sci. 92000
98345 Kim Elec. Eng. 80000

Figure 2.1 The instructor relation.

Figure 2.3 shows a third table, prereq, which stores the prerequisite courses for each
course. The table has two columns, course id and prereq id. Each row consists of a pair
of course identifiers such that the second course is a prerequisite for the first course.

Thus, a row in the prereq table indicates that two courses are related in the sense
that one course is a prerequisite for the other. As another example, when we consider
the table instructor, a row in the table can be thought of as representing the relationship

course id title dept name credits

BIO-101 Intro. to Biology Biology 4
BIO-301 Genetics Biology 4
BIO-399 Computational Biology Biology 3
CS-101 Intro. to Computer Science Comp. Sci. 4
CS-190 Game Design Comp. Sci. 4
CS-315 Robotics Comp. Sci. 3
CS-319 Image Processing Comp. Sci. 3
CS-347 Database System Concepts Comp. Sci. 3
EE-181 Intro. to Digital Systems Elec. Eng. 3
FIN-201 Investment Banking Finance 3
HIS-351 World History History 3
MU-199 Music Video Production Music 3
PHY-101 Physical Principles Physics 4

Figure 2.2 The course relation.
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course id prereq id

BIO-301 BIO-101
BIO-399 BIO-101
CS-190 CS-101
CS-315 CS-101
CS-319 CS-101
CS-347 CS-101
EE-181 PHY-101

Figure 2.3 The prereq relation.

between a specified ID and the corresponding values for name, dept name, and salary
values.

In general, a row in a table represents a relationship among a set of values. Since a
table is a collection of such relationships, there is a close correspondence between the
concept of table and the mathematical concept of relation, from which the relational
data model takes its name. In mathematical terminology, a tuple is simply a sequence
(or list) of values. A relationship between n values is represented mathematically by an
n-tuple of values, that is, a tuple with n values, which corresponds to a row in a table.

Thus, in the relational model the term relation is used to refer to a table, while the
term tuple is used to refer to a row. Similarly, the term attribute refers to a column of a
table.

Examining Figure 2.1, we can see that the relation instructor has four attributes:
ID, name, dept name, and salary.

We use the term relation instance to refer to a specific instance of a relation, that
is, containing a specific set of rows. The instance of instructor shown in Figure 2.1 has
12 tuples, corresponding to 12 instructors.

In this chapter, we shall be using a number of different relations to illustrate the
various concepts underlying the relational data model. These relations represent part
of a university. To simplify our presentation, we exclude much of the data an actual
university database would contain. We shall discuss criteria for the appropriateness of
relational structures in great detail in Chapter 6 and Chapter 7.

The order in which tuples appear in a relation is irrelevant, since a relation is a set
of tuples. Thus, whether the tuples of a relation are listed in sorted order, as in Figure
2.1, or are unsorted, as in Figure 2.4, does not matter; the relations in the two figures
are the same, since both contain the same set of tuples. For ease of exposition, we
generally show the relations sorted by their first attribute.

For each attribute of a relation, there is a set of permitted values, called the domain
of that attribute. Thus, the domain of the salary attribute of the instructor relation is
the set of all possible salary values, while the domain of the name attribute is the set of
all possible instructor names.
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ID name dept name salary

22222 Einstein Physics 95000
12121 Wu Finance 90000
32343 El Said History 60000
45565 Katz Comp. Sci. 75000
98345 Kim Elec. Eng. 80000
76766 Crick Biology 72000
10101 Srinivasan Comp. Sci. 65000
58583 Califieri History 62000
83821 Brandt Comp. Sci. 92000
15151 Mozart Music 40000
33456 Gold Physics 87000
76543 Singh Finance 80000

Figure 2.4 Unsorted display of the instructor relation.

We require that, for all relations r, the domains of all attributes of r be atomic.
A domain is atomic if elements of the domain are considered to be indivisible units.
For example, suppose the table instructor had an attribute phone number, which can
store a set of phone numbers corresponding to the instructor. Then the domain of
phone number would not be atomic, since an element of the domain is a set of phone
numbers, and it has subparts, namely, the individual phone numbers in the set.

The important issue is not what the domain itself is, but rather how we use domain
elements in our database. Suppose now that the phone number attribute stores a single
phone number. Even then, if we split the value from the phone number attribute into a
country code, an area code, and a local number, we would be treating it as a non-atomic
value. If we treat each phone number as a single indivisible unit, then the attribute phone
number would have an atomic domain.

The null value is a special value that signifies that the value is unknown or does not
exist. For example, suppose as before that we include the attribute phone number in the
instructor relation. It may be that an instructor does not have a phone number at all,
or that the telephone number is unlisted. We would then have to use the null value to
signify that the value is unknown or does not exist. We shall see later that null values
cause a number of difficulties when we access or update the database, and thus they
should be eliminated if at all possible. We shall assume null values are absent initially,
and in Section 3.6 we describe the effect of nulls on different operations.

The relatively strict structure of relations results in several important practical ad-
vantages in the storage and processing of data, as we shall see. That strict structure
is suitable for well-defined and relatively static applications, but it is less suitable for
applications where not only data but also the types and structure of those data change
over time. A modern enterprise needs to find a good balance between the efficiencies
of structured data and those situations where a predetermined structure is limiting.
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2.2 Database Schema

When we talk about a database, we must differentiate between the database schema,
which is the logical design of the database, and the database instance, which is a snap-
shot of the data in the database at a given instant in time.

The concept of a relation corresponds to the programming-language notion of
a variable, while the concept of a relation schema corresponds to the programming-
language notion of type definition.

In general, a relation schema consists of a list of attributes and their corresponding
domains. We shall not be concerned about the precise definition of the domain of each
attribute until we discuss the SQL language in Chapter 3.

The concept of a relation instance corresponds to the programming-language no-
tion of a value of a variable. The value of a given variable may change with time; simi-
larly the contents of a relation instance may change with time as the relation is updated.
In contrast, the schema of a relation does not generally change.

Although it is important to know the difference between a relation schema and a
relation instance, we often use the same name, such as instructor, to refer to both the
schema and the instance. Where required, we explicitly refer to the schema or to the
instance, for example “the instructor schema,” or “an instance of the instructor relation.”
However, where it is clear whether we mean the schema or the instance, we simply use
the relation name.

Consider the department relation of Figure 2.5. The schema for that relation is:

department (dept name, building, budget)

Note that the attribute dept name appears in both the instructor schema and the
department schema. This duplication is not a coincidence. Rather, using common at-
tributes in relation schemas is one way of relating tuples of distinct relations. For ex-
ample, suppose we wish to find the information about all the instructors who work in
the Watson building. We look first at the department relation to find the dept name of
all the departments housed in Watson. Then, for each such department, we look in

dept name building budget

Biology Watson 90000
Comp. Sci. Taylor 100000
Elec. Eng. Taylor 85000
Finance Painter 120000
History Painter 50000
Music Packard 80000
Physics Watson 70000

Figure 2.5 The department relation.
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course id sec id semester year building room number time slot id

BIO-101 1 Summer 2017 Painter 514 B
BIO-301 1 Summer 2018 Painter 514 A
CS-101 1 Fall 2017 Packard 101 H
CS-101 1 Spring 2018 Packard 101 F
CS-190 1 Spring 2017 Taylor 3128 E
CS-190 2 Spring 2017 Taylor 3128 A
CS-315 1 Spring 2018 Watson 120 D
CS-319 1 Spring 2018 Watson 100 B
CS-319 2 Spring 2018 Taylor 3128 C
CS-347 1 Fall 2017 Taylor 3128 A
EE-181 1 Spring 2017 Taylor 3128 C
FIN-201 1 Spring 2018 Packard 101 B
HIS-351 1 Spring 2018 Painter 514 C
MU-199 1 Spring 2018 Packard 101 D
PHY-101 1 Fall 2017 Watson 100 A

Figure 2.6 The section relation.

the instructor relation to find the information about the instructor associated with the
corresponding dept name.

Each course in a university may be offered multiple times, across different
semesters, or even within a semester. We need a relation to describe each individual
offering, or section, of the class. The schema is:

section (course id, sec id, semester, year, building, room number, time slot id)

Figure 2.6 shows a sample instance of the section relation.
We need a relation to describe the association between instructors and the class

sections that they teach. The relation schema to describe this association is:

teaches (ID, course id, sec id, semester, year)

Figure 2.7 shows a sample instance of the teaches relation.
As you can imagine, there are many more relations maintained in a real university

database. In addition to those relations we have listed already, instructor, department,
course, section, prereq, and teaches, we use the following relations in this text:

• student (ID, name, dept name, tot cred)

• advisor (s id, i id)

• takes (ID, course id, sec id, semester, year, grade)
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ID course id sec id semester year

10101 CS-101 1 Fall 2017
10101 CS-315 1 Spring 2018
10101 CS-347 1 Fall 2017
12121 FIN-201 1 Spring 2018
15151 MU-199 1 Spring 2018
22222 PHY-101 1 Fall 2017
32343 HIS-351 1 Spring 2018
45565 CS-101 1 Spring 2018
45565 CS-319 1 Spring 2018
76766 BIO-101 1 Summer 2017
76766 BIO-301 1 Summer 2018
83821 CS-190 1 Spring 2017
83821 CS-190 2 Spring 2017
83821 CS-319 2 Spring 2018
98345 EE-181 1 Spring 2017

Figure 2.7 The teaches relation.

• classroom (building, room number, capacity)

• time slot (time slot id, day, start time, end time)

2.3 Keys

We must have a way to specify how tuples within a given relation are distinguished.
This is expressed in terms of their attributes. That is, the values of the attribute values
of a tuple must be such that they can uniquely identify the tuple. In other words, no two
tuples in a relation are allowed to have exactly the same value for all attributes.1

A superkey is a set of one or more attributes that, taken collectively, allow us to
identify uniquely a tuple in the relation. For example, the ID attribute of the relation
instructor is sufficient to distinguish one instructor tuple from another. Thus, ID is a
superkey. The name attribute of instructor, on the other hand, is not a superkey, because
several instructors might have the same name.

Formally, let R denote the set of attributes in the schema of relation r. If we say
that a subset K of R is a superkey for r, we are restricting consideration to instances of
relations r in which no two distinct tuples have the same values on all attributes in K .
That is, if t1 and t2 are in r and t1 ≠ t2, then t1.K ≠ t2.K .

1Commercial database systems relax the requirement that a relation is a set and instead allow duplicate tuples. This is
discussed further in Chapter 3.
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A superkey may contain extraneous attributes. For example, the combination of
ID and name is a superkey for the relation instructor. If K is a superkey, then so is any
superset of K . We are often interested in superkeys for which no proper subset is a
superkey. Such minimal superkeys are called candidate keys.

It is possible that several distinct sets of attributes could serve as a candidate key.
Suppose that a combination of name and dept name is sufficient to distinguish among
members of the instructor relation. Then, both {ID} and {name, dept name} are candidate
keys. Although the attributes ID and name together can distinguish instructor tuples,
their combination, {ID, name}, does not form a candidate key, since the attribute ID
alone is a candidate key.

We shall use the term primary key to denote a candidate key that is chosen by the
database designer as the principal means of identifying tuples within a relation. A key
(whether primary, candidate, or super) is a property of the entire relation, rather than
of the individual tuples. Any two individual tuples in the relation are prohibited from
having the same value on the key attributes at the same time. The designation of a key
represents a constraint in the real-world enterprise being modeled. Thus, primary keys
are also referred to as primary key constraints.

It is customary to list the primary key attributes of a relation schema before the
other attributes; for example, the dept name attribute of department is listed first, since
it is the primary key. Primary key attributes are also underlined.

Consider the classroom relation:

classroom (building, room number, capacity)

Here the primary key consists of two attributes, building and room number, which are
underlined to indicate they are part of the primary key. Neither attribute by itself can
uniquely identify a classroom, although together they uniquely identify a classroom.
Also consider the time slot relation:

time slot (time slot id, day, start time, end time)

Each section has an associated time slot id. The time slot relation provides information
on which days of the week, and at what times, a particular time slot id meets. For ex-
ample, time slot id 'A' may meet from 8.00 AM to 8.50 AM on Mondays, Wednesdays,
and Fridays. It is possible for a time slot to have multiple sessions within a single day, at
different times, so the time slot id and day together do not uniquely identify the tuple.
The primary key of the time slot relation thus consists of the attributes time slot id, day,
and start time, since these three attributes together uniquely identify a time slot for a
course.

Primary keys must be chosen with care. As we noted, the name of a person is insuffi-
cient, because there may be many people with the same name. In the United States, the
social security number attribute of a person would be a candidate key. Since non-U.S.
residents usually do not have social security numbers, international enterprises must
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generate their own unique identifiers. An alternative is to use some unique combination
of other attributes as a key.

The primary key should be chosen such that its attribute values are never, or are
very rarely, changed. For instance, the address field of a person should not be part of
the primary key, since it is likely to change. Social security numbers, on the other hand,
are guaranteed never to change. Unique identifiers generated by enterprises generally
do not change, except if two enterprises merge; in such a case the same identifier may
have been issued by both enterprises, and a reallocation of identifiers may be required
to make sure they are unique.

Figure 2.8 shows the complete set of relations that we use in our sample university
schema, with primary-key attributes underlined.

Next, we consider another type of constraint on the contents of relations, called
foreign-key constraints. Consider the attribute dept name of the instructor relation. It
would not make sense for a tuple in instructor to have a value for dept name that does not
correspond to a department in the department relation. Thus, in any database instance,
given any tuple, say ta, from the instructor relation, there must be some tuple, say tb, in
the department relation such that the value of the dept name attribute of ta is the same
as the value of the primary key, dept name, of tb.

A foreign-key constraint from attribute(s) A of relation r1 to the primary-key B of
relation r2 states that on any database instance, the value of A for each tuple in r1 must
also be the value of B for some tuple in r2. Attribute set A is called a foreign key from r1,
referencing r2. The relation r1 is also called the referencing relation of the foreign-key
constraint, and r2 is called the referenced relation.

For example, the attribute dept name in instructor is a foreign key from instructor,
referencing department; note that dept name is the primary key of department. Similarly,

classroom(building, room number, capacity)
department(dept name, building, budget)
course(course id, title, dept name, credits)
instructor(ID, name, dept name, salary)
section(course id, sec id, semester, year, building, room number, time slot id)
teaches(ID, course id, sec id, semester, year)
student(ID, name, dept name, tot cred)
takes(ID, course id, sec id, semester, year, grade)
advisor(s ID, i ID)
time slot(time slot id, day, start time, end time)
prereq(course id, prereq id)

Figure 2.8 Schema of the university database.
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the attributes building and room number of the section relation together form a foreign
key referencing the classroom relation.

Note that in a foreign-key constraint, the referenced attribute(s) must be the pri-
mary key of the referenced relation. The more general case, a referential-integrity con-
straint, relaxes the requirement that the referenced attributes form the primary key of
the referenced relation.

As an example, consider the values in the time slot id attribute of the section re-
lation. We require that these values must exist in the time slot id attribute of the time
slot relation. Such a requirement is an example of a referential integrity constraint. In

general, a referential integrity constraint requires that the values appearing in specified
attributes of any tuple in the referencing relation also appear in specified attributes of
at least one tuple in the referenced relation.

Note that time slot does not form a primary key of the time slot relation, although it
is a part of the primary key; thus, we cannot use a foreign-key constraint to enforce the
above constraint. In fact, foreign-key constraints are a special case of referential integrity
constraints, where the referenced attributes form the primary key of the referenced
relation. Database systems today typically support foreign-key constraints, but they
do not support referential integrity constraints where the referenced attribute is not a
primary key.

2.4 Schema Diagrams

A database schema, along with primary key and foreign-key constraints, can be de-
picted by schema diagrams. Figure 2.9 shows the schema diagram for our university
organization. Each relation appears as a box, with the relation name at the top in blue
and the attributes listed inside the box.

Primary-key attributes are shown underlined. Foreign-key constraints appear as
arrows from the foreign-key attributes of the referencing relation to the primary key of
the referenced relation. We use a two-headed arrow, instead of a single-headed arrow,
to indicate a referential integrity constraint that is not a foreign-key constraints. In
Figure 2.9, the line with a two-headed arrow from time slot id in the section relation to
time slot id in the time slot relation represents the referential integrity constraint from
section.time slot id to time slot.time slot id.

Many database systems provide design tools with a graphical user interface for
creating schema diagrams.2 We shall discuss a different diagrammatic representation
of schemas, called the entity-relationship diagram, at length in Chapter 6; although
there are some similarities in appearance, these two notations are quite different, and
should not be confused for one another.

2The two-headed arrow notation to represent referential integrity constraints has been introduced by us and is not
supported by any tool as far as we know; the notations for primary and foreign keys, however, are widely used.
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Figure 2.9 Schema diagram for the university database.

2.5 Relational Query Languages

A query language is a language in which a user requests information from the database.
These languages are usually on a level higher than that of a standard programming
language. Query languages can be categorized as imperative, functional, or declarative.
In an imperative query language, the user instructs the system to perform a specific
sequence of operations on the database to compute the desired result; such languages
usually have a notion of state variables, which are updated in the course of the compu-
tation.

In a functional query language, the computation is expressed as the evaluation of
functions that may operate on data in the database or on the results of other functions;
functions are side-effect free, and they do not update the program state.3 In a declara-
tive query language, the user describes the desired information without giving a specific
sequence of steps or function calls for obtaining that information; the desired informa-
tion is typically described using some form of mathematical logic. It is the job of the
database system to figure out how to obtain the desired information.

3The term procedural language has been used in earlier editions of the book to refer to languages based on procedure
invocations, which include functional languages; however, the term is also widely used to refer to imperative languages.
To avoid confusion we no longer use the term.



48 Chapter 2 Introduction to the Relational Model

There are a number of “pure” query languages.

• The relational algebra, which we describe in Section 2.6, is a functional query
language.4 The relational algebra forms the theoretical basis of the SQL query lan-
guage.

• The tuple relational calculus and domain relational calculus, which we describe in
Chapter 27 (available online) are declarative.

These query languages are terse and formal, lacking the “syntactic sugar” of commercial
languages, but they illustrate the fundamental techniques for extracting data from the
database.

Query languages used in practice, such as the SQL query language, include ele-
ments of the imperative, functional, and declarative approaches. We study the very
widely used query language SQL in Chapter 3 through Chapter 5.

2.6 The Relational Algebra

The relational algebra consists of a set of operations that take one or two relations as
input and produce a new relation as their result.

Some of these operations, such as the select, project, and rename operations, are
called unary operations because they operate on one relation. The other operations,
such as union, Cartesian product, and set difference, operate on pairs of relations and
are, therefore, called binary operations.

Although the relational algebra operations form the basis for the widely used SQL
query language, database systems do not allow users to write queries in relational alge-
bra. However, there are implementations of relational algebra that have been built for
students to practice relational algebra queries. The website of our book, db-book.com,
under the link titled Laboratory Material, provides pointers to a few such implementa-
tions.

It is worth recalling at this point that since a relation is a set of tuples, relations
cannot contain duplicate tuples. In practice, however, tables in database systems are
permitted to contain duplicates unless a specific constraint prohibits it. But, in dis-
cussing the formal relational algebra, we require that duplicates be eliminated, as is
required by the mathematical definition of a set. In Chapter 3 we discuss how rela-
tional algebra can be extended to work on multisets, which are sets that can contain
duplicates.

4Unlike modern functional languages, relational algebra supports only a small number of predefined functions, which
define an algebra on relations.
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ID name dept name salary

22222 Einstein Physics 95000
33456 Gold Physics 87000

Figure 2.10 Result of σdept name= “Physics” (instructor).

2.6.1 The Select Operation

The select operation selects tuples that satisfy a given predicate. We use the lowercase
Greek letter sigma (σ) to denote selection. The predicate appears as a subscript to σ.
The argument relation is in parentheses after the σ. Thus, to select those tuples of the
instructor relation where the instructor is in the “Physics” department, we write:

σdept name= “Physics” (instructor)

If the instructor relation is as shown in Figure 2.1, then the relation that results
from the preceding query is as shown in Figure 2.10.

We can find all instructors with salary greater than $90,000 by writing:

σsalary>90000 (instructor)

In general, we allow comparisons using =, ≠, <, ≤, >, and ≥ in the selection pred-
icate. Furthermore, we can combine several predicates into a larger predicate by using
the connectives and (∧), or (∨), and not (¬). Thus, to find the instructors in Physics
with a salary greater than $90,000, we write:

σdept name= “Physics”∧ salary>90000 (instructor)

The selection predicate may include comparisons between two attributes. To illus-
trate, consider the relation department. To find all departments whose name is the same
as their building name, we can write:

σdept name= building(department)

2.6.2 The Project Operation

Suppose we want to list all instructors’ ID, name, and salary, but we do not care about
the dept name. The project operation allows us to produce this relation. The project
operation is a unary operation that returns its argument relation, with certain attributes
left out. Since a relation is a set, any duplicate rows are eliminated. Projection is denoted
by the uppercase Greek letter pi (Π). We list those attributes that we wish to appear in
the result as a subscript to Π. The argument relation follows in parentheses. We write
the query to produce such a list as:

ΠID, name, salary(instructor)

Figure 2.11 shows the relation that results from this query.
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ID name salary

10101 Srinivasan 65000
12121 Wu 90000
15151 Mozart 40000
22222 Einstein 95000
32343 El Said 60000
33456 Gold 87000
45565 Katz 75000
58583 Califieri 62000
76543 Singh 80000
76766 Crick 72000
83821 Brandt 92000
98345 Kim 80000

Figure 2.11 Result of ΠID, name, salary(instructor).

The basic version of the project operator ΠL(E) allows only attribute names to be
present in the list L. A generalized version of the operator allows expressions involving
attributes to appear in the list L. For example, we could use:

ΠID,name,salary∕12(instructor)

to get the monthly salary of each instructor.

2.6.3 Composition of Relational Operations

The fact that the result of a relational operation is itself a relation is important. Con-
sider the more complicated query “Find the names of all instructors in the Physics
department.” We write:

Πname (σdept name= “Physics” (instructor))

Notice that, instead of giving the name of a relation as the argument of the projection
operation, we give an expression that evaluates to a relation.

In general, since the result of a relational-algebra operation is of the same type
(relation) as its inputs, relational-algebra operations can be composed together into a
relational-algebra expression. Composing relational-algebra operations into relational-
algebra expressions is just like composing arithmetic operations (such as +, −, ∗, and
÷) into arithmetic expressions.

2.6.4 The Cartesian-Product Operation

The Cartesian-product operation, denoted by a cross (×), allows us to combine infor-
mation from any two relations. We write the Cartesian product of relations r1 and r2
as r1 × r2.
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instructor.ID name dept name salary teaches.ID course id sec id semester year

10101 Srinivasan Comp. Sci. 65000 10101 CS-101 1 Fall 2017
10101 Srinivasan Comp. Sci. 65000 10101 CS-315 1 Spring 2018
10101 Srinivasan Comp. Sci. 65000 10101 CS-347 1 Fall 2017
10101 Srinivasan Comp. Sci. 65000 12121 FIN-201 1 Spring 2018
10101 Srinivasan Comp. Sci. 65000 15151 MU-199 1 Spring 2018
10101 Srinivasan Comp. Sci. 65000 22222 PHY-101 1 Fall 2017

... ... ... ... ... ... ... ... ...

... ... ... ... ... ... ... ... ...
12121 Wu Finance 90000 10101 CS-101 1 Fall 2017
12121 Wu Finance 90000 10101 CS-315 1 Spring 2018
12121 Wu Finance 90000 10101 CS-347 1 Fall 2017
12121 Wu Finance 90000 12121 FIN-201 1 Spring 2018
12121 Wu Finance 90000 15151 MU-199 1 Spring 2018
12121 Wu Finance 90000 22222 PHY-101 1 Fall 2017

... ... ... ... ... ... ... ... ...

... ... ... ... ... ... ... ... ...
15151 Mozart Music 40000 10101 CS-101 1 Fall 2017
15151 Mozart Music 40000 10101 CS-315 1 Spring 2018
15151 Mozart Music 40000 10101 CS-347 1 Fall 2017
15151 Mozart Music 40000 12121 FIN-201 1 Spring 2018
15151 Mozart Music 40000 15151 MU-199 1 Spring 2018
15151 Mozart Music 40000 22222 PHY-101 1 Fall 2017

... ... ... ... ... ... ... ... ...

... ... ... ... ... ... ... ... ...
22222 Einstein Physics 95000 10101 CS-101 1 Fall 2017
22222 Einstein Physics 95000 10101 CS-315 1 Spring 2018
22222 Einstein Physics 95000 10101 CS-347 1 Fall 2017
22222 Einstein Physics 95000 12121 FIN-201 1 Spring 2018
22222 Einstein Physics 95000 15151 MU-199 1 Spring 2018
22222 Einstein Physics 95000 22222 PHY-101 1 Fall 2017

... ... ... ... ... ... ... ... ...

... ... ... ... ... ... ... ... ...

Figure 2.12 Result of the Cartesian product instructor × teaches.

A Cartesian product of database relations differs in its definition slightly from the
mathematical definition of a Cartesian product of sets. Instead of r1 × r2 producing
pairs (t1, t2) of tuples from r1 and r2, the relational algebra concatenates t1 and t2 into
a single tuple, as shown in Figure 2.12.

Since the same attribute name may appear in the schemas of both r1 and r2, we
need to devise a naming schema to distinguish between these attributes. We do so here
by attaching to an attribute the name of the relation from which the attribute originally
came. For example, the relation schema for r = instructor × teaches is:

(instructor.ID, instructor.name, instructor.dept name, instructor.salary,
teaches.ID, teaches.course id, teaches.sec id, teaches.semester, teaches.year)
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With this schema, we can distinguish instructor.ID from teaches.ID. For those attributes
that appear in only one of the two schemas, we shall usually drop the relation-name
prefix. This simplification does not lead to any ambiguity. We can then write the relation
schema for r as:

(instructor.ID, name, dept name, salary,
teaches.ID, course id, sec id, semester, year)

This naming convention requires that the relations that are the arguments of the
Cartesian-product operation have distinct names. This requirement causes problems
in some cases, such as when the Cartesian product of a relation with itself is desired. A
similar problem arises if we use the result of a relational-algebra expression in a Carte-
sian product, since we shall need a name for the relation so that we can refer to the
relation’s attributes. In Section 2.6.8, we see how to avoid these problems by using the
rename operation.

Now that we know the relation schema for r = instructor × teaches, what tuples
appear in r? As you may suspect, we construct a tuple of r out of each possible pair of
tuples: one from the instructor relation (Figure 2.1) and one from the teaches relation
(Figure 2.7). Thus, r is a large relation, as you can see from Figure 2.12, which includes
only a portion of the tuples that make up r.

Assume that we have n1 tuples in instructor and n2 tuples in teaches. Then, there
are n1 ∗ n2 ways of choosing a pair of tuples—one tuple from each relation; so there
are n1 ∗ n2 tuples in r. In particular for our example, for some tuples t in r, it may be
that the two ID values, instructor.ID and teaches.ID, are different.

In general, if we have relations r1(R1) and r2(R2), then r1 × r2 is a relation r(R)
whose schema R is the concatenation of the schemas R1 and R2. Relation r contains all
tuples t for which there is a tuple t1 in r1 and a tuple t2 in r2 for which t and t1 have the
same value on the attributes in R1 and t and t2 have the same value on the attributes in
R2.

2.6.5 The Join Operation

Suppose we want to find the information about all instructors together with the course
id of all courses they have taught. We need the information in both the instructor

relation and the teaches relation to compute the required result. The Cartesian product
of instructor and teaches does bring together information from both these relations, but
unfortunately the Cartesian product associates every instructor with every course that
was taught, regardless of whether that instructor taught that course.

Since the Cartesian-product operation associates every tuple of instructor with every
tuple of teaches, we know that if an instructor has taught a course (as recorded in the
teaches relation), then there is some tuple in instructor × teaches that contains her
name and satisfies instructor.ID = teaches.ID. So, if we write:

σinstructor.ID= teaches.ID(instructor × teaches)

we get only those tuples of instructor × teaches that pertain to instructors and the
courses that they taught.
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instructor.ID name dept name salary teaches.ID course id sec id semester year

10101 Srinivasan Comp. Sci. 65000 10101 CS-101 1 Fall 2017
10101 Srinivasan Comp. Sci. 65000 10101 CS-315 1 Spring 2018
10101 Srinivasan Comp. Sci. 65000 10101 CS-347 1 Fall 2017
12121 Wu Finance 90000 12121 FIN-201 1 Spring 2018
15151 Mozart Music 40000 15151 MU-199 1 Spring 2018
22222 Einstein Physics 95000 22222 PHY-101 1 Fall 2017
32343 El Said History 60000 32343 HIS-351 1 Spring 2018
45565 Katz Comp. Sci. 75000 45565 CS-101 1 Spring 2018
45565 Katz Comp. Sci. 75000 45565 CS-319 1 Spring 2018
76766 Crick Biology 72000 76766 BIO-101 1 Summer 2017
76766 Crick Biology 72000 76766 BIO-301 1 Summer 2018
83821 Brandt Comp. Sci. 92000 83821 CS-190 1 Spring 2017
83821 Brandt Comp. Sci. 92000 83821 CS-190 2 Spring 2017
83821 Brandt Comp. Sci. 92000 83821 CS-319 2 Spring 2018
98345 Kim Elec. Eng. 80000 98345 EE-181 1 Spring 2017

Figure 2.13 Result of σinstructor .ID= teaches.ID(instructor × teaches).

The result of this expression is shown in Figure 2.13. Observe that instructors Gold,
Califieri, and Singh do not teach any course (as recorded in the teaches relation), and
therefore do not appear in the result.

Note that this expression results in the duplication of the instructor’s ID. This can
be easily handled by adding a projection to eliminate the column teaches.ID.

The join operation allows us to combine a selection and a Cartesian product into
a single operation.

Consider relations r(R) and s(S), and let θ be a predicate on attributes in the
schema R ∪ S. The join operation r ⋈θ s is defined as follows:

r ⋈θ s = σθ(r × s)

Thus, σinstructor.ID= teaches.ID(instructor × teaches) can equivalently be written as
instructor ⋈instructor.ID= teaches.ID teaches.

2.6.6 Set Operations

Consider a query to find the set of all courses taught in the Fall 2017 semester, the
Spring 2018 semester, or both. The information is contained in the section relation
(Figure 2.6). To find the set of all courses taught in the Fall 2017 semester, we write:

Πcourse id (σsemester = “Fall”∧ year=2017 (section))

To find the set of all courses taught in the Spring 2018 semester, we write:

Πcourse id (σsemester = “Spring”∧ year=2018 (section))
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To answer the query, we need the union of these two sets; that is, we need all course
ids that appear in either or both of the two relations. We find these data by the binary

operation union, denoted, as in set theory, by ∪. So the expression needed is:

Πcourse id (σsemester = “Fall”∧ year=2017 (section)) ∪
Πcourse id (σsemester = “Spring”∧ year=2018 (section))

The result relation for this query appears in Figure 2.14. Notice that there are eight
tuples in the result, even though there are three distinct courses offered in the Fall
2017 semester and six distinct courses offered in the Spring 2018 semester. Since rela-
tions are sets, duplicate values such as CS-101, which is offered in both semesters, are
replaced by a single occurrence.

Observe that, in our example, we took the union of two sets, both of which con-
sisted of course id values. In general, for a union operation to make sense:

1. We must ensure that the input relations to the union operation have the same
number of attributes; the number of attributes of a relation is referred to as its
arity.

2. When the attributes have associated types, the types of the ith attributes of both
input relations must be the same, for each i.

Such relations are referred to as compatible relations.
For example, it would not make sense to take the union of the instructor and section

relations, since they have different numbers of attributes. And even though the instruc-
tor and the student relations both have arity 4, their 4th attributes, namely, salary and
tot cred, are of two different types. The union of these two attributes would not make
sense in most situations.

The intersection operation, denoted by ∩, allows us to find tuples that are in both
the input relations. The expression r ∩ s produces a relation containing those tuples in

course id

CS-101
CS-315
CS-319
CS-347
FIN-201
HIS-351
MU-199
PHY-101

Figure 2.14 Courses offered in either Fall 2017, Spring 2018, or both semesters.
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course id

CS-101

Figure 2.15 Courses offered in both the Fall 2017 and Spring 2018 semesters.

r as well as in s. As with the union operation, we must ensure that intersection is done
between compatible relations.

Suppose that we wish to find the set of all courses taught in both the Fall 2017 and
the Spring 2018 semesters. Using set intersection, we can write

Πcourse id (σsemester = “Fall”∧ year=2017 (section)) ∩
Πcourse id (σsemester = “Spring”∧ year=2018 (section))

The result relation for this query appears in Figure 2.15.
The set-difference operation, denoted by −, allows us to find tuples that are in one

relation but are not in another. The expression r − s produces a relation containing
those tuples in r but not in s.

We can find all the courses taught in the Fall 2017 semester but not in Spring 2018
semester by writing:

Πcourse id (σsemester = “Fall”∧ year=2017 (section)) −
Πcourse id (σsemester = “Spring”∧ year=2018 (section))

The result relation for this query appears in Figure 2.16.
As with the union operation, we must ensure that set differences are taken between

compatible relations.

2.6.7 The Assignment Operation

It is convenient at times to write a relational-algebra expression by assigning parts of it
to temporary relation variables. The assignment operation, denoted by ←, works like
assignment in a programming language. To illustrate this operation, consider the query
to find courses that run in Fall 2017 as well as Spring 2018, which we saw earlier. We
could write it as:

course id

CS-347
PHY-101

Figure 2.16 Courses offered in the Fall 2017 semester but not in Spring 2018
semester.
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courses fall 2017 ← Πcourse id(σsemester = “Fall”∧ year=2017 (section))
courses spring 2018 ← Πcourse id(σsemester = “Spring”∧ year=2018 (section))
courses fall 2017 ∩ courses spring 2018

The final line above displays the query result. The preceding two lines assign the query
result to a temporary relation. The evaluation of an assignment does not result in any
relation being displayed to the user. Rather, the result of the expression to the right of
the ← is assigned to the relation variable on the left of the ←. This relation variable
may be used in subsequent expressions.

With the assignment operation, a query can be written as a sequential program con-
sisting of a series of assignments followed by an expression whose value is displayed
as the result of the query. For relational-algebra queries, assignment must always be
made to a temporary relation variable. Assignments to permanent relations constitute
a database modification. Note that the assignment operation does not provide any addi-
tional power to the algebra. It is, however, a convenient way to express complex queries.

2.6.8 The Rename Operation

Unlike relations in the database, the results of relational-algebra expressions do not
have a name that we can use to refer to them. It is useful in some cases to give them
names; the rename operator, denoted by the lowercase Greek letter rho (ρ), lets us do
this. Given a relational-algebra expression E, the expression

ρx (E)

returns the result of expression E under the name x.
A relation r by itself is considered a (trivial) relational-algebra expression. Thus,

we can also apply the rename operation to a relation r to get the same relation under a
new name. Some queries require the same relation to be used more than once in the
query; in such cases, the rename operation can be used to give unique names to the
different occurrences of the same relation.

A second form of the rename operation is as follows: Assume that a relational-
algebra expression E has arity n. Then, the expression

ρx(A1,A2,…,An) (E)

returns the result of expression E under the name x, and with the attributes renamed
to A1, A2,… , An. This form of the rename operation can be used to give names to
attributes in the results of relational algebra operations that involve expressions on
attributes.

To illustrate renaming a relation, we consider the query “Find the ID and name of
those instructors who earn more than the instructor whose ID is 12121.” (That’s the
instructor Wu in the example table in Figure 2.1.)

There are several strategies for writing this query, but to illustrate the rename op-
eration, our strategy is to compare the salary of each instructor with the salary of the
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Note 2.1 OTHER RELATIONAL OPERATIONS

In addition to the relational algebra operations we have seen so far, there are a
number of other operations that are commonly used. We summarize them below
and describe them in detail later, along with equivalent SQL constructs.

The aggregation operation allows a function to be computed over the set of
values returned by a query. These functions include average, sum, min, and max,
among others. The operation allows also for these aggregations to be performed
after splitting the set of values into groups, for example, by computing the average
salary in each department. We study the aggregation operation in more detail in
Section 3.7 (Note 3.2 on page 97).

The natural join operation replaces the predicate θ in ⋈θ with an implicit pred-
icate that requires equality over those attributes that appear in the schemas of
both the left and right relations. This is notationally convenient but poses risks for
queries that are reused and thus might be used after a relation’s schema is changed.
It is covered in Section 4.1.1.

Recall that when we computed the join of instructor and teaches, instructors
who have not taught any course do not appear in the join result. The outer join
operation allows for the retention of such tuples in the result by inserting nulls for
the missing values. It is covered in Section 4.1.3 (Note 4.1 on page 136).

instructor with ID 12121. The difficulty here is that we need to reference the instructor
relation once to get the salary of each instructor and then a second time to get the
salary of instructor 12121; and we want to do all this in one expression. The rename
operator allows us to do this using different names for each referencing of the instructor
relation. In this example, we shall use the name i to refer to our scan of the instructor
relation in which we are seeking those that will be part of the answer, and w to refer to
the scan of the instructor relation to obtain the salary of instructor 12121:

Πi.ID,i.name ((σi.salary > w.salary(ρi(instructor) × σw.id=12121(ρw (instructor)))))

The rename operation is not strictly required, since it is possible to use a positional
notation for attributes. We can name attributes of a relation implicitly by using a posi-
tional notation, where $1, $2, … refer to the first attribute, the second attribute, and
so on. The positional notation can also be used to refer to attributes of the results of
relational-algebra operations. However, the positional notation is inconvenient for hu-
mans, since the position of the attribute is a number, rather than an easy-to-remember
attribute name. Hence, we do not use the positional notation in this textbook.
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2.6.9 Equivalent Queries

Note that there is often more than one way to write a query in relational algebra. Con-
sider the following query, which finds information about courses taught by instructors
in the Physics department:

σdept name= “Physics”(instructor ⋈instructor.ID= teaches.ID teaches)

Now consider an alternative query:

(σdept name= “Physics”(instructor)) ⋈instructor.ID= teaches.ID teaches

Note the subtle difference between the two queries: in the first query, the selection
that restricts dept name to Physics is applied after the join of instructor and teaches has
been computed, whereas in the second query, the selection that restricts dept name to
Physics is applied to instructor, and the join operation is applied subsequently.

Although the two queries are not identical, they are in fact equivalent; that is, they
give the same result on any database.

Query optimizers in database systems typically look at what result an expression
computes and find an efficient way of computing that result, rather than following the
exact sequence of steps specified in the query. The algebraic structure of relational
algebra makes it easy to find efficient but equivalent alternative expressions, as we will
see in Chapter 16.

2.7 Summary

• The relational data model is based on a collection of tables. The user of the
database system may query these tables, insert new tuples, delete tuples, and up-
date (modify) tuples. There are several languages for expressing these operations.

• The schema of a relation refers to its logical design, while an instance of the re-
lation refers to its contents at a point in time. The schema of a database and an
instance of a database are similarly defined. The schema of a relation includes its
attributes, and optionally the types of the attributes and constraints on the relation
such as primary and foreign-key constraints.

• A superkey of a relation is a set of one or more attributes whose values are guar-
anteed to identify tuples in the relation uniquely. A candidate key is a minimal
superkey, that is, a set of attributes that forms a superkey, but none of whose sub-
sets is a superkey. One of the candidate keys of a relation is chosen as its primary
key.

• A foreign-key constraint from attribute(s) A of relation r1 to the primary-key B of
relation r2 states that the value of A for each tuple in r1 must also be the value of
B for some tuple in r2. The relation r1 is called the referencing relation, and r2 is
called the referenced relation.
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• A schema diagram is a pictorial depiction of the schema of a database that shows
the relations in the database, their attributes, and primary keys and foreign keys.

• The relational query languages define a set of operations that operate on tables and
output tables as their results. These operations can be combined to get expressions
that express desired queries.

• The relational algebra provides a set of operations that take one or more relations
as input and return a relation as an output. Practical query languages such as SQL
are based on the relational algebra, but they add a number of useful syntactic
features.

• The relational algebra defines a set of algebraic operations that operate on tables,
and output tables as their results. These operations can be combined to get expres-
sions that express desired queries. The algebra defines the basic operations used
within relational query languages like SQL.

Review Terms

• Table

• Relation

• Tuple

• Attribute

• Relation instance

• Domain

• Atomic domain

• Null value

• Database schema

• Database instance

• Relation schema

• Keys

° Superkey

° Candidate key

° Primary key

° Primary key constraints

• Foreign-key constraint

° Referencing relation

° Referenced relation

• Referential integrity constraint

• Schema diagram

• Query language types

° Imperative

° Functional

° Declarative

• Relational algebra

• Relational-algebra expression

• Relational-algebra operations

° Select σ

° Project Π

° Cartesian product ×

° Join ⋈

° Union ∪

° Set difference −

° Set intersection ∩

° Assignment←

° Rename ρ
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employee (person name, street, city)
works (person name, company name, salary)
company (company name, city)

Figure 2.17 Employee database.

Practice Exercises

2.1 Consider the employee database of Figure 2.17. What are the appropriate pri-
mary keys?

2.2 Consider the foreign-key constraint from the dept name attribute of instructor to
the department relation. Give examples of inserts and deletes to these relations
that can cause a violation of the foreign-key constraint.

2.3 Consider the time slot relation. Given that a particular time slot can meet more
than once in a week, explain why day and start time are part of the primary key
of this relation, while end time is not.

2.4 In the instance of instructor shown in Figure 2.1, no two instructors have the
same name. From this, can we conclude that name can be used as a superkey
(or primary key) of instructor?

2.5 What is the result of first performing the Cartesian product of student and advi-
sor, and then performing a selection operation on the result with the predicate
s id = ID? (Using the symbolic notation of relational algebra, this query can be
written as σs id=ID(student × advisor).)

2.6 Consider the employee database of Figure 2.17. Give an expression in the rela-
tional algebra to express each of the following queries:

a. Find the name of each employee who lives in city “Miami”.

b. Find the name of each employee whose salary is greater than $100000.

c. Find the name of each employee who lives in “Miami” and whose salary
is greater than $100000.

2.7 Consider the bank database of Figure 2.18. Give an expression in the relational
algebra for each of the following queries:

a. Find the name of each branch located in “Chicago”.

b. Find the ID of each borrower who has a loan in branch “Downtown”.
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branch(branch name, branch city, assets)
customer (ID, customer name, customer street, customer city)
loan (loan number, branch name, amount)
borrower (ID, loan number)
account (account number, branch name, balance)
depositor (ID, account number)

Figure 2.18 Bank database.

2.8 Consider the employee database of Figure 2.17. Give an expression in the rela-
tional algebra to express each of the following queries:

a. Find the ID and name of each employee who does not work for “BigBank”.

b. Find the ID and name of each employee who earns at least as much as
every employee in the database.

2.9 The division operator of relational algebra, “÷”, is defined as follows. Let r(R)
and s(S) be relations, and let S ⊆ R; that is, every attribute of schema S is
also in schema R. Given a tuple t, let t[S] denote the projection of tuple t on
the attributes in S. Then r ÷ s is a relation on schema R − S (that is, on the
schema containing all attributes of schema R that are not in schema S). A tuple
t is in r ÷ s if and only if both of two conditions hold:

• t is in ΠR−S(r)

• For every tuple ts in s, there is a tuple tr in r satisfying both of the following:

a. tr[S] = ts[S]

b. tr[R − S] = t

Given the above definition:

a. Write a relational algebra expression using the division operator to find
the IDs of all students who have taken all Comp. Sci. courses. (Hint:
project takes to just ID and course id, and generate the set of all Comp.
Sci. course ids using a select expression, before doing the division.)

b. Show how to write the above query in relational algebra, without using
division. (By doing so, you would have shown how to define the division
operation using the other relational algebra operations.)
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Exercises

2.10 Describe the differences in meaning between the terms relation and relation
schema.

2.11 Consider the advisor relation shown in the schema diagram in Figure 2.9, with
s id as the primary key of advisor. Suppose a student can have more than one
advisor. Then, would s id still be a primary key of the advisor relation? If not,
what should the primary key of advisor be?

2.12 Consider the bank database of Figure 2.18. Assume that branch names and cus-
tomer names uniquely identify branches and customers, but loans and accounts
can be associated with more than one customer.

a. What are the appropriate primary keys?

b. Given your choice of primary keys, identify appropriate foreign keys.

2.13 Construct a schema diagram for the bank database of Figure 2.18.

2.14 Consider the employee database of Figure 2.17. Give an expression in the rela-
tional algebra to express each of the following queries:

a. Find the ID and name of each employee who works for “BigBank”.

b. Find the ID, name, and city of residence of each employee who works for
“BigBank”.

c. Find the ID, name, street address, and city of residence of each employee
who works for “BigBank” and earns more than $10000.

d. Find the ID and name of each employee in this database who lives in the
same city as the company for which she or he works.

2.15 Consider the bank database of Figure 2.18. Give an expression in the relational
algebra for each of the following queries:

a. Find each loan number with a loan amount greater than $10000.

b. Find the ID of each depositor who has an account with a balance greater
than $6000.

c. Find the ID of each depositor who has an account with a balance greater
than $6000 at the “Uptown” branch.

2.16 List two reasons why null values might be introduced into a database.

2.17 Discuss the relative merits of imperative, functional, and declarative languages.

2.18 Write the following queries in relational algebra, using the university schema.

a. Find the ID and name of each instructor in the Physics department.
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b. Find the ID and name of each instructor in a department located in the
building “Watson”.

c. Find the ID and name of each student who has taken at least one course
in the “Comp. Sci.” department.

d. Find the ID and name of each student who has taken at least one course
section in the year 2018.

e. Find the ID and name of each student who has not taken any course
section in the year 2018.

Further Reading

E. F. Codd of the IBM San Jose Research Laboratory proposed the relational model
in the late 1960s ([Codd (1970)]). In that paper, Codd also introduced the original
definition of relational algebra. This work led to the prestigious ACM Turing Award to
Codd in 1981 ([Codd (1982)]).

After E. F. Codd introduced the relational model, an expansive theory developed
around the relational model pertaining to schema design and the expressive power of
various relational languages. Several classic texts cover relational database theory, in-
cluding [Maier (1983)] (which is available free, online), and [Abiteboul et al. (1995)].

Codd’s original paper inspired several research projects that were formed in the
mid to late 1970s with the goal of constructing practical relational database systems,
including System R at the IBM San Jose Research Laboratory, Ingres at the University
of California at Berkeley, and Query-by-Example at the IBM T. J. Watson Research
Center. The Oracle database was developed commercially at the same time.

Many relational database products are now commercially available. These include
IBM’s DB2 and Informix, Oracle, Microsoft SQL Server, and Sybase and HANA from
SAP. Popular open-source relational database systems include MySQL and PostgreSQL.
Hive and Spark are widely used systems that support parallel execution of queries
across large numbers of computers.
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CHAP T E R 3
Introduction to SQL

In this chapter, as well as in Chapter 4 and Chapter 5, we study the most widely used
database query language, SQL.

Although we refer to the SQL language as a “query language,” it can do much more
than just query a database. It can define the structure of the data, modify data in the
database, and specify security constraints.

It is not our intention to provide a complete users’ guide for SQL. Rather, we present
SQL’s fundamental constructs and concepts. Individual implementations of SQL may
differ in details or may support only a subset of the full language.

We strongly encourage you to try out the SQL queries that we describe here on an actual
database. See the Tools section at the end of this chapter for tips on what database sys-
tems you could use, and how to create the schema, populate sample data, and execute
your queries.

3.1 Overview of the SQL Query Language

IBM developed the original version of SQL, originally called Sequel, as part of the
System R project in the early 1970s. The Sequel language has evolved since then, and its
name has changed to SQL (Structured Query Language). Many products now support
the SQL language. SQL has clearly established itself as the standard relational database
language.

In 1986, the American National Standards Institute (ANSI) and the International
Organization for Standardization (ISO) published an SQL standard, called SQL-86.
ANSI published an extended standard for SQL, SQL-89, in 1989. The next version of the
standard was SQL-92 standard, followed by SQL:1999, SQL:2003, SQL:2006, SQL:2008,
SQL:2011, and most recently SQL:2016.

The SQL language has several parts:

• Data-definition language (DDL). The SQL DDL provides commands for defining
relation schemas, deleting relations, and modifying relation schemas.

65
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• Data-manipulation language (DML). The SQL DML provides the ability to query
information from the database and to insert tuples into, delete tuples from, and
modify tuples in the database.

• Integrity. The SQL DDL includes commands for specifying integrity constraints
that the data stored in the database must satisfy. Updates that violate integrity
constraints are disallowed.

• View definition. The SQL DDL includes commands for defining views.

• Transaction control. SQL includes commands for specifying the beginning and end
points of transactions.

• Embedded SQL and dynamic SQL. Embedded and dynamic SQL define how SQL
statements can be embedded within general-purpose programming languages, such
as C, C++, and Java.

• Authorization. The SQL DDL includes commands for specifying access rights to
relations and views.

In this chapter, we present a survey of basic DML and the DDL features of SQL.
Features described here have been part of the SQL standard since SQL-92.

In Chapter 4, we provide a more detailed coverage of the SQL query language,
including (a) various join expressions, (b) views, (c) transactions, (d) integrity con-
straints, (e) type system, and (f) authorization.

In Chapter 5, we cover more advanced features of the SQL language, including (a)
mechanisms to allow accessing SQL from a programming language, (b) SQL functions
and procedures, (c) triggers, (d) recursive queries, (e) advanced aggregation features,
and (f) several features designed for data analysis.

Although most SQL implementations support the standard features we describe
here, there are differences between implementations. Most implementations support
some nonstandard features while omitting support for some of the more advanced and
more recent features. In case you find that some language features described here do not
work on the database system that you use, consult the user manuals for your database
system to find exactly what features it supports.

3.2 SQL Data Definition

The set of relations in a database are specified using a data-definition language (DDL).
The SQL DDL allows specification of not only a set of relations, but also information
about each relation, including:

• The schema for each relation.

• The types of values associated with each attribute.
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• The integrity constraints.

• The set of indices to be maintained for each relation.

• The security and authorization information for each relation.

• The physical storage structure of each relation on disk.

We discuss here basic schema definition and basic types; we defer discussion of the
other SQL DDL features to Chapter 4 and Chapter 5.

3.2.1 Basic Types

The SQL standard supports a variety of built-in types, including:

• char(n): A fixed-length character string with user-specified length n. The full form,
character, can be used instead.

• varchar(n): A variable-length character string with user-specified maximum length
n. The full form, character varying, is equivalent.

• int: An integer (a finite subset of the integers that is machine dependent). The full
form, integer, is equivalent.

• smallint: A small integer (a machine-dependent subset of the integer type).

• numeric(p, d): A fixed-point number with user-specified precision. The number
consists of p digits (plus a sign), and d of the p digits are to the right of the decimal
point. Thus, numeric(3,1) allows 44.5 to be stored exactly, but neither 444.5 nor
0.32 can be stored exactly in a field of this type.

• real, double precision: Floating-point and double-precision floating-point numbers
with machine-dependent precision.

• float(n): A floating-point number with precision of at least n digits.

Additional types are covered in Section 4.5.
Each type may include a special value called the null value. A null value indicates

an absent value that may exist but be unknown or that may not exist at all. In certain
cases, we may wish to prohibit null values from being entered, as we shall see shortly.

The char data type stores fixed-length strings. Consider, for example, an attribute
A of type char(10). If we stored a string “Avi” in this attribute, seven spaces are ap-
pended to the string to make it 10 characters long. In contrast, if attribute B were of
type varchar(10), and we stored “Avi” in attribute B, no spaces would be added. When
comparing two values of type char, if they are of different lengths, extra spaces are au-
tomatically attached to the shorter one to make them the same size before comparison.

When comparing a char type with a varchar type, one may expect extra spaces to
be added to the varchar type to make the lengths equal, before comparison; however,
this may or may not be done, depending on the database system. As a result, even if
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the same value “Avi” is stored in the attributes A and B above, a comparison A=B may
return false. We recommend you always use the varchar type instead of the char type
to avoid these problems.

SQL also provides the nvarchar type to store multilingual data using the Unicode
representation. However, many databases allow Unicode (in the UTF-8 representation)
to be stored even in varchar types.

3.2.2 Basic Schema Definition

We define an SQL relation by using the create table command. The following command
creates a relation department in the database:

create table department
(dept name varchar (20),
building varchar (15),
budget numeric (12,2),
primary key (dept name));

The relation created above has three attributes, dept name, which is a character string
of maximum length 20, building, which is a character string of maximum length 15,
and budget, which is a number with 12 digits in total, two of which are after the deci-
mal point. The create table command also specifies that the dept name attribute is the
primary key of the department relation.

The general form of the create table command is:

create table r
(A1 D1,
A2 D2,
. . . ,
An Dn,
⟨integrity-constraint1⟩,
… ,
⟨integrity-constraintk⟩);

where r is the name of the relation, each Ai is the name of an attribute in the schema of
relation r, and Di is the domain of attribute Ai; that is, Di specifies the type of attribute
Ai along with optional constraints that restrict the set of allowed values for Ai.

The semicolon shown at the end of the create table statements, as well as at the end
of other SQL statements later in this chapter, is optional in many SQL implementations.

SQL supports a number of different integrity constraints. In this section, we discuss
only a few of them:

• primary key (Aj1
, Aj2

,… , Ajm
): The primary-key specification says that attributes

Aj1
, Aj2

,… , Ajm
form the primary key for the relation. The primary-key attributes
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are required to be nonnull and unique; that is, no tuple can have a null value for
a primary-key attribute, and no two tuples in the relation can be equal on all the
primary-key attributes. Although the primary-key specification is optional, it is gen-
erally a good idea to specify a primary key for each relation.

• foreign key (Ak1
, Ak2

,… , Akn
) references s: The foreign key specification says that

the values of attributes (Ak1
, Ak2

,… , Akn
) for any tuple in the relation must corre-

spond to values of the primary key attributes of some tuple in relation s.
Figure 3.1 presents a partial SQL DDL definition of the university database we

use in the text. The definition of the course table has a declaration “foreign key
(dept name) references department”. This foreign-key declaration specifies that for
each course tuple, the department name specified in the tuple must exist in the pri-
mary key attribute (dept name) of the department relation. Without this constraint,
it is possible for a course to specify a nonexistent department name. Figure 3.1
also shows foreign-key constraints on tables section, instructor and teaches. Some
database systems, including MySQL, require an alternative syntax, “foreign key
(dept name) references department(dept name)”, where the referenced attributes
in the referenced table are listed explicitly.

• not null: The not null constraint on an attribute specifies that the null value is not
allowed for that attribute; in other words, the constraint excludes the null value
from the domain of that attribute. For example, in Figure 3.1, the not null con-
straint on the name attribute of the instructor relation ensures that the name of an
instructor cannot be null.

More details on the foreign-key constraint, as well as on other integrity constraints that
the create table command may include, are provided later, in Section 4.4.

SQL prevents any update to the database that violates an integrity constraint. For
example, if a newly inserted or modified tuple in a relation has null values for any
primary-key attribute, or if the tuple has the same value on the primary-key attributes
as does another tuple in the relation, SQL flags an error and prevents the update. Sim-
ilarly, an insertion of a course tuple with a dept name value that does not appear in
the department relation would violate the foreign-key constraint on course, and SQL
prevents such an insertion from taking place.

A newly created relation is empty initially. Inserting tuples into a relation, updating
them, and deleting them are done by data manipulation statements insert, update, and
delete, which are covered in Section 3.9.

To remove a relation from an SQL database, we use the drop table command.
The drop table command deletes all information about the dropped relation from the
database. The command

drop table r;

is a more drastic action than
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create table department
(dept name varchar (20),
building varchar (15),
budget numeric (12,2),
primary key (dept name));

create table course
(course id varchar (7),
title varchar (50),
dept name varchar (20),
credits numeric (2,0),
primary key (course id),
foreign key (dept name) references department);

create table instructor
(ID varchar (5),
name varchar (20) not null,
dept name varchar (20),
salary numeric (8,2),
primary key (ID),
foreign key (dept name) references department);

create table section
(course id varchar (8),
sec id varchar (8),
semester varchar (6),
year numeric (4,0),
building varchar (15),
room number varchar (7),
time slot id varchar (4),
primary key (course id, sec id, semester, year),
foreign key (course id) references course);

create table teaches
(ID varchar (5),
course id varchar (8),
sec id varchar (8),
semester varchar (6),
year numeric (4,0),
primary key (ID, course id, sec id, semester, year),
foreign key (course id, sec id, semester, year) references section,
foreign key (ID) references instructor);

Figure 3.1 SQL data definition for part of the university database.
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delete from r;

The latter retains relation r, but deletes all tuples in r. The former deletes not only all
tuples of r, but also the schema for r. After r is dropped, no tuples can be inserted into
r unless it is re-created with the create table command.

We use the alter table command to add attributes to an existing relation. All tuples
in the relation are assigned null as the value for the new attribute. The form of the alter
table command is

alter table r add A D;

where r is the name of an existing relation, A is the name of the attribute to be added,
and D is the type of the added attribute. We can drop attributes from a relation by the
command

alter table r drop A;

where r is the name of an existing relation, and A is the name of an attribute of the
relation. Many database systems do not support dropping of attributes, although they
will allow an entire table to be dropped.

3.3 Basic Structure of SQL Queries

The basic structure of an SQL query consists of three clauses: select, from, and where.
A query takes as its input the relations listed in the from clause, operates on them as
specified in the where and select clauses, and then produces a relation as the result. We
introduce the SQL syntax through examples, and we describe the general structure of
SQL queries later.

3.3.1 Queries on a Single Relation

Let us consider a simple query using our university example, “Find the names of all in-
structors.” Instructor names are found in the instructor relation, so we put that relation
in the from clause. The instructor’s name appears in the name attribute, so we put that
in the select clause.

select name
from instructor;

The result is a relation consisting of a single attribute with the heading name. If the
instructor relation is as shown in Figure 2.1, then the relation that results from the
preceding query is shown in Figure 3.2.
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name

Srinivasan
Wu
Mozart
Einstein
El Said
Gold
Katz
Califieri
Singh
Crick
Brandt
Kim

Figure 3.2 Result of “select name from instructor”.

Now consider another query, “Find the department names of all instructors,”
which can be written as:

select dept name
from instructor;

Since more than one instructor can belong to a department, a department name could
appear more than once in the instructor relation. The result of the above query is a
relation containing the department names, shown in Figure 3.3.

In the formal, mathematical definition of the relational model, a relation is a set.
Thus, duplicate tuples would never appear in relations. In practice, duplicate elimina-
tion is time-consuming. Therefore, SQL allows duplicates in database relations as well
as in the results of SQL expressions.1 Thus, the preceding SQL query lists each depart-
ment name once for every tuple in which it appears in the instructor relation.

In those cases where we want to force the elimination of duplicates, we insert the
keyword distinct after select. We can rewrite the preceding query as:

select distinct dept name
from instructor;

if we want duplicates removed. The result of the above query would contain each de-
partment name at most once.

1Any database relation whose schema includes a primary-key declaration cannot contain duplicate tuples, since they
would violate the primary-key constraint.
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dept name

Comp. Sci.
Finance
Music
Physics
History
Physics
Comp. Sci.
History
Finance
Biology
Comp. Sci.
Elec. Eng.

Figure 3.3 Result of “select dept name from instructor”.

SQL allows us to use the keyword all to specify explicitly that duplicates are not
removed:

select all dept name
from instructor;

Since duplicate retention is the default, we shall not use all in our examples. To ensure
the elimination of duplicates in the results of our example queries, we shall use distinct
whenever it is necessary.

The select clause may also contain arithmetic expressions involving the operators
+, −, ∗, and / operating on constants or attributes of tuples. For example, the query:

select ID, name, dept name, salary * 1.1
from instructor;

returns a relation that is the same as the instructor relation, except that the attribute
salary is multiplied by 1.1. This shows what would result if we gave a 10% raise to each
instructor; note, however, that it does not result in any change to the instructor relation.

SQL also provides special data types, such as various forms of the date type, and
allows several arithmetic functions to operate on these types. We discuss this further
in Section 4.5.1.

The where clause allows us to select only those rows in the result relation of the from
clause that satisfy a specified predicate. Consider the query “Find the names of all in-
structors in the Computer Science department who have salary greater than $70,000.”
This query can be written in SQL as:
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name

Katz
Brandt

Figure 3.4 Result of “Find the names of all instructors in the Computer Science
department who have salary greater than $70,000.”

select name
from instructor
where dept name = 'Comp. Sci.' and salary > 70000;

If the instructor relation is as shown in Figure 2.1, then the relation that results from
the preceding query is shown in Figure 3.4.

SQL allows the use of the logical connectives and, or, and not in the where clause.
The operands of the logical connectives can be expressions involving the comparison
operators <, <=, >, >=, =, and <>. SQL allows us to use the comparison operators
to compare strings and arithmetic expressions, as well as special types, such as date
types.

We shall explore other features of where clause predicates later in this chapter.

3.3.2 Queries on Multiple Relations

So far our example queries were on a single relation. Queries often need to access
information from multiple relations. We now study how to write such queries.

As an example, suppose we want to answer the query “Retrieve the names of all
instructors, along with their department names and department building name.”

Looking at the schema of the relation instructor, we realize that we can get the
department name from the attribute dept name, but the department building name is
present in the attribute building of the relation department. To answer the query, each
tuple in the instructor relation must be matched with the tuple in the department relation
whose dept name value matches the dept name value of the instructor tuple.

In SQL, to answer the above query, we list the relations that need to be accessed
in the from clause and specify the matching condition in the where clause. The above
query can be written in SQL as

select name, instructor.dept name, building
from instructor, department
where instructor.dept name= department.dept name;

If the instructor and department relations are as shown in Figure 2.1 and Figure 2.5
respectively, then the result of this query is shown in Figure 3.5.

Note that the attribute dept name occurs in both the relations instructor and de-
partment, and the relation name is used as a prefix (in instructor.dept name, and de-
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name dept name building

Srinivasan Comp. Sci. Taylor
Wu Finance Painter
Mozart Music Packard
Einstein Physics Watson
El Said History Painter
Gold Physics Watson
Katz Comp. Sci. Taylor
Califieri History Painter
Singh Finance Painter
Crick Biology Watson
Brandt Comp. Sci. Taylor
Kim Elec. Eng. Taylor

Figure 3.5 The result of “Retrieve the names of all instructors, along with their
department names and department building name.”

partment.dept name) to make clear to which attribute we are referring. In contrast, the
attributes name and building appear in only one of the relations and therefore do not
need to be prefixed by the relation name.

This naming convention requires that the relations that are present in the from
clause have distinct names. This requirement causes problems in some cases, such as
when information from two different tuples in the same relation needs to be combined.
In Section 3.4.1, we see how to avoid these problems by using the rename operation.

We now consider the general case of SQL queries involving multiple relations. As
we have seen earlier, an SQL query can contain three types of clauses, the select clause,
the from clause, and the where clause. The role of each clause is as follows:

• The select clause is used to list the attributes desired in the result of a query.

• The from clause is a list of the relations to be accessed in the evaluation of the
query.

• The where clause is a predicate involving attributes of the relation in the from
clause.

A typical SQL query has the form:

select A1, A2,… , An
from r1, r2,… , rm
where P;
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Each Ai represents an attribute, and each ri a relation. P is a predicate. If the where
clause is omitted, the predicate P is true.

Although the clauses must be written in the order select, from, where, the easiest
way to understand the operations specified by the query is to consider the clauses in
operational order: first from, then where, and then select.2

The from clause by itself defines a Cartesian product of the relations listed in the
clause. It is defined formally in terms of relational algebra, but it can also be understood
as an iterative process that generates tuples for the result relation of the from clause.

for each tuple t1 in relation r1
for each tuple t2 in relation r2

…
for each tuple tm in relation rm

Concatenate t1, t2,… , tm into a single tuple t
Add t into the result relation

The result relation has all attributes from all the relations in the from clause. Since the
same attribute name may appear in both ri and rj, as we saw earlier, we prefix the name
of the relation from which the attribute originally came, before the attribute name.

For example, the relation schema for the Cartesian product of relations instructor
and teaches is:

(instructor.ID, instructor.name, instructor.dept name, instructor.salary,
teaches.ID, teaches.course id, teaches.sec id, teaches.semester, teaches.year)

With this schema, we can distinguish instructor.ID from teaches.ID. For those attributes
that appear in only one of the two schemas, we shall usually drop the relation-name
prefix. This simplification does not lead to any ambiguity. We can then write the relation
schema as:

(instructor.ID, name, dept name, salary, teaches.ID, course id, sec id, semester, year)

To illustrate, consider the instructor relation in Figure 2.1 and the teaches relation
in Figure 2.7. Their Cartesian product is shown in Figure 3.6, which includes only a
portion of the tuples that make up the Cartesian product result.

The Cartesian product by itself combines tuples from instructor and teaches that
are unrelated to each other. Each tuple in instructor is combined with every tuple in
teaches, even those that refer to a different instructor. The result can be an extremely
large relation, and it rarely makes sense to create such a Cartesian product.

2In practice, SQL may convert the expression into an equivalent form that can be processed more efficiently. However,
we shall defer concerns about efficiency to Chapter 15 and Chapter 16.
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instructor.ID name dept name salary teaches.ID course id sec id semester year

10101 Srinivasan Comp. Sci. 65000 10101 CS-101 1 Fall 2017
10101 Srinivasan Comp. Sci. 65000 10101 CS-315 1 Spring 2018
10101 Srinivasan Comp. Sci. 65000 10101 CS-347 1 Fall 2017
10101 Srinivasan Comp. Sci. 65000 12121 FIN-201 1 Spring 2018
10101 Srinivasan Comp. Sci. 65000 15151 MU-199 1 Spring 2018
10101 Srinivasan Comp. Sci. 65000 22222 PHY-101 1 Fall 2017

... ... ... ... ... ... ... ... ...

... ... ... ... ... ... ... ... ...
12121 Wu Finance 90000 10101 CS-101 1 Fall 2017
12121 Wu Finance 90000 10101 CS-315 1 Spring 2018
12121 Wu Finance 90000 10101 CS-347 1 Fall 2017
12121 Wu Finance 90000 12121 FIN-201 1 Spring 2018
12121 Wu Finance 90000 15151 MU-199 1 Spring 2018
12121 Wu Finance 90000 22222 PHY-101 1 Fall 2017

... ... ... ... ... ... ... ... ...

... ... ... ... ... ... ... ... ...
15151 Mozart Music 40000 10101 CS-101 1 Fall 2017
15151 Mozart Music 40000 10101 CS-315 1 Spring 2018
15151 Mozart Music 40000 10101 CS-347 1 Fall 2017
15151 Mozart Music 40000 12121 FIN-201 1 Spring 2018
15151 Mozart Music 40000 15151 MU-199 1 Spring 2018
15151 Mozart Music 40000 22222 PHY-101 1 Fall 2017

... ... ... ... ... ... ... ... ...

... ... ... ... ... ... ... ... ...
22222 Einstein Physics 95000 10101 CS-101 1 Fall 2017
22222 Einstein Physics 95000 10101 CS-315 1 Spring 2018
22222 Einstein Physics 95000 10101 CS-347 1 Fall 2017
22222 Einstein Physics 95000 12121 FIN-201 1 Spring 2018
22222 Einstein Physics 95000 15151 MU-199 1 Spring 2018
22222 Einstein Physics 95000 22222 PHY-101 1 Fall 2017

... ... ... ... ... ... ... ... ...

... ... ... ... ... ... ... ... ...

Figure 3.6 The Cartesian product of the instructor relation with the teaches relation.

Instead, the predicate in the where clause is used to restrict the combinations cre-
ated by the Cartesian product to those that are meaningful for the desired answer. We
would likely want a query involving instructor and teaches to combine a particular tu-
ple t in instructor with only those tuples in teaches that refer to the same instructor to
which t refers. That is, we wish only to match teaches tuples with instructor tuples that
have the same ID value. The following SQL query ensures this condition and outputs
the instructor name and course identifiers from such matching tuples.

select name, course id
from instructor, teaches
where instructor.ID= teaches.ID;
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name course id

Srinivasan CS-101
Srinivasan CS-315
Srinivasan CS-347
Wu FIN-201
Mozart MU-199
Einstein PHY-101
El Said HIS-351
Katz CS-101
Katz CS-319
Crick BIO-101
Crick BIO-301
Brandt CS-190
Brandt CS-190
Brandt CS-319
Kim EE-181

Figure 3.7 Result of “For all instructors in the university who have taught some
course, find their names and the course ID of all courses they taught.”

Note that the preceding query outputs only instructors who have taught some course.
Instructors who have not taught any course are not output; if we wish to output such
tuples, we could use an operation called the outer join, which is described in Section
4.1.3.

If the instructor relation is as shown in Figure 2.1 and the teaches relation is as
shown in Figure 2.7, then the relation that results from the preceding query is shown
in Figure 3.7. Observe that instructors Gold, Califieri, and Singh, who have not taught
any course, do not appear in Figure 3.7.

If we wished to find only instructor names and course identifiers for instructors
in the Computer Science department, we could add an extra predicate to the where
clause, as shown below.

select name, course id
from instructor, teaches
where instructor.ID= teaches.ID and instructor.dept name = 'Comp. Sci.';

Note that since the dept name attribute occurs only in the instructor relation, we could
have used just dept name, instead of instructor.dept name in the above query.

In general, the meaning of an SQL query can be understood as follows:

1. Generate a Cartesian product of the relations listed in the from clause.

2. Apply the predicates specified in the where clause on the result of Step 1.
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3. For each tuple in the result of Step 2, output the attributes (or results of expres-
sions) specified in the select clause.

This sequence of steps helps make clear what the result of an SQL query should be, not
how it should be executed. A real implementation of SQL would not execute the query
in this fashion; it would instead optimize evaluation by generating (as far as possible)
only elements of the Cartesian product that satisfy the where clause predicates. We
study such implementation techniques in Chapter 15 and Chapter 16.

When writing queries, you should be careful to include appropriate where clause
conditions. If you omit the where clause condition in the preceding SQL query, it will
output the Cartesian product, which could be a huge relation. For the example instruc-
tor relation in Figure 2.1 and the example teaches relation in Figure 2.7, their Cartesian
product has 12 ∗ 13 = 156 tuples—more than we can show in the text! To make mat-
ters worse, suppose we have a more realistic number of instructors than we show in
our sample relations in the figures, say 200 instructors. Let’s assume each instructor
teaches three courses, so we have 600 tuples in the teaches relation. Then the preceding
iterative process generates 200 ∗ 600 = 120,000 tuples in the result.

3.4 Additional Basic Operations

A number of additional basic operations are supported in SQL.

3.4.1 The Rename Operation

Consider again the query that we used earlier:

select name, course id
from instructor, teaches
where instructor.ID= teaches.ID;

The result of this query is a relation with the following attributes:

name, course id

The names of the attributes in the result are derived from the names of the attributes
in the relations in the from clause.

We cannot, however, always derive names in this way, for several reasons: First, two
relations in the from clause may have attributes with the same name, in which case an
attribute name is duplicated in the result. Second, if we use an arithmetic expression in
the select clause, the resultant attribute does not have a name. Third, even if an attribute
name can be derived from the base relations as in the preceding example, we may want
to change the attribute name in the result. Hence, SQL provides a way of renaming the
attributes of a result relation. It uses the as clause, taking the form:
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Note 3.1 SQL AND MULTISET RELATIONAL ALGEBRA - PART 1

There is a close connection between relational algebra operations and SQL op-
erations. One key difference is that, unlike the relational algebra, SQL allows du-
plicates. The SQL standard defines how many copies of each tuple are there in
the output of a query, which depends, in turn, on how many copies of tuples are
present in the input relations.

To model this behavior of SQL, a version of relational algebra, called the mul-
tiset relational algebra, is defined to work on multisets: sets that may contain dupli-
cates. The basic operations in the multiset relational algebra are defined as follows:

1. If there are c1 copies of tuple t1 in r1, and t1 satisfies selection σθ, then
there are c1 copies of t1 in σθ(r1).

2. For each copy of tuple t1 in r1, there is a copy of tuple ΠA(t1) in ΠA(r1),
where ΠA(t1) denotes the projection of the single tuple t1.

3. If there are c1 copies of tuple t1 in r1 and c2 copies of tuple t2 in r2, there
are c1 ∗ c2 copies of the tuple t1.t2 in r1 × r2.

For example, suppose that relations r1 with schema (A, B) and r2 with schema
(C) are the following multisets: r1 = {(1, a), (2, a)} and r2 = {(2), (3), (3)}. Then
ΠB(r1) would be {(a), (a)}, whereas ΠB(r1) × r2 would be:

{(a, 2), (a, 2), (a, 3), (a, 3), (a, 3), (a, 3)}

Now consider a basic SQL query of the form:

select A1, A2,… , An
from r1, r2,… , rm
where P

Each Ai represents an attribute, and each ri a relation. P is a predicate. If the where
clause is omitted, the predicate P is true. The query is equivalent to the multiset
relational-algebra expression:

ΠA1, A2,…,An
(σP (r1 × r2 × ⋯ × rm))

The relational algebra select operation corresponds to the SQL where clause,
not to the SQL select clause; the difference in meaning is an unfortunate historical
fact. We discuss the representation of more complex SQL queries in Note 3.2 on
page 97.

The relational-algebra representation of SQL queries helps to formally define
the meaning of the SQL program. Further, database systems typically translate
SQL queries into a lower-level representation based on relational algebra, and they
perform query optimization and query evaluation using this representation.
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old-name as new-name

The as clause can appear in both the select and from clauses.3

For example, if we want the attribute name name to be replaced with the name
instructor name, we can rewrite the preceding query as:

select name as instructor name, course id
from instructor, teaches
where instructor.ID= teaches.ID;

The as clause is particularly useful in renaming relations. One reason to rename
a relation is to replace a long relation name with a shortened version that is more
convenient to use elsewhere in the query. To illustrate, we rewrite the query “For all
instructors in the university who have taught some course, find their names and the
course ID of all courses they taught.”

select T .name, S.course id
from instructor as T , teaches as S
where T .ID= S.ID;

Another reason to rename a relation is a case where we wish to compare tuples
in the same relation. We then need to take the Cartesian product of a relation with
itself and, without renaming, it becomes impossible to distinguish one tuple from the
other. Suppose that we want to write the query “Find the names of all instructors whose
salary is greater than at least one instructor in the Biology department.” We can write
the SQL expression:

select distinct T .name
from instructor as T , instructor as S
where T.salary > S.salary and S.dept name = 'Biology';

Observe that we could not use the notation instructor.salary, since it would not be clear
which reference to instructor is intended.

In the above query, T and S can be thought of as copies of the relation instructor,
but more precisely, they are declared as aliases, that is, as alternative names, for the
relation instructor. An identifier, such as T and S, that is used to rename a relation is
referred to as a correlation name in the SQL standard, but it is also commonly referred
to as a table alias, or a correlation variable, or a tuple variable.

3Early versions of SQL did not include the keyword as. As a result, some implementations of SQL, notably Oracle,
do not permit the keyword as in the from clause. In Oracle, “old-name as new-name” is written instead as “old-name
new-name” in the from clause. The keyword as is permitted for renaming attributes in the select clause, but it is optional
and may be omitted in Oracle.
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Note that a better way to phrase the previous query in English would be “Find the
names of all instructors who earn more than the lowest paid instructor in the Biology
department.” Our original wording fits more closely with the SQL that we wrote, but
the latter wording is more intuitive, and it can in fact be expressed directly in SQL as
we shall see in Section 3.8.2.

3.4.2 String Operations

SQL specifies strings by enclosing them in single quotes, for example, 'Computer'. A
single quote character that is part of a string can be specified by using two single quote
characters; for example, the string “It’s right” can be specified by 'It''s right'.

The SQL standard specifies that the equality operation on strings is case sensitive;
as a result, the expression “'comp. sci.' = 'Comp. Sci.'” evaluates to false. However,
some database systems, such as MySQL and SQL Server, do not distinguish uppercase
from lowercase when matching strings; as a result, “'comp. sci.' = 'Comp. Sci.'” would
evaluate to true on these systems. This default behavior can, however, be changed,
either at the database level or at the level of specific attributes.

SQL also permits a variety of functions on character strings, such as concatenating
(using “∥”), extracting substrings, finding the length of strings, converting strings to
uppercase (using the function upper(s) where s is a string) and lowercase (using the
function lower(s)), removing spaces at the end of the string (using trim(s)), and so
on. There are variations on the exact set of string functions supported by different
database systems. See your database system’s manual for more details on exactly what
string functions it supports.

Pattern matching can be performed on strings using the operator like. We describe
patterns by using two special characters:

• Percent (%): The % character matches any substring.

• Underscore ( ): The character matches any character.

Patterns are case sensitive; 4 that is, uppercase characters do not match lowercase char-
acters, or vice versa. To illustrate pattern matching, we consider the following examples:

• 'Intro%' matches any string beginning with “Intro”.

• '%Comp%' matches any string containing “Comp” as a substring, for example,
'Intro. to Computer Science', and 'Computational Biology'.

• ' ' matches any string of exactly three characters.

• ' %' matches any string of at least three characters.

4Except for MySQL, or with the ilike operator in PostgreSQL, where patterns are case insensitive.
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SQL expresses patterns by using the like comparison operator. Consider the query
“Find the names of all departments whose building name includes the substring 'Wat-
son'.” This query can be written as:

select dept name
from department
where building like '%Watson%';

For patterns to include the special pattern characters (that is, % and ), SQL allows the
specification of an escape character. The escape character is used immediately before
a special pattern character to indicate that the special pattern character is to be treated
like a normal character. We define the escape character for a like comparison using the
escape keyword. To illustrate, consider the following patterns, which use a backslash
(∖) as the escape character:

• like 'ab∖%cd%' escape '∖' matches all strings beginning with “ab%cd”.

• like 'ab∖∖cd%' escape '∖' matches all strings beginning with “ab∖cd”.

SQL allows us to search for mismatches instead of matches by using the not like com-
parison operator. Some implementations provide variants of the like operation that do
not distinguish lower- and uppercase.

Some SQL implementations, notably PostgreSQL, offer a similar to operation that
provides more powerful pattern matching than the like operation; the syntax for speci-
fying patterns is similar to that used in Unix regular expressions.

3.4.3 Attribute Specification in the Select Clause

The asterisk symbol “ * ” can be used in the select clause to denote “all attributes.”
Thus, the use of instructor.* in the select clause of the query:

select instructor.*
from instructor, teaches
where instructor.ID= teaches.ID;

indicates that all attributes of instructor are to be selected. A select clause of the form
select * indicates that all attributes of the result relation of the from clause are selected.

3.4.4 Ordering the Display of Tuples

SQL offers the user some control over the order in which tuples in a relation are dis-
played. The order by clause causes the tuples in the result of a query to appear in sorted
order. To list in alphabetic order all instructors in the Physics department, we write:
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select name
from instructor
where dept name = 'Physics'
order by name;

By default, the order by clause lists items in ascending order. To specify the sort order,
we may specify desc for descending order or asc for ascending order. Furthermore,
ordering can be performed on multiple attributes. Suppose that we wish to list the
entire instructor relation in descending order of salary. If several instructors have the
same salary, we order them in ascending order by name. We express this query in SQL
as follows:

select *
from instructor
order by salary desc, name asc;

3.4.5 Where-Clause Predicates

SQL includes a between comparison operator to simplify where clauses that specify
that a value be less than or equal to some value and greater than or equal to some other
value. If we wish to find the names of instructors with salary amounts between $90,000
and $100,000, we can use the between comparison to write:

select name
from instructor
where salary between 90000 and 100000;

instead of:

select name
from instructor
where salary <= 100000 and salary >= 90000;

Similarly, we can use the not between comparison operator.
SQL permits us to use the notation (v1, v2,… , vn) to denote a tuple of arity n con-

taining values v1, v2,… , vn; the notation is called a row constructor. The comparison
operators can be used on tuples, and the ordering is defined lexicographically. For ex-
ample, (a1, a2) <= (b1, b2) is true if a1 <= b1 and a2 <= b2; similarly, the two tuples
are equal if all their attributes are equal. Thus, the SQL query:

select name, course id
from instructor, teaches
where instructor.ID= teaches.ID and dept name = 'Biology';
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course id

CS-101
CS-347
PHY-101

Figure 3.8 The c1 relation, listing courses taught in Fall 2017.

can be rewritten as follows:5

select name, course id
from instructor, teaches
where (instructor.ID, dept name) = (teaches.ID, 'Biology');

3.5 Set Operations

The SQL operations union, intersect, and except operate on relations and correspond to
the mathematical set operations ∪, ∩, and −. We shall now construct queries involving
the union, intersect, and except operations over two sets.

• The set of all courses taught in the Fall 2017 semester:

select course id
from section
where semester = 'Fall' and year= 2017;

• The set of all courses taught in the Spring 2018 semester:

select course id
from section
where semester = 'Spring' and year= 2018;

In our discussion that follows, we shall refer to the relations obtained as the result of the
preceding queries as c1 and c2, respectively, and show the results when these queries
are run on the section relation of Figure 2.6 in Figure 3.8 and Figure 3.9. Observe that
c2 contains two tuples corresponding to course id CS-319, since two sections of the
course were offered in Spring 2018.

5Although it is part of the SQL-92 standard, some SQL implementations, notably Oracle, do not support this syntax.
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course id

CS-101
CS-315
CS-319
CS-319
FIN-201
HIS-351
MU-199

Figure 3.9 The c2 relation, listing courses taught in Spring 2018.

3.5.1 The Union Operation

To find the set of all courses taught either in Fall 2017 or in Spring 2018, or both, we
write the following query. Note that the parentheses we include around each select-
from-where statement below are optional but useful for ease of reading; some databases
do not allow the use of the parentheses, in which case they may be dropped.

(select course id
from section
where semester = 'Fall' and year= 2017)
union
(select course id
from section
where semester = 'Spring' and year= 2018);

The union operation automatically eliminates duplicates, unlike the select clause. Thus,
using the section relation of Figure 2.6, where two sections of CS-319 are offered in
Spring 2018, and a section of CS-101 is offered in the Fall 2017 as well as in the Spring
2018 semesters, CS-101 and CS-319 appear only once in the result, shown in Figure
3.10.

If we want to retain all duplicates, we must write union all in place of union:

(select course id
from section
where semester = 'Fall' and year= 2017)
union all
(select course id
from section
where semester = 'Spring' and year= 2018);

The number of duplicate tuples in the result is equal to the total number of duplicates
that appear in both c1 and c2. So, in the above query, each of CS-319 and CS-101 would
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course id

CS-101
CS-315
CS-319
CS-347
FIN-201
HIS-351
MU-199
PHY-101

Figure 3.10 The result relation for c1 union c2.

be listed twice. As a further example, if it were the case that four sections of ECE-101
were taught in the Fall 2017 semester and two sections of ECE-101 were taught in the
Spring 2018 semester, then there would be six tuples with ECE-101 in the result.

3.5.2 The Intersect Operation

To find the set of all courses taught in both the Fall 2017 and Spring 2018, we write:

(select course id
from section
where semester = 'Fall' and year= 2017)

intersect
(select course id
from section
where semester = 'Spring' and year= 2018);

The result relation, shown in Figure 3.11, contains only one tuple with CS-101. The in-
tersect operation automatically eliminates duplicates. 6 For example, if it were the case
that four sections of ECE-101 were taught in the Fall 2017 semester and two sections of
ECE-101 were taught in the Spring 2018 semester, then there would be only one tuple
with ECE-101 in the result.

course id

CS-101

Figure 3.11 The result relation for c1 intersect c2.

6MySQL does not implement the intersect operation; a work-around is to use subqueries as discussed in Section 3.8.1.
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course id

CS-347
PHY-101

Figure 3.12 The result relation for c1 except c2.

If we want to retain all duplicates, we must write intersect all in place of intersect:

(select course id
from section
where semester = 'Fall' and year= 2017)
intersect all
(select course id
from section
where semester = 'Spring' and year= 2018);

The number of duplicate tuples that appear in the result is equal to the minimum num-
ber of duplicates in both c1 and c2. For example, if four sections of ECE-101 were taught
in the Fall 2017 semester and two sections of ECE-101 were taught in the Spring 2018
semester, then there would be two tuples with ECE-101 in the result.

3.5.3 The Except Operation

To find all courses taught in the Fall 2017 semester but not in the Spring 2018 semester,
we write:

(select course id
from section
where semester = 'Fall' and year= 2017)
except
(select course id
from section
where semester = 'Spring' and year= 2018);

The result of this query is shown in Figure 3.12. Note that this is exactly relation c1
of Figure 3.8 except that the tuple for CS-101 does not appear. The except operation 7

outputs all tuples from its first input that do not occur in the second input; that is, it

7Some SQL implementations, notably Oracle, use the keyword minus in place of except, while Oracle 12c uses the
keywords multiset except in place of except all. MySQL does not implement it at all; a work-around is to use subqueries
as discussed in Section 3.8.1.
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performs set difference. The operation automatically eliminates duplicates in the inputs
before performing set difference. For example, if four sections of ECE-101 were taught
in the Fall 2017 semester and two sections of ECE-101 were taught in the Spring 2018
semester, the result of the except operation would not have any copy of ECE-101.

If we want to retain duplicates, we must write except all in place of except:

(select course id
from section
where semester = 'Fall' and year= 2017)

except all
(select course id
from section
where semester = 'Spring' and year= 2018);

The number of duplicate copies of a tuple in the result is equal to the number of dupli-
cate copies in c1 minus the number of duplicate copies in c2, provided that the differ-
ence is positive. Thus, if four sections of ECE-101 were taught in the Fall 2017 semester
and two sections of ECE-101 were taught in Spring 2018, then there are two tuples with
ECE-101 in the result. If, however, there were two or fewer sections of ECE-101 in the
Fall 2017 semester and two sections of ECE-101 in the Spring 2018 semester, there is
no tuple with ECE-101 in the result.

3.6 Null Values

Null values present special problems in relational operations, including arithmetic op-
erations, comparison operations, and set operations.

The result of an arithmetic expression (involving, for example, +, −, ∗, or ∕) is null
if any of the input values is null. For example, if a query has an expression r A+ 5, and
r.A is null for a particular tuple, then the expression result must also be null for that
tuple.

Comparisons involving nulls are more of a problem. For example, consider the
comparison “1 < null”. It would be wrong to say this is true since we do not know
what the null value represents. But it would likewise be wrong to claim this expression
is false; if we did, “not (1 < null)” would evaluate to true, which does not make sense.
SQL therefore treats as unknown the result of any comparison involving a null value
(other than predicates is null and is not null, which are described later in this section).
This creates a third logical value in addition to true and false.

Since the predicate in a where clause can involve Boolean operations such as and,
or, and not on the results of comparisons, the definitions of the Boolean operations are
extended to deal with the value unknown.
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• and: The result of true and unknown is unknown, false and unknown is false, while
unknown and unknown is unknown.

• or: The result of true or unknown is true, false or unknown is unknown, while un-
known or unknown is unknown.

• not: The result of not unknown is unknown.

You can verify that if r.A is null, then “1 < r A” as well as “not (1 < r.A)” evaluate
to unknown.

If the where clause predicate evaluates to either false or unknown for a tuple, that
tuple is not added to the result.

SQL uses the special keyword null in a predicate to test for a null value. Thus, to
find all instructors who appear in the instructor relation with null values for salary, we
write:

select name
from instructor
where salary is null;

The predicate is not null succeeds if the value on which it is applied is not null.
SQL allows us to test whether the result of a comparison is unknown, rather than

true or false, by using the clauses is unknown and is not unknown.8 For example,

select name
from instructor
where salary > 10000 is unknown;

When a query uses the select distinct clause, duplicate tuples must be eliminated.
For this purpose, when comparing values of corresponding attributes from two tuples,
the values are treated as identical if either both are non-null and equal in value, or both
are null. Thus, two copies of a tuple, such as {('A',null), ('A',null)}, are treated as being
identical, even if some of the attributes have a null value. Using the distinct clause then
retains only one copy of such identical tuples. Note that the treatment of null above is
different from the way nulls are treated in predicates, where a comparison “null=null”
would return unknown, rather than true.

The approach of treating tuples as identical if they have the same values for all
attributes, even if some of the values are null, is also used for the set operations union,
intersection, and except.

8The is unknown and is not unknown constructs are not supported by several databases.
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3.7 Aggregate Functions

Aggregate functions are functions that take a collection (a set or multiset) of values as
input and return a single value. SQL offers five standard built-in aggregate functions:9

• Average: avg

• Minimum: min

• Maximum: max

• Total: sum

• Count: count

The input to sum and avg must be a collection of numbers, but the other operators can
operate on collections of nonnumeric data types, such as strings, as well.

3.7.1 Basic Aggregation

Consider the query “Find the average salary of instructors in the Computer Science
department.” We write this query as follows:

select avg (salary)
from instructor
where dept name = 'Comp. Sci.';

The result of this query is a relation with a single attribute containing a single tuple with
a numerical value corresponding to the average salary of instructors in the Computer
Science department. The database system may give an awkward name to the result
relation attribute that is generated by aggregation, consisting of the text of the expres-
sion; however, we can give a meaningful name to the attribute by using the as clause as
follows:

select avg (salary) as avg salary
from instructor
where dept name = 'Comp. Sci.';

In the instructor relation of Figure 2.1, the salaries in the Computer Science de-
partment are $75,000, $65,000, and $92,000. The average salary is $232,000∕3 =
$77,333.33.

Retaining duplicates is important in computing an average. Suppose the Computer
Science department adds a fourth instructor whose salary happens to be $75,000. If du-

9Most implementations of SQL offer a number of additional aggregate functions.
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plicates were eliminated, we would obtain the wrong answer ($232,000∕4 = $58,000)
rather than the correct answer of $76,750.

There are cases where we must eliminate duplicates before computing an aggre-
gate function. If we do want to eliminate duplicates, we use the keyword distinct in the
aggregate expression. An example arises in the query “Find the total number of instruc-
tors who teach a course in the Spring 2018 semester.” In this case, an instructor counts
only once, regardless of the number of course sections that the instructor teaches. The
required information is contained in the relation teaches, and we write this query as
follows:

select count (distinct ID)
from teaches
where semester = 'Spring' and year = 2018;

Because of the keyword distinct preceding ID, even if an instructor teaches more than
one course, she is counted only once in the result.

We use the aggregate function count frequently to count the number of tuples in a
relation. The notation for this function in SQL is count (*). Thus, to find the number
of tuples in the course relation, we write

select count (*)
from course;

SQL does not allow the use of distinct with count (*). It is legal to use distinct with
max and min, even though the result does not change. We can use the keyword all in
place of distinct to specify duplicate retention, but since all is the default, there is no
need to do so.

3.7.2 Aggregation with Grouping

There are circumstances where we would like to apply the aggregate function not only
to a single set of tuples, but also to a group of sets of tuples; we specify this in SQL
using the group by clause. The attribute or attributes given in the group by clause are
used to form groups. Tuples with the same value on all attributes in the group by clause
are placed in one group.

As an illustration, consider the query “Find the average salary in each department.”
We write this query as follows:

select dept name, avg (salary) as avg salary
from instructor
group by dept name;



3.7 Aggregate Functions 93

ID name dept name salary

76766 Crick Biology 72000
45565 Katz Comp. Sci. 75000
10101 Srinivasan Comp. Sci. 65000
83821 Brandt Comp. Sci. 92000
98345 Kim Elec. Eng. 80000
12121 Wu Finance 90000
76543 Singh Finance 80000
32343 El Said History 60000
58583 Califieri History 62000
15151 Mozart Music 40000
33456 Gold Physics 87000
22222 Einstein Physics 95000

Figure 3.13 Tuples of the instructor relation, grouped by the dept name attribute.

Figure 3.13 shows the tuples in the instructor relation grouped by the dept name
attribute, which is the first step in computing the query result. The specified aggregate
is computed for each group, and the result of the query is shown in Figure 3.14.

In contrast, consider the query “Find the average salary of all instructors.” We
write this query as follows:

select avg (salary)
from instructor;

In this case the group by clause has been omitted, so the entire relation is treated as a
single group.

dept name avg salary

Biology 72000
Comp. Sci. 77333
Elec. Eng. 80000
Finance 85000
History 61000
Music 40000
Physics 91000

Figure 3.14 The result relation for the query “Find the average salary in each
department”.
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As another example of aggregation on groups of tuples, consider the query “Find
the number of instructors in each department who teach a course in the Spring 2018
semester.” Information about which instructors teach which course sections in which
semester is available in the teaches relation. However, this information has to be joined
with information from the instructor relation to get the department name of each in-
structor. Thus, we write this query as follows:

select dept name, count (distinct ID) as instr count
from instructor, teaches
where instructor.ID= teaches.ID and

semester = 'Spring' and year = 2018
group by dept name;

The result is shown in Figure 3.15.
When an SQL query uses grouping, it is important to ensure that the only attributes

that appear in the select statement without being aggregated are those that are present
in the group by clause. In other words, any attribute that is not present in the group by
clause may appear in the select clause only as an argument to an aggregate function,
otherwise the query is treated as erroneous. For example, the following query is erro-
neous since ID does not appear in the group by clause, and yet it appears in the select
clause without being aggregated:

/* erroneous query */
select dept name, ID, avg (salary)
from instructor
group by dept name;

In the preceding query, each instructor in a particular group (defined by dept name)
can have a different ID, and since only one tuple is output for each group, there is no
unique way of choosing which ID value to output. As a result, such cases are disallowed
by SQL.

The preceding query also illustrates a comment written in SQL by enclosing text
in “/* */”; the same comment could have also been written as “–– erroneous query”.

dept name instr count

Comp. Sci. 3
Finance 1
History 1
Music 1

Figure 3.15 The result relation for the query “Find the number of instructors in each
department who teach a course in the Spring 2018 semester.”
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dept name avg salary

Physics 91000
Elec. Eng. 80000
Finance 85000
Comp. Sci. 77333
Biology 72000
History 61000

Figure 3.16 The result relation for the query “Find the average salary of instructors
in those departments where the average salary is more than $42,000.”

3.7.3 The Having Clause

At times, it is useful to state a condition that applies to groups rather than to tuples. For
example, we might be interested in only those departments where the average salary of
the instructors is more than $42,000. This condition does not apply to a single tuple;
rather, it applies to each group constructed by the group by clause. To express such
a query, we use the having clause of SQL. SQL applies predicates in the having clause
after groups have been formed, so aggregate functions may be used in the having clause.
We express this query in SQL as follows:

select dept name, avg (salary) as avg salary
from instructor
group by dept name
having avg (salary) > 42000;

The result is shown in Figure 3.16.
As was the case for the select clause, any attribute that is present in the having

clause without being aggregated must appear in the group by clause, otherwise the
query is erroneous.

The meaning of a query containing aggregation, group by, or having clauses is de-
fined by the following sequence of operations:

1. As was the case for queries without aggregation, the from clause is first evaluated
to get a relation.

2. If a where clause is present, the predicate in the where clause is applied on the
result relation of the from clause.

3. Tuples satisfying the where predicate are then placed into groups by the group
by clause if it is present. If the group by clause is absent, the entire set of tuples
satisfying the where predicate is treated as being in one group.
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4. The having clause, if it is present, is applied to each group; the groups that do not
satisfy the having clause predicate are removed.

5. The select clause uses the remaining groups to generate tuples of the result of the
query, applying the aggregate functions to get a single result tuple for each group.

To illustrate the use of both a having clause and a where clause in the same query,
we consider the query “For each course section offered in 2017, find the average total
credits (tot cred) of all students enrolled in the section, if the section has at least 2
students.”

select course id, semester, year, sec id, avg (tot cred)
from student, takes
where student.ID= takes.ID and year = 2017
group by course id, semester, year, sec id
having count (ID) >= 2;

Note that all the required information for the preceding query is available from the
relations takes and student, and that although the query pertains to sections, a join
with section is not needed.

3.7.4 Aggregation with Null and Boolean Values

Null values, when they exist, complicate the processing of aggregate operators. For
example, assume that some tuples in the instructor relation have a null value for salary.
Consider the following query to total all salary amounts:

select sum (salary)
from instructor;

The values to be summed in the preceding query include null values, since we assumed
that some tuples have a null value for salary. Rather than say that the overall sum is
itself null, the SQL standard says that the sum operator should ignore null values in its
input.

In general, aggregate functions treat nulls according to the following rule: All aggre-
gate functions except count (*) ignore null values in their input collection. As a result
of null values being ignored, the collection of values may be empty. The count of an
empty collection is defined to be 0, and all other aggregate operations return a value
of null when applied on an empty collection. The effect of null values on some of the
more complicated SQL constructs can be subtle.

A Boolean data type that can take values true, false, and unknown was introduced
in SQL:1999. The aggregate functions some and every can be applied on a collection of
Boolean values, and compute the disjunction (or) and conjunction (and), respectively,
of the values.
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Note 3.2 SQL AND MULTISET RELATIONAL ALGEBRA - PART 2

As we saw earlier in Note 3.1 on page 80, the SQL select, from, and where clauses
can be represented in the multiset relational algebra, using the multiset versions of
the select, project, and Cartesian product operations.

The relational algebra union, intersection, and set difference (∪,∩, and −)
operations can also be extended to the multiset relational algebra in a similar way,
following the corresponding definitions of union all, intersect all, and except all in
SQL, which we saw in Section 3.5; the SQL union, intersect, and except correspond
to the set version of ∪,∩, and −.

The extended relational algebra aggregate operation γ permits the use of aggre-
gate functions on relation attributes. (The symbol  is also used to represent the
aggregate operation and was used in earlier editions of the book.) The operation

dept nameγaverage(salary)(instructor) groups the instructor relation on the dept name at-
tribute and computes the average salary for each group, as we saw earlier in Section
3.7.2. The subscript on the left side may be omitted, resulting in the entire input
relation being in a single group. Thus, γaverage(salary)(instructor) computes the aver-
age salary of all instructors. The aggregated values do not have an attribute name;
they can be given a name either by using the rename operator ρ or for convenience
using the following syntax:

dept nameγaverage(salary) as avg salary(instructor)

More complex SQL queries can also be rewritten in relational algebra. For
example, the query:

select A1, A2, sum(A3)
from r1, r2,… , rm
where P
group by A1, A2 having count(A4) > 2

is equivalent to:

t1 ← σP (r1 × r2 × ⋯ × rm)
ΠA1, A2, SumA3(σcountA4 > 2(A1, A2

γsum(A3) as SumA3, count(A4) as countA4(t1))

Join expressions in the from clause can be written using equivalent join expres-
sions in relational algebra; we leave the details as an exercise for the reader. How-
ever, subqueries in the where or select clause cannot be rewritten into relational
algebra in such a straightforward manner, since there is no relational algebra oper-
ation equivalent to the subquery construct. Extensions of relational algebra have
been proposed for this task, but they are beyond the scope of this book.
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3.8 Nested Subqueries

SQL provides a mechanism for nesting subqueries. A subquery is a select-from-where
expression that is nested within another query. A common use of subqueries is to per-
form tests for set membership, make set comparisons, and determine set cardinality
by nesting subqueries in the where clause. We study such uses of nested subqueries
in the where clause in Section 3.8.1 through Section 3.8.4. In Section 3.8.5, we study
nesting of subqueries in the from clause. In Section 3.8.7, we see how a class of sub-
queries called scalar subqueries can appear wherever an expression returning a value
can occur.

3.8.1 Set Membership

SQL allows testing tuples for membership in a relation. The in connective tests for set
membership, where the set is a collection of values produced by a select clause. The
not in connective tests for the absence of set membership.

As an illustration, reconsider the query “Find all the courses taught in the both the
Fall 2017 and Spring 2018 semesters.” Earlier, we wrote such a query by intersecting
two sets: the set of courses taught in Fall 2017 and the set of courses taught in Spring
2018. We can take the alternative approach of finding all courses that were taught in
Fall 2017 and that are also members of the set of courses taught in Spring 2018. This
formulation generates the same results as the previous one did, but it leads us to write
our query using the in connective of SQL. We begin by finding all courses taught in
Spring 2018, and we write the subquery:

(select course id
from section
where semester = 'Spring' and year= 2018)

We then need to find those courses that were taught in the Fall 2017 and that appear
in the set of courses obtained in the subquery. We do so by nesting the subquery in the
where clause of an outer query. The resulting query is:

select distinct course id
from section
where semester = 'Fall' and year= 2017 and

course id in (select course id
from section
where semester = 'Spring' and year= 2018);

Note that we need to use distinct here because the intersect operation removes dupli-
cates by default.

This example shows that it is possible to write the same query several ways in SQL.
This flexibility is beneficial, since it allows a user to think about the query in the way



3.8 Nested Subqueries 99

that seems most natural. We shall see that there is a substantial amount of redundancy
in SQL.

We use the not in construct in a way similar to the in construct. For example, to find
all the courses taught in the Fall 2017 semester but not in the Spring 2018 semester,
which we expressed earlier using the except operation, we can write:

select distinct course id
from section
where semester = 'Fall' and year= 2017 and
course id not in (select course id

from section
where semester = 'Spring' and year= 2018);

The in and not in operators can also be used on enumerated sets. The following
query selects the names of instructors whose names are neither “Mozart” nor “Ein-
stein”.

select distinct name
from instructor
where name not in ('Mozart', 'Einstein');

In the preceding examples, we tested membership in a one-attribute relation. It is
also possible to test for membership in an arbitrary relation in SQL. For example, we
can write the query “find the total number of (distinct) students who have taken course
sections taught by the instructor with ID 110011” as follows:

select count (distinct ID)
from takes
where (course id, sec id, semester, year) in (select course id, sec id, semester, year

from teaches
where teaches.ID= '10101');

Note, however, that some SQL implementations do not support the row construc-
tion syntax “(course id, sec id, semester, year)” used above. We will see alternative ways
of writing this query in Section 3.8.3.

3.8.2 Set Comparison

As an example of the ability of a nested subquery to compare sets, consider the query
“Find the names of all instructors whose salary is greater than at least one instructor
in the Biology department.” In Section 3.4.1, we wrote this query as follows:
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select distinct T .name
from instructor as T , instructor as S
where T.salary > S.salary and S.dept name = 'Biology';

SQL does, however, offer an alternative style for writing the preceding query. The phrase
“greater than at least one” is represented in SQL by > some. This construct allows us
to rewrite the query in a form that resembles closely our formulation of the query in
English.

select name
from instructor
where salary > some (select salary

from instructor
where dept name = 'Biology');

The subquery:

(select salary
from instructor
where dept name = 'Biology')

generates the set of all salary values of all instructors in the Biology department. The >
some comparison in the where clause of the outer select is true if the salary value of the
tuple is greater than at least one member of the set of all salary values for instructors
in Biology.

SQL also allows < some, <= some, >= some, = some, and <> some comparisons.
As an exercise, verify that = some is identical to in, whereas <> some is not the same
as not in.10

Now we modify our query slightly. Let us find the names of all instructors that
have a salary value greater than that of each instructor in the Biology department. The
construct > all corresponds to the phrase “greater than all.” Using this construct, we
write the query as follows:

select name
from instructor
where salary > all (select salary

from instructor
where dept name = 'Biology');

As it does for some, SQL also allows< all,<= all, >= all,= all, and<> all comparisons.
As an exercise, verify that <> all is identical to not in, whereas = all is not the same as
in.

10The keyword any is synonymous to some in SQL. Early versions of SQL allowed only any. Later versions added the
alternative some to avoid the linguistic ambiguity of the word any in English.
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As another example of set comparisons, consider the query “Find the departments
that have the highest average salary.” We begin by writing a query to find all average
salaries, and then nest it as a subquery of a larger query that finds those departments
for which the average salary is greater than or equal to all average salaries:

select dept name
from instructor
group by dept name
having avg (salary) >= all (select avg (salary)

from instructor
group by dept name);

3.8.3 Test for Empty Relations

SQL includes a feature for testing whether a subquery has any tuples in its result. The
exists construct returns the value true if the argument subquery is nonempty. Using the
exists construct, we can write the query “Find all courses taught in both the Fall 2017
semester and in the Spring 2018 semester” in still another way:

select course id
from section as S
where semester = 'Fall' and year= 2017 and

exists (select *
from section as T
where semester = 'Spring' and year= 2018 and

S.course id= T .course id);

The above query also illustrates a feature of SQL where a correlation name from
an outer query (S in the above query), can be used in a subquery in the where clause.
A subquery that uses a correlation name from an outer query is called a correlated
subquery.

In queries that contain subqueries, a scoping rule applies for correlation names.
In a subquery, according to the rule, it is legal to use only correlation names defined
in the subquery itself or in any query that contains the subquery. If a correlation name
is defined both locally in a subquery and globally in a containing query, the local def-
inition applies. This rule is analogous to the usual scoping rules used for variables in
programming languages.

We can test for the nonexistence of tuples in a subquery by using the not exists
construct. We can use the not exists construct to simulate the set containment (that
is, superset) operation: We can write “relation A contains relation B” as “not exists (B
except A).” (Although it is not part of the current SQL standards, the contains opera-
tor was present in some early relational systems.) To illustrate the not exists operator,
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consider the query “Find all students who have taken all courses offered in the Biology
department.” Using the except construct, we can write the query as follows:

select S.ID, S.name
from student as S
where not exists ((select course id

from course
where dept name = 'Biology')
except
(select T .course id
from takes as T
where S.ID = T .ID));

Here, the subquery:

(select course id
from course
where dept name = 'Biology')

finds the set of all courses offered in the Biology department. The subquery:

(select T .course id
from takes as T
where S.ID = T .ID)

finds all the courses that student S.ID has taken. Thus, the outer select takes each stu-
dent and tests whether the set of all courses that the student has taken contains the set
of all courses offered in the Biology department.

We saw in Section 3.8.1, an SQL query to “find the total number of (distinct) stu-
dents who have taken course sections taught by the instructor with ID 110011”. That
query used a tuple constructor syntax that is not supported by some databases. An
alternative way to write the query, using the exists construct, is as follows:

select count (distinct ID)
from takes
where exists (select course id, sec id, semester, year

from teaches
where teaches.ID= '10101'

and takes.course id = teaches.course id
and takes.sec id = teaches.sec id
and takes.semester = teaches.semester
and takes.year = teaches.year

);
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3.8.4 Test for the Absence of Duplicate Tuples

SQL includes a Boolean function for testing whether a subquery has duplicate tuples
in its result. The unique construct11 returns the value true if the argument subquery
contains no duplicate tuples. Using the unique construct, we can write the query “Find
all courses that were offered at most once in 2017” as follows:

select T .course id
from course as T
where unique (select R.course id

from section as R
where T .course id= R.course id and

R.year = 2017);

Note that if a course were not offered in 2017, the subquery would return an empty
result, and the unique predicate would evaluate to true on the empty set.

An equivalent version of this query not using the unique construct is:

select T .course id
from course as T
where 1 >= (select count(R.course id)

from section as R
where T .course id= R.course id and

R.year = 2017);

We can test for the existence of duplicate tuples in a subquery by using the not
unique construct. To illustrate this construct, consider the query “Find all courses that
were offered at least twice in 2017” as follows:

select T .course id
from course as T
where not unique (select R.course id

from section as R
where T .course id= R.course id and

R.year = 2017);

Formally, the unique test on a relation is defined to fail if and only if the relation
contains two distinct tuples t1 and t2 such that t1 = t2. Since the test t1 = t2 fails if
any of the fields of t1 or t2 are null, it is possible for unique to be true even if there are
multiple copies of a tuple, as long as at least one of the attributes of the tuple is null.

11This construct is not yet widely implemented.
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3.8.5 Subqueries in the From Clause

SQL allows a subquery expression to be used in the from clause. The key concept ap-
plied here is that any select-from-where expression returns a relation as a result and,
therefore, can be inserted into another select-from-where anywhere that a relation can
appear.

Consider the query “Find the average instructors’ salaries of those departments
where the average salary is greater than $42,000.” We wrote this query in Section 3.7
by using the having clause. We can now rewrite this query, without using the having
clause, by using a subquery in the from clause, as follows:

select dept name, avg salary
from (select dept name, avg (salary) as avg salary

from instructor
group by dept name)

where avg salary > 42000;

The subquery generates a relation consisting of the names of all departments and their
corresponding average instructors’ salaries. The attributes of the subquery result can
be used in the outer query, as can be seen in the above example.

Note that we do not need to use the having clause, since the subquery in the from
clause computes the average salary, and the predicate that was in the having clause
earlier is now in the where clause of the outer query.

We can give the subquery result relation a name, and rename the attributes, using
the as clause, as illustrated below.

select dept name, avg salary
from (select dept name, avg (salary)

from instructor
group by dept name)
as dept avg (dept name, avg salary)

where avg salary > 42000;

The subquery result relation is named dept avg, with the attributes dept name and avg
salary.

Nested subqueries in the from clause are supported by most but not all SQL imple-
mentations. Note that some SQL implementations, notably MySQL and PostgreSQL,
require that each subquery relation in the from clause must be given a name, even if the
name is never referenced; Oracle allows a subquery result relation to be given a name
(with the keyword as omitted) but does not allow renaming of attributes of the relation.
An easy workaround for that is to do the attribute renaming in the select clause of the
subquery; in the above query, the select clause of the subquery would be replaced by

select dept name, avg(salary) as avg salary
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and

“as dept avg (dept name, avg salary)”

would be replaced by

“as dept avg”.

As another example, suppose we wish to find the maximum across all departments
of the total of all instructors’ salaries in each department. The having clause does not
help us in this task, but we can write this query easily by using a subquery in the from
clause, as follows:

select max (tot salary)
from (select dept name, sum(salary)

from instructor
group by dept name) as dept total (dept name, tot salary);

We note that nested subqueries in the from clause cannot use correlation variables
from other relations in the same from clause. However, the SQL standard, starting with
SQL:2003, allows a subquery in the from clause that is prefixed by the lateral keyword
to access attributes of preceding tables or subqueries in the same from clause. For
example, if we wish to print the names of each instructor, along with their salary and
the average salary in their department, we could write the query as follows:

select name, salary, avg salary
from instructor I1, lateral (select avg(salary) as avg salary

from instructor I2
where I2.dept name= I1.dept name);

Without the lateral clause, the subquery cannot access the correlation variable I1 from
the outer query. Only the more recent implementations of SQL support the lateral
clause.

3.8.6 The With Clause

The with clause provides a way of defining a temporary relation whose definition is
available only to the query in which the with clause occurs. Consider the following
query, which finds those departments with the maximum budget.

with max budget (value) as
(select max(budget)
from department)

select budget
from department, max budget
where department.budget = max budget.value;



106 Chapter 3 Introduction to SQL

The with clause in the query defines the temporary relation max budget containing the
results of the subquery defining the relation. The relation is available for use only within
later parts of the same query. 12 The with clause, introduced in SQL:1999, is supported
by many, but not all, database systems.

We could have written the preceding query by using a nested subquery in either the
from clause or the where clause. However, using nested subqueries would have made
the query harder to read and understand. The with clause makes the query logic clearer;
it also permits this temporary relation to be used in multiple places within a query.

For example, suppose we want to find all departments where the total salary is
greater than the average of the total salary at all departments. We can write the query
using the with clause as follows.

with dept total (dept name, value) as
(select dept name, sum(salary)
from instructor
group by dept name),

dept total avg(value) as
(select avg(value)
from dept total)

select dept name
from dept total, dept total avg
where dept total.value > dept total avg.value;

We can create an equivalent query without the with clause, but it would be more com-
plicated and harder to understand. You can write the equivalent query as an exercise.

3.8.7 Scalar Subqueries

SQL allows subqueries to occur wherever an expression returning a value is permitted,
provided the subquery returns only one tuple containing a single attribute; such sub-
queries are called scalar subqueries. For example, a subquery can be used in the select
clause as illustrated in the following example that lists all departments along with the
number of instructors in each department:

select dept name,
(select count(*)
from instructor
where department.dept name = instructor.dept name)

as num instructors
from department;

12The SQL evaluation engine may not physically create the relation and is free to compute the overall query result in
alternative ways, as long as the result of the query is the same as if the relation had been created.
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The subquery in this example is guaranteed to return only a single value since it has
a count(*) aggregate without a group by. The example also illustrates the usage of cor-
relation variables, that is, attributes of relations in the from clause of the outer query,
such as department.dept name in the above example.

Scalar subqueries can occur in select, where, and having clauses. Scalar subqueries
may also be defined without aggregates. It is not always possible to figure out at compile
time if a subquery can return more than one tuple in its result; if the result has more
than one tuple when the subquery is executed, a run-time error occurs.

Note that technically the type of a scalar subquery result is still a relation, even if
it contains a single tuple. However, when a scalar subquery is used in an expression
where a value is expected, SQL implicitly extracts the value from the single attribute of
the single tuple in the relation and returns that value.

3.8.8 Scalar Without a From Clause

Certain queries require a calculation but no reference to any relation. Similarly, certain
queries may have subqueries that contain a from clause without the top-level query
needing a from clause.

As an example, suppose we wish to find the average number of sections taught (re-
gardless of year or semester) per instructor, with sections taught by multiple instructors
counted once per instructor. We need to count the number of tuples in teaches to find
the total number of sections taught and count the number of tuples in instructor to find
the number of instructors. Then a simple division gives us the desired result. One might
write this as:

(select count (*) from teaches) / (select count (*) from instructor);

While this is legal in some systems, others will report an error due to the lack of a
from clause.13 In the latter case, a special dummy relation called, for example, dual can
be created, containing a single tuple. This allows the preceding query to be written as:

select (select count (*) from teaches) / (select count (*) from instructor)
from dual;

Oracle provides a predefined relation called dual, containing a single tuple, for uses
such as the above (the relation has a single attribute, which is not relevant for our
purposes); you can create an equivalent relation if you use any other database.

Since the above queries divide one integer by another, the result would, on most
databases, be an integer, which would result in loss of precision. If you wish to get the
result as a floating point number, you could multiply one of the two subquery results by
1.0 to convert it to a floating point number, before the division operation is performed.

13This construct is legal, for example, in SQL Server, but not legal, for example, in Oracle.
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Note 3.3 SQL AND MULTISET RELATIONAL ALGEBRA - PART 3

Unlike the SQL set and aggregation operations that we studied earlier in this chap-
ter, SQL subqueries do not have directly equivalent operations in the relational al-
gebra. Most SQL queries involving subqueries can be rewritten in a way that does
not require the use of subqueries, and thus they have equivalent relational algebra
expressions.

Rewriting to relational algebra can benefit from two extended relational al-
gebra operations called semijoin, denoted ⋉, and antijoin, denoted ⋉, which are
supported internally by many database implementations (the symbol ⊳ is some-
times used in place of ⋉ to denote antijoin). For example, given relations r and s,
r⋉r.A=s.B s outputs all tuples in r that have at least one tuple in s whose s.B attribute
value matches that tuples r A attribute value. Conversely, r ⋉r.A=s.B s outputs all tu-
ples in r that have do not have any such matching tuple in s. These operators can
be used to rewrite many subqueries that use the exists and not exists connectives.

Semijoin and antijoin can be expressed using other relational algebra opera-
tions, so they do not add any expressive power, but they are nevertheless quite
useful in practice since they can be implemented very efficiently.

However, the process of rewriting SQL queries that contain subqueries is in
general not straightforward. Database system implementations therefore extend
the relational algebra by allowing σ and Π operators to invoke subqueries in their
predicates and projection lists.

3.9 Modification of the Database

We have restricted our attention until now to the extraction of information from the
database. Now, we show how to add, remove, or change information with SQL.

3.9.1 Deletion

A delete request is expressed in much the same way as a query. We can delete only
whole tuples; we cannot delete values on only particular attributes. SQL expresses a
deletion by:

delete from r
where P;

where P represents a predicate and r represents a relation. The delete statement first
finds all tuples t in r for which P(t) is true, and then deletes them from r. The where
clause can be omitted, in which case all tuples in r are deleted.
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Note that a delete command operates on only one relation. If we want to delete
tuples from several relations, we must use one delete command for each relation. The
predicate in the where clause may be as complex as a select command’s where clause.
At the other extreme, the where clause may be empty. The request:

delete from instructor;

deletes all tuples from the instructor relation. The instructor relation itself still exists,
but it is empty.

Here are examples of SQL delete requests:

• Delete all tuples in the instructor relation pertaining to instructors in the Finance
department.

delete from instructor
where dept name = 'Finance';

• Delete all instructors with a salary between $13,000 and $15,000.

delete from instructor
where salary between 13000 and 15000;

• Delete all tuples in the instructor relation for those instructors associated with a
department located in the Watson building.

delete from instructor
where dept name in (select dept name

from department
where building = 'Watson');

This delete request first finds all departments located in Watson and then deletes
all instructor tuples pertaining to those departments.

Note that, although we may delete tuples from only one relation at a time, we may
reference any number of relations in a select-from-where nested in the where clause of a
delete. The delete request can contain a nested select that references the relation from
which tuples are to be deleted. For example, suppose that we want to delete the records
of all instructors with salary below the average at the university. We could write:

delete from instructor
where salary < (select avg (salary)

from instructor);
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The delete statement first tests each tuple in the relation instructor to check whether
the salary is less than the average salary of instructors in the university. Then, all tuples
that pass the test—that is, represent an instructor with a lower-than-average salary—are
deleted. Performing all the tests before performing any deletion is important—if some
tuples are deleted before other tuples have been tested, the average salary may change,
and the final result of the delete would depend on the order in which the tuples were
processed!

3.9.2 Insertion

To insert data into a relation, we either specify a tuple to be inserted or write a query
whose result is a set of tuples to be inserted. The attribute values for inserted tuples
must be members of the corresponding attribute’s domain. Similarly, tuples inserted
must have the correct number of attributes.

The simplest insert statement is a request to insert one tuple. Suppose that we wish
to insert the fact that there is a course CS-437 in the Computer Science department
with title “Database Systems” and four credit hours. We write:

insert into course
values ('CS-437', 'Database Systems', 'Comp. Sci.', 4);

In this example, the values are specified in the order in which the corresponding at-
tributes are listed in the relation schema. For the benefit of users who may not re-
member the order of the attributes, SQL allows the attributes to be specified as part of
the insert statement. For example, the following SQL insert statements are identical in
function to the preceding one:

insert into course (course id, title, dept name, credits)
values ('CS-437', 'Database Systems', 'Comp. Sci.', 4);

insert into course (title, course id, credits, dept name)
values ('Database Systems', 'CS-437', 4, 'Comp. Sci.');

More generally, we might want to insert tuples on the basis of the result of a query.
Suppose that we want to make each student in the Music department who has earned
more than 144 credit hours an instructor in the Music department with a salary of
$18,000. We write:

insert into instructor
select ID, name, dept name, 18000
from student
where dept name = 'Music' and tot cred > 144;
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Instead of specifying a tuple as we did earlier in this section, we use a select to specify a
set of tuples. SQL evaluates the select statement first, giving a set of tuples that is then
inserted into the instructor relation. Each tuple has an ID, a name, a dept name (Music),
and a salary of $18,000.

It is important that the system evaluate the select statement fully before it performs
any insertions. If it were to carry out some insertions while the select statement was
being evaluated, a request such as:

insert into student
select *
from student;

might insert an infinite number of tuples, if the primary key constraint on student were
absent. Without the primary key constraint, the request would insert the first tuple in
student again, creating a second copy of the tuple. Since this second copy is part of
student now, the select statement may find it, and a third copy would be inserted into
student. The select statement may then find this third copy and insert a fourth copy, and
so on, forever. Evaluating the select statement completely before performing insertions
avoids such problems. Thus, the above insert statement would simply duplicate every
tuple in the student relation if the relation did not have a primary key constraint.

Our discussion of the insert statement considered only examples in which a value
is given for every attribute in inserted tuples. It is possible for inserted tuples to be given
values on only some attributes of the schema. The remaining attributes are assigned a
null value denoted by null. Consider the request:

insert into student
values ('3003', 'Green', 'Finance', null);

The tuple inserted by this request specified that a student with ID “3003” is in the
Finance department, but the tot cred value for this student is not known.

Most relational database products have special “bulk loader” utilities to insert a
large set of tuples into a relation. These utilities allow data to be read from format-
ted text files, and they can execute much faster than an equivalent sequence of insert
statements.

3.9.3 Updates

In certain situations, we may wish to change a value in a tuple without changing all
values in the tuple. For this purpose, the update statement can be used. As we could
for insert and delete, we can choose the tuples to be updated by using a query.

Suppose that annual salary increases are being made, and salaries of all instructors
are to be increased by 5 percent. We write:
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update instructor
set salary= salary * 1.05;

The preceding update statement is applied once to each of the tuples in the instructor
relation.

If a salary increase is to be paid only to instructors with a salary of less than
$70,000, we can write:

update instructor
set salary = salary * 1.05
where salary < 70000;

In general, the where clause of the update statement may contain any construct legal
in the where clause of the select statement (including nested selects). As with insert
and delete, a nested select within an update statement may reference the relation that
is being updated. As before, SQL first tests all tuples in the relation to see whether
they should be updated, and it carries out the updates afterward. For example, we can
write the request “Give a 5 percent salary raise to instructors whose salary is less than
average” as follows:

update instructor
set salary = salary * 1.05
where salary < (select avg (salary)

from instructor);

Let us now suppose that all instructors with salary over $100,000 receive a 3 per-
cent raise, whereas all others receive a 5 percent raise. We could write two update
statements:

update instructor
set salary = salary * 1.03
where salary > 100000;

update instructor
set salary = salary * 1.05
where salary <= 100000;

Note that the order of the two update statements is important. If we changed the order
of the two statements, an instructor with a salary just under $100,000 would receive a
raise of over 8 percent.

SQL provides a case construct that we can use to perform both updates with a
single update statement, avoiding the problem with the order of updates.
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update instructor
set salary = case

when salary <= 100000 then salary * 1.05
else salary * 1.03

end
The general form of the case statement is as follows:

case
when pred1 then result1
when pred2 then result2
…
when predn then resultn
else result0

end

The operation returns resulti, where i is the first of pred1, pred2, . . . , predn that is satis-
fied; if none of the predicates is satisfied, the operation returns result0. Case statements
can be used in any place where a value is expected.

Scalar subqueries are useful in SQL update statements, where they can be used in
the set clause. We illustrate this using the student and takes relations that we introduced
in Chapter 2. Consider an update where we set the tot cred attribute of each student
tuple to the sum of the credits of courses successfully completed by the student. We
assume that a course is successfully completed if the student has a grade that is neither
'F' nor null. To specify this update, we need to use a subquery in the set clause, as
shown below:

update student
set tot cred = (

select sum(credits)
from takes, course
where student.ID= takes.ID and

takes.course id = course.course id and
takes.grade <> 'F' and
takes.grade is not null);

In case a student has not successfully completed any course, the preceding statement
would set the tot cred attribute value to null. To set the value to 0 instead, we could
use another update statement to replace null values with 0; a better alternative is to
replace the clause “select sum(credits)” in the preceding subquery with the following
select clause using a case expression:

select case
when sum(credits) is not null then sum(credits)
else 0
end
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Many systems support a coalesce function, which we describe in more detail later,
in Section 4.5.2, which provides a concise way of replacing nulls by other values. In
the above example, we could have used coalesce(sum(credits), 0) instead of the case
expression; this expression would return the aggregate result sum(credits) if it is not
null, and 0 otherwise.

3.10 Summary

• SQL is the most influential commercially marketed relational query language. The
SQL language has several parts:

° Data-definition language (DDL), which provides commands for defining rela-
tion schemas, deleting relations, and modifying relation schemas.

° Data-manipulation language (DML), which includes a query language and com-
mands to insert tuples into, delete tuples from, and modify tuples in the
database.

• The SQL data-definition language is used to create relations with specified
schemas. In addition to specifying the names and types of relation attributes,
SQL also allows the specification of integrity constraints such as primary-key con-
straints and foreign-key constraints.

• SQL includes a variety of language constructs for queries on the database. These
include the select, from, and where clauses.

• SQL also provides mechanisms to rename both attributes and relations, and to
order query results by sorting on specified attributes.

• SQL supports basic set operations on relations, including union, intersect, and ex-
cept, which correspond to the mathematical set operations ∪, ∩, and −.

• SQL handles queries on relations containing null values by adding the truth value
“unknown” to the usual truth values of true and false.

• SQL supports aggregation, including the ability to divide a relation into groups,
applying aggregation separately on each group. SQL also supports set operations
on groups.

• SQL supports nested subqueries in the where and from clauses of an outer query.
It also supports scalar subqueries wherever an expression returning a value is per-
mitted.

• SQL provides constructs for updating, inserting, and deleting information.
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Review Terms

• Data-definition language

• Data-manipulation language

• Database schema

• Database instance

• Relation schema

• Relation instance

• Primary key

• Foreign key

° Referencing relation

° Referenced relation

• Null value

• Query language

• SQL query structure

° select clause

° from clause

° where clause

• Multiset relational algebra

• as clause

• order by clause

• Table alias

• Correlation name (correlation vari-
able, tuple variable)

• Set operations

° union

° intersect

° except

• Aggregate functions

° avg, min, max, sum, count

° group by

° having

• Nested subqueries

• Set comparisons

° {<,<=,>,>=} { some, all }

° exists

° unique

• lateral clause

• with clause

• Scalar subquery

• Database modification

° Delete

° Insert

° Update

Practice Exercises

3.1 Write the following queries in SQL, using the university schema. (We suggest
you actually run these queries on a database, using the sample data that we
provide on the web site of the book, db-book.com. Instructions for setting up
a database, and loading sample data, are provided on the above web site.)

a. Find the titles of courses in the Comp. Sci. department that have 3 credits.

b. Find the IDs of all students who were taught by an instructor named Ein-
stein; make sure there are no duplicates in the result.
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c. Find the highest salary of any instructor.

d. Find all instructors earning the highest salary (there may be more than
one with the same salary).

e. Find the enrollment of each section that was offered in Fall 2017.

f. Find the maximum enrollment, across all sections, in Fall 2017.

g. Find the sections that had the maximum enrollment in Fall 2017.

3.2 Suppose you are given a relation grade points(grade, points) that provides a con-
version from letter grades in the takes relation to numeric scores; for example,
an “A” grade could be specified to correspond to 4 points, an “A−” to 3.7 points,
a “B+” to 3.3 points, a “B” to 3 points, and so on. The grade points earned by a
student for a course offering (section) is defined as the number of credits for the
course multiplied by the numeric points for the grade that the student received.

Given the preceding relation, and our university schema, write each of the
following queries in SQL. You may assume for simplicity that no takes tuple has
the null value for grade.

a. Find the total grade points earned by the student with ID '12345', across
all courses taken by the student.

b. Find the grade point average (GPA) for the above student, that is, the total
grade points divided by the total credits for the associated courses.

c. Find the ID and the grade-point average of each student.

d. Now reconsider your answers to the earlier parts of this exercise under
the assumption that some grades might be null. Explain whether your
solutions still work and, if not, provide versions that handle nulls properly.

3.3 Write the following inserts, deletes, or updates in SQL, using the university
schema.

a. Increase the salary of each instructor in the Comp. Sci. department by
10%.

b. Delete all courses that have never been offered (i.e., do not occur in the
section relation).

c. Insert every student whose tot cred attribute is greater than 100 as an in-
structor in the same department, with a salary of $10,000.

3.4 Consider the insurance database of Figure 3.17, where the primary keys are
underlined. Construct the following SQL queries for this relational database.

a. Find the total number of people who owned cars that were involved in
accidents in 2017.
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person (driver id, name, address)
car (license plate, model, year)
accident (report number, year, location)
owns (driver id, license plate)
participated (report number, license plate, driver id, damage amount)

Figure 3.17 Insurance database

b. Delete all year-2010 cars belonging to the person whose ID is '12345'.

3.5 Suppose that we have a relation marks(ID, score) and we wish to assign grades
to students based on the score as follows: grade F if score < 40, grade C if 40
≤ score < 60, grade B if 60 ≤ score < 80, and grade A if 80 ≤ score. Write SQL
queries to do the following:

a. Display the grade for each student, based on the marks relation.

b. Find the number of students with each grade.

3.6 The SQL like operator is case sensitive (in most systems), but the lower() func-
tion on strings can be used to perform case-insensitive matching. To show how,
write a query that finds departments whose names contain the string “sci” as a
substring, regardless of the case.

3.7 Consider the SQL query

select p.a1
from p, r1, r2
where p.a1 = r1.a1 or p.a1 = r2.a1

Under what conditions does the preceding query select values of p.a1 that are
either in r1 or in r2? Examine carefully the cases where either r1 or r2 may be
empty.

3.8 Consider the bank database of Figure 3.18, where the primary keys are under-
lined. Construct the following SQL queries for this relational database.

a. Find the ID of each customer of the bank who has an account but not a
loan.

b. Find the ID of each customer who lives on the same street and in the same
city as customer '12345'.

c. Find the name of each branch that has at least one customer who has an
account in the bank and who lives in “Harrison”.
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branch(branch name, branch city, assets)
customer (ID, customer name, customer street, customer city)
loan (loan number, branch name, amount)
borrower (ID, loan number)
account (account number, branch name, balance )
depositor (ID, account number)

Figure 3.18 Banking database.

3.9 Consider the relational database of Figure 3.19, where the primary keys are
underlined. Give an expression in SQL for each of the following queries.

a. Find the ID, name, and city of residence of each employee who works for
“First Bank Corporation”.

b. Find the ID, name, and city of residence of each employee who works for
“First Bank Corporation” and earns more than $10000.

c. Find the ID of each employee who does not work for “First Bank Corpo-
ration”.

d. Find the ID of each employee who earns more than every employee of
“Small Bank Corporation”.

e. Assume that companies may be located in several cities. Find the name
of each company that is located in every city in which “Small Bank Cor-
poration” is located.

f. Find the name of the company that has the most employees (or compa-
nies, in the case where there is a tie for the most).

g. Find the name of each company whose employees earn a higher salary,
on average, than the average salary at “First Bank Corporation”.

employee (ID, person name, street, city)
works (ID, company name, salary)
company (company name, city)
manages (ID, manager id)

Figure 3.19 Employee database.
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3.10 Consider the relational database of Figure 3.19. Give an expression in SQL for
each of the following:

a. Modify the database so that the employee whose ID is '12345' now lives
in “Newtown”.

b. Give each manager of “First Bank Corporation” a 10 percent raise unless
the salary becomes greater than $100000; in such cases, give only a 3
percent raise.

Exercises

3.11 Write the following queries in SQL, using the university schema.

a. Find the ID and name of each student who has taken at least one Comp.
Sci. course; make sure there are no duplicate names in the result.

b. Find the ID and name of each student who has not taken any course
offered before 2017.

c. For each department, find the maximum salary of instructors in that de-
partment. You may assume that every department has at least one instruc-
tor.

d. Find the lowest, across all departments, of the per-department maximum
salary computed by the preceding query.

3.12 Write the SQL statements using the university schema to perform the following
operations:

a. Create a new course “CS-001”, titled “Weekly Seminar”, with 0 credits.

b. Create a section of this course in Fall 2017, with sec id of 1, and with the
location of this section not yet specified.

c. Enroll every student in the Comp. Sci. department in the above section.

d. Delete enrollments in the above section where the student’s ID is 12345.

e. Delete the course CS-001. What will happen if you run this delete state-
ment without first deleting offerings (sections) of this course?

f. Delete all takes tuples corresponding to any section of any course with
the word “advanced” as a part of the title; ignore case when matching the
word with the title.

3.13 Write SQL DDL corresponding to the schema in Figure 3.17. Make any reason-
able assumptions about data types, and be sure to declare primary and foreign
keys.
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3.14 Consider the insurance database of Figure 3.17, where the primary keys are
underlined. Construct the following SQL queries for this relational database.

a. Find the number of accidents involving a car belonging to a person named
“John Smith”.

b. Update the damage amount for the car with license plate “AABB2000”
in the accident with report number “AR2197” to $3000.

3.15 Consider the bank database of Figure 3.18, where the primary keys are under-
lined. Construct the following SQL queries for this relational database.

a. Find each customer who has an account at every branch located in “Brook-
lyn”.

b. Find the total sum of all loan amounts in the bank.

c. Find the names of all branches that have assets greater than those of at
least one branch located in “Brooklyn”.

3.16 Consider the employee database of Figure 3.19, where the primary keys are
underlined. Give an expression in SQL for each of the following queries.

a. Find ID and name of each employee who lives in the same city as the
location of the company for which the employee works.

b. Find ID and name of each employee who lives in the same city and on the
same street as does her or his manager.

c. Find ID and name of each employee who earns more than the average
salary of all employees of her or his company.

d. Find the company that has the smallest payroll.

3.17 Consider the employee database of Figure 3.19. Give an expression in SQL for
each of the following queries.

a. Give all employees of “First Bank Corporation” a 10 percent raise.

b. Give all managers of “First Bank Corporation” a 10 percent raise.

c. Delete all tuples in the works relation for employees of “Small Bank Cor-
poration”.

3.18 Give an SQL schema definition for the employee database of Figure 3.19.
Choose an appropriate domain for each attribute and an appropriate primary
key for each relation schema. Include any foreign-key constraints that might be
appropriate.

3.19 List two reasons why null values might be introduced into the database.

3.20 Show that, in SQL, <> all is identical to not in.
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member(memb no, name)
book(isbn, title, authors, publisher)
borrowed(memb no, isbn, date)

Figure 3.20 Library database.

3.21 Consider the library database of Figure 3.20. Write the following queries in SQL.

a. Find the member number and name of each member who has borrowed
at least one book published by “McGraw-Hill”.

b. Find the member number and name of each member who has borrowed
every book published by “McGraw-Hill”.

c. For each publisher, find the member number and name of each member
who has borrowed more than five books of that publisher.

d. Find the average number of books borrowed per member. Take into ac-
count that if a member does not borrow any books, then that member does
not appear in the borrowed relation at all, but that member still counts in
the average.

3.22 Rewrite the where clause

where unique (select title from course)

without using the unique construct.

3.23 Consider the query:

with dept total (dept name, value) as
(select dept name, sum(salary)
from instructor
group by dept name),

dept total avg(value) as
(select avg(value)
from dept total)

select dept name
from dept total, dept total avg
where dept total.value >= dept total avg.value;

Rewrite this query without using the with construct.

3.24 Using the university schema, write an SQL query to find the name and ID of
those Accounting students advised by an instructor in the Physics department.
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3.25 Using the university schema, write an SQL query to find the names of those
departments whose budget is higher than that of Philosophy. List them in al-
phabetic order.

3.26 Using the university schema, use SQL to do the following: For each student who
has retaken a course at least twice (i.e., the student has taken the course at least
three times), show the course ID and the student’s ID.
Please display your results in order of course ID and do not display duplicate
rows.

3.27 Using the university schema, write an SQL query to find the IDs of those stu-
dents who have retaken at least three distinct courses at least once (i.e, the
student has taken the course at least two times).

3.28 Using the university schema, write an SQL query to find the names and IDs of
those instructors who teach every course taught in his or her department (i.e.,
every course that appears in the course relation with the instructor’s department
name). Order result by name.

3.29 Using the university schema, write an SQL query to find the name and ID of
each History student whose name begins with the letter ‘D’ and who has not
taken at least five Music courses.

3.30 Consider the following SQL query on the university schema:

select avg(salary) - (sum(salary) / count(*))
from instructor

We might expect that the result of this query is zero since the average of a set
of numbers is defined to be the sum of the numbers divided by the number of
numbers. Indeed this is true for the example instructor relation in Figure 2.1.
However, there are other possible instances of that relation for which the result
would not be zero. Give one such instance, and explain why the result would
not be zero.

3.31 Using the university schema, write an SQL query to find the ID and name of each
instructor who has never given an A grade in any course she or he has taught.
(Instructors who have never taught a course trivially satisfy this condition.)

3.32 Rewrite the preceding query, but also ensure that you include only instructors
who have given at least one other non-null grade in some course.

3.33 Using the university schema, write an SQL query to find the ID and title of each
course in Comp. Sci. that has had at least one section with afternoon hours (i.e.,
ends at or after 12:00). (You should eliminate duplicates if any.)

3.34 Using the university schema, write an SQL query to find the number of students
in each section. The result columns should appear in the order “courseid, secid,
year, semester, num”. You do not need to output sections with 0 students.
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3.35 Using the university schema, write an SQL query to find section(s) with max-
imum enrollment. The result columns should appear in the order “courseid,
secid, year, semester, num”. (It may be convenient to use the with construct.)

Tools

A number of relational database systems are available commercially, including IBM
DB2, IBM Informix, Oracle, SAP Adaptive Server Enterprise (formerly Sybase), and
Microsoft SQL Server. In addition several open-source database systems can be down-
loaded and used free of charge, including PostgreSQL and MySQL (free except for cer-
tain kinds of commercial use). Some commercial vendors offer free versions of their
systems with certain use limitations. These include Oracle Express edition, Microsoft
SQL Server Express, and IBM DB2 Express-C.

The sql.js database is version of the embedded SQL database SQLite which can be
run directly in a web browser, allowing SQL commands to be executed directly in the
browser. All data are temporary and vanishes when you close the browser, but it can
be useful for learning SQL; be warned that the subset of SQL that is supported by sql.js
and SQLite is considerably smaller than what is supported by other databases. An SQL
tutorial using sql.js as the execution engine is hosted at www.w3schools.com/sql.

The web site of our book, db-book.com, provides a significant amount of support-
ing material for the book. By following the link on the site titled Laboratory Material,
you can get access to the following:

• Instructions on how to set up and access some popular database systems, including
sql.js (which you can run in your browser), MySQL, and PostgreSQL.

• SQL schema definitions for the University schema.

• SQL scripts for loading sample datasets.

• Tips on how to use the XData system, developed at IIT Bombay, to test queries for
correctness by executing them on multiple datasets generated by the system; and,
for instructors, tips on how to use XData to automate SQL query grading.

• Get tips on SQL variations across different databases.

Support for different SQL features varies by databases, and most databases also
support some non-standard extensions to SQL. Read the system manuals to understand
the exact SQL features that a database supports.

Most database systems provide a command line interface for submitting SQL com-
mands. In addition, most databases also provide graphical user interfaces (GUIs),
which simplify the task of browsing the database, creating and submitting queries, and
administering the database. For PostgreSQL, the pgAdmin tool provides GUI func-
tionality, while for MySQL, phpMyAdmin provides GUI functionality. Oracle provides
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Oracle SQL Developer, while Microsoft SQL Server comes with the SQL Server Man-
agement Studio.

The NetBeans IDEs SQLEditor provides a GUI front end which works with a num-
ber of different database systems, but with limited functionality, while the Eclipse
IDE supports similar functionality through the Data Tools Platform (DTP). Commer-
cial IDEs that support SQL access across multiple database platforms include Embar-
cadero’s RAD Studio and Aqua Data Studio.

Further Reading

The original Sequel language that became SQL is described in [Chamberlin et al.
(1976)].

The most important SQL reference is likely to be the online documentation pro-
vided by the vendor or the particular database system you are using. That documenta-
tion will identify any features that deviate from the SQL standard features presented in
this chapter. Here are links to the SQL reference manuals for the current (as of 2018)
versions of some of the popular databases.

• MySQL 8.0: dev.mysql.com/doc/refman/8.0/en/

• Oracle 12c: docs.oracle.com/database/121/SQLRF/

• PostgreSQL: www.postgresql.org/docs/current/static/sql.html

• SQLite: www.sqlite.org/lang.html

• SQL Server: docs.microsoft.com/en-us/sql/t-sql
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CHAP T E R 4
Intermediate SQL

In this chapter, we continue our study of SQL. We consider more complex forms of
SQL queries, view definition, transactions, integrity constraints, more details regarding
SQL data definition, and authorization.

4.1 Join Expressions

In all of the example queries we used in Chapter 3 (except when we used set opera-
tions), we combined information from multiple relations using the Cartesian product
operator. In this section, we introduce a number of “join” operations that allow the
programmer to write some queries in a more natural way and to express some queries
that are difficult to do with only the Cartesian product.

ID name dept name tot cred

00128 Zhang Comp. Sci. 102
12345 Shankar Comp. Sci. 32
19991 Brandt History 80
23121 Chavez Finance 110
44553 Peltier Physics 56
45678 Levy Physics 46
54321 Williams Comp. Sci. 54
55739 Sanchez Music 38
70557 Snow Physics 0
76543 Brown Comp. Sci. 58
76653 Aoi Elec. Eng. 60
98765 Bourikas Elec. Eng. 98
98988 Tanaka Biology 120

Figure 4.1 The student relation.
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ID course id sec id semester year grade

00128 CS-101 1 Fall 2017 A
00128 CS-347 1 Fall 2017 A-
12345 CS-101 1 Fall 2017 C
12345 CS-190 2 Spring 2017 A
12345 CS-315 1 Spring 2018 A
12345 CS-347 1 Fall 2017 A
19991 HIS-351 1 Spring 2018 B
23121 FIN-201 1 Spring 2018 C+
44553 PHY-101 1 Fall 2017 B-
45678 CS-101 1 Fall 2017 F
45678 CS-101 1 Spring 2018 B+
45678 CS-319 1 Spring 2018 B
54321 CS-101 1 Fall 2017 A-
54321 CS-190 2 Spring 2017 B+
55739 MU-199 1 Spring 2018 A-
76543 CS-101 1 Fall 2017 A
76543 CS-319 2 Spring 2018 A
76653 EE-181 1 Spring 2017 C
98765 CS-101 1 Fall 2017 C-
98765 CS-315 1 Spring 2018 B
98988 BIO-101 1 Summer 2017 A
98988 BIO-301 1 Summer 2018 null

Figure 4.2 The takes relation.

All the examples used in this section involve the two relations student and takes,
shown in Figure 4.1 and Figure 4.2, respectively. Observe that the attribute grade has
a value null for the student with ID 98988, for the course BIO-301, section 1, taken in
Summer 2018. The null value indicates that the grade has not been awarded yet.

4.1.1 The Natural Join

Consider the following SQL query, which computes for each student the set of courses
a student has taken:

select name, course id
from student, takes
where student.ID = takes.ID;

Note that this query outputs only students who have taken some course. Students who
have not taken any course are not output.
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Note that in the student and takes table, the matching condition required student.ID
to be equal to takes.ID. These are the only attributes in the two relations that have the
same name. In fact, this is a common case; that is, the matching condition in the from
clause most often requires all attributes with matching names to be equated.

To make the life of an SQL programmer easier for this common case, SQL supports
an operation called the natural join, which we describe below. In fact, SQL supports sev-
eral other ways in which information from two or more relations can be joined together.
We have already seen how a Cartesian product along with a where clause predicate can
be used to join information from multiple relations. Other ways of joining information
from multiple relations are discussed in Section 4.1.2 through Section 4.1.4.

The natural join operation operates on two relations and produces a relation as the
result. Unlike the Cartesian product of two relations, which concatenates each tuple of
the first relation with every tuple of the second, natural join considers only those pairs
of tuples with the same value on those attributes that appear in the schemas of both
relations. So, going back to the example of the relations student and takes, computing:

student natural join takes

considers only those pairs of tuples where both the tuple from student and the tuple
from takes have the same value on the common attribute, ID.

The resulting relation, shown in Figure 4.3, has only 22 tuples, the ones that give
information about a student and a course that the student has actually taken. Notice
that we do not repeat those attributes that appear in the schemas of both relations;
rather they appear only once. Notice also the order in which the attributes are listed:
first the attributes common to the schemas of both relations, second those attributes
unique to the schema of the first relation, and finally, those attributes unique to the
schema of the second relation.

Earlier we wrote the query “For all students in the university who have taken some
course, find their names and the course ID of all courses they took” as:

select name, course id
from student, takes
where student.ID = takes.ID;

This query can be written more concisely using the natural-join operation in SQL as:

select name, course id
from student natural join takes;

Both of the above queries generate the same result.1

1For notational symmetry, SQL allows the Cartesian product, which we have denoted with a comma, to be denoted by
the keywords cross join. Thus, “from student, takes” could be expressed equivalently as “from student cross join takes”.
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ID name dept name tot cred course id sec id semester year grade

00128 Zhang Comp. Sci. 102 CS-101 1 Fall 2017 A
00128 Zhang Comp. Sci. 102 CS-347 1 Fall 2017 A-
12345 Shankar Comp. Sci. 32 CS-101 1 Fall 2017 C
12345 Shankar Comp. Sci. 32 CS-190 2 Spring 2017 A
12345 Shankar Comp. Sci. 32 CS-315 1 Spring 2018 A
12345 Shankar Comp. Sci. 32 CS-347 1 Fall 2017 A
19991 Brandt History 80 HIS-351 1 Spring 2018 B
23121 Chavez Finance 110 FIN-201 1 Spring 2018 C+
44553 Peltier Physics 56 PHY-101 1 Fall 2017 B-
45678 Levy Physics 46 CS-101 1 Fall 2017 F
45678 Levy Physics 46 CS-101 1 Spring 2018 B+
45678 Levy Physics 46 CS-319 1 Spring 2018 B
54321 Williams Comp. Sci. 54 CS-101 1 Fall 2017 A-
54321 Williams Comp. Sci. 54 CS-190 2 Spring 2017 B+
55739 Sanchez Music 38 MU-199 1 Spring 2018 A-
76543 Brown Comp. Sci. 58 CS-101 1 Fall 2017 A
76543 Brown Comp. Sci. 58 CS-319 2 Spring 2018 A
76653 Aoi Elec. Eng. 60 EE-181 1 Spring 2017 C
98765 Bourikas Elec. Eng. 98 CS-101 1 Fall 2017 C-
98765 Bourikas Elec. Eng. 98 CS-315 1 Spring 2018 B
98988 Tanaka Biology 120 BIO-101 1 Summer 2017 A
98988 Tanaka Biology 120 BIO-301 1 Summer 2018 null

Figure 4.3 The natural join of the student relation with the takes relation.

The result of the natural join operation is a relation. Conceptually, expression “stu-
dent natural join takes” in the from clause is replaced by the relation obtained by evalu-
ating the natural join.2 The where and select clauses are then evaluated on this relation,
as we saw in Section 3.3.2.

A from clause in an SQL query can have multiple relations combined using natural
join, as shown here:

select A1, A2,… , An
from r1 natural join r2 natural join . . . natural join rm
where P;

More generally, a from clause can be of the form

2As a consequence, it may not be possible in some systems to use attribute names containing the original relation
names, for instance, student.ID or takes.ID, to refer to attributes in the natural join result. While some systems allow
it, others don’t, and some allow it for all attributes except the join attributes (i.e., those that appear in both relation
schemas). We can, however, use attribute names such as name and course id without the relation names.
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from E1, E2, . . . , En

where each Ei can be a single relation or an expression involving natural joins. For
example, suppose we wish to answer the query “List the names of students along with
the titles of courses that they have taken.” The query can be written in SQL as follows:

select name, title
from student natural join takes, course
where takes.course id = course.course id;

The natural join of student and takes is first computed, as we saw earlier, and a Cartesian
product of this result with course is computed, from which the where clause extracts
only those tuples where the course identifier from the join result matches the course
identifier from the course relation. Note that takes.course id in the where clause refers
to the course id field of the natural join result, since this field, in turn, came from the
takes relation.

In contrast, the following SQL query does not compute the same result:

select name, title
from student natural join takes natural join course;

To see why, note that the natural join of student and takes contains the attributes (ID,
name, dept name, tot cred, course id, sec id), while the course relation contains the at-
tributes (course id, title, dept name, credits). As a result, the natural join would require
that the dept name attribute values from the two relations be the same in addition to
requiring that the course id values be the same. This query would then omit all (stu-
dent name, course title) pairs where the student takes a course in a department other
than the student’s own department. The previous query, on the other hand, correctly
outputs such pairs.

To provide the benefit of natural join while avoiding the danger of equating at-
tributes erroneously, SQL provides a form of the natural join construct that allows you
to specify exactly which columns should be equated. This feature is illustrated by the
following query:

select name, title
from (student natural join takes) join course using (course id);

The operation join … using requires a list of attribute names to be specified. Both
relations being joined must have attributes with the specified names. Consider the op-
eration r1 join r2 using(A1, A2). The operation is similar to r1 natural join r2, except that
a pair of tuples t1 from r1 and t2 from r2 match if t1 A1 = t2.A1 and t1.A2 = t2.A2; even
if r1 and r2 both have an attribute named A3, it is not required that t1.A3 = t2.A3.
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Thus, in the preceding SQL query, the join construct permits student.dept name and
course.dept name to differ, and the SQL query gives the correct answer.

4.1.2 Join Conditions

In Section 4.1.1, we saw how to express natural joins, and we saw the join … using
clause, which is a form of natural join that requires values to match only on specified
attributes. SQL supports another form of join, in which an arbitrary join condition can
be specified.

The on condition allows a general predicate over the relations being joined. This
predicate is written like a where clause predicate except for the use of the keyword on
rather than where. Like the using condition, the on condition appears at the end of the
join expression.

Consider the following query, which has a join expression containing the on con-
dition:

select *
from student join takes on student.ID = takes.ID;

The on condition above specifies that a tuple from student matches a tuple from takes
if their ID values are equal. The join expression in this case is almost the same as the
join expression student natural join takes, since the natural join operation also requires
that for a student tuple and a takes tuple to match. The one difference is that the result
has the ID attribute listed twice, in the join result, once for student and once for takes,
even though their ID values must be the same.

In fact, the preceding query is equivalent to the following query:

select *
from student, takes
where student.ID = takes.ID;

As we have seen earlier, the relation name is used to disambiguate the attribute name ID,
and thus the two occurrences can be referred to as student.ID and takes.ID, respectively.
A version of this query that displays the ID value only once is as follows:

select student.ID as ID, name, dept name, tot cred,
course id, sec id, semester, year, grade

from student join takes on student.ID = takes.ID;

The result of this query is exactly the same as the result of the natural join of student
and takes, which we showed in Figure 4.3.

The on condition can express any SQL predicate, and thus join expressions using
the on condition can express a richer class of join conditions than natural join. However,
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as illustrated by our preceding example, a query using a join expression with an on
condition can be replaced by an equivalent expression without the on condition, with
the predicate in the on clause moved to the where clause. Thus, it may appear that the
on condition is a redundant feature of SQL.

However, there are two good reasons for introducing the on condition. First, we
shall see shortly that for a kind of join called an outer join, on conditions do behave
in a manner different from where conditions. Second, an SQL query is often more
readable by humans if the join condition is specified in the on clause and the rest of
the conditions appear in the where clause.

4.1.3 Outer Joins

Suppose we wish to display a list of all students, displaying their ID, and name, dept
name, and tot cred, along with the courses that they have taken. The following SQL

query may appear to retrieve the required information:

select *
from student natural join takes;

Unfortunately, the above query does not work quite as intended. Suppose that there
is some student who takes no courses. Then the tuple in the student relation for that
particular student would not satisfy the condition of a natural join with any tuple in the
takes relation, and that student’s data would not appear in the result. We would thus
not see any information about students who have not taken any courses. For example,
in the student and takes relations of Figure 4.1 and Figure 4.2, note that student Snow,
with ID 70557, has not taken any courses. Snow appears in student, but Snow’s ID
number does not appear in the ID column of takes. Thus, Snow does not appear in the
result of the natural join.

More generally, some tuples in either or both of the relations being joined may
be “lost” in this way. The outer-join operation works in a manner similar to the join
operations we have already studied, but it preserves those tuples that would be lost in
a join by creating tuples in the result containing null values.

For example, to ensure that the student named Snow from our earlier example ap-
pears in the result, a tuple could be added to the join result with all attributes from the
student relation set to the corresponding values for the student Snow, and all the remain-
ing attributes which come from the takes relation, namely, course id, sec id, semester,
and year, set to null. Thus, the tuple for the student Snow is preserved in the result of
the outer join.

There are three forms of outer join:

• The left outer join preserves tuples only in the relation named before (to the left
of) the left outer join operation.
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• The right outer join preserves tuples only in the relation named after (to the right
of) the right outer join operation.

• The full outer join preserves tuples in both relations.

In contrast, the join operations we studied earlier that do not preserve nonmatched tu-
ples are called inner-join operations, to distinguish them from the outer-join operations.

We now explain exactly how each form of outer join operates. We can compute
the left outer-join operation as follows: First, compute the result of the inner join as
before. Then, for every tuple t in the left-hand-side relation that does not match any
tuple in the right-hand-side relation in the inner join, add a tuple r to the result of the
join constructed as follows:

• The attributes of tuple r that are derived from the left-hand-side relation are filled
in with the values from tuple t.

• The remaining attributes of r are filled with null values.

Figure 4.4 shows the result of:

select *
from student natural left outer join takes;

That result includes student Snow (ID 70557), unlike the result of an inner join, but
the tuple for Snow includes nulls for the attributes that appear only in the schema of
the takes relation.3

As another example of the use of the outer-join operation, we can write the query
“Find all students who have not taken a course” as:

select ID
from student natural left outer join takes
where course id is null;

The right outer join is symmetric to the left outer join. Tuples from the right-hand-
side relation that do not match any tuple in the left-hand-side relation are padded with
nulls and are added to the result of the right outer join. Thus, if we rewrite the preceding
query using a right outer join and swapping the order in which we list the relations as
follows:

select *
from takes natural right outer join student;

we get the same result except for the order in which the attributes appear in the result
(see Figure 4.5).

3We show null values in tables using null, but most systems display null values as a blank field.
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ID name dept name tot cred course id sec id semester year grade

00128 Zhang Comp. Sci. 102 CS-101 1 Fall 2017 A
00128 Zhang Comp. Sci. 102 CS-347 1 Fall 2017 A-
12345 Shankar Comp. Sci. 32 CS-101 1 Fall 2017 C
12345 Shankar Comp. Sci. 32 CS-190 2 Spring 2017 A
12345 Shankar Comp. Sci. 32 CS-315 1 Spring 2018 A
12345 Shankar Comp. Sci. 32 CS-347 1 Fall 2017 A
19991 Brandt History 80 HIS-351 1 Spring 2018 B
23121 Chavez Finance 110 FIN-201 1 Spring 2018 C+
44553 Peltier Physics 56 PHY-101 1 Fall 2017 B-
45678 Levy Physics 46 CS-101 1 Fall 2017 F
45678 Levy Physics 46 CS-101 1 Spring 2018 B+
45678 Levy Physics 46 CS-319 1 Spring 2018 B
54321 Williams Comp. Sci. 54 CS-101 1 Fall 2017 A-
54321 Williams Comp. Sci. 54 CS-190 2 Spring 2017 B+
55739 Sanchez Music 38 MU-199 1 Spring 2018 A-
70557 Snow Physics 0 null null null null null
76543 Brown Comp. Sci. 58 CS-101 1 Fall 2017 A
76543 Brown Comp. Sci. 58 CS-319 2 Spring 2018 A
76653 Aoi Elec. Eng. 60 EE-181 1 Spring 2017 C
98765 Bourikas Elec. Eng. 98 CS-101 1 Fall 2017 C-
98765 Bourikas Elec. Eng. 98 CS-315 1 Spring 2018 B
98988 Tanaka Biology 120 BIO-101 1 Summer 2017 A
98988 Tanaka Biology 120 BIO-301 1 Summer 2018 null

Figure 4.4 Result of student natural left outer join takes.

The full outer join is a combination of the left and right outer-join types. After the
operation computes the result of the inner join, it extends with nulls those tuples from
the left-hand-side relation that did not match with any from the right-hand-side relation
and adds them to the result. Similarly, it extends with nulls those tuples from the right-
hand-side relation that did not match with any tuples from the left-hand-side relation
and adds them to the result. Said differently, full outer join is the union of a left outer
join and the corresponding right outer join.4

As an example of the use of full outer join, consider the following query: “Display
a list of all students in the Comp. Sci. department, along with the course sections, if
any, that they have taken in Spring 2017; all course sections from Spring 2017 must

4In those systems, notably MySQL, that implement only left and right outer join, this is exactly how one has to write a
full outer join.
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ID course id sec id semester year grade name dept name tot cred

00128 CS-101 1 Fall 2017 A Zhang Comp. Sci. 102
00128 CS-347 1 Fall 2017 A- Zhang Comp. Sci. 102
12345 CS-101 1 Fall 2017 C Shankar Comp. Sci. 32
12345 CS-190 2 Spring 2017 A Shankar Comp. Sci. 32
12345 CS-315 1 Spring 2018 A Shankar Comp. Sci. 32
12345 CS-347 1 Fall 2017 A Shankar Comp. Sci. 32
19991 HIS-351 1 Spring 2018 B Brandt History 80
23121 FIN-201 1 Spring 2018 C+ Chavez Finance 110
44553 PHY-101 1 Fall 2017 B- Peltier Physics 56
45678 CS-101 1 Fall 2017 F Levy Physics 46
45678 CS-101 1 Spring 2018 B+ Levy Physics 46
45678 CS-319 1 Spring 2018 B Levy Physics 46
54321 CS-101 1 Fall 2017 A- Williams Comp. Sci. 54
54321 CS-190 2 Spring 2017 B+ Williams Comp. Sci. 54
55739 MU-199 1 Spring 2018 A- Sanchez Music 38
70557 null null null null null Snow Physics 0
76543 CS-101 1 Fall 2017 A Brown Comp. Sci. 58
76543 CS-319 2 Spring 2018 A Brown Comp. Sci. 58
76653 EE-181 1 Spring 2017 C Aoi Elec. Eng. 60
98765 CS-101 1 Fall 2017 C- Bourikas Elec. Eng. 98
98765 CS-315 1 Spring 2018 B Bourikas Elec. Eng. 98
98988 BIO-101 1 Summer 2017 A Tanaka Biology 120
98988 BIO-301 1 Summer 2018 null Tanaka Biology 120

Figure 4.5 The result of takes natural right outer join student.

be displayed, even if no student from the Comp. Sci. department has taken the course
section.” This query can be written as:

select *
from (select *

from student
where dept name = 'Comp. Sci.')

natural full outer join
(select *
from takes
where semester = 'Spring' and year = 2017);

The result appears in Figure 4.6.
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ID name dept name tot cred course id sec id semester year grade

00128 Zhang Comp. Sci. 102 null null null null null
12345 Shankar Comp. Sci. 32 CS-190 2 Spring 2017 A
54321 Williams Comp. Sci. 54 CS-190 2 Spring 2017 B+
76543 Brown Comp. Sci. 58 null null null null null
76653 null null null ECE-181 1 Spring 2017 C

Figure 4.6 Result of full outer join example (see text).

The on clause can be used with outer joins. The following query is identical to the
first query we saw using “student natural left outer join takes,” except that the attribute
ID appears twice in the result.

select *
from student left outer join takes on student.ID = takes.ID;

As we noted earlier, on and where behave differently for outer join. The reason
for this is that outer join adds null-padded tuples only for those tuples that do not
contribute to the result of the corresponding “inner” join. The on condition is part of
the outer join specification, but a where clause is not. In our example, the case of the
student tuple for student “Snow” with ID 70557, illustrates this distinction. Suppose we
modify the preceding query by moving the on clause predicate to the where clause and
instead using an on condition of true.5

select *
from student left outer join takes on true
where student.ID = takes.ID;

The earlier query, using the left outer join with the on condition, includes a tuple
(70557, Snow, Physics, 0, null, null, null, null, null, null ) because there is no tuple
in takes with ID = 70557. In the latter query, however, every tuple satisfies the join
condition true, so no null-padded tuples are generated by the outer join. The outer join
actually generates the Cartesian product of the two relations. Since there is no tuple
in takes with ID = 70557, every time a tuple appears in the outer join with name =
“Snow”, the values for student.ID and takes.ID must be different, and such tuples would
be eliminated by the where clause predicate. Thus, student Snow never appears in the
result of the latter query.

5Some systems do not allow the use of the Boolean constant true. To test this on those systems, use a tautology (i.e., a
predicate that always evaluates to true), like “1=1”.
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Note 4.1 SQL AND MULTISET RELATIONAL ALGEBRA - PART 4

The relational algebra supports the left outer-join operation, denoted by ⟕θ, the
right outer-join operation, denoted by ⟖θ, and the full outer-join operation, de-
noted by ⟗θ. It also supports the natural join operation, denoted by ⋈, as well as
the natural join versions of the left, right and full outer-join operations, denoted
by ⟕,⟖, and ⟗. The definitions of all these operations are identical to the def-
initions of the corresponding operations in SQL, which we have seen in Section
4.1.

4.1.4 Join Types and Conditions

To distinguish normal joins from outer joins, normal joins are called inner joins in SQL.
A join clause can thus specify inner join instead of outer join to specify that a normal
join is to be used. The keyword inner is, however, optional. The default join type, when
the join clause is used without the outer prefix, is the inner join. Thus,

select *
from student join takes using (ID);

is equivalent to:

select *
from student inner join takes using (ID);

Similarly, natural join is equivalent to natural inner join.
Figure 4.7 shows a full list of the various types of join that we have discussed. As

can be seen from the figure, any form of join (inner, left outer, right outer, or full outer)
can be combined with any join condition (natural, using, or on).

Join types
inner join
left outer join
right outer join
full outer join

Join conditions
natural
on < predicate>
using (A1, A2, . . ., An)

Figure 4.7 Join types and join conditions.
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4.2 Views

It is not always desirable for all users to see the entire set of relations in the database.
In Section 4.7, we shall see how to use the SQL authorization mechanism to restrict
access to relations, but security considerations may require that only certain data in a
relation be hidden from a user. Consider a clerk who needs to know an instructor’s ID,
name, and department name, but does not have authorization to see the instructor’s
salary amount. This person should see a relation described in SQL by:

select ID, name, dept name
from instructor;

Aside from security concerns, we may wish to create a personalized collection of “vir-
tual” relations that is better matched to a certain user’s intuition of the structure of the
enterprise. In our university example, we may want to have a list of all course sections
offered by the Physics department in the Fall 2017 semester, with the building and
room number of each section. The relation that we would create for obtaining such a
list is:

select course.course id, sec id, building, room number
from course, section
where course.course id = section.course id

and course.dept name = 'Physics'
and section.semester = 'Fall'
and section.year = 2017;

It is possible to compute and store the results of these queries and then make the
stored relations available to users. However, if we did so, and the underlying data in the
relations instructor, course, or section changed, the stored query results would then no
longer match the result of reexecuting the query on the relations. In general, it is a bad
idea to compute and store query results such as those in the above examples (although
there are some exceptions that we study later).

Instead, SQL allows a “virtual relation” to be defined by a query, and the relation
conceptually contains the result of the query. The virtual relation is not precomputed
and stored but instead is computed by executing the query whenever the virtual relation
is used. We saw a feature for this in Section 3.8.6, where we described the with clause.
The with clause allows us to to assign a name to a subquery for use as often as desired,
but in one particular query only. Here, we present a way to extend this concept beyond
a single query by defining a view. It is possible to support a large number of views on
top of any given set of actual relations.
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4.2.1 View Definition

We define a view in SQL by using the create view command. To define a view, we must
give the view a name and must state the query that computes the view. The form of the
create view command is:

create view v as <query expression>;

where <query expression> is any legal query expression. The view name is represented
by v.

Consider again the clerk who needs to access all data in the instructor relation,
except salary. The clerk should not be authorized to access the instructor relation (we
see in Section 4.7, how authorizations can be specified). Instead, a view relation faculty
can be made available to the clerk, with the view defined as follows:

create view faculty as
select ID, name, dept name
from instructor;

As explained earlier, the view relation conceptually contains the tuples in the query
result, but it is not precomputed and stored. Instead, the database system stores the
query expression associated with the view relation. Whenever the view relation is ac-
cessed, its tuples are created by computing the query result. Thus, the view relation is
created whenever needed, on demand.

To create a view that lists all course sections offered by the Physics department in
the Fall 2017 semester with the building and room number of each section, we write:

create view physics fall 2017 as
select course.course id, sec id, building, room number
from course, section
where course.course id = section.course id

and course.dept name = 'Physics'
and section.semester = 'Fall'
and section.year = 2017;

Later, when we study the SQL authorization mechanism in Section 4.7, we shall see
that users can be given access to views in place of, or in addition to, access to relations.

Views differ from the with statement in that views, once created, remain available
until explicitly dropped. The named subquery defined by with is local to the query in
which it is defined.

4.2.2 Using Views in SQL Queries

Once we have defined a view, we can use the view name to refer to the virtual relation
that the view generates. Using the view physics fall 2017, we can find all Physics courses
offered in the Fall 2017 semester in the Watson building by writing:



4.2 Views 139

select course id
from physics fall 2017
where building = 'Watson';

View names may appear in a query any place where a relation name may appear,
The attribute names of a view can be specified explicitly as follows:

create view departments total salary(dept name, total salary) as
select dept name, sum (salary)
from instructor
group by dept name;

The preceding view gives for each department the sum of the salaries of all the instruc-
tors at that department. Since the expression sum(salary) does not have a name, the
attribute name is specified explicitly in the view definition.

Intuitively, at any given time, the set of tuples in the view relation is the result
of evaluation of the query expression that defines the view. Thus, if a view relation is
computed and stored, it may become out of date if the relations used to define it are
modified. To avoid this, views are usually implemented as follows: When we define a
view, the database system stores the definition of the view itself, rather than the result
of evaluation of the query expression that defines the view. Wherever a view relation
appears in a query, it is replaced by the stored query expression. Thus, whenever we
evaluate the query, the view relation is recomputed.

One view may be used in the expression defining another view. For example, we
can define a view physics fall 2017 watson that lists the course ID and room number of
all Physics courses offered in the Fall 2017 semester in the Watson building as follows:

create view physics fall 2017 watson as
select course id, room number
from physics fall 2017
where building = 'Watson';

where physics fall 2017 watson is itself a view relation. This is equivalent to:

create view physics fall 2017 watson as
select course id, room number
from (select course.course id, building, room number

from course, section
where course.course id = section.course id

and course.dept name = 'Physics'
and section.semester = 'Fall'
and section.year = 2017)

where building = 'Watson';
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4.2.3 Materialized Views

Certain database systems allow view relations to be stored, but they make sure that, if
the actual relations used in the view definition change, the view is kept up-to-date. Such
views are called materialized views.

For example, consider the view departments total salary. If that view is material-
ized, its results would be stored in the database, allowing queries that use the view to
potentially run much faster by using the precomputed view result, instead of recomput-
ing it.

However, if an instructor tuple is added to or deleted from the instructor relation,
the result of the query defining the view would change, and as a result the materialized
view’s contents must be updated. Similarly, if an instructor’s salary is updated, the
tuple in departments total salary corresponding to that instructor’s department must
be updated.

The process of keeping the materialized view up-to-date is called materialized view
maintenance (or often, just view maintenance) and is covered in Section 16.5. View
maintenance can be done immediately when any of the relations on which the view is
defined is updated. Some database systems, however, perform view maintenance lazily,
when the view is accessed. Some systems update materialized views only periodically;
in this case, the contents of the materialized view may be stale, that is, not up-to-date,
when it is used, and it should not be used if the application needs up-to-date data.
And some database systems permit the database administrator to control which of the
preceding methods is used for each materialized view.

Applications that use a view frequently may benefit if the view is materialized.
Applications that demand fast response to certain queries that compute aggregates over
large relations can also benefit greatly by creating materialized views corresponding to
the queries. In this case, the aggregated result is likely to be much smaller than the
large relations on which the view is defined; as a result the materialized view can be
used to answer the query very quickly, avoiding reading the large underlying relations.
The benefits to queries from the materialization of a view must be weighed against the
storage costs and the added overhead for updates.

SQL does not define a standard way of specifying that a view is materialized,
but many database systems provide their own SQL extensions for this task. Some
database systems always keep materialized views up-to-date when the underlying re-
lations change, while others permit them to become out of date and periodically re-
compute them.

4.2.4 Update of a View

Although views are a useful tool for queries, they present serious problems if we express
updates, insertions, or deletions with them. The difficulty is that a modification to the
database expressed in terms of a view must be translated to a modification to the actual
relations in the logical model of the database.
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Suppose the view faculty, which we saw earlier, is made available to a clerk. Since
we allow a view name to appear wherever a relation name is allowed, the clerk can
write:

insert into faculty
values ('30765', 'Green', 'Music');

This insertion must be represented by an insertion into the relation instructor, since
instructor is the actual relation from which the database system constructs the view
faculty. However, to insert a tuple into instructor, we must have some value for salary.
There are two reasonable approaches to dealing with this insertion:

• Reject the insertion, and return an error message to the user.

• Insert a tuple ('30765', 'Green', 'Music', null) into the instructor relation.

Another problem with modification of the database through views occurs with a
view such as:

create view instructor info as
select ID, name, building
from instructor, department
where instructor.dept name = department.dept name;

This view lists the ID, name, and building-name of each instructor in the university.
Consider the following insertion through this view:

insert into instructor info
values ('69987', 'White', 'Taylor');

Suppose there is no instructor with ID 69987, and no department in the Taylor
building. Then the only possible method of inserting tuples into the instructor and de-
partment relations is to insert ('69987', 'White', null, null) into instructor and (null,
'Taylor', null) into department. Then we obtain the relations shown in Figure 4.8. How-
ever, this update does not have the desired effect, since the view relation instructor info
still does not include the tuple ('69987', 'White', 'Taylor'). Thus, there is no way to up-
date the relations instructor and department by using nulls to get the desired update on
instructor info.

Because of problems such as these, modifications are generally not permitted on
view relations, except in limited cases. Different database systems specify different con-
ditions under which they permit updates on view relations; see the database system
manuals for details.

In general, an SQL view is said to be updatable (i.e., inserts, updates, or deletes can
be applied on the view) if the following conditions are all satisfied by the query defining
the view:

• The from clause has only one database relation.
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ID name dept name salary

10101 Srinivasan Comp. Sci. 65000
12121 Wu Finance 90000
15151 Mozart Music 40000
22222 Einstein Physics 95000
32343 El Said History 60000
33456 Gold Physics 87000
45565 Katz Comp. Sci. 75000
58583 Califieri History 62000
76543 Singh Finance 80000
76766 Crick Biology 72000
83821 Brandt Comp. Sci. 92000
98345 Kim Elec. Eng. 80000
69987 White null null

instructor

dept name building budget

Biology Watson 90000
Comp. Sci. Taylor 100000
Electrical Eng. Taylor 85000
Finance Painter 120000
History Painter 50000
Music Packard 80000
Physics Watson 70000
null Taylor null

department

Figure 4.8 Relations instructor and department after insertion of tuples.

• The select clause contains only attribute names of the relation and does not have
any expressions, aggregates, or distinct specification.

• Any attribute not listed in the select clause can be set to null; that is, it does not
have a not null constraint and is not part of a primary key.

• The query does not have a group by or having clause.

Under these constraints, the update, insert, and delete operations would be allowed on
the following view:
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create view history instructors as
select *
from instructor
where dept name = 'History';

Even with the conditions on updatability, the following problem still remains. Sup-
pose that a user tries to insert the tuple ('25566', 'Brown', 'Biology', 100000) into the
history instructors view. This tuple can be inserted into the instructor relation, but it
would not appear in the history instructors view since it does not satisfy the selection
imposed by the view.

By default, SQL would allow the above update to proceed. However, views can be
defined with a with check option clause at the end of the view definition; then, if a tuple
inserted into the view does not satisfy the view’s where clause condition, the insertion
is rejected by the database system. Updates are similarly rejected if the new value does
not satisfy the where clause conditions.

SQL:1999 has a more complex set of rules about when inserts, updates, and deletes
can be executed on a view that allows updates through a larger class of views; however,
the rules are too complex to be discussed here.

An alternative, and often preferable, approach to modifying the database through a
view is to use the trigger mechanism discussed in Section 5.3. The instead of feature in
declaring triggers allows one to replace the default insert, update, and delete operations
on a view with actions designed especially for each particular case.

4.3 Transactions

A transaction consists of a sequence of query and/or update statements. The SQL stan-
dard specifies that a transaction begins implicitly when an SQL statement is executed.
One of the following SQL statements must end the transaction:

• Commit work commits the current transaction; that is, it makes the updates per-
formed by the transaction become permanent in the database. After the transac-
tion is committed, a new transaction is automatically started.

• Rollback work causes the current transaction to be rolled back; that is, it undoes
all the updates performed by the SQL statements in the transaction. Thus, the
database state is restored to what it was before the first statement of the transaction
was executed.

The keyword work is optional in both the statements.
Transaction rollback is useful if some error condition is detected during execution

of a transaction. Commit is similar, in a sense, to saving changes to a document that
is being edited, while rollback is similar to quitting the edit session without saving
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changes. Once a transaction has executed commit work, its effects can no longer be
undone by rollback work. The database system guarantees that in the event of some
failure, such as an error in one of the SQL statements, a power outage, or a system
crash, a transaction’s effects will be rolled back if it has not yet executed commit work.
In the case of power outage or other system crash, the rollback occurs when the system
restarts.

For instance, consider a banking application where we need to transfer money
from one bank account to another in the same bank. To do so, we need to update
two account balances, subtracting the amount transferred from one, and adding it to
the other. If the system crashes after subtracting the amount from the first account
but before adding it to the second account, the bank balances will be inconsistent. A
similar problem occurs if the second account is credited before subtracting the amount
from the first account and the system crashes just after crediting the amount.

As another example, consider our running example of a university application. We
assume that the attribute tot cred of each tuple in the student relation is kept up-to-
date by modifying it whenever the student successfully completes a course. To do so,
whenever the takes relation is updated to record successful completion of a course by a
student (by assigning an appropriate grade), the corresponding student tuple must also
be updated. If the application performing these two updates crashes after one update
is performed, but before the second one is performed, the data in the database will be
inconsistent.

By either committing the actions of a transaction after all its steps are completed,
or rolling back all its actions in case the transaction could not complete all its actions
successfully, the database provides an abstraction of a transaction as being atomic, that
is, indivisible. Either all the effects of the transaction are reflected in the database or
none are (after rollback).

Applying the notion of transactions to the above applications, the update state-
ments should be executed as a single transaction. An error while a transaction executes
one of its statements would result in undoing the effects of the earlier statements of the
transaction so that the database is not left in a partially updated state.

If a program terminates without executing either of these commands, the updates
are either committed or rolled back. The standard does not specify which of the two
happens, and the choice is implementation dependent.

In many SQL implementations, including MySQL and PostgreSQL, by default each
SQL statement is taken to be a transaction on its own, and it gets committed as soon
as it is executed. Such automatic commit of individual SQL statements must be turned
off if a transaction consisting of multiple SQL statements needs to be executed. How
to turn off automatic commit depends on the specific SQL implementation, although
many databases support the command set autocommit off.6

6There is a standard way of turning autocommit on or off when using application program interfaces such as JDBC or
ODBC, which we study in Section 5.1.1 and Section 5.1.3, respectively.
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A better alternative, which is part of the SQL:1999 standard is to allow multiple SQL
statements to be enclosed between the keywords begin atomic… end. All the statements
between the keywords then form a single transaction, which is committed by default if
execution reaches the end statement. Only some databases, such as SQL Server, support
the above syntax. However, several other databases, such as MySQL and PostgreSQL,
support a begin statement which starts a transaction containing all subsequent SQL
statements, but do not support the end statement; instead, the transaction must be
ended by either a commit work or a rollback work command.

If you use a database such as Oracle, where the automatic commit is not the default
for DML statements, be sure to issue a commit command after adding or modifying
data, or else when you disconnect, all your database modifications will be rolled back!7

You should be aware that although Oracle has automatic commit turned off by default,
that default may be overridden by local configuration settings.

We study further properties of transactions in Chapter 17; issues in implementing
transactions are addressed in Chapter 18 and Chapter 19.

4.4 Integrity Constraints

Integrity constraints ensure that changes made to the database by authorized users
do not result in a loss of data consistency. Thus, integrity constraints guard against
accidental damage to the database. This is in contrast to security constraints, which
guard against access to the database by unauthorized users.

Examples of integrity constraints are:

• An instructor name cannot be null.

• No two instructors can have the same instructor ID.

• Every department name in the course relation must have a matching department
name in the department relation.

• The budget of a department must be greater than $0.00.

In general, an integrity constraint can be an arbitrary predicate pertaining to the
database. However, arbitrary predicates may be costly to test. Thus, most database
systems allow one to specify only those integrity constraints that can be tested with
minimal overhead.

We have already seen some forms of integrity constraints in Section 3.2.2. We study
some more forms of integrity constraints in this section. In Chapter 7, we study another
form of integrity constraint, called functional dependencies, that is used primarily in the
process of schema design.

7Oracle does automatically commit DDL statements.
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Integrity constraints are usually identified as part of the database schema design
process and declared as part of the create table command used to create relations.
However, integrity constraints can also be added to an existing relation by using the
command alter table table-name add constraint, where constraint can be any constraint
on the relation. When such a command is executed, the system first ensures that the re-
lation satisfies the specified constraint. If it does, the constraint is added to the relation;
if not, the command is rejected.

4.4.1 Constraints on a Single Relation

We described in Section 3.2 how to define tables using the create table command. The
create table command may also include integrity-constraint statements. In addition to
the primary-key constraint, there are a number of other ones that can be included in
the create table command. The allowed integrity constraints include

• not null

• unique

• check(<predicate>)

We cover each of these types of constraints in the following sections.

4.4.2 Not Null Constraint

As we discussed in Chapter 3, the null value is a member of all domains, and as a result
it is a legal value for every attribute in SQL by default. For certain attributes, however,
null values may be inappropriate. Consider a tuple in the student relation where name
is null. Such a tuple gives student information for an unknown student; thus, it does not
contain useful information. Similarly, we would not want the department budget to be
null. In cases such as this, we wish to forbid null values, and we can do so by restricting
the domain of the attributes name and budget to exclude null values, by declaring it as
follows:

name varchar(20) not null
budget numeric(12,2) not null

The not null constraint prohibits the insertion of a null value for the attribute, and is
an example of a domain constraint. Any database modification that would cause a null
to be inserted in an attribute declared to be not null generates an error diagnostic.

There are many situations where we want to avoid null values. In particular, SQL
prohibits null values in the primary key of a relation schema. Thus, in our university
example, in the department relation, if the attribute dept name is declared as the primary
key for department, it cannot take a null value. As a result it would not need to be
declared explicitly to be not null.
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4.4.3 Unique Constraint

SQL also supports an integrity constraint:

unique (Aj1
, Aj2

,… , Ajm
)

The unique specification says that attributes Aj1
, Aj2

,… , Ajm
form a superkey; that is, no

two tuples in the relation can be equal on all the listed attributes. However, attributes
declared as unique are permitted to be null unless they have explicitly been declared to
be not null. Recall that a null value does not equal any other value. (The treatment of
nulls here is the same as that of the unique construct defined in Section 3.8.4.)

4.4.4 The Check Clause

When applied to a relation declaration, the clause check(P) specifies a predicate P that
must be satisfied by every tuple in a relation.

A common use of the check clause is to ensure that attribute values satisfy speci-
fied conditions, in effect creating a powerful type system. For instance, a clause check
(budget > 0) in the create table command for relation department would ensure that the
value of budget is nonnegative.

As another example, consider the following:

create table section
(course id varchar (8),
sec id varchar (8),
semester varchar (6),
year numeric (4,0),
building varchar (15),
room number varchar (7),
time slot id varchar (4),
primary key (course id, sec id, semester, year),
check (semester in ('Fall', 'Winter', 'Spring', 'Summer')));

Here, we use the check clause to simulate an enumerated type by specifying that
semester must be one of 'Fall', 'Winter', 'Spring', or 'Summer'. Thus, the check clause
permits attribute domains to be restricted in powerful ways that most programming-
language type systems do not permit.

Null values present an interesting special case in the evaluation of a check clause.
A check clause is satisfied if it is not false, so clauses that evaluate to unknown are not
violations. If null values are not desired, a separate not null constraint (see Section
4.4.2) must be specified.

A check clause may appear on its own, as shown above, or as part of the declaration
of an attribute. In Figure 4.9, we show the check constraint for the semester attribute
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create table classroom
(building varchar (15),
room number varchar (7),
capacity numeric (4,0),
primary key (building, room number));

create table department
(dept name varchar (20),
building varchar (15),
budget numeric (12,2) check (budget > 0),
primary key (dept name));

create table course
(course id varchar (8),
title varchar (50),
dept name varchar (20),
credits numeric (2,0) check (credits > 0),
primary key (course id),
foreign key (dept name) references department);

create table instructor
(ID varchar (5),
name varchar (20) not null,
dept name varchar (20),
salary numeric (8,2) check (salary > 29000),
primary key (ID),
foreign key (dept name) references department);

create table section
(course id varchar (8),
sec id varchar (8),
semester varchar (6) check (semester in

(’Fall’, ’Winter’, ’Spring’, ’Summer’)),
year numeric (4,0) check (year > 1759 and year < 2100),
building varchar (15),
room number varchar (7),
time slot id varchar (4),
primary key (course id, sec id, semester, year),
foreign key (course id) references course,
foreign key (building, room number) references classroom);

Figure 4.9 SQL data definition for part of the university database.
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as part of the declaration of semester. The placement of a check clause is a matter of
coding style. Typically, constraints on the value of a single attribute are listed with that
attribute, while more complex check clauses are listed separately at the end of a create
table statement.

The predicate in the check clause can, according to the SQL standard, be an ar-
bitrary predicate that can include a subquery. However, currently none of the widely
used database products allows the predicate to contain a subquery.

4.4.5 Referential Integrity

Often, we wish to ensure that a value that appears in one relation (the referencing rela-
tion) for a given set of attributes also appears for a certain set of attributes in another
relation (the referenced relation). As we saw earlier, in Section 2.3, such conditions
are called referential integrity constraints, and foreign keys are a form of a referential in-
tegrity constraint where the referenced attributes form a primary key of the referenced
relation.

Foreign keys can be specified as part of the SQL create table statement by using the
foreign key clause, as we saw in Section 3.2.2. We illustrate foreign-key declarations by
using the SQL DDL definition of part of our university database, shown in Figure 4.9.
The definition of the course table has a declaration

“foreign key (dept name) references department”.

This foreign-key declaration specifies that for each course tuple, the department name
specified in the tuple must exist in the department relation. Without this constraint, it
is possible for a course to specify a nonexistent department name.

By default, in SQL a foreign key references the primary-key attributes of the ref-
erenced table. SQL also supports a version of the references clause where a list of at-
tributes of the referenced relation can be specified explicitly.8 For example, the foreign
key declaration for the course relation can be specified as:

foreign key (dept name) references department(dept name)

The specified list of attributes must, however, be declared as a superkey of the
referenced relation, using either a primary key constraint or a unique constraint. A
more general form of a referential-integrity constraint, where the referenced columns
need not be a candidate key, cannot be directly specified in SQL. The SQL standard
specifies other constructs that can be used to implement such constraints, which are
described in Section 4.4.8; however, these alternative constructs are not supported by
any of the widely used database systems.

Note that the foreign key must reference a compatible set of attributes, that is, the
number of attributes must be the same and the data types of corresponding attributes
must be compatible.

8Some systems, notably MySQL, do not support the default and require that the attributes of the referenced relations
be specified.



150 Chapter 4 Intermediate SQL

We can use the following as part of a table definition to declare that an attribute
forms a foreign key:

dept name varchar(20) references department

When a referential-integrity constraint is violated, the normal procedure is to reject
the action that caused the violation (i.e., the transaction performing the update action
is rolled back). However, a foreign key clause can specify that if a delete or update action
on the referenced relation violates the constraint, then, instead of rejecting the action,
the system must take steps to change the tuple in the referencing relation to restore the
constraint. Consider this definition of an integrity constraint on the relation course:

create table course
( …
foreign key (dept name) references department

on delete cascade
on update cascade,

… );

Because of the clause on delete cascade associated with the foreign-key declaration, if a
delete of a tuple in department results in this referential-integrity constraint being vio-
lated, the system does not reject the delete. Instead, the delete “cascades” to the course
relation, deleting the tuple that refers to the department that was deleted. Similarly, the
system does not reject an update to a field referenced by the constraint if it violates the
constraint; instead, the system updates the field dept name in the referencing tuples in
course to the new value as well. SQL also allows the foreign key clause to specify actions
other than cascade, if the constraint is violated: The referencing field (here, dept name)
can be set to null (by using set null in place of cascade), or to the default value for the
domain (by using set default).

If there is a chain of foreign-key dependencies across multiple relations, a deletion
or update at one end of the chain can propagate across the entire chain. An interesting
case where the foreign key constraint on a relation references the same relation appears
in Exercise 4.9. If a cascading update or delete causes a constraint violation that cannot
be handled by a further cascading operation, the system aborts the transaction. As a
result, all the changes caused by the transaction and its cascading actions are undone.

Null values complicate the semantics of referential-integrity constraints in SQL.
Attributes of foreign keys are allowed to be null, provided that they have not otherwise
been declared to be not null. If all the columns of a foreign key are nonnull in a given
tuple, the usual definition of foreign-key constraints is used for that tuple. If any of the
foreign-key columns is null, the tuple is defined automatically to satisfy the constraint.
This definition may not always be the right choice, so SQL also provides constructs that
allow you to change the behavior with null values; we do not discuss the constructs here.
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4.4.6 Assigning Names to Constraints

It is possible for us to assign a name to integrity constraints. Such names are useful if
we want to drop a constraint that was defined previously.

To name a constraint, we precede the constraint with the keyword constraint and
the name we wish to assign it. So, for example, if we wish to assign the name minsalary
to the check constraint on the salary attribute of instructor (see Figure 4.9), we would
modify the declaration for salary to:

salary numeric(8,2), constraint minsalary check (salary > 29000),

Later, if we decide we no longer want this constraint, we can write:

alter table instructor drop constraint minsalary;

Lacking a name, we would need first to use system-specific features to identify the
system-assigned name for the constraint. Not all systems support this, but, for example,
in Oracle, the system table user constraints contains this information.

4.4.7 Integrity Constraint Violation During a Transaction

Transactions may consist of several steps, and integrity constraints may be violated
temporarily after one step, but a later step may remove the violation. For instance,
suppose we have a relation person with primary key name, and an attribute spouse, and
suppose that spouse is a foreign key on person. That is, the constraint says that the spouse
attribute must contain a name that is present in the person table. Suppose we wish to
note the fact that John and Mary are married to each other by inserting two tuples,
one for John and one for Mary, in the preceding relation, with the spouse attributes
set to Mary and John, respectively. The insertion of the first tuple would violate the
foreign-key constraint, regardless of which of the two tuples is inserted first. After the
second tuple is inserted, the foreign-key constraint would hold again.

To handle such situations, the SQL standard allows a clause initially deferred to
be added to a constraint specification; the constraint would then be checked at the
end of a transaction and not at intermediate steps. A constraint can alternatively be
specified as deferrable, which means it is checked immediately by default but can be
deferred when desired. For constraints declared as deferrable, executing a statement
set constraints constraint-list deferred as part of a transaction causes the checking of
the specified constraints to be deferred to the end of that transaction. Constraints that
are to appear in a constraint list must have names assigned. The default behavior is
to check constraints immediately, and many database implementations do not support
deferred constraint checking.

We can work around the problem in the preceding example in another way, if the
spouse attribute can be set to null: We set the spouse attributes to null when inserting the
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tuples for John and Mary, and we update them later. However, this technique requires
more programming effort, and it does not work if the attributes cannot be set to null.

4.4.8 Complex Check Conditions and Assertions

There are additional constructs in the SQL standard for specifying integrity constraints
that are not currently supported by most systems. We discuss some of these in this
section.

As defined by the SQL standard, the predicate in the check clause can be an ar-
bitrary predicate that can include a subquery. If a database implementation supports
subqueries in the check clause, we could specify the following referential-integrity con-
straint on the relation section:

check (time slot id in (select time slot id from time slot))

The check condition verifies that the time slot id in each tuple in the section relation is
actually the identifier of a time slot in the time slot relation. Thus, the condition has to
be checked not only when a tuple is inserted or modified in section, but also when the
relation time slot changes (in this case, when a tuple is deleted or modified in relation
time slot).

Another natural constraint on our university schema would be to require that every
section has at least one instructor teaching the section. In an attempt to enforce this,
we may try to declare that the attributes (course id, sec id, semester, year) of the section
relation form a foreign key referencing the corresponding attributes of the teaches rela-
tion. Unfortunately, these attributes do not form a candidate key of the relation teaches.
A check constraint similar to that for the time slot attribute can be used to enforce this
constraint, if check constraints with subqueries were supported by a database system.

Complex check conditions can be useful when we want to ensure the integrity of
data, but they may be costly to test. In our example, the predicate in the check clause
would not only have to be evaluated when a modification is made to the section relation,
but it may have to be checked if a modification is made to the time slot relation because
that relation is referenced in the subquery.

An assertion is a predicate expressing a condition that we wish the database always
to satisfy. Consider the following constraints, which can be expressed using assertions.

• For each tuple in the student relation, the value of the attribute tot cred must equal
the sum of credits of courses that the student has completed successfully.

• An instructor cannot teach in two different classrooms in a semester in the same
time slot.9

9We assume that lectures are not displayed remotely in a second classroom! An alternative constraint that specifies
that “an instructor cannot teach two courses in a given semester in the same time slot” may not hold since courses are
sometimes cross-listed; that is, the same course is given two identifiers and titles.
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create assertion credits earned constraint check
(not exists (select ID

from student
where tot cred <> (select coalesce(sum(credits), 0)

from takes natural join course
where student.ID= takes.ID

and grade is not null and grade<> ’F’ )))

Figure 4.10 An assertion example.

An assertion in SQL takes the form:

create assertion <assertion-name> check <predicate>;

In Figure 4.10, we show how the first example of constraints can be written in SQL.
Since SQL does not provide a “for all X , P(X )” construct (where P is a predicate), we
are forced to implement the constraint by an equivalent construct, “not exists X such
that not P(X )”, that can be expressed in SQL.

We leave the specification of the second constraint as an exercise. Although these
two constraints can be expressed using check predicates, using an assertion may be
more natural, especially for the second constraint.

When an assertion is created, the system tests it for validity. If the assertion is valid,
then any future modification to the database is allowed only if it does not cause that
assertion to be violated. This testing may introduce a significant amount of overhead
if complex assertions have been made. Hence, assertions should be used with great
care. The high overhead of testing and maintaining assertions has led some system
developers to omit support for general assertions, or to provide specialized forms of
assertion that are easier to test.

Currently, none of the widely used database systems supports either subqueries in
the check clause predicate or the create assertion construct. However, equivalent func-
tionality can be implemented using triggers, which are described in Section 5.3, if they
are supported by the database system. Section 5.3 also describes how the referential
integrity constraint on time slot id can be implemented using triggers.

4.5 SQL Data Types and Schemas

In Chapter 3, we covered a number of built-in data types supported in SQL, such as
integer types, real types, and character types. There are additional built-in data types
supported by SQL, which we describe below. We also describe how to create basic
user-defined types in SQL.
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4.5.1 Date and Time Types in SQL

In addition to the basic data types we introduced in Section 3.2, the SQL standard
supports several data types relating to dates and times:

• date: A calendar date containing a (four-digit) year, month, and day of the month.

• time: The time of day, in hours, minutes, and seconds. A variant, time(p), can be
used to specify the number of fractional digits for seconds (the default being 0).
It is also possible to store time-zone information along with the time by specifying
time with timezone.

• timestamp: A combination of date and time. A variant, timestamp(p), can be used
to specify the number of fractional digits for seconds (the default here being 6).
Time-zone information is also stored if with timezone is specified.

Date and time values can be specified like this:

date '2018-04-25'
time '09:30:00'
timestamp '2018-04-25 10:29:01.45'

Dates must be specified in the format year followed by month followed by day, as
shown.10 The seconds field of time or timestamp can have a fractional part, as in the
timestamp above.

To extract individual fields of a date or time value d, we can use extract (field from
d), where field can be one of year, month, day, hour, minute, or second. Time-zone
information can be extracted using timezone hour and timezone minute.

SQL defines several functions to get the current date and time. For example, cur-
rent date returns the current date, current time returns the current time (with time
zone), and localtime returns the current local time (without time zone). Timestamps
(date plus time) are returned by current timestamp (with time zone) and localtimes-
tamp (local date and time without time zone).

Some systems, including MySQL offer the datetime data type that represents a time
that is not adjustable for time zone. In practice, specification of time has numerous
special cases, including the use of standard time versus “daylight” or “summer” time.
Systems vary in the range of times representable.

SQL allows comparison operations on all the types listed here, and it allows both
arithmetic and comparison operations on the various numeric types. SQL also provides
a data type called interval, and it allows computations based on dates and times and
on intervals. For example, if x and y are of type date, then x − y is an interval whose
value is the number of days from date x to date y. Similarly, adding or subtracting an
interval from a date or time gives back a date or time, respectively.

10Many database systems offer greater flexibility in default conversions of strings to dates and timestamps.
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4.5.2 Type Conversion and Formatting Functions

Although systems perform some data type conversions automatically, others need to
be requested explicitly. We can use an expression of the form cast (e as t) to convert
an expression e to the type t. Data-type conversions may be needed to perform certain
operations or to enforce certain sort orders. For example, consider the ID attribute of
instructor, which we have specified as being a string (varchar(5)). If we were to order
output by this attribute, the ID 11111 comes before the ID 9, because the first character,
'1', comes before '9'. However, if we were to write:

select cast(ID as numeric(5)) as inst id
from instructor
order by inst id

the result would be the sorted order we desire.
A different type of conversion may be required for data to be displayed as the result

of a query. For example, we may wish numbers to be shown with a specific number
of digits, or data to be displayed in a particular format (such as month-day-year or
day-month-year). These changes in display format are not conversion of data type but
rather conversion of format. Database systems offer a variety of formatting functions,
and details vary among the leading systems. MySQL offers a format function. Oracle
and PostgreSQL offer a set of functions, to char, to number, and to date. SQL Server
offers a convert function.

Another issue in displaying results is the handling of null values. In this text, we use
null for clarity of reading, but the default in most systems is just to leave the field blank.
We can choose how null values are output in a query result using the coalesce function.
It takes an arbitrary number of arguments, all of which must be of the same type, and
returns the first non-null argument. For example, if we wished to display instructor IDs
and salaries but to show null salaries as 0, we would write:

select ID, coalesce(salary, 0) as salary
from instructor

A limitation of coalesce is the requirement that all the arguments must be of the same
type. If we had wanted null salaries to appear as 'N/A' to indicate “not available”, we
would not be able to use coalesce. System-specific functions, such as Oracle’s decode,
do allow such conversions. The general form of decode is:

decode (value, match-1, replacement-1, match-2, replacement-2, …,
match-N, replacement-N, default-replacement);

It compares value against the match values and if a match is found, it replaces the at-
tribute value with the corresponding replacement value. If no match succeeds, then
the attribute value is replaced with the default replacement value. There are no require-
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ments that datatypes match. Conveniently, the value null may appear as a match value
and, unlike the usual case, null is treated as being equal to null. Thus, we could replace
null salaries with 'N/A' as follows:

select ID, decode (salary, null, 'N/A', salary) as salary
from instructor

4.5.3 Default Values

SQL allows a default value to be specified for an attribute as illustrated by the following
create table statement:

create table student
(ID varchar (5),
name varchar (20) not null,
dept name varchar (20),
tot cred numeric (3,0) default 0,
primary key (ID));

The default value of the tot cred attribute is declared to be 0. As a result, when a tuple
is inserted into the student relation, if no value is provided for the tot cred attribute, its
value is set to 0. The following insert statement illustrates how an insertion can omit
the value for the tot cred attribute.

insert into student(ID, name, dept name)
values ('12789', 'Newman', 'Comp. Sci.');

4.5.4 Large-Object Types

Many database applications need to store attributes whose domain consists of large
data items such as a photo, a high-resolution medical image, or a video. SQL, therefore,
provides large-object data types for character data (clob) and binary data (blob). The
letters “lob” in these data types stand for “Large OBject.” For example, we may declare
attributes

book review clob(10KB)
image blob(10MB)
movie blob(2GB)

For result tuples containing large objects (multiple megabytes to gigabytes), it is
inefficient or impractical to retrieve an entire large object into memory. Instead, an
application would usually use an SQL query to retrieve a “locator” for a large object
and then use the locator to manipulate the object from the host language in which
the application itself is written. For instance, the JDBC application program interface
(described in Section 5.1.1) permits a locator to be fetched instead of the entire large
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Note 4.2 TEMPORAL VALIDITY

In some situations, there is a need to include historical data, as, for example, if we
wish to store not only the current salary of each instructor but also entire salary
histories. It is easy enough to do this by adding two attributes to the instructor
relation schema indicating the starting date for a given salary value and another
indicating the end date. Then, an instructor may have several salary values, each
corresponding to a specific pair of start and end dates. Those start and end dates
are called the valid time values for the corresponding salary value.

Observe that there may now be more than one tuple in the instructor relation
with the same value of ID. Issues in specifying primary key and foreign key con-
straints in the context of such temporal data are discussed in Section 7.10.

For a database system to support such temporal constructs, a first step is to
provide syntax to specify that certain attributes define a valid time interval. We use
Oracle 12’s syntax as an example. The SQL DDL for instructor is augmented using
a period declaration as follows, to indicate that start date and end date attributes
specify a valid-time interval.

create table instructor
( …
start date date,
end date date,
period for valid time (start date, end date),
… );

Oracle 12c also provides several DML extensions to ease querying with temporal
data. The as of period for construct can then be used in query to fetch only those
tuples whose valid time period includes a specific time. To find instructors and
their salaries as of some time in the past, say January 20, 2014, we write:

select name, salary, start date, end date
from instructor as of period for valid time '20-JAN-2014';

If we wish to find tuples whose period of validity includes all or part of a period
of time, say, January 20, 2014 to January 30, 2014, we write:

select name, salary, start date, end date
from instructor versions period for valid time between '20-JAN-2014' and '30-JAN-2014';

Oracle 12c also implements a feature that allows stored database procedures (cov-
ered in Chapter 5) to be run as of a specified time period.

The above constructs ease the specification of the queries, although the queries
can be written without using the constructs.
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object; the locator can then be used to fetch the large object in small pieces, rather than
all at once, much like reading data from an operating system file using a read function
call.

4.5.5 User-Defined Types

SQL supports two forms of user-defined data types. The first form, which we cover here,
is called distinct types. The other form, called structured data types, allows the creation
of complex data types with nested record structures, arrays, and multisets. We do not
cover structured data types in this chapter, but we describe them in Section 8.2.

It is possible for several attributes to have the same data type. For example, the
name attributes for student name and instructor name might have the same domain:
the set of all person names. However, the domains of budget and dept name certainly
ought to be distinct. It is perhaps less clear whether name and dept name should have
the same domain. At the implementation level, both instructor names and department
names are character strings. However, we would normally not consider the query “Find
all instructors who have the same name as a department” to be a meaningful query.
Thus, if we view the database at the conceptual, rather than the physical, level, name
and dept name should have distinct domains.

More importantly, at a practical level, assigning an instructor’s name to a depart-
ment name is probably a programming error; similarly, comparing a monetary value
expressed in dollars directly with a monetary value expressed in pounds is also almost
surely a programming error. A good type system should be able to detect such assign-
ments or comparisons. To support such checks, SQL provides the notion of distinct
types.

The create type clause can be used to define new types. For example, the statements:

create type Dollars as numeric(12,2) final;
create type Pounds as numeric(12,2) final;

define the user-defined types Dollars and Pounds to be decimal numbers with a total of
12 digits, two of which are placed after the decimal point.11 The newly created types
can then be used, for example, as types of attributes of relations. For example, we can
declare the department table as:

create table department
(dept name varchar (20),
building varchar (15),
budget Dollars);

An attempt to assign a value of type Dollars to a variable of type Pounds results in a
compile-time error, although both are of the same numeric type. Such an assignment
is likely to be due to a programmer error, where the programmer forgot about the

11The keyword final isn’t really meaningful in this context but is required by the SQL:1999 standard for reasons we won’t
get into here; some implementations allow the final keyword to be omitted.
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differences in currency. Declaring different types for different currencies helps catch
such errors.

As a result of strong type checking, the expression (department.budget+20) would
not be accepted since the attribute and the integer constant 20 have different types.
As we saw in Section 4.5.2, values of one type can be converted to another domain, as
illustrated below:

cast (department.budget to numeric(12,2))

We could do addition on the numeric type, but to save the result back to an attribute
of type Dollars we would have to use another cast expression to convert the type back
to Dollars.

SQL provides drop type and alter type clauses to drop or modify types that have
been created earlier.

Even before user-defined types were added to SQL (in SQL:1999), SQL had a similar
but subtly different notion of domain (introduced in SQL-92), which can add integrity
constraints to an underlying type. For example, we could define a domain DDollars as
follows.

create domain DDollars as numeric(12,2) not null;

The domain DDollars can be used as an attribute type, just as we used the type Dollars.
However, there are two significant differences between types and domains:

1. Domains can have constraints, such as not null, specified on them, and can have
default values defined for variables of the domain type, whereas user-defined types
cannot have constraints or default values specified on them. User-defined types
are designed to be used not just for specifying attribute types, but also in proce-
dural extensions to SQL where it may not be possible to enforce constraints.

2. Domains are not strongly typed. As a result, values of one domain type can be
assigned to values of another domain type as long as the underlying types are
compatible.

When applied to a domain, the check clause permits the schema designer to specify
a predicate that must be satisfied by any attribute declared to be from this domain. For
instance, a check clause can ensure that an instructor’s salary domain allows only values
greater than a specified value:

create domain YearlySalary numeric(8,2)
constraint salary value test check(value >= 29000.00);

The domain YearlySalary has a constraint that ensures that the YearlySalary is greater
than or equal to $29,000.00. The clause constraint salary value test is optional and is
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Note 4.3 SUPPORT FOR TYPES AND DOMAINS

Although the create type and create domain constructs described in this section
are part of the SQL standard, the forms of these constructs described here are
not fully supported by most database implementations. PostgreSQL supports the
create domain construct, but its create type construct has a different syntax and
interpretation.

IBM DB2 supports a version of the create type that uses the syntax create dis-
tinct type, but it does not support create domain. Microsoft SQL Server implements
a version of create type construct that supports domain constraints, similar to the
SQL create domain construct.

Oracle does not support either construct as described here. Oracle, IBM DB2,
PostgreSQL, and SQL Server all support object-oriented type systems using differ-
ent forms of the create type construct.

However, SQL also defines a more complex object-oriented type system, which
we study in Section 8.2. Types may have structure within them, like, for example,
a Name type consisting of firstname and lastname. Subtyping is allowed as well;
for example, a Person type may have subtypes Student, Instructor, etc. Inheritance
rules are similar to those in object-oriented programming languages. It is possible
to use references to tuples that behave much like references to objects in object-
oriented programming languages. SQL allows array and multiset datatypes along
with ways to manipulate those types.

We do not cover the details of these features here. Database systems differ in
how they implement them, if they are implemented at all.

used to give the name salary value test to the constraint. The name is used by the system
to indicate the constraint that an update violated.

As another example, a domain can be restricted to contain only a specified set of
values by using the in clause:

create domain degree level varchar(10)
constraint degree level test

check (value in ('Bachelors', 'Masters', 'Doctorate'));

4.5.6 Generating Unique Key Values

In our university example, we have seen primary-key attributes with different data types.
Some, like dept name, hold actual real-world information. Others, like ID, hold val-
ues created by the enterprise solely for identification purposes. Those latter types of
primary-key domains generate the practical problem of new-value creation. Suppose
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the university hires a new instructor. What ID should be assigned? How do we deter-
mine that the new ID is unique? Although it is possible to write an SQL statement to
do this, such a statement would need to check all preexisting IDs, which would harm
system performance. Alternatively, one could set up a special table holding the largest
ID value issued so far. Then, when a new ID is needed, that value can be incremented
to the next one in sequence and stored as the new largest value.

Database systems offer automatic management of unique key-value generation. The
syntax differs among the most popular systems and, sometimes, between versions of
systems. The syntax we show here is close to that of Oracle and DB2. Suppose that
instead of declaring instructor IDs in the instructor relation as “ID varchar(5)”, we in-
stead choose to let the system select a unique instructor ID value. Since this feature
works only for numeric key- value data types, we change the type of ID to number, and
write:

ID number(5) generated always as identity

When the always option is used, any insert statement must avoid specifying a value
for the automatically generated key. To do this, use the syntax for insert in which the
attribute order is specified (see Section 3.9.2). For our example of instructor, we need
specify only the values for name, dept name, and salary, as shown in the following ex-
ample:

insert into instructor (name, dept name, salary)
values ('Newprof', 'Comp. Sci.', 100000);

The generated ID value can be found via a normal select query. If we replace always
with by default, we have the option of specifying our own choice of ID or relying on the
system to generate one.

In PostgreSQL, we can define the type of ID as serial, which tells PostgreSQL to au-
tomatically generate identifiers; in MySQL we use auto increment in place of generated
always as identity, while in SQL Server we can use just identity.

Additional options can be specified, with the identity specification, depending on
the database, including setting minimum and maximum values, choosing the starting
value, choosing the increment from one value to the next, and so on.

Further, many databases support a create sequence construct, which creates a se-
quence counter object separate from any relation, and allow SQL queries to get the
next value from the sequence. Each call to get the next value increments the sequence
counter. See the system manuals of the database to find the exact syntax for creating
sequences, and for retrieving the next value. Using sequences, we can generate iden-
tifiers that are unique across multiple relations, for example, across student.ID, and
instructor.ID.
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4.5.7 Create Table Extensions

Applications often require the creation of tables that have the same schema as an ex-
isting table. SQL provides a create table like extension to support this task:12

create table temp instructor like instructor;

The above statement creates a new table temp instructor that has the same schema as
instructor.

When writing a complex query, it is often useful to store the result of a query as
a new table; the table is usually temporary. Two statements are required, one to create
the table (with appropriate columns) and the second to insert the query result into the
table. SQL:2003 provides a simpler technique to create a table containing the results of
a query. For example, the following statement creates a table t1 containing the results
of a query.

create table t1 as
(select *
from instructor
where dept name = 'Music')

with data;

By default, the names and data types of the columns are inferred from the query result.
Names can be explicitly given to the columns by listing the column names after the
relation name.

As defined by the SQL:2003 standard, if the with data clause is omitted, the table
is created but not populated with data. However, many implementations populate the
table with data by default even if the with data clause is omitted. Note that several
implementations support the functionality of create table … like and create table … as
using different syntax; see the respective system manuals for further details.

The above create table … as statement, closely resembles the create view statement
and both are defined by using queries. The main difference is that the contents of the
table are set when the table is created, whereas the contents of a view always reflect the
current query result.

4.5.8 Schemas, Catalogs, and Environments

To understand the motivation for schemas and catalogs, consider how files are named
in a file system. Early file systems were flat; that is, all files were stored in a single
directory. Current file systems have a directory (or, synonymously, folder) structure,
with files stored within subdirectories. To name a file uniquely, we must specify the full
path name of the file, for example, /users/avi/db-book/chapter3.tex.

12This syntax is not supported in all systems.
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Like early file systems, early database systems also had a single name space for all
relations. Users had to coordinate to make sure they did not try to use the same name
for different relations. Contemporary database systems provide a three-level hierarchy
for naming relations. The top level of the hierarchy consists of catalogs, each of which
can contain schemas. SQL objects such as relations and views are contained within a
schema. (Some database implementations use the term database in place of the term
catalog.)

In order to perform any actions on a database, a user (or a program) must first
connect to the database. The user must provide the user name and usually, a password
for verifying the identity of the user. Each user has a default catalog and schema, and
the combination is unique to the user. When a user connects to a database system,
the default catalog and schema are set up for the connection; this corresponds to the
current directory being set to the user’s home directory when the user logs into an
operating system.

To identify a relation uniquely, a three-part name may be used, for example,

catalog5.univ schema.course

We may omit the catalog component, in which case the catalog part of the name is
considered to be the default catalog for the connection. Thus, if catalog5 is the default
catalog, we can use univ schema.course to identify the same relation uniquely.

If a user wishes to access a relation that exists in a different schema than the default
schema for that user, the name of the schema must be specified. However, if a relation is
in the default schema for a particular user, then even the schema name may be omitted.
Thus, we can use just course if the default catalog is catalog5 and the default schema is
univ schema.

With multiple catalogs and schemas available, different applications and different
users can work independently without worrying about name clashes. Moreover, multi-
ple versions of an application—one a production version, other test versions—can run
on the same database system.

The default catalog and schema are part of an SQL environment that is set up for
each connection. The environment additionally contains the user identifier (also re-
ferred to as the authorization identifier). All the usual SQL statements, including the
DDL and DML statements, operate in the context of a schema.

We can create and drop schemas by means of create schema and drop schema state-
ments. In most database systems, schemas are also created automatically when user ac-
counts are created, with the schema name set to the user account name. The schema is
created in either a default catalog or a catalog specified when creating the user account.
The newly created schema becomes the default schema for the user account.

Creation and dropping of catalogs is implementation dependent and not part of
the SQL standard.
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4.6 Index Definition in SQL

Many queries reference only a small proportion of the records in a file. For example, a
query like “Find all instructors in the Physics department” or “Find the salary value of
the instructor with ID 22201” references only a fraction of the instructor records. It is
inefficient for the system to read every record and to check ID field for the ID “32556,”
or the building field for the value “Physics”.

An index on an attribute of a relation is a data structure that allows the database
system to find those tuples in the relation that have a specified value for that attribute
efficiently, without scanning through all the tuples of the relation. For example, if we
create an index on attribute dept name of relation instructor, the database system can
find the record with any specified dept name value, such as “Physics”, or “Music”, di-
rectly, without reading all the tuples of the instructor relation. An index can also be
created on a list of attributes, for example, on attributes name and dept name of instruc-
tor.

Indices are not required for correctness, since they are redundant data structures.
Indices form part of the physical schema of the database, as opposed to its logical
schema.

However, indices are important for efficient processing of transactions, including
both update transactions and queries. Indices are also important for efficient enforce-
ment of integrity constraints such as primary-key and foreign-key constraints. In prin-
ciple, a database system can decide automatically what indices to create. However, be-
cause of the space cost of indices, as well as the effect of indices on update processing,
it is not easy to automatically make the right choices about what indices to maintain.

Therefore, most SQL implementations provide the programmer with control over
the creation and removal of indices via data-definition-language commands. We illus-
trate the syntax of these commands next. Although the syntax that we show is widely
used and supported by many database systems, it is not part of the SQL standard. The
SQL standard does not support control of the physical database schema; it restricts
itself to the logical database schema.

We create an index with the create index command, which takes the form:

create index <index-name> on <relation-name> (<attribute-list>);

The attribute-list is the list of attributes of the relations that form the search key for the
index.

To define an index named dept index on the instructor relation with dept name as
the search key, we write:

create index dept index on instructor (dept name);

When a user submits an SQL query that can benefit from using an index, the SQL
query processor automatically uses the index. For example, given an SQL query that



4.7 Authorization 165

selects the instructor tuple with dept name “Music”, the SQL query processor would use
the index dept index defined above to find the required tuple without reading the whole
relation.

If we wish to declare that the search key is a candidate key, we add the attribute
unique to the index definition. Thus, the command:

create unique index dept index on instructor (dept name);

declares dept name to be a candidate key for instructor (which is probably not what
we actually would want for our university database). If, at the time we enter the create
unique index command, dept name is not a candidate key, the system will display an
error message, and the attempt to create the index will fail. If the index-creation attempt
succeeds, any subsequent attempt to insert a tuple that violates the key declaration will
fail. Note that the unique feature is redundant if the database system supports the unique
declaration of the SQL standard.

The index name we specified for an index is required to drop an index. The drop
index command takes the form:

drop index <index-name>;

Many database systems also provide a way to specify the type of index to be used,
such as B+-tree or hash indices, which we study in Chapter 14. Some database systems
also permit one of the indices on a relation to be declared to be clustered; the system
then stores the relation sorted by the search key of the clustered index. We study in
Chapter 14 how indices are actually implemented, as well as what indices are automat-
ically created by databases, and how to decide on what additional indices to create.

4.7 Authorization

We may assign a user several forms of authorizations on parts of the database. Autho-
rizations on data include:

• Authorization to read data.

• Authorization to insert new data.

• Authorization to update data.

• Authorization to delete data.

Each of these types of authorizations is called a privilege. We may authorize the user
all, none, or a combination of these types of privileges on specified parts of a database,
such as a relation or a view.
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When a user submits a query or an update, the SQL implementation first checks if
the query or update is authorized, based on the authorizations that the user has been
granted. If the query or update is not authorized, it is rejected.

In addition to authorizations on data, users may also be granted authorizations on
the database schema, allowing them, for example, to create, modify, or drop relations.
A user who has some form of authorization may be allowed to pass on (grant) this
authorization to other users, or to withdraw (revoke) an authorization that was granted
earlier. In this section, we see how each of these authorizations can be specified in SQL.

The ultimate form of authority is that given to the database administrator. The
database administrator may authorize new users, restructure the database, and so on.
This form of authorization is analogous to that of a superuser, administrator, or oper-
ator for an operating system.

4.7.1 Granting and Revoking of Privileges

The SQL standard includes the privileges select, insert, update, and delete. The privilege
all privileges can be used as a short form for all the allowable privileges. A user who
creates a new relation is given all privileges on that relation automatically.

The SQL data-definition language includes commands to grant and revoke privi-
leges. The grant statement is used to confer authorization. The basic form of this state-
ment is:

grant <privilege list>
on <relation name or view name>
to <user/role list>;

The privilege list allows the granting of several privileges in one command. The notion
of roles is covered in Section 4.7.2.

The select authorization on a relation is required to read tuples in the relation. The
following grant statement grants database users Amit and Satoshi select authorization
on the department relation:

grant select on department to Amit, Satoshi;

This allows those users to run queries on the department relation.
The update authorization on a relation allows a user to update any tuple in the

relation. The update authorization may be given either on all attributes of the relation
or on only some. If update authorization is included in a grant statement, the list of
attributes on which update authorization is to be granted optionally appears in paren-
theses immediately after the update keyword. If the list of attributes is omitted, the
update privilege will be granted on all attributes of the relation.

This grant statement gives users Amit and Satoshi update authorization on the
budget attribute of the department relation:
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grant update (budget) on department to Amit, Satoshi;

The insert authorization on a relation allows a user to insert tuples into the relation.
The insert privilege may also specify a list of attributes; any inserts to the relation
must specify only these attributes, and the system either gives each of the remaining
attributes default values (if a default is defined for the attribute) or sets them to null.

The delete authorization on a relation allows a user to delete tuples from a relation.
The user name public refers to all current and future users of the system. Thus,

privileges granted to public are implicitly granted to all current and future users.
By default, a user/role that is granted a privilege is not authorized to grant that

privilege to another user/role. SQL allows a privilege grant to specify that the recipient
may further grant the privilege to another user. We describe this feature in more detail
in Section 4.7.5.

It is worth noting that the SQL authorization mechanism grants privileges on an
entire relation, or on specified attributes of a relation. However, it does not permit
authorizations on specific tuples of a relation.

To revoke an authorization, we use the revoke statement. It takes a form almost
identical to that of grant:

revoke <privilege list>
on <relation name or view name>
from <user/role list>;

Thus, to revoke the privileges that we granted previously, we write

revoke select on department from Amit, Satoshi;
revoke update (budget) on department from Amit, Satoshi;

Revocation of privileges is more complex if the user from whom the privilege is
revoked has granted the privilege to another user. We return to this issue in Section
4.7.5.

4.7.2 Roles

Consider the real-world roles of various people in a university. Each instructor must
have the same types of authorizations on the same set of relations. Whenever a new
instructor is appointed, she will have to be given all these authorizations individually.

A better approach would be to specify the authorizations that every instructor is
to be given, and to identify separately which database users are instructors. The sys-
tem can use these two pieces of information to determine the authorizations of each
instructor. When a new instructor is hired, a user identifier must be allocated to him,
and he must be identified as an instructor. Individual permissions given to instructors
need not be specified again.
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The notion of roles captures this concept. A set of roles is created in the database.
Authorizations can be granted to roles, in exactly the same fashion as they are granted
to individual users. Each database user is granted a set of roles (which may be empty)
that she is authorized to perform.

In our university database, examples of roles could include instructor, teaching
assistant, student, dean, and department chair.

A less preferable alternative would be to create an instructor userid and permit each
instructor to connect to the database using the instructor userid. The problem with this
approach is that it would not be possible to identify exactly which instructor carried
out a database update, and this could create security risks. Furthermore, if an instruc-
tor leaves the university or is moved to a non instructional role, then a new instructor
password must be created and distributed in a secure manner to all instructors. The
use of roles has the benefit of requiring users to connect to the database with their own
userid.

Any authorization that can be granted to a user can be granted to a role. Roles are
granted to users just as authorizations are.

Roles can be created in SQL as follows:

create role instructor;

Roles can then be granted privileges just as the users can, as illustrated in this state-
ment:

grant select on takes
to instructor;

Roles can be granted to users, as well as to other roles, as these statements show:

create role dean;
grant instructor to dean;
grant dean to Satoshi;

Thus, the privileges of a user or a role consist of:

• All privileges directly granted to the user/role.

• All privileges granted to roles that have been granted to the user/role.

Note that there can be a chain of roles; for example, the role teaching assistant may
be granted to all instructors. In turn, the role instructor is granted to all deans. Thus, the
dean role inherits all privileges granted to the roles instructor and to teaching assistant
in addition to privileges granted directly to dean.

When a user logs in to the database system, the actions executed by the user during
that session have all the privileges granted directly to the user, as well as all privileges
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granted to roles that are granted (directly or indirectly via other roles) to that user.
Thus, if a user Amit has been granted the role dean, user Amit holds all privileges
granted directly to Amit, as well as privileges granted to dean, plus privileges granted
to instructor and teaching assistant if, as above, those roles were granted (directly or
indirectly) to the role dean.

It is worth noting that the concept of role-based authorization is not specific to
SQL, and role-based authorization is used for access control in a wide variety of shared
applications.

4.7.3 Authorization on Views

In our university example, consider a staff member who needs to know the salaries of
all faculty in a particular department, say the Geology department. This staff member
is not authorized to see information regarding faculty in other departments. Thus, the
staff member must be denied direct access to the instructor relation. But if he is to have
access to the information for the Geology department, he might be granted access to a
view that we shall call geo instructor, consisting of only those instructor tuples pertaining
to the Geology department. This view can be defined in SQL as follows:

create view geo instructor as
(select *
from instructor
where dept name = 'Geology');

Suppose that the staff member issues the following SQL query:

select *
from geo instructor;

The staff member is authorized to see the result of this query. However, when the query
processor translates it into a query on the actual relations in the database, it replaces
uses of a view by the definition of the view, producing a query on instructor. Thus, the
system must check authorization on the clerk’s query before it replaces views by their
definitions.

A user who creates a view does not necessarily receive all privileges on that view.
She receives only those privileges that provide no additional authorization beyond
those that she already had. For example, a user who creates a view cannot be given up-
date authorization on a view without having update authorization on the relations used
to define the view. If a user creates a view on which no authorization can be granted,
the system will deny the view creation request. In our geo instructor view example, the
creator of the view must have select authorization on the instructor relation.

As we will see in Section 5.2, SQL supports the creation of functions and proce-
dures, which may, in turn, contain queries and updates. The execute privilege can be
granted on a function or procedure, enabling a user to execute the function or proce-
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dure. By default, just like views, functions and procedures have all the privileges that
the creator of the function or procedure had. In effect, the function or procedure runs
as if it were invoked by the user who created the function.

Although this behavior is appropriate in many situations, it is not always appropri-
ate. Starting with SQL:2003, if the function definition has an extra clause sql security
invoker, then it is executed under the privileges of the user who invokes the function,
rather than the privileges of the definer of the function. This allows the creation of
libraries of functions that can run under the same authorization as the invoker.

4.7.4 Authorizations on Schema

The SQL standard specifies a primitive authorization mechanism for the database
schema: Only the owner of the schema can carry out any modification to the schema,
such as creating or deleting relations, adding or dropping attributes of relations, and
adding or dropping indices.

However, SQL includes a references privilege that permits a user to declare foreign
keys when creating relations. The SQL references privilege is granted on specific at-
tributes in a manner like that for the update privilege. The following grant statement
allows user Mariano to create relations that reference the key dept name of the depart-
ment relation as a foreign key:

grant references (dept name) on department to Mariano;

Initially, it may appear that there is no reason ever to prevent users from creating
foreign keys referencing another relation. However, recall that foreign-key constraints
restrict deletion and update operations on the referenced relation. Suppose Mariano
creates a foreign key in a relation r referencing the dept name attribute of the department
relation and then inserts a tuple into r pertaining to the Geology department. It is no
longer possible to delete the Geology department from the department relation without
also modifying relation r. Thus, the definition of a foreign key by Mariano restricts
future activity by other users; therefore, there is a need for the references privilege.

Continuing to use the example of the department relation, the references privilege
on department is also required to create a check constraint on a relation r if the con-
straint has a subquery referencing department. This is reasonable for the same reason as
the one we gave for foreign-key constraints; a check constraint that references a relation
limits potential updates to that relation.

4.7.5 Transfer of Privileges

A user who has been granted some form of authorization may be allowed to pass on
this authorization to other users. By default, a user/role that is granted a privilege is not
authorized to grant that privilege to another user/role. If we wish to grant a privilege
and to allow the recipient to pass the privilege on to other users, we append the with
grant option clause to the appropriate grant command. For example, if we wish to allow
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Amit the select privilege on department and allow Amit to grant this privilege to others,
we write:

grant select on department to Amit with grant option;

The creator of an object (relation/view/role) holds all privileges on the object, including
the privilege to grant privileges to others.

Consider, as an example, the granting of update authorization on the teaches rela-
tion of the university database. Assume that, initially, the database administrator grants
update authorization on teaches to users U1, U2, and U3, who may, in turn, pass on this
authorization to other users. The passing of a specific authorization from one user to
another can be represented by an authorization graph. The nodes of this graph are the
users.

Consider the graph for update authorization on teaches. The graph includes an
edge Ui → Uj if user Ui grants update authorization on teaches to Uj. The root of the
graph is the database administrator. In the sample graph in Figure 4.11, observe that
user U5 is granted authorization by both U1 and U2; U4 is granted authorization by
only U1.

A user has an authorization if and only if there is a path from the root of the
authorization graph (the node representing the database administrator) down to the
node representing the user.

4.7.6 Revoking of Privileges

Suppose that the database administrator decides to revoke the authorization of user
U1. Since U4 has authorization from U1, that authorization should be revoked as well.
However, U5 was granted authorization by both U1 and U2. Since the database ad-
ministrator did not revoke update authorization on teaches from U2, U5 retains update

U3

DBA

U1

U5U2

U4

Figure 4.11 Authorization-grant graph (U1,U2,… ,U5 are users and DBA refers to the
database administrator).
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authorization on teaches. If U2 eventually revokes authorization from U5, then U5 loses
the authorization.

A pair of devious users might attempt to defeat the rules for revocation of autho-
rization by granting authorization to each other. For example, U2 is initially granted an
authorization by the database administrator, and U2 further grants it to U3. Suppose
U3 now grants the privilege back to U2. If the database administrator revokes autho-
rization from U2, it might appear that U2 retains authorization through U3. However,
note that once the administrator revokes authorization from U2, there is no path in the
authorization graph from the root either to U2 or to U3. Thus, SQL ensures that the
authorization is revoked from both the users.

As we just saw, revocation of a privilege from a user/role may cause other
users/roles also to lose that privilege. This behavior is called cascading revocation. In
most database systems, cascading is the default behavior. However, the revoke state-
ment may specify restrict in order to prevent cascading revocation:

revoke select on department from Amit, Satoshi restrict;

In this case, the system returns an error if there are any cascading revocations and does
not carry out the revoke action.

The keyword cascade can be used instead of restrict to indicate that revocation
should cascade; however, it can be omitted, as we have done in the preceding examples,
since it is the default behavior.

The following revoke statement revokes only the grant option, rather than the actual
select privilege:

revoke grant option for select on department from Amit;

Note that some database implementations do not support the above syntax; instead,
the privilege itself can be revoked and then granted again without the grant option.

Cascading revocation is inappropriate in many situations. Suppose Satoshi has the
role of dean, grants instructor to Amit, and later the role dean is revoked from Satoshi
(perhaps because Satoshi leaves the university); Amit continues to be employed on the
faculty and should retain the instructor role.

To deal with this situation, SQL permits a privilege to be granted by a role rather
than by a user. SQL has a notion of the current role associated with a session. By default,
the current role associated with a session is null (except in some special cases). The
current role associated with a session can be set by executing set role role name. The
specified role must have been granted to the user, otherwise the set role statement fails.

To grant a privilege with the grantor set to the current role associated with a session,
we can add the clause:

granted by current role

to the grant statement, provided the current role is not null.
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Suppose the granting of the role instructor (or other privileges) to Amit is done
using the granted by current role clause, with the current role set to dean, instead of
the grantor being the user Satoshi. Then, revoking of roles/privileges (including the
role dean) from Satoshi will not result in revoking of privileges that had the grantor set
to the role dean, even if Satoshi was the user who executed the grant; thus, Amit would
retain the instructor role even after Satoshi’s privileges are revoked.

4.7.7 Row-Level Authorization

The types of authorization privileges we have studied apply at the level of relations or
views. Some database systems provide mechanisms for fine-grained authorization at
the level of specific tuples within a relation.

Suppose, for example, that we wish to allow a student to see her or his own data
in the takes relation but not those data of other users. We can enforce such a restric-
tion using row-level authorization, if the database supports it. We describe row-level
authorization in Oracle below; PostgreSQL and SQL Server too support row-level au-
thorization using a conceptually similar mechanism, but using a different syntax.

The Oracle Virtual Private Database (VPD) feature supports row-level authoriza-
tion as follows. It allows a system administrator to associate a function with a relation;
the function returns a predicate that gets added automatically to any query that uses
the relation. The predicate can use the function sys context, which returns the identi-
fier of the user on whose behalf a query is being executed. For our example of students
accessing their data in the takes relation, we would specify the following predicate to
be associated with the takes relation:

ID = sys context ('USERENV', 'SESSION USER')

This predicate is added by the system to the where clause of every query that uses the
takes relation. As a result, each student can see only those takes tuples whose ID value
matches her ID.

VPD provides authorization at the level of specific tuples, or rows, of a relation,
and is therefore said to be a row-level authorization mechanism. A potential pitfall with
adding a predicate as described above is that it may change the meaning of a query
significantly. For example, if a user wrote a query to find the average grade over all
courses, she would end up getting the average of her grades, not all grades. Although
the system would give the “right” answer for the rewritten query, that answer would not
correspond to the query the user may have thought she was submitting.

4.8 Summary

• SQL supports several types of joins including natural join, inner and outer joins,
and several types of join conditions.
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° Natural join provides a simple way to write queries over multiple relations
in which a where predicate would otherwise equate attributes with matching
names from each relation. This convenience comes at the risk of query seman-
tics changing if a new attribute is added to the schema.

° The join-using construct provides a simple way to write queries over multiple
relations in which equality is desired for some but not necessarily all attributes
with matching names.

° The join-on construct provides a way to include a join predicate in the from
clause.

° Outer join provides a means to retain tuples that, due to a join predicate
(whether a natural join, a join-using, or a join-on), would otherwise not ap-
pear anywhere in the result relation. The retained tuples are padded with null
values so as to conform to the result schema.

• View relations can be defined as relations containing the result of queries. Views
are useful for hiding unneeded information and for gathering together information
from more than one relation into a single view.

• Transactions are sequences of queries and updates that together carry out a task.
Transactions can be committed, or rolled back; when a transaction is rolled back,
the effects of all updates performed by the transaction are undone.

• Integrity constraints ensure that changes made to the database by authorized users
do not result in a loss of data consistency.

• Referential-integrity constraints ensure that a value that appears in one relation
for a given set of attributes also appears for a certain set of attributes in another
relation.

• Domain constraints specify the set of possible values that may be associated with
an attribute. Such constraints may also prohibit the use of null values for particular
attributes.

• Assertions are declarative expressions that state predicates that we require always
to be true.

• The SQL data-definition language provides support for defining built-in domain
types such as date and time as well as user-defined domain types.

• Indices are important for efficient processing of queries, as well as for efficient
enforcement of integrity constraints. Although not part of the SQL standard, SQL
commands for creation of indices are supported by most database systems.

• SQL authorization mechanisms allow one to differentiate among the users of the
database on the type of access they are permitted on various data values in the
database.
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• Roles enable us to assign a set of privileges to a user according to the role that the
user plays in the organization.

Review Terms

• Join types

° Natural join

° Inner join with using and on

° Left, right and full outer join

° Outer join with using and on

• View definition

° Materialized views

° View maintenance

° View update

• Transactions

° Commit work

° Rollback work

° Atomic transaction

• Constraints

° Integrity constraints

° Domain constraints

° Unique constraint

° Check clause

° Referential integrity
⋄ Cascading deletes
⋄ Cascading updates

° Assertions

• Data types

° Date and time types

° Default values

° Large objects
⋄ clob
⋄ blob

° User-defined types

° distinct types

° Domains

° Type conversions

• Catalogs

• Schemas

• Indices

• Privileges

° Types of privileges
⋄ select
⋄ insert
⋄ update

° Granting of privileges

° Revoking of privileges

° Privilege to grant privileges

° Grant option

• Roles

• Authorization on views

• Execute authorization

• Invoker privileges

• Row-level authorization

• Virtual private database (VPD)
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Practice Exercises

4.1 Consider the following SQL query that seeks to find a list of titles of all courses
taught in Spring 2017 along with the name of the instructor.

select name, title
from instructor natural join teaches natural join section natural join course
where semester = 'Spring' and year = 2017

What is wrong with this query?

4.2 Write the following queries in SQL:

a. Display a list of all instructors, showing each instructor’s ID and the num-
ber of sections taught. Make sure to show the number of sections as 0 for
instructors who have not taught any section. Your query should use an
outer join, and should not use subqueries.

b. Write the same query as in part a, but using a scalar subquery and not
using outer join.

c. Display the list of all course sections offered in Spring 2018, along with
the ID and name of each instructor teaching the section. If a section has
more than one instructor, that section should appear as many times in
the result as it has instructors. If a section does not have any instructor,
it should still appear in the result with the instructor name set to “—”.

d. Display the list of all departments, with the total number of instructors
in each department, without using subqueries. Make sure to show depart-
ments that have no instructors, and list those departments with an instruc-
tor count of zero.

4.3 Outer join expressions can be computed in SQL without using the SQL outer
join operation. To illustrate this fact, show how to rewrite each of the following
SQL queries without using the outer join expression.

a. select * from student natural left outer join takes

b. select * from student natural full outer join takes

4.4 Suppose we have three relations r(A, B), s(B, C), and t(B, D), with all attributes
declared as not null.

a. Give instances of relations r, s, and t such that in the result of
(r natural left outer join s) natural left outer join t
attribute C has a null value but attribute D has a non-null value.

b. Are there instances of r, s, and t such that the result of
r natural left outer join (s natural left outer join t)
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employee (ID, person name, street, city)
works (ID, company name, salary)
company (company name, city)
manages (ID, manager id)

Figure 4.12 Employee database.

has a null value for C but a non-null value for D? Explain why or why not.

4.5 Testing SQL queries: To test if a query specified in English has been correctly
written in SQL, the SQL query is typically executed on multiple test databases,
and a human checks if the SQL query result on each test database matches the
intention of the specification in English.

a. In Section 4.1.1 we saw an example of an erroneous SQL query which was
intended to find which courses had been taught by each instructor; the
query computed the natural join of instructor, teaches, and course, and as
a result it unintentionally equated the dept name attribute of instructor and
course. Give an example of a dataset that would help catch this particular
error.

b. When creating test databases, it is important to create tuples in referenced
relations that do not have any matching tuple in the referencing relation
for each foreign key. Explain why, using an example query on the univer-
sity database.

c. When creating test databases, it is important to create tuples with null
values for foreign-key attributes, provided the attribute is nullable (SQL
allows foreign-key attributes to take on null values, as long as they are not
part of the primary key and have not been declared as not null). Explain
why, using an example query on the university database.

Hint: Use the queries from Exercise 4.2.

4.6 Show how to define the view student grades (ID, GPA) giving the grade-point
average of each student, based on the query in Exercise 3.2; recall that we used
a relation grade points(grade, points) to get the numeric points associated with
a letter grade. Make sure your view definition correctly handles the case of null
values for the grade attribute of the takes relation.

4.7 Consider the employee database of Figure 4.12. Give an SQL DDL definition
of this database. Identify referential-integrity constraints that should hold, and
include them in the DDL definition.
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4.8 As discussed in Section 4.4.8, we expect the constraint “an instructor cannot
teach sections in two different classrooms in a semester in the same time slot”
to hold.

a. Write an SQL query that returns all (instructor, section) combinations that
violate this constraint.

b. Write an SQL assertion to enforce this constraint (as discussed in Sec-
tion 4.4.8, current generation database systems do not support such as-
sertions, although they are part of the SQL standard).

4.9 SQL allows a foreign-key dependency to refer to the same relation, as in the
following example:

create table manager
(employee ID char(20),
manager ID char(20),
primary key employee ID,
foreign key (manager ID) references manager(employee ID)

on delete cascade )

Here, employee ID is a key to the table manager, meaning that each employee
has at most one manager. The foreign-key clause requires that every manager
also be an employee. Explain exactly what happens when a tuple in the relation
manager is deleted.

4.10 Given the relations a(name, address, title) and b(name, address, salary), show
how to express a natural full outer join b using the full outer-join operation with
an on condition rather than using the natural join syntax. This can be done using
the coalesce operation. Make sure that the result relation does not contain two
copies of the attributes name and address and that the solution is correct even
if some tuples in a and b have null values for attributes name or address.

4.11 Operating systems usually offer only two types of authorization control for data
files: read access and write access. Why do database systems offer so many kinds
of authorization?

4.12 Suppose a user wants to grant select access on a relation to another user. Why
should the user include (or not include) the clause granted by current role in the
grant statement?

4.13 Consider a view v whose definition references only relation r.

• If a user is granted select authorization on v, does that user need to have
select authorization on r as well? Why or why not?

• If a user is granted update authorization on v, does that user need to have
update authorization on r as well? Why or why not?
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• Give an example of an insert operation on a view v to add a tuple t that is
not visible in the result of select * from v. Explain your answer.

Exercises

4.14 Consider the query

select course id, semester, year, sec id, avg (tot cred)
from takes natural join student
where year = 2017
group by course id, semester, year, sec id
having count (ID) >= 2;

Explain why appending natural join section in the from clause would not change
the result.

4.15 Rewrite the query

select *
from section natural join classroom

without using a natural join but instead using an inner join with a using condi-
tion.

4.16 Write an SQL query using the university schema to find the ID of each student
who has never taken a course at the university. Do this using no subqueries and
no set operations (use an outer join).

4.17 Express the following query in SQL using no subqueries and no set operations.

select ID
from student
except
select s id
from advisor
where i ID is not null

4.18 For the database of Figure 4.12, write a query to find the ID of each employee
with no manager. Note that an employee may simply have no manager listed or
may have a null manager. Write your query using an outer join and then write
it again using no outer join at all.

4.19 Under what circumstances would the query
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select *
from student natural full outer join takes

natural full outer join course

include tuples with null values for the title attribute?

4.20 Show how to define a view tot credits (year, num credits), giving the total number
of credits taken in each year.

4.21 For the view of Exercise 4.18, explain why the database system would not allow
a tuple to be inserted into the database through this view.

4.22 Show how to express the coalesce function using the case construct.

4.23 Explain why, when a manager, say Satoshi, grants an authorization, the grant
should be done by the manager role, rather than by the user Satoshi.

4.24 Suppose user A, who has all authorization privileges on a relation r, grants select
on relation r to public with grant option. Suppose user B then grants select on r
to A. Does this cause a cycle in the authorization graph? Explain why.

4.25 Suppose a user creates a new relation r1 with a foreign key referencing another
relation r2. What authorization privilege does the user need on r2? Why should
this not simply be allowed without any such authorization?

4.26 Explain the difference between integrity constraints and authorization con-
straints.

Further Reading

General SQL references were provided in Chapter 3. As noted earlier, many systems
implement features in a non-standard manner, and, for that reason, a reference specific
to the database system you are using is an essential guide. Most vendors also provide
extensive support on the web.

The rules used by SQL to determine the updatability of a view, and how updates
are reflected on the underlying database relations appeared in SQL:1999 and are sum-
marized in [Melton and Simon (2001)].

The original SQL proposals for assertions date back to [Astrahan et al. (1976)],
[Chamberlin et al. (1976)], and [Chamberlin et al. (1981)].
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CHAP T E R 5
Advanced SQL

Chapter 3 and Chapter 4 provided detailed coverage of the basic structure of SQL. In
this chapter, we first address the issue of how to access SQL from a general-purpose
programming language, which is very important for building applications that use a
database to manage data. We then cover some of the more advanced features of SQL,
starting with how procedural code can be executed within the database either by extend-
ing the SQL language to support procedural actions or by allowing functions defined in
procedural languages to be executed within the database. We describe triggers, which
can be used to specify actions that are to be carried out automatically on certain events
such as insertion, deletion, or update of tuples in a specified relation. Finally, we discuss
recursive queries and advanced aggregation features supported by SQL.

5.1 Accessing SQL from a Programming Language

SQL provides a powerful declarative query language. Writing queries in SQL is usually
much easier than coding the same queries in a general-purpose programming language.
However, a database programmer must have access to a general-purpose programming
language for at least two reasons:

1. Not all queries can be expressed in SQL, since SQL does not provide the full ex-
pressive power of a general-purpose language. That is, there exist queries that can
be expressed in a language such as C, Java, or Python that cannot be expressed in
SQL. To write such queries, we can embed SQL within a more powerful language.

2. Nondeclarative actions—such as printing a report, interacting with a user, or
sending the results of a query to a graphical user interface—cannot be done from
within SQL. Applications usually have several components, and querying or up-
dating data are only one component; other components are written in general-
purpose programming languages. For an integrated application, there must be a
means to combine SQL with a general-purpose programming language.

There are two approaches to accessing SQL from a general-purpose programming
language:

183
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1. Dynamic SQL: A general-purpose program can connect to and communicate with
a database server using a collection of functions (for procedural languages) or
methods (for object-oriented languages). Dynamic SQL allows the program to
construct an SQL query as a character string at runtime, submit the query, and
then retrieve the result into program variables a tuple at a time. The dynamic
SQL component of SQL allows programs to construct and submit SQL queries at
runtime.

In this chapter, we look at two standards for connecting to an SQL database
and performing queries and updates. One, JDBC (Section 5.1.1), is an application
program interface for the Java language. The other, ODBC (Section 5.1.3), is
an application program interface originally developed for the C language, and
subsequently extended to other languages such as C++, C#, Ruby, Go, PHP, and
Visual Basic. We also illustrate how programs written in Python can connect to
a database using the Python Database API (Section 5.1.2).

The ADO.NET API, designed for the Visual Basic .NET and C# languages,
provides functions to access data, which at a high level are similar to the JDBC
functions, although details differ. The ADO.NET API can also be used with some
kinds of non-relational data sources. Details of ADO.NET may be found in the
manuals available online and are not covered further in this chapter.

2. Embedded SQL: Like dynamic SQL, embedded SQL provides a means by which
a program can interact with a database server. However, under embedded SQL,
the SQL statements are identified at compile time using a preprocessor, which
translates requests expressed in embedded SQL into function calls. At runtime,
these function calls connect to the database using an API that provides dynamic
SQL facilities but may be specific to the database that is being used. Section 5.1.4
briefly covers embedded SQL.

A major challenge in mixing SQL with a general-purpose language is the mismatch
in the ways these languages manipulate data. In SQL, the primary type of data are
relations. SQL statements operate on relations and return relations as a result. Pro-
gramming languages normally operate on a variable at a time, and those variables cor-
respond roughly to the value of an attribute in a tuple in a relation. Thus, integrating
these two types of languages into a single application requires providing a mechanism
to return the result of a query in a manner that the program can handle.

Our examples in this section assume that we are accessing a database on a server
that runs a database system. An alternative approach using an embedded database is
discussed in Note 5.1 on page 198.

5.1.1 JDBC

The JDBC standard defines an application program interface (API) that Java programs
can use to connect to database servers. (The word JDBC was originally an abbreviation
for Java Database Connectivity, but the full form is no longer used.)
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Figure 5.1 shows example Java code that uses the JDBC interface. The Java program
must import java.sql.*, which contains the interface definitions for the functionality
provided by JDBC.

5.1.1.1 Connecting to the Database

The first step in accessing a database from a Java program is to open a connection to
the database. This step is required to select which database to use, such as an instance
of Oracle running on your machine, or a PostgreSQL database running on another
machine. Only after opening a connection can a Java program execute SQL statements.

public static void JDBCexample(String userid, String passwd)
{

try (
Connection conn = DriverManager.getConnection(

"jdbc:oracle:thin:@db.yale.edu:1521:univdb",
userid, passwd);

Statement stmt = conn.createStatement();
) {

try {
stmt.executeUpdate(

"insert into instructor values(’77987’,’Kim’,’Physics’,98000)");
}
catch (SQLException sqle) {

System.out.println("Could not insert tuple. " + sqle);
}
ResultSet rset = stmt.executeQuery(

"select dept name, avg (salary) "+
" from instructor "+
" group by dept name");

while (rset.next()) {
System.out.println(rset.getString("dept name") + " " +

rset.getFloat(2));
}

}
catch (Exception sqle)
{

System.out.println("Exception : " + sqle);
}

}

Figure 5.1 An example of JDBC code.
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A connection is opened using the getConnection() method of the DriverManager
class (within java.sql). This method takes three parameters.1

1. The first parameter to the getConnection() call is a string that specifies the URL,
or machine name, where the server runs (in our example, db.yale.edu), along
with possibly some other information such as the protocol to be used to commu-
nicate with the database (in our example, jdbc:oracle:thin:; we shall shortly see
why this is required), the port number the database system uses for communica-
tion (in our example, 2000), and the specific database on the server to be used
(in our example, univdb). Note that JDBC specifies only the API, not the commu-
nication protocol. A JDBC driver may support multiple protocols, and we must
specify one supported by both the database and the driver. The protocol details
are vendor specific.

2. The second parameter to getConnection() is a database user identifier, which is
a string.

3. The third parameter is a password, which is also a string. (Note that the need to
specify a password within the JDBC code presents a security risk if an unautho-
rized person accesses your Java code.)

In our example in the figure, we have created a Connection object whose handle is
conn.

Each database product that supports JDBC (all the major database vendors do)
provides a JDBC driver that must be dynamically loaded in order to access the database
from Java. In fact, loading the driver must be done first, before connecting to the
database. If the appropriate driver has been downloaded from the vendor’s web site
and is in the classpath, the getConnection() method will locate the needed driver.2 The
driver provides for the translation of product-independent JDBC calls into the product-
specific calls needed by the specific database management system being used. The ac-
tual protocol used to exchange information with the database depends on the driver
that is used, and it is not defined by the JDBC standard. Some drivers support more
than one protocol, and a suitable protocol must be chosen depending on what protocol
the particular database product supports. In our example, when opening a connection
with the database, the string jdbc:oracle:thin: specifies a particular protocol supported
by Oracle. The MySQL equivalent is jdbc:mysql:

5.1.1.2 Shipping SQL Statements to the Database System

Once a database connection is open, the program can use it to send SQL statements to
the database system for execution. This is done via an instance of the class Statement.

1There are multiple versions of the getConnection()method, which differ in the parameters that they accept. We present
the most commonly used version.
2Prior to version 4, locating the driver was done manually by invoking Class.forName with one argument specifying a
concrete class implementing the java.sql.Driver interface, in a line of code prior to the getConnection call.
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A Statement object is not the SQL statement itself, but rather an object that allows the
Java program to invoke methods that ship an SQL statement given as an argument for
execution by the database system. Our example creates a Statement handle (stmt) on
the connection conn.

To execute a statement, we invoke either the executeQuery() method or the exe-
cuteUpdate() method, depending on whether the SQL statement is a query (and, thus,
returns a result set) or nonquery statement such as update, insert, delete, or create ta-
ble. In our example, stmt.executeUpdate() executes an update statement that inserts
into the instructor relation. It returns an integer giving the number of tuples inserted,
updated, or deleted. For DDL statements, the return value is zero.

5.1.1.3 Exceptions and Resource Management

Executing any SQL method might result in an exception being thrown. The try { … }
catch { … } construct permits us to catch any exceptions (error conditions) that arise
when JDBC calls are made and take appropriate action. In JDBC programming, it may
be useful to distinguish between an SQLexception, which is an SQL-specific exception,
and the general case of an Exception, which could be any Java exception such as a
null-pointer exception, or array-index-out-of-bounds exception. We show both in Figure
5.1. In practice, one would write more complete exception handlers than we do (for
the sake of conciseness) in our example code.

Opening a connection, a statement, and other JDBC objects are all actions that
consume system resources. Programmers must take care to ensure that programs close
all such resources. Failure to do so may cause the database system’s resource pools
to become exhausted, rendering the system inaccessible or inoperative until a time-out
period expires. One way to do this is to code explicit calls to close connections and
statements. This approach fails if the code exits due to an exception and, in so do-
ing, avoids the Java statement with the close invocation. For this reason, the preferred
approach is to use the try-with-resources construct in Java. In the example of Figure
5.1, the opening of the connection and statement objects is done within parentheses
rather than in the main body of the try in curly braces. Resources opened in the code
within parentheses are closed automatically at the end of the try block. This protects us
from leaving connections or statements unclosed. Since closing a statement implicitly
closes objects opened for that statement (i.e., the ResultSet objects we shall discuss
in the next section, this coding practice protects us from leaving resources unclosed.3

In the example of Figure 5.1, we could have closed the connection explicitly with the
statement conn.close() and closed the statement explicitly with stmt.close(), though
doing so was not necessary in our example.

5.1.1.4 Retrieving the Result of a Query

The example code of Figure 5.1 executes a query by using stmt.executeQuery(). It
retrieves the set of tuples in the result into a ResultSet object rset and fetches them one

3This Java feature, called try-with-resources, was introduced in Java 7.
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tuple at a time. The next() method on the result set tests whether or not there remains
at least one unfetched tuple in the result set and if so, fetches it. The return value of
the next() method is a Boolean indicating whether it fetched a tuple. Attributes from
the fetched tuple are retrieved using various methods whose names begin with get.
The method getString() can retrieve any of the basic SQL data types (converting the
value to a Java String object), but more restrictive methods such as getFloat() can be
used as well. The argument to the various get methods can either be an attribute name
specified as a string, or an integer indicating the position of the desired attribute within
the tuple. Figure 5.1 shows two ways of retrieving the values of attributes in a tuple:
using the name of the attribute (dept name) and using the position of the attribute (2,
to denote the second attribute).

5.1.1.5 Prepared Statements

We can create a prepared statement in which some values are replaced by “?”, thereby
specifying that actual values will be provided later. The database system compiles the
query when it is prepared. Each time the query is executed (with new values to replace
the “?”s), the database system can reuse the previously compiled form of the query
and apply the new values as parameters. The code fragment in Figure 5.2 shows how
prepared statements can be used.

The prepareStatement()method of theConnection class defines a query that may
contain parameter values; some JDBC drivers may submit the query to the database
for compilation as part of the method, but other drivers do not contact the database at
this point. The method returns an object of class PreparedStatement. At this point, no
SQL statement has been executed. The executeQuery() and executeUpdate()methods
of PreparedStatement class do that. But before they can be invoked, we must use
methods of class PreparedStatement that assign values for the “?” parameters. The
setString() method and other similar methods such as setInt() for other basic SQL
types allow us to specify the values for the parameters. The first argument specifies the
“?” parameter for which we are assigning a value (the first parameter is 1, unlike most
other Java constructs, which start with 0). The second argument specifies the value to
be assigned.

In the example in Figure 5.2, we prepare an insert statement, set the “?” parame-
ters, and then invoke executeUpdate(). The final two lines of our example show that
parameter assignments remain unchanged until we specifically reassign them. Thus, the
final statement, which invokes executeUpdate(), inserts the tuple (“88878”, “Perry”,
“Finance”, 125000).

Prepared statements allow for more efficient execution in cases where the same
query can be compiled once and then run multiple times with different parameter val-
ues. However, there is an even more significant advantage to prepared statements that
makes them the preferred method of executing SQL queries whenever a user-entered
value is used, even if the query is to be run only once. Suppose that we read in a user-
entered value and then use Java string manipulation to construct the SQL statement.
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PreparedStatement pStmt = conn.prepareStatement(
"insert into instructor values(?,?,?,?)");

pStmt.setString(1, "88877");
pStmt.setString(2, "Perry");
pStmt.setString(3, "Finance");
pStmt.setInt(4, 125000);
pStmt.executeUpdate();
pStmt.setString(1, "88878");
pStmt.executeUpdate();

Figure 5.2 Prepared statements in JDBC code.

If the user enters certain special characters, such as a single quote, the resulting SQL
statement may be syntactically incorrect unless we take extraordinary care in checking
the input. The setString() method does this for us automatically and inserts the needed
escape characters to ensure syntactic correctness.

In our example, suppose that the values for the variables ID, name, dept name,
and salary have been entered by a user, and a corresponding row is to be inserted into
the instructor relation. Suppose that, instead of using a prepared statement, a query is
constructed by concatenating the strings using the following Java expression:

"insert into instructor values(’ " + ID + " ’, ’ " + name + " ’, " +
" ’" + dept name + " ’, " + salary + ")"

and the query is executed directly using the executeQuery() method of a Statement
object. Observe the use of single quotes in the string, which would surround the values
of ID, name and dept name in the generated SQL query.

Now, if the user typed a single quote in the ID or name fields, the query string would
have a syntax error. It is quite possible that an instructor name may have a quotation
mark in its name (for example, “O’Henry”).

While the above example might be considered an annoyance, the situation can be
much worse. A technique called SQL injection can be used by malicious hackers to steal
data or damage the database.

Suppose a Java program inputs a string name and constructs the query:

"select * from instructor where name = ’" + name + "’"

If the user, instead of entering a name, enters:

X’ or ’Y’ = ’Y

then the resulting statement becomes:
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"select * from instructor where name = ’" + "X’ or ’Y’ = ’Y" + "’"

which is:

select * from instructor where name = ’X’ or ’Y’ = ’Y’

In the resulting query, the where clause is always true and the entire instructor relation
is returned.

More clever malicious users could arrange to output even more data, including
credentials such as passwords that allow the user to connect to the database and per-
form any actions they want. SQL injection attacks on update statements can be used to
change the values that are being stored in updated columns. In fact there have been a
number of attacks in the real world using SQL injections; attacks on multiple financial
sites have resulted in theft of large amounts of money by using SQL injection attacks.

Use of a prepared statement would prevent this problem because the input string
would have escape characters inserted, so the resulting query becomes:

"select * from instructor where name = ’X∖’ or ∖’Y∖’ = ∖’Y’

which is harmless and returns the empty relation.
Programmers must pass user-input strings to the database only through parameters of

prepared statements; creating SQL queries by concatenating strings with user-input values
is an extremely serious security risk and should never be done in any program.

Some database systems allow multiple SQL statements to be executed in a single
JDBC execute method, with statements separated by a semicolon. This feature has
been turned off by default on some JDBC drivers because it allows malicious hackers
to insert whole SQL statements using SQL injection. For instance, in our earlier SQL
injection example a malicious user could enter:

X’; drop table instructor; – –

which will result in a query string with two statements separated by a semicolon being
submitted to the database. Because these statements run with the privileges of the
database userid used by the JDBC connection, devastating SQL statements such as
drop table, or updates to any table of the user’s choice, could be executed. However,
some databases still allow execution of multiple statements as above; it is thus very
important to correctly use prepared statements to avoid the risk of SQL injection.

5.1.1.6 Callable Statements

JDBC also provides aCallableStatement interface that allows invocation of SQL stored
procedures and functions (described in Section 5.2). These play the same role for func-
tions and procedures as prepareStatement does for queries.
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CallableStatement cStmt1 = conn.prepareCall("{? = call some function(?)}");
CallableStatement cStmt2 = conn.prepareCall("{call some procedure(?,?)}");

The data types of function return values and out parameters of procedures must be
registered using the method registerOutParameter(), and can be retrieved using get
methods similar to those for result sets. See a JDBC manual for more details.

5.1.1.7 Metadata Features

As we noted earlier, a Java application program does not include declarations for data
stored in the database. Those declarations are part of the SQL DDL statements. There-
fore, a Java program that uses JDBC must either have assumptions about the database
schema hard-coded into the program or determine that information directly from the
database system at runtime. The latter approach is usually preferable, since it makes
the application program more robust to changes in the database schema.

Recall that when we submit a query using the executeQuery()method, the result of
the query is contained in a ResultSet object. The interface ResultSet has a method, get-
MetaData(), that returns a ResultSetMetaData object that contains metadata about
the result set. ResultSetMetaData, in turn, has methods to find metadata information,
such as the number of columns in the result, the name of a specified column, or the
type of a specified column. In this way, we can write code to execute a query even if we
have no prior knowledge of the schema of the result.

The following Java code segment uses JDBC to print out the names and types of all
columns of a result set. The variable rs in the code is assumed to refer to a ResultSet
instance obtained by executing a query.

ResultSetMetaData rsmd = rs.getMetaData();
for(int i = 1; i <= rsmd.getColumnCount(); i++) {

System.out.println(rsmd.getColumnName(i));
System.out.println(rsmd.getColumnTypeName(i));

}

The getColumnCount() method returns the arity (number of attributes) of the
result relation. That allows us to iterate through each attribute (note that we start at
1, as is conventional in JDBC). For each attribute, we retrieve its name and data type
using the methods getColumnName() and getColumnTypeName(), respectively.

The DatabaseMetaData interface provides a way to find metadata about the data-
base. The interfaceConnection has a method getMetaData() that returns aDatabase-
MetaData object. The DatabaseMetaData interface in turn has a very large number
of methods to get metadata about the database and the database system to which the
application is connected.

For example, there are methods that return the product name and version number
of the database system. Other methods allow the application to query the database
system about its supported features.
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DatabaseMetaData dbmd = conn.getMetaData();
ResultSet rs = dbmd.getColumns(null, "univdb", "department", "%");

// Arguments to getColumns: Catalog, Schema-pattern, Table-pattern,
// and Column-Pattern
// Returns: One row for each column; row has a number of attributes
// such as COLUMN NAME, TYPE NAME

while( rs.next()) {
System.out.println(rs.getString("COLUMN NAME"),

rs.getString("TYPE NAME");
}

Figure 5.3 Finding column information in JDBC using DatabaseMetaData.

Still other methods return information about the database itself. The code in Fig-
ure 5.3 illustrates how to find information about columns (attributes) of relations in a
database. The variable conn is assumed to be a handle for an already opened database
connection. The method getColumns() takes four arguments: a catalog name (null
signifies that the catalog name is to be ignored), a schema name pattern, a table name
pattern, and a column name pattern. The schema name, table name, and column name
patterns can be used to specify a name or a pattern. Patterns can use the SQL string
matching special characters “%” and “ ”; for instance, the pattern “%” matches all
names. Only columns of tables of schemas satisfying the specified name or pattern
are retrieved. Each row in the result set contains information about one column. The
rows have a number of columns such as the name of the catalog, schema, table and
column, the type of the column, and so on.

The getTables() method allows you to get a list of all tables in the database. The
first three parameters to getTables() are the same as for getColumns(). The fourth
parameter can be used to restrict the types of tables returned; if set to null, all tables,
including system internal tables are returned, but the parameter can be set to restrict
the tables returned to only user-created tables.

Examples of other methods provided by DatabaseMetaData that provide informa-
tion about the database include those for primary keys (getPrimaryKeys()), foreign-key
references (getCrossReference()), authorizations, database limits such as maximum
number of connections, and so on.

The metadata interfaces can be used for a variety of tasks. For example, they can
be used to write a database browser that allows a user to find the tables in a database,
examine their schema, examine rows in a table, apply selections to see desired rows,
and so on. The metadata information can be used to make code used for these tasks
generic; for example, code to display the rows in a relation can be written in such a way
that it would work on all possible relations regardless of their schema. Similarly, it is
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possible to write code that takes a query string, executes the query, and prints out the
results as a formatted table; the code can work regardless of the actual query submitted.

5.1.1.8 Other Features

JDBC provides a number of other features, such as updatable result sets. It can create
an updatable result set from a query that performs a selection and/or a projection on
a database relation. An update to a tuple in the result set then results in an update to
the corresponding tuple of the database relation.

Recall from Section 4.3 that a transaction allows multiple actions to be treated as a
single atomic unit which can be committed or rolled back. By default, each SQL state-
ment is treated as a separate transaction that is committed automatically. The method
setAutoCommit() in the JDBC Connection interface allows this behavior to be turned
on or off. Thus, if conn is an open connection, conn.setAutoCommit(false) turns off
automatic commit. Transactions must then be committed or rolled back explicitly using
either conn.commit() or conn.rollback(). conn.setAutoCommit(true) turns on auto-
matic commit.

JDBC provides interfaces to deal with large objects without requiring an entire large
object to be created in memory. To fetch large objects, the ResultSet interface provides
methodsgetBlob() and getClob() that are similar to the getString()method, but return
objects of type Blob and Clob, respectively. These objects do not store the entire large
object, but instead store “locators” for the large objects, that is, logical pointers to the
actual large object in the database. Fetching data from these objects is very much like
fetching data from a file or an input stream, and it can be performed using methods
such as getBytes() and getSubString().

Conversely, to store large objects in the database, the PreparedStatement class
permits a database column whose type is blob to be linked to an input stream (such
as a file that has been opened) using the method setBlob(int parameterIndex, Input-
Stream inputStream). When the prepared statement is executed, data are read from
the input stream and written to the blob in the database. Similarly, a clob column can
be set using the setClob() method, which takes as arguments a parameter index and a
character stream.

JDBC includes a row set feature that allows result sets to be collected and shipped
to other applications. Row sets can be scanned both backward and forward and can be
modified.

5.1.2 Database Access from Python

Database access can be done from Python as illustrated by the method shown in Figure
5.4. The statement containing the insert query shows how to use the Python equivalent
of JDBC prepared statements, with parameters identified in the SQL query by “%s”,
and parameter values provided as a list. Updates are not committed to the database
automatically; the commit() method needs to be called to commit an update.
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import psycopg2

def PythonDatabaseExample(userid, passwd)
try:

conn = psycopg2.connect( host="db.yale.edu", port=5432,
dbname="univdb", user=userid, password=passwd)

cur = conn.cursor()
try:

cur.execute("insert into instructor values(%s, %s, %s, %s)",
("77987","Kim","Physics",98000))

conn.commit();
except Exception as sqle:

print("Could not insert tuple. ", sqle)
conn.rollback()

cur.execute( ("select dept name, avg (salary) "
" from instructor group by dept name"))

for dept in cur:
print dept[0], dept[1]

except Exception as sqle:
print("Exception : ", sqle)

Figure 5.4 Database access from Python

The try:, except…: block shows how to catch exceptions and to print information
about the exception. The for loop illustrates how to loop over the result of a query
execution, and to access individual attributes of a particular row.

The preceding program uses the psycopg2 driver, which allows connection to
PostgreSQL databases and is imported in the first line of the program. Drivers are usu-
ally database specific, with the MySQLdb driver to connect to MySQL, and cx Oracle to
connect to Oracle; but the pyodbc driver can connect to most databases that support
ODBC. The Python Database API used in the program is implemented by drivers for
many databases, but unlike with JDBC, there are minor differences in the API across
different drivers, in particular in the parameters to the connect() function.

5.1.3 ODBC

The Open Database Connectivity (ODBC) standard defines an API that applications
can use to open a connection with a database, send queries and updates, and get back
results. Applications such as graphical user interfaces, statistics packages, and spread-
sheets can make use of the same ODBC API to connect to any database server that
supports ODBC.

Each database system supporting ODBC provides a library that must be linked
with the client program. When the client program makes an ODBC API call, the code
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void ODBCexample()
{

RETCODE error;
HENV env; /* environment */
HDBC conn; /* database connection */

SQLAllocEnv(&env);
SQLAllocConnect(env, &conn);
SQLConnect(conn, "db.yale.edu", SQL NTS, "avi", SQL NTS,

"avipasswd", SQL NTS);
{

char deptname[80];
float salary;
int lenOut1, lenOut2;
HSTMT stmt;

char * sqlquery = "select dept name, sum (salary)
from instructor
group by dept name";

SQLAllocStmt(conn, &stmt);
error = SQLExecDirect(stmt, sqlquery, SQL NTS);
if (error == SQL SUCCESS) {

SQLBindCol(stmt, 1, SQL C CHAR, deptname , 80, &lenOut1);
SQLBindCol(stmt, 2, SQL C FLOAT, &salary, 0 , &lenOut2);
while (SQLFetch(stmt) == SQL SUCCESS) {

printf (" %s %g∖n", deptname, salary);
}

}
SQLFreeStmt(stmt, SQL DROP);

}
SQLDisconnect(conn);
SQLFreeConnect(conn);
SQLFreeEnv(env);

}

Figure 5.5 ODBC code example.

in the library communicates with the server to carry out the requested action and fetch
results.

Figure 5.5 shows an example of C code using the ODBC API. The first step in using
ODBC to communicate with a server is to set up a connection with the server. To do so,
the program first allocates an SQL environment, then a database connection handle.
ODBC defines the types HENV, HDBC, and RETCODE. The program then opens the
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database connection by using SQLConnect. This call takes several parameters, includ-
ing the connection handle, the server to which to connect, the user identifier, and the
password for the database. The constant SQL NTS denotes that the previous argument
is a null-terminated string.

Once the connection is set up, the program can send SQL commands to the
database by using SQLExecDirect. C language variables can be bound to attributes of
the query result, so that when a result tuple is fetched using SQLFetch, its attribute val-
ues are stored in corresponding C variables. The SQLBindCol function does this task;
the second argument identifies the position of the attribute in the query result, and the
third argument indicates the type conversion required from SQL to C. The next argu-
ment gives the address of the variable. For variable-length types like character arrays,
the last two arguments give the maximum length of the variable and a location where
the actual length is to be stored when a tuple is fetched. A negative value returned for
the length field indicates that the value is null. For fixed-length types such as integer
or float, the maximum length field is ignored, while a negative value returned for the
length field indicates a null value.

The SQLFetch statement is in a while loop that is executed until SQLFetch returns
a value other than SQL SUCCESS. On each fetch, the program stores the values in C
variables as specified by the calls on SQLBindCol and prints out these values.

At the end of the session, the program frees the statement handle, disconnects
from the database, and frees up the connection and SQL environment handles. Good
programming style requires that the result of every function call must be checked to
make sure there are no errors; we have omitted most of these checks for brevity.

It is possible to create an SQL statement with parameters; for example, consider the
statement insert into department values(?,?,?). The question marks are placeholders
for values which will be supplied later. The above statement can be “prepared,” that is,
compiled at the database, and repeatedly executed by providing actual values for the
placeholders—in this case, by providing a department name, building, and budget for
the relation department.

ODBC defines functions for a variety of tasks, such as finding all the relations in
the database and finding the names and types of columns of a query result or a relation
in the database.

By default, each SQL statement is treated as a separate transaction that is commit-
ted automatically. The SQLSetConnectOption(conn, SQL AUTOCOMMIT, 0) turns
off automatic commit on connection conn, and transactions must then be committed
explicitly by SQLTransact(conn, SQL COMMIT) or rolled back by SQLTransact(conn,
SQL ROLLBACK).

The ODBC standard defines conformance levels, which specify subsets of the func-
tionality defined by the standard. An ODBC implementation may provide only core
level features, or it may provide more advanced (level 1 or level 2) features. Level 1
requires support for fetching information about the catalog, such as information about
what relations are present and the types of their attributes. Level 2 requires further fea-
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tures, such as the ability to send and retrieve arrays of parameter values and to retrieve
more detailed catalog information.

The SQL standard defines a call level interface (CLI) that is similar to the ODBC
interface.

5.1.4 Embedded SQL

The SQL standard defines embeddings of SQL in a variety of programming languages,
such as C, C++, Cobol, Pascal, Java, PL/I, and Fortran. A language in which SQL
queries are embedded is referred to as a host language, and the SQL structures per-
mitted in the host language constitute embedded SQL.

Programs written in the host language can use the embedded SQL syntax to access
and update data stored in a database. An embedded SQL program must be processed
by a special preprocessor prior to compilation. The preprocessor replaces embedded
SQL requests with host-language declarations and procedure calls that allow runtime
execution of the database accesses. Then the resulting program is compiled by the host-
language compiler. This is the main distinction between embedded SQL and JDBC or
ODBC.

To identify embedded SQL requests to the preprocessor, we use the EXEC SQL
statement; it has the form:

EXEC SQL <embedded SQL statement >;

Before executing any SQL statements, the program must first connect to the database.
Variables of the host language can be used within embedded SQL statements, but they
must be preceded by a colon (:) to distinguish them from SQL variables.

To iterate over the results of an embedded SQL query, we must declare a cursor
variable, which can then be opened, and fetch commands issued in a host language
loop to fetch consecutive rows of the query result. Attributes of a row can be fetched
into host language variables. Database updates can also be performed using a cursor
on a relation to iterate through the rows of the relation, optionally using a where clause
to iterate through only selected rows. Embedded SQL commands can be used to update
the current row where the cursor is pointing.

The exact syntax for embedded SQL requests depends on the language in which
SQL is embedded. You may refer to the manuals of the specific language embedding
that you use for further details.

In JDBC, SQL statements are interpreted at runtime (even if they are created using
the prepared statement feature). When embedded SQL is used, there is a potential for
catching some SQL-related errors (including data-type errors) at the time of prepro-
cessing. SQL queries in embedded SQL programs are also easier to comprehend than
in programs using dynamic SQL. However, there are also some disadvantages with em-
bedded SQL. The preprocessor creates new host language code, which may complicate
debugging of the program. The constructs used by the preprocessor to identify SQL



198 Chapter 5 Advanced SQL

Note 5.1 EMBEDDED DATABASES

Both JDBC and ODBC assume that a server is running on the database system
hosting the database. Some applications use a database that exists entirely within
the application. Such applications maintain the database only for internal use and
offer no accessibility to the database except through the application itself. In such
cases, one may use an embedded database and use one of several packages that
implement an SQL database accessible from within a programming language. Pop-
ular choices include Java DB, SQLite, HSQLBD, and 2̋. There is also an embedded
version of MySQL.

Embedded database systems lack many of the features of full server-based
database systems, but they offer advantages for applications that can benefit from
the database abstractions but do not need to support very large databases or large-
scale transaction processing.

Do not confuse embedded databases with embedded SQL; the latter is a means
of connecting to a database running on a server.

statements may clash syntactically with host language syntax introduced in subsequent
versions of the host language.

As a result, most current systems use dynamic SQL, rather than embedded SQL.
One exception is the Microsoft Language Integrated Query (LINQ) facility, which ex-
tends the host language to include support for queries instead of using a preprocessor
to translate embedded SQL queries into the host language.

5.2 Functions and Procedures

We have already seen several functions that are built into the SQL language. In this
section, we show how developers can write their own functions and procedures, store
them in the database, and then invoke them from SQL statements. Functions are par-
ticularly useful with specialized data types such as images and geometric objects. For
instance, a line-segment data type used in a map database may have an associated func-
tion that checks whether two line segments overlap, and an image data type may have
associated functions to compare two images for similarity.

Procedures and functions allow “business logic” to be stored in the database and ex-
ecuted from SQL statements. For example, universities usually have many rules about
how many courses a student can take in a given semester, the minimum number of
courses a full-time instructor must teach in a year, the maximum number of majors a
student can be enrolled in, and so on. While such business logic can be encoded as
programming-language procedures stored entirely outside the database, defining them
as stored procedures in the database has several advantages. For example, it allows
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create function dept count(dept name varchar(20))
returns integer
begin
declare d count integer;

select count(*) into d count
from instructor
where instructor.dept name= dept name

return d count;
end

Figure 5.6 Function defined in SQL.

multiple applications to access the procedures, and it allows a single point of change in
case the business rules change, without changing other parts of the application. Appli-
cation code can then call the stored procedures instead of directly updating database
relations.

SQL allows the definition of functions, procedures, and methods. These can be
defined either by the procedural component of SQL or by an external programming
language such as Java, C, or C++. We look at definitions in SQL first and then see how
to use definitions in external languages in Section 5.2.3.

Although the syntax we present here is defined by the SQL standard, most
databases implement nonstandard versions of this syntax. For example, the procedural
languages supported by Oracle (PL/SQL), Microsoft SQL Server (TransactSQL), and
PostgreSQL (PL/pgSQL) all differ from the standard syntax we present here. We illus-
trate some of the differences for the case of Oracle in Note 5.2 on page 204. See the
respective system manuals for further details. Although parts of the syntax we present
here may not be supported on such systems, the concepts we describe are applicable
across implementations, although with a different syntax.

5.2.1 Declaring and Invoking SQL Functions and Procedures

Suppose that we want a function that, given the name of a department, returns the
count of the number of instructors in that department. We can define the function as
shown in Figure 5.6.4 This function can be used in a query that returns names and
budgets of all departments with more than 12 instructors:

select dept name, budget
from department
where dept count(dept name) > 12;

4If you are entering your own functions or procedures, you should write “create or replace” rather than create so that it
is easy to modify your code (by replacing the function) during debugging.
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create function instructor of (dept name varchar(20))
returns table (

ID varchar (5),
name varchar (20),
dept name varchar (20),
salary numeric (8,2))

return table
(select ID, name, dept name, salary
from instructor
where instructor.dept name = instructor of.dept name);

Figure 5.7 Table function in SQL.

Performance problems have been observed on many database systems when in-
voking complex user-defined functions within a query, if the functions are invoked on
a large number of tuples. Programmers should therefore take performance into consid-
eration when deciding whether to use user-defined functions in a query.

The SQL standard supports functions that can return tables as results; such func-
tions are called table functions. Consider the function defined in Figure 5.7. The func-
tion returns a table containing all the instructors of a particular department. Note that
the function’s parameter is referenced by prefixing it with the name of the function
(instructor of.dept name).

The function can be used in a query as follows:

select *
from table(instructor of ('Finance'));

This query returns all instructors of the 'Finance' department. In this simple case it
is straightforward to write this query without using table-valued functions. In general,
however, table-valued functions can be thought of as parameterized views that generalize
the regular notion of views by allowing parameters.

SQL also supports procedures. The dept count function could instead be written as
a procedure:

create procedure dept count proc(in dept name varchar(20),
out d count integer)

begin
select count(*) into d count
from instructor
where instructor.dept name= dept count proc.dept name

end
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The keywords in and out indicate, respectively, parameters that are expected to
have values assigned to them and parameters whose values are set in the procedure in
order to return results.

Procedures can be invoked either from an SQL procedure or from embedded SQL
by the call statement:

declare d count integer;
call dept count proc('Physics', d count);

Procedures and functions can be invoked from dynamic SQL, as illustrated by the JDBC
syntax in Section 5.1.1.5.

SQL permits more than one procedure of the same name, so long as the number of
arguments of the procedures with the same name is different. The name, along with the
number of arguments, is used to identify the procedure. SQL also permits more than
one function with the same name, so long as the different functions with the same name
either have different numbers of arguments, or for functions with the same number of
arguments, they differ in the type of at least one argument.

5.2.2 Language Constructs for Procedures and Functions

SQL supports constructs that give it almost all the power of a general-purpose program-
ming language. The part of the SQL standard that deals with these constructs is called
the Persistent Storage Module (PSM).

Variables are declared using a declare statement and can have any valid SQL data
type. Assignments are performed using a set statement.

A compound statement is of the form begin … end, and it may contain multiple
SQL statements between the begin and the end. Local variables can be declared within
a compound statement, as we have seen in Section 5.2.1. A compound statement of
the form begin atomic … end ensures that all the statements contained within it are
executed as a single transaction.

The syntax for while statements and repeat statements is:

while boolean expression do
sequence of statements;

end while

repeat
sequence of statements;

until boolean expression
end repeat

There is also a for loop that permits iteration over all the results of a query:
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declare n integer default 0;
for r as

select budget from department
where dept name = ‘Music‘

do
set n = n− r.budget

end for

The program fetches the query results one row at a time into the for loop variable (r, in
the above example). The statement leave can be used to exit the loop, while iterate starts
on the next tuple, from the beginning of the loop, skipping the remaining statements.

The conditional statements supported by SQL include if-then-else statements by
using this syntax:

if boolean expression
then statement or compound statement

elseif boolean expression
then statement or compound statement

else statement or compound statement
end if

SQL also supports a case statement similar to the C/C++ language case statement
(in addition to case expressions, which we saw in Chapter 3).

Figure 5.8 provides a larger example of the use of procedural constructs in SQL.
The function registerStudent defined in the figure registers a student in a course section
after verifying that the number of students in the section does not exceed the capacity of
the room allocated to the section. The function returns an error code—a value greater
than or equal to 0 signifies success, and a negative value signifies an error condition—
and a message indicating the reason for the failure is returned as an out parameter.

The SQL procedural language also supports the signaling of exception conditions
and declaring of handlers that can handle the exception, as in this code:

declare out of classroom seats condition
declare exit handler for out of classroom seats
begin
sequence of statements
end

The statements between the begin and the end can raise an exception by executing sig-
nal out of classroom seats. The handler says that if the condition arises, the action to
be taken is to exit the enclosing begin end statement. Alternative actions would be con-
tinue, which continues execution from the next statement following the one that raised
the exception. In addition to explicitly defined conditions, there are also predefined
conditions such as sqlexception, sqlwarning, and not found.
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– – Registers a student after ensuring classroom capacity is not exceeded
– – Returns 0 on success, and -1 if capacity is exceeded.
create function registerStudent(

in s id varchar(5),
in s courseid varchar (8),
in s secid varchar (8),
in s semester varchar (6),
in s year numeric (4,0),
out errorMsg varchar(100)

returns integer
begin

declare currEnrol int;
select count(*) into currEnrol

from takes
where course id = s courseid and sec id = s secid

and semester = s semester and year = s year;
declare limit int;
select capacity into limit

from classroom natural join section
where course id = s courseid and sec id = s secid

and semester = s semester and year = s year;
if (currEnrol < limit)

begin
insert into takes values

(s id, s courseid, s secid, s semester, s year, null);
return(0);

end
– – Otherwise, section capacity limit already reached
set errorMsg = ’Enrollment limit reached for course ’ || s courseid

|| ’ section ’ || s secid;
return(-1);

end;

Figure 5.8 Procedure to register a student for a course section.

5.2.3 External Language Routines

Although the procedural extensions to SQL can be very useful, they are unfortunately
not supported in a standard way across databases. Even the most basic features have
different syntax or semantics in different database products. As a result, programmers
have to learn a new language for each database product. An alternative that is gaining
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Note 5.2 NONSTANDARD SYNTAX FOR PROCEDURES AND FUNCTIONS

Although the SQL standard defines the syntax for procedures and functions, most
databases do not follow the standard strictly, and there is considerable variation in
the syntax supported. One of the reasons for this situation is that these databases
typically introduced support for procedures and functions before the syntax was
standardized, and they continue to support their original syntax. It is not possi-
ble to list the syntax supported by each database here, but we illustrate a few of
the differences in the case of Oracle’s PL/SQL by showing below a version of the
function from Figure 5.6 as it would be defined in PL/SQL.

create function dept count (dname in instructor.dept name%type) return integer
as
d count integer;
begin

select count(*) into d count
from instructor
where instructor.dept name = dname;

return d count;
end;

While the two versions are similar in concept, there are a number of minor syn-
tactic differences, some of which are evident when comparing the two versions of
the function. Although not shown here, the syntax for control flow in PL/SQL also
has several differences from the syntax presented here.

Observe that PL/SQL allows a type to be specified as the type of an attribute of
a relation, by adding the suffix %type. On the other hand, PL/SQL does not directly
support the ability to return a table, although there is an indirect way of implement-
ing this functionality by creating a table type. The procedural languages supported
by other databases also have a number of syntactic and semantic differences. See
the respective language references for more information. The use of nonstandard
syntax for stored procedures and functions is an impediment to porting an appli-
cation to a different database.

support is to define procedures in an imperative programming language, but allow them
to be invoked from SQL queries and trigger definitions.

SQL allows us to define functions in a programming language such as Java, C#, C,
or C++. Functions defined in this fashion can be more efficient than functions defined
in SQL, and computations that cannot be carried out in SQL can be executed by these
functions.
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External procedures and functions can be specified in this way (note that the exact
syntax depends on the specific database system you use):

create procedure dept count proc( in dept name varchar(20),
out count integer)

language C
external name '/usr/avi/bin/dept count proc'

create function dept count (dept name varchar(20))
returns integer
language C
external name '/usr/avi/bin/dept count'

In general, the external language procedures need to deal with null values in parameters
(both in and out) and return values. They also need to communicate failure/success
status and to deal with exceptions. This information can be communicated by extra
parameters: an sqlstate value to indicate failure/success status, a parameter to store the
return value of the function, and indicator variables for each parameter/function result
to indicate if the value is null. Other mechanisms are possible to handle null values,
for example, by passing pointers instead of values. The exact mechanisms depend on
the database. However, if a function does not deal with these situations, an extra line
parameter style general can be added to the declaration to indicate that the external
procedures/functions take only the arguments shown and do not handle null values or
exceptions.

Functions defined in a programming language and compiled outside the database
system may be loaded and executed with the database-system code. However, doing
so carries the risk that a bug in the program can corrupt the internal structures of
the database and can bypass the access-control functionality of the database system.
Database systems that are concerned more about efficient performance than about se-
curity may execute procedures in such a fashion. Database systems that are concerned
about security may execute such code as part of a separate process, communicate the
parameter values to it, and fetch results back via interprocess communication. How-
ever, the time overhead of interprocess communication is quite high; on typical CPU
architectures, tens to hundreds of thousands of instructions can execute in the time
taken for one interprocess communication.

If the code is written in a “safe” language such as Java or C#, there is another
possibility: executing the code in a sandbox within the database query execution process
itself. The sandbox allows the Java or C# code to access its own memory area, but it
prevents the code from reading or updating the memory of the query execution process,
or accessing files in the file system. (Creating a sandbox is not possible for a language
such as C, which allows unrestricted access to memory through pointers.) Avoiding
interprocess communication reduces function call overhead greatly.
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Several database systems today support external language routines running in a
sandbox within the query execution process. For example, Oracle and IBM DB2 allow
Java functions to run as part of the database process. Microsoft SQL Server allows
procedures compiled into the Common Language Runtime (CLR) to execute within
the database process; such procedures could have been written, for example, in C# or
Visual Basic. PostgreSQL allows functions defined in several languages, such as Perl,
Python, and Tcl.

5.3 Triggers

A trigger is a statement that the system executes automatically as a side effect of a
modification to the database. To define a trigger, we must:

• Specify when a trigger is to be executed. This is broken up into an event that causes
the trigger to be checked and a condition that must be satisfied for trigger execution
to proceed.

• Specify the actions to be taken when the trigger executes.

Once we enter a trigger into the database, the database system takes on the responsibil-
ity of executing it whenever the specified event occurs and the corresponding condition
is satisfied.

5.3.1 Need for Triggers

Triggers can be used to implement certain integrity constraints that cannot be speci-
fied using the constraint mechanism of SQL. Triggers are also useful mechanisms for
alerting humans or for starting certain tasks automatically when certain conditions are
met. As an illustration, we could design a trigger that, whenever a tuple is inserted into
the takes relation, updates the tuple in the student relation for the student taking the
course by adding the number of credits for the course to the student’s total credits. As
another example, suppose a warehouse wishes to maintain a minimum inventory of
each item; when the inventory level of an item falls below the minimum level, an order
can be placed automatically. On an update of the inventory level of an item, the trigger
compares the current inventory level with the minimum inventory level for the item,
and if the level is at or below the minimum, a new order is created.

Note that triggers cannot usually perform updates outside the database, and hence,
in the inventory replenishment example, we cannot use a trigger to place an order in the
external world. Instead, we add an order to a relation holding reorders. We must create
a separate permanently running system process that periodically scans that relation
and places orders. Some database systems provide built-in support for sending email
from SQL queries and triggers using this approach.
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create trigger timeslot check1 after insert on section
referencing new row as nrow
for each row
when (nrow.time slot id not in (

select time slot id
from time slot)) /* time slot id not present in time slot */

begin
rollback

end;

create trigger timeslot check2 after delete on timeslot
referencing old row as orow
for each row
when (orow.time slot id not in (

select time slot id
from time slot) /* last tuple for time slot id deleted from time slot */

and orow.time slot id in (
select time slot id
from section)) /* and time slot id still referenced from section*/

begin
rollback

end;

Figure 5.9 Using triggers to maintain referential integrity.

5.3.2 Triggers in SQL

We now consider how to implement triggers in SQL. The syntax we present here is de-
fined by the SQL standard, but most databases implement nonstandard versions of this
syntax. Although the syntax we present here may not be supported on such systems,
the concepts we describe are applicable across implementations. We discuss nonstan-
dard trigger implementations in Note 5.3 on page 212. In each system, trigger syntax
is based upon that system’s syntax for coding functions and procedures.

Figure 5.9 shows how triggers can be used to ensure referential integrity on the time
slot id attribute of the section relation. The first trigger definition in the figure specifies

that the trigger is initiated after any insert on the relation section and it ensures that the
time slot id value being inserted is valid. SQL bf insert statement could insert multiple
tuples of the relation, and the for each row clause in the trigger code would then explic-
itly iterate over each inserted row. The referencing new row as clause creates a variable
nrow (called a transition variable) that stores the value of the row being inserted.
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The when statement specifies a condition. The system executes the rest of the trig-
ger body only for tuples that satisfy the condition. The begin atomic … end clause can
serve to collect multiple SQL statements into a single compound statement. In our ex-
ample, though, there is only one statement, which rolls back the transaction that caused
the trigger to get executed. Thus, any transaction that violates the referential integrity
constraint gets rolled back, ensuring the data in the database satisfies the constraint.

It is not sufficient to check referential integrity on inserts alone; we also need to
consider updates of section, as well as deletes and updates to the referenced table time
slot. The second trigger definition in Figure 5.9 considers the case of deletes to time
slot. This trigger checks that the time slot id of the tuple being deleted is either still

present in time slot, or that no tuple in section contains that particular time slot id value;
otherwise, referential integrity would be violated.

To ensure referential integrity, we would also have to create triggers to handle up-
dates to section and time slot; we describe next how triggers can be executed on updates,
but we leave the definition of these triggers as an exercise to the reader.

For updates, the trigger can specify attributes whose update causes the trigger to
execute; updates to other attributes would not cause it to be executed. For example, to
specify that a trigger executes after an update to the grade attribute of the takes relation,
we write:

after update of takes on grade

The referencing old row as clause can be used to create a variable storing the old
value of an updated or deleted row. The referencing new row as clause can be used with
updates in addition to inserts.

Figure 5.10 shows how a trigger can be used to keep the tot cred attribute value of
student tuples up-to-date when the grade attribute is updated for a tuple in the takes
relation. The trigger is executed only when the grade attribute is updated from a value
that is either null or ’F’ to a grade that indicates the course is successfully completed.
The update statement is normal SQL syntax except for the use of the variable nrow.

A more realistic implementation of this example trigger would also handle grade
corrections that change a successful completion grade to a failing grade and handle
insertions into the takes relation where the grade indicates successful completion. We
leave these as an exercise for the reader.

As another example of the use of a trigger, the action on delete of a student tuple
could be to check if the student has any entries in the takes relation, and if so, to delete
them.

Many database systems support a variety of other triggering events, such as when
a user (application) logs on to the database (that is, opens a connection), the system
shuts down, or changes are made to system settings.

Triggers can be activated before the event (insert, delete, or update) instead of after
the event. Triggers that execute before an event can serve as extra constraints that can
prevent invalid updates, inserts, or deletes. Instead of letting the invalid action proceed
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create trigger credits earned after update of takes on grade
referencing new row as nrow
referencing old row as orow
for each row
when nrow.grade <> ’F’ and nrow.grade is not null

and (orow.grade = ’F’ or orow.grade is null)
begin atomic

update student
set tot cred= tot cred+

(select credits
from course
where course.course id= nrow.course id)

where student.id = nrow.id;
end;

Figure 5.10 Using a trigger to maintain credits earned values.

and cause an error, the trigger might take action to correct the problem so that the
update, insert, or delete becomes valid. For example, if we attempt to insert an instructor
into a department whose name does not appear in the department relation, the trigger
could insert a tuple into the department relation for that department name before the
insertion generates a foreign-key violation. As another example, suppose the value of an
inserted grade is blank, presumably to indicate the absence of a grade. We can define
a trigger that replaces the value with the null value. The set statement can be used to
carry out such modifications. An example of such a trigger appears in Figure 5.11.

Instead of carrying out an action for each affected row, we can carry out a single
action for the entire SQL statement that caused the insert, delete, or update. To do
so, we use the for each statement clause instead of the for each row clause. The clauses

create trigger setnull before update of takes
referencing new row as nrow
for each row
when (nrow.grade = ’ ’)
begin atomic

set nrow.grade = null;
end;

Figure 5.11 Example of using set to change an inserted value.
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referencing old table as or referencing new table as can then be used to refer to temporary
tables (called transition tables) containing all the affected rows. Transition tables cannot
be used with before triggers, but they can be used with after triggers, regardless of
whether they are statement triggers or row triggers. A single SQL statement can then
be used to carry out multiple actions on the basis of the transition tables.

Triggers can be disabled or enabled; by default they are enabled when they are
created, but they can be disabled by using alter trigger trigger name disable (some
databases use alternative syntax such as disable trigger trigger name). A trigger that
has been disabled can be enabled again. A trigger can instead be dropped, which re-
moves it permanently, by using the command drop trigger trigger name.

Returning to our inventory-replenishment example from Section 5.3.1, suppose we
have the following relations:

• inventory (item, level), which notes the current amount of the item in the ware-
house.

• minlevel (item, level), which notes the minimum amount of the item to be main-
tained.

• reorder (item, amount), which notes the amount of the item to be ordered when its
level falls below the minimum.

• orders (item, amount), which notes the amount of the item to be ordered.

To place a reorder when inventory falls below a specified minimum, we can use the
trigger shown in Figure 5.12. Note that we have been careful to place an order only
when the amount falls from above the minimum level to below the minimum level. If
we check only that the new value after an update is below the minimum level, we may
place an order erroneously when the item has already been reordered.

SQL-based database systems use triggers widely, although before SQL:1999 they
were not part of the SQL standard. Unfortunately, as a result, each database system
implemented its own syntax for triggers, leading to incompatibilities. The SQL:1999
syntax for triggers that we use here is similar, but not identical, to the syntax in the
IBM DB2 and Oracle database systems. See Note 5.3 on page 212.

5.3.3 When Not to Use Triggers

There are many good uses for triggers, such as those we have just seen in Section 5.3.2,
but some uses are best handled by alternative techniques. For example, we could imple-
ment the on delete cascade feature of a foreign-key constraint by using a trigger instead
of using the cascade feature. Not only would this be more work to implement, but
also it would be much harder for a database user to understand the set of constraints
implemented in the database.
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create trigger reorder after update of level on inventory
referencing old row as orow, new row as nrow
for each row
when nrow.level <= (select level

from minlevel
where minlevel.item = orow.item)

and orow.level > (select level
from minlevel
where minlevel.item = orow.item)

begin atomic
insert into orders

(select item, amount
from reorder
where reorder.item = orow.item);

end;

Figure 5.12 Example of trigger for reordering an item.

As another example, triggers can be used to maintain materialized views. For in-
stance, if we wished to support very fast access to the total number of students regis-
tered for each course section, we could do this by creating a relation

section registration(course id, sec id, semester, year, total students)

defined by the query

select course id, sec id, semester, year, count(ID) as total students
from takes
group by course id, sec id, semester, year;

The value of total students for each course must be maintained up-to-date by triggers
on insert, delete, or update of the takes relation. Such maintenance may require inser-
tion, update or deletion of tuples from section registration, and triggers must be written
accordingly.

However, many database systems now support materialized views, which are auto-
matically maintained by the database system (see Section 4.2.3). As a result, there is
no need to write trigger code for maintaining such materialized views.

Triggers have been used for maintaining copies, or replicas, of databases. A collec-
tion of triggers on insert, delete, or update can be created on each relation to record
the changes in relations called change or delta relations. A separate process copies over
the changes to the replica of the database. Modern database systems, however, provide
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Note 5.3 NONSTANDARD TRIGGER SYNTAX

Although the trigger syntax we describe here is part of the SQL standard, and
is supported by IBM DB2, most other database systems have nonstandard syntax
for specifying triggers and may not implement all features in the SQL standard.
We outline a few of the differences below; see the respective system manuals for
further details.

For example, in the Oracle syntax, unlike the SQL standard syntax, the keyword
row does not appear in the referencing statement. The keyword atomic does not
appear after begin. The reference to nrow in the select statement nested in the
update statement must begin with a colon (:) to inform the system that the variable
nrow is defined externally from the SQL statement. Further, subqueries are not
allowed in the when and if clauses. It is possible to work around this problem by
moving complex predicates from the when clause into a separate query that saves
the result into a local variable, and then reference that variable in an if clause, and
the body of the trigger then moves into the corresponding then clause. Further, in
Oracle, triggers are not allowed to execute a transaction rollback directly; however,
they can instead use a function called raise application error to not only roll
back the transaction but also return an error message to the user/application that
performed the update.

As another example, in Microsoft SQL Server the keyword on is used instead
of after. The referencing clause is omitted, and old and new rows are referenced by
the tuple variables deleted and inserted. Further, the for each row clause is omitted,
and when is replaced by if. The before specification is not supported, but an instead
of specification is supported.

In PostgreSQL, triggers do not have a body, but instead invoke a procedure for
each row, which can access variables new and old containing the old and new values
of the row. Instead of performing a rollback, the trigger can raise an exception with
an associated error message.

built-in facilities for database replication, making triggers unnecessary for replication
in most cases. Replicated databases are discussed in detail in Chapter 23.

Another problem with triggers lies in unintended execution of the triggered action
when data are loaded from a backup copy,5 or when database updates at a site are
replicated on a backup site. In such cases, the triggered action has already been exe-
cuted, and typically it should not be executed again. When loading data, triggers can be
disabled explicitly. For backup replica systems that may have to take over from the pri-
mary system, triggers would have to be disabled initially and enabled when the backup

5We discuss database backup and recovery from failures in detail in Chapter 19.
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course id prereq id

BIO-301 BIO-101
BIO-399 BIO-101
CS-190 CS-101
CS-315 CS-190
CS-319 CS-101
CS-319 CS-315
CS-347 CS-319

Figure 5.13 An instance of the prereq relation.

site takes over processing from the primary system. As an alternative, some database
systems allow triggers to be specified as not for replication, which ensures that they are
not executed on the backup site during database replication. Other database systems
provide a system variable that denotes that the database is a replica on which database
actions are being replayed; the trigger body should check this variable and exit if it is
true. Both solutions remove the need for explicit disabling and enabling of triggers.

Triggers should be written with great care, since a trigger error detected at runtime
causes the failure of the action statement that set off the trigger. Furthermore, the
action of one trigger can set off another trigger. In the worst case, this could even lead
to an infinite chain of triggering. For example, suppose an insert trigger on a relation
has an action that causes another (new) insert on the same relation. The insert action
then triggers yet another insert action, and so on ad infinitum. Some database systems
limit the length of such chains of triggers (for example, to 16 or 32) and consider longer
chains of triggering an error. Other systems flag as an error any trigger that attempts
to reference the relation whose modification caused the trigger to execute in the first
place.

Triggers can serve a very useful purpose, but they are best avoided when alterna-
tives exist. Many trigger applications can be substituted by appropriate use of stored
procedures, which we discussed in Section 5.2.

5.4 Recursive Queries

Consider the instance of the relation prereq shown in Figure 5.13 containing informa-
tion about the various courses offered at the university and the prerequisite for each
course.6

Suppose now that we want to find out which courses are a prerequisite whether di-
rectly or indirectly, for a specific course—say, CS-347. That is, we wish to find a course

6This instance of prereq differs from that used earlier for reasons that will become apparent as we use it to explain
recursive queries.
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that is a direct prerequisite for CS-347, or is a prerequisite for a course that is a prereq-
uisite for CS-347, and so on.

Thus, since CS-319 is a prerequisite for CS-347 and CS-315 and CS-101 are pre-
requisites for CS-319, CS-315 and CS-101 are also prerequisites (indirectly) for CS-347.
Then, since CS-190 is a prerequisite for CS-315, CS-190 is another indirect prerequisite
for CS-347. Continuing, we see that CS-101 is a prerequisite for CS-190, but note that
CS-101 was already added to the list of prerequisites for CS-347. In a real university,
rather than our example, we would not expect such a complex prerequisite structure,
but this example serves to show some of the situations that might possibly arise.

The transitive closure of the relation prereq is a relation that contains all pairs (cid,
pre) such that pre is a direct or indirect prerequisite of cid. There are numerous ap-
plications that require computation of similar transitive closures on hierarchies. For
instance, organizations typically consist of several levels of organizational units. Ma-
chines consist of parts that in turn have subparts, and so on; for example, a bicycle
may have subparts such as wheels and pedals, which in turn have subparts such as
tires, rims, and spokes. Transitive closure can be used on such hierarchies to find, for
example, all parts in a bicycle.

5.4.1 Transitive Closure Using Iteration

One way to write the preceding query is to use iteration: First find those courses that
are a direct prerequisite of CS-347, then those courses that are a prerequisite of all the
courses under the first set, and so on. This iterative process continues until we reach an
iteration where no courses are added. Figure 5.14 shows a function findAllPrereqs(cid)
to carry out this task; the function takes the course id of the course as a parameter (cid),
computes the set of all direct and indirect prerequisites of that course, and returns the
set.

The procedure uses three temporary tables:

• c prereq: stores the set of tuples to be returned.

• new c prereq: stores the courses found in the previous iteration.

• temp: used as temporary storage while sets of courses are manipulated.

Note that SQL allows the creation of temporary tables using the command create tem-
porary table; such tables are available only within the transaction executing the query
and are dropped when the transaction finishes. Moreover, if two instances of findAll-
Prereqs run concurrently, each gets its own copy of the temporary tables; if they shared
a copy, their result could be incorrect.

The procedure inserts all direct prerequisites of course cid into new c prereq before
the repeat loop. The repeat loop first adds all courses in new c prereq to c prereq. Next,
it computes prerequisites of all those courses in new c prereq, except those that have
already been found to be prerequisites of cid, and stores them in the temporary table
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create function findAllPrereqs(cid varchar(8))
– – Finds all courses that are prerequisite (directly or indirectly) for cid

returns table (course id varchar(8))
– – The relation prereq(course id, prereq id) specifies which course is
– – directly a prerequisite for another course.

begin
create temporary table c prereq (course id varchar(8));

– – table c prereq stores the set of courses to be returned
create temporary table new c prereq (course id varchar(8));

– – table new c prereq contains courses found in the previous iteration
create temporary table temp (course id varchar(8));

– – table temp is used to store intermediate results
insert into new c prereq

select prereq id
from prereq
where course id = cid;

repeat
insert into c prereq

select course id
from new c prereq;

insert into temp
(select prereq.prereq id

from new c prereq, prereq
where new c prereq.course id = prereq.course id

)
except (

select course id
from c prereq

);
delete from new c prereq;
insert into new c prereq

select *
from temp;

delete from temp;

until not exists (select * from new c prereq)
end repeat;
return table c prereq;

end

Figure 5.14 Finding all prerequisites of a course.
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Iteration Number Tuples in c1

0
1 (CS-319)
2 (CS-319), (CS-315), (CS-101)
3 (CS-319), (CS-315), (CS-101), (CS-190)
4 (CS-319), (CS-315), (CS-101), (CS-190)
5 done

Figure 5.15 Prerequisites of CS-347 in iterations of function findAllPrereqs.

temp. Finally, it replaces the contents of new c prereq with the contents of temp. The
repeat loop terminates when it finds no new (indirect) prerequisites.

Figure 5.15 shows the prerequisites that are found in each iteration when the proce-
dure is called for CS-347. While c prereq could have been updated in one SQL statement,
we need first to construct new c prereq so we can tell when nothing is being added in
the (final) iteration.

The use of the except clause in the function ensures that the function works even
in the (abnormal) case where there is a cycle of prerequisites. For example, if a is a
prerequisite for b, b is a prerequisite for c, and c is a prerequisite for a, there is a cycle.

While cycles may be unrealistic in course prerequisites, cycles are possible in other
applications. For instance, suppose we have a relation flights(to, from) that says which
cities can be reached from which other cities by a direct flight. We can write code
similar to that in the findAllPrereqs function, to find all cities that are reachable by a
sequence of one or more flights from a given city. All we have to do is to replace prereq
with flight and replace attribute names correspondingly. In this situation, there can be
cycles of reachability, but the function would work correctly since it would eliminate
cities that have already been seen.

5.4.2 Recursion in SQL

It is rather inconvenient to specify transitive closure using iteration. There is an alter-
native approach, using recursive view definitions, that is easier to use.

We can use recursion to define the set of courses that are prerequisites of a par-
ticular course, say CS-347, as follows. The courses that are prerequisites (directly or
indirectly) of CS-347 are:

• Courses that are prerequisites for CS-347.

• Courses that are prerequisites for those courses that are prerequisites (directly or
indirectly) for CS-347.

Note that case 2 is recursive, since it defines the set of courses that are prerequisites of
CS-347 in terms of the set of courses that are prerequisites of CS-347. Other examples
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with recursive rec prereq(course id, prereq id) as (
select course id, prereq id
from prereq

union
select rec prereq.course id, prereq.prereq id
from rec prereq, prereq
where rec prereq.prereq id = prereq.course id

)
select ∗
from rec prereq;

Figure 5.16 Recursive query in SQL.

of transitive closure, such as finding all subparts (direct or indirect) of a given part can
also be defined in a similar manner, recursively.

The SQL standard supports a limited form of recursion, using the with recursive
clause, where a view (or temporary view) is expressed in terms of itself. Recursive
queries can be used, for example, to express transitive closure concisely. Recall that
the with clause is used to define a temporary view whose definition is available only
to the query in which it is defined. The additional keyword recursive specifies that the
view is recursive.7

For example, we can find every pair (cid,pre) such that pre is directly or indirectly
a prerequisite for course cid, using the recursive SQL view shown in Figure 5.16.

Any recursive view must be defined as the union8 of two subqueries: a base query
that is nonrecursive and a recursive query that uses the recursive view. In the example
in Figure 5.16, the base query is the select on prereq while the recursive query computes
the join of prereq and rec prereq.

The meaning of a recursive view is best understood as follows: First compute the
base query and add all the resultant tuples to the recursively defined view relation
rec prereq (which is initially empty). Next compute the recursive query using the current
contents of the view relation, and add all the resulting tuples back to the view relation.
Keep repeating the above step until no new tuples are added to the view relation. The
resultant view relation instance is called a fixed point of the recursive view definition.
(The term “fixed” refers to the fact that there is no further change.) The view relation
is thus defined to contain exactly the tuples in the fixed-point instance.

Applying this logic to our example, we first find all direct prerequisites of each
course by executing the base query. The recursive query adds one more level of courses

7Some systems treat the recursive keyword as optional; others disallow it.
8Some systems, notably Oracle, require use of union all.
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in each iteration, until the maximum depth of the course-prereq relationship is reached.
At this point no new tuples are added to the view, and a fixed point is reached.

To find the prerequisites of a specific course, such as CS-347, we can modify the
outer level query by adding a where clause “where rec prereq.course id = ‘CS-347‘”. One
way to evaluate the query with the selection is to compute the full contents of rec prereq
using the iterative technique, and then select from this result only those tuples whose
course id is CS-347. However, this would result in computing (course, prerequisite)
pairs for all courses, all of which are irrelevant except for those for the course CS-347.
In fact the database system is not required to use this iterative technique to compute
the full result of the recursive query and then perform the selection. It may get the
same result using other techniques that may be more efficient, such as that used in the
function findAllPrereqs which we saw earlier. See the bibliographic notes for references
to more information on this topic.

There are some restrictions on the recursive query in a recursive view; specifically,
the query must be monotonic, that is, its result on a view relation instance V1 must be a
superset of its result on a view relation instance V2 if V1 is a superset of V2. Intuitively,
if more tuples are added to the view relation, the recursive query must return at least
the same set of tuples as before, and possibly return additional tuples.

In particular, recursive queries may not use any of the following constructs, since
they would make the query nonmonotonic:

• Aggregation on the recursive view.

• not exists on a subquery that uses the recursive view.

• Set difference (except) whose right-hand side uses the recursive view.

For instance, if the recursive query was of the form r − v, where v is the recursive view,
if we add a tuple to v, the result of the query can become smaller; the query is therefore
not monotonic.

The meaning of recursive views can be defined by the iterative procedure as long as
the recursive query is monotonic; if the recursive query is nonmonotonic, the meaning
of the view is hard to define. SQL therefore requires the queries to be monotonic. Recur-
sive queries are discussed in more detail in the context of the Datalog query language,
in Section 27.4.6.

SQL also allows creation of recursively defined permanent views by using create re-
cursive view in place of with recursive. Some implementations support recursive queries
using a different syntax. This includes the Oracle start with / connect by prior syntax
for what it calls hierarchical queries. 9 See the respective system manuals for further
details.

9Staring with Oracle 12.c, the standard syntax is accepted in addition to the legacy hierarchical syntax, with the recursive
keyword omitted and with the requirement in our example that union all be used instead of union.
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5.5 Advanced Aggregation Features

The aggregation support in SQL is quite powerful and handles most common tasks
with ease. However, there are some tasks that are hard to implement efficiently with
the basic aggregation features. In this section, we study features in SQL to handle some
such tasks.

5.5.1 Ranking

Finding the position of a value within a set is a common operation. For instance, we
may wish to assign students a rank in class based on their grade-point average (GPA),
with the rank 1 going to the student with the highest GPA, the rank 2 to the student
with the next highest GPA, and so on. A related type of query is to find the percentile
in which a value in a (multi)set belongs, for example, the bottom third, middle third,
or top third. While such queries can be expressed using the SQL constructs we have
seen so far, they are difficult to express and inefficient to evaluate. Programmers may
resort to writing the query partly in SQL and partly in a programming language. We
study SQL support for direct expression of these types of queries here.

In our university example, the takes relation shows the grade each student earned
in each course taken. To illustrate ranking, let us assume we have a view student grades
(ID, GPA) giving the grade-point average of each student.10

Ranking is done with an order by specification. The following query gives the rank
of each student:

select ID, rank() over (order by (GPA) desc) as s rank
from student grades;

Note that the order of tuples in the output is not defined, so they may not be sorted by
rank. An extra order by clause is needed to get them in sorted order, as follows:

select ID, rank () over (order by (GPA) desc) as s rank
from student grades
order by s rank;

A basic issue with ranking is how to deal with the case of multiple tuples that are
the same on the ordering attribute(s). In our example, this means deciding what to do
if there are two students with the same GPA. The rank function gives the same rank to
all tuples that are equal on the order by attributes. For instance, if the highest GPA is
shared by two students, both would get rank 1. The next rank given would be 3, not 2,
so if three students get the next highest GPA, they would all get rank 3, and the next

10The SQL statement to create the view student grades is somewhat complex since we must convert the letter grades
in the takes relation to numbers and weight the grades for each course by the number of credits for that course. The
definition of this view is the goal of Exercise 4.6.
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student(s) would get rank 6, and so on. There is also a dense rank function that does
not create gaps in the ordering. In the preceding example, the tuples with the second
highest value all get rank 2, and tuples with the third highest value get rank 3, and so
on.

If there are null values among the values being ranked, they are treated as the
highest values. That makes sense in some situations, although for our example, it would
result in students with no courses being shown as having the highest GPAs. Thus, we
see that care needs to be taken in writing ranking queries in cases where null values
may appear. SQL permits the user to specify where they should occur by using nulls
first or nulls last, for instance:

select ID, rank () over (order by GPA desc nulls last) as s rank
from student grades;

It is possible to express the preceding query with the basic SQL aggregation func-
tions, using the following query:

select ID, (1 + (select count(*)
from student grades B
where B.GPA > A.GPA)) as s rank

from student grades A
order by s rank;

It should be clear that the rank of a student is merely 1 plus the number of students
with a higher GPA, which is exactly what the query specifies.11 However, this compu-
tation of each student’s rank takes time linear in the size of the relation, leading to an
overall time quadratic in the size of the relation. On large relations, the above query
could take a very long time to execute. In contrast, the system’s implementation of the
rank clause can sort the relation and compute the rank in much less time.

Ranking can be done within partitions of the data. For instance, suppose we wish
to rank students by department rather than across the entire university. Assume that a
view is defined like student grades but including the department name: dept grades(ID,
dept name, GPA). The following query then gives the rank of students within each sec-
tion:

select ID, dept name,
rank () over (partition by dept name order by GPA desc) as dept rank

from dept grades
order by dept name, dept rank;

11There is a slight technical difference if a student has not taken any courses and therefore has a null GPA. Due to how
comparisons of null values work in SQL, a student with a null GPA does not contribute to other students’ count values.
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The outer order by clause orders the result tuples by department name, and within each
department by the rank.

Multiple rank expressions can be used within a single select statement; thus, we
can obtain the overall rank and the rank within the department by using two rank
expressions in the same select clause. When ranking (possibly with partitioning) occurs
along with a group by clause, the group by clause is applied first, and partitioning and
ranking are done on the results of the group by. Thus, aggregate values can then be
used for ranking.

It is often the case, especially for large results, that we may be interested only in
the top-ranking tuples of the result rather than the entire list. For rank queries, this can
be done by nesting the ranking query within a containing query whose where clause
chooses only those tuples whose rank is lower than some specified value. For example,
to find the top 5 ranking students based on GPA we could extend our earlier example
by writing:

select *
from (select ID, rank() over (order by (GPA) desc) as s rank

from student grades)
where s rank <= 5;

This query does not necessarily give 5 students, since there could be ties. For example,
if 2 students tie for fifth, the result would contain a total of 6 tuples. Note that the
bottom n is simply the same as the top n with a reverse sorting order.

Several database systems provide nonstandard SQL syntax to specify directly that
only the top n results are required. In our example, this would allow us to find the
top 5 students without the need to use the rank function. However, those constructs
result in exactly the number of tuples specified (5 in our example), and so ties for the
final position are broken arbitrarily. The exact syntax for these “top n” queries varies
widely among systems; see Note 5.4 on page 222. Note that the top n constructs do
not support partitioning; so we cannot get the top n within each partition without
performing ranking.

Several other functions can be used in place of rank. For instance, percent rank of
a tuple gives the rank of the tuple as a fraction. If there are n tuples in the partition12

and the rank of the tuple is r, then its percent rank is defined as (r − 1)∕(n − 1) (and
as null if there is only one tuple in the partition). The function cume dist, short for
cumulative distribution, for a tuple is defined as p∕n where p is the number of tuples
in the partition with ordering values preceding or equal to the ordering value of the
tuple and n is the number of tuples in the partition. The function row number sorts
the rows and gives each row a unique number corresponding to its position in the sort
order; different rows with the same ordering value would get different row numbers, in
a nondeterministic fashion.

12The entire set is treated as a single partition if no explicit partition is used.
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Note 5.4 TOP-N QUERIES

Often, only the first few tuples of a query result are required. This may occur in
a ranking query where only top-ranked results are of interest. Another case where
this may occur is in a query with an order by from which only the top values are
of interest. Restricting results to the top-ranked results can be done using the rank
function as we saw earlier, but that syntax is rather cumbersome. Many databases
support a simpler syntax for such restriction, but the syntax varies widely among
the leading database systems. We provide a few examples here.

Some systems (including MySQL and PostgreSQL) allow a clause limit n to be
added at the end of an SQL query to specify that only the first n tuples should be
output. This clause can be used in conjunction with an order by clause to fetch the
top n tuples, as illustrated by the following query, which retrieves the ID and GPA
of the top 10 students in order of GPA:

select ID, GPA
from student grades
order by GPA desc
limit 10;

In IBM DB2 and the most recent versions of Oracle, the equivalent of the limit
clause is fetch first 10 rows only. Microsoft SQL Server places its version of this
feature in the select clause rather than adding a separate limit clause. The select
clause is written as: select top 10 ID, GPA.

Oracle (both current and older versions) offers the concept of a row number to
provide this feature. A special, hidden attribute rownum numbers tuples of a result
relation in order of retrieval. This attribute can then be used in a where clause
within a containing query. However, the use of this feature is a bit tricky, since the
rownum is decided before rows are sorted by an order by clause. To use it properly,
a nested query should be used as follows:

select *
from (select ID, GPA

from student grades
order by GPA desc)

where rownum <= 10;

The nested query ensures that the predicate on rownum is applied only after the
order by is applied.

Some database systems have features allowing tuple limits to be exceeded in
case of ties. See your system’s documentation for details.
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Finally, for a given constant n, the ranking function ntile(n) takes the tuples in each
partition in the specified order and divides them into n buckets with equal numbers of
tuples.13 For each tuple, ntile(n) then gives the number of the bucket in which it is
placed, with bucket numbers starting with 1. This function is particularly useful for
constructing histograms based on percentiles. We can show the quartile into which
each student falls based on GPA by the following query:

select ID, ntile(4) over (order by (GPA desc)) as quartile
from student grades;

5.5.2 Windowing

Window queries compute an aggregate function over ranges of tuples. This is useful,
for example, to compute an aggregate of a fixed range of time; the time range is called a
window. Windows may overlap, in which case a tuple may contribute to more than one
window. This is unlike the partitions we saw earlier, where a tuple could contribute to
only one partition.

An example of the use of windowing is trend analysis. Consider our earlier sales
example. Sales may fluctuate widely from day to day based on factors like weather (e.g.,
a snowstorm, flood, hurricane, or earthquake might reduce sales for a period of time).
However, over a sufficiently long period of time, fluctuations might be less (continuing
the example, sales may “make up” for weather-related downturns). Stock-market trend
analysis is another example of the use of the windowing concept. Various “moving
averages” are found on business and investment web sites.

It is relatively easy to write an SQL query using those features we have already
studied to compute an aggregate over one window, for example, sales over a fixed 3-
day period. However, if we want to do this for every 3-day period, the query becomes
cumbersome.

SQL provides a windowing feature to support such queries. Suppose we are given a
view tot credits (year, num credits) giving the total number of credits taken by students
in each year.14 Note that this relation can contain at most one tuple for each year.
Consider the following query:

select year, avg(num credits)
over (order by year rows 3 preceding)
as avg total credits

from tot credits;

13If the total number of tuples in a partition is not divisible by n, then the number of tuples in each bucket can differ by at
most 1. Tuples with the same value for the ordering attribute may be assigned to different buckets, nondeterministically,
in order to make the number of tuples in each bucket equal.
14We leave the definition of this view in terms of our university example as an exercise.
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This query computes averages over the three preceding tuples in the specified sort order.
Thus, for 2019, if tuples for years 2018 and 2017 are present in the relation tot credits,
since each year is represented by only one tuple, the result of the window definition is
the average of the values for years 2017, 2018, and 2019. The averages each year would
be computed in a similar manner. For the earliest year in the relation tot credits, the
average would be over only that year itself, while for the next year, the average would
be over 2 years. Note that this example makes sense only because each year appears
only once in tot weight. Were this not the case, then there would be several possible
orderings of tuples since tuples for the same year could be in any order. We shall see
shortly a windowing query that uses a range of values instead of a specific number of
tuples.

Suppose that instead of going back a fixed number of tuples, we want the window
to consist of all prior years. That means the number of prior years considered is not
fixed. To get the average total credits over all prior years, we write:

select year, avg(num credits)
over (order by year rows unbounded preceding)
as avg total credits

from tot credits;

It is possible to use the keyword following in place of preceding. If we did this in
our example, the year value specifies the beginning of the window instead of the end.
Similarly, we can specify a window beginning before the current tuple and ending after
it:

select year, avg(num credits)
over (order by year rows between 3 preceding and 2 following)
as avg total credits

from tot credits;

In our example, all tuples pertain to the entire university. Suppose instead we have
credit data for each department in a view tot credits dept (dept name, year, num credits)
giving the total number of credits students took with the particular department in the
specified year. (Again, we leave writing this view definition as an exercise.) We can
write windowing queries that treat each department separately by partitioning by dept
name:

select dept name, year, avg(num credits)
over (partition by dept name

order by year rows between 3 preceding and current row)
as avg total credits

from tot credits dept;
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item name color clothes size quantity

dress dark small 2
dress dark medium 6
dress dark large 12
dress pastel small 4
dress pastel medium 3
dress pastel large 3
dress white small 2
dress white medium 3
dress white large 0
pants dark small 14
pants dark medium 6
pants dark large 0
pants pastel small 1
pants pastel medium 0
pants pastel large 1
pants white small 3
pants white medium 0
pants white large 2
shirt dark small 2
shirt dark medium 6
shirt dark large 6
shirt pastel small 4
shirt pastel medium 1
shirt pastel large 2
shirt white small 17
shirt white medium 1
shirt white large 10
skirt dark small 2
skirt dark medium 5
skirt dark large 1
skirt pastel small 11
skirt pastel medium 9
skirt pastel large 15
skirt white small 2
skirt white medium 5
skirt white large 3

Figure 5.17 An example of sales relation.



226 Chapter 5 Advanced SQL

item name clothes size dark pastel white

dress small 2 4 2
dress medium 6 3 3
dress large 12 3 0
pants small 14 1 3
pants medium 6 0 0
pants large 0 1 2
shirt small 2 4 17
shirt medium 6 1 1
shirt large 6 2 10
skirt small 2 11 2
skirt medium 5 9 5
skirt large 1 15 3

Figure 5.18 Result of SQL pivot operation on the sales relation of Figure 5.17.

The use of the keyword range in place of row allows the windowing query to cover
all tuples with a particular value rather than covering a specific number of tuples. Thus
for example, rows current row refers to exactly one tuple, while range current row refers
to all tuples whose value for the sort attribute is the same as that of the current tuple.
The range keyword is not implemented fully in every system.15

5.5.3 Pivoting

Consider an application where a shop wants to find out what kinds of clothes are pop-
ular. Let us suppose that clothes are characterized by their item name, color, and size,
and that we have a relation sales with the schema.

sales (item name, color, clothes size, quantity)

Suppose that item name can take on the values (skirt, dress, shirt, pants), color can
take on the values (dark, pastel, white), clothes size can take on values (small, medium,
large), and quantity is an integer value representing the total number of items sold of a
given (item name, color, clothes size) combination. An instance of the sales relation is
shown in Figure 5.17.

Figure 5.18 shows an alternative way to view the data that is present in Figure 5.17;
the values “dark”, “pastel”, and “white” of attribute color have become attribute names
in Figure 5.18. The table in Figure 5.18 is an example of a cross-tabulation (or cross-tab,
for short), also referred to as a pivot-table.

The values of the new attributes dark, pastel and white in our example are defined as
follows. For a particular combination of item name, clothes size (e.g., (“dress”, “dark”))

15Some systems, such as PostgreSQL, allow range only with unbounded.



5.5 Advanced Aggregation Features 227

if there is a single tuple with color value “dark”, the quantity value of that attribute ap-
pears as the value for the attribute dark. If there are multiple such tuples, the values
are aggregated using the sum aggregate in our example; in general other aggregate func-
tions could be used instead. Values for the other two attributes, pastel and white, are
similarly defined.

In general, a cross-tab is a table derived from a relation (say, R), where values for
some attribute of relation R (say, A) become attribute names in the result; the attribute
A is the pivot attribute. Cross-tabs are widely used for data analysis, and are discussed
in more detail in Section 11.3.

Several SQL implementations, such as Microsoft SQL Server, and Oracle, support
a pivot clause that allows creation of cross-tabs. Given the sales relation from Figure
5.17, the query:

select *
from sales
pivot (

sum(quantity)
for color in (’dark’, ’pastel’, ’white’)

)

returns the result shown in Figure 5.18.
Note that the for clause within the pivot clause specifies (i) a pivot attribute (color,

in the above query), (ii) the values of that attribute that should appear as attribute
names in the pivot result (dark, pastel and white, in the above query), and (iii) the
aggregate function that should be used to compute the value of the new attributes (ag-
gregate function sum, on the attribute quantity, in the above query).

The attribute color and quantity do not appear in the result, but all other attributes
are retained. In case more than one tuple contributes values to a given cell, the aggregate
operation within the pivot clause specifies how the values should be combined. In the
above example, the quantity values are aggregated using the sum function.

A query using pivot can be written using basic SQL constructs, without using the
pivot construct, but the construct simplifies the task of writing such queries.

5.5.4 Rollup and Cube

SQL supports generalizations of the group by construct using the rollup and cube op-
erations, which allow multiple group by queries to be run in a single query, with the
result returned as a single relation.

Consider again our retail shop example and the relation:

sales (item name, color, clothes size, quantity)

We can find the number of items sold in each item name by writing a simple group by
query:
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select item name, sum(quantity) as quantity
from sales
group by item name;

Similarly, we can find the number of items sold in each color, and each size. We
can further find a breakdown of sales by item-name and color by writing:

select item name, color, sum(quantity) as quantity
from sales
group by item name, color ;

Similarly, a query with group by item name, color, clothes size would allow us to see the
sales breakdown by (item name, color, clothes size) combinations.

Data analysts often need to view data aggregated in multiple ways as illustrated
above. The SQL rollup and cube constructs provide a concise way to get multiple such
aggregates using a single query, instead of writing multiple queries.

The rollup construct is illustrated using the following query:

select item name, color, sum(quantity)
from sales
group by rollup(item name, color);

The result of the query is shown in Figure 5.19. The above query is equivalent to the
following query using the union operation.

(select item name, color, sum(quantity) as quantity
from sales
group by item name, color)
union
(select item name, null as color, sum(quantity) as quantity
from sales
group by item name)
union
(select null as item name, null as color, sum(quantity) as quantity
from sales)

The construct group by rollup(item name, color) generates 3 groupings:

{ (item name, color), (item name), () }

where () denotes an empty group by list. Observe that a grouping is present for each
prefix of the attributes listed in the rollup clause, including the empty prefix. The query
result contains the union of the results by these groupings. The different groupings
generate different schemas; to bring the results of the different groupings to a common
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item name color quantity

skirt dark 8
skirt pastel 35
skirt white 10
dress dark 20
dress pastel 10
dress white 5
shirt dark 14
shirt pastel 7
shirt white 28
pants dark 20
pants pastel 2
pants white 5
skirt null 53
dress null 35
shirt null 49
pants null 27
null null 164

Figure 5.19 Query result: group by rollup (item name, color).

schema, tuples in the result contain null as the value of those attributes not present in
a particular grouping.16

The cube construct generates an even larger number of groupings, consisting of all
subsets of the attributes listed in the cube construct. For example, the query:

select item name, color, clothes size, sum(quantity)
from sales
group by cube(item name, color, clothes size);

generates the following groupings:

{ (item name, color, clothes size), (item name, color), (item name, clothes size),
(color, clothes size), (item name), (color), (clothes size), () }

To bring the results of the different groupings to a common schema, as with rollup, tu-
ples in the result contain null as the value of those attributes not present in a particular
grouping.

16The SQL outer union operation can be used to perform a union of relations that may not have a common schema.
The resultant schema has the union of all the attributes across the inputs; each input tuple is mapped to an output
tuple by adding all the attributes missing in that tuple, with the value set to null. Our union query can be written using
outer union, and in that case we do not need to explicitly generate null-value attributes using null as attribute-name
constructs, as we have done in the above query.
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Multiple rollups and cubes can be used in a single group by clause. For instance,
the following query:

select item name, color, clothes size, sum(quantity)
from sales
group by rollup(item name), rollup(color, clothes size);

generates the groupings:

{ (item name, color, clothes size), (item name, color), (item name),
(color, clothes size), (color), () }

To understand why, observe that rollup(item name) generates a set of two group-
ings, {(item name), ()}, while rollup(color, clothes size) generates a set of three group-
ings, {(color, clothes size), (color), () }. The Cartesian product of the two sets gives us
the six groupings shown.

Neither the rollup nor the cube clause gives complete control on the groupings
that are generated. For instance, we cannot use them to specify that we want only
groupings {(color, clothes size), (clothes size, item name)}. Such restricted groupings can
be generated by using the grouping sets construct, in which one can specify the specific
list of groupings to be used. To obtain only groupings {(color, clothes size), (clothes size,
item name)}, we would write:

select item name, color, clothes size, sum(quantity)
from sales
group by grouping sets ((color, clothes size), (clothes size, item name));

Analysts may want to distinguish those nulls generated by rollup and cube opera-
tions from “normal” nulls actually stored in the database or arising from an outer join.
The grouping() function returns 1 if its argument is a null value generated by a rollup
or cube and 0 otherwise (note that the grouping function is different from the grouping
sets construct). If we wish to display the rollup query result shown in Figure 5.19, but
using the value “all” in place of nulls generated by rollup, we can use the query:

select (case when grouping(item name) = 1 then ’all’
else item name end) as item name,

(case when grouping(color) = 1 then ’all’
else color end) as color,

sum(quantity) as quantity
from sales
group by rollup(item name, color);

One might consider using the following query using coalesce, but it would incor-
rectly convert null item names and colors to all:
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select coalesce (item name,’all’) as item name,
coalesce (color,’all’) as color,

sum(quantity) as quantity
from sales
group by rollup(item name, color);

5.6 Summary

• SQL queries can be invoked from host languages via embedded and dynamic SQL.
The ODBC and JDBC standards define application program interfaces to access
SQL databases from C and Java language programs.

• Functions and procedures can be defined using SQL procedural extensions that
allow iteration and conditional (if-then-else) statements.

• Triggers define actions to be executed automatically when certain events occur and
corresponding conditions are satisfied. Triggers have many uses, such as business
rule implementation and audit logging. They may carry out actions outside the
database system by means of external language routines.

• Some queries, such as transitive closure, can be expressed either by using itera-
tion or by using recursive SQL queries. Recursion can be expressed using either
recursive views or recursive with clause definitions.

• SQL supports several advanced aggregation features, including ranking and win-
dowing queries, as well as pivot, and rollup/cube operations. These simplify the
expression of some aggregates and allow more efficient evaluation.

Review Terms

• JDBC

• Prepared statements

• SQL injection

• Metadata

• Updatable result sets

• Open Database Connectivity
(ODBC)

• Embedded SQL

• Embedded database

• Stored procedures and functions

• Table functions.

• Parameterized views

• Persistent Storage Module (PSM).

• Exception conditions

• Handlers

• External language routines

• Sandbox

• Trigger

• Transitive closure

• Hierarchies
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• Create temporary table

• Base query

• Recursive query

• Fixed point

• Monotonic

• Windowing

• Ranking functions

• Cross-tabulation

• Cross-tab

• Pivot-table

• Pivot

• SQL group by cube, group by rollup

Practice Exercises

5.1 Consider the following relations for a company database:

• emp (ename, dname, salary)

• mgr (ename, mname)

and the Java code in Figure 5.20, which uses the JDBC API. Assume that the
userid, password, machine name, etc. are all okay. Describe in concise English
what the Java program does. (That is, produce an English sentence like “It finds
the manager of the toy department,” not a line-by-line description of what each
Java statement does.)

5.2 Write a Java method using JDBC metadata features that takes a ResultSet as
an input parameter and prints out the result in tabular form, with appropriate
names as column headings.

5.3 Suppose that we wish to find all courses that must be taken before some given
course. That means finding not only the prerequisites of that course, but prereq-
uisites of prerequisites, and so on. Write a complete Java program using JDBC
that:

• Takes a course id value from the keyboard.

• Finds prerequisites of that course using an SQL query submitted via JDBC.

• For each course returned, finds its prerequisites and continues this process
iteratively until no new prerequisite courses are found.

• Prints out the result.

For this exercise, do not use a recursive SQL query, but rather use the iterative
approach described previously. A well-developed solution will be robust to the
error case where a university has accidentally created a cycle of prerequisites
(that is, for example, course A is a prerequisite for course B, course B is a pre-
requisite for course C, and course C is a prerequisite for course A).
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import java.sql.*;
public class Mystery {
public static void main(String[] args) {

try (
Connection con=DriverManager.getConnection(

"jdbc:oracle:thin:star/X@//edgar.cse.lehigh.edu:1521/XE");
q = "select mname from mgr where ename = ?";
PreparedStatement stmt=con.prepareStatement();

)
{

String q;
String empName = "dog";
boolean more;
ResultSet result;
do {

stmt.setString(1, empName);
result = stmt.executeQuery(q);
more = result.next();
if (more) {

empName = result.getString("mname");
System.out.println (empName);

}
} while (more);
s.close();
con.close();

}
catch(Exception e){

e.printStackTrace();
}

}
}

Figure 5.20 Java code for Exercise 5.1 (using Oracle JDBC).

5.4 Describe the circumstances in which you would choose to use embedded SQL
rather than SQL alone or only a general-purpose programming language.

5.5 Show how to enforce the constraint “an instructor cannot teach two different
sections in a semester in the same time slot.” using a trigger (remember that the
constraint can be violated by changes to the teaches relation as well as to the
section relation).
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branch (branch name, branch city, assets)
customer (customer name, customer street, cust omer city)
loan (loan number, branch name, amount)
borrower (customer name, loan number)
account (account number, branch name, balance )
depositor (customer name, account number)

Figure 5.21 Banking database for Exercise 5.6.

5.6 Consider the bank database of Figure 5.21. Let us define a view branch cust as
follows:

create view branch cust as
select branch name, customer name
from depositor, account
where depositor.account number = account.account number

Suppose that the view is materialized; that is, the view is computed and stored.
Write triggers to maintain the view, that is, to keep it up-to-date on insertions
to depositor or account. It is not necessary to handle deletions or updates. Note
that, for simplicity, we have not required the elimination of duplicates.

5.7 Consider the bank database of Figure 5.21. Write an SQL trigger to carry out
the following action: On delete of an account, for each customer-owner of the
account, check if the owner has any remaining accounts, and if she does not,
delete her from the depositor relation.

5.8 Given a relation S(student, subject, marks), write a query to find the top 10 stu-
dents by total marks, by using SQL ranking. Include all students tied for the final
spot in the ranking, even if that results in more than 10 total students.

5.9 Given a relation nyse(year, month, day, shares traded, dollar volume) with trad-
ing data from the New York Stock Exchange, list each trading day in order of
number of shares traded, and show each day’s rank.

5.10 Using the relation from Exercise 5.9, write an SQL query to generate a report
showing the number of shares traded, number of trades, and total dollar volume
broken down by year, each month of each year, and each trading day.

5.11 Show how to express group by cube(a, b, c, d) using rollup; your answer should
have only one group by clause.
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Exercises

5.12 Write a Java program that allows university administrators to print the teaching
record of an instructor.

a. Start by having the user input the login ID and password; then open the
proper connection.

b. The user is asked next for a search substring and the system returns (ID,
name) pairs of instructors whose names match the substring. Use the like
('%substring%') construct in SQL to do this. If the search comes back
empty, allow continued searches until there is a nonempty result.

c. Then the user is asked to enter an ID number, which is a number between
0 and 99999. Once a valid number is entered, check if an instructor with
that ID exists. If there is no instructor with the given ID, print a reasonable
message and quit.

d. If the instructor has taught no courses, print a message saying that. Other-
wise print the teaching record for the instructor, showing the department
name, course identifier, course title, section number, semester, year, and
total enrollment (and sort those by dept name, course id, year, semester).

Test carefully for bad input. Make sure your SQL queries won’t throw an excep-
tion. At login, exceptions may occur since the user might type a bad password,
but catch those exceptions and allow the user to try again.

5.13 Suppose you were asked to define a class MetaDisplay in Java, containing a
method static void printTable(String r); the method takes a relation name r as
input, executes the query “select * from r”, and prints the result out in tabular
format, with the attribute names displayed in the header of the table.

a. What do you need to know about relation r to be able to print the result
in the specified tabular format?

b. What JDBC methods(s) can get you the required information?

c. Write the method printTable(String r) using the JDBC API.

5.14 Repeat Exercise 5.13 using ODBC, defining void printTable(char *r) as a func-
tion instead of a method.

5.15 Consider an employee database with two relations

employee (employee name, street, city)
works (employee name, company name, salary)
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where the primary keys are underlined. Write a function avg salary that takes a
company name as an argument and finds the average salary of employees at that
company. Then, write an SQL statement, using that function, to find companies
whose employees earn a higher salary, on average, than the average salary at
“First Bank”.

5.16 Consider the relational schema

part(part id, name, cost)
subpart(part id, subpart id, count)

where the primary-key attributes are underlined. A tuple (p1, p2, 3) in the subpart
relation denotes that the part with part id p2 is a direct subpart of the part
with part id p1, and p1 has 3 copies of p2. Note that p2 may itself have further
subparts. Write a recursive SQL query that outputs the names of all subparts of
the part with part-id 'P-100'.

5.17 Consider the relational schema from Exercise 5.16. Write a JDBC function using
nonrecursive SQL to find the total cost of part “P-100”, including the costs of all
its subparts. Be sure to take into account the fact that a part may have multiple
occurrences of a subpart. You may use recursion in Java if you wish.

5.18 Redo Exercise 5.12 using the language of your database system for coding stored
procedures and functions. Note that you are likely to have to consult the online
documentation for your system as a reference, since most systems use syntax
differing from the SQL standard version followed in the text. Specifically, write
a prodedure that takes an instructor ID as an argument and produces printed
output in the format specified in Exercise 5.12, or an appropriate message if
the instructor does not exist or has taught no courses. (For a simpler version
of this exercise, rather than providing printed output, assume a relation with
the appropriate schema and insert your answer there without worrying about
testing for erroneous argument values.)

5.19 Suppose there are two relations r and s, such that the foreign key B of r references
the primary key A of s. Describe how the trigger mechanism can be used to
implement the on delete cascade option when a tuple is deleted from s.

5.20 The execution of a trigger can cause another action to be triggered. Most
database systems place a limit on how deep the nesting can be. Explain why
they might place such a limit.

5.21 Modify the recursive query in Figure 5.16 to define a relation

prereq depth(course id, prereq id, depth)
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building room number time slot id course id sec id

Garfield 359 A BIO-101 1
Garfield 359 B BIO-101 2
Saucon 651 A CS-101 2
Saucon 550 C CS-319 1
Painter 705 D MU-199 1
Painter 403 D FIN-201 1

Figure 5.22 The relation r for Exercise 5.24.

where the attribute depth indicates how many levels of intermediate prerequi-
sites there are between the course and the prerequisite. Direct prerequisites have
a depth of 0. Note that a prerequisite course may have multiple depths and thus
may appear more than once.

5.22 Given relation s(a, b, c), write an SQL statement to generate a histogram show-
ing the sum of c values versus a, dividing a into 20 equal-sized partitions (i.e.,
where each partition contains 5 percent of the tuples in s, sorted by a).

5.23 Consider the nyse relation of Exercise 5.9. For each month of each year, show
the total monthly dollar volume and the average monthly dollar volume for that
month and the two prior months. (Hint: First write a query to find the total
dollar volume for each month of each year. Once that is right, put that in the
from clause of the outer query that solves the full problem. That outer query
will need windowing. The subquery does not.)

5.24 Consider the relation, r, shown in Figure 5.22. Give the result of the following
query:

select building, room number, time slot id, count(*)
from r
group by rollup (building, room number, time slot id)

Tools

We provide sample JDBC code on our book web site db-book.com.
Most database vendors, including IBM, Microsoft, and Oracle, provide OLAP tools

as part of their database systems, or as add-on applications. Tools may be integrated
with a larger “business intelligence” product such as IBM Cognos. Many companies also
provide analysis tools for specific applications, such as customer relationship manage-
ment (e.g., Oracle Siebel CRM).
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Further Reading

More details about JDBC may be found at docs.oracle.com/javase/tutorial/jdbc.
In order to write stored procedures, stored functions, and triggers that can be exe-

cuted on a given system, you need to refer to the system documentation.
Although our discussion of recursive queries focused on SQL syntax, there are

other approaches to recursion in relational databases. Datalog is a database language
based on the Prolog programming language and is described in more detail in Section
27.4 (available online).

OLAP features in SQL, including rollup, and cubes were introduced in SQL:1999,
and window functions with ranking and partitioning were added in SQL:2003. OLAP
features, including window functions, are supported by most databases today. Although
most follow the SQL standard syntax that we have presented, there are some differ-
ences; refer to the system manuals of the system that you are using for further details.
Microsoft’s Multidimensional Expressions (MDX) is an SQL-like query language de-
signed for querying OLAP cubes.

Credits

The photo of the sailboats in the beginning of the chapter is due to ©Pavel Nes-
vadba/Shutterstock.



PART 2

DATABASE DESIGN
The task of creating a database application is a complex one, involving design of the
database schema, design of the programs that access and update the data, and design
of a security scheme to control access to data. The needs of the users play a central
role in the design process. In this part, we focus primarily on the design of the database
schema. We also outline some of the other design tasks.

The entity-relationship (E-R) model described in Chapter 6 is a high-level data
model. Instead of representing all data in tables, it distinguishes between basic objects,
called entities, and relationships among these objects. It is often used as a first step in
database-schema design.

Relational database design—the design of the relational schema— was covered in-
formally in earlier chapters. There are, however, principles that can be used to distin-
guish good database designs from bad ones. These are formalized by means of several
“normal forms” that offer different trade-offs between the possibility of inconsistencies
and the efficiency of certain queries. Chapter 7 describes the formal design of relational
schemas.
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CHAP T E R 6
Database Design Using the E-R
Model

Up to this point in the text, we have assumed a given database schema and studied how
queries and updates are expressed. We now consider how to design a database schema
in the first place. In this chapter, we focus on the entity-relationship data model (E-
R), which provides a means of identifying entities to be represented in the database
and how those entities are related. Ultimately, the database design will be expressed in
terms of a relational database design and an associated set of constraints. We show in
this chapter how an E-R design can be transformed into a set of relation schemas and
how some of the constraints can be captured in that design. Then, in Chapter 7, we
consider in detail whether a set of relation schemas is a good or bad database design
and study the process of creating good designs using a broader set of constraints. These
two chapters cover the fundamental concepts of database design.

6.1 Overview of the Design Process

The task of creating a database application is a complex one, involving design of the
database schema, design of the programs that access and update the data, and design
of a security scheme to control access to data. The needs of the users play a central role
in the design process. In this chapter, we focus on the design of the database schema,
although we briefly outline some of the other design tasks later in the chapter.

6.1.1 Design Phases

For small applications, it may be feasible for a database designer who understands
the application requirements to decide directly on the relations to be created, their
attributes, and constraints on the relations. However, such a direct design process is
difficult for real-world applications, since they are often highly complex. Often no one
person understands the complete data needs of an application. The database designer
must interact with users of the application to understand the needs of the applica-
tion, represent them in a high-level fashion that can be understood by the users, and
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then translate the requirements into lower levels of the design. A high-level data model
serves the database designer by providing a conceptual framework in which to specify,
in a systematic fashion, the data requirements of the database users, and a database
structure that fulfills these requirements.

• The initial phase of database design is to characterize fully the data needs of the
prospective database users. The database designer needs to interact extensively
with domain experts and users to carry out this task. The outcome of this phase is
a specification of user requirements. While there are techniques for diagrammati-
cally representing user requirements, in this chapter we restrict ourselves to textual
descriptions of user requirements.

• Next, the designer chooses a data model and, by applying the concepts of the cho-
sen data model, translates these requirements into a conceptual schema of the
database. The schema developed at this conceptual-design phase provides a de-
tailed overview of the enterprise. The entity-relationship model, which we study in
the rest of this chapter, is typically used to represent the conceptual design. Stated
in terms of the entity-relationship model, the conceptual schema specifies the enti-
ties that are represented in the database, the attributes of the entities, the relation-
ships among the entities, and constraints on the entities and relationships. Typi-
cally, the conceptual-design phase results in the creation of an entity-relationship
diagram that provides a graphic representation of the schema.

The designer reviews the schema to confirm that all data requirements are
indeed satisfied and are not in conflict with one another. She can also examine the
design to remove any redundant features. Her focus at this point is on describing
the data and their relationships, rather than on specifying physical storage details.

• A fully developed conceptual schema also indicates the functional requirements
of the enterprise. In a specification of functional requirements, users describe the
kinds of operations (or transactions) that will be performed on the data. Example
operations include modifying or updating data, searching for and retrieving spe-
cific data, and deleting data. At this stage of conceptual design, the designer can
review the schema to ensure that it meets functional requirements.

• The process of moving from an abstract data model to the implementation of the
database proceeds in two final design phases.

° In the logical-design phase, the designer maps the high-level conceptual schema
onto the implementation data model of the database system that will be used.
The implementation data model is typically the relational data model, and this
step typically consists of mapping the conceptual schema defined using the
entity-relationship model into a relation schema.

° Finally, the designer uses the resulting system-specific database schema in the
subsequent physical-design phase, in which the physical features of the database
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are specified. These features include the form of file organization and choice
of index structures, discussed in Chapter 13 and Chapter 14.

The physical schema of a database can be changed relatively easily after an applica-
tion has been built. However, changes to the logical schema are usually harder to carry
out, since they may affect a number of queries and updates scattered across application
code. It is therefore important to carry out the database design phase with care, before
building the rest of the database application.

6.1.2 Design Alternatives

A major part of the database design process is deciding how to represent in the design
the various types of “things” such as people, places, products, and the like. We use the
term entity to refer to any such distinctly identifiable item. In a university database,
examples of entities would include instructors, students, departments, courses, and
course offerings. We assume that a course may have run in multiple semesters, as well
as multiple times in a semester; we refer to each such offering of a course as a section.
The various entities are related to each other in a variety of ways, all of which need to be
captured in the database design. For example, a student takes a course offering, while
an instructor teaches a course offering; teaches and takes are examples of relationships
between entities.

In designing a database schema, we must ensure that we avoid two major pitfalls:

1. Redundancy: A bad design may repeat information. For example, if we store the
course identifier and title of a course with each course offering, the title would be
stored redundantly (i.e., multiple times, unnecessarily) with each course offering.
It would suffice to store only the course identifier with each course offering, and
to associate the title with the course identifier only once, in a course entity.

Redundancy can also occur in a relational schema. In the university example
we have used so far, we have a relation with section information and a separate
relation with course information. Suppose that instead we have a single relation
where we repeat all of the course information (course id, title, dept name, credits)
once for each section (offering) of the course. Information about courses would
then be stored redundantly.

The biggest problem with such redundant representation of information is that
the copies of a piece of information can become inconsistent if the information
is updated without taking precautions to update all copies of the information.
For example, different offerings of a course may have the same course identifier,
but may have different titles. It would then become unclear what the correct title
of the course is. Ideally, information should appear in exactly one place.

2. Incompleteness: A bad design may make certain aspects of the enterprise diffi-
cult or impossible to model. For example, suppose that, as in case (1) above,
we only had entities corresponding to course offering, without having an entity
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corresponding to courses. Equivalently, in terms of relations, suppose we have
a single relation where we repeat all of the course information once for each
section that the course is offered. It would then be impossible to represent infor-
mation about a new course, unless that course is offered. We might try to make
do with the problematic design by storing null values for the section information.
Such a work-around is not only unattractive but may be prevented by primary-key
constraints.

Avoiding bad designs is not enough. There may be a large number of good designs
from which we must choose. As a simple example, consider a customer who buys a
product. Is the sale of this product a relationship between the customer and the prod-
uct? Alternatively, is the sale itself an entity that is related both to the customer and to
the product? This choice, though simple, may make an important difference in what
aspects of the enterprise can be modeled well. Considering the need to make choices
such as this for the large number of entities and relationships in a real-world enterprise,
it is not hard to see that database design can be a challenging problem. Indeed we shall
see that it requires a combination of both science and “good taste.”

6.2 The Entity-Relationship Model

The entity-relationship (E-R) data model was developed to facilitate database design by
allowing specification of an enterprise schema that represents the overall logical struc-
ture of a database.

The E-R model is very useful in mapping the meanings and interactions of real-
world enterprises onto a conceptual schema. Because of this usefulness, many database-
design tools draw on concepts from the E-R model. The E-R data model employs three
basic concepts: entity sets, relationship sets, and attributes. The E-R model also has an
associated diagrammatic representation, the E-R diagram. As we saw briefly in Section
1.3.1, an E-R diagram can express the overall logical structure of a database graphically.
E-R diagrams are simple and clear—qualities that may well account in large part for the
widespread use of the E-R model.

The Tools section at the end of the chapter provides information about several
diagram editors that you can use to create E-R diagrams.

6.2.1 Entity Sets

An entity is a “thing” or “object” in the real world that is distinguishable from all other
objects. For example, each person in a university is an entity. An entity has a set of prop-
erties, and the values for some set of properties must uniquely identify an entity. For
instance, a person may have a person id property whose value uniquely identifies that
person. Thus, the value 677-89-9011 for person id would uniquely identify one particu-
lar person in the university. Similarly, courses can be thought of as entities, and course
id uniquely identifies a course entity in the university. An entity may be concrete, such
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as a person or a book, or it may be abstract, such as a course, a course offering, or a
flight reservation.

An entity set is a set of entities of the same type that share the same properties,
or attributes. The set of all people who are instructors at a given university, for exam-
ple, can be defined as the entity set instructor. Similarly, the entity set student might
represent the set of all students in the university.

In the process of modeling, we often use the term entity set in the abstract, without
referring to a particular set of individual entities. We use the term extension of the entity
set to refer to the actual collection of entities belonging to the entity set. Thus, the set
of actual instructors in the university forms the extension of the entity set instructor.
This distinction is similar to the difference between a relation and a relation instance,
which we saw in Chapter 2.

Entity sets do not need to be disjoint. For example, it is possible to define the entity
set person consisting of all people in a university. A person entity may be an instructor
entity, a student entity, both, or neither.

An entity is represented by a set of attributes. Attributes are descriptive properties
possessed by each member of an entity set. The designation of an attribute for an en-
tity set expresses that the database stores similar information concerning each entity
in the entity set; however, each entity may have its own value for each attribute. Pos-
sible attributes of the instructor entity set are ID, name, dept name, and salary. In real
life, there would be further attributes, such as street number, apartment number, state,
postal code, and country, but we generally omit them to keep our examples simple.
Possible attributes of the course entity set are course id, title, dept name, and credits.

In this section we consider only attributes that are simple— those not divided into
subparts. In Section 6.3, we discuss more complex situations where attributes can be
composite and multivalued.

Each entity has a value for each of its attributes. For instance, a particular instructor
entity may have the value 12121 for ID, the value Wu for name, the value Finance for
dept name, and the value 90000 for salary.

The ID attribute is used to identify instructors uniquely, since there may be more
than one instructor with the same name. Historically, many enterprises found it con-
venient to use a government-issued identification number as an attribute whose value
uniquely identifies the person. However, that is considered bad practice for reasons of
security and privacy. In general, the enterprise would have to create and assign its own
unique identifier for each instructor.

A database thus includes a collection of entity sets, each of which contains any
number of entities of the same type. A database for a university may include a number
of other entity sets. For example, in addition to keeping track of instructors and stu-
dents, the university also has information about courses, which are represented by the
entity set course with attributes course id, title, dept name and credits. In a real setting,
a university database may keep dozens of entity sets.

An entity set is represented in an E-R diagram by a rectangle, which is divided
into two parts. The first part, which in this text is shaded blue, contains the name of
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instructor

ID
name
salary

student

ID
name
tot_cred

Figure 6.1 E-R diagram showing entity sets instructor and student.

the entity set. The second part contains the names of all the attributes of the entity
set. The E-R diagram in Figure 6.1 shows two entity sets instructor and student. The
attributes associated with instructor are ID, name, and salary. The attributes associated
with student are ID, name, and tot cred. Attributes that are part of the primary key are
underlined (see Section 6.5).

6.2.2 Relationship Sets

A relationship is an association among several entities. For example, we can define a
relationship advisor that associates instructor Katz with student Shankar. This relation-
ship specifies that Katz is an advisor to student Shankar. A relationship set is a set of
relationships of the same type.

Consider two entity sets instructor and student. We define the relationship set ad-
visor to denote the associations between students and the instructors who act as their
advisors. Figure 6.2 depicts this association. To keep the figure simple, only some of
the attributes of the two entity sets are shown.

A relationship instance in an E-R schema represents an association between the
named entities in the real-world enterprise that is being modeled. As an illustration,
the individual instructor entity Katz, who has instructor ID 45565, and the student en-
tity Shankar, who has student ID 12345, participate in a relationship instance of advi-

instructor
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00128
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Zhang

Brown

Aoi
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Peltier

Figure 6.2 Relationship set advisor (only some attributes of instructor and student are
shown).
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Figure 6.3 E-R diagram showing relationship set advisor.

sor. This relationship instance represents that in the university, the instructor Katz is
advising student Shankar.

A relationship set is represented in an E-R diagram by a diamond, which is linked
via lines to a number of different entity sets (rectangles). The E-R diagram in Figure 6.3
shows the two entity sets instructor and student, related through a binary relationship
set advisor.

As another example, consider the two entity sets student and section, where section
denotes an offering of a course. We can define the relationship set takes to denote the
association between a student and a section in which that student is enrolled.

Although in the preceding examples each relationship set was an association be-
tween two entity sets, in general a relationship set may denote the association of more
than two entity sets.

Formally, a relationship set is a mathematical relation on n ≥ 2 (possibly nondis-
tinct) entity sets. If E1, E2,… , En are entity sets, then a relationship set R is a subset
of

{(e1, e2,… , en) | e1 ∈ E1, e2 ∈ E2,… , en ∈ En}

where (e1, e2,… , en) is a relationship instance.
The association between entity sets is referred to as participation; i.e., the entity

sets E1, E2,… , En participate in relationship set R.
The function that an entity plays in a relationship is called that entity’s role. Since

entity sets participating in a relationship set are generally distinct, roles are implicit and
are not usually specified. However, they are useful when the meaning of a relationship
needs clarification. Such is the case when the entity sets of a relationship set are not
distinct; that is, the same entity set participates in a relationship set more than once,
in different roles. In this type of relationship set, sometimes called a recursive relation-
ship set, explicit role names are necessary to specify how an entity participates in a
relationship instance. For example, consider the entity set course that records informa-
tion about all the courses offered in the university. To depict the situation where one
course (C2) is a prerequisite for another course (C1) we have relationship set prereq
that is modeled by ordered pairs of course entities. The first course of a pair takes the
role of course C1, whereas the second takes the role of prerequisite course C2. In this
way, all relationships of prereq are characterized by (C1, C2) pairs; (C2, C1) pairs are
excluded. We indicate roles in E-R diagrams by labeling the lines that connect diamonds
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course

course id
title
credits

course_id

prereq_id
prereq

Figure 6.4 E-R diagram with role indicators.

to rectangles. Figure 6.4 shows the role indicators course id and prereq id between the
course entity set and the prereq relationship set.

A relationship may also have attributes called descriptive attributes. As an example
of descriptive attributes for relationships, consider the relationship set takes which re-
lates entity sets student and section. We may wish to store a descriptive attribute grade
with the relationship to record the grade that a student received in a course offering.

An attribute of a relationship set is represented in an E-R diagram by an undivided
rectangle. We link the rectangle with a dashed line to the diamond representing that
relationship set. For example, Figure 6.5 shows the relationship set takes between the
entity sets section and student. We have the descriptive attribute grade attached to the
relationship set takes. A relationship set may have multiple descriptive attributes; for
example, we may also store a descriptive attribute for credit with the takes relationship
set to record whether a student has taken the section for credit, or is auditing (or sitting
in on) the course.

Observe that the attributes of the two entity sets have been omitted from the E-R
diagram in Figure 6.5, with the understanding that they are specified elsewhere in the
complete E-R diagram for the university; we have already seen the attributes for student,
and we will see the attributes of section later in this chapter. Complex E-R designs may
need to be split into multiple diagrams that may be located in different pages. Rela-
tionship sets should be shown in only one location, but entity sets may be repeated in
more than one location. The attributes of an entity set should be shown in the first oc-
currence. Subsequent occurrences of the entity set should be shown without attributes,
to avoid repetition of information and the resultant possibility of inconsistency in the
attributes shown in different occurrences.

grade

takes sectionstudent

Figure 6.5 E-R diagram with an attribute attached to a relationship set.
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It is possible to have more than one relationship set involving the same entity sets.
For example, suppose that students may be teaching assistants for a course. Then, the
entity sets section and student may participate in a relationship set teaching assistant,
in addition to participating in the takes relationship set.

The formal definition of a relationship set, which we saw earlier, defines a rela-
tionship set as a set of relationship instances. Consider the takes relationship between
student and section. Since a set cannot have duplicates, it follows that a particular stu-
dent can have only one association with a particular section in the takes relationship.
Thus, a student can have only one grade associated with a section, which makes sense
in this case. However, if we wish to allow a student to have more than one grade for
the same section, we need to have an attribute grades which stores a set of grades; such
attributes are called multivalued attributes, and we shall see them later in Section 6.3.

The relationship sets advisor and takes provide examples of a binary relationship
set—that is, one that involves two entity sets. Most of the relationship sets in a database
system are binary. Occasionally, however, relationship sets involve more than two entity
sets. The number of entity sets that participate in a relationship set is the degree of the
relationship set. A binary relationship set is of degree 2; a ternary relationship set is of
degree 3.

As an example, suppose that we have an entity set project that represents all the re-
search projects carried out in the university. Consider the entity sets instructor, student,
and project. Each project can have multiple associated students and multiple associated
instructors. Furthermore, each student working on a project must have an associated
instructor who guides the student on the project. For now, we ignore the first two re-
lationships, between project and instructor, and between project and student. Instead,
we focus on the information about which instructor is guiding which student on a par-
ticular project.

To represent this information, we relate the three entity sets through a ternary re-
lationship set proj guide, which relates entity sets instructor, student, and project. An
instance of proj guide indicates that a particular student is guided by a particular in-
structor on a particular project. Note that a student could have different instructors as
guides for different projects, which cannot be captured by a binary relationship between
students and instructors.

Nonbinary relationship sets can be specified easily in an E-R diagram. Figure 6.6
shows the E-R diagram representation of the ternary relationship set proj guide.

6.3 Complex Attributes

For each attribute, there is a set of permitted values, called the domain, or value set, of
that attribute. The domain of attribute course id might be the set of all text strings of
a certain length. Similarly, the domain of attribute semester might be strings from the
set {Fall, Winter, Spring, Summer}.
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Figure 6.6 E-R diagram with a ternary relationship proj guide.

name address

first_name middle_initial last_name street city state postal_code

street_number street_name apartment_number

composite
attributes
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Figure 6.7 Composite attributes instructor name and address.

An attribute, as used in the E-R model, can be characterized by the following at-
tribute types.

• Simple and composite attributes. In our examples thus far, the attributes have been
simple; that is, they have not been divided into subparts. Composite attributes, on
the other hand, can be divided into subparts (i.e., other attributes). For exam-
ple, an attribute name could be structured as a composite attribute consisting of
first name, middle initial, and last name. Using composite attributes in a design
schema is a good choice if a user will wish to refer to an entire attribute on some
occasions, and to only a component of the attribute on other occasions. Suppose
we were to add an address to the student entity-set. The address can be defined
as the composite attribute address with the attributes street, city, state, and postal
code.1 Composite attributes help us to group together related attributes, making

the modeling cleaner.
Note also that a composite attribute may appear as a hierarchy. In the compos-

ite attribute address, its component attribute street can be further divided into street
number, street name, and apartment number. Figure 6.7 depicts these examples of

composite attributes for the instructor entity set.

1We assume the address format used in the United States, which includes a numeric postal code called a zip code.
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• Single-valued and multivalued attributes. The attributes in our examples all have
a single value for a particular entity. For instance, the student ID attribute for a
specific student entity refers to only one student ID. Such attributes are said to be
single valued. There may be instances where an attribute has a set of values for
a specific entity. Suppose we add to the instructor entity set a phone number at-
tribute. An instructor may have zero, one, or several phone numbers, and different
instructors may have different numbers of phones. This type of attribute is said to
be multivalued. As another example, we could add to the instructor entity set an
attribute dependent name listing all the dependents. This attribute would be multi-
valued, since any particular instructor may have zero, one, or more dependents.

• Derived attributes. The value for this type of attribute can be derived from the val-
ues of other related attributes or entities. For instance, let us say that the instructor
entity set has an attribute students advised, which represents how many students
an instructor advises. We can derive the value for this attribute by counting the
number of student entities associated with that instructor.

As another example, suppose that the instructor entity set has an attribute age
that indicates the instructor’s age. If the instructor entity set also has an attribute
date of birth, we can calculate age from date of birth and the current date. Thus,
age is a derived attribute. In this case, date of birth may be referred to as a base
attribute, or a stored attribute. The value of a derived attribute is not stored but is
computed when required.

Figure 6.8 shows how composite attributes can be represented in the E-R notation.
Here, a composite attribute name with component attributes first name, middle initial,
and last name replaces the simple attribute name of instructor. As another example,
suppose we were to add an address to the instructor entity set. The address can be de-
fined as the composite attribute address with the attributes street, city, state, and postal
code. The attribute street is itself a composite attribute whose component attributes

are street number, street name, and apartment number. The figure also illustrates a mul-
tivalued attribute phone number, denoted by “{phone number}”, and a derived attribute
age, depicted by “age ( )”.

An attribute takes a null value when an entity does not have a value for it. The null
value may indicate “not applicable”—that is, the value does not exist for the entity. For
example, a person who has no middle name may have the middle initial attribute set
to null. Null can also designate that an attribute value is unknown. An unknown value
may be either missing (the value does exist, but we do not have that information) or
not known (we do not know whether or not the value actually exists).

For instance, if the name value for a particular instructor is null, we assume that
the value is missing, since every instructor must have a name. A null value for the
apartment number attribute could mean that the address does not include an apartment
number (not applicable), that an apartment number exists but we do not know what
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instructor

ID
name

first_name
middle_initial
last_name

address
street

street_number
street_name
apt_number
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{ phone_number }
date_of_birth
age ( )

Figure 6.8 E-R diagram with composite, multivalued, and derived attributes.

it is (missing), or that we do not know whether or not an apartment number is part of
the instructor’s address (unknown).

6.4 Mapping Cardinalities

Mapping cardinalities, or cardinality ratios, express the number of entities to which
another entity can be associated via a relationship set. Mapping cardinalities are most
useful in describing binary relationship sets, although they can contribute to the de-
scription of relationship sets that involve more than two entity sets.

For a binary relationship set R between entity sets A and B, the mapping cardinality
must be one of the following:

• One-to-one. An entity in A is associated with at most one entity in B, and an entity
in B is associated with at most one entity in A. (See Figure 6.9a.)

• One-to-many. An entity in A is associated with any number (zero or more) of enti-
ties in B. An entity in B, however, can be associated with at most one entity in A.
(See Figure 6.9b.)

• Many-to-one. An entity in A is associated with at most one entity in B. An entity
in B, however, can be associated with any number (zero or more) of entities in A.
(See Figure 6.10a.)
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Figure 6.9 Mapping cardinalities. (a) One-to-one. (b) One-to-many.

• Many-to-many. An entity in A is associated with any number (zero or more) of
entities in B, and an entity in B is associated with any number (zero or more) of
entities in A. (See Figure 6.10b.)

The appropriate mapping cardinality for a particular relationship set obviously depends
on the real-world situation that the relationship set is modeling.

As an illustration, consider the advisor relationship set. If a student can be advised
by several instructors (as in the case of students advised jointly), the relationship set is
many-to-many. In contrast, if a particular university imposes a constraint that a student
can be advised by only one instructor, and an instructor can advise several students,
then the relationship set from instructor to student must be one-to-many. Thus, mapping

a3

a5

a1

a2

a4

a2

a1

a3

a4

b1

b2

b3

A B BA

b1

b2

b3

b4

(a) (b)

Figure 6.10 Mapping cardinalities. (a) Many-to-one. (b) Many-to-many.
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cardinalities can be used to specify constraints on what relationships are permitted in
the real world.

In the E-R diagram notation, we indicate cardinality constraints on a relationship
by drawing either a directed line (→) or an undirected line (—) between the relationship
set and the entity set in question. Specifically, for the university example:

• One-to-one. We draw a directed line from the relationship set to both entity sets.
For example, in Figure 6.11a, the directed lines to instructor and student indicate
that an instructor may advise at most one student, and a student may have at most
one advisor.

instructor student

ID
name
salary

instructor

ID
name
salary

instructor

ID
name
salary

instructor
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name
salary

ID
name
tot_cred

student
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name
tot_cred

student

ID
name
tot_cred

student

ID
name
tot_cred

advisor

advisor

advisor

advisor

(a) One-to-one

(b) One-to-many

(c) Many-to-one

(d) Many-to-many

Figure 6.11 Relationship cardinalities.
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• One-to-many. We draw a directed line from the relationship set to the “one” side of
the relationship. Thus, in Figure 6.11b, there is a directed line from relationship set
advisor to the entity set instructor, and an undirected line to the entity set student.
This indicates that an instructor may advise many students, but a student may have
at most one advisor.

• Many-to-one. We draw a directed line from the relationship set to the “one” side
of the relationship. Thus, in Figure 6.11c, there is an undirected line from the
relationship set advisor to the entity set instructor and a directed line to the entity
set student. This indicates that an instructor may advise at most one student, but
a student may have many advisors.

• Many-to-many. We draw an undirected line from the relationship set to both entity
sets. Thus, in Figure 6.11d, there are undirected lines from the relationship set
advisor to both entity sets instructor and student. This indicates that an instructor
may advise many students, and a student may have many advisors.

The participation of an entity set E in a relationship set R is said to be total if every
entity in E must participate in at least one relationship in R. If it is possible that some
entities in E do not participate in relationships in R, the participation of entity set E in
relationship R is said to be partial.

For example, a university may require every student to have at least one advisor;
in the E-R model, this corresponds to requiring each entity to be related to at least
one instructor through the advisor relationship. Therefore, the participation of student
in the relationship set advisor is total. In contrast, an instructor need not advise any
students. Hence, it is possible that only some of the instructor entities are related to the
student entity set through the advisor relationship, and the participation of instructor in
the advisor relationship set is therefore partial.

We indicate total participation of an entity in a relationship set using double lines.
Figure 6.12 shows an example of the advisor relationship set where the double line
indicates that a student must have an advisor.

E-R diagrams also provide a way to indicate more complex constraints on the num-
ber of times each entity participates in relationships in a relationship set. A line may
have an associated minimum and maximum cardinality, shown in the form l..h, where l

instructor

ID
name
salary

student

ID
name
tot_cred

advisor

Figure 6.12 E-R diagram showing total participation.
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Figure 6.13 Cardinality limits on relationship sets.

is the minimum and h the maximum cardinality. A minimum value of 1 indicates total
participation of the entity set in the relationship set; that is, each entity in the entity
set occurs in at least one relationship in that relationship set. A maximum value of
1 indicates that the entity participates in at most one relationship, while a maximum
value ∗ indicates no limit.

For example, consider Figure 6.13. The line between advisor and student has a car-
dinality constraint of 1..1, meaning the minimum and the maximum cardinality are
both 1. That is, each student must have exactly one advisor. The limit 0.. ∗ on the
line between advisor and instructor indicates that an instructor can have zero or more
students. Thus, the relationship advisor is one-to-many from instructor to student, and
further the participation of student in advisor is total, implying that a student must have
an advisor.

It is easy to misinterpret the 0.. ∗ on the left edge and think that the relationship ad-
visor is many-to-one from instructor to student—this is exactly the reverse of the correct
interpretation.

If both edges have a maximum value of 1, the relationship is one-to-one. If we had
specified a cardinality limit of 1.. ∗ on the left edge, we would be saying that each
instructor must advise at least one student.

The E-R diagram in Figure 6.13 could alternatively have been drawn with a double
line from student to advisor, and an arrow on the line from advisor to instructor, in place
of the cardinality constraints shown. This alternative diagram would enforce exactly the
same constraints as the constraints shown in the figure.

In the case of nonbinary relationship sets, we can specify some types of many-to-
one relationships. Suppose a student can have at most one instructor as a guide on a
project. This constraint can be specified by an arrow pointing to instructor on the edge
from proj guide.

We permit at most one arrow out of a nonbinary relationship set, since an E-R
diagram with two or more arrows out of a nonbinary relationship set can be interpreted
in two ways. We elaborate on this issue in Section 6.5.2.

6.5 Primary Key

We must have a way to specify how entities within a given entity set and relationships
within a given relationship set are distinguished.
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6.5.1 Entity Sets

Conceptually, individual entities are distinct; from a database perspective, however, the
differences among them must be expressed in terms of their attributes.

Therefore, the values of the attribute values of an entity must be such that they can
uniquely identify the entity. In other words, no two entities in an entity set are allowed
to have exactly the same value for all attributes.

The notion of a key for a relation schema, as defined in Section 2.3, applies directly
to entity sets. That is, a key for an entity is a set of attributes that suffice to distinguish
entities from each other. The concepts of superkey, candidate key, and primary key are
applicable to entity sets just as they are applicable to relation schemas.

Keys also help to identify relationships uniquely, and thus distinguish relationships
from each other. Next, we define the corresponding notions of keys for relationship sets.

6.5.2 Relationship Sets

We need a mechanism to distinguish among the various relationships of a relationship
set.

Let R be a relationship set involving entity sets E1, E2,… , En. Let primary-key(Ei)
denote the set of attributes that forms the primary key for entity set Ei. Assume for
now that the attribute names of all primary keys are unique. The composition of the
primary key for a relationship set depends on the set of attributes associated with the
relationship set R.

If the relationship set R has no attributes associated with it, then the set of attributes

primary-key(E1) ∪ primary-key(E2) ∪ ⋯ ∪ primary-key(En)

describes an individual relationship in set R.
If the relationship set R has attributes a1, a2,… , am associated with it, then the set

of attributes

primary-key(E1) ∪ primary-key(E2) ∪ ⋯ ∪ primary-key(En) ∪ {a1, a2,… , am}

describes an individual relationship in set R.
If the attribute names of primary keys are not unique across entity sets, the at-

tributes are renamed to distinguish them; the name of the entity set combined with
the name of the attribute would form a unique name. If an entity set participates more
than once in a relationship set (as in the prereq relationship in Section 6.2.2), the role
name is used instead of the name of the entity set, to form a unique attribute name.

Recall that a relationship set is a set of relationship instances, and each instance is
uniquely identified by the entities that participate in it. Thus, in both of the preceding
cases, the set of attributes

primary-key(E1) ∪ primary-key(E2) ∪ ⋯ ∪ primary-key(En)

forms a superkey for the relationship set.
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The choice of the primary key for a binary relationship set depends on the map-
ping cardinality of the relationship set. For many-to-many relationships, the preceding
union of the primary keys is a minimal superkey and is chosen as the primary key.
As an illustration, consider the entity sets instructor and student, and the relationship
set advisor, in Section 6.2.2. Suppose that the relationship set is many-to-many. Then
the primary key of advisor consists of the union of the primary keys of instructor and
student.

For one-to-many and many-to-one relationships, the primary key of the “many” side
is a minimal superkey and is used as the primary key. For example, if the relationship
is many-to-one from student to instructor —that is, each student can have at most one
advisor—then the primary key of advisor is simply the primary key of student. However,
if an instructor can advise only one student—that is, if the advisor relationship is many-
to-one from instructor to student—then the primary key of advisor is simply the primary
key of instructor.

For one-to-one relationships, the primary key of either one of the participating
entity sets forms a minimal superkey, and either one can be chosen as the primary
key of the relationship set. However, if an instructor can advise only one student, and
each student can be advised by only one instructor—that is, if the advisor relationship
is one-to-one—then the primary key of either student or instructor can be chosen as the
primary key for advisor.

For nonbinary relationships, if no cardinality constraints are present, then the su-
perkey formed as described earlier in this section is the only candidate key, and it is
chosen as the primary key. The choice of the primary key is more complicated if cardi-
nality constraints are present. As we noted in Section 6.4, we permit at most one arrow
out of a relationship set. We do so because an E-R diagram with two or more arrows out
of a nonbinary relationship set can be interpreted in the two ways we describe below.

Suppose there is a relationship set R between entity sets E1, E2, E3, E4, and the only
arrows are on the edges to entity sets E3 and E4. Then, the two possible interpretations
are:

1. A particular combination of entities from E1, E2 can be associated with at most
one combination of entities from E3, E4. Thus, the primary key for the relation-
ship R can be constructed by the union of the primary keys of E1 and E2.

2. A particular combination of entities from E1, E2, E3 can be associated with at
most one combination of entities from E4, and further a particular combination
of entities from E1, E2, E4 can be associated with at most one combination of
entities from E3, Then the union of the primary keys of E1, E2, and E3 forms a
candidate key, as does the union of the primary keys of E1, E2, and E4.

Each of these interpretations has been used in practice and both are correct for particu-
lar enterprises being modeled. Thus, to avoid confusion, we permit only one arrow out
of a nonbinary relationship set, in which case the two interpretations are equivalent.
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In order to represent a situation where one of the multiple-arrow situations holds,
the E-R design can be modified by replacing the non-binary relationship set with an
entity set. That is, we treat each instance of the non-binary relationship set as an entity.
Then we can relate each of those entities to corresponding instances of E1, E2, E4 via
separate relationship sets. A simpler approach is to use functional dependencies, which
we study in Chapter 7 (Section 7.4). Functional dependencies which allow either of
these interpretations to be specified simply in an unambiguous manner.

The primary key for the relationship set R is then the union of the primary keys of
those participating entity sets Ei that do not have an incoming arrow from the relation-
ship set R.

6.5.3 Weak Entity Sets

Consider a section entity, which is uniquely identified by a course identifier, semester,
year, and section identifier. Section entities are related to course entities. Suppose we
create a relationship set sec course between entity sets section and course.

Now, observe that the information in sec course is redundant, since section already
has an attribute course id, which identifies the course with which the section is related.
One option to deal with this redundancy is to get rid of the relationship sec course;
however, by doing so the relationship between section and course becomes implicit in
an attribute, which is not desirable.

An alternative way to deal with this redundancy is to not store the attribute course
id in the section entity and to only store the remaining attributes sec id, year, and

semester.2 However, the entity set section then does not have enough attributes to iden-
tify a particular section entity uniquely; although each section entity is distinct, sections
for different courses may share the same sec id, year, and semester. To deal with this
problem, we treat the relationship sec course as a special relationship that provides extra
information, in this case the course id, required to identify section entities uniquely.

The notion of weak entity set formalizes the above intuition. A weak entity set is
one whose existence is dependent on another entity set, called its identifying entity set;
instead of associating a primary key with a weak entity, we use the primary key of the
identifying entity, along with extra attributes, called discriminator attributes to uniquely
identify a weak entity. An entity set that is not a weak entity set is termed a strong entity
set.

Every weak entity must be associated with an identifying entity; that is, the weak
entity set is said to be existence dependent on the identifying entity set. The identifying
entity set is said to own the weak entity set that it identifies. The relationship associating
the weak entity set with the identifying entity set is called the identifying relationship.

The identifying relationship is many-to-one from the weak entity set to the identi-
fying entity set, and the participation of the weak entity set in the relationship is total.

2Note that the relational schema we eventually create from the entity set section does have the attribute course id, for
reasons that will become clear later, even though we have dropped the attribute course id from the entity set section.
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The identifying relationship set should not have any descriptive attributes, since any
such attributes can instead be associated with the weak entity set.

In our example, the identifying entity set for section is course, and the relationship
sec course, which associates section entities with their corresponding course entities, is
the identifying relationship. The primary key of section is formed by the primary key
of the identifying entity set (that is, course), plus the discriminator of the weak entity
set (that is, section). Thus, the primary key is {course id, sec id, year, semester}.

Note that we could have chosen to make sec id globally unique across all courses
offered in the university, in which case the section entity set would have had a primary
key. However, conceptually, a section is still dependent on a course for its existence,
which is made explicit by making it a weak entity set.

In E-R diagrams, a weak entity set is depicted via a double rectangle with the dis-
criminator being underlined with a dashed line. The relationship set connecting the
weak entity set to the identifying strong entity set is depicted by a double diamond. In
Figure 6.14, the weak entity set section depends on the strong entity set course via the
relationship set sec course.

The figure also illustrates the use of double lines to indicate that the participation
of the (weak) entity set section in the relationship sec course is total, meaning that every
section must be related via sec course to some course. Finally, the arrow from sec course
to course indicates that each section is related to a single course.

In general, a weak entity set must have a total participation in its identifying rela-
tionship set, and the relationship is many-to-one toward the identifying entity set.

A weak entity set can participate in relationships other than the identifying rela-
tionship. For instance, the section entity could participate in a relationship with the
time slot entity set, identifying the time when a particular class section meets. A weak
entity set may participate as owner in an identifying relationship with another weak en-
tity set. It is also possible to have a weak entity set with more than one identifying entity
set. A particular weak entity would then be identified by a combination of entities, one
from each identifying entity set. The primary key of the weak entity set would consist
of the union of the primary keys of the identifying entity sets, plus the discriminator
of the weak entity set.

course

course id
title
credits

section

sec_id
semester
year

sec_course

Figure 6.14 E-R diagram with a weak entity set.
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6.6 Removing Redundant Attributes in Entity Sets

When we design a database using the E-R model, we usually start by identifying those
entity sets that should be included. For example, in the university organization we
have discussed thus far, we decided to include such entity sets as student and instruc-
tor. Once the entity sets are decided upon, we must choose the appropriate attributes.
These attributes are supposed to represent the various values we want to capture in the
database. In the university organization, we decided that for the instructor entity set, we
will include the attributes ID, name, dept name, and salary. We could have added the
attributes phone number, office number, home page, and others. The choice of what at-
tributes to include is up to the designer, who has a good understanding of the structure
of the enterprise.

Once the entities and their corresponding attributes are chosen, the relationship
sets among the various entities are formed. These relationship sets may result in a situ-
ation where attributes in the various entity sets are redundant and need to be removed
from the original entity sets. To illustrate, consider the entity sets instructor and depart-
ment:

• The entity set instructor includes the attributes ID, name, dept name, and salary,
with ID forming the primary key.

• The entity set department includes the attributes dept name, building, and budget,
with dept name forming the primary key.

We model the fact that each instructor has an associated department using a relation-
ship set inst dept relating instructor and department.

The attribute dept name appears in both entity sets. Since it is the primary key for
the entity set department, it is redundant in the entity set instructor and needs to be
removed.

Removing the attribute dept name from the instructor entity set may appear rather
unintuitive, since the relation instructor that we used in the earlier chapters had an
attribute dept name. As we shall see later, when we create a relational schema from the
E-R diagram, the attribute dept name in fact gets added to the relation instructor, but
only if each instructor has at most one associated department. If an instructor has more
than one associated department, the relationship between instructors and departments
is recorded in a separate relation inst dept.

Treating the connection between instructors and departments uniformly as a rela-
tionship, rather than as an attribute of instructor, makes the logical relationship explicit,
and it helps avoid a premature assumption that each instructor is associated with only
one department.

Similarly, the student entity set is related to the department entity set through the
relationship set student dept and thus there is no need for a dept name attribute in stu-
dent.
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As another example, consider course offerings (sections) along with the time slots
of the offerings. Each time slot is identified by a time slot id, and has associated with
it a set of weekly meetings, each identified by a day of the week, start time, and end
time. We decide to model the set of weekly meeting times as a multivalued composite
attribute. Suppose we model entity sets section and time slot as follows:

• The entity set section includes the attributes course id, sec id, semester, year, build-
ing, room number, and time slot id, with (course id, sec id, year, semester) forming
the primary key.

• The entity set time slot includes the attributes time slot id, which is the primary
key,3 and a multivalued composite attribute {(day, start time, end time)}.4

These entities are related through the relationship set sec time slot.
The attribute time slot id appears in both entity sets. Since it is the primary key for

the entity set time slot, it is redundant in the entity set section and needs to be removed.
As a final example, suppose we have an entity set classroom, with attributes building,

room number, and capacity, with building and room number forming the primary key.
Suppose also that we have a relationship set sec class that relates section to classroom.
Then the attributes {building, room number} are redundant in the entity set section.

A good entity-relationship design does not contain redundant attributes. For our
university example, we list the entity sets and their attributes below, with primary keys
underlined:

• classroom: with attributes (building, room number, capacity).

• department: with attributes (dept name, building, budget).

• course: with attributes (course id, title, credits).

• instructor: with attributes (ID, name, salary).

• section: with attributes (course id, sec id, semester, year).

• student: with attributes (ID, name, tot cred).

• time slot: with attributes (time slot id, {(day, start time, end time) }).

The relationship sets in our design are listed below:

• inst dept: relating instructors with departments.

• stud dept: relating students with departments.

3We shall see later on that the primary key for the relation created from the entity set time slot includes day and start
time; however, day and start time do not form part of the primary key of the entity set time slot.

4We could optionally give a name, such as meeting, for the composite attribute containing day, start time, and end time.
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• teaches: relating instructors with sections.

• takes: relating students with sections, with a descriptive attribute grade.

• course dept: relating courses with departments.

• sec course: relating sections with courses.

• sec class: relating sections with classrooms.

• sec time slot: relating sections with time slots.

• advisor: relating students with instructors.

• prereq: relating courses with prerequisite courses.

You can verify that none of the entity sets has any attribute that is made redundant
by one of the relationship sets. Further, you can verify that all the information (other
than constraints) in the relational schema for our university database, which we saw
earlier in Figure 2.9, has been captured by the above design, but with several attributes
in the relational design replaced by relationships in the E-R design.

We are finally in a position to show (Figure 6.15) the E-R diagram that corresponds
to the university enterprise that we have been using thus far in the text. This E-R diagram
is equivalent to the textual description of the university E-R model, but with several
additional constraints.

In our university database, we have a constraint that each instructor must have
exactly one associated department. As a result, there is a double line in Figure 6.15
between instructor and inst dept, indicating total participation of instructor in inst dept;
that is, each instructor must be associated with a department. Further, there is an ar-
row from inst dept to department, indicating that each instructor can have at most one
associated department.

Similarly, entity set course has a double line to relationship set course dept, indicat-
ing that every course must be in some department, and entity set student has a double
line to relationship set stud dept, indicating that every student must be majoring in some
department. In each case, an arrow points to the entity set department to show that a
course (and, respectively, a student) can be related to only one department, not several.

Similarly, entity set course has a double line to relationship set course dept, indicat-
ing that every course must be in some department, and entity set student has a double
line to relationship set stud dept, indicating that every student must be majoring in some
department. In each case, an arrow points to the entity set department to show that a
course (and, respectively, a student) can be related to only one department, not several.

Further, Figure 6.15 shows that the relationship set takes has a descriptive attribute
grade, and that each student has at most one advisor. The figure also shows that section
is a weak entity set, with attributes sec id, semester, and year forming the discriminator;
sec course is the identifying relationship set relating weak entity set section to the strong
entity set course.
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Figure 6.15 E-R diagram for a university enterprise.

In Section 6.7, we show how this E-R diagram can be used to derive the various
relation schemas we use.

6.7 Reducing E-R Diagrams to Relational Schemas

Both the E-R model and the relational database model are abstract, logical representa-
tions of real-world enterprises. Because the two models employ similar design princi-
ples, we can convert an E-R design into a relational design. For each entity set and for
each relationship set in the database design, there is a unique relation schema to which
we assign the name of the corresponding entity set or relationship set.
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In this section, we describe how an E-R schema can be represented by relation
schemas and how constraints arising from the E-R design can be mapped to constraints
on relation schemas.

6.7.1 Representation of Strong Entity Sets

Let E be a strong entity set with only simple descriptive attributes a1, a2,… , an. We
represent this entity with a schema called E with n distinct attributes. Each tuple in a
relation on this schema corresponds to one entity of the entity set E.

For schemas derived from strong entity sets, the primary key of the entity set serves
as the primary key of the resulting schema. This follows directly from the fact that each
tuple corresponds to a specific entity in the entity set.

As an illustration, consider the entity set student of the E-R diagram in Figure 6.15.
This entity set has three attributes: ID, name, tot cred. We represent this entity set by a
schema called student with three attributes:

student (ID, name, tot cred)

Note that since student ID is the primary key of the entity set, it is also the primary key
of the relation schema.

Continuing with our example, for the E-R diagram in Figure 6.15, all the strong
entity sets, except time slot, have only simple attributes. The schemas derived from
these strong entity sets are depicted in Figure 6.16. Note that the instructor, student, and
course schemas are different from the schemas we have used in the previous chapters
(they do not contain the attribute dept name). We shall revisit this issue shortly.

6.7.2 Representation of Strong Entity Sets with Complex Attributes

When a strong entity set has nonsimple attributes, things are a bit more complex. We
handle composite attributes by creating a separate attribute for each of the component
attributes; we do not create a separate attribute for the composite attribute itself. To
illustrate, consider the version of the instructor entity set depicted in Figure 6.8. For the
composite attribute name, the schema generated for instructor contains the attributes

classroom(building, room number, capacity)
department(dept name, building, budget)
course(course id, title, credits)
instructor(ID, name, salary)
student(ID, name, tot cred)

Figure 6.16 Schemas derived from the entity sets in the E-R diagram in Figure 6.15.
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first name, middle initial, and last name; there is no separate attribute or schema for
name. Similarly, for the composite attribute address, the schema generated contains
the attributes street, city, state, and postal code. Since street is a composite attribute it is
replaced by street number, street name, and apt number.

Multivalued attributes are treated differently from other attributes. We have seen
that attributes in an E-R diagram generally map directly into attributes for the appropri-
ate relation schemas. Multivalued attributes, however, are an exception; new relation
schemas are created for these attributes, as we shall see shortly.

Derived attributes are not explicitly represented in the relational data model. How-
ever, they can be represented as stored procedures, functions, or methods in other data
models.

The relational schema derived from the version of entity set instructor with complex
attributes, without including the multivalued attribute, is thus:

instructor (ID, first name, middle initial, last name,
street number, street name, apt number,
city, state, postal code, date of birth)

For a multivalued attribute M , we create a relation schema R with an attribute A
that corresponds to M and attributes corresponding to the primary key of the entity
set or relationship set of which M is an attribute.

As an illustration, consider the E-R diagram in Figure 6.8 that depicts the entity set
instructor, which includes the multivalued attribute phone number. The primary key of
instructor is ID. For this multivalued attribute, we create a relation schema

instructor phone (ID, phone number)

Each phone number of an instructor is represented as a unique tuple in the relation on
this schema. Thus, if we had an instructor with ID 22222, and phone numbers 555-1234
and 555-4321, the relation instructor phone would have two tuples (22222, 555-1234)
and (22222, 555-4321).

We create a primary key of the relation schema consisting of all attributes of the
schema. In the above example, the primary key consists of both attributes of the relation
schema instructor phone.

In addition, we create a foreign-key constraint on the relation schema created from
the multivalued attribute. In that newly created schema, the attribute generated from
the primary key of the entity set must reference the relation generated from the entity
set. In the above example, the foreign-key constraint on the instructor phone relation
would be that attribute ID references the instructor relation.

In the case that an entity set consists of only two attributes—a single primary-key
attribute B and a single multivalued attribute M — the relation schema for the entity
set would contain only one attribute, namely, the primary-key attribute B. We can drop
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this relation, while retaining the relation schema with the attribute B and attribute A
that corresponds to M .

To illustrate, consider the entity set time slot depicted in Figure 6.15. Here, time
slot id is the primary key of the time slot entity set, and there is a single multivalued

attribute that happens also to be composite. The entity set can be represented by just
the following schema created from the multivalued composite attribute:

time slot (time slot id, day, start time, end time)

Although not represented as a constraint on the E-R diagram, we know that there can-
not be two meetings of a class that start at the same time of the same day of the week
but end at different times; based on this constraint, end time has been omitted from the
primary key of the time slot schema.

The relation created from the entity set would have only a single attribute time
slot id; the optimization of dropping this relation has the benefit of simplifying the

resultant database schema, although it has a drawback related to foreign keys, which
we briefly discuss in Section 6.7.4.

6.7.3 Representation of Weak Entity Sets

Let A be a weak entity set with attributes a1, a2,… , am. Let B be the strong entity set
on which A depends. Let the primary key of B consist of attributes b1, b2,… , bn. We
represent the entity set A by a relation schema called A with one attribute for each
member of the set:

{a1, a2,… , am} ∪ {b1, b2,… , bn}

For schemas derived from a weak entity set, the combination of the primary key of
the strong entity set and the discriminator of the weak entity set serves as the primary
key of the schema. In addition to creating a primary key, we also create a foreign-key
constraint on the relation A, specifying that the attributes b1, b2,… , bn reference the
primary key of the relation B. The foreign-key constraint ensures that for each tuple rep-
resenting a weak entity, there is a corresponding tuple representing the corresponding
strong entity.

As an illustration, consider the weak entity set section in the E-R diagram of Figure
6.15. This entity set has the attributes: sec id, semester, and year. The primary key of
the course entity set, on which section depends, is course id. Thus, we represent section
by a schema with the following attributes:

section (course id, sec id, semester, year)

The primary key consists of the primary key of the entity set course, along with the
discriminator of section, which is sec id, semester, and year. We also create a foreign-key
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constraint on the section schema, with the attribute course id referencing the primary
key of the course schema.5

6.7.4 Representation of Relationship Sets

Let R be a relationship set, let a1, a2,… , am be the set of attributes formed by the union
of the primary keys of each of the entity sets participating in R, and let the descriptive
attributes (if any) of R be b1, b2,… , bn. We represent this relationship set by a relation
schema called R with one attribute for each member of the set:

{a1, a2,… , am} ∪ {b1, b2,… , bn}

We described in Section 6.5, how to choose a primary key for a binary relationship
set. The primary key attributes of the relationship set are also used as the primary key
attributes of the relational schema R.

As an illustration, consider the relationship set advisor in the E-R diagram of Figure
6.15. This relationship set involves the following entity sets:

• instructor, with the primary key ID.

• student, with the primary key ID.

Since the relationship set has no attributes, the advisor schema has two attributes, the
primary keys of instructor and student. Since both attributes have the same name, we re-
name them i ID and s ID. Since the advisor relationship set is many-to-one from student
to instructor the primary key for the advisor relation schema is s ID.

We also create foreign-key constraints on the relation schema R as follows: For each
entity set Ei related by relationship set R, we create a foreign-key constraint from rela-
tion schema R, with the attributes of R that were derived from primary-key attributes
of Ei referencing the primary key of the relation schema representing Ei.

Returning to our earlier example, we thus create two foreign-key constraints on
the advisor relation, with attribute i ID referencing the primary key of instructor and
attribute s ID referencing the primary key of student.

Applying the preceding techniques to the other relationship sets in the E-R diagram
in Figure 6.15, we get the relational schemas depicted in Figure 6.17.

Observe that for the case of the relationship set prereq, the role indicators asso-
ciated with the relationship are used as attribute names, since both roles refer to the
same relation course.

Similar to the case of advisor, the primary key for each of the relations sec course,
sec time slot, sec class, inst dept, stud dept, and course dept consists of the primary key

5Optionally, the foreign-key constraint could have an “on delete cascade” specification, so that deletion of a course
entity automatically deletes any section entities that reference the course entity. Without that specification, each section
of a course would have to be deleted before the corresponding course can be deleted.



6.7 Reducing E-R Diagrams to Relational Schemas 269

teaches (ID, course id, sec id, semester, year)
takes (ID, course id, sec id, semester, year, grade)
prereq (course id, prereq id)
advisor (s ID, i ID)
sec course (course id, sec id, semester, year)
sec time slot (course id, sec id, semester, year, time slot id)
sec class (course id, sec id, semester, year, building, room number)
inst dept (ID, dept name)
stud dept (ID, dept name)
course dept (course id, dept name)

Figure 6.17 Schemas derived from relationship sets in the E-R diagram in Figure 6.15.

of only one of the two related entity sets, since each of the corresponding relationships
is many-to-one.

Foreign keys are not shown in Figure 6.17, but for each of the relations in the
figure there are two foreign-key constraints, referencing the two relations created from
the two related entity sets. Thus, for example, sec course has foreign keys referencing
section and classroom, teaches has foreign keys referencing instructor and section, and
takes has foreign keys referencing student and section.

The optimization that allowed us to create only a single relation schema from the
entity set time slot, which had a multivalued attribute, prevents the creation of a foreign
key from the relation schema sec time slot to the relation created from entity set time
slot, since we dropped the relation created from the entity set time slot. We retained the

relation created from the multivalued attribute and named it time slot, but this relation
may potentially have no tuples corresponding to a time slot id, or it may have multiple
tuples corresponding to a time slot id; thus, time slot id in sec time slot cannot reference
this relation.

The astute reader may wonder why we have not seen the schemas sec course, sec
time slot, sec class, inst dept, stud dept, and course dept in the previous chapters. The

reason is that the algorithm we have presented thus far results in some schemas that
can be either eliminated or combined with other schemas. We explore this issue next.

6.7.5 Redundancy of Schemas

A relationship set linking a weak entity set to the corresponding strong entity set is
treated specially. As we noted in Section 6.5.3, these relationships are many-to-one and
have no descriptive attributes. Furthermore, the of a weak entity set includes the pri-
mary key of the strong entity set. In the E-R diagram of Figure 6.14, the weak entity set
section is dependent on the strong entity set course via the relationship set sec course.
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The primary key of section is {course id, sec id, semester, year}, and the primary key of
course is course id. Since sec course has no descriptive attributes, the sec course schema
has attributes course id, sec id, semester, and year. The schema for the entity set sec-
tion includes the attributes course id, sec id, semester, and year (among others). Every
(course id, sec id, semester, year) combination in a sec course relation would also be
present in the relation on schema section, and vice versa. Thus, the sec course schema
is redundant.

In general, the schema for the relationship set linking a weak entity set to its corre-
sponding strong entity set is redundant and does not need to be present in a relational
database design based upon an E-R diagram.

6.7.6 Combination of Schemas

Consider a many-to-one relationship set AB from entity set A to entity set B. Using our
relational-schema construction algorithm outlined previously, we get three schemas: A,
B, and AB. Suppose further that the participation of A in the relationship is total; that
is, every entity a in the entity set A must participate in the relationship AB. Then we
can combine the schemas A and AB to form a single schema consisting of the union of
attributes of both schemas. The primary key of the combined schema is the primary
key of the entity set into whose schema the relationship set schema was merged.

To illustrate, let’s examine the various relations in the E-R diagram of Figure 6.15
that satisfy the preceding criteria:

• inst dept. The schemas instructor and department correspond to the entity sets A
and B, respectively. Thus, the schema inst dept can be combined with the instructor
schema. The resulting instructor schema consists of the attributes {ID, name, dept
name, salary}.

• stud dept. The schemas student and department correspond to the entity sets A
and B, respectively. Thus, the schema stud dept can be combined with the student
schema. The resulting student schema consists of the attributes {ID, name, dept
name, tot cred}.

• course dept. The schemas course and department correspond to the entity sets A
and B, respectively. Thus, the schema course dept can be combined with the course
schema. The resulting course schema consists of the attributes {course id, title, dept
name, credits}.

• sec class. The schemas section and classroom correspond to the entity sets A and B,
respectively. Thus, the schema sec class can be combined with the section schema.
The resulting section schema consists of the attributes {course id, sec id, semester,
year, building, room number}.

• sec time slot. The schemas section and time slot correspond to the entity sets A and
B respectively, Thus, the schema sec time slot can be combined with the section
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schema obtained in the previous step. The resulting section schema consists of the
attributes {course id, sec id, semester, year, building, room number, time slot id}.

In the case of one-to-one relationships, the relation schema for the relationship set
can be combined with the schemas for either of the entity sets.

We can combine schemas even if the participation is partial by using null values.
In the preceding example, if inst dept were partial, then we would store null values for
the dept name attribute for those instructors who have no associated department.

Finally, we consider the foreign-key constraints that would have appeared in the
schema representing the relationship set. There would have been foreign-key con-
straints referencing each of the entity sets participating in the relationship set. We drop
the constraint referencing the entity set into whose schema the relationship set schema
is merged, and add the other foreign-key constraints to the combined schema. For ex-
ample, inst dept has a foreign key constraint of the attribute dept name referencing the
department relation. This foreign constraint is enforced implicitly by the instructor re-
lation when the schema for inst dept is merged into instructor.

6.8 Extended E-R Features

Although the basic E-R concepts can model most database features, some aspects of
a database may be more aptly expressed by certain extensions to the basic E-R model.
In this section, we discuss the extended E-R features of specialization, generalization,
higher- and lower-level entity sets, attribute inheritance, and aggregation.

To help with the discussions, we shall use a slightly more elaborate database
schema for the university. In particular, we shall model the various people within a
university by defining an entity set person, with attributes ID, name, street, and city.

6.8.1 Specialization

An entity set may include subgroupings of entities that are distinct in some way from
other entities in the set. For instance, a subset of entities within an entity set may have
attributes that are not shared by all the entities in the entity set. The E-R model provides
a means for representing these distinctive entity groupings.

As an example, the entity set person may be further classified as one of the follow-
ing:

• employee.

• student.

Each of these person types is described by a set of attributes that includes all the at-
tributes of entity set person plus possibly additional attributes. For example, employee
entities may be described further by the attribute salary, whereas student entities may
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be described further by the attribute tot cred. The process of designating subgroupings
within an entity set is called specialization. The specialization of person allows us to
distinguish among person entities according to whether they correspond to employees
or students: in general, a person could be an employee, a student, both, or neither.

As another example, suppose the university divides students into two categories:
graduate and undergraduate. Graduate students have an office assigned to them. Un-
dergraduate students are assigned to a residential college. Each of these student types
is described by a set of attributes that includes all the attributes of the entity set student
plus additional attributes.

We can apply specialization repeatedly to refine a design. The university could
create two specializations of student, namely graduate and undergraduate. As we saw
earlier, student entities are described by the attributes ID, name, street, city, and tot
cred. The entity set graduate would have all the attributes of student and an additional

attribute office number. The entity set undergraduate would have all the attributes of
student, and an additional attribute residential college. As another example, university
employees may be further classified as one of instructor or secretary.

Each of these employee types is described by a set of attributes that includes all the
attributes of entity set employee plus additional attributes. For example, instructor enti-
ties may be described further by the attribute rank while secretary entities are described
by the attribute hours per week. Further, secretary entities may participate in a relation-
ship secretary for between the secretary and employee entity sets, which identifies the
employees who are assisted by a secretary.

An entity set may be specialized by more than one distinguishing feature. In our
example, the distinguishing feature among employee entities is the job the employee
performs. Another, coexistent, specialization could be based on whether the person is
a temporary (limited term) employee or a permanent employee, resulting in the entity
sets temporary employee and permanent employee. When more than one specialization
is formed on an entity set, a particular entity may belong to multiple specializations.
For instance, a given employee may be a temporary employee who is a secretary.

In terms of an E-R diagram, specialization is depicted by a hollow arrow-head point-
ing from the specialized entity to the other entity (see Figure 6.18). We refer to this re-
lationship as the ISA relationship, which stands for “is a” and represents, for example,
that an instructor “is a” employee.

The way we depict specialization in an E-R diagram depends on whether an en-
tity may belong to multiple specialized entity sets or if it must belong to at most one
specialized entity set. The former case (multiple sets permitted) is called overlapping
specialization, while the latter case (at most one permitted) is called disjoint special-
ization. For an overlapping specialization (as is the case for student and employee as
specializations of person), two separate arrows are used. For a disjoint specialization
(as is the case for instructor and secretary as specializations of employee), a single arrow
is used. The specialization relationship may also be referred to as a superclass-subclass
relationship. Higher- and lower-level entity sets are depicted as regular entity sets—that
is, as rectangles containing the name of the entity set.
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person
ID
name
street
city

student

instructor
rank

secretary
hours_ per_week

employee
salary tot_credits

Figure 6.18 Specialization and generalization.

6.8.2 Generalization

The refinement from an initial entity set into successive levels of entity subgroupings
represents a top-down design process in which distinctions are made explicit. The design
process may also proceed in a bottom-up manner, in which multiple entity sets are
synthesized into a higher-level entity set on the basis of common features. The database
designer may have first identified:

• instructor entity set with attributes instructor id, instructor name, instructor salary,
and rank.

• secretary entity set with attributes secretary id, secretary name, secretary salary, and
hours per week.

There are similarities between the instructor entity set and the secretary entity set in
the sense that they have several attributes that are conceptually the same across the two
entity sets: namely, the identifier, name, and salary attributes. This commonality can be
expressed by generalization, which is a containment relationship that exists between a
higher-level entity set and one or more lower-level entity sets. In our example, employee is
the higher-level entity set and instructor and secretary are lower-level entity sets. In this
case, attributes that are conceptually the same had different names in the two lower-
level entity sets. To create a generalization, the attributes must be given a common name
and represented with the higher-level entity person. We can use the attribute names ID,
name, street, and city, as we saw in the example in Section 6.8.1.



274 Chapter 6 Database Design Using the E-R Model

Higher- and lower-level entity sets also may be designated by the terms superclass
and subclass, respectively. The person entity set is the superclass of the employee and
student subclasses.

For all practical purposes, generalization is a simple inversion of specialization.
We apply both processes, in combination, in the course of designing the E-R schema
for an enterprise. In terms of the E-R diagram itself, we do not distinguish between
specialization and generalization. New levels of entity representation are distinguished
(specialization) or synthesized (generalization) as the design schema comes to express
fully the database application and the user requirements of the database. Differences
in the two approaches may be characterized by their starting point and overall goal.

Specialization stems from a single entity set; it emphasizes differences among en-
tities within the set by creating distinct lower-level entity sets. These lower-level entity
sets may have attributes, or may participate in relationships, that do not apply to all
the entities in the higher-level entity set. Indeed, the reason a designer applies special-
ization is to represent such distinctive features. If student and employee have exactly the
same attributes as person entities, and participate in exactly the same relationships as
person entities, there would be no need to specialize the person entity set.

Generalization proceeds from the recognition that a number of entity sets share
some common features (namely, they are described by the same attributes and partici-
pate in the same relationship sets). On the basis of their commonalities, generalization
synthesizes these entity sets into a single, higher-level entity set. Generalization is used
to emphasize the similarities among lower-level entity sets and to hide the differences;
it also permits an economy of representation in that shared attributes are not repeated.

6.8.3 Attribute Inheritance

A crucial property of the higher- and lower-level entities created by specialization and
generalization is attribute inheritance. The attributes of the higher-level entity sets are
said to be inherited by the lower-level entity sets. For example, student and employee in-
herit the attributes of person. Thus, student is described by its ID, name, street, and city
attributes, and additionally a tot cred attribute; employee is described by its ID, name,
street, and city attributes, and additionally a salary attribute. Attribute inheritance ap-
plies through all tiers of lower-level entity sets; thus, instructor and secretary, which are
subclasses of employee, inherit the attributes ID, name, street, and city from person, in
addition to inheriting salary from employee.

A lower-level entity set (or subclass) also inherits participation in the relationship
sets in which its higher-level entity (or superclass) participates. Like attribute inheri-
tance, participation inheritance applies through all tiers of lower-level entity sets. For
example, suppose the person entity set participates in a relationship person dept with
department. Then, the student, employee, instructor and secretary entity sets, which are
subclasses of the person entity set, also implicitly participate in the person dept relation-
ship with department. These entity sets can participate in any relationships in which
the person entity set participates.
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Whether a given portion of an E-R model was arrived at by specialization or gen-
eralization, the outcome is basically the same:

• A higher-level entity set with attributes and relationships that apply to all of its
lower-level entity sets.

• Lower-level entity sets with distinctive features that apply only within a particular
lower-level entity set.

In what follows, although we often refer to only generalization, the properties that
we discuss belong fully to both processes.

Figure 6.18 depicts a hierarchy of entity sets. In the figure, employee is a lower-level
entity set of person and a higher-level entity set of the instructor and secretary entity sets.
In a hierarchy, a given entity set may be involved as a lower-level entity set in only one
ISA relationship; that is, entity sets in this diagram have only single inheritance. If an
entity set is a lower-level entity set in more than one ISA relationship, then the entity
set has multiple inheritance, and the resulting structure is said to be a lattice.

6.8.4 Constraints on Specializations

To model an enterprise more accurately, the database designer may choose to place
certain constraints on a particular generalization/specialization.

One type of constraint on specialization which we saw earlier specifies whether
a specialization is disjoint or overlapping. Another type of constraint on a specializa-
tion/generalization is a completeness constraint, which specifies whether or not an en-
tity in the higher-level entity set must belong to at least one of the lower-level entity sets
within the generalization/specialization. This constraint may be one of the following:

• Total specialization or generalization. Each higher-level entity must belong to a
lower-level entity set.

• Partial specialization or generalization. Some higher-level entities may not belong
to any lower-level entity set.

Partial specialization is the default. We can specify total specialization in an E-R dia-
gram by adding the keyword “total” in the diagram and drawing a dashed line from the
keyword to the corresponding hollow arrowhead to which it applies (for a total spe-
cialization), or to the set of hollow arrowheads to which it applies (for an overlapping
specialization).

The specialization of person to student or employee is total if the university does not
need to represent any person who is neither a student nor an employee. However, if the
university needs to represent such persons, then the specialization would be partial.

The completeness and disjointness constraints, do not depend on each other. Thus,
specializations may be partial-overlapping, partial-disjoint, total-overlapping, and total-
disjoint.
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We can see that certain insertion and deletion requirements follow from the con-
straints that apply to a given generalization or specialization. For instance, when a total
completeness constraint is in place, an entity inserted into a higher-level entity set must
also be inserted into at least one of the lower-level entity sets. An entity that is deleted
from a higher-level entity set must also be deleted from all the associated lower-level
entity sets to which it belongs.

6.8.5 Aggregation

One limitation of the E-R model is that it cannot express relationships among relation-
ships. To illustrate the need for such a construct, consider the ternary relationship proj
guide, which we saw earlier, between an instructor, student and project (see Figure 6.6).

Now suppose that each instructor guiding a student on a project is required to file
a monthly evaluation report. We model the evaluation report as an entity evaluation,
with a primary key evaluation id. One alternative for recording the (student, project,
instructor) combination to which an evaluation corresponds is to create a quaternary
(4-way) relationship set eval for between instructor, student, project, and evaluation. (A
quaternary relationship is required—a binary relationship between student and evalua-
tion, for example, would not permit us to represent the (project, instructor) combination
to which an evaluation corresponds.) Using the basic E-R modeling constructs, we ob-
tain the E-R diagram of Figure 6.19. (We have omitted the attributes of the entity sets,
for simplicity.)

It appears that the relationship sets proj guide and eval for can be combined into
one single relationship set. Nevertheless, we should not combine them into a single

project

evaluation

instructor student

eval_  for

proj_ guide

Figure 6.19 E-R diagram with redundant relationships.
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evaluation

proj_ guide
instructor student

eval_  for

project

Figure 6.20 E-R diagram with aggregation.

relationship, since some instructor, student, project combinations may not have an as-
sociated evaluation.

There is redundant information in the resultant figure, however, since every instruc-
tor, student, project combination in eval for must also be in proj guide. If evaluation was
modeled as a value rather than an entity, we could instead make evaluation a multi-
valued composite attribute of the relationship set proj guide. However, this alternative
may not be an option if an evaluation may also be related to other entities; for example,
each evaluation report may be associated with a secretary who is responsible for further
processing of the evaluation report to make scholarship payments.

The best way to model a situation such as the one just described is to use aggrega-
tion. Aggregation is an abstraction through which relationships are treated as higher-
level entities. Thus, for our example, we regard the relationship set proj guide (relating
the entity sets instructor, student, and project) as a higher-level entity set called proj
guide. Such an entity set is treated in the same manner as is any other entity set. We

can then create a binary relationship eval for between proj guide and evaluation to rep-
resent which (student, project, instructor) combination an evaluation is for. Figure 6.20
shows a notation for aggregation commonly used to represent this situation.

6.8.6 Reduction to Relation Schemas

We are in a position now to describe how the extended E-R features can be translated
into relation schemas.
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6.8.6.1 Representation of Generalization

There are two different methods of designing relation schemas for an E-R diagram that
includes generalization. Although we refer to the generalization in Figure 6.18 in this
discussion, we simplify it by including only the first tier of lower-level entity sets—that
is, employee and student. We assume that ID is the primary key of person.

1. Create a schema for the higher-level entity set. For each lower-level entity set,
create a schema that includes an attribute for each of the attributes of that entity
set plus one for each attribute of the primary key of the higher-level entity set.
Thus, for the E-R diagram of Figure 6.18 (ignoring the instructor and secretary
entity sets) we have three schemas:

person (ID, name, street, city)
employee (ID, salary)
student (ID, tot cred)

The primary-key attributes of the higher-level entity set become primary-key at-
tributes of the higher-level entity set as well as all lower-level entity sets. These
can be seen underlined in the preceding example.

In addition, we create foreign-key constraints on the lower-level entity sets,
with their primary-key attributes referencing the primary key of the relation cre-
ated from the higher-level entity set. In the preceding example, the ID attribute
of employee would reference the primary key of person, and similarly for student.

2. An alternative representation is possible, if the generalization is disjoint and com-
plete—that is, if no entity is a member of two lower-level entity sets directly below
a higher-level entity set, and if every entity in the higher-level entity set is also a
member of one of the lower-level entity sets. Here, we do not create a schema
for the higher-level entity set. Instead, for each lower-level entity set, we create a
schema that includes an attribute for each of the attributes of that entity set plus
one for each attribute of the higher-level entity set. Then, for the E-R diagram of
Figure 6.18, we have two schemas:

employee (ID, name, street, city, salary)
student (ID, name, street, city, tot cred)

Both these schemas have ID, which is the primary-key attribute of the higher-level
entity set person, as their primary key.

One drawback of the second method lies in defining foreign-key constraints. To
illustrate the problem, suppose we have a relationship set R involving entity set person.
With the first method, when we create a relation schema R from the relationship set,
we also define a foreign-key constraint on R, referencing the schema person. Unfortu-
nately, with the second method, we do not have a single relation to which a foreign-key
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constraint on R can refer. To avoid this problem, we need to create a relation schema
person containing at least the primary-key attributes of the person entity.

If the second method were used for an overlapping generalization, some values
would be stored multiple times, unnecessarily. For instance, if a person is both an
employee and a student, values for street and city would be stored twice.

If the generalization were disjoint but not complete—that is, if some person is nei-
ther an employee nor a student—then an extra schema

person (ID, name, street, city)

would be required to represent such people. However, the problem with foreign-key
constraints mentioned above would remain. As an attempt to work around the problem,
suppose employees and students are additionally represented in the person relation.
Unfortunately, name, street, and city information would then be stored redundantly
in the person relation and the student relation for students, and similarly in the person
relation and the employee relation for employees. That suggests storing name, street,
and city information only in the person relation and removing that information from
student and employee. If we do that, the result is exactly the first method we presented.

6.8.6.2 Representation of Aggregation

Designing schemas for an E-R diagram containing aggregation is straightforward. Con-
sider Figure 6.20. The schema for the relationship set eval for between the aggregation
of proj guide and the entity set evaluation includes an attribute for each attribute in
the primary keys of the entity set evaluation and the relationship set proj guide. It also
includes an attribute for any descriptive attributes, if they exist, of the relationship set
eval for. We then transform the relationship sets and entity sets within the aggregated
entity set following the rules we have already defined.

The rules we saw earlier for creating primary-key and foreign-key constraints on
relationship sets can be applied to relationship sets involving aggregations as well, with
the aggregation treated like any other entity set. The primary key of the aggregation
is the primary key of its defining relationship set. No separate relation is required to
represent the aggregation; the relation created from the defining relationship is used
instead.

6.9 Entity-Relationship Design Issues

The notions of an entity set and a relationship set are not precise, and it is possible
to define a set of entities and the relationships among them in a number of different
ways. In this section, we examine basic issues in the design of an E-R database schema.
Section 6.11 covers the design process in further detail.
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Figure 6.21 Example of erroneous E-R diagrams

6.9.1 Common Mistakes in E-R Diagrams

A common mistake when creating E-R models is the use of the primary key of an entity
set as an attribute of another entity set, instead of using a relationship. For example, in
our university E-R model, it is incorrect to have dept name as an attribute of student, as
depicted in Figure 6.21a, even though it is present as an attribute in the relation schema
for student. The relationship stud dept is the correct way to represent this information
in the E-R model, since it makes the relationship between student and department ex-
plicit, rather than implicit via an attribute. Having an attribute dept name as well as a
relationship stud dept would result in duplication of information.

Another related mistake that people sometimes make is to designate the primary-
key attributes of the related entity sets as attributes of the relationship set. For example,
ID (the primary-key attributes of student) and ID (the primary key of instructor) should
not appear as attributes of the relationship advisor. This should not be done since the
primary-key attributes are already implicit in the relationship set.6

A third common mistake is to use a relationship with a single-valued attribute in
a situation that requires a multivalued attribute. For example, suppose we decided to
represent the marks that a student gets in different assignments of a course offering
(section). A wrong way of doing this would be to add two attributes assignment and
marks to the relationship takes, as depicted in Figure 6.21b. The problem with this
design is that we can only represent a single assignment for a given student-section pair,

6When we create a relation schema from the E-R schema, the attributes may appear in a schema created from the advisor
relationship set, as we shall see later; however, they should not appear in the advisor relationship set.
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Figure 6.22 Correct versions of the E-R diagram of Figure 6.21.

since relationship instances must be uniquely identified by the participating entities,
student and section.

One solution to the problem depicted in Figure 6.21c, shown in Figure 6.22a, is to
model assignment as a weak entity identified by section, and to add a relationship marks
in between assignment and student; the relationship would have an attribute marks. An

alternative solution, shown in Figure 6.22d, is to use a multivalued composite attribute
{assignment marks} to takes, where assignment marks has component attributes assign-
ment and marks. Modeling an assignment as a weak entity is preferable in this case,
since it allows recording other information about the assignment, such as maximum
marks or deadlines.

When an E-R diagram becomes too big to draw in a single piece, it makes sense
to break it up into pieces, each showing part of the E-R model. When doing so, you
may need to depict an entity set in more than one page. As discussed in Section 6.2.2,
attributes of the entity set should be shown only once, in its first occurrence. Subse-
quent occurrences of the entity set should be shown without any attributes, to avoid
repeating the same information at multiple places, which may lead to inconsistency.

6.9.2 Use of Entity Sets versus Attributes

Consider the entity set instructor with the additional attribute phone number (Figure
6.23a.) It can be argued that a phone is an entity in its own right with attributes phone
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Figure 6.23 Alternatives for adding phone to the instructor entity set.

number and location; the location may be the office or home where the phone is lo-
cated, with mobile (cell) phones perhaps represented by the value “mobile.” If we take
this point of view, we do not add the attribute phone number to the instructor. Rather,
we create:

• A phone entity set with attributes phone number and location.

• A relationship set inst phone, denoting the association between instructors and the
phones that they have.

This alternative is shown in Figure 6.23b.
What, then, is the main difference between these two definitions of an instructor?

Treating a phone as an attribute phone number implies that instructors have precisely
one phone number each. Treating a phone as an entity phone permits instructors to
have several phone numbers (including zero) associated with them. However, we could
instead easily define phone number as a multivalued attribute to allow multiple phones
per instructor.

The main difference then is that treating a phone as an entity better models a
situation where one may want to keep extra information about a phone, such as its
location, or its type (mobile, IP phone, or plain old phone), or all who share the phone.
Thus, treating phone as an entity is more general than treating it as an attribute and is
appropriate when the generality may be useful.

In contrast, it would not be appropriate to treat the attribute name (of an instruc-
tor) as an entity; it is difficult to argue that name is an entity in its own right (in contrast
to the phone). Thus, it is appropriate to have name as an attribute of the instructor entity
set.

Two natural questions thus arise: What constitutes an attribute, and what consti-
tutes an entity set? Unfortunately, there are no simple answers. The distinctions mainly
depend on the structure of the real-world enterprise being modeled and on the seman-
tics associated with the attribute in question.

6.9.3 Use of Entity Sets versus Relationship Sets

It is not always clear whether an object is best expressed by an entity set or a relationship
set. In Figure 6.15, we used the takes relationship set to model the situation where a
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Figure 6.24 Replacement of takes by registration and two relationship sets.

student takes a (section of a) course. An alternative is to imagine that there is a course-
registration record for each course that each student takes. Then, we have an entity
set to represent the course-registration record. Let us call that entity set registration.
Each registration entity is related to exactly one student and to exactly one section, so
we have two relationship sets, one to relate course-registration records to students and
one to relate course-registration records to sections. In Figure 6.24, we show the entity
sets section and student from Figure 6.15 with the takes relationship set replaced by one
entity set and two relationship sets:

• registration, the entity set representing course-registration records.

• section reg, the relationship set relating registration and course.

• student reg, the relationship set relating registration and student.

Note that we use double lines to indicate total participation by registration entities.
Both the approach of Figure 6.15 and that of Figure 6.24 accurately represent the

university’s information, but the use of takes is more compact and probably preferable.
However, if the registrar’s office associates other information with a course-registration
record, it might be best to make it an entity in its own right.

One possible guideline in determining whether to use an entity set or a relationship
set is to designate a relationship set to describe an action that occurs between entities.
This approach can also be useful in deciding whether certain attributes may be more
appropriately expressed as relationships.

6.9.4 Binary versus n-ary Relationship Sets

Relationships in databases are often binary. Some relationships that appear to be nonbi-
nary could actually be better represented by several binary relationships. For instance,
one could create a ternary relationship parent, relating a child to his/her mother and
father. However, such a relationship could also be represented by two binary relation-
ships, mother and father, relating a child to his/her mother and father separately. Using
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the two relationships mother and father provides us with a record of a child’s mother,
even if we are not aware of the father’s identity; a null value would be required if the
ternary relationship parent were used. Using binary relationship sets is preferable in
this case.

In fact, it is always possible to replace a nonbinary (n-ary, for n > 2) relationship set
by a number of distinct binary relationship sets. For simplicity, consider the abstract
ternary (n = 3) relationship set R, relating entity sets A, B, and C. We replace the
relationship set R with an entity set E, and we create three relationship sets as shown
in Figure 6.25:

• RA, a many-to-one relationship set from E to A.

• RB, a many-to-one relationship set from E to B.

• RC , a many-to-one relationship set from E to C.

E is required to have total participation in each of RA, RB, and RC . If the relationship
set R had any attributes, these are assigned to entity set E; further, a special identifying
attribute is created for E (since it must be possible to distinguish different entities in
an entity set on the basis of their attribute values). For each relationship (ai, bi, ci) in
the relationship set R, we create a new entity ei in the entity set E. Then, in each of the
three new relationship sets, we insert a relationship as follows:

• (ei, ai) in RA.

• (ei, bi) in RB.

• (ei, ci) in RC .

We can generalize this process in a straightforward manner to n-ary relationship
sets. Thus, conceptually, we can restrict the E-R model to include only binary relation-
ship sets. However, this restriction is not always desirable.

B R C

A

CB E

A

RA

RB RC

(a) (b)

Figure 6.25 Ternary relationship versus three binary relationships.
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• An identifying attribute may have to be created for the entity set created to rep-
resent the relationship set. This attribute, along with the extra relationship sets
required, increases the complexity of the design and (as we shall see in Section
6.7) overall storage requirements.

• An n-ary relationship set shows more clearly that several entities participate in a
single relationship.

• There may not be a way to translate constraints on the ternary relationship into
constraints on the binary relationships. For example, consider a constraint that
says that R is many-to-one from A, B to C; that is, each pair of entities from A and
B is associated with at most one C entity. This constraint cannot be expressed by
using cardinality constraints on the relationship sets RA, RB, and RC .

Consider the relationship set proj guide in Section 6.2.2, relating instructor, stu-
dent, and project. We cannot directly split proj guide into binary relationships between
instructor and project and between instructor and student. If we did so, we would be able
to record that instructor Katz works on projects A and B with students Shankar and
Zhang; however, we would not be able to record that Katz works on project A with
student Shankar and works on project B with student Zhang, but does not work on
project A with Zhang or on project B with Shankar.

The relationship set proj guide can be split into binary relationships by creating a
new entity set as described above. However, doing so would not be very natural.

6.10 Alternative Notations for Modeling Data

A diagrammatic representation of the data model of an application is a very important
part of designing a database schema. Creation of a database schema requires not only
data modeling experts, but also domain experts who know the requirements of the
application but may not be familiar with data modeling. An intuitive diagrammatic
representation is particularly important since it eases communication of information
between these groups of experts.

A number of alternative notations for modeling data have been proposed, of which
E-R diagrams and UML class diagrams are the most widely used. There is no universal
standard for E-R diagram notation, and different books and E-R diagram software use
different notations.

In the rest of this section, we study some of the alternative E-R diagram notations,
as well as the UML class diagram notation. To aid in comparison of our notation with
these alternatives, Figure 6.26 summarizes the set of symbols we have used in our E-R
diagram notation.

6.10.1 Alternative E-R Notations

Figure 6.27 indicates some of the alternative E-R notations that are widely used. One
alternative representation of attributes of entities is to show them in ovals connected
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Figure 6.26 Symbols used in the E-R notation.

to the box representing the entity; primary key attributes are indicated by underlining
them. The above notation is shown at the top of the figure. Relationship attributes
can be similarly represented, by connecting the ovals to the diamond representing the
relationship.

Cardinality constraints on relationships can be indicated in several different ways,
as shown in Figure 6.27. In one alternative, shown on the left side of the figure, labels
∗ and 1 on the edges out of the relationship are used for depicting many-to-many, one-
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Figure 6.27 Alternative E-R notations.

to-one, and many-to-one relationships. The case of one-to-many is symmetric to many-
to-one and is not shown.

In another alternative notation shown on the right side of Figure 6.27, relationship
sets are represented by lines between entity sets, without diamonds; only binary rela-
tionships can be modeled thus. Cardinality constraints in such a notation are shown by
“crow’s-foot” notation, as in the figure. In a relationship R between E1 and E2, crow’s
feet on both sides indicate a many-to-many relationship, while crow’s feet on just the
E1 side indicate a many-to-one relationship from E1 to E2. Total participation is spec-
ified in this notation by a vertical bar. Note however, that in a relationship R between
entities E1 and E2, if the participation of E1 in R is total, the vertical bar is placed on
the opposite side, adjacent to entity E2. Similarly, partial participation is indicated by
using a circle, again on the opposite side.

The bottom part of Figure 6.27 shows an alternative representation of generaliza-
tion, using triangles instead of hollow arrowheads.
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In prior editions of this text up to the fifth edition, we used ovals to represent
attributes, with triangles representing generalization, as shown in Figure 6.27. The no-
tation using ovals for attributes and diamonds for relationships is close to the original
form of E-R diagrams used by Chen in his paper that introduced the notion of E-R
modeling. That notation is now referred to as Chen’s notation.

The U.S. National Institute for Standards and Technology defined a standard called
IDEF1X in 1993. IDEF1X uses the crow’s-foot notation, with vertical bars on the rela-
tionship edge to denote total participation and hollow circles to denote partial partici-
pation, and it includes other notations that we have not shown.

With the growth in the use of Unified Markup Language (UML), described in Sec-
tion 6.10.2, we have chosen to update our E-R notation to make it closer to the form of
UML class diagrams; the connections will become clear in Section 6.10.2. In compari-
son with our previous notation, our new notation provides a more compact representa-
tion of attributes, and it is also closer to the notation supported by many E-R modeling
tools, in addition to being closer to the UML class diagram notation.

There are a variety of tools for constructing E-R diagrams, each of which has its
own notational variants. Some of the tools even provide a choice between several E-R
notation variants. See the tools section at the end of the chapter for references.

One key difference between entity sets in an E-R diagram and the relation schemas
created from such entities is that attributes in the relational schema corresponding to
E-R relationships, such as the dept name attribute of instructor, are not shown in the
entity set in the E-R diagram. Some data modeling tools allow designers to choose
between two views of the same entity, one an entity view without such attributes, and
other a relational view with such attributes.

6.10.2 The Unified Modeling Language UML

Entity-relationship diagrams help model the data representation component of a soft-
ware system. Data representation, however, forms only one part of an overall system
design. Other components include models of user interactions with the system, spec-
ification of functional modules of the system and their interaction, etc. The Unified
Modeling Language (UML) is a standard developed under the auspices of the Object
Management Group (OMG) for creating specifications of various components of a soft-
ware system. Some of the parts of UML are:

• Class diagram. A class diagram is similar to an E-R diagram. Later in this section
we illustrate a few features of class diagrams and how they relate to E-R diagrams.

• Use case diagram. Use case diagrams show the interaction between users and the
system, in particular the steps of tasks that users perform (such as withdrawing
money or registering for a course).

• Activity diagram. Activity diagrams depict the flow of tasks between various com-
ponents of a system.
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• Implementation diagram. Implementation diagrams show the system components
and their interconnections, both at the software component level and the hardware
component level.

We do not attempt to provide detailed coverage of the different parts of UML here.
Instead we illustrate some features of that part of UML that relates to data modeling
through examples. See the Further Reading section at the end of the chapter for refer-
ences on UML.

Figure 6.28 shows several E-R diagram constructs and their equivalent UML class
diagram constructs. We describe these constructs below. UML actually models objects,
whereas E-R models entities. Objects are like entities, and have attributes, but addition-
ally provide a set of functions (called methods) that can be invoked to compute values
on the basis of attributes of the objects, or to update the object itself. Class diagrams
can depict methods in addition to attributes. We cover objects in Section 8.2. UML does
not support composite or multivalued attributes, and derived attributes are equivalent
to methods that take no parameters. Since classes support encapsulation, UML allows
attributes and methods to be prefixed with a “+”, “-”, or “#”, which denote respectively
public, private, and protected access. Private attributes can only be used in methods of
the class, while protected attributes can be used only in methods of the class and its
subclasses; these should be familiar to anyone who knows Java, C++, or C#.

In UML terminology, relationship sets are referred to as associations; we shall refer
to them as relationship sets for consistency with E-R terminology. We represent binary
relationship sets in UML by just drawing a line connecting the entity sets. We write the
relationship set name adjacent to the line. We may also specify the role played by an
entity set in a relationship set by writing the role name on the line, adjacent to the entity
set. Alternatively, we may write the relationship set name in a box, along with attributes
of the relationship set, and connect the box by a dotted line to the line depicting the
relationship set. This box can then be treated as an entity set, in the same way as an
aggregation in E-R diagrams, and can participate in relationships with other entity sets.

Since UML version 1.3, UML supports nonbinary relationships, using the same di-
amond notation used in E-R diagrams. Nonbinary relationships could not be directly
represented in earlier versions of UML—they had to be converted to binary relation-
ships by the technique we have seen earlier in Section 6.9.4. UML allows the diamond
notation to be used even for binary relationships, but most designers use the line nota-
tion.

Cardinality constraints are specified in UML in the same way as in E-R diagrams,
in the form l..h, where l denotes the minimum and h the maximum number of relation-
ships an entity can participate in. However, you should be aware that the positioning
of the constraints is exactly the reverse of the positioning of constraints in E-R dia-
grams, as shown in Figure 6.28. The constraint 0.. ∗ on the E2 side and 0..1 on the
E1 side means that each E2 entity can participate in at most one relationship, whereas
each E1 entity can participate in many relationships; in other words, the relationship
is many-to-one from E2 to E1.
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Figure 6.28 Symbols used in the UML class diagram notation.

Single values such as 1 or ∗may be written on edges; the single value 1 on an edge is
treated as equivalent to 1..1, while ∗ is equivalent to 0.. ∗. UML supports generalization;
the notation is basically the same as in our E-R notation, including the representation
of disjoint and overlapping generalizations.

UML class diagrams include several other notations that approximately correspond
to the E-R notations we have seen. A line between two entity sets with a small shaded
diamond at one end in UML specifies “composition” in UML. The composition rela-
tionship between E2 and E1 in Figure 6.28 indicates that E2 is existence dependent
on E1; this is roughly equivalent to denoting E2 as a weak entity set that is existence
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dependent on the identifying entity set E1. (The term aggregation in UML denotes a
variant of composition where E2 is contained in E1 but may exist independently, and
it is denoted using a small hollow diamond.)

UML class diagrams also provide notations to represent object-oriented language
features such as interfaces. See the Further Reading section for more information on
UML class diagrams.

6.11 Other Aspects of Database Design

Our extensive discussion of schema design in this chapter may create the false impres-
sion that schema design is the only component of a database design. There are indeed
several other considerations that we address more fully in subsequent chapters, and
survey briefly here.

6.11.1 Functional Requirements

All enterprises have rules on what kinds of functionality are to be supported by an
enterprise application. These could include transactions that update the data, as well
as queries to view data in a desired fashion. In addition to planning the functionality,
designers have to plan the interfaces to be built to support the functionality.

Not all users are authorized to view all data, or to perform all transactions. An
authorization mechanism is very important for any enterprise application. Such autho-
rization could be at the level of the database, using database authorization features.
But it could also be at the level of higher-level functionality or interfaces, specifying
who can use which functions/interfaces.

6.11.2 Data Flow, Workflow

Database applications are often part of a larger enterprise application that interacts
not only with the database system but also with various specialized applications. As
an example, consider a travel-expense report. It is created by an employee returning
from a business trip (possibly by means of a special software package) and is subse-
quently routed to the employee’s manager, perhaps other higher-level managers, and
eventually to the accounting department for payment (at which point it interacts with
the enterprise’s accounting information systems).

The term workflow refers to the combination of data and tasks involved in processes
like those of the preceding examples. Workflows interact with the database system as
they move among users and users perform their tasks on the workflow. In addition to the
data on which workflows operate, the database may store data about the workflow itself,
including the tasks making up a workflow and how they are to be routed among users.
Workflows thus specify a series of queries and updates to the database that may be taken
into account as part of the database-design process. Put in other terms, modeling the
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enterprise requires us not only to understand the semantics of the data but also the
business processes that use those data.

6.11.3 Schema Evolution

Database design is usually not a one-time activity. The needs of an organization evolve
continually, and the data that it needs to store also evolve correspondingly. During
the initial database-design phases, or during the development of an application, the
database designer may realize that changes are required at the conceptual, logical, or
physical schema levels. Changes in the schema can affect all aspects of the database
application. A good database design anticipates future needs of an organization and
ensures that the schema requires minimal changes as the needs evolve.

It is important to distinguish between fundamental constraints that are expected
to be permanent and constraints that are anticipated to change. For example, the con-
straint that an instructor-id identify a unique instructor is fundamental. On the other
hand, a university may have a policy that an instructor can have only one department,
which may change at a later date if joint appointments are allowed. A database design
that only allows one department per instructor might require major changes if joint
appointments are allowed. Such joint appointments can be represented by adding an
extra relationship without modifying the instructor relation, as long as each instructor
has only one primary department affiliation; a policy change that allows more than one
primary affiliation may require a larger change in the database design. A good design
should account not only for current policies, but should also avoid or minimize the
need for modifications due to changes that are anticipated or have a reasonable chance
of happening.

Finally, it is worth noting that database design is a human-oriented activity in two
senses: the end users of the system are people (even if an application sits between the
database and the end users); and the database designer needs to interact extensively
with experts in the application domain to understand the data requirements of the
application. All of the people involved with the data have needs and preferences that
should be taken into account in order for a database design and deployment to succeed
within the enterprise.

6.12 Summary

• Database design mainly involves the design of the database schema. The entity-
relationship (E-R) data model is a widely used data model for database design.
It provides a convenient graphical representation to view data, relationships, and
constraints.

• The E-R model is intended primarily for the database-design process. It was de-
veloped to facilitate database design by allowing the specification of an enterprise
schema. Such a schema represents the overall logical structure of the database.
This overall structure can be expressed graphically by an E-R diagram.
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• An entity is an object that exists in the real world and is distinguishable from other
objects. We express the distinction by associating with each entity a set of attributes
that describes the object.

• A relationship is an association among several entities. A relationship set is a col-
lection of relationships of the same type, and an entity set is a collection of entities
of the same type.

• The terms superkey, candidate key, and primary key apply to entity and relation-
ship sets as they do for relation schemas. Identifying the primary key of a relation-
ship set requires some care, since it is composed of attributes from one or more of
the related entity sets.

• Mapping cardinalities express the number of entities to which another entity can
be associated via a relationship set.

• An entity set that does not have sufficient attributes to form a primary key is termed
a weak entity set. An entity set that has a primary key is termed a strong entity set.

• The various features of the E-R model offer the database designer numerous
choices in how to best represent the enterprise being modeled. Concepts and ob-
jects may, in certain cases, be represented by entities, relationships, or attributes.
Aspects of the overall structure of the enterprise may be best described by using
weak entity sets, generalization, specialization, or aggregation. Often, the designer
must weigh the merits of a simple, compact model versus those of a more precise,
but more complex one.

• A database design specified by an E-R diagram can be represented by a collection of
relation schemas. For each entity set and for each relationship set in the database,
there is a unique relation schema that is assigned the name of the corresponding
entity set or relationship set. This forms the basis for deriving a relational database
design from an E-R diagram.

• Specialization and generalization define a containment relationship between a
higher-level entity set and one or more lower-level entity sets. Specialization is
the result of taking a subset of a higher-level entity set to form a lower-level entity
set. Generalization is the result of taking the union of two or more disjoint (lower-
level) entity sets to produce a higher-level entity set. The attributes of higher-level
entity sets are inherited by lower-level entity sets.

• Aggregation is an abstraction in which relationship sets (along with their asso-
ciated entity sets) are treated as higher-level entity sets, and can participate in
relationships.

• Care must be taken in E-R design. There are a number of common mistakes to
avoid. Also, there are choices among the use of entity sets, relationship sets, and
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attributes in representing aspects of the enterprise whose correctness may depend
on subtle details specific to the enterprise.

• UML is a popular modeling language. UML class diagrams are widely used for
modeling classes, as well as for general-purpose data modeling.

Review Terms

• Design Process

° Conceptual-design

° Logical-design

° Physical-design

• Entity-relationship (E-R) data model

• Entity and entity set

° Simple and composite attributes

° Single-valued and multivalued at-
tributes

° Derived attribute

• Key

° Superkey

° Candidate key

° Primary key

• Relationship and relationship set

° Binary relationship set

° Degree of relationship set

° Descriptive attributes

° Superkey, candidate key, and pri-
mary key

° Role

° Recursive relationship set

• E-R diagram

• Mapping cardinality:

° One-to-one relationship

° One-to-many relationship

° Many-to-one relationship

° Many-to-many relationship

• Total and partial participation

• Weak entity sets and strong entity sets

° Discriminator attributes

° Identifying relationship

• Specialization and generalization

• Aggregation

• Design choices

• United Modeling Language (UML)

Practice Exercises

6.1 Construct an E-R diagram for a car insurance company whose customers own
one or more cars each. Each car has associated with it zero to any number of
recorded accidents. Each insurance policy covers one or more cars and has one
or more premium payments associated with it. Each payment is for a particular
period of time, and has an associated due date, and the date when the payment
was received.
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6.2 Consider a database that includes the entity sets student, course, and section
from the university schema and that additionally records the marks that students
receive in different exams of different sections.

a. Construct an E-R diagram that models exams as entities and uses a ternary
relationship as part of the design.

b. Construct an alternative E-R diagram that uses only a binary relationship
between student and section. Make sure that only one relationship exists
between a particular student and section pair, yet you can represent the
marks that a student gets in different exams.

6.3 Design an E-R diagram for keeping track of the scoring statistics of your favorite
sports team. You should store the matches played, the scores in each match, the
players in each match, and individual player scoring statistics for each match.
Summary statistics should be modeled as derived attributes with an explanation
as to how they are computed.

6.4 Consider an E-R diagram in which the same entity set appears several times,
with its attributes repeated in more than one occurrence. Why is allowing this
redundancy a bad practice that one should avoid?

6.5 An E-R diagram can be viewed as a graph. What do the following mean in terms
of the structure of an enterprise schema?

a. The graph is disconnected.

b. The graph has a cycle.

6.6 Consider the representation of the ternary relationship of Figure 6.29a using
the binary relationships illustrated in Figure 6.29b (attributes not shown).

a. Show a simple instance of E, A, B, C, RA, RB, and RC that cannot corre-
spond to any instance of A, B, C, and R.

b. Modify the E-R diagram of Figure 6.29b to introduce constraints that will
guarantee that any instance of E, A, B, C, RA, RB, and RC that satisfies the
constraints will correspond to an instance of A, B, C, and R.

c. Modify the preceding translation to handle total participation constraints
on the ternary relationship.

6.7 A weak entity set can always be made into a strong entity set by adding to its
attributes the primary-key attributes of its identifying entity set. Outline what
sort of redundancy will result if we do so.

6.8 Consider a relation such as sec course, generated from a many-to-one relation-
ship set sec course. Do the primary and foreign key constraints created on the
relation enforce the many-to-one cardinality constraint? Explain why.
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Figure 6.29 Representation of a ternary relationship using binary relationships.

6.9 Suppose the advisor relationship set were one-to-one. What extra constraints
are required on the relation advisor to ensure that the one-to-one cardinality
constraint is enforced?

6.10 Consider a many-to-one relationship R between entity sets A and B. Suppose
the relation created from R is combined with the relation created from A. In
SQL, attributes participating in a foreign key constraint can be null. Explain
how a constraint on total participation of A in R can be enforced using not null
constraints in SQL.

6.11 In SQL, foreign key constraints can reference only the primary key attributes of
the referenced relation or other attributes declared to be a superkey using the
unique constraint. As a result, total participation constraints on a many-to-many
relationship set (or on the “one” side of a one-to-many relationship set) cannot
be enforced on the relations created from the relationship set, using primary
key, foreign key, and not null constraints on the relations.

a. Explain why.

b. Explain how to enforce total participation constraints using complex
check constraints or assertions (see Section 4.4.8). (Unfortunately, these
features are not supported on any widely used database currently.)

6.12 Consider the following lattice structure of generalization and specialization (at-
tributes not shown).
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X Y

A B C

For entity sets A, B, and C, explain how attributes are inherited from the higher-
level entity sets X and Y . Discuss how to handle a case where an attribute of X
has the same name as some attribute of Y .

6.13 An E-R diagram usually models the state of an enterprise at a point in time.
Suppose we wish to track temporal changes, that is, changes to data over time.
For example, Zhang may have been a student between September 2015 and
May 2019, while Shankar may have had instructor Einstein as advisor from May
2018 to December 2018, and again from June 2019 to January 2020. Similarly,
attribute values of an entity or relationship, such as title and credits of course,
salary, or even name of instructor, and tot cred of student, can change over time.

One way to model temporal changes is as follows: We define a new data type
called valid time, which is a time interval, or a set of time intervals. We then
associate a valid time attribute with each entity and relationship, recording the
time periods during which the entity or relationship is valid. The end time of an
interval can be infinity; for example, if Shankar became a student in September
2018, and is still a student, we can represent the end time of the valid time in-
terval as infinity for the Shankar entity. Similarly, we model attributes that can
change over time as a set of values, each with its own valid time.

a. Draw an E-R diagram with the student and instructor entities, and the ad-
visor relationship, with the above extensions to track temporal changes.

b. Convert the E-R diagram discussed above into a set of relations.

It should be clear that the set of relations generated is rather complex, leading
to difficulties in tasks such as writing queries in SQL. An alternative approach,
which is used more widely, is to ignore temporal changes when designing the
E-R model (in particular, temporal changes to attribute values), and to modify
the relations generated from the E-R model to track temporal changes.

Exercises

6.14 Explain the distinctions among the terms primary key, candidate key, and su-
perkey.
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6.15 Construct an E-R diagram for a hospital with a set of patients and a set of med-
ical doctors. Associate with each patient a log of the various tests and examina-
tions conducted.

6.16 Extend the E-R diagram of Exercise 6.3 to track the same information for all
teams in a league.

6.17 Explain the difference between a weak and a strong entity set.

6.18 Consider two entity sets A and B that both have the attribute X (among others
whose names are not relevant to this question).

a. If the two X s are completely unrelated, how should the design be im-
proved?

b. If the two X s represent the same property and it is one that applies both to
A and to B, how should the design be improved? Consider three subcases:

• X is the primary key for A but not B

• X is the primary key for both A and B

• X is not the primary key for A nor for B

6.19 We can convert any weak entity set to a strong entity set by simply adding ap-
propriate attributes. Why, then, do we have weak entity sets?

6.20 Construct appropriate relation schemas for each of the E-R diagrams in:

a. Exercise 6.1.

b. Exercise 6.2.

c. Exercise 6.3.

d. Exercise 6.15.

6.21 Consider the E-R diagram in Figure 6.30, which models an online bookstore.

a. Suppose the bookstore adds Blu-ray discs and downloadable video to its
collection. The same item may be present in one or both formats, with dif-
fering prices. Draw the part of the E-R diagram that models this addition,
showing just the parts related to video.

b. Now extend the full E-R diagram to model the case where a shopping bas-
ket may contain any combination of books, Blu-ray discs, or downloadable
video.

6.22 Design a database for an automobile company to provide to its dealers to assist
them in maintaining customer records and dealer inventory and to assist sales
staff in ordering cars.
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author

name
address
URL

written_by
published_by

contains

number

number

stocks

book

shopping_basket

basket_id

warehouse

basket_of
ISBN
title
year
price

code
address
phone

publisher

name
address
phone
URL

customer

email
name
address
phone

Figure 6.30 E-R diagram for modeling an online bookstore.

Each vehicle is identified by a vehicle identification number (VIN). Each indi-
vidual vehicle is a particular model of a particular brand offered by the company
(e.g., the XF is a model of the car brand Jaguar of Tata Motors). Each model
can be offered with a variety of options, but an individual car may have only
some (or none) of the available options. The database needs to store informa-
tion about models, brands, and options, as well as information about individual
dealers, customers, and cars.

Your design should include an E-R diagram, a set of relational schemas, and
a list of constraints, including primary-key and foreign-key constraints.

6.23 Design a database for a worldwide package delivery company (e.g., DHL or
FedEx). The database must be able to keep track of customers who ship items
and customers who receive items; some customers may do both. Each package
must be identifiable and trackable, so the database must be able to store the
location of the package and its history of locations. Locations include trucks,
planes, airports, and warehouses.

Your design should include an E-R diagram, a set of relational schemas, and
a list of constraints, including primary-key and foreign-key constraints.

6.24 Design a database for an airline. The database must keep track of customers
and their reservations, flights and their status, seat assignments on individual
flights, and the schedule and routing of future flights.

Your design should include an E-R diagram, a set of relational schemas, and
a list of constraints, including primary-key and foreign-key constraints.
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6.25 In Section 6.9.4, we represented a ternary relationship (repeated in Figure
6.29a) using binary relationships, as shown in Figure 6.29b. Consider the alter-
native shown in Figure 6.29c. Discuss the relative merits of these two alternative
representations of a ternary relationship by binary relationships.

6.26 Design a generalization–specialization hierarchy for a motor vehicle sales com-
pany. The company sells motorcycles, passenger cars, vans, and buses. Justify
your placement of attributes at each level of the hierarchy. Explain why they
should not be placed at a higher or lower level.

6.27 Explain the distinction between disjoint and overlapping constraints.

6.28 Explain the distinction between total and partial constraints.

Tools

Many database systems provide tools for database design that support E-R diagrams.
These tools help a designer create E-R diagrams, and they can automatically create cor-
responding tables in a database. See bibliographical notes of Chapter 1 for references
to database-system vendors’ web sites.

There are also several database-independent data modeling tools that support E-R
diagrams and UML class diagrams.

Dia, which is a free diagram editor that runs on multiple platforms such as Linux
and Windows, supports E-R diagrams and UML class diagrams. To represent entities
with attributes, you can use either classes from the UML library or tables from the
Database library provided by Dia, since the default E-R notation in Dia represents
attributes as ovals. The free online diagram editor LucidChart allows you to create E-R
diagrams with entities represented in the same ways as we do. To create relationships,
we suggest you use diamonds from the Flowchart shape collection. Draw.io is another
online diagram editor that supports E-R diagrams.

Commercial tools include IBM Rational Rose Modeler, Microsoft Visio, ERwin
Data Modeler, Poseidon for UML, and SmartDraw.

Further Reading

The E-R data model was introduced by [Chen (1976)]. The Integration Definition
for Information Modeling (IDEF1X) standard [NIST (1993)] released by the United
States National Institute of Standards and Technology (NIST) defined standards for
E-R diagrams. However, a variety of E-R notations are in use today.

[Thalheim (2000)] provides a detailed textbook coverage of research in E-R mod-
eling.

As of 2018, the current UML version was 2.5, which was released in June 2015. See
www.uml.org for more information on UML standards and tools.
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CHAP T E R 7
Relational Database Design

In this chapter, we consider the problem of designing a schema for a relational database.
Many of the issues in doing so are similar to design issues we considered in Chapter 6
using the E-R model.

In general, the goal of relational database design is to generate a set of relation
schemas that allows us to store information without unnecessary redundancy, yet also
allows us to retrieve information easily. This is accomplished by designing schemas that
are in an appropriate normal form. To determine whether a relation schema is in one of
the desirable normal forms, we need information about the real-world enterprise that
we are modeling with the database. Some of this information exists in a well-designed
E-R diagram, but additional information about the enterprise may be needed as well.

In this chapter, we introduce a formal approach to relational database design based
on the notion of functional dependencies. We then define normal forms in terms of
functional dependencies and other types of data dependencies. First, however, we view
the problem of relational design from the standpoint of the schemas derived from a
given entity-relationship design.

7.1 Features of Good Relational Designs

Our study of entity-relationship design in Chapter 6 provides an excellent starting point
for creating a relational database design. We saw in Section 6.7 that it is possible to gen-
erate a set of relation schemas directly from the E-R design. The goodness (or badness)
of the resulting set of schemas depends on how good the E-R design was in the first
place. Later in this chapter, we shall study precise ways of assessing the desirability of
a collection of relation schemas. However, we can go a long way toward a good design
using concepts we have already studied. For ease of reference, we repeat the schemas
for the university database in Figure 7.1.

Suppose that we had started out when designing the university enterprise with the
schema in dep.

in dep (ID, name, salary, dept name, building, budget)

303
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classroom(building, room number, capacity)
department(dept name, building, budget)
course(course id, title, dept name, credits)
instructor(ID, name, dept name, salary)
section(course id, sec id, semester, year, building, room number, time slot id)
teaches(ID, course id, sec id, semester, year)
student(ID, name, dept name, tot cred)
takes(ID, course id, sec id, semester, year, grade)
advisor(s ID, i ID)
time slot(time slot id, day, start time, end time)
prereq(course id, prereq id)

Figure 7.1 Database schema for the university example.

This represents the result of a natural join on the relations corresponding to instructor
and department. This seems like a good idea because some queries can be expressed
using fewer joins, until we think carefully about the facts about the university that led
to our E-R design.

Let us consider the instance of the in dep relation shown in Figure 7.2. Notice
that we have to repeat the department information (“building” and “budget”) once for
each instructor in the department. For example, the information about the Comp. Sci.
department (Taylor, 100000) is included in the tuples of instructors Katz, Srinivasan,
and Brandt.

It is important that all these tuples agree as to the budget amount since otherwise
our database would be inconsistent. In our original design using instructor and depart-
ment, we stored the amount of each budget exactly once. This suggests that using in
dep is a bad idea since it stores the budget amounts redundantly and runs the risk that

some user might update the budget amount in one tuple but not all, and thus create
inconsistency.

Even if we decided to live with the redundancy problem, there is still another prob-
lem with the in dep schema. Suppose we are creating a new department in the uni-
versity. In the alternative design above, we cannot represent directly the information
concerning a department (dept name, building, budget) unless that department has at
least one instructor at the university. This is because tuples in the in dep table require
values for ID, name, and salary. This means that we cannot record information about
the newly created department until the first instructor is hired for the new department.
In the old design, the schema department can handle this, but under the revised design,
we would have to create a tuple with a null value for building and budget. In some cases
null values are troublesome, as we saw in our study of SQL. However, if we decide that



7.1 Features of Good Relational Designs 305

ID name salary dept name building budget

22222 Einstein 95000 Physics Watson 70000
12121 Wu 90000 Finance Painter 120000
32343 El Said 60000 History Painter 50000
45565 Katz 75000 Comp. Sci. Taylor 100000
98345 Kim 80000 Elec. Eng. Taylor 85000
76766 Crick 72000 Biology Watson 90000
10101 Srinivasan 65000 Comp. Sci. Taylor 100000
58583 Califieri 62000 History Painter 50000
83821 Brandt 92000 Comp. Sci. Taylor 100000
15151 Mozart 40000 Music Packard 80000
33456 Gold 87000 Physics Watson 70000
76543 Singh 80000 Finance Painter 120000

Figure 7.2 The in dep relation.

this is not a problem to us in this case, then we can proceed to use the revised design,
though, as we noted, we would still have the redundancy problem.

7.1.1 Decomposition

The only way to avoid the repetition-of-information problem in the in dep schema is to
decompose it into two schemas (in this case, the instructor and department schemas).
Later on in this chapter we shall present algorithms to decide which schemas are ap-
propriate and which ones are not. In general, a schema that exhibits repetition of in-
formation may have to be decomposed into several smaller schemas.

Not all decompositions of schemas are helpful. Consider an extreme case in which
all schemas consist of one attribute. No interesting relationships of any kind could
be expressed. Now consider a less extreme case where we choose to decompose the
employee schema (Section 6.8):

employee (ID, name, street, city, salary)

into the following two schemas:

employee1 (ID, name)
employee2 (name, street, city, salary)

The flaw in this decomposition arises from the possibility that the enterprise has two
employees with the same name. This is not unlikely in practice, as many cultures have
certain highly popular names. Each person would have a unique employee-id, which
is why ID can serve as the primary key. As an example, let us assume two employees,
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both named Kim, work at the university and have the following tuples in the relation
on schema employee in the original design:

(57766, Kim, Main, Perryridge, 75000)
(98776, Kim, North, Hampton, 67000)

Figure 7.3 shows these tuples, the resulting tuples using the schemas resulting from
the decomposition, and the result if we attempted to regenerate the original tuples us-
ing a natural join. As we see in the figure, the two original tuples appear in the result
along with two new tuples that incorrectly mix data values pertaining to the two em-
ployees named Kim. Although we have more tuples, we actually have less information
in the following sense. We can indicate that a certain street, city, and salary pertain
to someone named Kim, but we are unable to distinguish which of the Kims. Thus,
our decomposition is unable to represent certain important facts about the university

ID name street city salary
...

57766
98776...

Kim
Kim

Main
North

Perryridge
Hampton

75000
67000

ID name
...

57766
98776...

Kim
Kim

name street city salary

75000
67000

Main
North

Perryridge
Hampton

...
Kim
Kim...

ID name street city salary

employee

...
57766
57766
98776
98776

...

75000
67000
75000
67000

Perryridge
Hampton
Perryridge
Hampton

Main
North
Main
North

Kim
Kim
Kim
Kim
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Figure 7.3 Loss of information via a bad decomposition.
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employees. We would like to avoid such decompositions. We shall refer to such decom-
positions as being lossy decompositions, and, conversely, to those that are not as lossless
decompositions.

For the remainder of the text we shall insist that all decompositions should be
lossless decompositions.

7.1.2 Lossless Decomposition

Let R be a relation schema and let R1 and R2 form a decomposition of R—that is, view-
ing R, R1, and R2 as sets of attributes, R = R1 ∪R2. We say that the decomposition is a
lossless decomposition if there is no loss of information by replacing R with two relation
schemas R1 and R2. Loss of information occurs if it is possible to have an instance of
a relation r(R) that includes information that cannot be represented if instead of the
instance of r(R) we must use instances of r1(R1) and r2(R2). More precisely, we say
the decomposition is lossless if, for all legal (we shall formally define “legal” in Section
7.2.2.) database instances, relation r contains the same set of tuples as the result of the
following SQL query:1

select *
from (select R1 from r)

natural join
(select R2 from r)

This is stated more succinctly in the relational algebra as:

ΠR1
(r) ⋈ ΠR2

(r) = r

In other words, if we project r onto R1 and R2, and compute the natural join of the
projection results, we get back exactly r.

Conversely, a decomposition is lossy if when we compute the natural join of the
projection results, we get a proper superset of the original relation. This is stated more
succinctly in the relational algebra as:

r ⊂ ΠR1
(r) ⋈ ΠR2

(r)

Let us return to our decomposition of the employee schema into employee1 and
employee2 (Figure 7.3) and a case where two or more employees have the same name.
The result of employee1 natural join employee2 is a superset of the original relation
employee, but the decomposition is lossy since the join result has lost information about
which employee identifiers correspond to which addresses and salaries.

1The definition of lossless is stated assuming that no attribute that appears on the left side of a functional dependency
can have a null value. This is explored further in Exercise 7.10.
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It may seem counterintuitive that we have more tuples but less information, but
that is indeed the case. The decomposed version is unable to represent the absence of
a connection between a name and an address or salary, and absence of a connection
is indeed information.

7.1.3 Normalization Theory

We are now in a position to define a general methodology for deriving a set of
schemas each of which is in “good form”; that is, does not suffer from the repetition-
of-information problem.

The method for designing a relational database is to use a process commonly
known as normalization. The goal is to generate a set of relation schemas that allows
us to store information without unnecessary redundancy, yet also allows us to retrieve
information easily. The approach is:

• Decide if a given relation schema is in “good form.” There are a number of different
forms (called normal forms), which we cover in Section 7.3.

• If a given relation schema is not in “good form,” then we decompose it into a
number of smaller relation schemas, each of which is in an appropriate normal
form. The decomposition must be a lossless decomposition.

To determine whether a relation schema is in one of the desirable normal forms, we
need additional information about the real-world enterprise that we are modeling with
the database. The most common approach is to use functional dependencies, which we
cover in Section 7.2.

7.2 Decomposition Using Functional Dependencies

A database models a set of entities and relationships in the real world. There are usually
a variety of constraints (rules) on the data in the real world. For example, some of the
constraints that are expected to hold in a university database are:

1. Students and instructors are uniquely identified by their ID.

2. Each student and instructor has only one name.

3. Each instructor and student is (primarily) associated with only one department.2

4. Each department has only one value for its budget, and only one associated build-
ing.

2An instructor, in most real universities, can be associated with more than one department, for example, via a joint
appointment or in the case of adjunct faculty. Similarly, a student may have two (or more) majors or a minor. Our
simplified university schema models only the primary department associated with each instructor or student.



7.2 Decomposition Using Functional Dependencies 309

An instance of a relation that satisfies all such real-world constraints is called a
legal instance of the relation; a legal instance of a database is one where all the relation
instances are legal instances.

7.2.1 Notational Conventions

In discussing algorithms for relational database design, we shall need to talk about
arbitrary relations and their schema, rather than talking only about examples. Recalling
our introduction to the relational model in Chapter 2, we summarize our notation here.

• In general, we use Greek letters for sets of attributes (e.g., α). We use an uppercase
Roman letter to refer to a relation schema. We use the notation r(R) to show that
the schema R is for relation r.

A relation schema is a set of attributes, but not all sets of attributes are schemas.
When we use a lowercase Greek letter, we are referring to a set of attributes that
may or may not be a schema. A Roman letter is used when we wish to indicate
that the set of attributes is definitely a schema.

• When a set of attributes is a superkey, we may denote it by K . A superkey pertains
to a specific relation schema, so we use the terminology “K is a superkey for R.”

• We use a lowercase name for relations. In our examples, these names are intended
to be realistic (e.g., instructor), while in our definitions and algorithms, we use
single letters, like r.

• The notation r(R) thus refers to the relation r with schema R. When we write r(R),
we thus refer both to the relation and its schema.

• A relation, has a particular value at any given time; we refer to that as an instance
and use the term “instance of r.” When it is clear that we are talking about an
instance, we may use simply the relation name (e.g., r).

For simplicity, we assume that attribute names have only one meaning within the
database schema.

7.2.2 Keys and Functional Dependencies

Some of the most commonly used types of real-world constraints can be represented
formally as keys (superkeys, candidate keys, and primary keys), or as functional depen-
dencies, which we define below.

In Section 2.3, we defined the notion of a superkey as a set of one or more attributes
that, taken collectively, allows us to identify uniquely a tuple in the relation. We restate
that definition here as follows: Given r(R), a subset K of R is a superkey of r(R) if, in
any legal instance of r(R), for all pairs t1 and t2 of tuples in the instance of r if t1 ≠ t2,
then t1[K] ≠ t2[K]. That is, no two tuples in any legal instance of relation r(R) may
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have the same value on attribute set K .3 If no two tuples in r have the same value on
K , then a K -value uniquely identifies a tuple in r.

Whereas a superkey is a set of attributes that uniquely identifies an entire tuple, a
functional dependency allows us to express constraints that uniquely identify the values
of certain attributes. Consider a relation schema r(R), and let α ⊆ R and β ⊆ R.

• Given an instance of r(R), we say that the instance satisfies the functional de-
pendency α → β if for all pairs of tuples t1 and t2 in the instance such that
t1[α] = t2[α], it is also the case that t1[β] = t2[β].

• We say that the functional dependency α→ β holds on schema r(R) if, every legal
instance of r(R) satisfies the functional dependency.

Using the functional-dependency notation, we say that K is a superkey for r(R) if
the functional dependency K → R holds on r(R). In other words, K is a superkey if,
for every legal instance of r(R), for every pair of tuples t1 and t2 from the instance,
whenever t1[K] = t2[K], it is also the case that t1[R] = t2[R] (i.e., t1 = t2).4

Functional dependencies allow us to express constraints that we cannot express
with superkeys. In Section 7.1, we considered the schema:

in dep (ID, name, salary, dept name, building, budget)

in which the functional dependency dept name → budget holds because for each de-
partment (identified by dept name) there is a unique budget amount.

We denote the fact that the pair of attributes (ID, dept name) forms a superkey for
in dep by writing:

ID, dept name → name, salary, building, budget

We shall use functional dependencies in two ways:

1. To test instances of relations to see whether they satisfy a given set F of functional
dependencies.

2. To specify constraints on the set of legal relations. We shall thus concern our-
selves with only those relation instances that satisfy a given set of functional de-
pendencies. If we wish to constrain ourselves to relations on schema r(R) that
satisfy a set F of functional dependencies, we say that F holds on r(R).

3In our discussion of functional dependencies, we use equality (=) in the normal mathematical sense, not the three-
valued-logic sense of SQL. Said differently, in discussing functional dependencies, we assume no null values.
4Note that we assume here that relations are sets. SQL deals with multisets, and a primary key declaration in SQL for a
set of attributes K requires not only that t1 = t2 if t1[K] = t2[K], but also that there be no duplicate tuples. SQL also
requires that attributes in the set K cannot be assigned a null value.
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A B C D

a1 b1 c1 d1
a1 b2 c1 d2
a2 b2 c2 d2
a2 b3 c2 d3
a3 b3 c2 d4

Figure 7.4 Sample instance of relation r.

Let us consider the instance of relation r of Figure 7.4, to see which functional
dependencies are satisfied. Observe that A → C is satisfied. There are two tuples that
have an A value of a1. These tuples have the same C value—namely, c1. Similarly, the
two tuples with an A value of a2 have the same C value, c2. There are no other pairs
of distinct tuples that have the same A value. The functional dependency C → A is not
satisfied, however. To see that it is not, consider the tuples t1 = (a2, b3, c2, d3) and t2 =
(a3, b3, c2, d4). These two tuples have the same C values, c2, but they have different A
values, a2 and a3, respectively. Thus, we have found a pair of tuples t1 and t2 such that
t1[C] = t2[C], but t1[A] ≠ t2[A].

Some functional dependencies are said to be trivial because they are satisfied by all
relations. For example, A → A is satisfied by all relations involving attribute A. Reading
the definition of functional dependency literally, we see that, for all tuples t1 and t2 such
that t1[A] = t2[A], it is the case that t1[A] = t2[A]. Similarly, AB → A is satisfied
by all relations involving attribute A. In general, a functional dependency of the form
α → β is trivial if β ⊆ α.

It is important to realize that an instance of a relation may satisfy some functional
dependencies that are not required to hold on the relation’s schema. In the instance of
the classroom relation of Figure 7.5, we see that room number → capacity is satisfied.
However, we believe that, in the real world, two classrooms in different buildings can
have the same room number but with different room capacity. Thus, it is possible, at
some time, to have an instance of the classroom relation in which room number →
capacity is not satisfied. So, we would not include room number → capacity in the set of

building room number capacity

Packard 101 500
Painter 514 10
Taylor 3128 70
Watson 100 30
Watson 120 50

Figure 7.5 An instance of the classroom relation.
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functional dependencies that hold on the schema for the classroom relation. However,
we would expect the functional dependency building, room number → capacity to hold
on the classroom schema.

Because we assume that attribute names have only one meaning in the database
schema, if we state that a functional dependency α → β holds as a constraint on the
database, then for any schema R such that α ⊆ R and β ⊆ R, α → β must hold.

Given that a set of functional dependencies F holds on a relation r(R), it may
be possible to infer that certain other functional dependencies must also hold on the
relation. For example, given a schema r(A, B, C), if functional dependencies A → B and
B → C hold on r, we can infer the functional dependency A → C must also hold on r.
This is because, given any value of A, there can be only one corresponding value for B,
and for that value of B, there can only be one corresponding value for C. We study in
Section 7.4.1, how to make such inferences.

We shall use the notation F+ to denote the closure of the set F , that is, the set of
all functional dependencies that can be inferred given the set F . F+ contains all of the
functional dependencies in F .

7.2.3 Lossless Decomposition and Functional Dependencies

We can use functional dependencies to show when certain decompositions are lossless.
Let R, R1, R2, and F be as above. R1 and R2 form a lossless decomposition of R if at
least one of the following functional dependencies is in F+:

• R1 ∩ R2 → R1

• R1 ∩ R2 → R2

In other words, if R1∩R2 forms a superkey for either R1 or R2, the decomposition of R is
a lossless decomposition. We can use attribute closure to test efficiently for superkeys,
as we have seen earlier.

To illustrate this, consider the schema

in dep (ID, name, salary, dept name, building, budget)

that we decomposed in Section 7.1 into the instructor and department schemas:

instructor (ID, name, dept name, salary)
department (dept name, building, budget)

Consider the intersection of these two schemas, which is dept name. We see that be-
cause dept name→ dept name, building, budget, the lossless-decomposition rule is sat-
isfied.
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For the general case of decomposition of a schema into multiple schemas at once,
the test for lossless decomposition is more complicated. See the Further Reading sec-
tion at the end of this chapter for references on this topic.

While the test for binary decomposition is clearly a sufficient condition for lossless
decomposition, it is a necessary condition only if all constraints are functional depen-
dencies. We shall see other types of constraints later (in particular, a type of constraint
called multivalued dependencies discussed in Section 7.6.1) that can ensure that a de-
composition is lossless even if no functional dependencies are present.

Suppose we decompose a relation schema r(R) into r1(R1) and r2(R2), where R1 ∩
R2 → R1.5 Then the following SQL constraints must be imposed on the decomposed
schema to ensure their contents are consistent with the original schema.

• R1 ∩ R2 is the primary key of r1.
This constraint enforces the functional dependency.

• R1 ∩ R2 is a foreign key from r2 referencing r1.
This constraint ensures that each tuple in r2 has a matching tuple in r1, without
which it would not appear in the natural join of r1 and r2.

If r1 or r2 is decomposed further, as long as the decomposition ensures that all attributes
in R1 ∩ R2 are in one relation, the primary or foreign-key constraint on r1 or r2 would
be inherited by that relation.

7.3 Normal Forms

As stated in Section 7.1.3, there are a number of different normal forms that are used
in designing relational databases. In this section, we cover two of the most common
ones.

7.3.1 Boyce–Codd Normal Form

One of the more desirable normal forms that we can obtain is Boyce–Codd normal form
(BCNF). It eliminates all redundancy that can be discovered based on functional depen-
dencies, though, as we shall see in Section 7.6, there may be other types of redundancy
remaining.

7.3.1.1 Definition

A relation schema R is in BCNF with respect to a set F of functional dependencies if,
for all functional dependencies in F+ of the form α → β, where α ⊆ R and β ⊆ R, at
least one of the following holds:

5The case for R1 ∩ R2 → R2 is symmetrical, and ignored.
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• α → β is a trivial functional dependency (i.e., β ⊆ α).

• α is a superkey for schema R.

A database design is in BCNF if each member of the set of relation schemas that con-
stitutes the design is in BCNF.

We have already seen in Section 7.1 an example of a relational schema that is not
in BCNF:

in dep (ID, name, salary, dept name, building, budget)

The functional dependency dept name → budget holds on in dep, but dept name is not a
superkey (because a department may have a number of different instructors). In Section
7.1 we saw that the decomposition of in dep into instructor and department is a better
design. The instructor schema is in BCNF. All of the nontrivial functional dependencies
that hold, such as:

ID → name, dept name, salary

include ID on the left side of the arrow, and ID is a superkey (actually, in this case, the
primary key) for instructor. (In other words, there is no nontrivial functional depen-
dency with any combination of name, dept name, and salary, without ID, on the left
side.) Thus, instructor is in BCNF.

Similarly, the department schema is in BCNF because all of the nontrivial functional
dependencies that hold, such as:

dept name → building, budget

include dept name on the left side of the arrow, and dept name is a superkey (and the
primary key) for department. Thus, department is in BCNF.

We now state a general rule for decomposing schemas that are not in BCNF. Let
R be a schema that is not in BCNF. Then there is at least one nontrivial functional
dependency α → β such that α is not a superkey for R. We replace R in our design with
two schemas:

• (α ∪ β)

• (R − (β − α))

In the case of in dep above, α = dept name, β = {building, budget}, and in dep is replaced
by

• (α ∪ β) = (dept name, building,budget)

• (R − (β − α)) = (ID, name, dept name, salary)
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dept name
building
budget

department

dept_advisor

instructor

ID
name
salary

student

ID
name
tot_cred

Figure 7.6 The dept advisor relationship set.

In this example, it turns out that β − α = β. We need to state the rule as we did so as
to deal correctly with functional dependencies that have attributes that appear on both
sides of the arrow. The technical reasons for this are covered later in Section 7.5.1.

When we decompose a schema that is not in BCNF, it may be that one or more
of the resulting schemas are not in BCNF. In such cases, further decomposition is
required, the eventual result of which is a set of BCNF schemas.

7.3.1.2 BCNF and Dependency Preservation

We have seen several ways in which to express database consistency constraints:
primary-key constraints, functional dependencies, check constraints, assertions, and
triggers. Testing these constraints each time the database is updated can be costly and,
therefore, it is useful to design the database in a way that constraints can be tested effi-
ciently. In particular, if testing a functional dependency can be done by considering just
one relation, then the cost of testing this constraint is low. We shall see that, in some
cases, decomposition into BCNF can prevent efficient testing of certain functional de-
pendencies.

To illustrate this, suppose that we make a small change to our university organiza-
tion. In the design of Figure 6.15, a student may have only one advisor. This follows
from the relationship set advisor being many-to-one from student to advisor. The “small”
change we shall make is that an instructor can be associated with only a single depart-
ment, and a student may have more than one advisor, but no more than one from a
given department.6

One way to implement this change using the E-R design is by replacing the advi-
sor relationship set with a ternary relationship set, dept advisor, involving entity sets
instructor, student, and department that is many-to-one from the pair {student, instruc-
tor} to department as shown in Figure 7.6. The E-R diagram specifies the constraint that

6Such an arrangement makes sense for students with a double major.
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“a student may have more than one advisor, but at most one corresponding to a given
department.”

With this new E-R diagram, the schemas for the instructor, department, and student
relations are unchanged. However, the schema derived from the dept advisor relation-
ship set is now:

dept advisor (s ID, i ID, dept name)

Although not specified in the E-R diagram, suppose we have the additional con-
straint that “an instructor can act as advisor for only a single department.”

Then, the following functional dependencies hold on dept advisor:

i ID → dept name
s ID, dept name → i ID

The first functional dependency follows from our requirement that “an instructor can
act as an advisor for only one department.” The second functional dependency fol-
lows from our requirement that “a student may have at most one advisor for a given
department.”

Notice that with this design, we are forced to repeat the department name once
for each time an instructor participates in a dept advisor relationship. We see that dept
advisor is not in BCNF because i ID is not a superkey. Following our rule for BCNF

decomposition, we get:
(s ID, i ID)
(i ID, dept name)

Both the above schemas are BCNF. (In fact, you can verify that any schema with only
two attributes is in BCNF by definition.)

Note, however, that in our BCNF design, there is no schema that includes all the
attributes appearing in the functional dependency s ID, dept name → i ID. The only
dependency that can be enforced on the individual decomposed relations is ID → dept
name. The functional dependency s ID, dept name → i ID can only be checked by

computing the join of the decomposed relations.7

Because our design does not permit the enforcement of this functional dependency
without a join, we say that our design is not dependency preserving (we provide a formal
definition of dependency preservation in Section 7.4.4). Because dependency preser-
vation is usually considered desirable, we consider another normal form, weaker than
BCNF, that will allow us to preserve dependencies. That normal form is called the third
normal form.8

7Technically, it is possible that a dependency whose attributes do not all appear in any one schema is still implicitly
enforced, because of the presence of other dependencies that imply it logically. We address that case in Section 7.4.4.
8You may have noted that we skipped second normal form. It is of historical significance only and, in practice, one of
third normal form or BCNF is always a better choice. We explore second normal form in Exercise 7.19. First normal
form pertains to attribute domains, not decomposition. We discuss it in Section 7.8.
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7.3.2 Third Normal Form

BCNF requires that all nontrivial dependencies be of the form α → β, where α is a
superkey. Third normal form (3NF) relaxes this constraint slightly by allowing certain
nontrivial functional dependencies whose left side is not a superkey. Before we define
3NF, we recall that a candidate key is a minimal superkey—that is, a superkey no proper
subset of which is also a superkey.

A relation schema R is in third normal form with respect to a set F of functional
dependencies if, for all functional dependencies in F+ of the form α → β, where α ⊆ R
and β ⊆ R, at least one of the following holds:

• α → β is a trivial functional dependency.

• α is a superkey for R.

• Each attribute A in β − α is contained in a candidate key for R.

Note that the third condition above does not say that a single candidate key must con-
tain all the attributes in β − α; each attribute A in β − α may be contained in a different
candidate key.

The first two alternatives are the same as the two alternatives in the definition of
BCNF. The third alternative in the 3NF definition seems rather unintuitive, and it is not
obvious why it is useful. It represents, in some sense, a minimal relaxation of the BCNF
conditions that helps ensure that every schema has a dependency-preserving decompo-
sition into 3NF. Its purpose will become more clear later, when we study decomposition
into 3NF.

Observe that any schema that satisfies BCNF also satisfies 3NF, since each of its
functional dependencies would satisfy one of the first two alternatives. BCNF is there-
fore a more restrictive normal form than is 3NF.

The definition of 3NF allows certain functional dependencies that are not allowed
in BCNF. A dependency α → β that satisfies only the third alternative of the 3NF
definition is not allowed in BCNF but is allowed in 3NF.9

Now, let us again consider the schema for the dept advisor relation, which has the
following functional dependencies:

i ID → dept name
s ID, dept name → i ID

In Section 7.3.1.2, we argued that the functional dependency “i ID → dept name”
caused the dept advisor schema not to be in BCNF. Note that here α = i ID, β = dept
name, and β − α = dept name. Since the functional dependency s ID, dept name →

9These dependencies are examples of transitive dependencies (see Practice Exercise 7.18). The original definition of
3NF was in terms of transitive dependencies. The definition we use is equivalent but easier to understand.
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i ID holds on dept advisor, the attribute dept name is contained in a candidate key and,
therefore, dept advisor is in 3NF.

We have seen the trade-off that must be made between BCNF and 3NF when there is
no dependency-preserving BCNF design. These trade-offs are described in more detail
in Section 7.3.3.

7.3.3 Comparison of BCNF and 3NF

Of the two normal forms for relational database schemas, 3NF and BCNF there are
advantages to 3NF in that we know that it is always possible to obtain a 3NF design
without sacrificing losslessness or dependency preservation. Nevertheless, there are
disadvantages to 3NF: We may have to use null values to represent some of the possible
meaningful relationships among data items, and there is the problem of repetition of
information.

Our goals of database design with functional dependencies are:

1. BCNF.

2. Losslessness.

3. Dependency preservation.

Since it is not always possible to satisfy all three, we may be forced to choose between
BCNF and dependency preservation with 3NF.

It is worth noting that SQL does not provide a way of specifying functional depen-
dencies, except for the special case of declaring superkeys by using the primary key or
unique constraints. It is possible, although a little complicated, to write assertions that
enforce a functional dependency (see Practice Exercise 7.9); unfortunately, currently
no database system supports the complex assertions that are required to enforce ar-
bitrary functional dependencies, and the assertions would be expensive to test. Thus
even if we had a dependency-preserving decomposition, if we use standard SQL we can
test efficiently only those functional dependencies whose left-hand side is a key.

Although testing functional dependencies may involve a join if the decomposition
is not dependency preserving, if the database system supports materialized views, we
could in principle reduce the cost by storing the join result as materialized view; how-
ever, this approach is feasible only if the database system supports primary key con-
straints or unique constraints on materialized views. On the negative side, there is a
space and time overhead due to the materialized view, but on the positive side, the
application programmer need not worry about writing code to keep redundant data
consistent on updates; it is the job of the database system to maintain the material-
ized view, that is, keep it up to date when the database is updated. (In Section 16.5, we
outline how a database system can perform materialized view maintenance efficiently.)

Unfortunately, most current database systems limit constraints on materialized
views or do not support them at all. Even if such constraints are allowed, there is an
additional requirement: the database must update the view and check the constraint
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immediately (as part of the same transaction) when an underlying relation is updated.
Otherwise, a constraint violation may get detected well after the update has been per-
formed and the transaction that caused the violation has committed.

In summary, even if we are not able to get a dependency-preserving BCNF decom-
position, it is still preferable to opt for BCNF, since checking functional dependencies
other than primary key constraints is difficult in SQL.

7.3.4 Higher Normal Forms

Using functional dependencies to decompose schemas may not be sufficient to avoid
unnecessary repetition of information in certain cases. Consider a slight variation in the
instructor entity-set definition in which we record with each instructor a set of children’s
names and a set of landline phone numbers that may be shared by multiple people.
Thus, phone number and child name would be multivalued attributes and, following
our rules for generating schemas from an E-R design, we would have two schemas, one
for each of the multivalued attributes, phone number and child name:

(ID, child name)
(ID, phone number)

If we were to combine these schemas to get

(ID, child name, phone number)

we would find the result to be in BCNF because no nontrivial functional dependencies
hold. As a result we might think that such a combination is a good idea. However, such
a combination is a bad idea, as we can see by considering the example of an instruc-
tor with two children and two phone numbers. For example, let the instructor with
ID 99999 have two children named “David” and “William” and two phone numbers,
512-555-1234 and 512-555-4321. In the combined schema, we must repeat the phone
numbers once for each dependent:

(99999, David, 512-555-1234)
(99999, David, 512-555-4321)
(99999, William, 512-555-1234)
(99999, William, 512-555-4321)

If we did not repeat the phone numbers, and we stored only the first and last tu-
ples, we would have recorded the dependent names and the phone numbers, but the
resultant tuples would imply that David corresponded to 512-555-1234, while William
corresponded to 512-555-4321. This would be incorrect.

Because normal forms based on functional dependencies are not sufficient to deal
with situations like this, other dependencies and normal forms have been defined. We
cover these in Section 7.6 and Section 7.7.



320 Chapter 7 Relational Database Design

7.4 Functional-Dependency Theory

We have seen in our examples that it is useful to be able to reason systematically about
functional dependencies as part of a process of testing schemas for BCNF or 3NF.

7.4.1 Closure of a Set of Functional Dependencies

We shall see that, given a set F of functional dependencies on a schema, we can prove
that certain other functional dependencies also hold on the schema. We say that such
functional dependencies are “logically implied” by F . When testing for normal forms,
it is not sufficient to consider the given set of functional dependencies; rather, we need
to consider all functional dependencies that hold on the schema.

More formally, given a relation schema r(R), a functional dependency f on R is log-
ically implied by a set of functional dependencies F on R if every instance of a relation
r(R) that satisfies F also satisfies f .

Suppose we are given a relation schema r(A, B, C, G, H , I) and the set of functional
dependencies:

A → B
A → C
CG → H
CG → I
B → H

The functional dependency:

A → H

is logically implied. That is, we can show that, whenever a relation instance satisfies
our given set of functional dependencies, A → H must also be satisfied by that relation
instance. Suppose that t1 and t2 are tuples such that:

t1[A] = t2[A]

Since we are given that A → B, it follows from the definition of functional dependency
that:

t1[B] = t2[B]

Then, since we are given that B → H , it follows from the definition of functional de-
pendency that:

t1[H] = t2[H]



7.4 Functional-Dependency Theory 321

Therefore, we have shown that, whenever t1 and t2 are tuples such that t1[A] = t2[A],
it must be that t1[H] = t2[H]. But that is exactly the definition of A → H .

Let F be a set of functional dependencies. The closure of F , denoted by F+, is the
set of all functional dependencies logically implied by F . Given F , we can compute F+

directly from the formal definition of functional dependency. If F were large, this pro-
cess would be lengthy and difficult. Such a computation of F+ requires arguments of the
type just used to show that A → H is in the closure of our example set of dependencies.

Axioms, or rules of inference, provide a simpler technique for reasoning about func-
tional dependencies. In the rules that follow, we use Greek letters (α, β, γ, … ) for sets
of attributes and uppercase Roman letters from the beginning of the alphabet for indi-
vidual attributes. We use αβ to denote α ∪ β.

We can use the following three rules to find logically implied functional dependen-
cies. By applying these rules repeatedly, we can find all of F+, given F . This collection
of rules is called Armstrong’s axioms in honor of the person who first proposed it.

• Reflexivity rule. If α is a set of attributes and β ⊆ α, then α → β holds.

• Augmentation rule. If α → β holds and γ is a set of attributes, then γα → γβ
holds.

• Transitivity rule. If α → β holds and β→ γ holds, then α → γ holds.

Armstrong’s axioms are sound, because they do not generate any incorrect func-
tional dependencies. They are complete, because, for a given set F of functional de-
pendencies, they allow us to generate all F+. The Further Reading section provides
references for proofs of soundness and completeness.

Although Armstrong’s axioms are complete, it is tiresome to use them directly
for the computation of F+. To simplify matters further, we list additional rules. It is
possible to use Armstrong’s axioms to prove that these rules are sound (see Practice
Exercise 7.4, Practice Exercise 7.5, and Exercise 7.27).

• Union rule. If α→ β holds and α→ γ holds, then α → βγ holds.

• Decomposition rule. If α→ βγ holds, then α→ β holds and α → γ holds.

• Pseudotransitivity rule. If α→ β holds and γβ→ δ holds, then αγ→ δ holds.

Let us apply our rules to the example of schema R = (A, B, C, G, H , I) and the set
F of functional dependencies {A → B, A → C, CG → H , CG → I , B → H}. We list
several members of F+ here:

• A → H . Since A → B and B → H hold, we apply the transitivity rule. Observe that
it was much easier to use Armstrong’s axioms to show that A → H holds than it
was to argue directly from the definitions, as we did earlier in this section.

• CG → HI . Since CG → H and CG → I , the union rule implies that CG → HI .
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F+ = F
apply the reflexivity rule /* Generates all trivial dependencies */
repeat

for each functional dependency f in F+

apply the augmentation rule on f
add the resulting functional dependencies to F+

for each pair of functional dependencies f1 and f2 in F+

if f1 and f2 can be combined using transitivity
add the resulting functional dependency to F+

until F+ does not change any further

Figure 7.7 A procedure to compute F+.

• AG → I . Since A → C and CG → I , the pseudotransitivity rule implies that
AG → I holds.

Another way of finding that AG → I holds is as follows: We use the augmen-
tation rule on A → C to infer AG → CG. Applying the transitivity rule to this
dependency and CG → I , we infer AG → I .

Figure 7.7 shows a procedure that demonstrates formally how to use Armstrong’s
axioms to compute F+. In this procedure, when a functional dependency is added to
F+, it may be already present, and in that case there is no change to F+. We shall see
an alternative way of computing F+ in Section 7.4.2.

The left-hand and right-hand sides of a functional dependency are both subsets
of R. Since a set of size n has 2n subsets, there are a total of 2n × 2n = 22n possible
functional dependencies, where n is the number of attributes in R. Each iteration of
the repeat loop of the procedure, except the last iteration, adds at least one functional
dependency to F+. Thus, the procedure is guaranteed to terminate, though it may be
very lengthy.

7.4.2 Closure of Attribute Sets

We say that an attribute B is functionally determined by α if α → B. To test whether
a set α is a superkey, we must devise an algorithm for computing the set of attributes
functionally determined by α. One way of doing this is to compute F+, take all func-
tional dependencies with α as the left-hand side, and take the union of the right-hand
sides of all such dependencies. However, doing so can be expensive, since F+ can be
large.

An efficient algorithm for computing the set of attributes functionally determined
by α is useful not only for testing whether α is a superkey, but also for several other
tasks, as we shall see later in this section.
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Let α be a set of attributes. We call the set of all attributes functionally determined
by α under a set F of functional dependencies the closure of α under F ; we denote it by
α+. Figure 7.8 shows an algorithm, written in pseudocode, to compute α+. The input
is a set F of functional dependencies and the set α of attributes. The output is stored
in the variable result.

To illustrate how the algorithm works, we shall use it to compute (AG)+ with the
functional dependencies defined in Section 7.4.1. We start with result = AG. The first
time that we execute the repeat loop to test each functional dependency, we find that:

• A → B causes us to include B in result. To see this fact, we observe that A → B is
in F , A ⊆ result (which is AG), so result := result ∪B.

• A → C causes result to become ABCG.

• CG → H causes result to become ABCGH .

• CG → I causes result to become ABCGHI .

The second time that we execute the repeat loop, no new attributes are added to result,
and the algorithm terminates.

Let us see why the algorithm of Figure 7.8 is correct. The first step is correct be-
cause α → α always holds (by the reflexivity rule). We claim that, for any subset β of
result, α→ β. Since we start the repeat loop with α→ result being true, we can add γ to
result only if β ⊆ result and β→ γ. But then result → β by the reflexivity rule, so α→ β
by transitivity. Another application of transitivity shows that α → γ (using α → β and
β → γ). The union rule implies that α → result ∪ γ, so α functionally determines any
new result generated in the repeat loop. Thus, any attribute returned by the algorithm
is in α+.

It is easy to see that the algorithm finds all of α+. Consider an attribute A in α+ that
is not yet in result at any point during the execution. There must be a way to prove that
result → A using the axioms. Either result → A is in F itself (making the proof trivial
and ensuring A is added to result) or there must a proof step using transitivity to show

result := α;
repeat

for each functional dependency β→ γ in F do
begin

if β ⊆ result then result := result ∪ γ;
end

until (result does not change)

Figure 7.8 An algorithm to compute α+, the closure of α under F .
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for some attribute B that result → B. If it happens that A = B, then we have shown that
A is added to result. If not, B ≠ A is added. Then repeating this argument, we see that
A must eventually be added to result.

It turns out that, in the worst case, this algorithm may take an amount of time
quadratic in the size of F . There is a faster (although slightly more complex) algorithm
that runs in time linear in the size of F ; that algorithm is presented as part of Practice
Exercise 7.8.

There are several uses of the attribute closure algorithm:

• To test if α is a superkey, we compute α+ and check if α+ contains all attributes in
R.

• We can check if a functional dependency α → β holds (or, in other words, is in
F+), by checking if β ⊆ α+. That is, we compute α+ by using attribute closure, and
then check if it contains β. This test is particularly useful, as we shall see later in
this chapter.

• It gives us an alternative way to compute F+: For each γ ⊆ R, we find the closure
γ+, and for each S ⊆ γ+, we output a functional dependency γ → S.

7.4.3 Canonical Cover

Suppose that we have a set of functional dependencies F on a relation schema. When-
ever a user performs an update on the relation, the database system must ensure that
the update does not violate any functional dependencies, that is, all the functional de-
pendencies in F are satisfied in the new database state.

The system must roll back the update if it violates any functional dependencies in
the set F .

We can reduce the effort spent in checking for violations by testing a simplified set
of functional dependencies that has the same closure as the given set. Any database
that satisfies the simplified set of functional dependencies also satisfies the original set,
and vice versa, since the two sets have the same closure. However, the simplified set
is easier to test. We shall see how the simplified set can be constructed in a moment.
First, we need some definitions.

An attribute of a functional dependency is said to be extraneous if we can remove
it without changing the closure of the set of functional dependencies.

• Removing an attribute from the left side of a functional dependency could make
it a stronger constraint. For example, if we have AB → C and remove B, we get
the possibly stronger result A → C. It may be stronger because A → C logically
implies AB → C, but AB → C does not, on its own, logically imply A → C.
But, depending on what our set F of functional dependencies happens to be, we
may be able to remove B from AB → C safely. For example, suppose that the set
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F = {AB → C, A → D, D → C}. Then we can show that F logically implies
A → C, making B extraneous in AB → C.

• Removing an attribute from the right side of a functional dependency could make
it a weaker constraint. For example, if we have AB → CD and remove C, we get
the possibly weaker result AB → D. It may be weaker because using just AB → D,
we can no longer infer AB → C. But, depending on what our set F of functional
dependencies happens to be, we may be able to remove C from AB → CD safely.
For example, suppose that F = {AB → CD, A → C}. Then we can show that
even after replacing AB → CD by AB → D, we can still infer AB → C and thus
AB → CD.

The formal definition of extraneous attributes is as follows: Consider a set F of
functional dependencies and the functional dependency α → β in F .

• Removal from the left side: Attribute A is extraneous in α if A ∈ α and F logically
implies (F − {α → β}) ∪ {(α − A) → β}.

• Removal from the right side: Attribute A is extraneous in β if A ∈ β and the set of
functional dependencies (F − {α → β}) ∪ {α → (β − A)} logically implies F .

Beware of the direction of the implications when using the definition of extraneous
attributes: If you reverse the statement, the implication will always hold. That is, (F −
{α → β}) ∪ {(α − A) → β} always logically implies F , and also F always logically
implies (F − {α → β}) ∪ {α → (β − A)}.

Here is how we can test efficiently if an attribute is extraneous. Let R be the relation
schema, and let F be the given set of functional dependencies that hold on R. Consider
an attribute A in a dependency α → β.

• If A ∈ β, to check if A is extraneous, consider the set

F ′ = (F − {α → β}) ∪ {α → (β − A)}

and check if α → A can be inferred from F ′. To do so, compute α+ (the closure of
α) under F ′; if α+ includes A, then A is extraneous in β.

• If A ∈ α, to check if A is extraneous, let γ = α − {A}, and check if γ → β can be
inferred from F . To do so, compute γ+ (the closure of γ) under F ; if γ+ includes
all attributes in β, then A is extraneous in α.

For example, suppose F contains AB → CD, A → E, and E → C. To check if C is
extraneous in AB → CD, we compute the attribute closure of AB under F ′ = {AB → D,
A → E, E → C}. The closure is ABCDE, which includes CD, so we infer that C is
extraneous.
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Fc = F
repeat

Use the union rule to replace any dependencies in Fc of the form
α1 → β1 and α1 → β2 with α1 → β1 β2.

Find a functional dependency α → β in Fc with an extraneous
attribute either in α or in β.
/* Note: the test for extraneous attributes is done using Fc, not F */

If an extraneous attribute is found, delete it from α → β in Fc.
until (Fc does not change)

Figure 7.9 Computing canonical cover.

Having defined the concept of extraneous attributes, we can explain how we can
construct a simplified set of functional dependencies equivalent to a given set of func-
tional dependencies.

A canonical cover Fc for F is a set of dependencies such that F logically implies
all dependencies in Fc, and Fc logically implies all dependencies in F . Furthermore, Fc
must have the following properties:

• No functional dependency in Fc contains an extraneous attribute.

• Each left side of a functional dependency in Fc is unique. That is, there are no two
dependencies α1 → β1 and α2 → β2 in Fc such that α1 = α2.

A canonical cover for a set of functional dependencies F can be computed as de-
scribed in Figure 7.9. It is important to note that when checking if an attribute is extra-
neous, the check uses the dependencies in the current value of Fc, and not the depen-
dencies in F . If a functional dependency contains only one attribute in its right-hand
side, for example A → C, and that attribute is found to be extraneous, we would get a
functional dependency with an empty right-hand side. Such functional dependencies
should be deleted.

Since the algorithm permits a choice of any extraneous attribute, it is possible that
there may be several possible canonical covers for a given F . Any such Fc is equally
acceptable. Any canonical cover of F , Fc, can be shown to have the same closure as
F ; hence, testing whether Fc is satisfied is equivalent to testing whether F is satisfied.
However, Fc is minimal in a certain sense—it does not contain extraneous attributes,
and it combines functional dependencies with the same left side. It is cheaper to test
Fc than it is to test F itself.

We now consider an example. Assume we are given the following set F of functional
dependencies on schema (A, B, C):
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A → BC
B → C
A → B
AB → C

Let us compute a canonical cover for F .

• There are two functional dependencies with the same set of attributes on the left
side of the arrow:

A → BC
A → B

We combine these functional dependencies into A → BC.

• A is extraneous in AB → C because F logically implies (F − {AB → C}) ∪ {B →
C}. This assertion is true because B → C is already in our set of functional depen-
dencies.

• C is extraneous in A → BC, since A → BC is logically implied by A → B and B →
C.

Thus, our canonical cover is:

A → B
B → C

Given a set F of functional dependencies, it may be that an entire functional de-
pendency in the set is extraneous, in the sense that dropping it does not change the
closure of F . We can show that a canonical cover Fc of F contains no such extraneous
functional dependency. Suppose that, to the contrary, there were such an extraneous
functional dependency in Fc. The right-side attributes of the dependency would then
be extraneous, which is not possible by the definition of canonical covers.

As we noted earlier, a canonical cover might not be unique. For instance, consider
the set of functional dependencies F = {A → BC, B → AC, and C → AB}. If we apply
the test for extraneous attributes to A → BC, we find that both B and C are extraneous
under F . However, it is incorrect to delete both! The algorithm for finding the canonical
cover picks one of the two and deletes it. Then,

1. If C is deleted, we get the set F ′ = {A → B, B → AC, and C → AB}. Now, B is not
extraneous on the right side of A → B under F ′. Continuing the algorithm, we
find A and B are extraneous in the right side of C → AB, leading to two choices
of canonical cover:
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compute F+;
for each schema Ri in D do

begin
Fi : = the restriction of F+ to Ri;

end
F ′ := ∅
for each restriction Fi do

begin
F ′ = F ′ ∪ Fi

end
compute F ′+;
if (F ′+ = F+) then return (true)

else return (false);

Figure 7.10 Testing for dependency preservation.

Fc = {A → B, B → C, C → A}
Fc = {A → B, B → AC, C → B}.

2. If B is deleted, we get the set {A → C, B → AC, and C → AB}. This case
is symmetrical to the previous case, leading to two more choices of canonical
cover:

Fc = {A → C, C → B, and B → A}
Fc = {A → C, B → C, and C → AB}.

As an exercise, can you find one more canonical cover for F?

7.4.4 Dependency Preservation

Using the theory of functional dependencies, there is a way to describe dependency
preservation that is simpler than the ad hoc approach we used in Section 7.3.1.2.

Let F be a set of functional dependencies on a schema R, and let R1, R2,… , Rn be a
decomposition of R. The restriction of F to Ri is the set Fi of all functional dependencies
in F+ that include only attributes of Ri. Since all functional dependencies in a restriction
involve attributes of only one relation schema, it is possible to test such a dependency
for satisfaction by checking only one relation.

Note that the definition of restriction uses all dependencies in F+, not just those
in F . For instance, suppose F = {A → B, B → C}, and we have a decomposition into
AC and AB. The restriction of F to AC includes A → C, since A → C is in F+, even
though it is not in F .
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The set of restrictions F1, F2,… , Fn is the set of dependencies that can be checked
efficiently. We now must ask whether testing only the restrictions is sufficient. Let F ′ =
F1 ∪ F2 ∪ ⋯ ∪ Fn. F ′ is a set of functional dependencies on schema R, but, in general,
F ′ ≠ F . However, even if F ′ ≠ F , it may be that F ′+ = F+. If the latter is true, then
every dependency in F is logically implied by F ′, and, if we verify that F ′ is satisfied,
we have verified that F is satisfied. We say that a decomposition having the property
F ′+ = F+ is a dependency-preserving decomposition.

Figure 7.10 shows an algorithm for testing dependency preservation. The input is
a set D = {R1, R2,… , Rn} of decomposed relation schemas, and a set F of functional
dependencies. This algorithm is expensive since it requires computation of F+. Instead
of applying the algorithm of Figure 7.10, we consider two alternatives.

First, note that if each member of F can be tested on one of the relations of the
decomposition, then the decomposition is dependency preserving. This is an easy way
to show dependency preservation; however, it does not always work. There are cases
where, even though the decomposition is dependency preserving, there is a dependency
in F that cannot be tested in any one relation in the decomposition. Thus, this alter-
native test can be used only as a sufficient condition that is easy to check; if it fails we
cannot conclude that the decomposition is not dependency preserving; instead we will
have to apply the general test.

We now give a second alternative test for dependency preservation that avoids
computing F+. We explain the intuition behind the test after presenting the test. The
test applies the following procedure to each α → β in F .

result = α
repeat

for each Ri in the decomposition
t = (result ∩ Ri)

+ ∩ Ri
result = result ∪ t

until (result does not change)

The attribute closure here is under the set of functional dependencies F . If result con-
tains all attributes in β, then the functional dependency α → β is preserved. The de-
composition is dependency preserving if and only if the procedure shows that all the
dependencies in F are preserved.

The two key ideas behind the preceding test are as follows:

• The first idea is to test each functional dependency α → β in F to see if it is
preserved in F ′ (where F ′ is as defined in Figure 7.10). To do so, we compute
the closure of α under F ′; the dependency is preserved exactly when the closure
includes β. The decomposition is dependency preserving if (and only if) all the
dependencies in F are found to be preserved.
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• The second idea is to use a modified form of the attribute-closure algorithm to
compute closure under F ′, without actually first computing F ′. We wish to avoid
computing F ′ since computing it is quite expensive. Note that F ′ is the union of
all Fi, where Fi is the restriction of F on Ri. The algorithm computes the attribute
closure of (result ∩Ri) with respect to F , intersects the closure with Ri, and adds the
resultant set of attributes to result; this sequence of steps is equivalent to computing
the closure of result under Fi. Repeating this step for each i inside the while loop
gives the closure of result under F ′.

To understand why this modified attribute-closure approach works correctly, we
note that for any γ ⊆ Ri, γ → γ+ is a functional dependency in F+, and γ → γ+∩Ri
is a functional dependency that is in Fi, the restriction of F+ to Ri. Conversely, if
γ → δ were in Fi, then δ would be a subset of γ+ ∩ Ri.

This test takes polynomial time, instead of the exponential time required to com-
pute F+.

7.5 Algorithms for Decomposition Using Functional Dependencies

Real-world database schemas are much larger than the examples that fit in the pages
of a book. For this reason, we need algorithms for the generation of designs that are in
appropriate normal form. In this section, we present algorithms for BCNF and 3NF.

7.5.1 BCNF Decomposition

The definition of BCNF can be used directly to test if a relation is in BCNF. However,
computation of F+ can be a tedious task. We first describe simplified tests for verifying
if a relation is in BCNF. If a relation is not in BCNF, it can be decomposed to create
relations that are in BCNF. Later in this section, we describe an algorithm to create a
lossless decomposition of a relation, such that the decomposition is in BCNF.

7.5.1.1 Testing for BCNF

Testing of a relation schema R to see if it satisfies BCNF can be simplified in some
cases:

• To check if a nontrivial dependency α → β causes a violation of BCNF, compute
α+ (the attribute closure of α), and verify that it includes all attributes of R; that
is, it is a superkey for R.

• To check if a relation schema R is in BCNF, it suffices to check only the dependen-
cies in the given set F for violation of BCNF, rather than check all dependencies
in F+.

We can show that if none of the dependencies in F causes a violation of BCNF,
then none of the dependencies in F+ will cause a violation of BCNF, either.
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result := {R};
done := false;
while (not done) do

if (there is a schema Ri in result that is not in BCNF)
then begin

let α → β be a nontrivial functional dependency that holds
on Ri such that α+ does not contain Ri and α ∩ β = ∅ ;
result := (result − Ri) ∪ (Ri − β) ∪ ( α, β);

end
else done := true;

Figure 7.11 BCNF decomposition algorithm.

Unfortunately, the latter procedure does not work when a relation schema is decom-
posed. That is, it does not suffice to use F when we test a relation schema Ri, in a
decomposition of R, for violation of BCNF. For example, consider relation schema
(A, B, C, D, E), with functional dependencies F containing A → B and BC → D. Sup-
pose this were decomposed into (A, B) and (A, C, D, E). Now, neither of the depen-
dencies in F contains only attributes from (A, C, D, E), so we might be misled into
thinking that it is in BCNF. In fact, there is a dependency AC → D in F+ (which can be
inferred using the pseudotransitivity rule from the two dependencies in F) that shows
that (A, C, D, E) is not in BCNF. Thus, we may need a dependency that is in F+, but is
not in F , to show that a decomposed relation is not in BCNF.

An alternative BCNF test is sometimes easier than computing every dependency
in F+. To check if a relation schema Ri in a decomposition of R is in BCNF, we apply
this test:

• For every subset α of attributes in Ri, check that α+ (the attribute closure
of α under F) either includes no attribute of Ri −α, or includes all attributes of Ri.

If the condition is violated by some set of attributes α in Ri, consider the following
functional dependency, which can be shown to be present in F+:

α → (α+ − α) ∩ Ri.

This dependency shows that Ri violates BCNF.

7.5.1.2 BCNF Decomposition Algorithm

We are now able to state a general method to decompose a relation schema so as to
satisfy BCNF. Figure 7.11 shows an algorithm for this task. If R is not in BCNF, we
can decompose R into a collection of BCNF schemas R1, R2,… , Rn by the algorithm.
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The algorithm uses dependencies that demonstrate violation of BCNF to perform the
decomposition.

The decomposition that the algorithm generates is not only in BCNF, but is also
a lossless decomposition. To see why our algorithm generates only lossless decom-
positions, we note that, when we replace a schema Ri with (Ri − β) and (α, β), the
dependency α → β holds, and (Ri − β) ∩ (α, β) = α.

If we did not require α ∩ β = ∅, then those attributes in α ∩ β would not appear in
the schema (Ri − β), and the dependency α → β would no longer hold.

It is easy to see that our decomposition of in dep in Section 7.3.1 would result
from applying the algorithm. The functional dependency dept name → building, budget
satisfies the α ∩ β = ∅ condition and would therefore be chosen to decompose the
schema.

The BCNF decomposition algorithm takes time exponential to the size of the initial
schema, since the algorithm for checking whether a relation in the decomposition sat-
isfies BCNF can take exponential time. There is an algorithm that can compute a BCNF
decomposition in polynomial time; however, the algorithm may “overnormalize,” that
is, decompose a relation unnecessarily.

As a longer example of the use of the BCNF decomposition algorithm, suppose we
have a database design using the class relation, whose schema is as shown below:

class (course id, title, dept name, credits, sec id, semester, year, building,
room number, capacity, time slot id)

The set of functional dependencies that we need to hold on this schema are:

course id → title, dept name, credits
building, room number → capacity
course id, sec id, semester, year→ building, room number, time slot id

A candidate key for this schema is {course id, sec id, semester, year}.
We can apply the algorithm of Figure 7.11 to the class example as follows:

• The functional dependency:

course id → title, dept name, credits

holds, but course id is not a superkey. Thus, class is not in BCNF. We replace class
with two relations with the following schemas:

course (course id, title, dept name, credits)
class-1 (course id, sec id, semester, year, building, room number

capacity, time slot id)
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The only nontrivial functional dependencies that hold on course include course id
on the left side of the arrow. Since course id is a superkey for course, course is in
BCNF.

• A candidate key for class-1 is {course id, sec id, semester, year}. The functional de-
pendency:

building, room number → capacity

holds on class-1, but {building, room number} is not a superkey for class-1. We re-
place class-1 two relations with the following schemas:

classroom (building, room number, capacity)
section (course id, sec id, semester, year,

building, room number, time slot id)

These two schemas are in BCNF.

Thus, the decomposition of class results in the three relation schemas course, classroom,
and section, each of which is in BCNF. These correspond to the schemas that we have
used in this and previous chapters. You can verify that the decomposition is lossless
and dependency preserving.

7.5.2 3NF Decomposition

Figure 7.12 shows an algorithm for finding a dependency-preserving, lossless decompo-
sition into 3NF. The set of dependencies Fc used in the algorithm is a canonical cover
for F. Note that the algorithm considers the set of schemas Rj, j = 1, 2,… , i; initially
i = 0, and in this case the set is empty.

Let us apply this algorithm to our example of dept advisor from Section 7.3.2, where
we showed that:

dept advisor (s ID, i ID, dept name)

is in 3NF even though it is not in BCNF. The algorithm uses the following functional
dependencies in F :

f1: i ID → dept name
f2: s ID, dept name → i ID

There are no extraneous attributes in any of the functional dependencies in F , so
Fc contains f1 and f2. The algorithm then generates as R1 the schema, (i ID dept name),
and as R2 the schema (s ID, dept name, i ID). The algorithm then finds that R2 contains
a candidate key, so no further relation schema is created.



334 Chapter 7 Relational Database Design

let Fc be a canonical cover for F;
i := 0;
for each functional dependency α → β in Fc

i := i + 1;
Ri := αβ;

if none of the schemas Rj, j = 1, 2,… , i contains a candidate key for R
then

i := i + 1;
Ri := any candidate key for R;

/* Optionally, remove redundant relations */
repeat

if any schema Rj is contained in another schema Rk
then

/* Delete Rj */
Rj := Ri;
i := i - 1;

until no more Rjs can be deleted
return (R1, R2,… , Ri)

Figure 7.12 Dependency-preserving, lossless decomposition into 3NF.

The resultant set of schemas can contain redundant schemas, with one schema Rk
containing all the attributes of another schema Rj. For example, R2 above contains all
the attributes from R1. The algorithm deletes all such schemas that are contained in
another schema. Any dependencies that could be tested on an Rj that is deleted can
also be tested on the corresponding relation Rk, and the decomposition is lossless even
if Rj is deleted.

Now let us consider again the schema of the class relation of Section 7.5.1.2 and
apply the 3NF decomposition algorithm. The set of functional dependencies we listed
there happen to be a canonical cover. As a result, the algorithm gives us the same three
schemas course, classroom, and section.

The preceding example illustrates an interesting property of the 3NF algorithm.
Sometimes, the result is not only in 3NF, but also in BCNF. This suggests an alterna-
tive method of generating a BCNF design. First use the 3NF algorithm. Then, for any
schema in the 3NF design that is not in BCNF, decompose using the BCNF algorithm.
If the result is not dependency-preserving, revert to the 3NF design.

7.5.3 Correctness of the 3NF Algorithm

The 3NF algorithm ensures the preservation of dependencies by explicitly building a
schema for each dependency in a canonical cover. It ensures that the decomposition is a
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lossless decomposition by guaranteeing that at least one schema contains a candidate
key for the schema being decomposed. Practice Exercise 7.16 provides some insight
into the proof that this suffices to guarantee a lossless decomposition.

This algorithm is also called the 3NF synthesis algorithm, since it takes a set of de-
pendencies and adds one schema at a time, instead of decomposing the initial schema
repeatedly. The result is not uniquely defined, since a set of functional dependencies
can have more than one canonical cover. The algorithm may decompose a relation even
if it is already in 3NF; however, the decomposition is still guaranteed to be in 3NF.

To see that the algorithm produces a 3NF design, consider a schema Ri in the
decomposition. Recall that when we test for 3NF it suffices to consider functional
dependencies whose right-hand side consists of a single attribute. Therefore, to see that
Ri is in 3NF you must convince yourself that any functional dependency γ → B that
holds on Ri satisfies the definition of 3NF. Assume that the dependency that generated
Ri in the synthesis algorithm is α → β. B must be in α or β, since B is in Ri and α → β
generated Ri. Let us consider the three possible cases:

• B is in both α and β. In this case, the dependency α → β would not have been in
Fc since B would be extraneous in β. Thus, this case cannot hold.

• B is in β but not α. Consider two cases:

° γ is a superkey. The second condition of 3NF is satisfied.

° γ is not a superkey. Thenαmust contain some attribute not in γ. Now, since γ →
B is in F+, it must be derivable from Fc by using the attribute closure algorithm
on γ. The derivation could not have used α → β, because if it had been used,
α must be contained in the attribute closure of γ, which is not possible, since
we assumed γ is not a superkey. Now, using α → (β − {B}) and γ → B, we
can derive α → B (since γ ⊆ αβ, and γ cannot contain B because γ → B
is nontrivial). This would imply that B is extraneous in the right-hand side of
α → β, which is not possible since α → β is in the canonical cover Fc. Thus, if
B is in β, then γ must be a superkey, and the second condition of 3NF must be
satisfied.

• B is in α but not β.
Since α is a candidate key, the third alternative in the definition of 3NF is satisfied.

Interestingly, the algorithm we described for decomposition into 3NF can be im-
plemented in polynomial time, even though testing a given schema to see if it satisfies
3NF is NP-hard (which means that it is very unlikely that a polynomial-time algorithm
will ever be invented for this task).
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7.6 Decomposition Using Multivalued Dependencies

Some relation schemas, even though they are in BCNF, do not seem to be sufficiently
normalized, in the sense that they still suffer from the problem of repetition of infor-
mation. Consider a variation of the university organization where an instructor may be
associated with multiple departments, and we have a relation:

inst (ID, dept name, name, street, city)

The astute reader will recognize this schema as a non-BCNF schema because of the
functional dependency

ID → name, street, city

and because ID is not a key for inst.
Further assume that an instructor may have several addresses (say, a winter home

and a summer home). Then, we no longer wish to enforce the functional dependency
“ID→ street, city”, though, we still want to enforce “ID → name” (i.e., the university is
not dealing with instructors who operate under multiple aliases!). Following the BCNF
decomposition algorithm, we obtain two schemas:

r1 (ID, name)
r2 (ID, dept name, street, city)

Both of these are in BCNF (recall that an instructor can be associated with multiple
departments and a department may have several instructors, and therefore, neither “ID
→ dept name” nor “dept name → ID” hold).

Despite r2 being in BCNF, there is redundancy. We repeat the address information
of each residence of an instructor once for each department with which the instructor
is associated. We could solve this problem by decomposing r2 further into:

r21 (dept name, ID)
r22 (ID, street, city)

but there is no constraint that leads us to do this.
To deal with this problem, we must define a new form of constraint, called a mul-

tivalued dependency. As we did for functional dependencies, we shall use multivalued
dependencies to define a normal form for relation schemas. This normal form, called
fourth normal form (4NF), is more restrictive than BCNF. We shall see that every 4NF
schema is also in BCNF but there are BCNF schemas that are not in 4NF.
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α α ββ ―R ―

t1

t2

t3

t4

a1 . . . ai

a1 . . . ai

a1 . . . ai

a1 . . . ai

ai + 1 . . . aj

bi + 1 . . . bj

ai + 1 . . . aj

bi + 1 . . . bj

aj + 1 . . . an

bj + 1 . . . bn

bj + 1 . . . bn

aj + 1 . . . an

Figure 7.13 Tabular representation of α →→ β.

7.6.1 Multivalued Dependencies

Functional dependencies rule out certain tuples from being in a relation. If A → B,
then we cannot have two tuples with the same A value but different B values. Multival-
ued dependencies, on the other hand, do not rule out the existence of certain tuples.
Instead, they require that other tuples of a certain form be present in the relation. For
this reason, functional dependencies sometimes are referred to as equality-generating
dependencies, and multivalued dependencies are referred to as tuple-generating depen-
dencies.

Let r(R) be a relation schema and let α ⊆ R and β⊆ R. The multivalued dependency

α →→ β

holds on R if, in any legal instance of relation r(R), for all pairs of tuples t1 and t2 in r
such that t1[α] = t2[α], there exist tuples t3 and t4 in r such that

t1[α] = t2[α] = t3[α] = t4[α]
t3[β] = t1[β]
t3[R − β] = t2[R − β]
t4[β] = t2[β]
t4[R − β] = t1[R − β]

This definition is less complicated than it appears to be. Figure 7.13 gives a tabular
picture of t1, t2, t3, and t4. Intuitively, the multivalued dependency α →→ β says that the
relationship between α and β is independent of the relationship between α and R − β.
If the multivalued dependency α →→ β is satisfied by all relations on schema R, then
α →→ β is a trivial multivalued dependency on schema R. Thus, α →→ β is trivial if
β ⊆ α or β∪α = R. This can be seen by looking at Figure 7.13 and considering the two
special cases β ⊆ α and β ∪ α = R. In each case, the table reduces to just two columns
and we see that t1 and t2 are able to serve in the roles of t3 and t4.

To illustrate the difference between functional and multivalued dependencies, we
consider the schema r2 again, and an example relation on that schema is shown in Fig-
ure 7.14. We must repeat the department name once for each address that an instructor
has, and we must repeat the address for each department with which an instructor is
associated. This repetition is unnecessary, since the relationship between an instructor
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ID dept name street city

22222 Physics North Rye
22222 Physics Main Manchester
12121 Finance Lake Horseneck

Figure 7.14 An example of redundancy in a relation on a BCNF schema.

and his address is independent of the relationship between that instructor and a de-
partment. If an instructor with ID 22222 is associated with the Physics department, we
want that department to be associated with all of that instructor’s addresses. Thus, the
relation of Figure 7.15 is illegal. To make this relation legal, we need to add the tuples
(Physics, 22222, Main, Manchester) and (Math, 22222, North, Rye) to the relation of
Figure 7.15.

Comparing the preceding example with our definition of multivalued dependency,
we see that we want the multivalued dependency:

ID →→ street, city

to hold. (The multivalued dependency ID →→ dept name will do as well. We shall
soon see that they are equivalent.)

As with functional dependencies, we shall use multivalued dependencies in two
ways:

1. To test relations to determine whether they are legal under a given set of func-
tional and multivalued dependencies.

2. To specify constraints on the set of legal relations; we shall thus concern ourselves
with only those relations that satisfy a given set of functional and multivalued
dependencies.

Note that, if a relation r fails to satisfy a given multivalued dependency, we can con-
struct a relation r′ that does satisfy the multivalued dependency by adding tuples to r.

Let D denote a set of functional and multivalued dependencies. The closure D+

of D is the set of all functional and multivalued dependencies logically implied by D.
As we did for functional dependencies, we can compute D+ from D, using the formal
definitions of functional dependencies and multivalued dependencies. We can manage

ID dept name street city

22222 Physics North Rye
22222 Math Main Manchester

Figure 7.15 An illegal r2 relation.
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with such reasoning for very simple multivalued dependencies. Luckily, multivalued
dependencies that occur in practice appear to be quite simple. For complex dependen-
cies, it is better to reason about sets of dependencies by using a system of inference
rules.

From the definition of multivalued dependency, we can derive the following rules
for α, β ⊆ R:

• If α → β, then α →→ β. In other words, every functional dependency is also a
multivalued dependency.

• If α →→ β, then α →→ R − α − β

Section 28.1.1 outlines a system of inference rules for multivalued dependencies.

7.6.2 Fourth Normal Form

Consider again our example of the BCNF schema:

r2 (ID, dept name, street, city)

in which the multivalued dependency ID →→ street, city holds. We saw in the opening
paragraphs of Section 7.6 that, although this schema is in BCNF, the design is not ideal,
since we must repeat an instructor’s address information for each department. We shall
see that we can use the given multivalued dependency to improve the database design
by decomposing this schema into a fourth normal form decomposition.

A relation schema R is in fourth normal form (4NF) with respect to a set D of
functional and multivalued dependencies if, for all multivalued dependencies in D+ of
the form α →→ β, where α ⊆ R and β ⊆ R, at least one of the following holds:

• α →→ β is a trivial multivalued dependency.

• α is a superkey for R.

A database design is in 4NF if each member of the set of relation schemas that consti-
tutes the design is in 4NF.

Note that the definition of 4NF differs from the definition of BCNF in only the use
of multivalued dependencies. Every 4NF schema is in BCNF. To see this fact, we note
that, if a schema R is not in BCNF, then there is a nontrivial functional dependency
α → β holding on R, where α is not a superkey. Since α→ β implies α→→ β, R cannot
be in 4NF.

Let R be a relation schema, and let R1, R2,… , Rn be a decomposition of R. To
check if each relation schema Ri in the decomposition is in 4NF, we need to find what
multivalued dependencies hold on each Ri. Recall that, for a set F of functional depen-
dencies, the restriction Fi of F to Ri is all functional dependencies in F+ that include
only attributes of Ri. Now consider a set D of both functional and multivalued depen-
dencies. The restriction of D to Ri is the set Di consisting of:
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1. All functional dependencies in D+ that include only attributes of Ri.

2. All multivalued dependencies of the form:

α →→ β ∩ Ri

where α ⊆ Ri and α →→ β is in D+.

7.6.3 4NF Decomposition

The analogy between 4NF and BCNF applies to the algorithm for decomposing a
schema into 4NF. Figure 7.16 shows the 4NF decomposition algorithm. It is identical
to the BCNF decomposition algorithm of Figure 7.11, except that it uses multivalued
dependencies and uses the restriction of D+ to Ri.

If we apply the algorithm of Figure 7.16 to (ID, dept name, street, city), we find that
ID→→ dept name is a nontrivial multivalued dependency, and ID is not a superkey for
the schema. Following the algorithm, we replace it with two schemas:

(ID, dept name)
(ID, street, city)

This pair of schemas, which is in 4NF, eliminates the redundancy we encountered ear-
lier.

As was the case when we were dealing solely with functional dependencies, we are
interested in decompositions that are lossless and that preserve dependencies. The fol-
lowing fact about multivalued dependencies and losslessness shows that the algorithm
of Figure 7.16 generates only lossless decompositions:

result := {R};
done := false;
compute D+; Given schema Ri, let Di denote the restriction of D+ to Ri
while (not done) do

if (there is a schema Ri in result that is not in 4NF w.r.t. Di)
then begin

let α →→ β be a nontrivial multivalued dependency that holds
on Ri such that α → Ri is not in Di, and α ∩ β = ∅;
result := (result − Ri) ∪ (Ri − β) ∪ (α, β);

end
else done := true;

Figure 7.16 4NF decomposition algorithm.
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• Let r(R) be a relation schema, and let D be a set of functional and multivalued
dependencies on R. Let r1(R1) and r2(R2) form a decomposition of R. This de-
composition of R is lossless if and only if at least one of the following multivalued
dependencies is in D+:

R1 ∩ R2 →→ R1
R1 ∩ R2 →→ R2

Recall that we stated in Section 7.2.3 that, if R1 ∩ R2 → R1 or R1 ∩ R2 → R2, then
r1(R1) and r2(R2) forms a lossless decomposition of r(R). The preceding fact about
multivalued dependencies is a more general statement about losslessness. It says that,
for every lossless decomposition of r(R) into two schemas r1(R1) and r2(R2), one of
the two dependencies R1 ∩ R2 →→ R1 or R1 ∩ R2 →→ R2 must hold. To see that this
is true, we need to show first that if at least one of these dependencies holds, then
ΠR1

(r) ⋈ ΠR2
(r) = r and next we need to show that if ΠR1

(r) ⋈ ΠR2
(r) = r then r(R)

must satisfy at least one of these dependencies. See the Further Reading section for
references to a full proof.

The issue of dependency preservation when we decompose a relation schema be-
comes more complicated in the presence of multivalued dependencies. Section 28.1.2
pursues this topic.

A further complication arises from the fact that it is possible for a multivalued
dependency to hold only on a proper subset of the given schema, with no way to express
that multivalued dependency on that given schema. Such a multivalued dependency
may appear as the result of a decomposition. Fortunately, such cases, called embedded
multivalued dependencies, are rare. See the Further Reading section for details.

7.7 More Normal Forms

The fourth normal form is by no means the “ultimate” normal form. As we saw earlier,
multivalued dependencies help us understand and eliminate some forms of repetition
of information that cannot be understood in terms of functional dependencies. There
are types of constraints called join dependencies that generalize multivalued dependen-
cies and lead to another normal form called project-join normal form (PJNF). PJNF is
called fifth normal form in some books. There is a class of even more general constraints
that leads to a normal form called domain-key normal form (DKNF).

A practical problem with the use of these generalized constraints is that they are
not only hard to reason with, but there is also no set of sound and complete inference
rules for reasoning about the constraints. Hence PJNF and DKNF are used quite rarely.
Chapter 28 provides more details about these normal forms.

Conspicuous by its absence from our discussion of normal forms is second normal
form (2NF). We have not discussed it because it is of historical interest only. We simply
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define it and let you experiment with it in Practice Exercise 7.19. First normal form
deals with a different issue than the normal forms we have seen so far. It is discussed
in the next section.

7.8 Atomic Domains and First Normal Form

The E-R model allows entity sets and relationship sets to have attributes that have
some degree of substructure. Specifically, it allows multivalued attributes such as phone
number in Figure 6.8 and composite attributes (such as an attribute address with com-

ponent attributes street, city, and state). When we create tables from E-R designs that
contain these types of attributes, we eliminate this substructure. For composite at-
tributes, we let each component be an attribute in its own right. For multivalued at-
tributes, we create one tuple for each item in a multivalued set.

In the relational model, we formalize this idea that attributes do not have any sub-
structure. A domain is atomic if elements of the domain are considered to be indivisible
units. We say that a relation schema R is in first normal form (1NF) if the domains of
all attributes of R are atomic.

A set of names is an example of a non-atomic value. For example, if the schema of
a relation employee included an attribute children whose domain elements are sets of
names, the schema would not be in first normal form.

Composite attributes, such as an attribute address with component attributes street
and city also have non-atomic domains.

Integers are assumed to be atomic, so the set of integers is an atomic domain;
however, the set of all sets of integers is a non-atomic domain. The distinction is that
we do not normally consider integers to have subparts, but we consider sets of integers
to have subparts—namely, the integers making up the set. But the important issue is
not what the domain itself is, but rather how we use domain elements in our database.
The domain of all integers would be non-atomic if we considered each integer to be an
ordered list of digits.

As a practical illustration of this point, consider an organization that assigns em-
ployees identification numbers of the following form: The first two letters specify the
department and the remaining four digits are a unique number within the department
for the employee. Examples of such numbers would be “CS001” and “EE1127”. Such
identification numbers can be divided into smaller units and are therefore non-atomic.
If a relation schema had an attribute whose domain consists of identification numbers
encoded as above, the schema would not be in first normal form.

When such identification numbers are used, the department of an employee can be
found by writing code that breaks up the structure of an identification number. Doing so
requires extra programming, and information gets encoded in the application program
rather than in the database. Further problems arise if such identification numbers are
used as primary keys: When an employee changes departments, the employee’s identi-
fication number must be changed everywhere it occurs, which can be a difficult task,
or the code that interprets the number would give a wrong result.
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From this discussion, it may appear that our use of course identifiers such as “CS-
101”, where “CS” indicates the Computer Science department, means that the domain
of course identifiers is not atomic. Such a domain is not atomic as far as humans using
the system are concerned. However, the database application still treats the domain
as atomic, as long as it does not attempt to split the identifier and interpret parts of
the identifier as a department abbreviation. The course schema stores the department
name as a separate attribute, and the database application can use this attribute value
to find the department of a course, instead of interpreting particular characters of the
course identifier. Thus, our university schema can be considered to be in first normal
form.

The use of set-valued attributes can lead to designs with redundant storage of data,
which in turn can result in inconsistencies. For instance, instead of having the relation-
ship between instructors and sections being represented as a separate relation teaches,
a database designer may be tempted to store a set of course section identifiers with
each instructor and a set of instructor identifiers with each section. (The primary keys
of section and instructor are used as identifiers.) Whenever data pertaining to which
instructor teaches which section is changed, the update has to be performed at two
places: in the set of instructors for the section, and in the set of sections for the instruc-
tor. Failure to perform both updates can leave the database in an inconsistent state.
Keeping only one of these sets would avoid repeated information; however keeping
only one of these would complicate some queries, and it is unclear which of the two it
would be better to retain.

Some types of non-atomic values can be useful, although they should be used
with care. For example, composite-valued attributes are often useful, and set-valued
attributes are also useful in many cases, which is why both are supported in the E-
R model. In many domains where entities have a complex structure, forcing a first
normal form representation represents an unnecessary burden on the application pro-
grammer, who has to write code to convert data into atomic form. There is also the
runtime overhead of converting data back and forth from the atomic form. Support for
non-atomic values can thus be very useful in such domains. In fact, modern database
systems do support many types of non-atomic values, as we shall see in Chapter 29
restrict ourselves to relations in first normal form, and thus all domains are atomic.

7.9 Database-Design Process

So far we have looked at detailed issues about normal forms and normalization. In this
section, we study how normalization fits into the overall database-design process.

Earlier in the chapter starting in Section 7.1.1, we assumed that a relation schema
r(R) is given, and we proceeded to normalize it. There are several ways in which we
could have come up with the schema r(R):

1. r(R) could have been generated in converting an E-R diagram to a set of relation
schemas.
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2. r(R) could have been a single relation schema containing all attributes that are
of interest. The normalization process then breaks up r(R) into smaller schemas.

3. r(R) could have been the result of an ad hoc design of relations that we then test
to verify that it satisfies a desired normal form.

In the rest of this section, we examine the implications of these approaches. We also
examine some practical issues in database design, including denormalization for per-
formance and examples of bad design that are not detected by normalization.

7.9.1 E-R Model and Normalization

When we define an E-R diagram carefully, identifying all entity sets correctly, the rela-
tion schemas generated from the E-R diagram should not need much further normal-
ization. However, there can be functional dependencies among attributes of an entity
set. For instance, suppose an instructor entity set had attributes dept name and dept
address, and there is a functional dependency dept name → dept address. We would

then need to normalize the relation generated from instructor.
Most examples of such dependencies arise out of poor E-R diagram design. In

the preceding example, if we had designed the E-R diagram correctly, we would have
created a department entity set with attribute dept address and a relationship set between
instructor and department. Similarly, a relationship set involving more than two entity
sets may result in a schema that may not be in a desirable normal form. Since most
relationship sets are binary, such cases are relatively rare. (In fact, some E-R-diagram
variants actually make it difficult or impossible to specify nonbinary relationship sets.)

Functional dependencies can help us detect poor E-R design. If the generated re-
lation schemas are not in desired normal form, the problem can be fixed in the E-R
diagram. That is, normalization can be done formally as part of data modeling. Alter-
natively, normalization can be left to the designer’s intuition during E-R modeling, and
it can be done formally on the relation schemas generated from the E-R model.

A careful reader will have noted that in order for us to illustrate a need for mul-
tivalued dependencies and fourth normal form, we had to begin with schemas that
were not derived from our E-R design. Indeed, the process of creating an E-R design
tends to generate 4NF designs. If a multivalued dependency holds and is not implied by
the corresponding functional dependency, it usually arises from one of the following
sources:

• A many-to-many relationship set.

• A multivalued attribute of an entity set.

For a many-to-many relationship set, each related entity set has its own schema, and
there is an additional schema for the relationship set. For a multivalued attribute, a
separate schema is created consisting of that attribute and the primary key of the entity
set (as in the case of the phone number attribute of the entity set instructor).
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The universal-relation approach to relational database design starts with an as-
sumption that there is one single relation schema containing all attributes of interest.
This single schema defines how users and applications interact with the database.

7.9.2 Naming of Attributes and Relationships

A desirable feature of a database design is the unique-role assumption, which means
that each attribute name has a unique meaning in the database. This prevents us from
using the same attribute to mean different things in different schemas. For example, we
might otherwise consider using the attribute number for phone number in the instructor
schema and for room number in the classroom schema. The join of a relation on schema
instructor with one on classroom is meaningless. While users and application developers
can work carefully to ensure use of the right number in each circumstance, having a
different attribute name for phone number and for room number serves to reduce user
errors.

While it is a good idea to keep names for incompatible attributes distinct, if at-
tributes of different relations have the same meaning, it may be a good idea to use the
same attribute name. For this reason we used the same attribute name “name” for both
the instructor and the student entity sets. If this was not the case (i.e., if we used dif-
ferent naming conventions for the instructor and student names), then if we wished to
generalize these entity sets by creating a person entity set, we would have to rename
the attribute. Thus, even if we did not currently have a generalization of student and
instructor, if we foresee such a possibility, it is best to use the same name in both entity
sets (and relations).

Although technically, the order of attribute names in a schema does not matter, it
is a convention to list primary-key attributes first. This makes reading default output
(as from select *) easier.

In large database schemas, relationship sets (and schemas derived therefrom) are
often named via a concatenation of the names of related entity sets, perhaps with an
intervening hyphen or underscore. We have used a few such names, for example, inst
sec and student sec. We used the names teaches and takes instead of using the longer

concatenated names. This was acceptable since it is not hard for you to remember the
associated entity sets for a few relationship sets. We cannot always create relationship-
set names by simple concatenation; for example, a manager or works-for relationship
between employees would not make much sense if it were called employee employee!
Similarly, if there are multiple relationship sets possible between a pair of entity sets,
the relationship-set names must include extra parts to identify the relationship set.

Different organizations have different conventions for naming entity sets. For ex-
ample, we may call an entity set of students student or students. We have chosen to use
the singular form in our database designs. Using either singular or plural is acceptable,
as long as the convention is used consistently across all entity sets.
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As schemas grow larger, with increasing numbers of relationship sets, using con-
sistent naming of attributes, relationships, and entities makes life much easier for the
database designer and application programmers.

7.9.3 Denormalization for Performance

Occasionally database designers choose a schema that has redundant information; that
is, it is not normalized. They use the redundancy to improve performance for specific
applications. The penalty paid for not using a normalized schema is the extra work (in
terms of coding time and execution time) to keep redundant data consistent.

For instance, suppose all course prerequisites have to be displayed along with the
course information, every time a course is accessed. In our normalized schema, this
requires a join of course with prereq.

One alternative to computing the join on the fly is to store a relation containing all
the attributes of course and prereq. This makes displaying the “full” course information
faster. However, the information for a course is repeated for every course prerequisite,
and all copies must be updated by the application, whenever a course prerequisite is
added or dropped. The process of taking a normalized schema and making it non-
normalized is called denormalization, and designers use it to tune the performance of
systems to support time-critical operations.

A better alternative, supported by many database systems today, is to use the nor-
malized schema and additionally store the join of course and prereq as a materialized
view. (Recall that a materialized view is a view whose result is stored in the database
and brought up to date when the relations used in the view are updated.) Like denor-
malization, using materialized views does have space and time overhead; however, it
has the advantage that keeping the view up to date is the job of the database system,
not the application programmer.

7.9.4 Other Design Issues

There are some aspects of database design that are not addressed by normalization and
can thus lead to bad database design. Data pertaining to time or to ranges of time have
several such issues. We give examples here; obviously, such designs should be avoided.

Consider a university database, where we want to store the total number of instruc-
tors in each department in different years. A relation total inst(dept name, year, size)
could be used to store the desired information. The only functional dependency on this
relation is dept name, year→ size, and the relation is in BCNF.

An alternative design is to use multiple relations, each storing the size informa-
tion for a different year. Let us say the years of interest are 2017, 2018, and 2019; we
would then have relations of the form total inst 2017, total inst 2018, total inst 2019, all
of which are on the schema (dept name, size). The only functional dependency here on
each relation would be dept name → size, so these relations are also in BCNF.

However, this alternative design is clearly a bad idea—we would have to create a
new relation every year, and we would also have to write new queries every year, to take
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each new relation into account. Queries would also be more complicated since they
may have to refer to many relations.

Yet another way of representing the same data is to have a single relation dept
year(dept name, total inst 2017, total inst 2018, total inst 2019). Here the only func-

tional dependencies are from dept name to the other attributes, and again the relation
is in BCNF. This design is also a bad idea since it has problems similar to the previous
design—namely, we would have to modify the relation schema and write new queries
every year. Queries would also be more complicated, since they may have to refer to
many attributes.

Representations such as those in the dept year relation, with one column for each
value of an attribute, are called crosstabs; they are widely used in spreadsheets and
reports and in data analysis tools. While such representations are useful for display
to users, for the reasons just given, they are not desirable in a database design. SQL
includes features to convert data from a normal relational representation to a cross-
tab, for display, as we discussed in Section 11.3.1.

7.10 Modeling Temporal Data

Suppose we retain data in our university organization showing not only the address of
each instructor, but also all former addresses of which the university is aware. We may
then ask queries, such as “Find all instructors who lived in Princeton in 1981.” In this
case, we may have multiple addresses for instructors. Each address has an associated
start and end date, indicating when the instructor was resident at that address. A special
value for the end date, for example, null, or a value well into the future, such as 9999-
12-31, can be used to indicate that the instructor is still resident at that address.

In general, temporal data are data that have an associated time interval during
which they are valid.10

Modeling temporal data is a challenging problem for several reasons. For example,
suppose we have an instructor entity set with which we wish to associate a time-varying
address. To add temporal information to an address, we would then have to create a
multivalued attribute, each of whose values is a composite value containing an address
and a time interval. In addition to time-varying attribute values, entities may themselves
have an associated valid time. For example, a student entity may have a valid time from
the date the student entered the university to the date the student graduated (or left
the university). Relationships too may have associated valid times. For example, the
prereq relationship may record when a course became a prerequisite for another course.
We would thus have to add valid time intervals to attribute values, entity sets, and
relationship sets. Adding such detail to an E-R diagram makes it very difficult to create
and to comprehend. There have been several proposals to extend the E-R notation to

10There are other models of temporal data that distinguish between valid time and transaction time, the latter recording
when a fact was recorded in the database. We ignore such details for simplicity.
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course id title dept name credits start end

BIO-101 Intro. to Biology Biology 4 1985-01-01 9999-12-31
CS-201 Intro. to C Comp. Sci. 4 1985-01-01 1999-01-01
CS-201 Intro. to Java Comp. Sci. 4 1999-01-01 2010-01-01
CS-201 Intro. to Python Comp. Sci. 4 2010-01-01 9999-12-31

Figure 7.17 A temporal version of the course relation

specify in a simple manner that an attribute value or relationship is time varying, but
there are no accepted standards.

In practice, database designers fall back to simpler approaches to designing tempo-
ral databases. One commonly used approach is to design the entire database (including
E-R design and relational design) ignoring temporal changes. After this, the designer
studies the various relations and decides which relations require temporal variation to
be tracked.

The next step is to add valid time information to each such relation by adding start
and end time as attributes. For example, consider the course relation. The title of the
course may change over time, which can be handled by adding a valid time range; the
resultant schema would be:

course (course id, title, dept name, credits, start, end)

An instance of the relation is shown in Figure 7.17. Each tuple has a valid interval
associated with it. Note that as per the SQL:2011 standard, the interval is closed on
the left-hand side, that is, the tuple is valid at time start, but is open on the right-hand
side, that is, the tuple is valid until just before time end, but is invalid at time end. This
allows a tuple to have the same start time as the end time of another tuple, without
overlapping. In general, left and right endpoints that are closed are denoted by [ and
], while left and right endpoints that are open are denoted by ( and ). Intervals in
SQL:2011 are of the form [start, end), that is they are closed on the left and open on
the right, Note that 9999-12-31 is the highest possible date as per the SQL standard.

It can be seen in Figure 7.17 that the title of the course CS-201 has changed several
times. Suppose that on 2020-01-01 the title of the course is updated again to, say, “Intro.
to Scala”. Then, the end attribute value of the tuple with title “Intro. to Python” would
be updated to 2020-01-01, and a new tuple (CS-201, Intro. to Scala, Comp. Sci., 4,
2020-01-01, 9999-12-31) would be added to the relation.

When we track data values across time, functional dependencies that we assumed
to hold, such as:

course id → title, dept name, credits

may no longer hold. The following constraint (expressed in English) would hold in-
stead: “A course course id has only one title and dept name value at any given time
t.”
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Functional dependencies that hold at a particular point in time are called temporal
functional dependencies. We use the term snapshot of data to mean the value of the
data at a particular point in time. Thus, a snapshot of course data gives the values of
all attributes, such as title and department, of all courses at a particular point in time.
Formally, a temporal functional dependency α

τ
→ β holds on a relation schema r(R)

if, for all legal instances of r(R), all snapshots of r satisfy the functional dependency
α → β.

The original primary key for a temporal relation would no longer uniquely identify
a tuple. We could try to fix the problem by adding start and end time attributes to
the primary key, ensuring no two tuples have the same primary key value. However,
this solution is not correct, since it is possible to store data with overlapping valid
time intervals, which would not be caught by merely adding the start and end time
attributes to the primary-key constraint. Instead, the temporal version of the primary
key constraint must ensure that if any two tuples have the same primary key values,
their valid time intervals do not overlap. Formally, if r.A is a temporal primary key of
relation r, then whenever two tuples t1 and t2 in r are such that t1.A = t2.A, their valid
time intervals of t1 and t2 must not overlap.

Foreign-key constraints are also more complicated when the referenced relation
is a temporal relation. A temporal foreign key should ensure that not only does each
tuple in the referencing relation, say r, have a matching tuple in the referenced relation,
say s, but also their time intervals are accounted for. It is not required that there be a
matching tuple in s with exactly the same time interval, nor even that a single tuple in
s has a time interval containing the time interval of the r tuple. Instead, we allow the
time interval of the r tuple to be covered by one or more s tuples. Formally, a temporal
foreign-key constraint from r A to s.B ensures the following: for each tuple t in r, with
valid time interval (l, u), there is a subset st of one or more tuples in s such that each
tuple si ∈ st has si.B = t.A, and further the union of the temporal intervals of all the si
contains (l, u).

A record in a student’s transcript should refer to the course title at the time when
the student took the course. Thus, the referencing relation must also record time in-
formation, to identify a particular record from the course relation. In our university
schema, takes.course id is a foreign key referencing course. The year and semester val-
ues of a takes tuple could be mapped to a representative date, such as the start date of
the semester; the resulting date value could be used to identify a tuple in the temporal
version of the course relation whose valid time interval contains the specified date. Al-
ternatively, a takes tuple may be associated with a valid time interval from the start date
of the semester until the end date of the semester, and course tuples with a matching
course id and an overlapping valid time may be retrieved; as long as course tuples are
not updated during a semester, there would be only one such record.

Instead of adding temporal information to each relation, some database designers
create for each relation a corresponding history relation that stores the history of up-
dates to the tuples. For example, a designer may leave the course relation unchanged,
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but create a relation course history containing all the attributes of course, with an ad-
ditional timestamp attribute indicating when a record was added to the course history
table. However, such a scheme has limitations, such as an inability to associate a takes
record with the correct course title.

The SQL:2011 standard added support for temporal data. In particular, it allows
existing attributes to be declared to specify a valid time interval for a tuple. For example,
for the extended course relation we saw above, we could declare

period for validtime (start, end)

to specify that the tuple is valid in the interval specified by the start and end (which are
otherwise ordinary attributes).

Temporal primary keys can be declared in SQL:2011, as illustrated below, using the
extended course schema:

primary key (course id, validtime without overlaps)

SQL:2011 also supports temporal foreign-key constraints that allow a period to be
specified along with the referencing relation attributes, as well as with the referenced
relation attributes. Most databases, with the exception of IBM DB2, Teradata, and pos-
sibly a few others, do not support temporal primary-key constraints. To the best of
our knowledge, no database system currently supports temporal foreign-key constraints
(Teradata allows them to be specified, but at least as of 2018, does not enforce them).

Some databases that do not directly support temporal primary-key constraints al-
low workarounds to enforce such constraints. For example, although PostgreSQL does
not support temporal primary-key constraints natively, such constraints can be en-
forced using the exclude constraint feature supported by PostgreSQL. For example,
consider the course relation, whose primary key is course id. In PostgreSQL, we can
add an attribute validtime, of type tsrange; the tsrange data type of PostgreSQL stores
a timestamp range with a start and end timestamp. PostgreSQL supports an && oper-
ator on a pair of ranges, which returns true if two ranges overlap and false otherwise.
The temporal primary key can be enforced by adding the following exclude constraint
(a type of constraint supported by PostgreSQL) to the course relation as follows:

exclude (course id with =, validtime with &&)

The above constraint ensures that if two course tuples have the same course id value,
then their validtime intervals do not overlap.

Relational algebra operations, such as select, project, or join, can be extended to
take temporal relations as inputs and generate temporal relations as outputs. Selection
and projection operations on temporal relations output tuples whose valid time inter-
vals are the same as that of their corresponding input tuples. A temporal join is slightly
different: the valid time of a tuple in the join result is defined as the intersection of the
valid times of the tuples from which it is derived. If the valid times do not intersect, the
tuple is discarded from the result. To the best of our knowledge, no database supports
temporal joins natively, although they can be expressed by SQL queries that explicitly
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handle the temporal conditions. Predicates, such as overlaps, contains, before, and after
and operations such as intersection and difference on pairs of intervals are supported by
several database systems.

7.11 Summary

• We showed pitfalls in database design and how to design a database schema sys-
tematically in a way that avoids those pitfalls. The pitfalls included repeated infor-
mation and inability to represent some information.

• Chapter 6 showed the development of a relational database design from an E-R
design and when schemas may be combined safely.

• Functional dependencies are consistency constraints that are used to define two
widely used normal forms, Boyce–Codd normal form (BCNF) and third normal
form (3NF).

• If the decomposition is dependency preserving, all functional dependencies can
be inferred logically by considering only those dependencies that apply to one
relation. This permits the validity of an update to be tested without the need to
compute a join of relations in the decomposition.

• A canonical cover is a set of functional dependencies equivalent to a given set
of functional dependencies, that is minimized in a specific manner to eliminate
extraneous attributes.

• The algorithm for decomposing relations into BCNF ensures a lossless decompo-
sition. There are relation schemas with a given set of functional dependencies for
which there is no dependency-preserving BCNF decomposition.

• A canonical cover is used to decompose a relation schema into 3NF, which is
a small relaxation of the BCNF condition. This algorithm produces designs that
are both lossless and dependency-preserving. Relations in 3NF may have some
redundancy, but that is deemed an acceptable trade-off in cases where there is no
dependency-preserving decomposition into BCNF.

• Multivalued dependencies specify certain constraints that cannot be specified with
functional dependencies alone. Fourth normal form (4NF) is defined using the
concept of multivalued dependencies. Section 28.1.1 gives details on reasoning
about multivalued dependencies.

• Other normal forms exist, including PJNF and DKNF, which eliminate more subtle
forms of redundancy. However, these are hard to work with and are rarely used.
Chapter 28 gives details on these normal forms. Second normal form is of only
historical interest since it provides no benefit over 3NF.

• Relational designs typically are based on simple atomic domains for each attribute.
This is called first normal form.
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• Time plays an important role in database systems. Databases are models of the
real world. Whereas most databases model the state of the real world at a point in
time (at the current time), temporal databases model the states of the real world
across time.

• There are possible database designs that are bad despite being lossless,
dependency-preserving, and in an appropriate normal form. We showed examples
of some such designs to illustrate that functional-dependency-based normalization,
though highly important, is not the only aspect of good relational design.

• In order for a database to store not only current data but also historical data, the
database must also store for each such tuple the time period for which the tuple
is or was valid. It then becomes necessary to define temporal functional depen-
dencies to represent the idea that the functional dependency holds at any point
in time but not over the entire relation. Similarly, the join operation needs to be
modified so as to appropriately join only tuples with overlapping time intervals.

• In reviewing the issues in this chapter, note that the reason we could define rigorous
approaches to relational database design is that the relational data model rests on
a firm mathematical foundation. That is one of the primary advantages of the
relational model compared with the other data models that we have studied.

Review Terms

• Decomposition

° Lossy decompositions

° Lossless decompositions

• Normalization

• Functional dependencies

• Legal instance

• Superkey

• R satisfies F

• Functional dependency

° Holds

° Trivial

° Trivial

• Closure of a set of functional
dependencies

• Dependency preserving

• Third normal form

• Transitive dependencies

• Logically implied

• Axioms

• Armstrong’s axioms

• Sound

• Complete

• Functionally determined

• Extraneous attributes

• Canonical cover

• Restriction of F to Ri

• Dependency-preserving decomposi-
tion

• Boyce–Codd normal form
(BCNF)

• BCNF decomposition algorithm
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• Third normal form (3NF)

• 3NF decomposition algorithm

• 3NF synthesis algorithm

• Multivalued dependency

° Equality-generating dependencies

° Tuple-generating dependencies

° Embedded multivalued dependen-
cies

• Closure

• Fourth normal form (4NF)

• Restriction of D to Ri

• Fifth normal form

• Domain-key normal form (DKNF)

• Atomic domains

• First normal form (1NF)

• Unique-role assumption

• Denormalization

• Crosstabs

• Temporal data

• Snapshot

• Temporal functional dependency

• Temporal primary key

• Temporal foreign-key

• Temporal join

Practice Exercises

7.1 Suppose that we decompose the schema R = (A, B, C, D, E) into

(A, B, C)
(A, D, E).

Show that this decomposition is a lossless decomposition if the following set F
of functional dependencies holds:

A → BC
CD → E
B → D
E → A

7.2 List all nontrivial functional dependencies satisfied by the relation of Figure
7.18.

A B C

a1 b1 c1
a1 b1 c2
a2 b1 c1
a2 b1 c3

Figure 7.18 Relation of Exercise 7.2.
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7.3 Explain how functional dependencies can be used to indicate the following:

• A one-to-one relationship set exists between entity sets student and instruc-
tor.

• A many-to-one relationship set exists between entity sets student and instruc-
tor.

7.4 Use Armstrong’s axioms to prove the soundness of the union rule. (Hint: Use the
augmentation rule to show that, if α→ β, then α→ αβ. Apply the augmentation
rule again, using α → γ, and then apply the transitivity rule.)

7.5 Use Armstrong’s axioms to prove the soundness of the pseudotransitivity rule.

7.6 Compute the closure of the following set F of functional dependencies for rela-
tion schema R = (A, B, C, D, E).

A → BC
CD → E
B → D
E → A

List the candidate keys for R.

7.7 Using the functional dependencies of Exercise 7.6, compute the canonical
cover Fc.

7.8 Consider the algorithm in Figure 7.19 to compute α+. Show that this algorithm
is more efficient than the one presented in Figure 7.8 (Section 7.4.2) and that it
computes α+ correctly.

7.9 Given the database schema R(A, B, C), and a relation r on the schema R, write
an SQL query to test whether the functional dependency B → C holds on re-
lation r. Also write an SQL assertion that enforces the functional dependency.
Assume that no null values are present. (Although part of the SQL standard,
such assertions are not supported by any database implementation currently.)

7.10 Our discussion of lossless decomposition implicitly assumed that attributes on
the left-hand side of a functional dependency cannot take on null values. What
could go wrong on decomposition, if this property is violated?

7.11 In the BCNF decomposition algorithm, suppose you use a functional depen-
dency α → β to decompose a relation schema r(α, β, γ) into r1(α, β) and r2(α, γ).

a. What primary and foreign-key constraint do you expect to hold on the
decomposed relations?

b. Give an example of an inconsistency that can arise due to an erroneous
update, if the foreign-key constraint were not enforced on the decomposed
relations above.
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result := ∅;
/* fdcount is an array whose ith element contains the number

of attributes on the left side of the ith FD that are
not yet known to be in α+ */

for i := 1 to |F | do
begin

let β → γ denote the ith FD;
fdcount [i] := |β|;

end
/* appears is an array with one entry for each attribute. The

entry for attribute A is a list of integers. Each integer
i on the list indicates that A appears on the left side
of the ith FD */

for each attribute A do
begin

appears [A] := NIL;
for i := 1 to |F | do

begin
let β → γ denote the ith FD;
if A ∈ β then add i to appears [A];

end
end

addin (α);
return (result);

procedure addin (α);
for each attribute A in α do

begin
if A ∉ result then

begin
result := result ∪ {A};
for each element i of appears[A] do

begin
fdcount [i] := fdcount [i] − 1;
if fdcount [i] := 0 then

begin
let β → γ denote the ith FD;
addin (γ);

end
end

end
end

Figure 7.19 An algorithm to compute α+.
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c. When a relation schema is decomposed into 3NF using the algorithm in
Section 7.5.2, what primary and foreign-key dependencies would you ex-
pect to hold on the decomposed schema?

7.12 Let R1, R2,… , Rn be a decomposition of schema U. Let u(U) be a relation, and
let ri = ΠRI

(u). Show that

u ⊆ r1 ⋈ r2 ⋈ ⋯ ⋈ rn

7.13 Show that the decomposition in Exercise 7.1 is not a dependency-preserving
decomposition.

7.14 Show that there can be more than one canonical cover for a given set of func-
tional dependencies, using the following set of dependencies:

X → YZ, Y → XZ, and Z → XY .

7.15 The algorithm to generate a canonical cover only removes one extraneous at-
tribute at a time. Use the functional dependencies from Exercise 7.14 to show
what can go wrong if two attributes inferred to be extraneous are deleted at
once.

7.16 Show that it is possible to ensure that a dependency-preserving decomposition
into 3NF is a lossless decomposition by guaranteeing that at least one schema
contains a candidate key for the schema being decomposed. (Hint: Show that
the join of all the projections onto the schemas of the decomposition cannot
have more tuples than the original relation.)

7.17 Give an example of a relation schema R′ and set F ′ of functional dependen-
cies such that there are at least three distinct lossless decompositions of R′ into
BCNF.

7.18 Let a prime attribute be one that appears in at least one candidate key. Let α and
β be sets of attributes such that α → β holds, but β → α does not hold. Let A be
an attribute that is not in α, is not in β, and for which β → A holds. We say that
A is transitively dependent on α. We can restate the definition of 3NF as follows:
A relation schema R is in 3NF with respect to a set F of functional dependencies
if there are no nonprime attributes A in R for which A is transitively dependent
on a key for R. Show that this new definition is equivalent to the original one.

7.19 A functional dependency α → β is called a partial dependency if there is a
proper subset γ of α such that γ → β; we say that β is partially dependent on α. A
relation schema R is in second normal form (2NF) if each attribute A in R meets
one of the following criteria:

• It appears in a candidate key.
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• It is not partially dependent on a candidate key.

Show that every 3NF schema is in 2NF. (Hint: Show that every partial depen-
dency is a transitive dependency.)

7.20 Give an example of a relation schema R and a set of dependencies such that R
is in BCNF but is not in 4NF.

Exercises

7.21 Give a lossless decomposition into BCNF of schema R of Exercise 7.1.

7.22 Give a lossless, dependency-preserving decomposition into 3NF of schema R of
Exercise 7.1.

7.23 Explain what is meant by repetition of information and inability to represent in-
formation. Explain why each of these properties may indicate a bad relational-
database design.

7.24 Why are certain functional dependencies called trivial functional dependencies?

7.25 Use the definition of functional dependency to argue that each of Armstrong’s
axioms (reflexivity, augmentation, and transitivity) is sound.

7.26 Consider the following proposed rule for functional dependencies: If α → β and
γ → β, then α → γ. Prove that this rule is not sound by showing a relation r that
satisfies α → β and γ → β, but does not satisfy α → γ.

7.27 Use Armstrong’s axioms to prove the soundness of the decomposition rule.

7.28 Using the functional dependencies of Exercise 7.6, compute B+.

7.29 Show that the following decomposition of the schema R of Exercise 7.1 is not a
lossless decomposition:

(A, B, C)
(C, D, E).

Hint: Give an example of a relation r (R) such thatΠA, B, C (r) ⋈ ΠC, D, E (r) ≠ r

7.30 Consider the following set F of functional dependencies on the relation schema
(A, B, C, D, E, G):

A → BCD
BC → DE
B → D
D → A
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a. Compute B+.

b. Prove (using Armstrong’s axioms) that AG is a superkey.

c. Compute a canonical cover for this set of functional dependencies F ; give
each step of your derivation with an explanation.

d. Give a 3NF decomposition of the given schema based on a canonical
cover.

e. Give a BCNF decomposition of the given schema using the original set F
of functional dependencies.

7.31 Consider the schema R = (A, B, C, D, E, G) and the set F of functional depen-
dencies:

AB → CD
B → D
DE → B
DEG → AB
AC → DE

R is not in BCNF for many reasons, one of which arises from the functional
dependency AB → CD. Explain why AB → CD shows that R is not in BCNF
and then use the BCNF decomposition algorithm starting with AB → CD to
generate a BCNF decomposition of R. Once that is done, determine whether
your result is or is not dependency preserving, and explain your reasoning.

7.32 Consider the schema R = (A, B, C, D, E, G) and the set F of functional depen-
dencies:

A → BC
BD → E
CD → AB

a. Find a nontrivial functional dependency containing no extraneous at-
tributes that is logically implied by the above three dependencies and ex-
plain how you found it.

b. Use the BCNF decomposition algorithm to find a BCNF decomposition
of R. Start with A → BC. Explain your steps.

c. For your decomposition, state whether it is lossless and explain why.

d. For your decomposition, state whether it is dependency preserving and
explain why.
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7.33 Consider the schema R = (A, B, C, D, E, G) and the set F of functional depen-
dencies:

AB → CD
ADE → GDE
B → GC
G → DE

Use the 3NF decomposition algorithm to generate a 3NF decomposition of R,
and show your work. This means:

a. A list of all candidate keys

b. A canonical cover for F , along with an explanation of the steps you took
to generate it

c. The remaining steps of the algorithm, with explanation

d. The final decomposition

7.34 Consider the schema R = (A, B, C, D, E, G, H) and the set F of functional de-
pendencies:

AB → CD
D → C
DE → B
DEH → AB
AC → DC

Use the 3NF decomposition algorithm to generate a 3NF decomposition of R,
and show your work. This means:

a. A list of all candidate keys

b. A canonical cover for F

c. The steps of the algorithm, with explanation

d. The final decomposition

7.35 Although the BCNF algorithm ensures that the resulting decomposition is loss-
less, it is possible to have a schema and a decomposition that was not generated
by the algorithm, that is in BCNF, and is not lossless. Give an example of such
a schema and its decomposition.

7.36 Show that every schema consisting of exactly two attributes must be in BCNF
regardless of the given set F of functional dependencies.
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7.37 List the three design goals for relational databases, and explain why each is
desirable.

7.38 In designing a relational database, why might we choose a non-BCNF design?

7.39 Given the three goals of relational database design, is there any reason to design
a database schema that is in 2NF, but is in no higher-order normal form? (See
Exercise 7.19 for the definition of 2NF.)

7.40 Given a relational schema r(A, B, C, D), does A →→ BC logically imply A →→ B
and A →→ C? If yes prove it, or else give a counter example.

7.41 Explain why 4NF is a normal form more desirable than BCNF.

7.42 Normalize the following schema, with given constraints, to 4NF.

books(accessionno, isbn, title, author, publisher)
users(userid, name, deptid, deptname)
accessionno → isbn
isbn → title
isbn → publisher
isbn →→ author
userid → name
userid → deptid
deptid → deptname

7.43 Although SQL does not support functional dependency constraints, if the
database system supports constraints on materialized views, and materialized
views are maintained immediately, it is possible to enforce functional depen-
dency constraints in SQL. Given a relation r(A, B, C), explain how constraints
on materialized views can be used to enforce the functional dependency B → C.

7.44 Given two relations r(A, B, validtime) and s(B, C, validtime), where validtime de-
notes the valid time interval, write an SQL query to compute the temporal nat-
ural join of the two relations. You can use the && operator to check if two
intervals overlap and the ∗ operator to compute the intersection of two inter-
vals.

Further Reading

The first discussion of relational database design theory appeared in an early paper by
[Codd (1970)]. In that paper, Codd also introduced functional dependencies and first,
second, and third normal forms.

Armstrong’s axioms were introduced in [Armstrong (1974)]. BCNF was introduced
in [Codd (1972)]. [Maier (1983)] is a classic textbook that provides detailed coverage
of normalization and the theory of functional and multivalued dependencies.
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PART 3

APPLICATION DESIGN
AND DEVELOPMENT
One of the key requirements of the relational model is that data values be atomic: mul-
tivalued, composite, and other complex data types are disallowed by the core relational
model. However, there are many applications where the constraints on data types im-
posed by the relational model cause more problems than they solve. In Chapter 8, we
discuss several complex data types, including semistructured data types that are widely
used in building applications, object-based data, textual data, and spatial data.

Practically all use of databases occurs from within application programs. Corre-
spondingly, almost all user interaction with databases is indirect, via application pro-
grams. Database-backed applications are ubiquitous on the web as well as on mobile
platforms. In Chapter 9, we study tools and technologies that are used to build appli-
cations, focusing on interactive applications that use databases to store and retrieve
data.
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CHAP T E R 8
Complex Data Types

The relational model is very widely used for data representation for a large number
of application domains. One of the key requirements of the relational model is that
data values be atomic: multivalued, composite, and other complex data types are dis-
allowed by the core relational model. However, there are many applications where the
constraints on data types imposed by the relational model cause more problems than
they solve. In this chapter, we discuss several non-atomic data types that are widely used,
including semi-structured data, object-based data, textual data, and spatial data.

8.1 Semi-structured Data

Relational database designs have tables with a fixed number of attributes, each of which
contains an atomic value. Changes to the schema, such as adding an extra attribute,
are rare events, and may require changing of application code. Such a design is well
suited to many organizational applications.

However, there are many application domains that need to store more complex
data, whose schema changes often. Fast evolving web applications are an example of
such a domain. As an example of the data management needs of such applications,
consider the profile of a user which needs to be accessible to a number of different
applications. The profile contains a variety of attributes, and there are frequent addi-
tions to the attributes stored in the profile. Some attributes may contain complex data;
for example, an attribute may store a set of interests that can be used to show the user
articles related to the set of interests. While such a set can be stored in a normalized
fashion in a separate relation, a set data type allows significantly more efficient access
than does a normalized representation. We study a number of data models that support
representation of semi-structured data in this section.

Data exchange is another very important motivation for semi-structured data rep-
resentations; it is perhaps even more important than storage for many applications. A
popular architecture for building information systems today is to create a web service
that allows retrieval of data and to build application code that displays the data and al-
lows user interaction. Such application code may be developed as mobile applications,
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or it may be written in JavaScript and run on the browser. In either case, the ability
to run on the client’s machine allows developers to create very responsive user inter-
faces, unlike the early generation of web interfaces where backend servers send HTML
marked-up text to browsers, which display the HTML. A key to building such applica-
tions is the ability to efficiently exchange and process complex data between backend
servers and clients. We study the JSON and XML data models that have been widely
adopted for this task.

8.1.1 Overview of Semi-structured Data Models

The relational data model has been extended in several ways to support the storage and
data exchange needs of modern applications.

8.1.1.1 Flexible Schema

Some database systems allow each tuple to potentially have a different set of attributes;
such a representation is referred to as a wide column data representation. The set of
attributes is not fixed in such a representation; each tuple may have a different set of
attributes, and new attributes may be added as needed.

A more restricted form of this representation is to have a fixed but very large num-
ber of attributes, with each tuple using only those attributes that it needs, leaving the
rest with null values; such a representation is called a sparse column representation.

8.1.1.2 Multivalued Data Types

Many data representations allow attributes to contain non-atomic values. Many
databases allow the storage of sets, multisets, or arrays as attribute values. For exam-
ple, an application that stores topics of interest to a user, and uses the topics to target
articles or advertisements to the user, may store the topics as a set. An example of such
a set may be:

{ basketball, La Liga, cooking, anime, Jazz }

Although a set-valued attribute can be stored in a normalized form as we saw earlier in
Section 6.7.2, doing so provides no benefits in this case, since lookups are always based
on the user, and normalization would significantly increase the storage and querying
overhead.

Some representations allow attributes to store key-value maps, which store key-
value pairs. A key-value map, often just called a map, is a set of (key, value) pairs, such
that each key occurs in at most one element. For example, e-commerce sites often list
specifications or details for each product that they sell, such as brand, model, size,
color, and numerous other product-specific details. The set of specifications may be
different for each product. Such specifications can be represented as a map, where
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the specifications form the key, and the associated value is stored with the key. The
following example illustrates such a map:

{ (brand, Apple), (ID, MacBook Air), (size, 13), (color, silver) }

The put(key, value) method can be used to add a key-value pair, while the get(key)
method can be used to retrieve the value associated with a key. The delete(key) method
can be used to delete a key-value pair from the map.

Arrays are very important for scientific and monitoring applications. For example,
scientific applications may need to store images, which are basically two-dimensional
arrays of pixel values. Scientific experiments as well as industrial monitoring applica-
tions often use multiple sensors that provide readings at regular intervals. Such readings
can be viewed as an array. In fact, treating a stream of readings as an array requires far
less space than storing each reading as a separate tuple, with attributes such as (time,
reading). Not only do we avoid storing the time attribute explicitly (it can be inferred
from the offset), but we can also reduce per-tuple overhead in the database, and most
importantly we can use compression techniques to reduce the space needed to store
an array of readings.

Support for multivalued attribute types was proposed early in the history of
databases, and the associated data model was called the non first-normal-form, or NFNF ,
data model. Several relational databases such as Oracle and PostgreSQL support set
and array types.

An array database is a database that provides specialized support for arrays, in-
cluding efficient compressed storage, and query language extensions to support oper-
ations on arrays. Examples include the Oracle GeoRaster, the PostGIS extension to
PostgreSQL, the SciQL extension of MonetDB, and SciDB, a database tailored for sci-
entific applications, with a number of features tailored for array data types.

8.1.1.3 Nested Data Types

Many data representations allow attributes to be structured, directly modeling compos-
ite attributes in the E-R model. For example, an attribute name may have component
attributes firstname, and lastname. These representations also support multivalued data
types such as sets, arrays, and maps. All of these data types represent a hierarchy of
data types, and that structure leads to the use of the term nested data types. Many
databases support such types as part of their support for object-oriented data, which
we describe in Section 8.2.

In this section, we outline two widely used data representations that allow values
to have complex internal structures and that are flexible in that values are not forced
to adhere to a fixed schema. These are the JavaScript Object Notation (JSON), which
we describe in Section 8.1.2, and the Extensible Markup Language (XML), which we
describe in Section 8.1.3.

Like the wide-table approach, the JSON and XML representations provide flexibility
in the set of attributes that a record contains, as well as the types of these attributes.
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However, the JSON and XML representations permit a more flexible structuring of data,
where objects could have sub-objects; each object thus corresponds to a tree structure.

Since they allow multiple pieces of information about a business object to be pack-
aged into a single structure, the JSON and XML representations have both found sig-
nificant acceptance in the context of data exchange between applications.

Today, JSON is widely used today for exchanging data between the backends and
the user-facing sides of applications, such as mobile apps, and Web apps. JSON has also
found favor for storing complex objects in storage systems that collect different data
related to a particular user into one large object (sometimes referred to as a document),
allowing data to be retrieved without the need for joins. XML is an older representation
and is used by many systems for storing configuration and other information, and for
data exchange.

8.1.1.4 Knowledge Representation

Representation of human knowledge has long been a goal of the artificial intelligence
community. A variety of models were proposed for this task, with varying degrees of
complexity; these could represent facts as well as rules about facts. With the growth of
the web, a need arose to represent extremely large knowledge bases, with potentially
billions of facts. The Resource Description Format (RDF) data representation is one such
representation that has found very wide acceptance. The representation actually has
far fewer features than earlier representations, but it was better suited to handle very
large data volumes than the earlier knowledge representations.

Like the E-R model which we studied earlier, RDF models data as objects that have
attributes and have relationships with other objects. RDF data can be viewed as a set
of triples (3-tuples), or as a graph, with objects and attribute values modeled as nodes
and relationships and attribute names as edges. We study RDF in more detail in Section
8.1.4.

8.1.2 JSON

The JavaScript Object Notation (JSON), is a textual representation of complex data
types that is widely used to transmit data between applications and to store complex
data. JSON supports the primitive data types integer, real and string, as well as arrays,
and “objects,” which are a collection of (attribute name, value) pairs.

Figure 8.1 shows an example of data represented using JSON. Since objects do not
have to adhere to any fixed schema, they are basically the same as key-value maps, with
the attribute names as keys and the attribute values as the associated values.

The example also illustrates arrays, shown in square brackets. In JSON, an array
can be thought of as a map from integer offsets to values, with the square-bracket syntax
viewed as just a convenient way of creating such maps.

JSON is today the primary data representation used for communication between
applications and web services. Many modern applications use web services to store
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{
"ID": "22222",
"name": {

"firstname: "Albert",
"lastname: "Einstein"

},
"deptname": "Physics",
"children": [

{"firstname": "Hans", "lastname": "Einstein" },
{"firstname": "Eduard", "lastname": "Einstein" }

]
}

Figure 8.1 Example of JSON data.

and retrieve data and to perform computations at a backend server; web services are
described in more detail in Section 9.5.2. Applications invoke web services by sending
parameters either as simple values such as strings or numbers, or by using JSON for
more complex parameters. The web service then returns results using JSON. For exam-
ple, an email user interface may invoke web services for each of these tasks: authenti-
cating the user, fetching email header information to show a list of emails, fetching an
email body, sending email, and so on.

The data exchanged in each of these steps are complex and have an internal struc-
ture. The ability of JSON to represent complex structures, and its ability to allow flexible
structuring, make it a good fit for such applications.

A number of libraries are available that make it easy to transform data between
the JSON representation and the object representation used in languages such as
JavaScript, Java, Python, PHP, and other languages. The ease of interfacing between
JSON and programming language data structures has played a significant role in the
widespread use of JSON.

Unlike a relational representation, JSON is verbose and takes up more storage space
for the same data. Further, parsing the text to retrieve required fields can be very CPU
intensive. Compressed representations that also make it easier to retrieve values with-
out parsing are therefore popular for storage of data. For example, a compressed binary
format called BSON (short for Binary JSON) is used in many systems for storing JSON
data.

The SQL language itself has been extended to support the JSON representation in
several ways:

• JSON data can be stored as a JSON data type.

• SQL queries can generate JSON data from relational data:
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° There are SQL extensions that allow construction of JSON objects in each row
of a query result. For example, PostgreSQL supports a json build object() func-
tion. As an example of its use, json build object('ID', 12345, 'name' 'Ein-
stein') returns a JSON object {"ID": 12345, "name", "Einstein"}.

° There are also SQL extensions that allow creation of a JSON object from a
collection of rows by using an aggregate function. For example, the json agg
aggregate function in PostgreSQL allows creation of a single JSON object from
a collection of JSON objects. Oracle supports a similar aggregate function
json objectagg, as well as an aggregate json arraytagg, which creates a JSON
array with objects in a specified order. SQL Server supports a FOR JSON AUTO
clause that formats the result of an SQL query as a JSON array, with one ele-
ment per row in the SQL query.

• SQL queries can extract data from a JSON object using some form of path con-
structs. For example, in PostgreSQL, if a value v is of type JSON and has an at-
tribute “ID”, v−>’ID’ would return the value of the “ID” attribute of v. Oracle
supports a similar feature, using a “.” instead of “−>”, while SQL Server uses a
function JSON VALUE(value, path) to extract values from JSON objects using a
specified path.

The exact syntax and semantics of these extensions, unfortunately, depend entirely on
the specific database system. You can find references to more details on these exten-
sions in the bibliographic notes for this chapter, available online.

8.1.3 XML

The XML data representation adds tags enclosed in angle brackets, <>, to mark up
information in a textual representation. Tags are used in pairs, with <tag> and </tag>
delimiting the beginning and the end of the portion of the text to which the tag refers.
For example, the title of a document might be marked up as follows:

<title>Database System Concepts</title>

Such tags can be used to represent relational data specifying relation names and at-
tribute names as tags, as shown below:

<course>
<course id> CS-101 </course id>
<title> Intro. to Computer Science </title>
<dept name> Comp. Sci. </dept name>
<credits> 4 </credits>

</course>
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<purchase order>
<identifier> P-101 </identifier>
<purchaser>

<name> Cray Z. Coyote </name>
<address> Route 66, Mesa Flats, Arizona 86047, USA </address>

</purchaser>
<supplier>

<name> Acme Supplies </name>
<address> 1 Broadway, New York, NY, USA </address>

</supplier>
<itemlist>

<item>

<identifier> RS1 </identifier>
<description> Atom powered rocket sled </description>
<quantity> 2 </quantity>
<price> 199.95 </price>

</item>

<item>

<identifier> SG2 </identifier>
<description> Superb glue </description>
<quantity> 1 </quantity>
<unit-of-measure> liter </unit-of-measure>
<price> 29.95 </price>

</item>

</itemlist>
<total cost> 429.85 </total cost>
<payment terms> Cash-on-delivery </payment terms>
<shipping mode> 1-second-delivery </shipping mode>

</purchase order>

Figure 8.2 XML representation of a purchase order.

Unlike with a relational schema, new tags can be introduced easily, and with suit-
able names the data are “self-documenting” in that a human can understand or guess
what a particular piece of data means based on the name.

Furthermore, tags can be used to create hierarchical structures, which is not pos-
sible with the relational model. Hierarchical structures are particularly important for
representing business objects that must be exchanged between organizations; examples
include bills, purchase orders, and so forth.

Figure 8.2, which shows how information about a purchase order can be repre-
sented in XML, illustrates a more realistic use of XML. Purchase orders are typically
generated by one organization and sent to another. A purchase order contains a variety
of information; the nested representation allows all information in a purchase order to
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be represented naturally in a single document. (Real purchase orders have consider-
ably more information than that depicted in this simplified example.) XML provides a
standard way of tagging the data; the two organizations must of course agree on what
tags appear in the purchase order and what they mean.

The XQuery language was developed to support querying of XML data. Further
details of XML and XQuery may be found in Chapter 30. Although XQuery implemen-
tations are available from several vendors, unlike SQL, adoption of XQuery has been
relatively limited.

However, the SQL language itself has been extended to support XML in several
ways:

• XML data can be stored as an XML data type.

• SQL queries can generate XML data from relational data. Such extensions are very
useful for packaging related pieces of data into one XML document, which can
then be sent to another application.
The extensions allow the construction of XML representations from individual
rows, as well as the creation of an XML document from a collection of rows by
using an XMLAGG aggregate function.

• SQL queries can extract data from an XML data type value. For example, the XPath
language supports “path expressions” that allow the extraction of desired parts of
data from an XML document.

You can find more details on these extensions in Chapter 30.

8.1.4 RDF and Knowledge Graphs

The Resource Description Framework (RDF) is a data representation standard based on
the entity-relationship model. We provide an overview of RDF in this section.

8.1.4.1 Triple Representation

The RDF model represents data by a set of triples that are in one of these two forms:

1. (ID, attribute-name, value)

2. (ID1, relationship-name, ID2)

where ID, ID1 and ID2 are identifiers of entities; entities are also referred to as resources
in RDF. Note that unlike the E-R model, the RDF model only supports binary relation-
ships, and it does not support more general n-ary relationships; we return to this issue
later.

The first attribute of a triple is called its subject, the second attribute is called
its predicate, and the last attribute is called its object. Thus, a triple has the structure
(subject, predicate, object).
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10101 instance-of instructor .
10101 name "Srinivasan" .
10101 salary "6500" .
00128 instance-of student .
00128 name "Zhang" .
00128 tot cred "102" .
comp sci instance-of department .
comp sci dept name "Comp. Sci." .
biology instance-of department .
CS-101 instance-of course .
CS-101 title "Intro. to Computer Science" .
CS-101 course dept comp sci .
sec1 instance-of section .
sec1 sec course CS-101 .
sec1 sec id "1" .
sec1 semester "Fall" .
sec1 year "2017" .
sec1 classroom packard-101 .
sec1 time slot id "H" .
10101 inst dept comp sci .
00128 stud dept comp sci .
00128 takes sec1 .
10101 teaches sec1 .

Figure 8.3 RDF representation of part of the University database.

Figure 8.3 shows a triple representation of a small part of the University database.
All attribute values are shown in quotes, while identifiers are shown without quotes.
Attribute and relationship names (which form the predicate part of each triple) are
also shown without quotes.

In our example, we use the ID values to identify instructors and students and course
id to identify courses. Each of their attributes is represented as a separate triple. The

type information of objects is provided by the instance-of relationship; for example,
10101 is identified as an instance of instructor, while 00128 is an instance of student. To
follow RDF syntax, the identifier of the Comp. Sci. department is denoted as comp sci.
Only one attribute of the department, dept name, is shown. Since the primary key of
section is composite, we have created new identifiers to identify sections; “sec1” iden-
tifies one such section, shown with its semester, year and sec id attributes, and with a
relationship course to CS-101.

Relationships shown in the figure include the takes and teaches relationships, which
appear in the university schema. The departments of instructors, students and courses
are shown as relationships inst dept, stud dept and course dept respectively, following
the E-R model; similarly, the classroom associated with a section is also shown as a
classroom relationship with a classroom object (packard-101, in our example), and the
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course associated with a section is shown as a relationship sec course between the sec-
tion and the course.

As we saw, entity type information is represented using instance-of relationships
between entities and objects representing types; type-subtype relationships can also be
represented as subtype edges between type objects.

In contrast to the E-R model and relational schemas, RDF allows new attributes to
be easily added to an object and also to create new types of relationships.

8.1.4.2 Graph Representation of RDF

The RDF representation has a very natural graph interpretation. Entities and attribute
values can be considered as nodes, and attribute names and relationships can be con-
sidered as edges between the nodes. The attribute/relationship name can be viewed as
the label of the corresponding edge. Figure 8.4 shows a graph representation of the data
from Figure 8.3. Objects are shown as ovals, attribute values in rectangles, and relation-
ships as edges with associated labels identifying the relationship. We have omitted the
instance-of relationships for brevity.

A representation of information using the RDF graph model (or its variants and
extensions) is referred to as a knowledge graph. Knowledge graphs are used for a variety
of purposes. One such application is to store facts that are harvested from a variety of
data sources, such as Wikipedia, Wikidata, and other sources on the web. An example
of a fact is “Washington, D.C. is the capital of U.S.A.” Such a fact can be represented
as an edge labeled capital-of connecting two nodes, one representing the entity Wash-
ington, D.C., and the other representing the entity U.S.A.

10101

Srinivasan

name salary

teaches course_dept

dept_name

takes

comp_sci

CS-101 sec1

packard-101

6500

Fall 2017

1

00128

  Zhang

name tot_cred

102Comp. Sci.

Intro. to Computer Science

sec_course

title classroom semester year

sec_id

stud_deptinst_dept

Figure 8.4 Graph representation of RDF data.
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Questions about entities can be answered using a knowledge graph that contains
relevant information. For example, the question “Which city is the capital of the
U.S.A.?” can be answered by looking for an edge labeled capital-of, linking an entity
to the country U.S.A. (If type information is available, the query may also verify that
there is an instance-of edge connecting Washington, D.C., to a node representing the
entity type City).

8.1.4.3 SPARQL

SPARQL is a query language designed to query RDF data. The language is based on
triple patterns, which look like RDF triples but may contain variables. For example,
the triple pattern:

?cid title "Intro. to Computer Science"

would match all triples whose predicate is “title” and object is “Intro. to Computer
Science”. Here, ?cid is a variable that can match any value.

Queries can have multiple triple patterns, with variables shared across triples. Con-
sider the following pair of triples:

?cid title "Intro. to Computer Science"
?sid course ?cid

On the university-triple dataset shown in Figure 8.3, the first triple pattern matches the
triple (CS-101, title, "Intro. to Computer Science"), while the second triple pattern
matches (sec1, course, CS-101). The shared variable ?cid enforces a join condition
between the two triple patterns.

We can now show a complete SPARQL query. The following query retrieves names
of all students who have taken a section whose course is titled “Intro. to Computer
Science”.

select ?name
where {

?cid title "Intro. to Computer Science" .
?sid course ?cid .
?id takes ?sid .
?id name ?name .

}

The shared variables between these triples enforce a join condition between the tuples
matching each of these triples.

Note that unlike in SQL, the predicate in a triple pattern can be a variable, which
can match any relationship or attribute name. SPARQL has many more features, such
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as aggregation, optional joins (similar to outerjoins), and subqueries. For more infor-
mation in SPARQL, see the references in Further Reading.

8.1.4.4 Representing N-ary Relationships

Relationships represented as edges can model only binary relationships. Knowledge
graphs have been extended to store more complex relationships. For example, knowl-
edge graphs have been extended with temporal information to record the time period
during which a fact is true; if the capital of the U.S.A. changed from Washington, DC.,
to say, New York, in 2050, this would be represented by two facts, one for the period
ending in 2050 when Washington was the capital, and one for the period after 2050.

As we saw in Section 6.9.4, an n-ary relationship can be represented using binary
relationships by creating an artificial entity corresponding to a tuple in an n-ary re-
lationship and linking that artificial entity to each of the entities participating in the
relationship. In the preceding example, we can create an artificial entity e1 to represent
the fact that Barack Obama was president of the U.S.A. from 2008 to 2016. We link
e1 to the entities representing Obama and U.S.A. by person and country relationship
edges respectively, and to the values 2008 and 2016 by attribute edges president-from
and president-till respectively. If we chose to represent years as entities, the edges cre-
ated to the two years above would represent relationships instead of attributes.

The above idea is similar to the E-R model notion of aggregation which, as we saw
in Section 6.8.5, can treat a relationship as an entity; this idea is called reification in
RDF. Reification is used in many knowledge-graph representations, where the extra
information such as time period of validity are treated as qualifiers of the underlying
edge.

Other models add a fourth attribute, called the context, to triples; thus, instead of
storing triples, they store quads. The basic relationship is still binary, but the fourth
attribute allows a context entity to be associated with a relationship. Information such
as valid time period can be treated as attributes of the context entity.

There are several knowledge bases, such as Wikidata, DBPedia, Freebase, and
Yago, that provide an RDF/knowledge graph representation of a wide variety of knowl-
edge. In addition, there are a very large number of domain-specific knowledge graphs.
The linked open data project is aimed at making a variety of such knowledge graphs
open source and further creating links between these independently created knowledge
graphs. Such links allow queries to make inferences using information from multiple
knowledge graphs along with links to the knowledge graphs. References to more infor-
mation on this topic may be found in the bibliographic notes for this chapter, available
online.

8.2 Object Orientation

The object-relational data model extends the relational data model by providing a richer
type system, including complex data types and object orientation. Relational query
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languages, in particular SQL, have been extended correspondingly to deal with the
richer type system. Such extensions attempt to preserve the relational foundations—
in particular, the declarative access to data—while extending the modeling power.

Many database applications are written using an object-oriented programming
language, such as Java, Python, or C++, but they need to store and fetch data from
databases. Due to the type difference between the native type system of the object-
oriented programming language and the relational model supported by databases, data
need to be translated between the two models whenever they are fetched or stored.
Merely extending the type system supported by the database was not enough to solve
this problem completely. Having to express database access using a language (SQL)
that is different from the programming language again makes the job of the program-
mer harder. It is desirable, for many applications, to have programming language con-
structs or extensions that permit direct access to data in the database, without having
to go through an intermediate language such as SQL.

Three approaches are used in practice for integrating object orientation with
database systems:

1. Build an object-relational database system, which adds object-oriented features to
a relational database system.

2. Automatically convert data from the native object-oriented type system of the
programming language to a relational representation for storage, and vice versa
for retrieval. Data conversion is specified using an object-relational mapping.

3. Build an object-oriented database system, that is, a database system that natively
supports an object-oriented type system and allows direct access to data from
an object-oriented programming language using the native type system of the
language.

We provide a brief introduction to the first two approaches in this section. While the
third approach, the object-oriented database approach, has some benefits over the first
two approaches in terms of language integration, it has not seen much success for
two reasons. First, declarative querying is very important for efficiently accessing data,
and such querying is not supported by imperative programming languages. Second,
direct access to objects via pointers was found to result in increased risk of database
corruption due to pointer errors. We do not describe the object-oriented approach any
further.

8.2.1 Object-Relational Database Systems

In this section, we outline how object-oriented features can be added to relational
database systems.
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8.2.1.1 User-Defined Types

Object extensions to SQL allow creation of structured user-defined types, references to
such types, and tables containing tuples of such types.1

create type Person
(ID varchar(20) primary key,
name varchar(20),
address varchar(20))
ref from(ID);

create table people of Person;

We can create a new person as follows:

insert into people (ID, name, address) values
('12345', 'Srinivasan', '23 Coyote Run');

Many database systems support array and table types; attributes of relations and
of user-defined types can be declared to be of such array or table types. The support
for such features as well as the syntax varies widely by database system. In PostgreSQL,
for example, integer[] denotes an array of integers whose size is not prespecified, while
Oracle supports the syntax varray(10) of integer to specify an array of 10 integers. SQL
Server allows table-valued types to be declared as shown in the following example:

create type interest as table (
topic varchar(20),
degree of interest int

);
create table users (

ID varchar(20),
name varchar(20),
interests interest

);

User-defined types can also have methods associated with them. Only a few
database systems, such as Oracle, support this feature; we omit details.

8.2.1.2 Type Inheritance

Consider the earlier definition of the type Person and the table people. We may want to
store extra information in the database about people who are students and about people

1Structured types are different from the simpler “distinct” data types that we covered in Section 4.5.5.
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who are teachers. Since students and teachers are also people, we can use inheritance
to define the student and teacher types in SQL:

create type Student under Person
(degree varchar(20)) ;

create type Teacher under Person
(salary integer);

Both Student and Teacher inherit the attributes of Person—namely, ID, name, and ad-
dress. Student and Teacher are said to be subtypes of Person, and Person is a supertype
of Student, as well as of Teacher.

Methods of a structured type are inherited by its subtypes, just as attributes are.
However, a subtype can redefine the effect of a method. We omit details.

8.2.1.3 Table Inheritance

Table inheritance allows a table to be declared as a subtable of another table and cor-
responds to the E-R notion of specialization/generalization. Several database systems
support table inheritance, but in different ways.

In PostgreSQL, we could create a table people and then create tables students and
teachers as subtables of people as follows:

create table students
(degree varchar(20))
inherits people;

create table teachers
(salary integer)
inherits people;

As a result, every attribute present in the table people is also present in the subtables
students and teachers.

SQL:1999 supports table inheritance but requires table types to be specified first.
Thus, in Oracle, which supports SQL:1999, we could use:

create table people of Person;
create table students of Student

under people;
create table teachers of Teacher

under people;

where the types Student and Teacher have been declared to be subtypes of Person as
described earlier.
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In either case, we can insert a tuple into the student table as follows:

insert into student values ('00128', 'Zhang', '235 Coyote Run', 'Ph.D.');

where we provide values for the attributes inherited from people as well as the local
attributes of student.

When we declare students and teachers as subtables of people, every tuple present
in students or teachers becomes implicitly present in people. Thus, if a query uses the
table people, it will find not only tuples directly inserted into that table but also tuples
inserted into its subtables, namely, students and teachers. However, only those attributes
that are present in people can be accessed by that query. SQL permits us to find tuples
that are in people but not in its subtables by using “only people” in place of people in a
query.

8.2.1.4 Reference Types in SQL

Some SQL implementations such as Oracle support reference types. For example, we
could define the Person type as follows, with a reference-type declaration:

create type Person
(ID varchar(20) primary key,
name varchar(20),
address varchar(20))
ref from(ID);

create table people of Person;

By default, SQL assigns system-defined identifiers for tuples, but an existing primary-
key value can be used to reference a tuple by including the ref from clause in the type
definition as shown above.

We can define a type Department with a field name and a field head that is a refer-
ence to the type Person. We can then create a table departments of type Department, as
follows:

create type Department (
dept name varchar(20),
head ref(Person) scope people);

create table departments of Department;

Note that the scope clause above completes the definition of the foreign key from de-
partments.head to the people relation.

When inserting a tuple for departments, we can then use:

insert into departments
values ('CS', '12345');



8.2 Object Orientation 381

since the ID attribute is used as a reference to Person. Alternatively, the definition of
Person can specify that the reference must be generated automatically by the system
when a Person object is created. System-generated identifiers can be retrieved using
ref(r) where r is a table name of table alias used in a query. Thus, we could create a
Person tuple, and, using the ID or name of the person, we could retrieve the reference
to the tuple in a subquery, which is used to create the value for the head attribute when
inserting a tuple into the departments table. Since most database systems do not allow
subqueries in an insert into departments values statement, the following two queries can
be used to carry out the task:

insert into departments
values ('CS', null);

update departments
set head = (select ref(p)

from people as p
where ID = '12345')

where dept name = 'CS';

References are dereferenced in SQL:1999 by the −> symbol. Consider the depart-
ments table defined earlier. We can use this query to find the names and addresses of
the heads of all departments:

select head−>name, head−>address
from departments;

An expression such as “head−>name” is called a path expression.
Since head is a reference to a tuple in the people table, the attribute name in the

preceding query is the name attribute of the tuple from the people table. References
can be used to hide join operations; in the preceding example, without the references,
the head field of department would be declared a foreign key of the table people. To
find the name and address of the head of a department, we would require an explicit
join of the relations departments and people. The use of references simplifies the query
considerably.

We can use the operation deref to return the tuple pointed to by a reference and
then access its attributes, as shown below:

select deref(head).name
from departments;

8.2.2 Object-Relational Mapping

Object-relational mapping (ORM) systems allow a programmer to define a mapping
between tuples in database relations and objects in the programming language.
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An object, or a set of objects, can be retrieved based on a selection condition on
its attributes; relevant data are retrieved from the underlying database based on the
selection conditions, and one or more objects are created from the retrieved data, based
on the prespecified mapping between objects and relations.

The program can update retrieved objects, create new objects, or specify that an
object is to be deleted, and then issue a save command; the mapping from objects to
relations is then used to correspondingly update, insert, or delete tuples in the database.

The primary goal of object-relational mapping systems is to ease the job of pro-
grammers who build applications by providing them an object model while retaining
the benefits of using a robust relational database underneath. As an added benefit,
when operating on objects cached in memory, object-relational systems can provide
significant performance gains over direct access to the underlying database.

Object-relational mapping systems also provide query languages that allow pro-
grammers to write queries directly on the object model; such queries are translated
into SQL queries on the underlying relational database, and result objects are created
from the SQL query results.

A fringe benefit of using an ORM is that any of a number of databases can be used
to store data, with exactly the same high-level code. ORMs hide minor SQL differences
between databases from the higher levels. Migration from one database to another is
thus relatively straightforward when using an ORM, whereas SQL differences can make
such migration significantly harder if an application uses SQL to communicate with
the database.

On the negative side, object-relational mapping systems can suffer from significant
performance inefficiencies for bulk database updates, as well as for complex queries
that are written directly in the imperative language. It is possible to update the database
directly, bypassing the object-relational mapping system, and to write complex queries
directly in SQL in cases where such inefficiencies are discovered.

The benefits of object-relational models exceed the drawbacks for many applica-
tions, and object-relational mapping systems have seen widespread adoption in recent
years. In particular, Hibernate has seen wide adoption with Java, while several ORMs
including Django and SQLAlchemy are widely used with Python. More information on
the Hibernate ORM system, which provides an object-relational mapping for Java, and
the Django ORM system, which provides an object-relational mapping for Python, can
be found in Section 9.6.2.

8.3 Textual Data

Textual data consists of unstructured text. The term information retrieval generally
refers to the querying of unstructured textual data. In the traditional model used in
the field of information retrieval, textual information is organized into documents. In a
database, a text-valued attribute can be considered a document. In the context of the
web, each web page can be considered to be a document.
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8.3.1 Keyword Queries

Information retrieval systems support the ability to retrieve documents with some de-
sired information. The desired documents are typically described by a set of keywords
—for example, the keywords “database system” may be used to locate documents on
database systems, and the keywords “stock” and “scandal” may be used to locate arti-
cles about stock-market scandals. Documents have associated with them a set of key-
words; typically, all the words in the documents are considered keywords. A keyword
query retrieves documents whose set of keywords contains all the keywords in the query.

In its simplest form, an information-retrieval system locates and returns all docu-
ments that contain all the keywords in the query. More-sophisticated systems estimate
the relevance of documents to a query so that the documents can be shown in order
of estimated relevance. They use information about keyword occurrences, as well as
hyperlink information, to estimate relevance.

Keyword search was originally targeted at document repositories within organi-
zations or domain-specific document repositories such as research publications. But
information retrieval is also important for documents stored in a database.

Keyword-based information retrieval can be used not only for retrieving textual
data, but also for retrieving other types of data, such as video and audio data, that
have descriptive keywords associated with them. For instance, a video movie may have
associated with it keywords such as its title, director, actors, and genre, while an image
or video clip may have tags, which are keywords describing the image or video clip,
associated with it.

Web search engines are, at core, information retrieval systems. They retrieve and
store web pages by crawling the web. Users submit keyword queries, and the information
retrieval part of the web search engine finds stored web pages containing the required
keyword. Web search engines have today evolved beyond just retrieving web pages.
Today, search engines aim to satisfy a user’s information needs by judging what topic
a query is about and displaying not only web pages judged as relevant but also other
kinds of information about the topic. For example, given a query term “cricket”, a
search engine may display scores from ongoing or recent cricket matches, rather than
just top-ranked documents related to cricket. As another example, in response to a
query “New York”, a search engine may show a map of New York and images of New
York in addition to web pages related to New York.

8.3.2 Relevance Ranking

The set of all documents that contain the keywords in a query may be very large; in
particular, there are billions of documents on the web, and most keyword queries on
a web search engine find hundreds of thousands of documents containing some or
all of the keywords. Not all the documents are equally relevant to a keyword query.
Information-retrieval systems therefore estimate relevance of documents to a query
and return only highly ranked documents as answers. Relevance ranking is not an exact
science, but there are some well-accepted approaches.
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8.3.2.1 Ranking Using TF-IDF

The word term refers to a keyword occurring in a document, or given as part of a query.
The first question to address is, given a particular term t, how relevant is a particular
document d to the term. One approach is to use the number of occurrences of the term
in the document as a measure of its relevance, on the assumption that more relevant
terms are likely to be mentioned many times in a document. Just counting the number
of occurrences of a term is usually not a good indicator: first, the number of occur-
rences depends on the length of the document, and second, a document containing 10
occurrences of a term may not be 10 times as relevant as a document containing one
occurrence.

One way of measuring TF(d, t), the relevance of a term t to a document d, is:

TF(d, t) = log
(

1 + n(d, t)
n(d)

)

where n(d) denotes the number of term occurrences in the document and n(d, t) de-
notes the number of occurrences of term t in the document d. Observe that this metric
takes the length of the document into account. The relevance grows with more occur-
rences of a term in the document, although it is not directly proportional to the number
of occurrences.

Many systems refine the above metric by using other information. For instance,
if the term occurs in the title, or the author list, or the abstract, the document would
be considered more relevant to the term. Similarly, if the first occurrence of a term is
late in the document, the document may be considered less relevant than if the first
occurrence is early in the document. The above notions can be formalized by extensions
of the formula we have shown for TF(d, t). In the information retrieval community, the
relevance of a document to a term is referred to as term frequency (TF), regardless of
the exact formula used.

A query Q may contain multiple keywords. The relevance of a document to a query
with two or more keywords is estimated by combining the relevance measures of the
document for each keyword. A simple way of combining the measures is to add them up.
However, not all terms used as keywords are equal. Suppose a query uses two terms, one
of which occurs frequently, such as “database”, and another that is less frequent, such
as “Silberschatz”. A document containing “Silberschatz” but not “database” should be
ranked higher than a document containing the term “database” but not “Silberschatz”.

To fix this problem, weights are assigned to terms using the inverse document fre-
quency (IDF), defined as:

IDF(t) = 1
n(t)

where n(t) denotes the number of documents (among those indexed by the system) that
contain the term t. The relevance of a document d to a set of terms Q is then defined
as:
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r(d, Q) =
∑

t∈Q

TF(d, t) ∗ IDF(t)

This measure can be further refined if the user is permitted to specify weights w(t) for
terms in the query, in which case the user-specified weights are also taken into account
by multiplying TF(t) by w(t) in the preceding formula.

The above approach of using term frequency and inverse document frequency as
a measure of the relevance of a document is called the TF–IDF approach.

Almost all text documents (in English) contain words such as “and,” “or,” “a,” and
so on, and hence these words are useless for querying purposes since their inverse doc-
ument frequency is extremely low. Information-retrieval systems define a set of words,
called stop words, containing 100 or so of the most common words, and ignore these
words when indexing a document. Such words are not used as keywords, and they are
discarded if present in the keywords supplied by the user.

Another factor taken into account when a query contains multiple terms is the
proximity of the terms in the document. If the terms occur close to each other in the
document, the document will be ranked higher than if they occur far apart. The formula
for r(d, Q) can be modified to take proximity of the terms into account.

Given a query Q, the job of an information-retrieval system is to return documents
in descending order of their relevance to Q. Since there may be a very large number
of documents that are relevant, information-retrieval systems typically return only the
first few documents with the highest degree of estimated relevance and permit users to
interactively request further documents.

8.3.2.2 Ranking Using Hyperlinks

Hyperlinks between documents can be used to decide on the overall importance of
a document, independent of the keyword query; for example, documents linked from
many other documents are considered more important.

The web search engine Google introduced PageRank, which is a measure of pop-
ularity of a page based on the popularity of pages that link to the page. Using the
PageRank popularity measure to rank answers to a query gave results so much better
than previously used ranking techniques that Google became the most widely used
search engine in a rather short period of time.

Note that pages that are pointed to from many web pages are more likely to be
visited, and thus should have a higher PageRank. Similarly, pages pointed to by web
pages with a high PageRank will also have a higher probability of being visited, and
thus should have a higher PageRank.

The PageRank of a document d is thus defined (circularly) based on the PageRank
of other documents that link to document d. PageRank can be defined by a set of
linear equations, as follows: First, web pages are given integer identifiers. The jump
probability matrix T is defined with T [i, j] set to the probability that a random walker
who is following a link out of page i follows the link to page j. Assuming that each link
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from i has an equal probability of being followed T [i, j] = 1∕Ni, where Ni is the number
of links out of page i. Then the PageRank P[j] for each page j can be defined as:

P[j] = δ∕N + (1 − δ) ∗
N∑

i=1

(T [i, j] ∗ P[i])

where δ is a constant between 0 and 1, usually set to 0.15, and N is the number of pages.
The set of equations generated as above are usually solved by an iterative technique,

starting with each P[i] set to 1∕N . Each step of the iteration computes new values
for each P[i] using the P values from the previous iteration. Iteration stops when the
maximum change in any P[i] value in an iteration goes below some cutoff value.

Note that PageRank is a static measure, independent of the keyword query; given
a keyword query, it is used in combination with TF–IDF scores of a document to judge
its relevance of the document to the keyword query.

PageRank is not the only measure of the popularity of a site. Information about how
often a site is visited is another useful measure of popularity. Further, search engines
track what fraction of times users click on a page when it is returned as an answer.
Keywords that occur in the anchor text associated with the hyperlink to a page are
viewed as very important and are given a higher term frequency. These and a number
of other factors are used to rank answers to a keyword query.

8.3.3 Measuring Retrieval Effectiveness

Ranking of results of a keyword query is not an exact science. Two metrics are used to
measure how well an information-retrieval system is able to answer queries. The first,
precision, measures what percentage of the retrieved documents are actually relevant
to the query. The second, recall, measures what percentage of the documents relevant
to the query were retrieved. Since search engines find a very large number of answers,
and users typically stop after browsing some number (say, 10 or 20) of the answers,
the precision and recall numbers are usually measured “@K”, where K is the number
of answers viewed. Thus, one can talk of precision@10 or recall@20.

8.3.4 Keyword Querying on Structured Data and Knowledge Graphs

Although querying on structured data are typically done using query languages such
as SQL, users who are not familiar with the schema or the query language find it diffi-
cult to get information from such data. Based on the success of keyword querying in
the context of information retrieval from the web, techniques have been developed to
support keyword queries on structured and semi-structured data.

One approach is to represent the data using graphs, and then perform keyword
queries on the graphs. For example, tuples can be treated as nodes in the graph, and
foreign key and other connections between tuples can be treated as edges in the graph.
Keyword search is then modeled as finding tuples containing the given keywords and
finding connecting paths between them in the corresponding graph.
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For example, a query “Zhang Katz” on a university database may find the name
“Zhang” occurring in a student tuple, and the name “Katz” in an instructor tuple, a path
through the advisor relation connecting the two tuples. Other paths, such as student
“Zhang” taking a course taught by “Katz” may also be found in response to this query.
Such queries may be used for ad hoc browsing and querying of data when the user does
not know the exact schema and does not wish to take the effort to write an SQL query
defining what she is searching for. Indeed it is unreasonable to expect lay users to write
queries in a structured query language, whereas keyword querying is quite natural.

Since queries are not fully defined, they may have many different types of answers,
which must be ranked. A number of techniques have been proposed to rank answers in
such a setting, based on the lengths of connecting paths and on techniques for assigning
directions and weights to edges. Techniques have also been proposed for assigning
popularity ranks to tuples based on foreign key links. More information on keyword
searching of structured data may be found in the bibliographic notes for this chapter,
available online.

Further, knowledge graphs can be used along with textual information to answer
queries. For example, knowledge graphs can be used to provide unique identifiers to
entities, which are used to annotate mentions of the entities in textual documents. Now
a particular mention of a person in a document may have the phrase “Stonebraker de-
veloped PostgreSQL”; from the context, the word Stonebraker may be inferred to be the
database researcher “Michael Stonebraker” and annotated by linking the word Stone-
braker to the entity “Michael Stonebraker”. The knowledge graph may also record the
fact that Stonebraker won the Turing award. A query asking for “turing award post-
gresql” can now be answered by using information from the document and the knowl-
edge graph.2

Web search engines today use large knowledge graphs, in addition to crawled doc-
uments, to answer user queries.

8.4 Spatial Data

Spatial data support in database systems is important for efficiently storing, indexing,
and querying of data on the basis of spatial locations.

Two types of spatial data are particularly important:

• Geographic data such as road maps, land-usage maps, topographic elevation maps,
political maps showing boundaries, land-ownership maps, and so on. Geographic
information systems are special-purpose database systems tailored for storing geo-
graphic data. Geographic data is based on a round-earth coordinate system, with
latitude, longitude, and elevation.

2In this case the knowledge graph may already record that Stonebraker developed PostgreSQL, but there are many
other pieces of information that may exist only in documents, and not in the knowledge graphs.
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• Geometric data, which include spatial information about how objects—such as
buildings, cars, or aircraft—are constructed. Geometric data is based on a two-
dimensional or three-dimensional Euclidean space, with X , Y , and Z coordinates.

Geographic and geometric data types are supported by many database systems, such
as Oracle Spatial and Graph, the PostGIS extension of PostgreSQL, SQL Server, and
the IBM DB2 Spatial Extender.

In this section we describe the modeling and querying of spatial data; implemen-
tation techniques such as indexing and query processing techniques are covered in
Chapter 14 and in Chapter 15.

The syntax for representing geographic and geometric data varies by database, al-
though representations based on the Open Geospatial Consortium (OGC) standard are
now increasingly supported. See the manuals of the database you use to learn more
about the specific syntax supported by the database.

8.4.1 Representation of Geometric Information

Figure 8.5 illustrates how various geometric constructs can be represented in a data-
base, in a normalized fashion. We stress here that geometric information can be repre-
sented in several different ways, only some of which we describe.

A line segment can be represented by the coordinates of its endpoints. For example,
in a map database, the two coordinates of a point would be its latitude and longitude.
A polyline (also called a linestring) consists of a connected sequence of line segments
and can be represented by a list containing the coordinates of the endpoints of the seg-
ments, in sequence. We can approximately represent an arbitrary curve with polylines
by partitioning the curve into a sequence of segments. This representation is useful for
two-dimensional features such as roads; here, the width of the road is small enough
relative to the size of the full map that it can be considered to be a line. Some systems
also support circular arcs as primitives, allowing curves to be represented as sequences
of arcs.

We can represent a polygon by listing its vertices in order, as in Figure 8.5.3 The
list of vertices specifies the boundary of a polygonal region. In an alternative represen-
tation, a polygon can be divided into a set of triangles, as shown in Figure 8.5. This
process is called triangulation, and any polygon can be triangulated. The complex poly-
gon can be given an identifier, and each of the triangles into which it is divided carries
the identifier of the polygon. Circles and ellipses can be represented by corresponding
types or approximated by polygons.

List-based representations of polylines or polygons are often convenient for query
processing. Such non-first-normal-form representations are used when supported by
the underlying database. So that we can use fixed-size tuples (in first normal form)
for representing polylines, we can give the polyline or curve an identifier, and we can

3Some references use the term closed polygon to refer to what we call polygons and refer to polylines as open polygons.
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Figure 8.5 Representation of geometric constructs.

represent each segment as a separate tuple that also carries with it the identifier of the
polyline or curve. Similarly, the triangulated representation of polygons allows a first
normal form relational representation of polygons.

The representation of points and line segments in three-dimensional space is sim-
ilar to their representation in two-dimensional space, the only difference being that
points have an extra z component. Similarly, the representation of planar figures—such
as triangles, rectangles, and other polygons—does not change much when we move to
three dimensions. Tetrahedrons and cuboids can be represented in the same way as
triangles and rectangles. We can represent arbitrary polyhedra by dividing them into
tetrahedrons, just as we triangulate polygons. We can also represent them by listing
their faces, each of which is itself a polygon, along with an indication of which side of
the face is inside the polyhedron.
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For example, SQL Server and PostGIS support the geometry and geography types,
each of which has subtypes such as point, linestring, curve, polygon, as well as col-
lections of these types called multipoint, multilinestring, multicurve and multipoly-
gon. Textual representations of these types are defined by the OGC standards, and
can be converted to internal representations using conversion functions. For example,
LINESTRING(1 1, 2 3, 4 4) defines a line that connects points (1, 1), (2, 3) and (4,
4), while POLYGON((1 1, 2 3, 4 4, 1 1)) defines a triangle defined by these points.
Functions ST GeometryFromText() and ST GeographyFromText() convert the textual
representations to geometry and geography objects respectively. Operations on geom-
etry and geography types that return objects of the same type include the ST Union()
and ST Intersection() functions which compute the union and intersection of geomet-
ric objects such as linestrings and polygons. The function names as well as syntax differ
by system; see the system manuals for details.

In the context of map data, the various line segments representing the roads are
actually interconnected to form a graph. Such a spatial network or spatial graph has spa-
tial locations for vertices of the graph, along with interconnection information between
the vertices, which form the edges of the graph. The edges have a variety of associated
information, such as distance, number of lanes, average speed at different times of the
day, and so on.

8.4.2 Design Databases

Computer-aided-design (CAD) systems traditionally stored data in memory during edit-
ing or other processing and wrote the data back to a file at the end of a session of editing.
The drawbacks of such a scheme include the cost (programming complexity, as well as
time cost) of transforming data from one form to another and the need to read in an
entire file even if only parts of it are required. For large designs, such as the design of
a large-scale integrated circuit or the design of an entire airplane, it may be impossible
to hold the complete design in memory. Designers of object-oriented databases were
motivated in large part by the database requirements of CAD systems. Object-oriented
databases represent components of the design as objects, and the connections between
the objects indicate how the design is structured.

The objects stored in a design database are generally geometric objects. Simple
two-dimensional geometric objects include points, lines, triangles, rectangles, and, in
general, polygons. Complex two-dimensional objects can be formed from simple ob-
jects by means of union, intersection, and difference operations. Similarly, complex
three-dimensional objects may be formed from simpler objects such as spheres, cylin-
ders, and cuboids by union, intersection, and difference operations, as in Figure 8.6.
Three-dimensional surfaces may also be represented by wireframe models, which essen-
tially model the surface as a set of simpler objects, such as line segments, triangles, and
rectangles.

Design databases also store nonspatial information about objects, such as the ma-
terial from which the objects are constructed. We can usually model such information
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(a) Difference of cylinders (b) Union of cylinders

Figure 8.6 Complex three-dimensional objects.

by standard data-modeling techniques. We concern ourselves here with only the spatial
aspects.

Various spatial operations must be performed on a design. For instance, the de-
signer may want to retrieve that part of the design that corresponds to a particular
region of interest. Spatial-index structures, discussed in Section 14.10.1, are useful for
such tasks. Spatial-index structures are multidimensional, dealing with two- and three-
dimensional data, rather than dealing with just the simple one-dimensional ordering
provided by the B+-trees.

Spatial-integrity constraints, such as “two pipes should not be in the same loca-
tion,” are important in design databases to prevent interference errors. Such errors
often occur if the design is performed manually and are detected only when a proto-
type is being constructed. As a result, these errors can be expensive to fix. Database
support for spatial-integrity constraints helps people to avoid design errors, thereby
keeping the design consistent. Implementing such integrity checks again depends on
the availability of efficient multidimensional index structures.

8.4.3 Geographic Data

Geographic data are spatial in nature but differ from design data in certain ways. Maps
and satellite images are typical examples of geographic data. Maps may provide not
only location information—about boundaries, rivers, and roads, for example—but also
much more detailed information associated with locations, such as elevation, soil type,
land usage, and annual rainfall.

8.4.3.1 Applications of Geographic Data

Geographic databases have a variety of uses, including online map and navigation ser-
vices, which are ubiquitous today. Other applications include distribution-network in-
formation for public-service utilities such as telephone, electric-power, and water-supply
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systems, and land-usage information for ecologists and planners, land records to track
land ownership, and many more.

Geographic databases for public-utility information have become very important as
the network of buried cables and pipes has grown. Without detailed maps, work carried
out by one utility may damage the structure of another utility, resulting in large-scale
disruption of service. Geographic databases, coupled with accurate location-finding
systems using GPS help avoid such problems.

8.4.3.2 Representation of Geographic Data

Geographic data can be categorized into two types:

• Raster data. Such data consist of bitmaps or pixel maps, in two or more dimen-
sions. A typical example of a two-dimensional raster image is a satellite image of
an area. In addition to the actual image, the data include the location of the image,
specified, for example, by the latitude and longitude of its corners, and the reso-
lution, specified either by the total number of pixels, or, more commonly in the
context of geographic data, by the area covered by each pixel.

Raster data are often represented as tiles, each covering a fixed-size area. A
larger area can be displayed by displaying all the tiles that overlap with the area.
To allow the display of data at different zoom levels, a separate set of tiles is created
for each zoom level. Once the zoom level is set by the user interface (e.g., a web
browser), tiles at the specified zoom level that overlap the area being displayed are
retrieved and displayed.

Raster data can be three-dimensional—for example, the temperature at differ-
ent altitudes at different regions, again measured with the help of a satellite. Time
could form another dimension—for example, the surface temperature measure-
ments at different points in time.

• Vector data. Vector data are constructed from basic geometric objects, such as
points, line segments, polylines, triangles, and other polygons in two dimensions,
and cylinders, spheres, cuboids, and other polyhedrons in three dimensions. In
the context of geographic data, points are usually represented by latitude and lon-
gitude, and where the height is relevant, additionally by elevation.

Map data are often represented in vector format. Roads are often represented as
polylines. Geographic features, such as large lakes, or even political features such
as states and countries, are represented as complex polygons. Some features, such
as rivers, may be represented either as complex curves or as complex polygons,
depending on whether their width is relevant.
Geographic information related to regions, such as annual rainfall, can be repre-

sented as an array—that is, in raster form. For space efficiency, the array can be stored
in a compressed form. In Section 24.4.1, we study an alternative representation of such
arrays by a data structure called a quadtree.
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As another alternative, we can represent region information in vector form, using
polygons, where each polygon is a region within which the array value is the same. The
vector representation is more compact than the raster representation in some applica-
tions. It is also more accurate for some tasks, such as depicting roads, where dividing
the region into pixels (which may be fairly large) leads to a loss of precision in location
information. However, the vector representation is unsuitable for applications where
the data are intrinsically raster based, such as satellite images.

Topographical information, that is information about the elevation (height) of each
point on a surface, can be represented in raster form. Alternatively, it can be represented
in vector form by dividing the surface into polygons covering regions of (approximately)
equal elevation, with a single elevation value associated with each polygon. As another
alternative, the surface can be triangulated (i.e., divided into triangles), with each tri-
angle represented by the latitude, longitude, and elevation of each of its corners. The
latter representation, called the triangulated irregular network (TIN) representation, is
a compact representation which is particularly useful for generating three-dimensional
views of an area.

Geographic information systems usually contain both raster and vector data, and
they can merge the two kinds of data when displaying results to users. For example,
map applications usually contain both satellite images and vector data about roads,
buildings, and other landmarks. A map display usually overlays different kinds of infor-
mation; for example, road information can be overlaid on a background satellite image
to create a hybrid display. In fact, a map typically consists of multiple layers, which are
displayed in bottom-to-top order; data from higher layers appear on top of data from
lower layers.

It is also interesting to note that even information that is actually stored in vector
form may be converted to raster form before it is sent to a user interface such as a web
browser. One reason is that even web browsers in which JavaScript has been disabled
can then display map data; a second reason may be to prevent end users from extracting
and using the vector data.

Map services such as Google Maps and Bing Maps provide APIs that allow users to
create specialized map displays, containing application-specific data overlaid on top of
standard map data. For example, a web site may show a map of an area with information
about restaurants overlaid on the map. The overlays can be constructed dynamically,
displaying only restaurants with a specific cuisine, for example, or allowing users to
change the zoom level or pan the display.

8.4.4 Spatial Queries

There are a number of types of queries that involve spatial locations.

• Region queries deal with spatial regions. Such a query can ask for objects that lie
partially or fully inside a specified region. A query to find all retail shops within the
geographic boundaries of a given town is an example. PostGIS supports predicates
between two geometry or geography objects such as ST Contains(), ST Overlaps(),
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ST Disjoint() and ST Touches(). These can be used to find objects that are con-
tained in, or intersect, or are disjoint from a region. SQL Server supports equivalent
functions with slightly different names.
Suppose we have a shop relation, with an attribute location of type point, and a
geography object of type polygon. Then the ST Contains() function can be used to
retrieve all shops whose location is contained in the given polygon.

• Nearness queries request objects that lie near a specified location. A query to find
all restaurants that lie within a given distance of a given point is an example of a
nearness query. The nearest-neighbor query requests the object that is nearest to
a specified point. For example, we may want to find the nearest gasoline station.
Note that this query does not have to specify a limit on the distance, and hence
we can ask it even if we have no idea how far the nearest gasoline station lies.
The PostGIS ST Distance() function gives the minimum distance between two such
objects, and can be used to find objects that are within a specified distance from a
point or region. Nearest neighbors can be found by finding objects with minimum
distance.

• Spatial graph queries request information based on spatial graphs such as road
maps. For example, a query may ask for the shortest path between two locations
via the road network, or via a train network, each of which can be represented as
a spatial graph. Such queries are ubiquitous for navigation systems.

Queries that compute intersections of regions can be thought of as computing the
spatial join of two spatial relations—for example, one representing rainfall and the other
representing population density—with the location playing the role of join attribute. In
general, given two relations, each containing spatial objects, the spatial join of the two
relations generates either pairs of objects that intersect or the intersection regions of
such pairs. Spatial predicates such as ST Contains() or ST Overlaps() can be used as
join predicates when performing spatial joins.

In general, queries on spatial data may have a combination of spatial and nonspa-
tial requirements. For instance, we may want to find the nearest restaurant that has
vegetarian selections and that charges less than $10 for a meal.

8.5 Summary

• There are many application domains that need to store more complex data than
simple tables with a fixed number of attributes.

• The SQL standard includes extensions of the SQL data-definition and query lan-
guage to deal with new data types and with object orientation. These include sup-
port for collection-valued attributes, inheritance, and tuple references. Such exten-
sions attempt to preserve the relational foundations—in particular, the declarative
access to data—while extending the modeling power.
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• Semi-structured data are characterized by complex data, whose schema changes
often.

• A popular architecture for building information systems today is to create a web
service that allows retrieval of data and to build application code that displays the
data and allows user interaction.

• The relational data model has been extended in several ways to support the storage
and data exchange needs of modern applications.

° Some database systems allow each tuple to potentially have a different set of
attributes.

° Many data representations allow attributes to non-atomic values.

° Many data representations allow attributes to be structured, directly modeling
composite attributes in the E-R model.

• The JavaScript Object Notation (JSON) is a textual representation of complex data
types which is widely used for transmitting data between applications and for stor-
ing complex data.

• XML representations provide flexibility in the set of attributes that a record con-
tains as well as the types of these attributes.

• The Resource Description Framework (RDF) is a data representation standard
based on the entity-relationship model. The RDF representation has a very nat-
ural graph interpretation. Entities and attribute values can be considered nodes,
and attribute names and relationships can be considered edges between the nodes.

• SPARQL is a query language designed to query RDF data and is based on triple
patterns.

• Object orientation provides inheritance with subtypes and subtables as well as
object (tuple) references.

• The object-relational data model extends the relational data model by providing a
richer type system, including collection types and object orientation.

• Object-relational database systems (i.e., database systems based on the object-
relational model) provide a convenient migration path for users of relational
databases who wish to use object-oriented features.

• Object-relational mapping systems provide an object view of data that are stored
in a relational database. Objects are transient, and there is no notion of persistent
object identity. Objects are created on demand from relational data, and updates to
objects are implemented by updating the relational data. Object-relational mapping
systems have been widely adopted, unlike the more limited adoption of persistent
programming languages.
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• Information-retrieval systems are used to store and query textual data such as doc-
uments. They use a simpler data model than do database systems but provide more
powerful querying capabilities within the restricted model.

• Queries attempt to locate documents that are of interest by specifying, for example,
sets of keywords. The query that a user has in mind usually cannot be stated pre-
cisely; hence, information-retrieval systems order answers on the basis of potential
relevance.

• Relevance ranking makes use of several types of information, such as:

° Term frequency: how important each term is to each document.

° Inverse document frequency.

° Popularity ranking.

• Spatial data management is important for many applications. Geometric and geo-
graphic data types are supported by many database systems, with subtypes includ-
ing points, linestrings and polygons. Region queries, nearest neighbor queries, and
spatial graph queries are among the commonly used types of spatial queries.

Review Terms

• Wide column

• Sparse column

• Key-value map

• Map

• Array database

• Tags

• Triples

• Resources

• Subject

• Predicate

• Object

• Knowledge graph

• Reification

• Quads

• Linked open data

• Object-relational data model

• Object-relational database system

• Object-relational mapping

• Object-oriented database system

• Path expression

• Keywords

• Keyword query

• Term

• Relevance

• TF–IDF

• Stop words

• Proximity

• PageRank

• Precision

• Recall

• Geographic data

• Geometric data

• Geographic information system

• Computer-aided-design (CAD)

• Polyline

• Linestring
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• Triangulation

• Spatial network

• Spatial graph

• Raster data

• Tiles

• Vector data

• Topographical information

• Triangulated irregular network (TIN)

• Overlays

• Nearness queries

• Nearest-neighbor query

• Region queries

• Spatial graph queries

• Spatial join

Practice Exercises

8.1 Provide information about the student named Shankar in our sample univer-
sity database, including information from the student tuple corresponding to
Shankar, the takes tuples corresponding to Shankar and the course tuples cor-
responding to these takes tuples, in each of the following representations:

a. Using JSON, with an appropriate nested representation.

b. Using XML, with the same nested representation.

c. Using RDF triples.

d. As an RDF graph.

8.2 Consider the RDF representation of information from the university schema as
shown in Figure 8.3. Write the following queries in SPARQL.

a. Find the titles of all courses taken by any student named Zhang.

b. Find titles of all courses such that a student named Zhang takes a section
of the course that is taught by an instructor named Srinivasan.

c. Find the attribute names and values of all attributes of the instruc-
tor named Srinivasan, without enumerating the attribute names in your
query.

8.3 A car-rental company maintains a database for all vehicles in its current fleet.
For all vehicles, it includes the vehicle identification number, license number,
manufacturer, model, date of purchase, and color. Special data are included for
certain types of vehicles:

• Trucks: cargo capacity.

• Sports cars: horsepower, renter age requirement.

• Vans: number of passengers.

• Off-road vehicles: ground clearance, drivetrain (four- or two-wheel drive).
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instructor

ID
name

first_name
middle_inital
last_name

address
street

street_number
street_name
apt_number

city
state
zip

{phone_number}
date_of_birth
age ( )

Figure 8.7 E-R diagram with composite, multivalued, and derived attributes.

Construct an SQL schema definition for this database. Use inheritance where
appropriate.

8.4 Consider a database schema with a relation Emp whose attributes are as shown
below, with types specified for multivalued attributes.

Emp = (ename, ChildrenSet multiset(Children), SkillSet multiset(Skills))
Children = (name, birthday)
Skills = (type, ExamSet setof(Exams))
Exams = (year, city)

Define the above schema in SQL, using the SQL Server table type syntax from
Section 8.2.1.1 to declare multiset attributes.

8.5 Consider the E-R diagram in Figure 8.7 showing entity set instructor.
Give an SQL schema definition corresponding to the E-R diagram, treating
phone number as an array of 10 elements, using Oracle or PostgreSQL syntax.

8.6 Consider the relational schema shown in Figure 8.8.

a. Give a schema definition in SQL corresponding to the relational schema
but using references to express foreign-key relationships.

b. Write each of the following queries on the schema, using SQL.
i. Find the company with the most employees.
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employee (person name, street, city)
works (person name, company name, salary)
company (company name, city)
manages (person name, manager name)

Figure 8.8 Relational database for Exercise 8.6.

ii. Find the company with the smallest payroll.

iii. Find those companies whose employees earn a higher salary, on aver-
age, than the average salary at First Bank Corporation.

8.7 Compute the relevance (using appropriate definitions of term frequency and
inverse document frequency) of each of the Practice Exercises in this chapter
to the query “SQL relation”.

8.8 Show how to represent the matrices used for computing PageRank as relations.
Then write an SQL query that implements one iterative step of the iterative
technique for finding PageRank; the entire algorithm can then be implemented
as a loop containing the query.

8.9 Suppose the student relation has an attribute named location of type point, and
the classroom relation has an attribute location of type polygon. Write the fol-
lowing queries in SQL using the PostGIS spatial functions and predicates that
we saw earlier:

a. Find the names of all students whose location is within the classroom
Packard 101.

b. Find all classrooms that are within 100 meters or Packard 101; assume all
distances are represented in units of meters.

c. Find the ID and name of student who is geographically nearest to the
student with ID 12345.

d. Find the ID and names of all pairs of students whose locations are less
than 200 meters apart.

Exercises

8.10 Redesign the database of Exercise 8.4 into first normal form and fourth normal
form. List any functional or multivalued dependencies that you assume. Also
list all referential-integrity constraints that should be present in the first and
fourth normal form schemas.
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ID
name
address

rank hours_ per_week

salary tot_credits

person

student

instructor secretary

employee

Figure 8.9 Specialization and generalization.

8.11 Consider the schemas for the table people, and the tables students and teachers,
which were created under people, in Section 8.2.1.3. Give a relational schema in
third normal form that represents the same information. Recall the constraints
on subtables, and give all constraints that must be imposed on the relational
schema so that every database instance of the relational schema can also be
represented by an instance of the schema with inheritance.

8.12 Consider the E-R diagram in Figure 8.9, which contains specializations, using
subtypes and subtables.

a. Give an SQL schema definition of the E-R diagram.

b. Give an SQL query to find the names of all people who are not secretaries.

c. Give an SQL query to print the names of people who are neither employ-
ees nor students.

d. Can you create a person who is an employee and a student with the
schema you created? Explain how, or explain why it is not possible.

8.13 Suppose you wish to perform keyword querying on a set of tuples in a database,
where each tuple has only a few attributes, each containing only a few words.
Does the concept of term frequency make sense in this context? And that of
inverse document frequency? Explain your answer. Also suggest how you can
define the similarity of two tuples using TF–IDF concepts.

8.14 Web sites that want to get some publicity can join a web ring, where they create
links to other sites in the ring in exchange for other sites in the ring creating links
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to their site. What is the effect of such rings on popularity ranking techniques
such as PageRank?

8.15 The Google search engine provides a feature whereby web sites can display ad-
vertisements supplied by Google. The advertisements supplied are based on the
contents of the page. Suggest how Google might choose which advertisements
to supply for a page, given the page contents.

Further Reading

A tutorial on JSON can be found at www.w3schools.com/js/js json intro.asp. More
information about XML can be found in Chapter 30, available online. More informa-
tion about RDF can be found at www.w3.org/RDF/. Apache Jena provides an RDF
implementation, with support for SPARQL; a tutorial on SPARQL can be found at
jena.apache.org/tutorials/sparql.html

POSTGRES ([Stonebraker and Rowe (1986)] and [Stonebraker (1986)]) was an
early implementation of an object-relational system. Oracle provides a fairly complete
implementation of the object-relational features of SQL, while PostgreSQL provides a
smaller subset of those features. More information on support for these features may
be found in their respective manuals.

[Salton (1989)] is an early textbook on information-retrieval systems, while [Man-
ning et al. (2008)] is a modern textbook on the subject. Information about spatial
database support in Oracle, PostgreSQL and SQL Server may be found in their respec-
tive manuals online.
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CHAP T E R 9
Application Development

Practically all use of databases occurs from within application programs. Correspond-
ingly, almost all user interaction with databases is indirect, via application programs.
In this chapter, we study tools and technologies that are used to build applications,
focusing on interactive applications that use databases to store and retrieve data.

A key requirement for any user-centric application is a good user interface. The
two most common types of user interfaces today for database-backed applications are
the web and mobile app interfaces.

In the initial part of this chapter, we provide an introduction to application pro-
grams and user interfaces (Section 9.1), and to web technologies (Section 9.2). We then
discuss development of web applications using the widely used Java Servlets technology
at the back end (Section 9.3), and using other frameworks (Section 9.4). Client-side
code implemented using JavaScript or mobile app technologies is crucial for building
responsive user interfaces, and we discuss some of these technologies (Section 9.5). We
then provide an overview of web application architectures (Section 9.6) and cover per-
formance issues in building large web applications (Section 9.7). Finally, we discuss
issues in application security that are key to making applications resilient to attacks
(Section 9.8), and encryption and its use in applications (Section 9.9).

9.1 Application Programs and User Interfaces

Although many people interact with databases, very few people use a query language
to interact with a database system directly. The most common way in which users
interact with databases is through an application program that provides a user interface
at the front end and interfaces with a database at the back end. Such applications take
input from users, typically through a forms-based interface, and either enter data into
a database or extract information from a database based on the user input, and they
then generate output, which is displayed to the user.

As an example of an application, consider a university registration system. Like
other such applications, the registration system first requires you to identify and authen-
ticate yourself, typically by a user name and password. The application then uses your
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identity to extract information, such as your name and the courses for which you have
registered, from the database and displays the information. The application provides a
number of interfaces that let you register for courses and query other information, such
as course and instructor information. Organizations use such applications to automate
a variety of tasks, such as sales, purchases, accounting and payroll, human-resources
management, and inventory management, among many others.

Application programs may be used even when it is not apparent that they are being
used. For example, a news site may provide a page that is transparently customized to
individual users, even if the user does not explicitly fill any forms when interacting with
the site. To do so, it actually runs an application program that generates a customized
page for each user; customization can, for example, be based on the history of articles
browsed by the user.

A typical application program includes a front-end component, which deals with
the user interface, a backend component, which communicates with a database, and
a middle layer, which contains “business logic,” that is, code that executes specific
requests for information or updates, enforcing rules of business such as what actions
should be carried out to execute a given task or who can carry out what task.

Applications such as airline reservations have been around since the 1960s. In
the early days of computer applications, applications ran on large “mainframe” com-
puters, and users interacted with the application through terminals, some of which
even supported forms. The growth of personal computers resulted in the development
of database applications with graphical user interfaces, or GUIs. These interfaces de-
pended on code running on a personal computer that directly communicated with
a shared database. Such an architecture was called a client–server architecture. There
were two drawbacks to using such applications: first, user machines had direct access
to databases, leading to security risks. Second, any change to the application or the
database required all the copies of the application, located on individual computers, to
be updated together.

Two approaches have evolved to avoid the above problems:

• Web browsers provide a universal front end, used by all kinds of information
services. Browsers use a standardized syntax, the HyperText Markup Language
(HTML) standard, which supports both formatted display of information and cre-
ation of forms-based interfaces. The HTML standard is independent of the operat-
ing system or browser, and pretty much every computer today has a web browser
installed. Thus a web-based application can be accessed from any computer that
is connected to the internet.

Unlike client–server architectures, there is no need to install any application-
specific software on client machines in order to use web-based applications.

However, sophisticated user interfaces, supporting features well beyond what
is possible using plain HTML, are now widely used, and are built with the scripting
language JavaScript, which is supported by most web browsers. JavaScript pro-
grams, unlike programs written in C, can be run in a safe mode, guaranteeing
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they cannot cause security problems. JavaScript programs are downloaded trans-
parently to the browser and do not need any explicit software installation on the
user’s computer.

While the web browser provides the front end for user interaction, application
programs constitute the back end. Typically, requests from a browser are sent to a
web server, which in turn executes an application program to process the request.
A variety of technologies are available for creating application programs that run
at the back end, including Java servlets, Java Server Pages (JSP), Active Server
Page (ASP), or scripting languages such as PHP and Python.

• Application programs are installed on individual devices, which are primarily mo-
bile devices. They communicate with backend applications through an API and do
not have direct access to the database. The back end application provides services,
including user authentication, and ensures that users can only access services that
they are authorized to access.

This approach is widely used in mobile applications. One of the motivations
for building such applications was to customize the display for the small screen of
mobile devices. A second was to allow application code, which can be relatively
large, to be downloaded or updated when the device is connected to a high-speed
network, instead of downloading such code when a web page is accessed, perhaps
over a lower bandwidth or more expensive mobile network.

With the increasing use of JavaScript code as part of web front ends, the difference
between the two approaches above has today significantly decreased. The back end
often provides an API that can be invoked from either mobile app or JavaScript code
to carry out any required task at the back end. In fact, the same back end is often used
to build multiple front ends, which could include web front ends with JavaScript, and
multiple mobile platforms (primarily Android and iOS, today).

9.2 Web Fundamentals

In this section, we review some of the fundamental technology behind the World Wide
Web, for readers who are not familiar with the technology underlying the web.

9.2.1 Uniform Resource Locators

A uniform resource locator (URL) is a globally unique name for each document that
can be accessed on the web. An example of a URL is:

http://www.acm.org/sigmod

The first part of the URL indicates how the document is to be accessed: “http” indi-
cates that the document is to be accessed by the HyperText Transfer Protocol (HTTP),
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<html>
<body>
<table border>
<tr> <th>ID</th> <th>Name</th> <th>Department</th> </tr>
<tr> <td>00128</td> <td>Zhang</td> <td>Comp. Sci.</td> </tr>
<tr> <td>12345</td> <td>Shankar</td> <td>Comp. Sci.</td> </tr>
<tr> <td>19991</td> <td>Brandt</td> <td>History</td> </tr>
</table>
</body>
</html>

Figure 9.1 Tabular data in HTML format.

which is a protocol for transferring HTML documents; “https” would indicate that the
secure version of the HTTP protocol must be used, and is the preferred mode today.
The second part gives the name of a machine that has a web server. The rest of the URL
is the path name of the file on the machine, or other unique identifier of a document
within the machine.

A URL can contain the identifier of a program located on the web server machine,
as well as arguments to be given to the program. An example of such a URL is

https://www.google.com/search?q=silberschatz

which says that the program search on the serverwww.google.com should be executed
with the argument q=silberschatz. On receiving a request for such a URL, the web
server executes the program, using the given arguments. The program returns an HTML
document to the web server, which sends it back to the front end.

9.2.2 HyperText Markup Language

Figure 9.1 is an example of a table represented in the HTML format, while Figure 9.2
shows the displayed image generated by a browser from the HTML representation of
the table. The HTML source shows a few of the HTML tags. Every HTML page should
be enclosed in an html tag, while the body of the page is enclosed in a body tag. A table

ID

00128
12345
19991

Zhang

Shankar
Brandt

Name

Comp. Sci.
Comp. Sci.
History

Department

Figure 9.2 Display of HTML source from Figure 9.1.
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<html>
<body>
<form action="PersonQuery" method=get>
Search for:
<select name="persontype">

<option value="student" selected>Student </option>
<option value="instructor"> Instructor </option>

</select> <br>
Name: <input type=text size=20 name="name">
<input type=submit value="submit">
</form>

</body>
</html>

Figure 9.3 An HTML form.

is specified by a table tag, which contains rows specified by a tr tag. The header row of
the table has table cells specified by a th tag, while regular rows have table cells specified
by a td tag. We do not go into more details about the tags here; see the bibliographical
notes for references containing more detailed descriptions of HTML.

Figure 9.3 shows how to specify an HTML form that allows users to select the
person type (student or instructor) from a menu and to input a number in a text box.
Figure 9.4 shows how the above form is displayed in a web browser. Two methods
of accepting input are illustrated in the form, but HTML also supports several other
input methods. The action attribute of the form tag specifies that when the form is
submitted (by clicking on the submit button), the form data should be sent to the URL
PersonQuery (the URL is relative to that of the page). The web server is configured
such that when this URL is accessed, a corresponding application program is invoked,
with the user-provided values for the arguments persontype and name (specified in
the select and input fields). The application program generates an HTML document,
which is then sent back and displayed to the user; we shall see how to construct such
programs later in this chapter.

HTTP defines two ways in which values entered by a user at the browser can be sent
to the web server. The get method encodes the values as part of the URL. For example,
if the Google search page used a form with an input parameter named q with the get

Search for:
Name:

Student

submit

Figure 9.4 Display of HTML source from Figure 9.3.
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method, and the user typed in the string “silberschatz” and submitted the form, the
browser would request the following URL from the web server:

https://www.google.com/search?q=silberschatz

The post method would instead send a request for the URL https://www.google.com,
and send the parameter values as part of the HTTP protocol exchange between the web
server and the browser. The form in Figure 9.3 specifies that the form uses the get
method.

Although HTML code can be created using a plain text editor, there are a number
of editors that permit direct creation of HTML text by using a graphical interface. Such
editors allow constructs such as forms, menus, and tables to be inserted into the HTML
document from a menu of choices, instead of manually typing in the code to generate
the constructs.

HTML supports stylesheets, which can alter the default definitions of how an HTML
formatting construct is displayed, as well as other display attributes such as background
color of the page. The cascading stylesheet (CSS) standard allows the same stylesheet to
be used for multiple HTML documents, giving a distinctive but uniform look to all the
pages on a web site. You can find more information on stylesheets online, for example
at www.w3schools.com/css/.

The HTML5 standard, which was released in 2014, provides a wide variety of form
input types, including the following:

• Date and time selection, using <input type="date" name="abc">, and <input
type="time" name="xyz">. Browsers would typically display a graphical date or
time picker for such an input field; the input value is saved in the form attributes
abc and xyz. The optional attributesmin andmax can be used to specify minimum
and maximum values that can be chosen.

• File selection, using <input type="file", name="xyz">, which allows a file to be
chosen, and its name saved in the form attribute xyz.

• Input restrictions (constraints) on a variety of input types, including minimum,
maximum, format matching a regular expression, and so on. For example,
<input type="number" name="start" min="0" max="55" step="5" value="0">
allows the user to choose one of 0, 5, 10, 15, and so on till 55, with a default value
of 0.

9.2.3 Web Servers and Sessions

A web server is a program running on the server machine that accepts requests from
a web browser and sends back results in the form of HTML documents. The browser
and web server communicate via HTTP. Web servers provide powerful features, beyond
the simple transfer of documents. The most important feature is the ability to execute
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Figure 9.5 Three-layer web application architecture.

programs, with arguments supplied by the user, and to deliver the results back as an
HTML document.

As a result, a web server can act as an intermediary to provide access to a variety
of information services. A new service can be created by creating and installing an
application program that provides the service. The common gateway interface (CGI)
standard defines how the web server communicates with application programs. The
application program typically communicates with a database server, through ODBC,
JDBC, or other protocols, in order to get or store data.

Figure 9.5 shows a web application built using a three-layer architecture, with a web
server, an application server, and a database server. Using multiple levels of servers in-
creases system overhead; the CGI interface starts a new process to service each request,
which results in even greater overhead.

Most web applications today therefore use a two-layer web application architecture,
where the web and application servers are combined into a single server, as shown in
Figure 9.6. We study systems based on the two-layer architecture in more detail in
subsequent sections.

There is no continuous connection between the client and the web server; when a
web server receives a request, a connection is temporarily created to send the request
and receive the response from the web server. But the connection may then be closed,
and the next request could come over a new connection. In contrast, when a user logs
on to a computer, or connects to a database using ODBC or JDBC, a session is created,
and session information is retained at the server and the client until the session is termi-
nated—information such as the user-identifier of the user and session options that the
user has set. One important reason that HTTP is connectionless is that most computers
have limits on the number of simultaneous connections they can accommodate, and if
a large number of sites on the web open connections to a single server, this limit would
be exceeded, denying service to further users. With a connectionless protocol, the con-
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Figure 9.6 Two-layer web application architecture.

nection can be broken as soon as a request is satisfied, leaving connections available
for other requests.1

Most web applications, however, need session information to allow meaningful
user interaction. For instance, applications typically restrict access to information, and
therefore need to authenticate users. Authentication should be done once per session,
and further interactions in the session should not require reauthentication.

To implement sessions in spite of connections getting closed, extra information has
to be stored at the client and returned with each request in a session; the server uses
this information to identify that a request is part of a user session. Extra information
about the session also has to be maintained at the server.

This extra information is usually maintained in the form of a cookie at the client;
a cookie is simply a small piece of text containing identifying information and with
an associated name. For example, google.com may set a cookie with the name prefs,
which encodes preferences set by the user such as the preferred language and the num-
ber of answers displayed per page. On each search request, google.com can retrieve
the cookie named prefs from the user’s browser, and display results according to the
specified preferences. A domain (web site) is permitted to retrieve only cookies that
it has set, not cookies set by other domains, and cookie names can be reused across
domains.

For the purpose of tracking a user session, an application may generate a session
identifier (usually a random number not currently in use as a session identifier), and
send a cookie named (for instance) sessionid containing the session identifier. The
session identifier is also stored locally at the server. When a request comes in, the
application server requests the cookie named sessionid from the client. If the client

1For performance reasons, connections may be kept open for a short while, to allow subsequent requests to reuse the
connection. However, there is no guarantee that the connection will be kept open, and applications must be designed
assuming the connection may be closed as soon as a request is serviced.
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does not have the cookie stored, or returns a value that is not currently recorded as a
valid session identifier at the server, the application concludes that the request is not
part of a current session. If the cookie value matches a stored session identifier, the
request is identified as part of an ongoing session.

If an application needs to identify users securely, it can set the cookie only after
authenticating the user; for example a user may be authenticated only when a valid user
name and password are submitted.2

For applications that do not require high security, such as publicly available news
sites, cookies can be stored permanently at the browser and at the server; they identify
the user on subsequent visits to the same site, without any identification information
being typed in. For applications that require higher security, the server may invalidate
(drop) the session after a time-out period, or when the user logs out. (Typically a user
logs out by clicking on a logout button, which submits a logout form, whose action is
to invalidate the current session.) Invalidating a session merely consists of dropping
the session identifier from the list of active sessions at the application server.

9.3 Servlets

The Java servlet specification defines an application programming interface for com-
munication between the web/application server and the application program. The
HttpServlet class in Java implements the servlet API specification; servlet classes used
to implement specific functions are defined as subclasses of this class.3 Often the word
servlet is used to refer to a Java program (and class) that implements the servlet inter-
face. Figure 9.7 shows a servlet example; we explain it in detail shortly.

The code for a servlet is loaded into the web/application server when the server
is started, or when the server receives a remote HTTP request to execute a particular
servlet. The task of a servlet is to process such a request, which may involve accessing a
database to retrieve necessary information, and dynamically generating an HTML page
to be returned to the client browser.

9.3.1 A Servlet Example

Servlets are commonly used to generate dynamic responses to HTTP requests. They
can access inputs provided through HTML forms, apply “business logic” to decide what

2The user identifier could be stored at the client end, in a cookie named, for example, userid. Such cookies can be
used for low-security applications, such as free web sites identifying their users. However, for applications that require a
higher level of security, such a mechanism creates a security risk: The value of a cookie can be changed at the browser
by a malicious user, who can then masquerade as a different user. Setting a cookie (named sessionid, for example) to
a randomly generated session identifier (from a large space of numbers) makes it highly improbable that a user can
masquerade as (i.e., pretend to be) another user. A sequentially generated session identifier, on the other hand, would
be susceptible to masquerading.
3The servlet interface can also support non-HTTP requests, although our example uses only HTTP.
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response to provide, and then generate HTML output to be sent back to the browser.
Servlet code is executed on a web or application server.

Figure 9.7 shows an example of servlet code to implement the form in Fig-
ure 9.3. The servlet is called PersonQueryServlet, while the form specifies that
“action="PersonQuery".” The web/application server must be told that this servlet
is to be used to handle requests for PersonQuery, which is done by using the anno-

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

@WebServlet("PersonQuery")
public class PersonQueryServlet extends HttpServlet {

public void doGet(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, IOException
{

response.setContentType("text/html");
PrintWriter out = response.getWriter();
... check if user is logged in ...
out.println("<HEAD><TITLE> Query Result</TITLE></HEAD>");
out.println("<BODY>");

String persontype = request.getParameter("persontype");
String name = request.getParameter("name");
if(persontype.equals("student")) {

... code to find students with the specified name ...

... using JDBC to communicate with the database ..

... Assume ResultSet rs has been retrieved, and

... contains attributes ID, name, and department name
String headers = new String[]{"ID", "Name", "Department Name"};
Util::resultSetToHTML(rs, headers, out);

}
else {

... as above, but for instructors ...
}
out.println("</BODY>");
out.close();

}
}

Figure 9.7 Example of servlet code.
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tation @WebServlet("PersonQuery") shown in the code. The form specifies that the
HTTP get mechanism is used for transmitting parameters. So the doGet() method of
the servlet, as defined in the code, is invoked.

Each servlet request results in a new thread within which the call is executed, so
multiple requests can be handled in parallel. Any values from the form menus and input
fields on the web page, as well as cookies, pass through an object of the HttpServletRe-
quest class that is created for the request, and the reply to the request passes through
an object of the class HttpServletResponse.

The doGet() method in the example extracts values of the parameters persontype
and name by using request.getParameter(), and uses these values to run a query
against a database. The code used to access the database and to get attribute values
from the query result is not shown; refer to Section 5.1.1.5 for details of how to use
JDBC to access a database. We assume that the result of the query in the form of a
JDBC ResultSet is available in the variable resultset.

The servlet code returns the results of the query to the requester by outputting them
to the HttpServletResponse object response. Outputting the results to response is
implemented by first getting a PrintWriter object out from response, and then printing
the query result in HTML format to out. In our example, the query result is printed by
calling the function Util::resultSetToHTML(resultset, header, out), which is shown in
Figure 9.8. The function uses JDBC metadata function on the ResultSet rs to figure out
how many columns need to be printed. An array of column headers is passed to this
function to be printed out; the column names could have been obtained using JDBC
metadata, but the database column names may not be appropriate for display to a user,
so we provide meaningful column names to the function.

9.3.2 Servlet Sessions

Recall that the interaction between a browser and a web/application server is stateless.
That is, each time the browser makes a request to the server, the browser needs to con-
nect to the server, request some information, then disconnect from the server. Cookies
can be used to recognize that a request is from the same browser session as an ear-
lier request. However, cookies form a low-level mechanism, and programmers require
a better abstraction to deal with sessions.

The servlet API provides a method of tracking a session and storing information
pertaining to it. Invocation of the method getSession(false) of the class HttpServle-
tRequest retrieves the HttpSession object corresponding to the browser that sent the
request. An argument value of true would have specified that a new session object must
be created if the request is a new request.

When the getSession() method is invoked, the server first asks the client to return
a cookie with a specified name. If the client does not have a cookie of that name, or
returns a value that does not match any ongoing session, then the request is not part of
an ongoing session. In this case, getSession() would return a null value, and the servlet
could direct the user to a login page.
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import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class Util {
public static void resultSetToHTML(ResultSet rs,

String headers[], PrintWriter out) {
ResultSetMetaData rsmd = rs.getMetaData();
int numCols = rsmd.getColumnCount();
out.println("<table border=1>");
out.println("<tr>");
for (int i=0; i < numCols; i++)

out.println("<th>"+ headers[i] + <∕th>
out.println("<∕tr>");
while (rs.next()) {

out.println("<tr>");
for (int i=0; i < numCols; i++)

out.println("<td>"+ rs.getString(i) + <∕td>
out.println("<∕tr>");

}
}

}

Figure 9.8 Utility function to output ResultSet as a table.

The login page could allow the user to provide a user name and password. The
servlet corresponding to the login page could verify that the password matches the
user; for example, by using the user name to retrieve the password from the database
and checking if the password entered matches the stored password.4

If the user is properly authenticated, the login servlet would execute getSes-
sion(true), which would return a new session object. To create a new session, the server
would internally carry out the following tasks: set a cookie (called, for example, ses-
sionId) with a session identifier as its associated value at the client browser, create a
new session object, and associate the session identifier value with the session object.

4It is a bad idea to store unencrypted passwords in the database, since anyone with access to the database contents, such
as a system administrator or a hacker, could steal the password. Instead, a hashing function is applied to the password,
and the result is stored in the database; even if someone sees the hashing result stored in the database, it is very hard to
infer what was the original password. The same hashing function is applied to the user-supplied password, and the result
is compared with the stored hashing result. Further, to ensure that even if two users use the same password the hash
values are different, the password system typically stores a different random string (called the salt) for each user, and it
appends the random string to the password before computing the hash value. Thus, the password relation would have
the schema user password(user, salt, passwordhash), where passwordhash is generated by hash(append(password,salt)).
Encryption is described in more detail in Section 9.9.1.
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The servlet code can also store and look up (attribute-name, value) pairs in the
HttpSession object, to maintain state across multiple requests within a session. For
example, after the user is authenticated and the session object has been created, the
login servlet could store the user-id of the user as a session parameter by executing the
method

session.setAttribute(“userid”, userid)

on the session object returned by getSession(); the Java variable userid is assumed to
contain the user identifier.

If the request was part of an ongoing session, the browser would have returned the
cookie value, and the corresponding session object would be returned by getSession().
The servlet could then retrieve session parameters such as user-id from the session
object by executing the method

session.getAttribute(“userid”)

on the session object returned above. If the attribute userid is not set, the function
would return a null value, which would indicate that the client user has not been au-
thenticated.

Consider the line in the servlet code in Figure 9.7 that says “... check if user is
logged in...”. The following code implements this check; if the user is not logged in, it
sends an error message, and after a gap of 5 seconds, redirects the user to the login
page.

Session session = request.getSession(false);
if (session == null || session.getAttribute(userid) == null) {

out.println("You are not logged in.");
response.setHeader("Refresh", "5;url=login.html");
return();

}

9.3.3 Servlet Life Cycle

The life cycle of a servlet is controlled by the web/application server in which the servlet
has been deployed. When there is a client request for a specific servlet, the server first
checks if an instance of the servlet exists or not. If not, the server loads the servlet
class into the Java virtual machine (JVM) and creates an instance of the servlet class.
In addition, the server calls the init() method to initialize the servlet instance. Notice
that each servlet instance is initialized only once when it is loaded.

After making sure the servlet instance does exist, the server invokes the service
method of the servlet, with a request object and a response object as parameters. By
default, the server creates a new thread to execute the service method; thus, multiple
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requests on a servlet can execute in parallel, without having to wait for earlier requests
to complete execution. The service method calls doGet or doPost as appropriate.

When no longer required, a servlet can be shut down by calling the destroy()
method. The server can be set up to shut down a servlet automatically if no requests
have been made on a servlet within a time-out period; the time-out period is a server
parameter that can be set as appropriate for the application.

9.3.4 Application Servers

Many application servers provide built-in support for servlets. One of the most popular
is the Tomcat Server from the Apache Jakarta Project. Other application servers that
support servlets include Glassfish, JBoss, BEA Weblogic Application Server, Oracle
Application Server, and IBM’s WebSphere Application Server.

The best way to develop servlet applications is by using an IDE such as Eclipse or
NetBeans, which come with Tomcat or Glassfish servers built in.

Application servers usually provide a variety of useful services, in addition to basic
servlet support. They allow applications to be deployed or stopped, and they provide
functionality to monitor the status of the application server, including performance
statistics. Many application servers also support the Java 2 Enterprise Edition (J2EE)
platform, which provides support and APIs for a variety of tasks, such as for handling
objects, and parallel processing across multiple application servers.

9.4 Alternative Server-Side Frameworks

There are several alternatives to Java Servlets for processing requests at the application
server, including scripting languages and web application frameworks developed for
languages such as Python.

9.4.1 Server-Side Scripting

Writing even a simple web application in a programming language such as Java or C
is a time-consuming task that requires many lines of code and programmers who are
familiar with the intricacies of the language. An alternative approach, that of server-
side scripting, provides a much easier method for creating many applications. Scripting
languages provide constructs that can be embedded within HTML documents.

In server-side scripting, before delivering a web page, the server executes the scripts
embedded within the HTML contents of the page. Each piece of script, when executed,
can generate text that is added to the page (or may even delete content from the page).
The source code of the scripts is removed from the page, so the client may not even
be aware that the page originally had any code in it. The executed script may also con-
tain SQL code that is executed against a database. Many of these languages come with
libraries and tools that together constitute a framework for web application develop-
ment.
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<html>
<head> <title> Hello </title> </head>
<body>
< % if (request.getParameter(“name”) == null)
{ out.println(“Hello World”); }
else { out.println(“Hello, ” + request.getParameter(“name”)); }

%>

</body>
</html>

Figure 9.9 A JSP page with embedded Java code.

Some of the widely used scripting frameworks include Java Server Pages (JSP),
ASP.NET from Microsoft, PHP, and Ruby on Rails. These frameworks allow code writ-
ten in languages such as Java, C#, VBScript, and Ruby to be embedded into or invoked
from HTML pages. For instance, JSP allows Java code to be embedded in HTML pages,
while Microsoft’s ASP.NET and ASP support embedded C# and VBScript.

9.4.1.1 Java Server Pages

Next we briefly describe Java Server Pages (JSP), a scripting language that allows
HTML programmers to mix static HTML with dynamically generated HTML. The mo-
tivation is that, for many dynamic web pages, most of their content is still static (i.e.,
the same content is present whenever the page is generated). The dynamic content of
the web pages (which are generated, for example, on the basis of form parameters) is
often a small part of the page. Creating such pages by writing servlet code results in a
large amount of HTML being coded as Java strings. JSP instead allows Java code to be
embedded in static HTML; the embedded Java code generates the dynamic part of the
page. JSP scripts are actually translated into servlet code that is then compiled, but the
application programmer is saved the trouble of writing much of the Java code to create
the servlet.

Figure 9.9 shows the source text of a JSP page that includes embedded Java code.
The Java code in the script is distinguished from the surrounding HTML code by being
enclosed in <% … %>. The code uses request.getParameter() to get the value of the
attribute name.

When a JSP page is requested by a browser, the application server generates HTML
output from the page, which is sent to the browser. The HTML part of the JSP page is
output as is.5 Wherever Java code is embedded within <% …%>, the code is replaced
in the HTML output by the text it prints to the object out. In the JSP code in Figure 9.9,

5JSP allows a more complex embedding, where HTML code is within a Java if-else statement, and gets output condition-
ally depending on whether the if condition evaluates to true or not. We omit details here.
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if no value was entered for the form parameter name, the script prints “Hello World”;
if a value was entered, the script prints “Hello” followed by the name.

A more realistic example may perform more complex actions, such as looking up
values from a database using JDBC.

JSP also supports the concept of a tag library, which allows the use of tags that
look much like HTML tags but are interpreted at the server and are replaced by appro-
priately generated HTML code. JSP provides a standard set of tags that define variables
and control flow (iterators, if-then-else), along with an expression language based on
JavaScript (but interpreted at the server). The set of tags is extensible, and a number of
tag libraries have been implemented. For example, there is a tag library that supports
paginated display of large data sets and a library that simplifies display and parsing of
dates and times.

9.4.1.2 PHP

PHP is a scripting language that is widely used for server-side scripting. PHP code can
be intermixed with HTML in a manner similar to JSP. The characters “<?php” indicate
the start of PHP code, while the characters “?>” indicate the end of PHP code. The
following code performs the same actions as the JSP code in Figure 9.9.

<html>
<head> <title> Hello </title> </head>
<body>
<?php if (!isset($ REQUEST['name']))
{ echo 'Hello World'; }
else { echo 'Hello, ' . $ REQUEST['name']; }

?>
</body>
</html>

The array $ REQUEST contains the request parameters. Note that the array is
indexed by the parameter name; in PHP arrays can be indexed by arbitrary strings, not
just numbers. The function isset checks if the element of the array has been initialized.
The echo function prints its argument to the output HTML. The operator “.” between
two strings concatenates the strings.

A suitably configured web server would interpret any file whose name ends in
“.php” to be a PHP file. If the file is requested, the web server processes it in a manner
similar to how JSP files are processed and returns the generated HTML to the browser.

A number of libraries are available for the PHP language, including libraries for
database access using ODBC (similar to JDBC in Java).

9.4.2 Web Application Frameworks

Web application development frameworks ease the task of constructing web applica-
tions by providing features such as these:
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• A library of functions to support HTML and HTTP features, including sessions.

• A template scripting system.

• A controller that maps user interaction events such as form submits to appropriate
functions that handle the event. The controller also manages authentication and
sessions. Some frameworks also provide tools for managing authorizations.

• A (relatively) declarative way of specifying a form with validation constraints on
user inputs, from which the system generates HTML and Javascript/Ajax code to
implement the form.

• An object-oriented model with an object-relational mapping to store data in a re-
lational database (described in Section 9.6.2).

Thus, these frameworks provide a variety of features that are required to build web
applications in an integrated manner. By generating forms from declarative specifica-
tions and managing data access transparently, the frameworks minimize the amount
of coding that a web application programmer has to carry out.

There are a large number of such frameworks, based on different languages. Some
of the more widely used frameworks include the Django framework for the Python
language, Ruby on Rails, which supports the Rails framework on the Ruby program-
ming language, Apache Struts, Swing, Tapestry, and WebObjects, all based on Java/JSP.
Many of these frameworks also make it easy to create simple CRUD web interfaces; that
is, interfaces that support create, read, update and delete of objects/tuples by generat-
ing code from an object model or a database. Such tools are particularly useful to get
simple applications running quickly, and the generated code can be edited to build
more sophisticated web interfaces.

9.4.3 The Django Framework

The Django framework for Python is a widely used web application framework. We
illustrate a few features of the framework through examples.

Views in Django are functions that are equivalent to servlets in Java. Django re-
quires a mapping, typically specified in a file urls.py, which maps URLs to Django
views. When the Django application server receives an HTTP request, it uses the URL
mapping to decide which view function to invoke.

Figure 9.10 shows sample code implementing the person query task that we earlier
implemented using Java servlets. The code shows a view called person query view.
We assume that the PersonQuery URL is mapped to the view person query view, and
is invoked from the HTML form shown earlier in Figure 9.3.

We also assume that the root of the application is mapped to a login view. We
have not shown the code for login view, but we assume it displays a login form, and on
submit it invokes the authenticate view. We have not shown the authenticate view,
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either, but we assume that it checks the login name and password. If the password is
validated, the authenticate view redirects to a person query form, which displays the
HTML code that we saw earlier in Figure 9.3; if password validation fails, it redirects
to the login view.

Returning to Figure 9.10, the view person query view() first checks if the user is
logged in by checking the session variable username. If the session variable is not set,
the browser is redirected to the login screen. Otherwise, the requested user informa-

from django.http import HttpResponse
from django.db import connection

def result set to html(headers, cursor):
html = "<table border=1>"
html += "<tr>"
for header in headers:

html += "<th>" + header + "</th>"
html += "</tr>"
for row in cursor.fetchall():

html += "<tr>"
for col in row:

html += "<td>" + col + "</td>"
html += "</tr>"

html += "</table>"
return html

def person query view(request):
if "username" not in request.session:

return login view(request)
persontype = request.GET.get("persontype")
personname = request.GET.get("personname")
if persontype == "student":

query tmpl = "select id, name, dept name from student where name=%s"
else:

query tmpl = "select id, name, dept name from instructor where name=%s"
with connection.cursor() as cursor:

cursor.execute(query tmpl, [personname])
headers = ["ID", "Name", "Department Name"]
return HttpResponse(result set to html(headers, cursor))

Figure 9.10 The person query application in Django.



9.5 Client-Side Code and Web Services 421

tion is fetched by connecting to the database; connection details for the database are
specified in a Django configuration file settings.py and are omitted in our description.
A cursor (similar to a JDBC statement) is opened on the connection, and the query is
executed using the cursor. Note that the first argument of cursor.execute is the query,
with parameters marked by “%s”, and the second argument is a list of values for the
parameters. The result of the database query is then displayed by calling a function
result set to html(), which iterates over the result set fetched from the database and
outputs the results in HTML format to a string; the string is then returned as an HttpRe-
sponse.

Django provides support for a number of other features, such as creating HTML
forms and validating data entered in the forms, annotations to simplify checking of
authentication, and templates for creating HTML pages, which are somewhat similar to
JSP pages. Django also supports an object-relation mapping system, which we describe
in Section 9.6.2.2.

9.5 Client-Side Code and Web Services

The two most widely used classes of user interfaces today are the web interfaces and
mobile application interfaces.

While early generation web browsers only displayed HTML code, the need was
soon felt to allow code to run on the browsers. Client-side scripting languages are lan-
guages designed to be executed on the client’s web browser. The primary motivation for
such scripting languages is flexible interaction with the user, providing features beyond
the limited interaction power provided by HTML and HTML forms. Further, executing
programs at the client site speeds up interaction greatly compared to every interaction
being sent to a server site for processing.

The JavaScript language is by far the most widely used client-side scripting lan-
guage. The current generation of web interfaces uses the JavaScript scripting language
extensively to construct sophisticated user interfaces.

Any client-side interface needs to store and retrieve data from the back end. Di-
rectly accessing a database is not a good idea, since it not only exposes low-level details,
but it also exposes the database to attacks. Instead, back ends provide access to store
and retrieve data through web services. We discuss web services in Section 9.5.2.

Mobile applications are very widely used, and user interfaces for mobile devices
are very important today. Although we do not cover mobile application development
in this book, we offer pointers to some mobile application development frameworks in
Section 9.5.4.

9.5.1 JavaScript

JavaScript is used for a variety of tasks, including validation, flexible user interfaces,
and interaction with web services, which we now describe.
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9.5.1.1 Input Validation

Functions written in JavaScript can be used to perform error checks (validation) on
user input, such as a date string being properly formatted, or a value entered (such as
age) being in an appropriate range. These checks are carried out on the browser as data
are entered even before the data are sent to the web server.

With HTML5, many validation constraints can be specified as part of the input tag.
For example, the following HTML code:

<input type="number" name="credits" size="2" min="1" max="15">

ensures that the input for the parameter “credits” is a number between 1 and 15. More
complex validations that cannot be performed using HTML5 features are best done
using JavaScript.

Figure 9.11 shows an example of a form with a JavaScript function used to validate
a form input. The function is declared in the head section of the HTML document. The
form accepts a start and an end date. The validation function ensures that the start date

<html>
<head>
<script type="text/javascript">

function validate() {
var startdate = new Date (document.getElementById("start").value);
var enddate = new Date (document.getElementById("end").value);
if(startdate > enddate) {

alert("Start date is > end date");
return false;

}
}

</script>
</head>

<body>
<form action="submitDates" onsubmit="return validate()">

Start Date: <input type="date" id="start"><br />
End Date : <input type="date" id="end"><br />
<input type="submit" value="Submit">

</form>
</body>
</html>

Figure 9.11 Example of JavaScript used to validate form input.
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is not greater than the end date. The form tag specifies that the validation function is
to be invoked when the form is submitted. If the validation fails, an alert box is shown
to the user, and if it succeeds, the form is submitted to the server.

9.5.1.2 Responsive User Interfaces

The most important benefit of JavaScript is the ability to create highly responsive user
interfaces within a browser using JavaScript. The key to building such a user interface is
the ability to dynamically modify the HTML code being displayed by using JavaScript.
The browser parses HTML code into an in-memory tree structure defined by a stan-
dard called the Document Object Model (DOM). JavaScript code can modify the tree
structure to carry out certain operations. For example, suppose a user needs to enter a
number of rows of data, for example multiple items in a single bill. A table containing
text boxes and other form input methods can be used to gather user input. The table
may have a default size, but if more rows are needed, the user may click on a button
labeled (for example) “Add Item.” This button can be set up to invoke a JavaScript
function that modifies the DOM tree by adding an extra row in the table.

Although the JavaScript language has been standardized, there are differences be-
tween browsers, particularly in the details of the DOM model. As a result, JavaScript
code that works on one browser may not work on another. To avoid such problems,
it is best to use a JavaScript library, such as the JQuery library, which allows code to
be written in a browser-independent way. Internally, the functions in the library can
find out which browser is in use and send appropriately generated JavaScript to the
browser.

JavaScript libraries such as JQuery provide a number of UI elements, such as
menus, tabs, widgets such as sliders, and features such as autocomplete, that can be
created and executed using library functions.

The HTML5 standard supports a number of features for rich user interaction, in-
cluding drag-and-drop, geolocation (which allows the user’s location to be provided
to the application with user permission), allowing customization of the data/interface
based on location. HTML5 also supports Server-Side Events (SSE), which allows a back-
end to notify the front end when some event occurs.

9.5.1.3 Interfacing with Web Services

Today, JavaScript is widely used to create dynamic web pages, using several technolo-
gies that are collectively called Ajax. Programs written in JavaScript can communicate
with the web server asynchronously (that is, in the background, without blocking user
interaction with the web browser), and can fetch data and display it. The JavaScript
Object Notation, or JSON, representation described in Section 8.1.2 is the most widely
used data format for transferring data, although other formats such as XML are also
used.

The role of the code for the above tasks, which runs at the application server,
is to send data to the JavaScript code, which then renders the data on the browser.
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Such backend services, which serve the role of functions which can be invoked to fetch
required data, are known as web services. Such services can be implemented using Java
Servlets, Python, or any of a number of other language frameworks.

As an example of the use of Ajax, consider the autocomplete feature implemented
by many web applications. As the user types a value in a text box, the system suggests
completions for the value being typed. Such autocomplete is very useful for helping a
user choose a value from a large number of values where a drop-down list would not
be feasible. Libraries such as jQuery provide support for autocomplete by associating
a function with a text box; the function takes partial input in the box, connected to
a web back end to get possible completions, and displays them as suggestions for the
autocomplete.

The JavaScript code shown in Figure 9.12 uses the jQuery library to implement
autocomplete and the DataTables plug-in for the jQuery library to provide a tabular
display of data. The HTML code has a text input box for name, which has an id attribute
set to name. The script associates an autocomplete function from the jQuery library
with the text box by using $("#name") syntax of jQuery to locate the DOM node for
text box with id “name”, and then associating the autocomplete function with the
node. The attribute source passed to the function identifies the web service that must
be invoked to get values for the autocomplete functionality. We assume that a servlet
/autocomplete name has been defined, which accepts a parameter term containing
the letters typed so far by the user, even as they are being typed. The servlet should
return a JSON array of names of students/instructors that match the letters in the term
parameter.

The JavaScript code also illustrates how data can be retrieved from a web service
and then displayed. Our sample code uses the DataTables jQuery plug-in; there are a
number of other alternative libraries for displaying tabular data. We assume that the
person query ajax Servlet, which is not shown, returns the ID, name, and department
name of students or instructors with a given name, as we saw earlier in Figure 9.7, but
encoded in JSON as an object with attribute data containing an array of rows; each
row is a JSON object with attributes id, name, and dept name.

The line starting with myTable shows how the jQuery plug-in DataTable is associ-
ated with the HTML table shown later in the figure, whose identifier is personTable.
When the button “Show details” is clicked, the function loadTableAsync() is invoked.
This function first creates a URL string url that is used to invoke person query ajax
with values for person type and name. The function ajax.url(url).load() invoked on
myTable fills the rows of the table using the JSON data fetched from the web service
whose URL we created above. This happens asynchronously; that is, the function re-
turns immediately, but when the data have been fetched, the table rows are filled with
the returned data.

Figure 9.13 shows a screenshot of a browser displaying the result of the code in
Figure 9.12.

As another example of the use of Ajax, consider a web site with a form that allows
you to select a country, and once a country has been selected, you are allowed to select
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<html> <head>
<script src="https://code.jquery.com/jquery-3.3.1.js"> </script>
<script src="https://cdn.datatables.net/1.10.19/js/jquery.dataTables.min.js"></script>
<script src="https://code.jquery.com/ui/1.12.1/jquery-ui.min.js"></script>
<script src="https://cdn.datatables.net/1.10.19/js/jquery.dataTables.min.js"></script>
<link rel="stylesheet"

href="https://code.jquery.com/ui/1.12.1/themes/base/jquery-ui.css" />
<link rel="stylesheet"

href="https://cdn.datatables.net/1.10.19/css/jquery.dataTables.min.css"/>
<script>

var myTable;
$(document).ready(function() {

$("#name").autocomplete({ source: "/autocomplete name" });
myTable = $("#personTable").DataTable({
columns: [{data:"id"}, {data:"name"}, {data:"dept name"}]
});

});
function loadTableAsync() {

var params = {persontype:$("#persontype").val(), name:$("#name").val()};
var url = "/person query ajax?" + jQuery.param(params);
myTable.ajax.url(url).load();

}
</script>
</head> <body>
Search for:
<select id="persontype">

<option value="student" selected>Student </option>
<option value="instructor"> Instructor </option>

</select> <br>
Name: <input type=text size=20 id="name">
<button onclick="loadTableAsync()"> Show details </button>
<table id="personTable" border="1">

<thead>
<tr> <th>ID</th> <th>Name</th> <th>Dept. Name</th> </tr>

</thead>
</table>
</body> </html>

Figure 9.12 HTML page using JavaScript and Ajax.

a state from a list of states in that country. Until the country is selected, the drop-down
list of states is empty. The Ajax framework allows the list of states to be downloaded
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Figure 9.13 Screenshot of display generated by Figure 9.12.

from the web site in the background when the country is selected, and as soon as the
list has been fetched, it is added to the drop-down list, which allows you to select the
state.

9.5.2 Web Services

A web service is an application component that can be invoked over the web and func-
tions, in effect, like an application programming interface. A web service request is sent
using the HTTP protocol, it is executed at an application server, and the results are sent
back to the calling program.

Two approaches are widely used to implement web services. In the simpler ap-
proach, called Representation State Transfer (or REST), web service function calls are
executed by a standard HTTP request to a URL at an application server, with parameters
sent as standard HTTP request parameters. The application server executes the request
(which may involve updating the database at the server), generates and encodes the
result, and returns the result as the result of the HTTP request. The most widely used
encoding for the results today is the JSON representation, although XML, which we saw
earlier in Section 8.1.3, is also used. The requestor parses the returned page to access
the returned data.

In many applications of such RESTful web services (i.e., web services using REST),
the requestor is JavaScript code running in a web browser; the code updates the browser
screen using the result of the function call. For example, when you scroll the display
on a map interface on the web, the part of the map that needs to be newly displayed
may be fetched by JavaScript code using a RESTful interface and then displayed on the
screen.

While some web services are not publicly documented and are used only inter-
nally by specific applications, other web services have their interfaces documented and
can be used by any application. Such services may allow use without any restriction,
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may require users to be logged in before accessing the service, or may require users
or application developers to pay the web service provider for the privilege of using the
service.

Today, a very large variety of RESTful web services are available, and most front-end
applications use one or more such services to perform backend activities. For exam-
ple, your web-based email system, your social media web page, or your web-based map
service would almost surely be built with JavaScript code for rendering and would use
backend web services to fetch data as well as to perform updates. Similarly, any mobile
app that stores data at the back end almost surely uses web services to fetch data and
to perform updates.

Web services are also increasingly used at the backend, to make use of function-
alities provided by other backend systems. For example, web-based storage systems
provide a web service API for storing and retrieving data; such services are provided
by a number of providers, such as Amazon S3, Google Cloud Storage, and Microsoft
Azure. They are very popular with application developers since they allow storage of
very large amounts of data, and they support a very large number of operations per
second, allowing scalability far beyond what a centralized database can support.

There are many more such web-service APIs. For example, text-to-speech, speech
recognition, and vision web-service APIs allow developers to construct applications
incorporating speech and image recognition with very little development effort.

A more complex and less frequently used approach, sometimes referred to as “Big
Web Services,” uses XML encoding of parameters as well as results, has a formal def-
inition of the web API using a special language, and uses a protocol layer built on top
of the HTTP protocol.

9.5.3 Disconnected Operation

Many applications wish to support some operations even when a client is disconnected
from the application server. For example, a student may wish to complete an applica-
tion form even if her laptop is disconnected from the network but have it saved back
when the laptop is reconnected. As another example, if an email client is built as a web
application, a user may wish to compose an email even if her laptop is disconnected
from the network and have it sent when it is reconnected. Building such applications
requires local storage in the client machine.

The HTML5 standard supports local storage, which can be accessed using
JavaScript. The code:

if (typeof(Storage) !== "undefined") { // browser supports local storage
...
}

checks if the browser supports local storage. If it does, the following functions can be
used to store, load, or delete values for a given key.
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localStorage.setItem(key, value)
localStorage.getItem(key)
localStorage.deleteItem(key)

To avoid excessive data storage, the browser may limit a web site to storing at most
some amount of data; the default maximum is typically 5 megabytes.

The above interface only allows storage/retrieval of key/value pairs. Retrieval re-
quires that a key be provided; otherwise the entire set of key/value pairs will need to
be scanned to find a required value. Applications may need to store tuples indexed on
multiple attributes, allowing efficient access based on values of any of the attributes.
HTML5 supports IndexedDB, which allows storage of JSON objects with indices on
multiple attributes. IndexedDB also supports schema versions and allows the developer
to provide code to migrate data from one schema version to the next version.

9.5.4 Mobile Application Platforms

Mobile applications (or mobile apps, for short) are widely used today, and they form
the primary user interface for a large class of users. The two most widely used mo-
bile platforms today are Android and iOS. Each of these platforms provides a way of
building applications with a graphical user interface, tailored to small touch-screen de-
vices. The graphical user interface provides a variety of standard GUI features such as
menus, lists, buttons, check boxes, progress bars, and so on, and the ability to display
text, images, and video.

Mobile apps can be downloaded and stored and used later. Thus, the user can
download apps when connected to a high-speed network and then use the app with a
lower-speed network. In contrast, web apps may get downloaded when they are used,
resulting in a lot of data transfer when a user may be connected to a lower-speed net-
work or a network where data transfer is expensive. Further, mobile apps can be better
tuned to small-sized devices than web apps, with user interfaces that work well on small
devices. Mobile apps can also be compiled to machine code, resulting in lower power
demands than web apps. More importantly, unlike (earlier generation) web apps, mo-
bile apps can store data locally, allowing offline usage. Further, mobile apps have a
well-developed authorization model, allowing them to use information and device fea-
tures such as location, cameras, contacts, and so on with user authorization.

However, one of the drawbacks of using mobile-app interfaces is that code written
for the Android platform can only run on that platform and not on iOS, and vice versa.
As a result, developers are forced to code every application twice, once for Android
and once for iOS, unless they decide to ignore one of the platforms completely, which
is not very desirable.

The ability to create applications where the same high-level code can run on ei-
ther Android or iOS is clearly very important. The React Native framework based on
JavaScript, developed by Facebook, and the Flutter framework based on the Dart lan-
guage developed by Google, are designed to allow cross-platform development. (Dart
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is a language optimized for developing user interfaces, providing features such as asyn-
chronous function invocation and functions on streams.) Both frameworks allow much
of the application code to be common for both Android and iOS, but some function-
ality can be made specific to the underlying platform in case it is not supported in the
platform-independent part of the framework.

With the wide availability of high-speed mobile networks, some of the motivation
for using mobile apps instead of web apps, such as the ability to download ahead of
time, is not as important anymore. A new generation of web apps, called Progressive
Web Apps (PWA) that combine the benefits of mobile apps with web apps is seeing
increasing usage. Such apps are built using JavaScript and HTML5 and are tailored for
mobile devices.

A key enabling feature for PWAs is the HTML5 support for local data storage, which
allows apps to be used even when the device is offline. Another enabling feature is the
support for compilation of JavaScript code; compilation is restricted to code that fol-
lows a restricted syntax, since compilation of arbitrary JavaScript code is not practical.
Such compilation is typically done just-in-time, that is, it is done when the code needs
to be executed, or if it has already been executed multiple times. Thus, by writing CPU-
heavy parts of a web application using only JavaScript features that allow compilation,
it is possible to ensure CPU and energy-efficient execution of the code on a mobile
device.

PWAs also make use of HTML5 service workers, which allow a script to run in the
background in the browser, separate from a web page. Such service workers can be used
to perform background synchronization operations between the local store and a web
service, or to receive or push notifications from a backend service. HTML5 also allows
apps to get device location (after user authorization), allowing PWAs to use location
information.

Thus, PWAs are likely to see increasing use, replacing many (but certainly not all)
of the use cases for mobile apps.

9.6 Application Architectures

To handle their complexity, large applications are often broken into several layers:

• The presentation or user-interface layer, which deals with user interaction. A sin-
gle application may have several different versions of this layer, corresponding to
distinct kinds of interfaces such as web browsers and user interfaces of mobile
phones, which have much smaller screens.

In many implementations, the presentation/user-interface layer is itself concep-
tually broken up into layers, based on the model-view-controller (MVC) architecture.
The model corresponds to the business-logic layer, described below. The view de-
fines the presentation of data; a single underlying model can have different views
depending on the specific software/device used to access the application. The con-
troller receives events (user actions), executes actions on the model, and returns
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a view to the user. The MVC architecture is used in a number of web application
frameworks.

• The business-logic layer, which provides a high-level view of data and actions on
data. We discuss the business-logic layer in more detail in Section 9.6.1.

• The data-access layer, which provides the interface between the business-logic layer
and the underlying database. Many applications use an object-oriented language
to code the business-logic layer and use an object-oriented model of data, while
the underlying database is a relational database. In such cases, the data-access
layer also provides the mapping from the object-oriented data model used by the
business logic to the relational model supported by the database. We discuss such
mappings in more detail in Section 9.6.2.

Figure 9.14 shows these layers, along with a sequence of steps taken to process a
request from the web browser. The labels on the arrows in the figure indicate the order
of the steps. When the request is received by the application server, the controller sends
a request to the model. The model processes the request, using business logic, which
may involve updating objects that are part of the model, followed by creating a result
object. The model in turn uses the data-access layer to update or retrieve information
from a database. The result object created by the model is sent to the view module,
which creates an HTML view of the result to be displayed on the web browser. The
view may be tailored based on the characteristics of the device used to view the result
—for example, whether it is a computer monitor with a large screen or a small screen
on a phone. Increasingly, the view layer is implemented by code running at the client,
instead of at the server.
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Figure 9.14 Web application architecture.
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9.6.1 The Business-Logic Layer

The business-logic layer of an application for managing a university may provide ab-
stractions of entities such as students, instructors, courses, sections, etc., and actions
such as admitting a student to the university, enrolling a student in a course, and so
on. The code implementing these actions ensures that business rules are satisfied; for
example, the code would ensure that a student can enroll for a course only if she has
already completed course prerequisites and has paid her tuition fees.

In addition, the business logic includes workflows, which describe how a particular
task that involves multiple participants is handled. For example, if a candidate applies
to the university, there is a workflow that defines who should see and approve the ap-
plication first, and if approved in the first step, who should see the application next,
and so on until either an offer is made to the student, or a rejection note is sent out.
Workflow management also needs to deal with error situations; for example, if a dead-
line for approval/rejection is not met, a supervisor may need to be informed so she can
intervene and ensure the application is processed.

9.6.2 The Data-Access Layer and Object-Relational Mapping

In the simplest scenario, where the business-logic layer uses the same data model as the
database, the data-access layer simply hides the details of interfacing with the database.
However, when the business-logic layer is written using an object-oriented programming
language, it is natural to model data as objects, with methods invoked on objects.

In early implementations, programmers had to write code for creating objects by
fetching data from the database and for storing updated objects back in the database.
However, such manual conversions between data models is cumbersome and error
prone. One approach to handling this problem was to develop a database system
that natively stores objects, and relationships between objects, and allows objects in
the database to be accessed in exactly the same way as in-memory objects. Such
databases, called object-oriented databases, were discussed in Section 8.2. However,
object-oriented databases did not achieve commercial success for a variety of technical
and commercial reasons.

An alternative approach is to use traditional relational databases to store data, but
to automate the mapping of data in relation to in-memory objects, which are created
on demand (since memory is usually not sufficient to store all data in the database), as
well as the reverse mapping to store updated objects back as relations in the database.

Several systems have been developed to implement such object-relational mappings.
We describe the Hibernate and Django ORMs next.

9.6.2.1 Hibernate ORM

The Hibernate system is widely used for mapping from Java objects to relations. Hiber-
nate provides an implementation of the Java Persistence API (JPA). In Hibernate, the
mapping from each Java class to one or more relations is specified in a mapping file.
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The mapping file can specify, for example, that a Java class called Student is mapped
to the relation student, with the Java attribute ID mapped to the attribute student.ID,
and so on. Information about the database, such as the host on which it is running and
user name and password for connecting to the database, are specified in a properties
file. The program has to open a session, which sets up the connection to the database.
Once the session is set up, a Student object stud created in Java can be stored in the
database by invoking session.save(stud). The Hibernate code generates the SQL com-
mands required to store corresponding data in the student relation.

While entities in an E-R model naturally correspond to objects in an object-oriented
language such as Java, relationships often do not. Hibernate supports the ability to map
such relationships as sets associated with objects. For example, the takes relationship
between student and section can be modeled by associating a set of sections with each
student, and a set of students with each section. Once the appropriate mapping is spec-
ified, Hibernate populates these sets automatically from the database relation takes,
and updates to the sets are reflected back to the database relation on commit.

As an example of the use of Hibernate, we create a Java class corresponding to the
student relation as follows:

@Entity public class Student {
@Id String ID;
String name;
String department;
int tot cred;

}

To be precise, the class attributes should be declared as private, and getter/setter meth-
ods should be provided to access the attributes, but we omit these details.

The mapping of the class attributes of Student to attributes of the relation student
can be specified in a mapping file, in an XML format, or more conveniently, by means
of annotations of the Java code. In the example above, the annotation @Entity denotes
that the class is mapped to a database relation, whose name by default is the class name,
and whose attributes are by default the same as the class attributes. The default relation
name and attribute names can be overridden using @Table and @Column annotations.
The @Id annotation in the example specifies that ID is the primary key attribute.

The following code snippet then creates a Student object and saves it to the
database.

Session session = getSessionFactory().openSession();
Transaction txn = session.beginTransaction();
Student stud = new Student("12328", "John Smith", "Comp. Sci.", 0);
session.save(stud);
txn.commit();
session.close();
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Hibernate automatically generates the required SQL insert statement to create a student
tuple in the database.

Objects can be retrieved either by primary key or by a query, as illustrated in the
following code snippet:

Session session = getSessionFactory().openSession();
Transaction txn = session.beginTransaction();
// Retrieve student object by identifier
Student stud1 = session.get(Student.class, "12328");

.. print out the Student information ..
List students =

session.createQuery("from Student as s order by s.ID asc").list();
for ( Iterator iter = students.iterator(); iter.hasNext(); ) {

Student stud = (Student) iter.next();
.. print out the Student information ..

}
txn.commit();
session.close();

A single object can be retrieved using the session.get() method by providing its
class and its primary key. The retrieved object can be updated in memory; when
the transaction on the ongoing Hibernate session is committed, Hibernate automat-
ically saves the updated objects by making corresponding updates on relations in the
database.

The preceding code snippet also shows a query in Hibernate’s HQL query language,
which is based on SQL but designed to allow objects to be used directly in the query.
The HQL query is automatically translated to SQL by Hibernate and executed, and the
results are converted into a list of Student objects. The for loop iterates over the objects
in this list.

These features help to provide the programmer with a high-level model of data
without bothering about the details of the relational storage. However, Hibernate, like
other object-relational mapping systems, also allows queries to be written using SQL on
the relations stored in the database; such direct database access, bypassing the object
model, can be quite useful for writing complex queries.

9.6.2.2 The Django ORM

Several ORMs have been developed for the Python language. The ORM component of
the Django framework is one of the most popular such ORMs, while SQLAlchemy is
another popular Python ORM.

Figure 9.15 shows a model definition for Student and Instructor in Django. Ob-
serve that all of the fields of student and instructor have been defined as fields in the
class Student and Instructor, with appropriate type definitions.

In addition, the relation advisor has been modeled here as a many-to-many rela-
tionship between Student and Instructor. The relationship is accessed by an attribute



434 Chapter 9 Application Development

from django.db import models

class student(models.Model):
id = models.CharField(primary key=True, max length=5)
name = models.CharField(max length=20)
dept name = models.CharField(max length=20)
tot cred = models.DecimalField(max digits=3, decimal places=0)

class instructor(models.Model):
id = models.CharField(primary key=True, max length=5)
name = models.CharField(max length=20)
dept name = models.CharField(max length=20)
salary = models.DecimalField(max digits=8, decimal places=2)
advisees = models.ManyToManyField(student, related name="advisors")

Figure 9.15 Model definition in Django.

called advisees in Instructor, which stores a set of references to Student objects. The
reverse relationship from Student to Instructor is created automatically, and the model
specifies that the reverse relationship attribute in the Student class is named advisors;
this attribute stores a set of references to Instructor objects.

The Django view person query model shown in Figure 9.16 illustrates how to ac-
cess database objects directly from the Python language, without using SQL. The expres-
sion Student.objects.filter() returns all student objects that satisfy the specified filter
condition; in this case, students with the given name. The student names are printed out
along with the names of their advisors. The expression Student.advisors.all() returns
a list of advisors (advisor objects) of a given student, whose names are then retrieved
and returned by the get names() function. The case for instructors is similar, with
instructor names being printed out along with the names of their advisees.

Django provides a tool called migrate, which creates database relations from a given
model. Models can be given version numbers. When migrate is invoked on a model
with a new version number, while an earlier version number is already in the database,
the migrate tool also generates SQL code for migrating the existing data from the old
database schema to the new database schema. It is also possible to create Django mod-
els from existing database schemas.

9.7 Application Performance

Web sites may be accessed by millions of people from across the globe, at rates of
thousands of requests per second, or even more, for the most popular sites. Ensuring
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from models import Student, Instructor
def get names(persons):

res = ""
for p in persons:

res += p.name + ", "
return res.rstrip(", ")

def person query model(request):
persontype = request.GET.get(’persontype’)
personname = request.GET.get(’personname’)
html = ""

if persontype == ’student’:
students = Student.objects.filter(name=personname)
for student in students:

advisors = students.advisors.all()
html = html + "Advisee: " + student.name + "<br>Advisors: "

+ get names(advisors) + "<br> ∖n"
else:

instructors = Instructor.objects.filter(name=personname)
for instructor in instructors:

advisees = instructor.advisees.all()
html = html+"Advisor: " + instructor.name + "<br>Advisees: "

+ get names(advisees) + "<br> ∖n"
return HttpResponse(html)

Figure 9.16 View definition in Django using models.

that requests are served with low response times is a major challenge for web-site de-
velopers. To do so, application developers try to speed up the processing of individual
requests by using techniques such as caching, and they exploit parallel processing by
using multiple application servers. We describe these techniques briefly next. Tuning
of database applications is another way to improve performance and is described in
Section 25.1.

9.7.1 Reducing Overhead by Caching

Suppose that the application code for servicing each user request connects to a
database through JDBC. Creating a new JDBC connection may take several millisec-
onds, so opening a new connection for each user request is not a good idea if very high
transaction rates are to be supported.
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The connection pooling method is used to reduce this overhead; it works as follows:
The connection pool manager (typically a part of the application server) creates a pool
(that is, a set) of open ODBC/JDBC connections. Instead of opening a new connection
to the database, the code servicing a user request (typically a servlet) asks for (requests)
a connection from the connection pool and returns the connection to the pool when the
code (servlet) completes its processing. If the pool has no unused connections when a
connection is requested, a new connection is opened to the database (taking care not
to exceed the maximum number of connections that the database system can support
concurrently). If there are many open connections that have not been used for a while,
the connection pool manager may close some of the open database connections. Many
application servers and newer ODBC/JDBC drivers provide a built-in connection pool
manager.

Details of how to create a connection pool vary by application server or JDBC
driver, but most implementations require the creation of a DataSource object using the
JDBC connection details such as the machine, port, database, user-id and password, as
well as other parameters related to connection pooling. The getConnection() method
invoked on the DataSource object gets a connection from the connection pool. Closing
the connection returns the connection to the pool.

Certain requests may result in exactly the same query being resubmitted to the
database. The cost of communication with the database can be greatly reduced by
caching the results of earlier queries and reusing them, so long as the query result
has not changed at the database. Some web servers support such query-result caching;
caching can otherwise be done explicitly in application code.

Costs can be further reduced by caching the final web page that is sent in response
to a request. If a new request comes with exactly the same parameters as a previous
request, the request does not perform any updates, and the resultant web page is in
the cache, that page can be reused to avoid the cost of recomputing the page. Caching
can be done at the level of fragments of web pages, which are then assembled to create
complete web pages.

Cached query results and cached web pages are forms of materialized views. If the
underlying database data change, the cached results must be discarded, or recomputed,
or even incrementally updated, as in materialized-view maintenance (described in Sec-
tion 16.5). Some database systems (such as Microsoft SQL Server) provide a way for
the application server to register a query with the database and get a notification from
the database when the result of the query changes. Such a notification mechanism can
be used to ensure that query results cached at the application server are up-to-date.

There are several widely used main-memory caching systems; among the more pop-
ular ones are memcached and Redis. Both systems allow applications to store data with
an associated key and retrieve data for a specified key. Thus, they act as hash-map data
structures that allow data to be stored in the main memory but also provide cache
eviction of infrequently used data.
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For example, with memcached, data can be stored using memcached.add(key,
data) and fetched using memcached.fetch(key). Instead of issuing a database query to
fetch user data with a specified key, say key1, from a relation r, an application would first
check if the required data are already cached by issuing a fetch("r:"+key1) (here, the
key is appended to the relation name, to distinguish data from different relations that
may be stored in the same memcached instance). If the fetch returns null, the database
query is issued, a copy of the data fetched from the database is stored in memcached,
and the data are then returned to the user. If the fetch does find the requested data, it
can be used without accessing the database, leading to much faster access.

A client can connect to multiple memcached instances, which may run on differ-
ent machines and store/retrieve data from any of them. How to decide what data are
stored on which instance is left to the client code. By partitioning the data storage
across multiple machines, an application can benefit from the aggregate main memory
available across all the machines.

Memcached does not support automatic invalidation of cached data, but the ap-
plication can track database changes and issue updates (using memcached set(key,
newvalue)) or deletes (using memcached delete(key)) for the key values affected by
update or deletion in the database. Redis offers very similar functionality. Both mem-
cached and Redis provide APIs in multiple languages.

9.7.2 Parallel Processing

A commonly used approach to handling such very heavy loads is to use a large number
of application servers running in parallel, each handling a fraction of the requests. A
web server or a network router can be used to route each client request to one of the
application servers. All requests from a particular client session must go to the same
application server, since the server maintains state for a client session. This property
can be ensured, for example, by routing all requests from a particular IP address to
the same application server. The underlying database is, however, shared by all the
application servers, so users see a consistent view of the database.

While the above architecture ensures that application servers do not become bot-
tlenecks, it cannot prevent the database from becoming a bottleneck, since there is only
one database server. To avoid overloading the database, application designers often use
caching techniques to reduce the number of requests to the database. In addition, par-
allel database systems, described in Chapter 21 through Chapter 23, are used when
the database needs to handle very large amounts of data, or a very large query load.
Parallel data storage systems that are accessible via web service APIs are also popular
in applications that need to scale to a very large number of users.

9.8 Application Security

Application security has to deal with several security threats and issues beyond those
handled by SQL authorization.
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The first point where security has to be enforced is in the application. To do so,
applications must authenticate users and ensure that users are only allowed to carry
out authorized tasks.

There are many ways in which an application’s security can be compromised, even
if the database system is itself secure, due to badly written application code. In this
section, we first describe several security loopholes that can permit hackers to carry
out actions that bypass the authentication and authorization checks carried out by the
application, and we explain how to prevent such loopholes. Later in the section, we
describe techniques for secure authentication, and for fine-grained authorization. We
then describe audit trails that can help in recovering from unauthorized access and
from erroneous updates. We conclude the section by describing issues in data privacy.

9.8.1 SQL Injection

In SQL injection attacks, the attacker manages to get an application to execute an SQL
query created by the attacker. In Section 5.1.1.5, we saw an example of an SQL injection
vulnerability if user inputs are concatenated directly with an SQL query and submitted
to the database. As another example of SQL injection vulnerability, consider the form
source text shown in Figure 9.3. Suppose the corresponding servlet shown in Figure
9.7 creates an SQL query string using the following Java expression:

String query = “select * from student where name like ’%”
+ name + “%’ ”

where name is a variable containing the string input by the user, and then executes the
query on the database. A malicious attacker using the web form can then type a string
such as “ ’; <some SQL statement>; – – ”, where <some SQL statement> denotes any
SQL statement that the attacker desires, in place of a valid student name. The servlet
would then execute the following string.

select * from student where name like '%'; <some SQL statement>; – – %’

The quote inserted by the attacker closes the string, the following semicolon terminates
the query, and the following text inserted by the attacker gets interpreted as a second
SQL query, while the closing quote has been commented out. Thus, the malicious user
has managed to insert an arbitrary SQL statement that is executed by the application.
The statement can cause significant damage, since it can perform any action on the
database, bypassing all security measures implemented in the application code.

As discussed in Section 5.1.1.5, to avoid such attacks, it is best to use prepared
statements to execute SQL queries. When setting a parameter of a prepared query,
JDBC automatically adds escape characters so that the user-supplied quote would no
longer be able to terminate the string. Equivalently, a function that adds such escape
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characters could be applied on input strings before they are concatenated with the SQL
query, instead of using prepared statements.

Another source of SQL-injection risk comes from applications that create queries
dynamically, based on selection conditions and ordering attributes specified in a form.
For example, an application may allow a user to specify what attribute should be used
for sorting the results of a query. An appropriate SQL query is constructed, based on
the attribute specified. Suppose the application takes the attribute name from a form,
in the variable orderAttribute, and creates a query string such as the following:

String query = “select * from takes order by ” + orderAttribute;

A malicious user can send an arbitrary string in place of a meaningful orderAt-
tribute value, even if the HTML form used to get the input tried to restrict the allowed
values by providing a menu. To avoid this kind of SQL injection, the application should
ensure that the orderAttribute variable value is one of the allowed values (in our ex-
ample, attribute names) before appending it.

9.8.2 Cross-Site Scripting and Request Forgery

A web site that allows users to enter text, such as a comment or a name, and then stores
it and later displays it to other users, is potentially vulnerable to a kind of attack called a
cross-site scripting (XSS) attack. In such an attack, a malicious user enters code written
in a client-side scripting language such as JavaScript or Flash instead of entering a valid
name or comment. When a different user views the entered text, the browser executes
the script, which can carry out actions such as sending private cookie information back
to the malicious user or even executing an action on a different web server that the user
may be logged into.

For example, suppose the user happens to be logged into her bank account at the
time the script executes. The script could send cookie information related to the bank
account login back to the malicious user, who could use the information to connect to
the bank’s web server, fooling it into believing that the connection is from the original
user. Or the script could access appropriate pages on the bank’s web site, with appro-
priately set parameters, to execute a money transfer. In fact, this particular problem
can occur even without scripting by simply using a line of code such as

<img src=
"https://mybank.com/transfermoney?amount=1000&toaccount=14523">

assuming that the URL mybank.com/transfermoney accepts the specified parameters
and carries out a money transfer. This latter kind of vulnerability is also called cross-site
request forgery or XSRF (sometimes also called CSRF).

XSS can be done in other ways, such as luring a user into visiting a web site that has
malicious scripts embedded in its pages. There are other more complex kinds of XSS
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and XSRF attacks, which we shall not get into here. To protect against such attacks,
two things need to be done:

• Prevent your web site from being used to launch XSS or XSRF attacks.
The simplest technique is to disallow any HTML tags whatsoever in text input by
users. There are functions that detect or strip all such tags. These functions can
be used to prevent HTML tags, and as a result, any scripts, from being displayed to
other users. In some cases HTML formatting is useful, and in that case functions
that parse the text and allow limited HTML constructs but disallow other dangerous
constructs can be used instead; these must be designed carefully, since something
as innocuous as an image include could potentially be dangerous in case there is
a bug in the image display software that can be exploited.

• Protect your web site from XSS or XSRF attacks launched from other sites.
If the user has logged into your web site and visits a different web site vulnerable
to XSS, the malicious code executing on the user’s browser could execute actions
on your web site or pass session information related to your web site back to the
malicious user, who could try to exploit it. This cannot be prevented altogether,
but you can take a few steps to minimize the risk.

° The HTTP protocol allows a server to check the referer of a page access, that
is, the URL of the page that had the link that the user clicked on to initiate the
page access. By checking that the referer is valid, for example, that the referer
URL is a page on the same web site, XSS attacks that originated on a different
web page accessed by the user can be prevented.

° Instead of using only the cookie to identify a session, the session could also
be restricted to the IP address from which it was originally authenticated. As a
result, even if a malicious user gets a cookie, he may not be able to log in from
a different computer.

° Never use a GET method to perform any updates. This prevents attacks using
<img src ..> such as the one we saw earlier. In fact, the HTTP standard specifies
that GET methods should not perform any updates.

° If you use a web application framework like Django, make sure to use the
XSRF/CSRF protection mechanisms provided by the framework.

9.8.3 Password Leakage

Another problem that application developers must deal with is storing passwords in
clear text in the application code. For example, programs such as JSP scripts often
contain passwords in clear text. If such scripts are stored in a directory accessible by
a web server, an external user may be able to access the source code of the script and
get access to the password for the database account used by the application. To avoid
such problems, many application servers provide mechanisms to store passwords in
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encrypted form, which the server decrypts before passing it on to the database. Such a
feature removes the need for storing passwords as clear text in application programs.
However, if the decryption key is also vulnerable to being exposed, this approach is not
fully effective.

As another measure against compromised database passwords, many database sys-
tems allow access to the database to be restricted to a given set of internet addresses,
typically, the machines running the application servers. Attempts to connect to the
database from other internet addresses are rejected. Thus, unless the malicious user
is able to log into the application server, she cannot do any damage even if she gains
access to the database password.

9.8.4 Application-Level Authentication

Authentication refers to the task of verifying the identity of a person/software connect-
ing to an application. The simplest form of authentication consists of a secret password
that must be presented when a user connects to the application. Unfortunately, pass-
words are easily compromised, for example, by guessing, or by sniffing of packets on
the network if the passwords are not sent encrypted. More robust schemes are needed
for critical applications, such as online bank accounts. Encryption is the basis for more
robust authentication schemes. Authentication through encryption is addressed in Sec-
tion 9.9.3.

Many applications use two-factor authentication, where two independent factors
(i.e., pieces of information or processes) are used to identify a user. The two factors
should not share a common vulnerability; for example, if a system merely required
two passwords, both could be vulnerable to leakage in the same manner (by network
sniffing, or by a virus on the computer used by the user, for example). While biometrics
such as fingerprints or iris scanners can be used in situations where a user is physically
present at the point of authentication, they are not very meaningful across a network.

Passwords are used as the first factor in most such two-factor authentication
schemes. Smart cards or other encryption devices connected through the USB inter-
face, which can be used for authentication based on encryption techniques (see Section
9.9.3), are widely used as second factors.

One-time password devices, which generate a new pseudo-random number (say)
every minute are also widely used as a second factor. Each user is given one of these
devices and must enter the number displayed by the device at the time of authenti-
cation, along with the password, to authenticate himself. Each device generates a dif-
ferent sequence of pseudo-random numbers. The application server can generate the
same sequence of pseudo-random numbers as the device given to the user, stopping at
the number that would be displayed at the time of authentication, and verify that the
numbers match. This scheme requires that the clock in the device and at the server are
synchronized reasonably closely.

Yet another second-factor approach is to send an SMS with a (randomly generated)
one-time password to the user’s phone (whose number is registered earlier) whenever
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the user wishes to log in to the application. The user must possess a phone with that
number to receive the SMS and then enter the one-time password, along with her regular
password, to be authenticated.

It is worth noting that even with two-factor authentication, users may still be vulner-
able to man-in-the-middle attacks. In such attacks, a user attempting to connect to the
application is diverted to a fake web site, which accepts the password (including second
factor passwords) from the user and uses it immediately to authenticate to the original
application. The HTTPS protocol, described in Section 9.9.3.2, is used to authenticate
the web site to the user (so the user does not connect to a fake site believing it to be the
intended site). The HTTPS protocol also encrypts data and prevents man-in-the-middle
attacks.

When users access multiple web sites, it is often annoying for a user to have to
authenticate herself to each site separately, often with different passwords on each site.
There are systems that allow the user to authenticate herself to one central authenti-
cation service, and other web sites and applications can authenticate the user through
the central authentication service; the same password can then be used to access mul-
tiple sites. The LDAP protocol is widely used to implement such a central point of
authentication for applications within a single organization; organizations implement
an LDAP server containing user names and password information, and applications
use the LDAP server to authenticate users.

In addition to authenticating users, a central authentication service can provide
other services, for example, providing information about the user such as name, email,
and address information, to the application. This obviates the need to enter this infor-
mation separately in each application. LDAP can be used for this task, as described
in Section 25.5.2. Other directory systems such Microsoft’s Active Directories also
provide mechanisms for authenticating users as well as for providing user information.

A single sign-on system further allows the user to be authenticated once, and mul-
tiple applications can then verify the user’s identity through an authentication service
without requiring reauthentication. In other words, once a user is logged in at one site,
he does not have to enter his user name and password at other sites that use the same
single sign-on service. Such single sign-on mechanisms have long been used in network
authentication protocols such as Kerberos, and implementations are now available for
web applications.

The Security Assertion Markup Language (SAML) is a protocol for exchanging
authentication and authorization information between different security domains, to
provide cross-organization single sign-on. For example, suppose an application needs
to provide access to all students from a particular university, say Yale. The university
can set up a web-based service that carries out authentication. Suppose a user connects
to the application with a username such as “joe@yale.edu”. The application, instead of
directly authenticating a user, diverts the user to Yale University’s authentication ser-
vice, which authenticates the user and then tells the application who the user is and
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may provide some additional information such as the category of the user (student or
instructor) or other relevant information. The user’s password and other authentication
factors are never revealed to the application, and the user need not register explicitly
with the application. However, the application must trust the university’s authentica-
tion service when authenticating a user.

The OpenID protocol is an alternative for single sign-on across organizations,
which works in a manner similar to SAML. The OAuth protocol is another protocol
that allows users to authorize access to certain resources, via sharing of an authoriza-
tion token.

9.8.5 Application-Level Authorization

Although the SQL standard supports a fairly flexible system of authorization based on
roles (described in Section 4.7), the SQL authorization model plays a very limited role
in managing user authorizations in a typical application. For instance, suppose you
want all students to be able to see their own grades, but not the grades of anyone else.
Such authorization cannot be specified in SQL for at least two reasons:

1. Lack of end-user information. With the growth in the web, database accesses come
primarily from web application servers. The end users typically do not have indi-
vidual user identifiers on the database itself, and indeed there may only be a single
user identifier in the database corresponding to all users of an application server.
Thus, authorization specification in SQL cannot be used in the above scenario.

It is possible for an application server to authenticate end users and then pass
the authentication information on to the database. In this section we will assume
that the function syscontext.user id() returns the identifier of the application user
on whose behalf a query is being executed. 6

2. Lack of fine-grained authorization. Authorization must be at the level of individual
tuples if we are to authorize students to see only their own grades. Such autho-
rization is not possible in the current SQL standard, which permits authorization
only on an entire relation or view, or on specified attributes of relations or views.

We could try to get around this limitation by creating for each student a view
on the takes relation that shows only that student’s grades. While this would work
in principle, it would be extremely cumbersome since we would have to create one
such view for every single student enrolled in the university, which is completely
impractical.7

An alternative is to create a view of the form

6In Oracle, a JDBC connection using Oracle’s JDBC drivers can set the end user identifier using the method
OracleConnection.setClientIdentifier(userId), and an SQL query can use the function sys context('USERENV',
'CLIENT IDENTIFIER') to retrieve the user identifier.
7Database systems are designed to manage large relations but to manage schema information such as views in a way
that assumes smaller data volumes so as to enhance overall performance.
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create view studentTakes as
select *
from takes
where takes.ID= syscontext.user id()

Users are then given authorization to this view, rather than to the underlying takes
relation. However, queries executed on behalf of students must now be written on
the view studentTakes, rather than on the original takes relation, whereas queries
executed on behalf of instructors may need to use a different view. The task of
developing applications becomes more complex as a result.

The task of authorization is often typically carried out entirely in the application,
bypassing the authorization facilities of SQL. At the application level, users are autho-
rized to access specific interfaces, and they may further be restricted to view or update
certain data items only.

While carrying out authorization in the application gives a great deal of flexibility
to application developers, there are problems, too.

• The code for checking authorization becomes intermixed with the rest of the ap-
plication code.

• Implementing authorization through application code, rather than specifying it
declaratively in SQL, makes it hard to ensure the absence of loopholes. Because
of an oversight, one of the application programs may not check for authorization,
allowing unauthorized users access to confidential data.

Verifying that all application programs make all required authorization checks involves
reading through all the application-server code, a formidable task in a large system. In
other words, applications have a very large “surface area,” making the task of protecting
the application significantly harder. And in fact, security loopholes have been found in
a variety of real-life applications.

In contrast, if a database directly supported fine-grained authorization, authoriza-
tion policies could be specified and enforced at the SQL level, which has a much smaller
surface area. Even if some of the application interfaces inadvertently omit required
authorization checks, the SQL-level authorization could prevent unauthorized actions
from being executed.

Some database systems provide mechanisms for row-level authorization as we saw
in Section 4.7.7. For example, the Oracle Virtual Private Database (VPD) allows a sys-
tem administrator to associate a function with a relation; the function returns a predi-
cate that must be added to any query that uses the relation (different functions can be
defined for relations that are being updated). For example, using our syntax for retriev-
ing application user identifiers, the function for the takes relation can return a predicate
such as:
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ID = sys context.user id()

This predicate is added to the where clause of every query that uses the takes relation.
As a result (assuming that the application program sets the user id value to the student’s
ID), each student can see only the tuples corresponding to courses that she took.

As we discussed in Section 4.7.7, a potential pitfall with adding a predicate as
described above is that it may change the meaning of a query. For example, if a user
wrote a query to find the average grade over all courses, she would end up getting the
average of her grades, not all grades. Although the system would give the “right” answer
for the rewritten query, that answer would not correspond to the query the user may
have thought she was submitting.

PostgreSQL and Microsoft SQL Server offer row-level authorization support with
similar functionality to Oracle VPD. More information on Oracle VPD and PostgreSQL
and SQL Server row-level authorization may be found in their respective system manu-
als available online.

9.8.6 Audit Trails

An audit trail is a log of all changes (inserts, deletes, and updates) to the application
data, along with information such as which user performed the change and when the
change was performed. If application security is breached, or even if security was not
breached, but some update was carried out erroneously, an audit trail can (a) help find
out what happened, and who may have carried out the actions, and (b) aid in fixing
the damage caused by the security breach or erroneous update.

For example, if a student’s grade is found to be incorrect, the audit log can be
examined to locate when and how the grade was updated, as well as to find which user
carried out the updates. The university could then also use the audit trail to trace all the
updates performed by this user in order to find other incorrect or fraudulent updates,
and then correct them.

Audit trails can also be used to detect security breaches where a user’s account is
compromised and accessed by an intruder. For example, each time a user logs in, she
may be informed about all updates in the audit trail that were done from that login
in the recent past; if the user sees an update that she did not carry out, it is likely the
account has been compromised.

It is possible to create a database-level audit trail by defining appropriate triggers on
relation updates (using system-defined variables that identify the user name and time).
However, many database systems provide built-in mechanisms to create audit trails
that are much more convenient to use. Details of how to create audit trails vary across
database systems, and you should refer to the database-system manuals for details.

Database-level audit trails are usually insufficient for applications, since they are
usually unable to track who was the end user of the application. Further, updates are
recorded at a low level, in terms of updates to tuples of a relation, rather than at a
higher level, in terms of the business logic. Applications, therefore, usually create a
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higher-level audit trail, recording, for example, what action was carried out, by whom,
when, and from which IP address the request originated.

A related issue is that of protecting the audit trail itself from being modified or
deleted by users who breach application security. One possible solution is to copy the
audit trail to a different machine, to which the intruder would not have access, with
each record in the trail copied as soon as it is generated. A more robust solution is to
use blockchain techniques, which are described in Chapter 26; blockchain techniques
store logs in multiple machines and use a hashing mechanism that makes it very difficult
for an intruder to modify or delete data without being detected.

9.8.7 Privacy

In a world where an increasing amount of personal data are available online, people
are increasingly worried about the privacy of their data. For example, most people
would want their personal medical data to be kept private and not revealed publicly.
However, the medical data must be made available to doctors and emergency medical
technicians who treat the patient. Many countries have laws on privacy of such data
that define when and to whom the data may be revealed. Violation of privacy law can
result in criminal penalties in some countries. Applications that access such private
data must be built carefully, keeping the privacy laws in mind.

On the other hand, aggregated private data can play an important role in many
tasks such as detecting drug side effects, or in detecting the spread of epidemics. How to
make such data available to researchers carrying out such tasks without compromising
the privacy of individuals is an important real-world problem. As an example, suppose
a hospital hides the name of the patient but provides a researcher with the date of birth
and the postal code of the patient (both of which may be useful to the researcher).
Just these two pieces of information can be used to uniquely identify the patient in
many cases (using information from an external database), compromising his privacy.
In this particular situation, one solution would be to give the year of birth but not the
date of birth, along with the address, which may suffice for the researcher. This would
not provide enough information to uniquely identify most individuals.8

As another example, web sites often collect personal data such as address, tele-
phone, email, and credit-card information. Such information may be required to carry
out a transaction such as purchasing an item from a store. However, the customer may
not want the information to be made available to other organizations, or may want part
of the information (such as credit-card numbers) to be erased after some period of time
as a way to prevent it from falling into unauthorized hands in the event of a security
breach. Many web sites allow customers to specify their privacy preferences, and those
web sites must then ensure that these preferences are respected.

8For extremely old people, who are relatively rare, even the year of birth plus postal code may be enough to uniquely
identify the individual, so a range of values, such as 90 years or older, may be provided instead of the actual age for
people older than 90 years.
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9.9 Encryption and Its Applications

Encryption refers to the process of transforming data into a form that is unreadable,
unless the reverse process of decryption is applied. Encryption algorithms use an en-
cryption key to perform encryption, and they require a decryption key (which could
be the same as the encryption key, depending on the encryption algorithm used) to
perform decryption.

The oldest uses of encryption were for transmitting messages, encrypted using a
secret key known only to the sender and the intended receiver. Even if the message is
intercepted by an enemy, the enemy, not knowing the key, will not be able to decrypt and
understand the message. Encryption is widely used today for protecting data in transit
in a variety of applications such as data transfer on the internet, and on cell-phone
networks. Encryption is also used to carry out other tasks, such as authentication, as
we will see in Section 9.9.3.

In the context of databases, encryption is used to store data in a secure way, so
that even if the data are acquired by an unauthorized user (e.g., a laptop computer
containing the data is stolen), the data will not be accessible without a decryption key.

Many databases today store sensitive customer information, such as credit-card
numbers, names, fingerprints, signatures, and identification numbers such as, in the
United States, social security numbers. A criminal who gets access to such data can
use them for a variety of illegal activities, such as purchasing goods using a credit-card
number, or even acquiring a credit card in someone else’s name. Organizations such as
credit-card companies use knowledge of personal information as a way of identifying
who is requesting a service or goods. Leakage of such personal information allows a
criminal to impersonate someone else and get access to service or goods; such imper-
sonation is referred to as identity theft. Thus, applications that store such sensitive data
must take great care to protect them from theft.

To reduce the chance of sensitive information being acquired by criminals, many
countries and states today require by law that any database storing such sensitive in-
formation must store the information in an encrypted form. A business that does not
protect its data thus could be held criminally liable in case of data theft. Thus, encryp-
tion is a critical component of any application that stores such sensitive information.

9.9.1 Encryption Techniques

There are a vast number of techniques for the encryption of data. Simple encryption
techniques may not provide adequate security, since it may be easy for an unauthorized
user to break the code. As an example of a weak encryption technique, consider the
substitution of each character with the next character in the alphabet. Thus,

Perryridge

becomes

Qfsszsjehf
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If an unauthorized user sees only “Qfsszsjehf,” she probably has insufficient infor-
mation to break the code. However, if the intruder sees a large number of encrypted
branch names, she could use statistical data regarding the relative frequency of char-
acters to guess what substitution is being made (for example, E is the most common
letter in English text, followed by T, A, O, N, I , and so on).

A good encryption technique has the following properties:

• It is relatively simple for authorized users to encrypt and decrypt data.

• It depends not on the secrecy of the algorithm, but rather on a parameter of the al-
gorithm called the encryption key, which is used to encrypt data. In a symmetric-key
encryption technique, the encryption key is also used to decrypt data. In contrast,
in public-key (also known as asymmetric-key) encryption techniques, there are two
different keys, the public key and the private key, used to encrypt and decrypt the
data.

• Its decryption key is extremely difficult for an intruder to determine, even if the
intruder has access to encrypted data. In the case of asymmetric-key encryption,
it is extremely difficult to infer the private key even if the public key is available.

The Advanced Encryption Standard (AES) is a symmetric-key encryption algorithm
that was adopted as an encryption standard by the U.S. government in 2000 and is now
widely used. The standard is based on the Rijndael algorithm (named for the inventors
V. Rijmen and J. Daemen). The algorithm operates on a 128-bit block of data at a time,
while the key can be 128, 192, or 256 bits in length. The algorithm runs a series of steps
to jumble up the bits in a data block in a way that can be reversed during decryption,
and it performs an XOR operation with a 128-bit “round key” that is derived from the
encryption key. A new round key is generated from the encryption key for each block
of data that is encrypted. During decryption, the round keys are generated again from
the encryption key and the encryption process is reversed to recover the original data.
An earlier standard called the Data Encryption Standard (DES), adopted in 1977, was
very widely used earlier.

For any symmetric-key encryption scheme to work, authorized users must be pro-
vided with the encryption key via a secure mechanism. This requirement is a major
weakness, since the scheme is no more secure than the security of the mechanism by
which the encryption key is transmitted.

Public-key encryption is an alternative scheme that avoids some of the problems
faced by symmetric-key encryption techniques. It is based on two keys: a public key and
a private key. Each user Ui has a public key Ei and a private key Di. All public keys are
published: They can be seen by anyone. Each private key is known to only the one user
to whom the key belongs. If user U1 wants to store encrypted data, U1 encrypts them
using public key E1. Decryption requires the private key D1.

Because the encryption key for each user is public, it is possible to exchange infor-
mation securely by this scheme. If user U1 wants to share data with U2, U1 encrypts
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the data using E2, the public key of U2. Since only user U2 knows how to decrypt the
data, information can be transferred securely.

For public-key encryption to work, there must be a scheme for encryption such
that it is infeasible (that is, extremely hard) to deduce the private key, given the public
key. Such a scheme does exist and is based on these conditions:

• There is an efficient algorithm for testing whether or not a number is prime.

• No efficient algorithm is known for finding the prime factors of a number.
For purposes of this scheme, data are treated as a collection of integers. We create a

public key by computing the product of two large prime numbers: P1 and P2. The private
key consists of the pair (P1, P2). The decryption algorithm cannot be used successfully
if only the product P1P2 is known; it needs the individual values P1 and P2. Since all that
is published is the product P1P2, an unauthorized user would need to be able to factor
P1P2 to steal data. By choosing P1 and P2 to be sufficiently large (over 100 digits),
we can make the cost of factoring P1P2 prohibitively high (on the order of years of
computation time, on even the fastest computers).

The details of public-key encryption and the mathematical justification of this tech-
nique’s properties are referenced in the bibliographical notes.

Although public-key encryption by this scheme is secure, it is also computationally
very expensive. A hybrid scheme widely used for secure communication is as follows:
a symmetric encryption key (based, for example, on AES) is randomly generated and
exchanged in a secure manner using a public-key encryption scheme, and symmetric-
key encryption using that key is used on the data transmitted subsequently.

Encryption of small values, such as identifiers or names, is made complicated by
the possibility of dictionary attacks, particularly if the encryption key is publicly avail-
able. For example, if date-of-birth fields are encrypted, an attacker trying to decrypt a
particular encrypted value e could try encrypting every possible date of birth until he
finds one whose encrypted value matches e. Even if the encryption key is not publicly
available, statistical information about data distributions can be used to figure out what
an encrypted value represents in some cases, such as age or address. For example, if
the age 18 is the most common age in a database, the encrypted age value that occurs
most often can be inferred to represent 18.

Dictionary attacks can be deterred by adding extra random bits to the end of the
value before encryption (and removing them after decryption). Such extra bits, referred
to as an initialization vector in AES, or as salt bits in other contexts, provide good
protection against dictionary attack.

9.9.2 Encryption Support in Databases

Many file systems and database systems today support encryption of data. Such en-
cryption protects the data from someone who is able to access the data but is not able
to access the decryption key. In the case of file-system encryption, the data to be en-
crypted are usually large files and directories containing information about files.
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In the context of databases, encryption can be done at several different levels. At
the lowest level, the disk blocks containing database data can be encrypted, using a
key available to the database-system software. When a block is retrieved from disk, it
is first decrypted and then used in the usual fashion. Such disk-block-level encryption
protects against attackers who can access the disk contents but do not have access to
the encryption key.

At the next higher level, specified (or all) attributes of a relation can be stored in
encrypted form. In this case, each attribute of a relation could have a different encryp-
tion key. Many databases today support encryption at the level of specified attributes
as well as at the level of an entire relation, or all relations in a database. Encryption
of specified attributes minimizes the overhead of decryption by allowing applications
to encrypt only attributes that contain sensitive values such as credit-card numbers.
Encryption also then needs to use extra random bits to prevent dictionary attacks, as
described earlier. However, databases typically do not allow primary and foreign key
attributes to be encrypted, and they do not support indexing on encrypted attributes.

A decryption key is obviously required to get access to encrypted data. A single
master encryption key may be used for all the encrypted data; with attribute level en-
cryption, different encryption keys could be used for different attributes. In this case,
the decryption keys for different attributes can be stored in a file or relation (often
referred to as “wallet”), which is itself encrypted using a master key.

A connection to the database that needs to access encrypted attributes must then
provide the master key; unless this is provided, the connection will not be able to access
encrypted data. The master key would be stored in the application program (typically
on a different computer), or memorized by the database user, and provided when the
user connects to the database.

Encryption at the database level has the advantage of requiring relatively low time
and space overhead and does not require modification of applications. For example, if
data in a laptop computer database need to be protected from theft of the computer
itself, such encryption can be used. Similarly, someone who gets access to backup tapes
of a database would not be able to access the data contained in the backups without
knowing the decryption key.

An alternative to performing encryption in the database is to perform it before
the data are sent to the database. The application must then encrypt the data before
sending it to the database and decrypt the data when they are retrieved. This approach
to data encryption requires significant modifications to be done to the application,
unlike encryption performed in a database system.

9.9.3 Encryption and Authentication

Password-based authentication is used widely by operating systems as well as database
systems. However, the use of passwords has some drawbacks, especially over a network.
If an eavesdropper is able to “sniff” the data being sent over the network, she may be
able to find the password as it is being sent across the network. Once the eavesdropper
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has a user name and password, she can connect to the database, pretending to be the
legitimate user.

A more secure scheme involves a challenge-response system. The database system
sends a challenge string to the user. The user encrypts the challenge string using a secret
password as encryption key and then returns the result. The database system can verify
the authenticity of the user by decrypting the string with the same secret password and
checking the result with the original challenge string. This scheme ensures that no
passwords travel across the network.

Public-key systems can be used for encryption in challenge–response systems. The
database system encrypts a challenge string using the user’s public key and sends it to
the user. The user decrypts the string using her private key and returns the result to
the database system. The database system then checks the response. This scheme has
the added benefit of not storing the secret password in the database, where it could
potentially be seen by system administrators.

Storing the private key of a user on a computer (even a personal computer) has
the risk that if the computer is compromised, the key may be revealed to an attacker
who can then masquerade as the user. Smart cards provide a solution to this problem.
In a smart card, the key can be stored on an embedded chip; the operating system of
the smart card guarantees that the key can never be read, but it allows data to be sent
to the card for encryption or decryption, using the private key.9

9.9.3.1 Digital Signatures

Another interesting application of public-key encryption is in digital signatures to verify
authenticity of data; digital signatures play the electronic role of physical signatures on
documents. The private key is used to “sign,” that is, encrypt, data, and the signed data
can be made public. Anyone can verify the signature by decrypting the data using the
public key, but no one could have generated the signed data without having the private
key. (Note the reversal of the roles of the public and private keys in this scheme.) Thus,
we can authenticate the data; that is, we can verify that the data were indeed created
by the person who is supposed to have created them.

Furthermore, digital signatures also serve to ensure nonrepudiation. That is, in case
the person who created the data later claims she did not create them (the electronic
equivalent of claiming not to have signed the check), we can prove that that person
must have created the data (unless her private key was leaked to others).

9.9.3.2 Digital Certificates

Authentication is, in general, a two-way process, where each of a pair of interacting
entities authenticates itself to the other. Such pairwise authentication is needed even

9Smart cards provide other functionality too, such as the ability to store cash digitally and make payments, which is
not relevant in our context.



452 Chapter 9 Application Development

when a client contacts a web site, to prevent a malicious site from masquerading as a
legal web site. Such masquerading could be done, for example, if the network routers
were compromised and data rerouted to the malicious site.

For a user to ensure that she is interacting with an authentic web site, she must
have the site’s public key. This raises the problem of how the user can get the public
key—if it is stored on the web site, the malicious site could supply a different key, and
the user would have no way of verifying if the supplied public key is itself authentic.
Authentication can be handled by a system of digital certificates, whereby public keys
are signed by a certification agency, whose public key is well known. For example, the
public keys of the root certification authorities are stored in standard web browsers. A
certificate issued by them can be verified by using the stored public keys.

A two-level system would place an excessive burden of creating certificates on the
root certification authorities, so a multilevel system is used instead, with one or more
root certification authorities and a tree of certification authorities below each root.
Each authority (other than the root authorities) has a digital certificate issued by its
parent.

A digital certificate issued by a certification authority A consists of a public key KA
and an encrypted text E that can be decoded by using the public key KA. The encrypted
text contains the name of the party to whom the certificate was issued and her public
key Kc. In case the certification authority A is not a root certification authority, the
encrypted text also contains the digital certificate issued to A by its parent certification
authority; this certificate authenticates the key KA itself. (That certificate may in turn
contain a certificate from a further parent authority, and so on.)

To verify a certificate, the encrypted text E is decrypted by using the public key
KA to retrieve the name of the party (i.e., the name of the organization owning the
web site); additionally, if A is not a root authority whose public key is known to the
verifier, the public key KA is verified recursively by using the digital certificate con-
tained within E; recursion terminates when a certificate issued by the root authority is
reached. Verifying the certificate establishes the chain through which a particular site
was authenticated and provides the name and authenticated public key for the site.

Digital certificates are widely used to authenticate web sites to users, to prevent ma-
licious sites from masquerading as other web sites. In the HTTPS protocol (the secure
version of the HTTP protocol), the site provides its digital certificate to the browser,
which then displays it to the user. If the user accepts the certificate, the browser then
uses the provided public key to encrypt data. A malicious site will have access to the
certificate, but not the private key, and will thus not be able to decrypt the data sent
by the browser. Only the authentic site, which has the corresponding private key, can
decrypt the data sent by the browser. We note that public-/private-key encryption and
decryption costs are much higher than encryption/decryption costs using symmetric
private keys. To reduce encryption costs, HTTPS actually creates a one-time symmetric
key after authentication and uses it to encrypt data for the rest of the session.
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Digital certificates can also be used for authenticating users. The user must submit
a digital certificate containing her public key to a site, which verifies that the certificate
has been signed by a trusted authority. The user’s public key can then be used in a
challenge-response system to ensure that the user possesses the corresponding private
key, thereby authenticating the user.

9.10 Summary

• Application programs that use databases as back ends and interact with users have
been around since the 1960s. Application architectures have evolved over this pe-
riod. Today most applications use web browsers as their front end, and a database
as their back end, with an application server in between.

• HTML provides the ability to define interfaces that combine hyperlinks with forms
facilities. Web browsers communicate with web servers by the HTTP protocol. Web
servers can pass on requests to application programs and return the results to the
browser.

• Web servers execute application programs to implement desired functionality.
Servlets are a widely used mechanism to write application programs that run as
part of the web server process, in order to reduce overhead. There are also many
server-side scripting languages that are interpreted by the web server and provide
application-program functionality as part of the web server.

• There are several client-side scripting languages—JavaScript is the most widely
used—that provide richer user interaction at the browser end.

• Complex applications usually have a multilayer architecture, including a model
implementing business logic, a controller, and a view mechanism to display results.
They may also include a data access layer that implements an object-relational
mapping. Many applications implement and use web services, allowing functions
to be invoked over HTTP.

• Techniques such as caching of various forms, including query result caching and
connection pooling, and parallel processing are used to improve application per-
formance.

• Application developers must pay careful attention to security, to prevent attacks
such as SQL injection attacks and cross-site scripting attacks.

• SQL authorization mechanisms are coarse grained and of limited value to appli-
cations that deal with large numbers of users. Today application programs imple-
ment fine-grained, tuple-level authorization, dealing with a large number of ap-
plication users, completely outside the database system. Database extensions to
provide tuple-level access control and to deal with large numbers of application
users have been developed, but are not standard as yet.
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• Protecting the privacy of data are an important task for database applications.
Many countries have legal requirements on protection of certain kinds of data,
such as credit-card information or medical data.

• Encryption plays a key role in protecting information and in authentication of
users and web sites. Symmetric-key encryption and public-key encryption are two
contrasting but widely used approaches to encryption. Encryption of certain sen-
sitive data stored in databases is a legal requirement in many countries and states.

• Encryption also plays a key role in authentication of users to applications, of Web
sites to users, and for digital signatures.

Review Terms

• Application programs

• Web interfaces to databases

• HTML

• Hyperlinks

• Uniform resource locator (URL)

• Forms

• HyperText Transfer Protocol
(HTTP)

• Connectionless protocols

• Cookie

• Session

• Servlets and Servlet sessions

• Server-side scripting

• Java Server Pages (JSP)

• PHP

• Client-side scripting

• JavaScript

• Document Object Model (DOM)

• Ajax

• Progressive Web Apps

• Application architecture

• Presentation layer

• Model-view-controller (MVC)
architecture

• Business-logic layer

• Data-access layer

• Object-relational mapping

• Hibernate

• Django

• Web services

• RESTful web services

• Web application frameworks

• Connection pooling

• Query result caching

• Application security

• SQL injection

• Cross-site scripting (XSS)

• Cross-site request forgery (XSRF)

• Authentication

• Two-factor authentication

• Man-in-the-middle attack

• Central authentication

• Single sign-on

• OpenID

• Authorization

• Virtual Private Database (VPD)

• Audit trail
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• Encryption

• Symmetric-key encryption

• Public-key encryption

• Dictionary attack

• Challenge–response

• Digital signatures

• Digital certificates

Practice Exercises

9.1 What is the main reason why servlets give better performance than programs
that use the common gateway interface (CGI), even though Java programs gen-
erally run slower than C or C++ programs?

9.2 List some benefits and drawbacks of connectionless protocols over protocols
that maintain connections.

9.3 Consider a carelessly written web application for an online-shopping site, which
stores the price of each item as a hidden form variable in the web page sent to
the customer; when the customer submits the form, the information from the
hidden form variable is used to compute the bill for the customer. What is the
loophole in this scheme? (There was a real instance where the loophole was
exploited by some customers of an online-shopping site before the problem was
detected and fixed.)

9.4 Consider another carelessly written web application which uses a servlet that
checks if there was an active session but does not check if the user is autho-
rized to access that page, instead depending on the fact that a link to the page is
shown only to authorized users. What is the risk with this scheme? (There was
a real instance where applicants to a college admissions site could, after logging
into the web site, exploit this loophole and view information they were not au-
thorized to see; the unauthorized access was, however, detected, and those who
accessed the information were punished by being denied admission.)

9.5 Why is it important to open JDBC connections using the try-with-resources (try
(…){ … } ) syntax?

9.6 List three ways in which caching can be used to speed up web server perfor-
mance.

9.7 The netstat command (available on Linux and on Windows) shows the active
network connections on a computer. Explain how this command can be used to
find out if a particular web page is not closing connections that it opened, or if
connection pooling is used, not returning connections to the connection pool.
You should account for the fact that with connection pooling, the connection
may not get closed immediately.
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9.8 Testing for SQL-injection vulnerability:

a. Suggest an approach for testing an application to find if it is vulnerable to
SQL injection attacks on text input.

b. Can SQL injection occur with forms of HTML input other than text boxes?
If so, how would you test for vulnerability?

9.9 A database relation may have the values of certain attributes encrypted for se-
curity. Why do database systems not support indexing on encrypted attributes?
Using your answer to this question, explain why database systems do not allow
encryption of primary-key attributes.

9.10 Exercise 9.9 addresses the problem of encryption of certain attributes. However,
some database systems support encryption of entire databases. Explain how the
problems raised in Exercise 9.9 are avoided if the entire database is encrypted.

9.11 Suppose someone impersonates a company and gets a certificate from a
certificate-issuing authority. What is the effect on things (such as purchase or-
ders or programs) certified by the impersonated company, and on things certi-
fied by other companies?

9.12 Perhaps the most important data items in any database system are the passwords
that control access to the database. Suggest a scheme for the secure storage
of passwords. Be sure that your scheme allows the system to test passwords
supplied by users who are attempting to log into the system.

Exercises

9.13 Write a servlet and associated HTML code for the following very simple appli-
cation: A user is allowed to submit a form containing a value, say n, and should
get a response containing n “*” symbols.

9.14 Write a servlet and associated HTML code for the following simple application:
A user is allowed to submit a form containing a number, say n, and should get a
response saying how many times the value n has been submitted previously. The
number of times each value has been submitted previously should be stored in
a database.

9.15 Write a servlet that authenticates a user (based on user names and passwords
stored in a database relation) and sets a session variable called userid after au-
thentication.

9.16 What is an SQL injection attack? Explain how it works and what precautions
must be taken to prevent SQL injection attacks.

9.17 Write pseudocode to manage a connection pool. Your pseudocode must include
a function to create a pool (providing a database connection string, database
user name, and password as parameters), a function to request a connection
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from the pool, a connection to release a connection to the pool, and a function
to close the connection pool.

9.18 Explain the terms CRUD and REST.

9.19 Many web sites today provide rich user interfaces using Ajax. List two features
each of which reveals if a site uses Ajax, without having to look at the source
code. Using the above features, find three sites which use Ajax; you can view
the HTML source of the page to check if the site is actually using Ajax.

9.20 XSS attacks:

a. What is an XSS attack?

b. How can the referer field be used to detect some XSS attacks?

9.21 What is multifactor authentication? How does it help safeguard against stolen
passwords?

9.22 Consider the Oracle Virtual Private Database (VPD) feature described in Sec-
tion 9.8.5 and an application based on our university schema.

a. What predicate (using a subquery) should be generated to allow each fac-
ulty member to see only takes tuples corresponding to course sections
that they have taught?

b. Give an SQL query such that the query with the predicate added gives
a result that is a subset of the original query result without the added
predicate.

c. Give an SQL query such that the query with the predicate added gives
a result containing a tuple that is not in the result of the original query
without the added predicate.

9.23 What are two advantages of encrypting data stored in the database?

9.24 Suppose you wish to create an audit trail of changes to the takes relation.

a. Define triggers to create an audit trail, logging the information into a re-
lation called, for example, takes trail. The logged information should in-
clude the user-id (assume a function user id() provides this information)
and a timestamp, in addition to old and new values. You must also provide
the schema of the takes trail relation.

b. Can the preceding implementation guarantee that updates made by a ma-
licious database administrator (or someone who manages to get the ad-
ministrator’s password) will be in the audit trail? Explain your answer.

9.25 Hackers may be able to fool you into believing that their web site is actually a
web site (such as a bank or credit card web site) that you trust. This may be
done by misleading email, or even by breaking into the network infrastructure
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and rerouting network traffic destined for, say mybank.com, to the hacker’s
site. If you enter your user name and password on the hacker’s site, the site can
record it and use it later to break into your account at the real site. When you
use a URL such as https://mybank.com, the HTTPS protocol is used to prevent
such attacks. Explain how the protocol might use digital certificates to verify
authenticity of the site.

9.26 Explain what is a challenge–response system for authentication. Why is it more
secure than a traditional password-based system?

Project Suggestions

Each of the following is a large project, which can be a semester-long project done by
a group of students. The difficulty of the project can be adjusted easily by adding or
deleting features.

You can choose to use either a web front-end using HTML5, or a mobile front-end
on Android or iOS for your project.

Project 9.1 Pick your favorite interactive web site, such as Bebo, Blogger, Facebook,
Flickr, Last.FM, Twitter, Wikipedia; these are just a few examples, there are many
more. Most of these sites manage a large amount of data and use databases to
store and process the data. Implement a subset of the functionality of the web
site you picked. Implementing even a significant subset of the features of such a
site is well beyond a course project, but it is possible to find a set of features that
is interesting to implement yet small enough for a course project.

Most of today’s popular web sites make extensive use of Javascript to create
rich interfaces. You may wish to go easy on this for your project, at least initially,
since it takes time to build such interfaces, and then add more features to your
interfaces, as time permits.
Make use of web application development frameworks, or Javascript libraries
available on the web, such as the jQuery library, to speed up your front-end de-
velopment. Alternatively, implement the application as a mobile app on Android
or iOS.

Project 9.2 Create a “mashup” which uses web services such as Google or Yahoo
map APIs to create an interactive web site. For example, the map APIs provide
a way to display a map on the web page, with other information overlaid on the
maps. You could implement a restaurant recommendation system, with users
contributing information about restaurants such as location, cuisine, price range,
and ratings. Results of user searches could be displayed on the map. You could
allow Wikipedia-like features, such as allowing users to add information and edit
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information added by other users, along with moderators who can weed out
malicious updates. You could also implement social features, such as giving more
importance to ratings provided by your friends.

Project 9.3 Your university probably uses a course-management system such as Moo-
dle, Blackboard, or WebCT. Implement a subset of the functionality of such a
course-management system. For example, you can provide assignment submis-
sion and grading functionality, including mechanisms for students and teach-
ers/teaching assistants to discuss grading of a particular assignment. You could
also provide polls and other mechanisms for getting feedback.

Project 9.4 Consider the E-R schema of Practice Exercise 6.3 (Chapter 6), which rep-
resents information about teams in a league. Design and implement a web-based
system to enter, update, and view the data.

Project 9.5 Design and implement a shopping cart system that lets shoppers collect
items into a shopping cart (you can decide what information is to be supplied
for each item) and purchased together. You can extend and use the E-R schema
of Exercise 6.21 of Chapter 6. You should check for availability of the item and
deal with nonavailable items as you feel appropriate.

Project 9.6 Design and implement a web-based system to record student registration
and grade information for courses at a university.

Project 9.7 Design and implement a system that permits recording of course perfor-
mance information—specifically, the marks given to each student in each assign-
ment or exam of a course, and computation of a (weighted) sum of marks to
get the total course marks. The number of assignments/exams should not be
predefined; that is, more assignments/exams can be added at any time. The sys-
tem should also support grading, permitting cutoffs to be specified for various
grades.

You may also wish to integrate it with the student registration system of
Project 9.6 (perhaps being implemented by another project team).

Project 9.8 Design and implement a web-based system for booking classrooms at your
university. Periodic booking (fixed days/times each week for a whole semester)
must be supported. Cancellation of specific lectures in a periodic booking should
also be supported.

You may also wish to integrate it with the student registration system of
Project 9.6 (perhaps being implemented by another project team) so that class-
rooms can be booked for courses, and cancellations of a lecture or addition of
extra lectures can be noted at a single interface and will be reflected in the class-
room booking and communicated to students via email.
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Project 9.9 Design and implement a system for managing online multiple-choice tests.
You should support distributed contribution of questions (by teaching assistants,
for example), editing of questions by whoever is in charge of the course, and
creation of tests from the available set of questions. You should also be able
to administer tests online, either at a fixed time for all students or at any time
but with a time limit from start to finish (support one or both), and the system
should give students feedback on their scores at the end of the allotted time.

Project 9.10 Design and implement a system for managing email customer service.
Incoming mail goes to a common pool. There is a set of customer service agents
who reply to email. If the email is part of an ongoing series of replies (tracked
using the in-reply-to field of email) the mail should preferably be replied to by
the same agent who replied earlier. The system should track all incoming mail
and replies, so an agent can see the history of questions from a customer before
replying to an email.

Project 9.11 Design and implement a simple electronic marketplace where items can
be listed for sale or for purchase under various categories (which should form a
hierarchy). You may also wish to support alerting services, whereby a user can
register interest in items in a particular category, perhaps with other constraints
as well, without publicly advertising her interest, and is notified when such an
item is listed for sale.

Project 9.12 Design and implement a web-based system for managing a sports “lad-
der.” Many people register and may be given some initial rankings (perhaps
based on past performance). Anyone can challenge anyone else to a match, and
the rankings are adjusted according to the result. One simple system for adjust-
ing rankings just moves the winner ahead of the loser in the rank order, in case
the winner was behind earlier. You can try to invent more complicated rank-
adjustment systems.

Project 9.13 Design and implement a publication-listing service. The service should
permit entering of information about publications, such as title, authors, year,
where the publication appeared, and pages. Authors should be a separate entity
with attributes such as name, institution, department, email, address, and home
page.

Your application should support multiple views on the same data. For in-
stance, you should provide all publications by a given author (sorted by year, for
example), or all publications by authors from a given institution or department.
You should also support search by keywords, on the overall database as well as
within each of the views.

Project 9.14 A common task in any organization is to collect structured information
from a group of people. For example, a manager may need to ask employees to
enter their vacation plans, a professor may wish to collect feedback on a particu-
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lar topic from students, or a student organizing an event may wish to allow other
students to register for the event, or someone may wish to conduct an online
vote on some topic. Google Forms can be used for such activities; your task is
to create something like Google Forms, but with authorization on who can fill
a form.

Specifically, create a system that will allow users to easily create information
collection events. When creating an event, the event creator must define who is
eligible to participate; to do so, your system must maintain user information and
allow predicates defining a subset of users. The event creator should be able to
specify a set of inputs (with types, default values, and validation checks) that the
users will have to provide. The event should have an associated deadline, and the
system should have the ability to send reminders to users who have not yet sub-
mitted their information. The event creator may be given the option of automatic
enforcement of the deadline based on a specified date/time, or choosing to login
and declare the deadline is over. Statistics about the submissions should be gen-
erated—to do so, the event creator may be allowed to create simple summaries
on the entered information. The event creator may choose to make some of the
summaries public, viewable by all users, either continually (e.g., how many peo-
ple have responded) or after the deadline (e.g., what was the average feedback
score).

Project 9.15 Create a library of functions to simplify creation of web interfaces, us-
ing jQuery. You must implement at least the following functions: a function to
display a JDBC result set (with tabular formatting), functions to create different
types of text and numeric inputs (with validation criteria such as input type and
optional range, enforced at the client by appropriate JavaScript code), and func-
tions to create menu items based on a result set. Also implement functions to get
input for specified fields of specified relations, ensuring that database constraints
such as type and foreign-key constraints are enforced at the client side. Foreign
key constraints can also be used to provide either autocomplete or drop-down
menus, to ease the task of data entry for the fields.

For extra credit, use support CSS styles which allow the user to change style
parameters such as colors and fonts. Build a sample database application to
illustrate the use of these functions.

Project 9.16 Design and implement a web-based multiuser calendar system. The sys-
tem must track appointments for each person, including multioccurrence events,
such as weekly meetings, and shared events (where an update made by the event
creator gets reflected to all those who share the event). Provide interfaces to
schedule multiuser events, where an event creator can add a number of users
who are invited to the event. Provide email notification of events. For extra cred-
its implement a web service that can be used by a reminder program running on
the client machine.
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Tools

There are several integrated development environments that provide support for web
application development. Eclipse (www.eclipse.org) and Netbeans (netbeans.org)
are popular open-source IDEs. IntelliJ IDEA (www.jetbrains.com/idea/) is
a popular commercial IDE which provides free licenses for students, teach-
ers and non-commercial open source projects. Microsoft’s Visual Studio
(visualstudio.microsoft.com) also supports web application development. All
these IDEs support integration with application servers, to allow web applications to
be executed directly from the IDE.

The Apache Tomcat (jakarta.apache.org), Glassfish
(javaee.github.io/glassfish/), JBoss Enterprise Application Platform
(developers.redhat.com/products/eap/overview/), WildFly (wildfly.org) (which is
the community edition of JBoss) and Caucho’s Resin (www.caucho.com), are appli-
cation servers that support servlets and JSP. The Apache web server (apache.org) is
the most widely used web server today. Microsoft’s IIS (Internet Information Services)
is a web and application server that is widely used on Microsoft Windows platforms,
supporting Microsoft’s ASP.NET (msdn.microsoft.com/asp.net/).

The jQuery JavaScript library jquery.com is among the most widely used
JavaScript libraries for creating interactive web interfaces.

Android Studio (developer.android.com/studio/) is a widely used IDE for de-
veloping Android apps. XCode (developer.apple.com/xcode/) from Apple and App-
Code (www.jetbrains.com/objc/) are popular IDEs for iOS application development.
Google’s Flutter framework (flutter.io), which is based on the Dart language, and Face-
book’s React Native (facebook.github.io/react-native/) which is based on Javascript,
are frameworks that support cross-platform application development across Android
and iOS.

The Open Web Application Security Project (OWASP) (www.owasp.org) pro-
vides a variety of resources related to application security, including technical articles,
guides, and tools.

Further Reading

The HTML tutorials at www.w3schools.com/html, the CSS tutorials at
www.w3schools.com/css are good resources for learning HTML and CSS. A tutorial
on Java Servlets can be found at docs.oracle.com/javaee/7/tutorial/servlets.htm.
The JavaScript tutorials at www.w3schools.com/js are an excellent source of learning
material on JavaScript. You can also learn more about JSON and Ajax as part of the
JavaScript tutorial. The jQuery tutorial at www.w3schools.com/Jquery is a very good
resource for learning how to use jQuery. These tutorials allow you to modify sample
code and test it in the browser, with no software download. Information about the
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.NET framework and about web application development using ASP.NET can be found
at msdn.microsoft.com.

You can learn more about the Hibernate ORM and Django (including the
Django ORM) from the tutorials and documentation at hibernate.org/orm and
docs.djangoproject.com respectively.

The Open Web Application Security Project (OWASP) (www.owasp.org) provides
a variety of technical material such as the OWASP Testing Guide, the OWASP Top Ten
document which describes critical security risks, and standards for application security
verification.

The concepts behind cryptographic hash functions and public-key encryption were
introduced in [Diffie and Hellman (1976)] and [Rivest et al. (1978)]. A good reference
for cryptography is [Katz and Lindell (2014)], while [Stallings (2017)] provides text-
book coverage of cryptography and network security.
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PART 4

BIG DATA ANALYTICS
Traditional applications of relational databases are based on structured data and they
deal with data from a single enterprise. Modern data management applications often
need to deal with data that are not necessarily in relational form; further, such appli-
cations also need to deal with volumes of data that are far larger than what a single
traditional organization would have generated. In Chapter 10, we study techniques for
managing such data, often referred to as Big Data. Our coverage of Big Data in this
chapter is from the perspective of a programmer who uses Big Data systems. We start
with storage systems for Big Data, and then cover querying techniques, including the
MapReduce framework, algebraic operations, steaming data, and graph databases.

One major application of Big Data is data analytics, which refers broadly to the
processing of data to infer patterns, correlations, or models for prediction. The financial
benefits of making correct decisions can be substantial, as can the costs of making
wrong decisions. Organizations therefore make substantial investments both to gather
or purchase required data and to build systems for data analytics. In Chapter 11, we
cover data analytics in general and, in particular, decision-making tasks that benefit
greatly by using data about the past to predict the future and using the predictions to
make decisions. Topics covered include data warehousing, online analytical processing,
and data mining.
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Big Data

Traditional applications of relational databases are based on structured data, and they
deal with data from a single enterprise. Modern data management applications often
need to deal with data that are not necessarily in relational form; further, such appli-
cations also need to deal with volumes of data that are far larger than what a single
enterprise would generate. We study techniques for managing such data, often referred
to as Big Data, in this chapter.

10.1 Motivation

The growth of the World Wide Web in the 1990s and 2000s resulted in the need to
store and query data with volumes that far exceeded the enterprise data that relational
databases were designed to manage. Although much of the user-visible data on the web
in the early days was static, web sites generated a very large amount of data about users
who visited their sites, what web pages they accessed, and when. These data were typi-
cally stored on log files on the web server, in textual form. People managing web sites
soon realized that there was a wealth of information in the web logs that could be used
by companies to understand more about their users and to target advertisements and
marketing campaigns at users. Such information included details of which pages had
been accessed by users, which could also be linked with user profile data, such as age,
gender, income level, and so on, that were collected by many web sites. Transactional
web sites such as shopping sites had other kinds of data as well, such as what prod-
ucts a user had browsed or purchased. The 2000s saw exceptionally large growth in the
volume of user-generated data, in particular social-media data.

The volume of such data soon grew well beyond the scale that could be handled
by traditional database systems, and both storage and processing require a very high
degree of parallelism. Furthermore, much of the data were in textual form such as
log records, or in other semi-structured forms that we saw in Chapter 8. Such data,
are characterized by their size, speed at which they are generated, and the variety of
formats, are generically called Big Data.

467
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Big Data has been contrasted with traditional relational databases on the following
metrics:

• Volume: The amount of data to be stored and processed is much larger than tradi-
tional databases, including traditional parallel relational databases, were designed
to handle. Although there is a long history of parallel database systems, early gen-
eration parallel databases were designed to work on tens to a few hundreds of
machines. In contrast, some of the new applications require the use of thousands
of machines in parallel to store and process the data.

• Velocity: The rate of arrival of data are much higher in today’s networked world
than in earlier days. Data management systems must be able to ingest and store
data at very high rates. Further, many applications need data items to be processed
as they arrive, in order to detect and respond quickly to certain events (such sys-
tems are referred to a streaming data systems). Thus, processing velocity is very
important for many applications today.

• Variety: The relational representation of data, relational query languages, and re-
lational database systems have been very successful over the past several decades,
and they form the core of the data representation of most organizations. However,
clearly, not all data are relational.

As we saw in Chapter 8, a variety of data representations are used for differ-
ent purposes today. While much of today’s data can be efficiently represented in
relational form, there are many data sources that have other forms of data, such
as semi-structured data, textual data, and graph data. The SQL query language is
well suited to specifying a variety of queries on relational data, and it has been
extended to handle semi-structured data. However, many computations cannot be
easily expressed in SQL or efficiently evaluated if represented using SQL.

A new generation of languages and frameworks has been developed for speci-
fying and efficiently executing complex queries on new forms of data.

We shall use the term Big Data in a generic sense, to refer to any data-processing
need that requires a high degree of parallelism to handle, regardless of whether the data
are relational or otherwise.

Over the past decade, several systems have been developed for storing and process-
ing Big Data, using very large clusters of machines, with thousands, or in some cases,
tens of thousands of machines. The term node is often used to refer to a machine in a
cluster.

10.1.1 Sources and Uses of Big Data

The rapid growth of the web was the key driver for the enormous growth of data vol-
umes in the late 1990s and early 2000s. The initial sources of data were logs from web
server software, which recorded user interactions with the web servers. With each user
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clicking on multiple links each day, and hundreds of millions of users, which later grew
to billions of users, the large web companies found they were generating multiple ter-
abytes of data each day. Web companies soon realized that there was a lot of important
information in the web logs, which could be used for multiple purposes, such as these:

• Deciding what posts, news, and other information to present to which user, to keep
them more engaged with the site. Information on what the user had viewed earlier,
as well as information on what other users with similar preferences had viewed,
are key to making these decisions.

• Deciding what advertisements to show to which users, to maximize the benefit to
the advertiser, while also ensuring the advertisements that a user sees are more
likely to be of relevance to the user. Again, information on what pages a user had
visited, or what advertisements a user had clicked on earlier, are key to making
such decisions.

• Deciding how a web site should be structured, to make it easy for most users to
find information that they are looking for. Knowing to what pages users typically
navigate, and what page they typically view after visiting a particular page, is key
to making such decisions.

• Determining user preferences and trends based on page views, which can help
a manufacturer or vendor decide what items to produce or stock more of, and
what to produce or stock less of. This is part of a more general topic of business
intelligence.

• Advertisement display and click-through information. A click-through refers to a
user clicking on an advertisement to get more information, and is a measure of
the success of the advertisement in getting user attention. A conversion occurs
when the user actually purchases the advertised product or service. Web sites are
often paid when a click-through or conversion occurs. This makes click-through
and conversion rates for different advertisements a key metric for a site to decide
which advertisements to display.

Today, there are many other sources of very high-volume data. Examples include
the following:

• Data from mobile phone apps that help in understanding user interaction with
the app, in the same way that clicks on a web site help in understanding user
interaction with the web site.

• Transaction data from retain enterprises (both online and offline). Early users
of very large volumes of data included large retail chains such as Walmart, who
used parallel database systems even in the years preceding the web, to manage and
analyze their data.
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• Data from sensors. High-end equipment today typically has a large number of sen-
sors to monitor the health of the equipment. Collecting such data centrally helps
to track status and predict the chances of problems with the equipment, helping
fix problems before they result in failure. The increasing use of such sensors to
the connection of sensors and other computing devices embedded within other
objects such as vehicles, buildings, machinery, and so forth to the internet, often
referred to as the internet of things. The number of such devices is now more than
the number of humans on the internet.

• Metadata from communication networks, including traffic and other monitoring
information for data networks, and call information for voice networks. Such data
are important for detecting potential problems before they occur, for detecting
problems as they occur, and for capacity planning and other related decisions.

The amount of data stored in databases has been growing rapidly for multiple
decades, well before the term Big Data came into use. But the extremely rapid growth
of the web created an inflection point, with the major web sites having to handle data
generated by hundreds of millions to billions of users; this was a scale significantly
greater than most of the earlier applications.

Even companies that are not web related have found it necessary to deal with very
large amounts of data. Many companies procure and analyze large volumes of data
generated by other companies. For example, web search histories annotated with user
profile information, have become available to many companies, which can use such
information to make a variety of business decisions, such as planning advertising cam-
paigns, planning what products to manufacture and when, and so on.

Companies today find it essential to make use of social media data to make business
decisions. Reactions to new product launches by a company, or a change in existing of-
ferings can be found on Twitter and other social media sites. Not only is the volume
of data on social media sites such as Twitter very high, but the data arrives at a very
high velocity, and needs to be analyzed and responded to very quickly. For example, if
a company puts out an advertisement, and there is strong negative reaction on Twitter,
the company would want to detect the issue quickly, and perhaps stop using the adver-
tisement before there is too much damage. Thus, Big Data has become a key enabler
for a variety of activities of many organizations today.

10.1.2 Querying Big Data

SQL is by far the most widely used language for querying relational databases. However,
there is a wider variety of query language options for Big Data applications, driven by
the need to handle more variety of data types, and by the need to scale to very large
data volumes/velocity.

Building data management systems that can scale to a large volume/velocity of
data requires parallel storage and processing of data. Building a relational database
that supports SQL along with other database features, such as transactions (which we



10.1 Motivation 471

study later in Chapter 17), and at the same time can support very high performance
by running on a very large number of machines, is not an easy task. There are two
categories of such applications:

1. Transaction-processing systems that need very high scalability: Transaction-
processing systems support a large number of short running queries and updates.

It is much easier for a database designed to support transaction processing to
scale to very large numbers of machines if the requirements to support all features
of a relational database are relaxed. Conversely, many transaction-processing ap-
plications that need to scale to very high volumes/velocity can manage without
full database support.

The primary mode of data access for such applications is to store data with an
associated key, and to retrieve data with that key; such a storage system is called a
key-value store. In the preceding user profile example, the key for user-profile data
would be the user’s identifier. There are applications that conceptually require
joins but implement the joins either in application code or by a form of view
materialization.

For example, in a social-networking application, when a user connects to the
system, the user should be shown new posts from all her friends. If the data
about posts and friends is maintained in relational format, this would require
a join. Suppose that instead, the system maintains an object for each user in a
key-value store, containing their friend information as well as their posts. Instead
of a join done in the database, the application code could implement the join
by first finding the set of friends of the user, and then querying the data object
of each friend to find their posts. Another alternative is as follows: whenever a
user u0 makes a post, for each friend ui of the user, a message is sent to the data
object representing ui, and the data associated with the friend are updated with a
summary of the new post. When that user ui checks for updates, all data required
to provide a summary view of posts by friends are available in one place and can
be retrieved quickly.

There are trade-offs between the two alternatives, such as higher cost at query
time for the first alternative, versus higher storage cost and higher cost at the time
of writes for the second alternative.1But both approaches allow the application
to carry out its tasks without support for joins in the key-value storage system.

2. Query processing systems that need very high scalability, and need to support non-
relational data: Typical examples of such systems are those designed to perform
analysis on logs generated by web servers and other applications. Other examples
include document and knowledge storage and indexing systems, such as those
that support keyword search on the web.

1It is worth mentioning that it appears (based on limited publicly available information as of 2018) that Facebook uses
the first alternative for its news feed to avoid the high storage overhead of the second alternative.
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The data consumed by many such applications are stored in multiple files. A
system designed to support such applications first needs to be able to store a
large number of large files. Second, it must be able to support parallel querying
of data stored in such files. Since the data are not necessarily relational, a system
designed for querying such data must support arbitrary program code, not just
relational algebra or SQL queries.

Big Data applications often require processing of very large volumes of text, image,
and video data. Traditionally such data were stored in file systems and processed using
stand-alone applications. For example, keyword search on textual data, and its succes-
sor, keyword search on the web, both depend on preprocessing textual data, followed by
query processing using data structures such as indices built during the preprocessing
step. It should be clear that the SQL constructs we have seen earlier are not suited for
carrying out such tasks, since the input data are not in relational form, and the output
too may not be in relational form.

In earlier days, processing of such data was done using stand-alone programs; this is
very similar to how organizational data were processed prior to the advent of database
management systems. However, with the very rapid growth of data sizes, the limitations
of stand-alone programs became clear. Parallel processing is critical given the very large
scale of Big Data. Writing programs that can process data in parallel while dealing with
failures (which are common with large scale parallelism) is not easy.

In this chapter, we study techniques for querying of Big Data that are widely used
today. A key to the success of these techniques is the fact that they allow specification of
complex data processing tasks, while enabling easy parallelization of the tasks. These
techniques free the programmer from having to deal with issues such as how to perform
parallelization, how to deal with failures, how to deal with load imbalances between
machines, and many other similar low-level issues.

10.2 Big Data Storage Systems

Applications on Big Data have extremely high scalability requirements. Popular appli-
cations have hundreds of millions of users, and many applications have seen their load
increase many-fold within a single year, or even within a few months. To handle the
data management needs of such applications, data must be stored partitioned across
thousands of computing and storage nodes.

A number of systems for Big Data storage have been developed and deployed over
the past two decades to address the data management requirements of such applica-
tions. These include the following:

• Distributed File Systems. These allow files to be stored across a number of ma-
chines, while allowing access to files using a traditional file-system interface. Dis-
tributed file systems are used to store large files, such as log files. They are also
used as a storage layer for systems that support storage of records.
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• Sharding across multiple databases. Sharding refers to the process of partition-
ing of records across multiple systems; in other words, the records are divided up
among the systems. A typical use case for sharding is to partition records corre-
sponding to different users across a collection of databases. Each database is a
traditional centralized database, which may not have any information about the
other databases. It is the job of client software to keep track of how records are
partitioned, and to send each query to the appropriate database.

• Key-Value Storage Systems. These allow records to be stored and retrieved based
on a key, and may additionally provide limited query facilities. However, they are
not full-fledged database systems; they are sometimes called NoSQL systems, since
such storage systems typically do not support the SQL language.

• Parallel and Distributed Databases. These provide a traditional database interface
but store data across multiple machines, and they perform query processing in
parallel across multiple machines.

Parallel and distributed database storage systems, including distributed file systems and
key-value stores, are described in detail in Chapter 21. We provide a user-level overview
of these Big Data storage systems in this section.

10.2.1 Distributed File Systems

A distributed file system stores files across a large collection of machines while giving a
single-file-system view to clients. As with any file system, there is a system of file names
and directories, which clients can use to identify and access files. Clients do not need
to bother about where the files are stored. Such distributed file systems can store very
large amounts of data, and support very large numbers of concurrent clients. Such
systems are ideal for storing unstructured data, such as web pages, web server logs,
images, and so on, that are stored as large files.

A landmark system in this context was the Google File System (GFS), developed
in the early 2000s, which saw widespread use within Google. The open-source Hadoop
File System (HDFS) is based on the GFS architecture and is now very widely used.

Distributed file systems are designed for efficient storage of large files, whose sizes
range from tens of megabytes to hundreds of gigabytes or more.

The data in a distributed file system is stored across a number of machines. Files are
broken up into multiple blocks. The blocks of a single file can be partitioned across mul-
tiple machines. Further, each file block is replicated across multiple (typically three)
machines, so that a machine failure does not result in the file becoming inaccessible.

File systems, whether centralized or distributed, typically support the following:

• A directory system, which allows a hierarchical organization of files into directo-
ries and subdirectories.

• A mapping from a file name to the sequence of identifiers of blocks that store the
actual data in each file.
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• The ability to store and retrieve data to/from a block with a specified identifier.
In the case of a centralized file system, the block identifiers help locate blocks in a
storage device such as a disk. In the case of a distributed file system, in addition to pro-
viding a block identifier, the file system must provide the location (machine identifier)
where the block is stored; in fact, due to replication, the file system provides a set of
machine identifiers along with each block identifier.

Figure 10.1 shows the architecture of the Hadoop File System (HDFS), which is
derived from the architecture of the Google File System (GFS). The core of HDFS is
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Figure 10.1 Hadoop Distributed File System (HDFS) architecture.
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a server running a machine referred to as the NameNode. All file system requests are
sent to the NameNode. A file system client program that wants to read an existing
file sends the file name (which can be a path, such as /home/avi/book/ch10) to the
NameNode. The NameNode stores a list of block identifiers of the blocks in each file;
for each block identifier, the NameNode also stores the identifiers of machines that
store copies of that block. The machines that store data blocks in HDFS are called
DataNodes.

For a file read request, the HDFS server sends back a list of block identifiers of
the blocks in the file and the identifiers of the machines that contain each block. Each
block is then fetched from one of the machines that store a copy of the block.

For a file write, the HDFS server creates new block identifiers and assigns each
block identifier to several (usually three) machines, and returns the block identifiers
and machine assignment to the client. The client then sends the block identifiers and
block data to the assigned machines, which store the data.

Files can be accessed by programs by using HDFS file system APIs that are available
in multiple languages, such as Java and Python; the APIs allow a program to connect
to the HDFS server and access data.

An HDFS distributed file system can also be connected to the local file system of
a machine in such a way that files in HDFS can be accessed as though they are stored
locally. This requires providing the address of the NameNode machine, and the port
on which the HDFS server listens for requests, to the local file system. The local file
system recognizes which file accesses are to files in HDFS based on the file path, and
sends appropriate requests to the HDFS server.

More details about distributed file system implementation may be found in Section
21.6.

10.2.2 Sharding

A single database system typically has sufficient storage and performance to handle all
the transaction processing needs of an enterprise. However, using a single database is
not sufficient for applications with millions or even billions of users, including social-
media or similar web-scale applications, but also the user-facing applications of very
large organizations such as large banks.

Suppose an organization has built an application with a centralized database, but
needs to scale to handle more users, and the centralized database is not capable of
handling the storage or processing speed requirements. A commonly used way to deal
with such a situation is to partition the data across multiple databases, with a subset of
users assigned to each of the databases. The term sharding refers to the partitioning of
data across multiple databases or machines.

Partitioning is usually done on one or more attributes, referred to as partitioning
attributes, partitioning keys, or shard keys. User or account identifiers are commonly
used as partitioning keys. Partitioning can be done by defining a range of keys that each
of the databases handles; for example, keys from 1 to 100,000 may be assigned to the
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first database, keys from 100,001 to 200,000 to the second database, and so on. Such
partitioning is called range partitioning. Partitioning may also be done by computing a
hash function that maps a key value to a partition number; such partitioning is called
hash partitioning. We study partitioning of data in detail in Chapter 21.

When sharding is done in application code, the application must keep track of
which keys are stored on which database, and must route queries to the appropriate
database. Queries that read or update data from multiple databases cannot be pro-
cessed in a simple manner, since it is not possible to submit a single query that gets
executed across all the databases. Instead, the application would need to read data from
multiple databases and compute the final query result. Updates across databases cause
further issues, which we discuss in Section 10.2.5.

While sharding performed by modifying application code provided a simple way
to scale applications, the limitations of the approach soon became apparent. First, the
application code has to track how data was partitioned and route queries appropriately.
If a database becomes overloaded, parts of the data in that database have to be offloaded
to a new database, or to one of the other existing databases; managing this process is
a non-trivial task. As more databases are added, there is a greater chance of failure
leading to loss of access to data. Replication is needed to ensure data is accessible
despite failures, but managing the replicas, and ensuring they are consistent, poses
further challenges. Key-value stores, which we study next, address some of these issues.
Challenges related to consistency and availability are discussed later, in Section 10.2.5.

10.2.3 Key-Value Storage Systems

Many web applications need to store very large numbers (many billions or in extreme
cases, trillions) of relatively small records (of size ranging from a few kilobytes to a
few megabytes). Storing each record as a separate file is infeasible, since file systems,
including distributed file systems, are not designed to store such large numbers of files.

Ideally, a massively parallel relational database should be used to store such data.
However, it is not easy to build relational database systems that can run in parallel
across a large number of machines while also supporting standard database features
such as foreign-key constraints and transactions.

A number of storage systems have been developed that can scale to the needs
of web applications and store large amounts of data, scaling to thousands to tens of
thousands of machines, but typically offering only a simple key-value storage interface.
A key-value storage system (or key-value store) is a system that provides a way to store or
update a record (value) with an associated key and to retrieve the record with a given
key.

Parallel key-value stores partition keys across multiple machines, and route updates
and lookups to the correct machine. They also support replication, and ensure that
replicas are kept consistent. Further, they provide the ability to add more machines to
a system when required, and ensure that the load is automatically balanced across the
machines in a system In contrast to systems that implement sharding in the application
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code, systems that use a parallel key-value store do not need to worry about any of the
above issues. Parallel key-value stores are therefore more widely used than sharding
today.

Widely used parallel key-value stores include Bigtable from Google, Apache HBase,
Dynamo from Amazon, Cassandra from Facebook, MongoDB, Azure cloud storage
from Microsoft, and Sherpa/PNUTS from Yahoo!, among many others.

While several key-value data stores view the values stored in the data store as an un-
interpreted sequence of bytes, and do not look at their content, other data stores allow
some form of structure or schema to be associated with each record. Several such key-
value storage systems require the stored data to follow a specified data representation,
allowing the data store to interpret the stored values and execute simple queries based
on stored values. Such data stores are called document stores. MongoDB is a widely
used data store that accepts values in the JSON format.

Key-value storage systems are, at their core, based on two primitive functions,
put(key, value), used to store values with an associated key, and get(key), used to re-
trieve the stored value associated with the specified key. Some systems, such as Bigtable,
additionally provide range queries on key values. Document stores additionally support
limited forms of querying on the data values.

An important motivation for the use of key-value stores is their ability to handle
very large amounts of data as well as queries, by distributing the work across a cluster
consisting of a large number of machines. Records are partitioned (divided up) among
the machines in the cluster, with each machine storing a subset of the records and
processing lookups and updates on those records.

Note that key-value stores are not full-fledged databases, since they do not provide
many of the features that are viewed as standard on database systems today. Key-value
stores typically do not support declarative querying (using SQL or any other declarative
query language) and do not support transactions (which, as we shall see in Chapter 17,
allow multiple updates to be committed atomically to ensure that the database state
remains consistent despite failures, and control concurrent access to data to ensure
that problems do not arise due to concurrent access by multiple transactions). Key-
value stores also typically do not support retrieval of records based on selections on
non-key attributes, although some document stores do support such retrieval.

An important reason for not supporting such features is that some of them are
not easy to support on very large clusters; thus, most systems sacrifice these features in
order to achieve scalability. Applications that need scalability may be willing to sacrifice
these features in exchange for scalability.

Key-value stores are also called NoSQL systems, to emphasize that they do not
support SQL, and the lack of support for SQL was initially viewed as something positive,
rather than a limitation. However, it soon became clear that lack of database features
such as transaction support and support for SQL, make application development more
complicated. Thus, many key-value stores have evolved to support features, such as the
SQL language and transactions.
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show dbs // Shows available databases
use sampledb // Use database sampledb, creating it if it does not exist
db.createCollection("student") // Create a collection
db.createCollection("instructor")
show collections // Shows all collections in the database

db.student.insert({ "id" : "00128", "name" : "Zhang",
"dept name" : "Comp. Sci.", "tot cred" : 102, "advisors" : ["45565"] })

db.student.insert({ "id" : "12345", "name" : "Shankar",
"dept name" : "Comp. Sci.", "tot cred" : 32, "advisors" : ["45565"] })

db.student.insert({ "id" : "19991", "name" : "Brandt",
"dept name" : "History", "tot cred" : 80, "advisors" : [] })

db.instructor.insert({ "id" : "45565", "name" : "Katz",
"dept name" : "Comp. Sci.", "salary" : 75000,
"advisees" : ["00128","12345"] })

db.student.find() // Fetch all students in JSON format
db.student.findOne({"ID": "00128"}) // Find one matching student

db.student.remove({"dept name": "Comp. Sci."}) // Delete matching students
db.student.drop() // Drops the entire collection

Figure 10.2 MongoDB shell commands.

The APIs provided by these systems to store and access data are widely used. While
the basic get() and put() functions mentioned earlier are straightforward, most systems
support further features. As an example of such APIs, we provide a brief overview of
the MongoDB API.

Figure 10.2 illustrates access to the MongoDB document store through a
JavaScript shell interface. Such a shell can be opened by executing the mongo com-
mand on a system that has MongoDB installed and configured. MongoDB also pro-
vides equivalent API functions in a variety of languages, including Java and Python.
The use command shown in the figure opens the specified database, creating it if it
does not already exist. The db.createCollection() command is used to create collec-
tions, which store documents; a document in MongoDB is basically a JSON object. The
code in the figure creates two collections, student and instructor, and inserts JSON
objects representing students and instructors into the two collections.

MongoDB automatically creates identifiers for the inserted objects, which can be
used as keys to retrieve the objects. The key associated with an object can be fetched
using the id attribute, and an index on this attribute is created by default.

MongoDB also supports queries based on the stored values. The db.student.find()
function returns a collection of all objects in the student collection, while the find-
One() function returns one object from the collection. Both functions can take as argu-
ment a JSON object that specifies a selection on desired attributes. In our example, the
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student with ID 00128 is retrieved. Similarly, all objects matching such a selection can
be deleted by the remove() function shown in the figure. The drop() function shown
in the figure drops an entire collection.

MongoDB supports a variety of other features such as creation of indices on spec-
ified attributes of the stored JSON objects, such as the ID and name attributes.

Since a key goal of MongoDB is to enable scaling to very large data sizes and
query/update loads, MongoDB allows multiple machines to be part of a single Mon-
goDB cluster. Data are then sharded (partitioned) across these machines. We study
partitioning of data across machines in detail in Chapter 21, and we study parallel pro-
cessing of queries in detail in Chapter 22. However we outline key ideas in this section.

In MongoDB (as in many other databases), partitioning is done based on the value
of a specified attribute, called the partitioning attribute or shard key. For example, if we
specify that the student collection should be partitioned on the dept name attribute,
all objects of a particular department are stored on one machine, but objects of different
departments may be stored on different machines. To ensure data can be accessed even
if a machine has failed, each partition is replicated on multiple machines. This way, even
if one machine fails, the data in that partition can be fetched from another machine.

Requests from a MongoDB client are sent to a router, which then forwards requests
to the appropriate partitions in a cluster.

Bigtable is another key-value store that requires data values to follow a format that
allows the storage system access to individual parts of a stored value. In Bigtable, data
values (records) can have multiple attributes; the set of attribute names is not prede-
termined and can vary across different records. Thus, the key for an attribute value
conceptually consists of (record-identifier, attribute-name). Each attribute value is just
a string as far as Bigtable is concerned. To fetch all attributes of a record, a range query,
or more precisely a prefix-match query consisting of just the record identifier, is used.
The get() function returns the attribute names along with the values. For efficient re-
trieval of all attributes of a record, the storage system stores entries sorted by the key,
so all attribute values of a particular record are clustered together.

In fact, the record identifier can itself be structured hierarchically, although to
Bigtable itself the record identifier is just a string. For example, an application that
stores pages retrieved from a web crawl could map a URL of the form:

www.cs.yale.edu/people/silberschatz.html

to the record identifier:

edu.yale.cs.www/people/silberschatz.html

With this representation, all URLs of cs.yale.edu can be retried by a query that fetches
all keys with the prefix edu.yale.cs, which would be stored in a consecutive range of
key values in the sorted key order. Similarly, all URLs of yale.edu would have a prefix
of edu.yale and would be stored in a consecutive range of key values.
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Although Bigtable does not support JSON natively, JSON data can be mapped to
the data model of Bigtable. For example, consider the following JSON data:

{ "ID": "22222",
"name": { "firstname: "Albert", "lastname: "Einstein" },
"deptname": "Physics",
"children": [

{"firstname": "Hans", "lastname": "Einstein" },
{"firstname": "Eduard", "lastname": "Einstein" } ]

}

The above data can be represented by a Bigtable record with identifier “22222”,
with multiple attribute names such as “name.firstname”, “deptname”, “chil-
dren[1].firstname” or “children[2].lastname”.

Further, a single instance of Bigtable can store data for multiple applications, with
multiple tables per application, by simply prefixing the application name and table
name to the record identifier.

Many data-storage systems allow multiple versions of data items to be stored. Ver-
sions are often identified by timestamp, but they may be alternatively identified by an
integer value that is incremented whenever a new version of a data item is created.
Lookups can specify the required version of a data item or can pick the version with
the highest version number. In Bigtable, for example, a key actually consists of three
parts: (record-identifier, attribute-name, timestamp). Bigtable can be accessed as a ser-
vice from Google. The open-source version of Bigtable, HBase, is widely used.

10.2.4 Parallel and Distributed Databases

Parallel databases are databases that run on multiple machines (together referred to
as a cluster) and are designed to store data across multiple machines and to process
large queries using multiple machines. Parallel databases were initially developed in
the 1980s, and thus they predate the modern generation of Big Data systems. From a
programmer viewpoint, parallel databases can be used just like databases running on
a single machine.

Early generation parallel databases designed for transaction processing supported
only a few machines in a cluster, while those designed to process large analytical queries
were designed to support tens to hundreds of machines. Data are replicated across
multiple machines in a cluster, to ensure that data are not lost, and they continue to be
accessible, even if a machine in a cluster fails. Although failures do occur and need to
be dealt with, failures during the processing of a query are not common in systems with
tens to hundreds of machines. If a query was being processed on a node that failed, the
query is simply restarted, using replicas of data that are on other nodes.

If such database systems are run on clusters with thousands of machines, the prob-
ability of failure during execution of a query increases significantly for queries that pro-
cess a large amount of data and consequently run for a long time. Restarting a query in
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the event of a failure is no longer an option, since there is a fairly high probability that a
failure will happen yet again while the query is executing. Techniques to avoid complete
restart, allowing only computation on the failed machines to be redone, were developed
in the context of map-reduce systems, which we study in Section 10.3. However, these
techniques introduce significant overhead; given the fact that computation spanning
thousands to tens of thousands of nodes is needed only by some exceptionally large
applications, even today most parallel relational database systems target applications
that run on tens to hundreds of machines and just restart queries in the event of failure.

Query processing in such parallel and distributed databases is covered in detail in
Chapter 22, while transaction processing in such databases is covered in Chapter 23.

10.2.5 Replication and Consistency

Replication is key to ensuring availability of data, ensuring a data item can be accessed
despite failure of some of the machines storing the data item. Any update to a data item
must be applied to all replicas of the data item. As long as all the machines containing
the replicas are up and connected to each other, applying the update to all replicas is
straightforward.

However, since machines do fail, there are two key problems. The first is how to
ensure atomic execution of a transaction that updates data at more than one machine:
the transaction execution is said to be atomic if despite failures, either all the data items
updated by the transaction are successfully updated, or all the data items are reverted
back to their original values. The second problem is, how to perform updates on a
data item that has been replicated, when some of the replicas of the data item are on a
machine that has failed. A key requirement here is consistency, that is, all live replicas
of a data item have the same value, and each read sees the latest version of the data
item. There are several possible solutions, which offer different degrees of resilience to
failures. We study solutions to the both these problems in Chapter 23.

We note that the solutions to the second problem typically require that a majority
of the replicas are available for reading and update. If we had 3 replicas, this would
require not more than 1 fail, but if we had 5 replicas, even if two machines fail we
would still have a majority of replicas available. Under these assumptions, writes will
not get blocked, and reads will see the latest value for any data item.

While the probability of multiple machines failing is relatively low, network link
failures can cause further problems. In particular, a network partition is said to occur if
two live machines in a network are unable to communicate with each other.

It has been shown that no protocol can ensure availability, that is, the ability to
read and write data, while also guaranteeing consistency, in the presence of network
partitions. Thus, distributed systems need to make tradeoffs: if they want high availabil-
ity, they need to sacrifice consistency, for example by allowing reads to see old values
of data items, or to allow different replicas to have different values. In the latter case,
how to bring the replicas to a common value by merging the updates is a task that the
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Note 10.1 Building Scalable Database Applications

When faced with the task of creating a database application that can scale to a very
large number of users, application developers typically have to choose between a
database system that runs on a single server, and a key-value store that can scale by
running on a large number of servers. A database that supports SQL and atomic
transactions, and at the same time is highly scalable, would be ideal; as of 2018,
Google Cloud Spanner, which is only available on the cloud, and the recently
developed open source database CockroachDB are the only such databases.

Simple applications can be written using only key-value stores, but more com-
plex applications benefit greatly from having SQL support. Application developers
therefore typically use a combination of parallel key-value stores and databases.

Some relations, such as those that store user account and user profile data
are queried frequently, but with simple select queries on a key, typically on the
user identifier. Such relations are stored in a parallel key-value store. In case select
queries on other attributes are required, key-value stores that support indexing on
attributes other than the primary key, such as MongoDB, could still be used.

Other relations that are used in more complex queries are stored in a relational
database that runs on a single server. Databases running on a single server do
exploit the availability of multiple cores to execute transactions in parallel, but are
limited by the number of cores that can be supported in a single machine.

Most relational databases support a form of replication where update transac-
tions run on only one database (the primary), but the updates are propagated to
replicas of the database running on other servers. Applications can execute read-
only queries on these replicas, but with the understanding that they may see data
that is a few seconds behind in time, as compared to the primary database. Of-
floading read-only queries from the primary database allows the system to handle
a load larger than what a single database server can handle.

In-memory caching systems, such as memcached or Redis, are also used to
get scalable read-only access to relations stored in a database. Applications may
store some relations, or some parts of some relations, in such an in-memory cache,
which may be replicated or partitioned across multiple machines. Thereby, appli-
cations can get fast and scalable read-only access to the cached data. Updates must
however be performed on the database, and the application is responsible for up-
dating the cache whenever the data is updated on the database.

application has to deal with. Some applications, or some parts of an application, may
choose to prioritize availability over consistency. But other applications, or some parts
of an application, may choose to prioritize consistency even at the cost of potential
non-availability of the system in the event of failures. The above issues are discussed in
more detail in Chapter 23.
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10.3 The MapReduce Paradigm

The MapReduce paradigm models a common situation in parallel processing, where
some processing, identified by the map() function, is applied to each of a large num-
ber of input records, and then some form of aggregation, identified by the reduce()
function, is applied to the result of the map() function. The map() function is also
permitted to specify grouping keys, such that the aggregation specified in the reduce()
function is applied within each group, identified by the grouping key, of the map() out-
put. We examine the MapReduce paradigm, and the map() and reduce() functions in
detail, in the rest of this section.

The MapReduce paradigm for parallel processing has a long history, dating back
several decades, in the functional programming and parallel processing community
(the map and reduce functions were supported in the Lisp language, for example).

10.3.1 Why MapReduce?

As a motivating example for the use of the MapReduce paradigm, we consider the
following word count application, which takes a large number of files as input, and
outputs a count of the number of times each word appears, across all the files. Here,
the input would be in the form of a potentially large number of files stored in a directory.

We start by considering the case of a single file. In this case, it is straightforward
to write a program that reads in the words in the file and maintains an in-memory data
structure that keeps track of all the words encountered so far, along with their counts.
The question is, how to extend the above algorithm, which is sequential in nature, to
an environment where there are tens of thousands of files, each containing tens to
hundreds of megabytes of data. It is infeasible to process such a large volume of data
sequentially.

One solution is to extend the above scheme by coding it as a parallel program
that would run across many machines with each machine processing a part of the
files. The counts computed locally at each machine must then be combined to get the
final counts. In this case, the programmer would be responsible for all the “plumbing”
required to start up jobs on different machines, coordinate them, and to compute the
final answer. In addition, the “plumbing” code must also deal with ensuring completion
of the program in spite of machine failures; failures are quite frequent when the number
of participating machines is large, such as in the thousands, and the program runs for
a long duration.

The “plumbing” code to implement the above requirements is quite complex; it
makes sense to write it just once and reuse it for all desired applications.

MapReduce systems provide the programmer a way of specifying the core logic
needed for an application, with the details of the earlier-mentioned plumbing handled
by the MapReduce system. The programmer needs to provide only map() and reduce()
functions, plus optionally functions for reading and writing data. The map() and re-
duce() functions provided by the programmer are invoked on the data by the MapRe-
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duce system to process data in parallel. The programmer does not need to be aware of
the plumbing or its complexity; in fact, she can for the most part ignore the fact that
the program is to be executed in parallel on multiple machines.

The MapReduce approach can be used to process large amounts of data for a va-
riety of applications. The above-mentioned word count program is a toy example of
a class of text and document processing applications. Consider, for example, search
engines which take keywords and return documents containing the keywords. MapRe-
duce can, for example, be used to process documents and create text indices, which are
then used to efficiently find documents containing specified keywords.

10.3.2 MapReduce By Example 1: Word Count

Our word count application can be implemented in the MapReduce framework using
the following functions, which we defined in pseudocode. Note that our pseudocode
is not in any specific programming language; it is intended to introduce concepts. We
describe how to write MapReduce code in specific languages in later sections.

1. In the MapReduce paradigm, the map() function provided by the programmer is
invoked on each input record and emits zero or more output data items, which are
then passed on to the reduce() function. The first question is, what is a record?
MapReduce systems provide defaults, treating each line of each input file as a
record; such a default works well for our word count application, but the pro-
grammers are allowed to specify their own functions to break up input files into
records.

For the word count application, the map() function could break up each
record (line) into individual words and output a number of records, each of which
is a pair (word, count), where count is the number of occurrences of the word in
the record. In fact in our simplified implementation, the map() function does
even less work and outputs each word as it is found, with a count of 1. These
counts are added up later by the reduce(). Pseudocode for the map() function
for the word count program is shown in Figure 10.3.

The function breaks up the record (line) into individual words.2 As each word
is found, the map() function emits (outputs) a record (word, 1). Thus, if the file
contained just the sentence:

“One a penny, two a penny, hot cross buns.”

the records output by the map() function would be

(“one”, 1), (“a”, 1), (“penny”, 1),(“two”, 1), (“a”, 1), (“penny”, 1),
(“hot”, 1), (“cross”, 1), (“buns”, 1).

2We omit details of how a line is broken up into words. In a real implementation, non-alphabet characters would be
removed, and uppercase characters mapped to lowercase, before breaking up the line based on spaces to generate a list
of words.
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map(String record) {
For each word in record

emit(word, 1).
}

reduce(String key, List value list) {
String word = key;
int count = 0;
For each value in value list

count = count + value
output(word, count)

}

Figure 10.3 Pseudocode of map-reduce job for word counting in a set of files.

In general, the map() function outputs a set of (key, value) pairs for each input
record. The first attribute (key) of the map() output record is referred to as a
reduce key, since it is used by the reduce step, which we study next.

2. The MapReduce system takes all the (key, value) pairs emitted by the map() func-
tions and sorts (or at least, groups them) such that all records with a particular
key are gathered together. All records whose keys match are grouped together,
and a list of all the associated values is created. The (key, list) pairs are then
passed to the reduce() function.

In our word count example, each key is a word, and the associated list is a list
of counts generated for different lines of different files. With our example data,
the result of this step is the following:

(“a”, [1,1]), (“buns”, [1]) (“cross”, [1]), (“hot”, [1]), (“one”, [1]),
(“penny”, [1,1]), (“two”, [1])

The reduce() function for our example combines the list of word counts by
adding the counts, and outputs (word, total-count) pairs. For the example input,
the records output by the reduce() function would be as follows:

(“one”, 1), (“a”, 2), (“penny”, 2), (“two”, 1), (“hot”, 1), (“cross”, 1),
(“buns”, 1).

Pseudocode for the reduce() function for the word count program is shown in
Figure 10.3. The counts generated by themap() function are all 1, so the reduce()
function could have just counted the number of values in the list, but adding up
the values allows some optimizations that we will see later.

A key issue here is that with many files, there may be many occurrences of the
same word across different files. Reorganizing the outputs of the map() functions
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…
2013/02/21 10:31:22.00EST /slide-dir/11.ppt
2013/02/21 10:43:12.00EST /slide-dir/12.ppt
2013/02/22 18:26:45.00EST /slide-dir/13.ppt
2013/02/22 18:26:48.00EST /exer-dir/2.pdf
2013/02/22 18:26:54.00EST /exer-dir/3.pdf
2013/02/22 20:53:29.00EST /slide-dir/12.ppt
…

Figure 10.4 Log files.

is required to bring all the values for a particular key together. In a parallel system
with many machines, this requires data for different reduce keys to be exchanged
between machines, so all the values for any particular reduce key are available
at a single machine. This work is done by the shuffle step, which performs data
exchange between machines and then sorts the (key, value) pairs to bring all the
values for a key together. Observe in our example that the words have actually
been sorted alphabetically. Sorting the output records from the map() is one
way for the system to collect all occurrences of a word together; the lists for each
word are created from the sorted records.

By default, the output of the reduce() function is sent to one or more files, but
MapReduce systems allow programmers to control what happens to the output.

10.3.3 MapReduce by Example 2: Log Processing

As another example of the use of the MapReduce paradigm, which is closer to tradi-
tional database query processing, suppose we have a log file recording accesses to a
web site, which is structured as shown in Figure 10.4. The goal of our file access count
application is to find how many times each of the files in the slide-dir directory was ac-
cessed between 2013/01/01 and 2013/01/31. The application illustrates one of a variety
of kinds of questions an analyst may ask using data from web log files.

For our log-file processing application, each line of the input file can be treated
as a record. The map() function would do the following: it would first break up the
input record into individual fields, namely date, time, and filename. If the date is in
the required date range, the map() function would emit a record (filename, 1), which
indicates that the filename appeared once in that record. Pseudocode for the map()
function for this example is shown in Figure 10.5.

The shuffle step brings all the values for a particular reduce key (in our case, a file
name) together as a list. The reduce() function provided by the programmer, shown in
Figure 10.6, is then invoked for each reduce key value. The first argument of reduce()
is the reduce key itself, while the second argument is a list containing the values in the
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map(String record) {
String attribute[3];
break up record into tokens (based on space character), and

store the tokens in array attributes
String date = attribute[0];
String time = attribute[1];
String filename = attribute[2];
if(date between 2013/01/01 and 2013/01/31

and filename starts with “http://db-book.com/slide-dir”)
emit(filename, 1).

}

Figure 10.5 Pseudocode of map functions for counting file accesses.

records emitted by the map() function for that reduce key. In our example, the values
for a particular key are added to get the total number of accesses for a file. This number
is then output by the reduce() function.

If we were to use the values generated by the map() function, the values would be
“1” for all emitted records, and we could have just counted the number of elements
in the list. However, MapReduce systems support optimizations such as performing
a partial addition of values from each input file, before they are redistributed. In that
case, the values received by the reduce() function may not necessarily be ones, and we
therefore add the values.

Figure 10.7 shows a schematic view of the flow of keys and values through the
map() and reduce() functions. In the figure the mki’s denote map keys, mvi’s denote
map input values, rki’s denote reduce keys, and rvi’s denote reduce input values. Reduce
outputs are not shown.

reduce(String key, List value list) {
String filename = key;
int count = 0;
For each value in value list

count = count + value
output(filename, count)

}

Figure 10.6 Pseudocode of reduce functions for counting file accesses.
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Figure 10.7 Flow of keys and values in a MapReduce job.

10.3.4 Parallel Processing of MapReduce Tasks

Our description of the map() and reduce() functions so far has ignored the issue of
parallel processing. We can understand the meaning of MapReduce code without con-
sidering parallel processing. However, our goal in using the MapReduce paradigm is to
enable parallel processing. Thus, MapReduce systems execute the map() function in
parallel on multiple machines, with each map task processing some part of the data,
for example some of the files, or even parts of a file in case the input files are very large.
Similarly, the reduce() functions are also executed in parallel on multiple machines,
with each reduce task processing a subset of the reduce keys (note that a particular call
to the reduce() function is still for a single reduce key).

Parallel execution of map and reduce tasks is shown pictorially in Figure 10.8.
In the figure, the input file partitions, denoted as Part i, could be files or parts of files.
The nodes denoted as Map i are the map tasks, and the nodes denoted Reduce i are the
reduce tasks. The master node sends copies of the map() and reduce() code to the map
and reduce tasks. The map tasks execute the code and write output data to local files
on the machines where the tasks are executed, after being sorted and partitioned based
on the reduce key values; separate files are created for each reduce task at each Map
node. These files are fetched across the network by the reduce tasks; the files fetched
by a reduce task (from different map tasks) are merged and sorted to ensure that all
occurrences of a particular reduce key are together in the sorted file. The reduce keys
and values are then fed to the reduce() functions.
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Figure 10.8 Parallel processing of MapReduce job.

MapReduce systems also need to parallelize file input and output across multiple
machines; otherwise the single machine storing the data will become a bottleneck. Par-
allelization of file input and output can be done by using a distributed file system, such
as the Hadoop File System (HDFS). As we saw in Section 10.2, distributed file systems
allow a number of machines to cooperate in storing files, partitioning the files across
the machines. Further, file system data are replicated (copied) across several (typically
three) machines, so that even if a few of the machines fail, the data are available from
other machines which have copies of the data in the failed machine.

Today, in addition to distributed file systems such as HDFS, MapReduce systems
support input from a variety of Big Data storage systems such as HBase, MongoDB,
Cassandra, and Amazon Dynamo, by using storage adapters. Output can similarly be
sent to any of these storage systems.

10.3.5 MapReduce in Hadoop

The Hadoop project provides a widely used open-source implementation of MapRe-
duce in the Java language. We summarize its main features here using the Java API
provided by Hadoop. We note that Hadoop provides MapReduce APIs in several other
languages, such as Python and C++.

Unlike our MapReduce pseudocode, real implementations such as Hadoop require
types to be specified for the input keys and values, as well as the output keys and value,
of the map() function. Similarly, the types of the input as well as output keys and val-
ues of the reduce() function need to be specified. Hadoop requires the programmer
to implement map() and reduce() functions as member functions of classes that ex-
tend Hadoop Mapper and Reducer classes. Hadoop allows the programmer to provide
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functions to break up the file into records, or to specify that the file is one of the file
types for which Hadoop provides built-in functions to break up files into records. For
example, the TextInputFormat specifies that the file should be broken up into lines,
with each line being a separate record. Compressed file formats are widely used today,
with Avro, ORC, and Parquet being the most widely used compressed file formats in the
Hadoop world (compressed file formats are discussed in Section 13.6). Decompression
is done by the system, and a programmer writing a query need only specify one of the
supported types, and the uncompressed representation is made available to the code
implementing the query.

Input files in Hadoop can come from a file system of a single machine, but for large
datasets, a file system on a single machine would become a performance bottleneck.
Hadoop MapReduce allows input and output files to be stored in a distributed file
system such as HDFS, allowing multiple machines to read and write data in parallel.

In addition to the reduce() function, Hadoop also allows the programmer to define
a combine() function, which can perform a part of the reduce() operation at the node
where the map() function is executed. In our word count example, the combine() func-
tion would be the same as the reduce() function we saw earlier. The reduce() function
would then receive a list of partial counts for a particular word; since the reduce() func-
tion for word count adds up the values, it would work correctly even with the combine()
function. One benefit of using the combine() function is that it reduces the amount of
data that has to be sent over the network: each node that runs map tasks would send
only one entry for a word across the network, instead of multiple entries.

A single MapReduce step in Hadoop executes a map and a reduce function. A
program may have multiple MapReduce steps, with each step having its own map
and reduce functions. The Hadoop API allows a program to execute multiple such
MapReduce steps. The reduce() output from each step is written to the (distributed)
file system and read back in the following step. Hadoop also allows the programmer to
control the number of map and reduce tasks to be run in parallel for the job.

The rest of this section assumes a basic knowledge of Java (you may skip the rest
of this section without loss of continuity, if you are not familiar with Java).

Figure 10.9 shows the Java implementation in Hadoop of the word count appli-
cation we saw earlier. For brevity we have omitted Java import statements. The code
defines two classes, one that implements the Mapper interface, and another that im-
plements the Reducer interface. The Mapper and Reducer classes are generic classes
which take as arguments the types of the keys and values. Specifically, the generic Map-
per and Reducer interfaces both takes four type arguments that specify the types of
the input key, input value, output key, and output value, respectively.

The type definition of the Map class in Figure 10.9, which implements the Mapper
interface, specifies that themap key is of type LongWritable, is basically a long integer,
and the value which is (all or part of) a document is of type Text. The output of map
has a key of type Text, since the key is a word, while the value is of type IntWritable,
which is an integer value.



10.3 The MapReduce Paradigm 491

public class WordCount {
public static class Map extends Mapper<LongWritable, Text, Text, IntWritable> {

private final static IntWritable one = new IntWritable(1);
private Text word = new Text();

public void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {

String line = value.toString();
StringTokenizer tokenizer = new StringTokenizer(line);
while (tokenizer.hasMoreTokens()) {

word.set(tokenizer.nextToken());
context.write(word, one);

}
}

}
public static class Reduce extends Reducer<Text, IntWritable, Text, IntWritable> {

public void reduce(Text key, Iterable<IntWritable> values, Context context)
throws IOException, InterruptedException {

int sum = 0;
for (IntWritable val : values) {

sum += val.get();
}
context.write(key, new IntWritable(sum));

}
}
public static void main(String[] args) throws Exception {

Configuration conf = new Configuration();
Job job = new Job(conf, "wordcount");

job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
job.setMapperClass(Map.class);
job.setReducerClass(Reduce.class);
job.setInputFormatClass(TextInputFormat.class);
job.setOutputFormatClass(TextOutputFormat.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));

job.waitForCompletion(true);
}

}

Figure 10.9 The word count program written in Hadoop.

The map() code for the word count example breaks up the input text value into
words using StringTokenizer, and then for each word, it invokes context.write(word,
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one) to output a key and value pair; note that one is an IntWritable object with nu-
meric value 1.

All the values output by the map() invocations that have a particular key (word,
in our example) are collected in a list by the MapReduce system infrastructure. Doing
so requires interchange of data from multiple map tasks to multiple reduce tasks; in a
distributed setting, the data would have to be sent over the network. To ensure that all
values for a particular key come together, the MapReduce system typically sorts the
keys output by the map functions, ensuring all values for a particular key will come
together in the sorted order. This list of values for each key is provided to the reduce()
function.

The type of the reduce() input key is the same as the type of the map output
key. The reduce() input value in our example is a Java Iterable<IntWritable> object,
which contains a list of map output values (IntWritable is the type of the map output
value). The output key for reduce() is a word, of type Text, while the output value is a
word count, of type IntWritable.

In our example, the reduce() simply adds up the values it receives in its input to get
the total count; reduce() writes the word and the total count using the context.write()
function.

Note that in our simple example, the values are all 1, so reduce() just needs to count
the number of values it receives. In general, however, Hadoop allows the programmer
to declare a Combiner class, whose combine() function is run on the output of a single
map job; the output of this function replaces multiple map() output values for a single
key with a single value. In our example, a combine() function could just count the
number of occurrences of each word and output a single value, which is the local word
count at the map task. These outputs are then passed on to the reduce() function,
which would add up the local counts to get the overall count. The Combiner’s job is to
reduce the traffic over the network.

A MapReduce job runs a map and a reduce step. A program may have multiple
MapReduce steps, and each step would have its own settings for the map and reduce
functions. The main() function sets up the parameters for each MapReduce job, and
then executes it.

The example code in Figure 10.9 executes a single MapReduce job; the parameters
for the job are as follows:

• The classes that contain the map and reduce functions for the job, set by the
methods setMapperClass and setReducerClass.

• The types of the job’s output key and values, set to Text (for the words) and
IntWritable (for the count), respectively, by methods setOutputKeyClass and
setOutputValueClass, respectively.

• The input format of the job, set to TextInputFormat by the method
job.setInputFormatClass. The default input format in Hadoop is the TextInput-
Format, which creates a map key whose value is a byte offset into the file, and the
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map value is the contents of one line of the file. Since files are allowed to be big-
ger than 4 gigabytes, the offset is of type LongWritable. Programmers can provide
their own implementations for the input format class, which would process input
files and break the files into records.

• The output format of the job, set to TextOutputFormat by the method
job.setOutputFormatClass.

• The directories where the input files are stored, and where the output files must be
created, set by the methods addInputPath and addOutputPath.

Hadoop supports many more parameters for MapReduce jobs, such as the number of
map and reduce tasks to be run in parallel for the job and the amount of memory to
be allocated to each map and reduce task, among many others.

10.3.6 SQL on MapReduce

Many of the applications of MapReduce are for parallel processing of large amounts
of non-relational data, using computations that cannot be expressed easily in SQL. For
example, our word count program cannot be expressed easily in SQL. There are many
real-world uses of MapReduce that cannot be expressed in SQL. Examples include com-
putation of “inverted indices” which are key for web search engines to efficiently answer
keyword queries, and computation of Google’s PageRank, which is an important mea-
sure of the importance of web sites, and is used to rank answers to web search queries.

However, there are a large number of applications that have used the MapReduce
paradigm for data processing of various kinds, whose logic can be easily expressed
using SQL. If the data were in a database, it would make sense to write such queries
using SQL and execute the queries on a parallel database system (parallel database
systems are discussed in detail in Chapter 22. Using SQL is much easier for users than
is coding in the MapReduce paradigm. However, the data for many such applications
reside in a file system, and there are significant time and space overhead demands when
loading them into a database.

Relational operations can be implemented using map and reduce steps, as illus-
trated by the following examples:

• The relational selection operation can be implemented by a single map() function,
without a reduce() function (or with a reduce() function that simply outputs its
inputs, without any change).

• The relational group by and aggregate function γ can be implemented using a single
MapReduce step: the map() outputs records with the group by attribute values as
the reduce key; the reduce() function receives a list of all the attribute values for
a particular group by key and computes the required aggregate on the values in its
input list.
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• A join operation can be implemented using a single MapReduce step, Consider the
equijoin operation r ⋈r.A=s.A s. We define a map() function which for each input
record ri outputs a pair (ri A, ri), and similarly for each input record si outputs a pair
(si.A, si); the map output also includes a tag to indicate which relation (r or s) the
output came from. The reduce() function is invoked for each join-attribute value,
with a list of all the ri and si records with that join-attribute value. The function
separates out the r and s tuples, and then outputs a cross products of the r tuples
and the s tuples, since all of them have the same value for the join attribute.

We leave details as an exercise to the reader (Exercise 10.4). More complex tasks, for
example a query with multiple operations, can be expressed using multiple stages of
map and reduce tasks.

While it is indeed possible for relational queries to be expressed using the MapRe-
duce paradigm, it can be very cumbersome for a human to do so. Writing queries in
SQL is much more concise and easy to understand, but traditional databases did not
allow data access from files, nor did they support parallel processing of such queries.

A new generation of systems have been developed that allows queries written in
(variants of) the SQL language to be executed in parallel on data stored in file sys-
tems. These systems include Apache Hive (which was initially developed at Facebook),
SCOPE, which developed by Microsoft, both of which use variants of SQL, and Apache
Pig (which was initially developed at Yahoo!), which uses a declarative language called
Pig Latin, based on the relational algebra. All these systems allow data to be read di-
rectly from the file system but allow the programmer to define functions that convert
the input data to a record format.

All these systems generate a program containing a sequence of map and reduce
tasks to execute a given query. The programs are compiled and executed on a MapRe-
duce framework such as Hadoop. These systems became very popular, and far more
queries are written using these systems today than are written directly using the MapRe-
duce paradigm.

Today, Hive implementations provide an option of compiling SQL code to a tree
of algebraic operations that are executed on a parallel environment. Apache Tez and
Spark are two widely used platforms that support the execution of a tree (or DAG) of
algebraic operations on a parallel environment, which we study next in Section 10.4.

10.4 Beyond MapReduce: Algebraic Operations

Relational algebra forms the foundation of relational query processing, allowing queries
to be modeled as trees of operations. This idea is extended to settings with more com-
plex data types by supporting algebraic operators that can work on datasets containing
records with complex data types, and returning datasets with records containing similar
complex data types.
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10.4.1 Motivation for Algebraic Operations

As we saw in Section 10.3.6, relational operations can be expressed by a sequence of
map and reduce steps. Expressing tasks in such as fashion can be quite cumbersome.

For example, if programmers need to compute the join of two inputs, they should
be able to express it as a single algebraic operation, instead of having to express it
indirectly via map and reduce functions. Having access to functions such as joins can
greatly simplify the job of a programmer.

The join operation can be executed in parallel, using a variety of techniques that
we will see later in Section 22.3. In fact, doing so can be much more efficient than
implementing the join using map and reduce functions. Thus, even systems like Hive,
where programmers do not directly write MapReduce code, can benefit from direct
support for operations such as join.

Later-generation parallel data-processing systems therefore added support for other
relational operations such as joins (including variants such as outerjoins and semi-
joins), as well as a variety of other operations to support data analytics. For example,
many machine-learning models can be modeled as operators that take a set of records
as input then output a set of records that have an extra attribute containing the value
predicted by the model based on the other attributes of the record. Machine-learning
algorithms can themselves be modeled as operators that take a set of training records
as input and output a learned model. Processing of data often involves multiple steps,
which can be modeled as a sequence (pipeline) or tree of operators.

A unifying framework for these operations is to treat them as algebraic operations
that take one or more datasets as inputs and output one or more datasets.

Recall that in the relational algebra (Section 2.6) each operation takes one or
more relations as input, and outputs a relation. These later-generation parallel query-
processing systems are based on the same idea, but there are several differences. A key
difference is that the input data could be of arbitrary types, instead of just consisting
of columns with atomic data types as in the relational model. Recall that the extended
relational algebra required to support SQL could restrict itself to simple arithmetic,
string, and boolean expressions. In contrast, the new-generation algebraic operators
need to support more complex expressions, requiring the full power of a programming
language.

There are a number of frameworks that support algebraic operations on complex
data; the most widely used ones today are Apache Tez and Apache Spark.

Apache Tez provides a low-level API which is suitable for system implementors. For
example, Hive on Tez compiles SQL queries into algebraic operations that run on Tez.
Tez programmers can create trees (or in general Directed Acyclic Graphs, or DAGs) of
nodes, and they provide code that is to be executed on each of the nodes. Input nodes
would read in data from data sources and pass them to other nodes, which operate
on the data. Data can be partitioned across multiple machines, and the code for each
node can be executed on each of the machines. Since Tez is not really designed for
application programmers to use directly, we do not describe it in further detail.
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However, Apache Spark provides higher-level APIs which are suitable for applica-
tion programmers. We describe Spark in more detail next.

10.4.2 Algebraic Operations in Spark

Apache Spark is a widely used parallel data processing system that supports a variety of
algebraic operations. Data can be input from or output to a variety of storage systems.

Just as relational databases use a relation as the primary abstraction for data rep-
resentation, Spark uses a representation called a Resilient Distributed Dataset (RDD),
which is a collection of records that can be stored across multiple machines. The term
distributed refers to the records being stored on different machines, and resilient refers
to the resilience to failure, in that even if one of the machines fails, records can be
retrieved from other machines where they are stored.

Operators in Spark take one or more RDDs as input, and their output is an RDD.
The types of records stored in RDDs is not predefined and can be anything that the ap-
plication desires. Spark also supports a relational data representation called a DataSet,
which we describe later.

Spark provides APIs for Java, Scala, and Python. Our coverage of Spark is based
on the Java API.

Figure 10.10 shows our word count application, written in Java using Apache
Spark; this program uses the RDD data representation, whose Java type is called
JavaRDD. Note that JavaRDDs require a type for the record, specified in angular brack-
ets (“<>”). In the program we have RDDs of Java Strings. The program also has Java-
PairRDD types, which store records with two attributes of specified types. Records with
multiple attributes can be represented by using structured data types instead of primi-
tive data types. While any user-defined data type can be used, the predefined data types
Tuple2 which stores two attributes, Tuple3, which stores three attributes, and Tuple4,
which stores four attributes, are widely used.

The first step in processing data using Spark is to convert data from input rep-
resentation to the RDD representation, which is done by the spark.read().textfile()
function, which creates a record for each line in the input. Note that the input can be
a file or a directory with multiple files; a Spark system running on multiple nodes will
actually partition the RDD across multiple machines, although the program can treat
it (for most purposes) as if it is a data structure on a single machine. In our sample
code in Figure 10.10, the result is the RDD called lines.

The next step in our Spark program is to split each line into an array of words, by
calling s.split(" ")) on the line; this function breaks up the line based on spaces and
returns an array of words; a more complete function would split the input on other
punctuation characters such as periods, semicolons, and so on. The split function can
be invoked on each line in the input RDD by calling the map() function, which in Spark
returns a single record for each input record. In our example, we instead use a variant
called flatMap(), which works as follows: like map(), flatMap() invokes a user-defined
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import java.util.Arrays;
import java.util.List;
import scala.Tuple2;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.sql.SparkSession;
public class WordCount {

public static void main(String[] args) throws Exception {

if (args.length < 1) {
System.err.println("Usage: WordCount <file-or-directory-name>");
System.exit(1);

}
SparkSession spark =

SparkSession.builder().appName("WordCount").getOrCreate();

JavaRDD<String> lines = spark.read().textFile(args[0]).javaRDD();
JavaRDD<String> words = lines.flatMap(s -> Arrays.asList(s.split(" ")).iterator());
JavaPairRDD<String, Integer> ones = words.mapToPair(s -> new Tuple2<>(s, 1));
JavaPairRDD<String, Integer> counts = ones.reduceByKey((i1, i2) -> i1 + i2);

counts.saveAsTextFile("outputDir"); // Save output files in this directory

List<Tuple2<String, Integer» output = counts.collect();
for (Tuple2<String,Integer> tuple : output) {

System.out.println(tuple);
}
spark.stop();

}
}

Figure 10.10 Word count program in Spark.

function on each input record; the function is expected to return an iterator. A Java
iterator supports a next() function that can be used to fetch multiple results by calling
the function multiple times. The flatMap() function invokes the user-defined function
to get an iterator, invokes the next() function repeatedly on the iterator to get multiple
values, and then returns an RDD containing the union of all the values across all input
records.

The code shown in Figure 10.10 uses the “lambda expression” syntax introduced
in Java 8, which allows functions to be defined compactly, without even giving them a
name; in the Java code, the syntax

s − > Arrays.asList(s.split(" ")).iterator()
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defines a function that takes a parameter s and returns an expression that does the
following: it applies the split function described earlier to create an array of words,
then uses Arrays.asList to convert the array to a list, and finally applies the iterator()
method on the list to create an iterator. The flatMap() function works on this iterator
as described earlier.

The result of the above steps is an RDD called words, where each record contains
a single word.

The next step is to create a JavaPairRDD called ones, which contains pairs of the
form “(word, 1)” for each word in words; if a word appears multiple times in the input
file, there would correspondingly be as many records in words and in ones.

Finally the algebraic operation reduceByKey() implements a group by and aggre-
gation step. In the sample code, we specify that addition is to be used for aggregation,
by passing the lambda function (i1, i2) − > i1+i2 to the reduceByKey() function. The
reduceByKey() function works on a JavaPairRDD, grouping by the first attribute, and
aggregating the values of the second attribute using the provided lambda function.
When applied on the ones RDD, grouping would be on the word, which is the first
attribute, and the values of the second attribute (all ones, in the ones RDD) would be
added up. The result is stored in the JavaPairRDD counts.

In general, any binary function can be used to perform the aggregation, as long as
it gives the same result regardless of the order in which it is applied on a collection of
values.

Finally, the counts RDD is stored to the file system by saveAsTextFile(). Instead of
creating just one file, the function creates multiple files if the RDD itself is partitioned
across machines.

Key to understanding how parallel processing is achieved is to understand that

• RDDs may be partitioned and stored on multiple machines, and

• each operation may be executed in parallel on multiple machines, on the RDD
partition available at the machine. Operations may first repartition their input, to
bring related records to the same machine before executing operations in parallel.
For example, reduceByKey() would repartition the input RDD to bring all records
belonging to a group together on a single machine; records of different groups may
be on different machines.

Another important aspect of Spark is that the algebraic operations are not neces-
sarily evaluated immediately on the function call, although the code seems to imply
that this is what happens. Instead, the code shown in the figure actually creates a tree
of operations; in our code, the leaf operation textFile() reads data from a file; the next
operation flatMap() has the textFile() operation as its child; the mapToPairs() in turn
has flatMap() as child, and so on. The operators can be thought of in relational terms
as defining views, which are not executed as soon as they are defined but get executed
later.
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The entire tree of operations actually get evaluated only when certain operations
demand that the tree be evaluated. For example, saveAsTextFile() forces the tree to be
evaluated; other such functions include collect(), which evaluates the tree and brings
all records to a single machine, where they can subsequently be processed, for example
by printing them out.

An important benefit of such lazy evaluation of the tree (i.e., the tree is evaluated
when required, rather than when it is defined) is that before actual evaluation, it is
possible for a query optimizer to rewrite the tree to another tree that computes the
same result but may execute faster. Query optimization techniques, which we study in
Chapter 16 can be applied to optimize such trees.

While the preceding example created a tree of operations, in general the operations
may form a Directed Acyclic Graph (DAG) structure, if the result of an operation is con-
sumed by more than one other operation. That would result in operations having more
than one parent, leading to a DAG structure, whereas operations in a tree can have at
most one parent.

While RDDs are well suited for representing certain data types such as textual data,
a very large fraction of Big Data applications need to deal with structured data, where
each record may have multiple attributes. Spark therefore introduced the DataSet type,
which supports records with attributes. The DataSet type works well with widely used
Parquet, ORC, and Avro file formats (discussed in more detail later in Section 13.6),
which are designed to store records with multiple attributes in a compressed fashion.
Spark also supports JDBC connectors that can read relations from a database.

The following code illustrates how data in Parquet format can be read and pro-
cessed in Spark, where spark is a Spark session that has been opened earlier.

Dataset<Row> instructor = spark.read().parquet("...");
Dataset<Row> department = spark.read().parquet("...");
instructor.filter(instructor.col("salary").gt(100000))

.join(department, instructor.col("dept name")

.equalTo(department.col("dept name")))

.groupBy(department.col("building"))

.agg(count(instructor.col("ID")));

The DataSet<Row> type above uses the type Row, which allows access to column
values by name. The code reads instructor and department relations from Parquet files
(whose names are omitted in the code above); Parquet files store metadata such as
column names in addition to the values, which allows Spark to create a schema for the
relations. The Spark code then applies a filter (selection) operation on the instructor
relation, which retains only instructors with salary greater than 100000, then joins the
result with the department relation on the dept name attribute, performs a group by
on the building attribute (an attribute of the department relation), and for each group
(here, each building), a count of the number of ID values is computed.
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The ability to define new algebraic operations and to use them in queries has been
found to be very useful for many applications and has led to wide adoption of Spark.
The Spark system also supports compilation of Hive SQL queries into Spark operation
trees, which are then executed.

Spark also allows classes other than Row to be used with DataSets. Spark requires
that for each attribute Attrk of the class, methods getAttrk() and setAttrk() must be
defined to allow retrieval and storage of attribute values. Suppose we have created a
class Instructor, and we have a Parquet file whose attributes match those of the class.
Then we can read data from Parquet files as follows:

Dataset<Instructor> instructor = spark.read().parquet("...").
as(Encoders.bean(Instructor.class));

In this case Parquet provides the names of attributes in the input file, which are used
to map their values to attributes of the Instructor class. Unlike with Row, where the
types are not known at compile time the types of attributes of Instructor are known
at compile time, and can be represented more compactly than if we used the Row
type. Further, the methods of the class Instructor can be used to access attributes; for
example, we could use getSalary() instead of using col("salary"), which avoids the
runtime cost of mapping attribute names to locations in the underlying records. More
information on how to use these constructs can be found on the Spark documentation
available online at spark.apache.org.

Our coverage of Spark has focused on database operations, but as mentioned ear-
lier, Spark supports a number of other algebraic operations such as those related to
machine learning, which can be invoked on DataSet types.

10.5 Streaming Data

Querying of data can be done in an ad hoc manner—for example, whenever an analyst
wants to extract some information from a database. It can also be done in a periodic
manner—for example, queries may be executed at the beginning of each day to get a
summary of transactions that happened on the previous day.

However, there are many applications where queries need to be executed contin-
uously, on data that arrive in a continuous fashion. The term streaming data refers to
data that arrive in a continuous fashion. Many application domains need to process
incoming data in real time (i.e., as they arrive, with delays, if any, guaranteed to be less
than some bound).

10.5.1 Applications of Streaming Data

Here are a few examples of streaming data, and the real-time needs of applications that
use the data.
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• Stock market: In a stock market, each trade that is made (i.e., a stock is sold by
someone and bought by someone else) is represented by a tuple. Trades are sent
as a stream to processing systems.

Stock market traders analyze the stream of trades to look for patterns, and
they make buy or sell decisions based on the patterns that they observe. Real-time
requirements in such systems used to be of the order of seconds in earlier days, but
many of today’s systems require delays to be of the order of tens of microseconds
(usually to be able to react before others do, to the same patterns).

Stock market regulators may use the same stream, but for a different purpose:
to see if there are patterns of trades that are indicative of illegal activities. In both
cases, there is a need for continuous queries that look for patterns; the results of
the queries are used to carry out further actions.

• E-commerce: In an e-commerce site, each purchase made is represented as a tuple,
and the sequence of all purchases forms a stream. Further, even the searches exe-
cuted by a customer are of value to the e-commerce site, even if no actual purchase
is made; thus, the searches executed by users form a stream.

These streams can be used for multiple purposes. For example, if an advertising
campaign is launched, the e-commerce site may wish to monitor in real time how
the campaign is affecting searches and purchases. The e-commerce site may also
wish to detect any spikes in sales of specific products to which it may need to
respond by ordering more of that product. Similarly, the site may wish to monitor
users for patterns of activities such as frequently returning items, and block further
returns or purchases by the user.

• Sensors: Sensors are very widely used in systems such as vehicles, buildings, and
factories. These sensors send readings periodically, and thus the readings form a
stream. Readings in the stream are used to monitor the health of the system. If
some readings are abnormal, actions may need to be taken to raise alarms, and to
detect and fix any underlying faults, with minimal delay.

Depending on the complexity of the system and the required frequency of read-
ings, the stream can be of very high volume. In many cases, the monitoring is done
at a central facility in the cloud, which monitors a very large number of systems.
Parallel processing is essential in such a system to handle very large volumes of
data in the incoming streams.

• Network data: Any organization that manages a large computer network needs to
monitor activity on the network to detect network problems as well as attacks on
the network by malicious software (malware). The underlying data being moni-
tored can be represented as a stream of tuples containing data observed by each
monitoring point (such as network switch). The tuples could contain information
about individual network packets, such as source and destination addresses, size
of the packet, and timestamp of packet generation. However, the rate of creation
of tuples in such a stream is extremely high, and they cannot be handled except us-
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ing special-purpose hardware. Instead, data can be aggregated to reduce the rate at
which tuples are generated: for example, individual tuples could record data such
as source and destination addresses, time interval, and total bytes transmitted in
the time interval.

This aggregated stream must then be processed to detect problems. For exam-
ple, link failures could be detected by observing a sudden drop in tuples traversing
a particular link. Excessive traffic from multiple hosts to a single or a few destina-
tions could indicate a denial-of-service attack. Packets sent from one host to many
other hosts in the network could indicate malware trying to propagate itself to
other hosts in the network. Detection of such patterns must be done in real time
so that links can be fixed or action taken to stop the malware attack.

• Social media: Social media such as Facebook and Twitter get a continuous stream
of messages (such as posts or tweets) from users. Each message in the stream of
messages must be routed appropriately, for example by sending it to friends or
followers. The messages that can potentially be delivered to a subscriber are then
ranked and delivered in rank order, based on user preferences, past interactions,
or advertisement charges.

Social-media streams can be consumed not just by humans, but also by soft-
ware. For example, companies may keep a lookout for tweets regarding the com-
pany and raise an alert if there are many tweets that reflect a negative sentiment
about the company or its products. If a company launches an advertisement cam-
paign, it may analyze tweets to see if the campaign had an impact on users.

There are many more examples of the need to process and query streaming data
across a variety of domains.

10.5.2 Querying Streaming Data

Data stored in a database are sometimes referred to as data-at-rest, in contrast to stream-
ing data. In contrast to stored data, streams are unbounded, that is, conceptually they
may never end. Queries that can output results only after seeing all the tuples in a
stream would then never be able to output any result. As an example, a query that asks
for the number of tuples in a stream can never give a final result.

One way to deal with the unbounded nature of streams is to define windows on
the streams, where each window contains tuples with a certain timestamp range or
a certain number of tuples. Given information about timestamps of incoming tuples
(e.g., they are increasing), we can infer when all tuples in a particular window have
been seen. Based on the above, some query languages for streaming data require that
windows be defined on streams, and queries can refer to one or a few windows of tuples
rather than to a stream.

Another option is to output results that are correct at a particular point in the
stream, but to output updates as more tuples arrive. For example, a count query can
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output the number of tuples seen at a particular point in time, and as more tuples arrive,
the query updates its result based on the new count.

Several approaches have been developed for querying streaming data, based on the
two options described above.

1. Continuous queries. In this approach the incoming data stream is treated as in-
serts to a relation, and queries on the relations can be written in SQL, or using re-
lational algebra operations. These queries can be registered as continuous queries,
that is, queries that are running continuously. The result of the query on initial
data are output when the system starts up. Each incoming tuple may result in
insertion, update, or deletion of tuples in the result of the continuous query. The
output of a continuous query is then a stream of updates to the query result, as
the underlying database is updated by the incoming streams.

This approach has some benefits in applications where users wish to view all
database inserts that satisfy some conditions. However, a major drawback of the
approach is that consumers of a query result would be flooded with a large num-
ber of updates to continuous queries if the input rate is high. In particular, this
approach is not desirable for applications that output aggregated values, where
users may wish to see final aggregates for some period of time, rather than every
intermediate result as each incoming tuple is inserted.

2. Stream query languages. A second approach is to define a query language by
extending SQL or relational algebra, where streams are treated differently from
stored relations.

Most stream query languages use window operations, which are applied to
streams, and create relations corresponding to the contents of a window. For
example, a window operation on a stream may create sets of tuples for each hour
of the day; each such set is thus a relation. Relational operations can be executed
on each such set of tuples, including aggregation, selection, and joins with stored
relational data or with windows of other streams, to generate outputs.

We provide an outline of stream query languages in Section 10.5.2.1. These
languages separate streaming data from stored relations at the language level and
require window operations to be applied before performing relational operations.
Doing so ensures that results can be output after seeing only part of a stream. For
example, if a stream guarantees that tuples have increasing timestamps, a window
based on time can be deduced to have no more tuples once a tuple with a higher
timestamp than the window end has been seen. The aggregation result for the
window can be output at this point.

Some streams do not guarantee that tuples have increasing timestamps. How-
ever, such streams would contain punctuations, that is, metadata tuples that state
that all future tuples will have a timestamp greater than some value. Such punc-
tuations are emitted periodically and can be used by window operators to decide
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when an aggregate result, such as aggregates for an hourly window, is complete
and can be output.

3. Algebraic operators on streams. A third approach is to allow users to write oper-
ators (user-defined functions) that are executed on each incoming tuple. Tuples
are routed from inputs to operators; outputs of an operator may be routed to
another operator, to a system output, or may be stored in a database. Operators
can maintain internal state across the tuples that are processed, allowing them to
aggregate incoming data. They may also be permitted to store data persistently
in a database, for long-term use.

This approach has seen widespread adoption in recent years, and we describe
it in more detail later.

4. Pattern matching. A fourth option is to define a pattern matching language and
allow users to write multiple rules, each with a pattern and an action. When the
system finds a subsequence of tuples that match a particular pattern, the action
corresponding to the pattern is executed. Such systems are called complex event
processing (CEP) systems. Popular complex event processing systems include Or-
acle Event Processing, Microsoft StreamInsight, and FlinkCEP, which is part of
the Apache Flink project,

We discuss stream query languages and algebraic operations in more detail later in this
section.

Many stream-processing systems keep data in-memory and do not provide persis-
tence guarantees; their goal is to generate results with minimum delay, to enable fast
response based on analysis of streaming data. On the other hand, the incoming data
may also need to be stored in a database for later processing. To support both pat-
terns of querying, many applications use a so-called lambda architecture, where a copy
of the input data is provided to the stream-processing system and another copy is pro-
vided to a database for storage and later processing. Such an architecture allows stream-
processing systems to be developed rapidly, without worrying about persistence-related
issues. However, the streaming system and database system are separate, resulting in
these problems:

• Queries may need to be written twice, once for the streaming system and once for
the database system, in different languages.

• Streaming queries may not be able to access stored data efficiently.

Systems that support streaming queries along with persistent storage and queries that
span streams and stored data avoid these problems.

10.5.2.1 Stream Extensions to SQL

SQL window operations were described in Section 5.5.2, but stream query languages
support further window types that are not supported by SQL window functions. For
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example, a window that contains tuples for each hour cannot be specified using SQL
window functions; note, however, that aggregates on such windows can be specified in
SQL in a more roundabout fashion, first computing an extra attribute that contains just
the hour component of a timestamp, and then grouping on the hour attribute. Win-
dow functions in streaming query languages simplify specification of such aggregation.
Commonly supported window functions include:

• Tumbling window: Hourly windows are an example of tumbling windows. Windows
do not overlap but are adjacent to each other. Windows are specified by their win-
dow size (for example, number of hours, minutes, or seconds).

• Hopping window: An hourly window computed every 20 minutes would be an exam-
ple of a hopping window; the window width is fixed, similar to tumbling windows,
but adjacent windows can overlap.

• Sliding window: Sliding windows are windows of a specified size (based on time, or
number of tuples) around each incoming tuple. These are supported by the SQL
standard.

• Session window: Session windows model users who perform multiple operations
as part of a session. A window is identified by a user and a time-out interval, and
contains a sequence of operations such that each operation occurs within the time-
out interval from the previous operation. For example, if the time-out is 5 minutes,
and a user performs an operation at 10 AM, a second operation at 10:04 AM, and
a third operation at 11 AM, then the first two operations are part of one session,
while the third is part of a different session. A maximum duration may also be
specified, so once that duration expires, the session window is closed even if some
operations have been performed within the time-out interval.

The exact syntax for specifying windows varies by implementation. Suppose we
have a relation order(orderid, datetime, itemid, amount). In Azure Stream Analytics,
the total order amount for each item for each hour can be specified by the following
tumbling window:

select item, System.Timestamp as window end, sum(amount)
from order timestamp by datetime
group by itemid, tumblingwindow(hour, 1)

Each output tuple has a timestamp whose value is equal to the timestamp of the end
of the window; the timestamp can be accessed using the keyword System.Timestamp as
shown in the query above.

SQL extensions to support streams differentiate between streams, where tuples
have implicit timestamps and are expected to receive a potentially unbounded number
of tuples and relations whose content is fixed at any point. For example, customers,
suppliers, and items associated with orders would be treated as relations, rather than
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as streams. The results of queries with windowing are treated as relations, rather than
as streams.

Joins are permitted between a stream and a relation, and the result is a stream;
the timestamp of a join result tuple is the same as the timestamp of the input stream
tuple. Joins between two streams have the problem that a tuple early in one stream
may match a tuple that occurs much later in the other stream; such a join condition
would require storing the entire stream for a potentially unbounded amount of time. To
avoid this problem, streaming SQL systems allow stream-to-stream join only if there is
a join condition that bounds the time difference between matching tuples. A condition
that the timestamps of the two tuples differ by at most 1 hour is an example of such a
condition.

10.5.3 Algebraic Operations on Streams

While SQL queries on streaming data are quite useful, there are many applications
where SQL queries are not a good fit. With the algebraic operations approach to stream
processing, user-defined code can be provided for implementing an algebraic operation;
a number of predefined algebraic operations, such as selection and windowed aggrega-
tion, are also provided.

To perform computation, incoming tuples must be routed to operators that con-
sume the tuples, and outputs of operators must be routed to their consumers. A key task
of the implementation is to provide fault-tolerant routing of tuples between system in-
put, operators, and outputs. Apache Storm and Kafka are widely used implementations
that support such routing of data.

The logical routing of tuples is done by creating a directed acyclic graph (DAG) with
operators as nodes. Edges between nodes define the flow of tuples. Each tuple output by
an operator is sent along all the out-edges of the operator, to the consuming operators.
Each operator receives tuples from all its in-edges. Figure 10.11a depicts the logical
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Figure 10.11 Routing of streams using DAG and publish-subscribe representations.
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routing of stream tuples through a DAG structure. Operation nodes are denoted as
“Op” nodes in the figure. The entry points to the stream-processing system are the data-
source nodes of the DAG; these nodes consume tuples from the stream sources and
inject them into the stream-processing system. The exit points of the stream-processing
system are data-sink nodes; tuples exiting the system through a data sink may be stored
in a data store or file system or may be output in some other manner.

One way of implementing a stream-processing system is by specifying the graph
as part of the system configuration, which is read when the system starts processing
tuples, and is then used to route tuples. The Apache Storm stream-processing system
is an example of a system that uses a configuration file to define the graph, which is
called a topology in the Storm system. Data-source nodes are called spouts in the Storm
system, while operator nodes are called bolts, and edges connect these nodes.

An alternative way of creating such a routing graph is by using publish-subscribe
systems. A publish-subscribe system allows publication of documents or other forms
of data, with an associated topic. Subscribers correspondingly subscribe to specified
topics. Whenever a document is published to a particular topic, a copy of the document
is sent to all subscribers who have subscribed to that topic. Publish-subscribe systems
are also referred to as pub-sub systems for short.

When a publish-subscribe system is used for routing tuples in a stream-processing
system, tuples are considered documents, and each tuple is tagged with a topic. The
entry points to the system conceptually “publish” tuples, each with an associated topic.
Operators subscribe to one or more topics; the system routes all tuples with a specific
topic to all subscribers of that topic. Operators can also publish their outputs back to
the publish-subscribe system, with an associated topic.

A major benefit of the publish-subscribe approach is that operators can be added to
the system, or removed from it, with relative ease. Figure 10.11b depicts the routing of
tuples using a publish-subscribe representation. Each data source is assigned a unique
topic name; the output of each operator is also assigned a unique topic name. Each
operator subscribes to the topics of its inputs and publishes to the topics corresponding
to its output. Data sources publish to their associated topic, while data sinks subscribe
to the topics of the operators whose output goes to the sink.

The Apache Kafka system uses the publish-subscribe model to manage routing
of tuples in streams. In the Kafka system, tuples published for a topic are retained
for a specified period of time (called the retention period), even if there is currently no
subscriber for the topic. Subscribers usually process tuples at the earliest possible time,
but in case processing is delayed or temporarily stopped due to failures, the tuples are
still available for processing until the retention time expires.

More details of routing, and in particular how publish-subscribe is implemented in
a parallel system, are provided in Section 22.8.

The next detail to be addressed is how to implement the algebraic operations. We
saw earlier how algebraic operations can be computed using data from files and other
data sources as inputs.
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Apache Spark allows streaming data sources to be used as inputs for such opera-
tions. The key issue is that some of the operations may not output any results at all until
the entire stream is consumed, which may take potentially unbounded time. To avoid
this problem, Spark breaks up streams into discretized streams, where the stream data
for a particular time window are treated as a data input to algebraic operators. When
the data in that window have been consumed, the operator generates its output, just as
it would have if the data source were a file or a relation.

However, the above approach has the problem that the discretization of streams
has to be done before any algebraic operations are executed. Other systems such as
Apache Storm and Apache Flink support stream operations, which take a stream as
input and output another stream. This is straightforward for operations such as map
or relational select operations; each output tuple inherits a timestamp from the input
tuple. On the other hand, relational aggregate operations and reduce operations may
be unable to generate any output until the entire stream is consumed. To support such
operations, Flink supports a window operation which breaks up the stream into win-
dows; aggregates are computed within each window and are output once the window
is complete. Note that the output is treated as a stream, where tuples have a timestamp
based on the end of the window.3

10.6 Graph Databases

Graphs are an important type of data that databases need to deal with. For example,
a computer network with multiple routers and links between them can be modeled as
a graph, with routers as nodes and network links as edges. Road networks are another
common type of graph, with road intersections modeled as nodes and the road links
between intersections as edges. Web pages with hyperlinks between them are yet an-
other example of graphs, where web pages can be modeled as nodes and hyperlinks
between them as edges.

In fact, if we consider an E-R model of an enterprise, every entity can be modeled
as a node of a graph, and every binary relationship can be modeled as an edge of the
graph. Ternary and higher-degree relationships are harder to model, but as we saw in
Section 6.9.4, such relationships can be modeled as a set of binary relationships if
desired.

Graphs can be represented using the relational model using the following two re-
lations:

1. node(ID, label, node data)

2. edge(fromID, toID, label, edge data)

where node data and edge data contain all the data related to nodes and edges, respec-
tively.

3Some systems generate timestamps based on when the window is processed, but doing so results in output timestamps
that are nondeterministic.
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Modeling a graph using just two relations is too simplistic for complex database
schemas. For example, applications require modeling of many types of nodes, each with
its own set of attributes, and many types of edges, each with its own set of attributes.
We can correspondingly have multiple relations that store nodes of different types and
multiple relations that store edges of different types.

Although graph data can be easily stored in relational databases, graph databases
such as the widely used Neo4j provide several extra features:

• They allow relations to be identified as representing nodes or edges and offer spe-
cial syntax for defining such relations

• They support query languages designed for easily expressing path queries, which
may be harder to express in SQL.

• They provide efficient implementations for such queries, which can execute queries
much faster than if they were expressed in SQL and executed on a regular database.

• They provide support for other features such as graph visualization.

As an example of a graph query, we consider a query in the Cypher query language
supported by Neo4j. Suppose the input graph has nodes corresponding to students
(stored in a relation student) and instructors (stored in a relation instructor, and an
edge type advisor from student to instructor. We omit details of how to create such node
and edge types in Neo4j and assume appropriate schemas for these types. We can then
write the following query:

match (i:instructor)<−[:advisor]−(s:student)
where i.dept name= 'Comp. Sci.'
return i.ID as ID, i.name as name, collect(s.name) as advisees

Observe that the match clause in the query connects instructors to students via the
advisor relation, which is modeled as a graph path that traverses the advisor edge in
the backwards direction (the edge points from student to instructor), by using the syn-
tax (i:instructor)<−[:advisor]−(s:student). This step basically performs a join of the
instructor, advisor and student relations. The query then performs a group by on in-
structor ID and name, and collects all the students advised by the instructor into a
set called advisees. We omit details, and refer the interested reader to online tutorials
available at neo4j.com/developer.

Neo4J also supports recursive traversal of edges. For example, suppose we wish to
find direct and indirect prerequisites of courses, with the relation course modeled with
type node, and relation prereq(course id, prereq id) modeled with type edge. We can
then write the following query:

match (c1:course)−[:prereq *1..]−>(c2:course)
return c1.course id, c2.course id
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Here, the annotation “*1..” indicates we want to consider paths with multiple prereq
edges, with a minimum of 1 edge (with a minimum of 0, a course would appear as its
own prerequisite).

We note that Neo4j is a centralized system and does not (as of 2018) support
parallel processing. However, there are many applications that need to process very
large graphs, and parallel processing is key for such applications.

Computation of PageRank (which we saw earlier in Section 8.3.2.2) on very large
graphs containing a node for every web page, and an edge for every hyperlink from one
page to another, is a good example of a complex computation on very large graphs.
The web graph today has hundreds of billions of nodes and trillions of edges. Social
networks are another example of very large graphs, containing billions of nodes and
edges; computations on such graphs include shortest paths (to find connectivity be-
tween people), or computing how influential people are based on edges in the social
network.

There are two popular approaches for parallel graph processing:

1. Map-reduce and algebraic frameworks: Graphs can be represented as relations,
and individual steps of many parallel graph algorithms can be represented as
joins. Graphs can thus be stored in a parallel storage system, partitioned across
multiple machines. We can then use map-reduce programs, algebraic frameworks
such as Spark, or parallel relational database implementations to process each
step of a graph algorithm in parallel across multiple nodes.

Such approaches work well for many applications. However, when performing
iterative computations that traverse long paths in graphs, these approaches are
quite inefficient, since they typically read the entire graph in each iteration.

2. Bulk synchronous processing frameworks: The bulk synchronous processing (BSP)
framework for graph algorithms frames graph algorithms as computations asso-
ciated with vertices that operate in an iterative manner. Unlike the preceding
approach, here the graph is typically stored in memory, with vertices partitioned
across multiple machines; most importantly, the graph does not have to be read
in each iteration.

Each vertex (node) of the graph has data (state) associated with it. Similar
to how programmers provide map() and reduce() functions in the MapReduce
framework, in the BSP framework programmers provide methods that are exe-
cuted for each node of the graph. The methods can send messages to neighboring
nodes and receive messages from neighboring nodes of the graph. In each iter-
ation, called a superstep, the method associated with each node is executed; the
method consumes any incoming messages, updates the data associated with the
node, and may optionally send messages to neighboring nodes. Messages sent
in one iteration are received by the recipients in the next iteration. The method
executing at each vertex may vote to halt if they decide they have no more compu-
tation to carry out. If in some iteration all vertices vote to halt, and no messages
are sent out, the computation can be halted.
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The result of the computation is contained in the state at each node. The state
can be collected and output as the result of the computation.

The idea of bulk synchronous processing is quite old but was popularized by the
Pregel system developed by Google, which provided a fault-tolerant implementation
of the framework. The Apache Giraph system is an open-source version of the Pregel
system.

The GraphX component of Apache Spark supports graph computations on large
graphs. It provides an API based on Pregel, as well as a number of other operations that
take a graph as input, and output a graph. Operations supported by GraphX include
map functions applied on vertices and edges of graphs, join of a graph with an RDD,
and an aggregation operation that works as follows: a user-defined function is used
to create messages that are sent to all the neighbors of each node, and another user-
defined function is used to aggregate the messages. All these operations can be executed
in parallel to handle large graphs.

For more information on how to write graph algorithms in such settings, see the
references in the Further Reading section at the end of the chapter.

10.7 Summary

• Modern data management applications often need to deal with data that are not
necessarily in relational form, and these applications also need to deal with vol-
umes of data that are far larger than what a single traditional organization would
have generated.

• The increasing use of data sensors leads to the connection of sensors and other
computing devices embedded within other objects to the internet, often referred
to as the “internet of things.”

• There is now a wider variety of query language options for Big Data applications,
driven by the need to handle more varied of data types, and by the need to scale
to very large data volumes/velocity.

• Building data management systems that can scale to large volume/velocity of data
requires parallel storage and processing of data.

• Distributed file systems allow files to be stored across a number of machines, while
allowing access to files using a traditional file-system interface.

• Key-value storage systems allow records to be stored and retrieved based on a key
and may additionally provide limited query facilities. These systems are not full-
fledged database systems, and they are sometimes called NoSQL systems.

• Parallel and distributed databases provide a traditional database interface, but they
store data across multiple machines, and they perform query processing in parallel
across multiple machines.
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• The MapReduce paradigm models a common situation in parallel processing,
where some processing, identified by the map() function, is applied to each of
a large number of input records, and then some form of aggregation, identified by
the reduce() function, is applied to the result of the map() function.

• The Hadoop system provides a widely used open-source implementation of
MapReduce in the Java language.

• There are a large number of applications that use the MapReduce paradigm for
data processing of various kinds whose logic can be easily expressed using SQL.

• Relational algebra forms the foundation of relational query processing, allowing
queries to be modeled as trees of operations. This idea is extended to settings
with more complex data types by supporting algebraic operators that can work on
datasets containing records with complex data types, and returning datasets with
records containing similar complex data types.

• There are many applications where queries need to be executed continuously, on
data that arrive in a continuous fashion. The term streaming data refers to data
that arrive in a continuous fashion. Many application domains need to process
incoming data in real time.

• Graphs are an important type of data that databases need to deal with.

Review Terms
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Practice Exercises

10.1 Suppose you need to store a very large number of small files, each of size say 2
kilobytes. If your choice is between a distributed file system and a distributed
key-value store, which would you prefer, and explain why.

10.2 Suppose you need to store data for a very large number of students in a dis-
tributed document store such as MongoDB. Suppose also that the data for
each student correspond to the data in the student and the takes relations.
How would you represent the above data about students, ensuring that all the
data for a particular student can be accessed efficiently? Give an example of
the data representation for one student.

10.3 Suppose you wish to store utility bills for a large number of users, where each
bill is identified by a customer ID and a date. How would you store the bills in
a key-value store that supports range queries, if queries request the bills of a
specified customer for a specified date range.

10.4 Give pseudocode for computing a join r ⋈r.A=s.A s using a single MapReduce
step, assuming that the map() function is invoked on each tuple of r and s.
Assume that the map() function can find the name of the relation using con-
text.relname().

10.5 What is the conceptual problem with the following snippet of Apache Spark
code meant to work on very large data. Note that the collect() function returns
a Java collection, and Java collections (from Java 8 onwards) support map and
reduce functions.

JavaRDD<String< lines = sc.textFile("logDirectory");
int totalLength = lines.collect().map(s −> s.length())

.reduce(0,(a,b) −> a+b);

10.6 Apache Spark:

a. How does Apache Spark perform computations in parallel?

b. Explain the statement: “Apache Spark performs transformations on
RDDs in a lazy manner.”

c. What are some of the benefits of lazy evaluation of operations in Apache
Spark?

10.7 Given a collection of documents, for each word wi, let ni denote the number of
times the word occurs in the collection. Let N be the total number of word oc-
currences across all documents. Next, consider all pairs of consecutive words
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(wi, wj) in the document; let ni,j denote the number of occurrences of the word
pair (wi, wj) across all documents.

Write an Apache Spark program that, given a collection of documents in a
directory, computes N , all pairs (wi, ni), and all pairs ((wi, wj), ni,j). Then output
all word pairs such that ni,j∕N ≥ 10 ∗ (ni∕N) ∗ (nj∕N). These are word pairs
that occur 10 times or more as frequently as they would be expected to occur
if the two words occurred independently of each other.

You will find the join operation on RDDs useful for the last step, to bring
related counts together. For simplicity, do not bother about word pairs that
cross lines. Also assume for simplicity that words only occur in lowercase and
that there are no punctuation marks.

10.8 Consider the following query using the tumbling window operator:

select item, System.Timestamp as window end, sum(amount)
from order timestamp by datetime
group by itemid, tumblingwindow(hour, 1)

Give an equivalent query using normal SQL constructs, without using the tum-
bling window operator. You can assume that the timestamp can be converted
to an integer value that represents the number of seconds elapsed since (say)
midnight, January 1, 1970, using the function to seconds(timestamp). You can
also assume that the usual arithmetic functions are available, along with the
function floor(a) which returns the largest integer ≤ a.

10.9 Suppose you wish to model the university schema as a graph. For each of the
following relations, explain whether the relation would be modeled as a node
or as an edge:

(i) student, (ii) instructor, (iii) course, (iv) section, (v) takes, (vi) teaches.
Does the model capture connections between sections and courses?

Exercises

10.10 Give four ways in which information in web logs pertaining to the web pages
visited by a user can be used by the web site.

10.11 One of the characteristics of Big Data is the variety of data. Explain why this
characteristic has resulted in the need for languages other than SQL for pro-
cessing Big Data.

10.12 Suppose your company has built a database application that runs on a cen-
tralized database, but even with a high-end computer and appropriate indices
created on the data, the system is not able to handle the transaction load, lead-
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ing to slow processing of queries. What would be some of your options to allow
the application to handle the transaction load?

10.13 The map-reduce framework is quite useful for creating inverted indices on a set
of documents. An inverted index stores for each word a list of all document
IDs that it appears in (offsets in the documents are also normally stored, but
we shall ignore them in this question).

For example, if the input document IDs and contents are as follows:

1: data clean
2: data base
3: clean base

then the inverted lists would

data: 1, 2
clean: 1, 3
base: 2, 3

Give pseudocode for map and reduce functions to create inverted indices on a
given set of files (each file is a document). Assume the document ID is available
using a function context.getDocumentID(), and the map function is invoked
once per line of the document. The output inverted list for each word should be
a list of document IDs separated by commas. The document IDs are normally
sorted, but for the purpose of this question you do not need to bother to sort
them.

10.14 Fill in the blanks below to complete the following Apache Spark program
which computes the number of occurrences of each word in a file. For simplic-
ity we assume that words only occur in lowercase, and there are no punctuation
marks.

JavaRDD<String> textFile = sc.textFile("hdfs://...");
JavaPairRDD<String, Integer> counts =

textFile. (s −> Arrays.asList(s.split(" ")). ())
.mapToPair(word -> new ).reduceByKey((a, b) −> a + b);

10.15 Suppose a stream can deliver tuples out of order with respect to tuple times-
tamps. What extra information should the stream provide, so a stream query
processing system can decide when all tuples in a window have been seen?

10.16 Explain how multiple operations can be executed on a stream using a publish-
subscribe system such as Apache Kafka.

Tools

A wide variety of open-source Big Data tools are available, in addition to some
commercial tools. In addition, a number of these tools are available on cloud plat-
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forms. We list below several popular tools, along with the URLs where they can
be found. Apache HDFS (hadoop.apache.org) is a widely used distributed file sys-
tem implementation. Open-source distributed/parallel key-value stores include Apache
HBase (hbase.apache.org), Apache Cassandra (cassandra.apache.org), MongoDB
(www.mongodb.com), and Riak (basho.com).

Hosted cloud storage systems include the Amazon S3 storage system
(aws.amazon.com/s3) and Google Cloud Storage (cloud.google.com/storage).
Hosted key-value stores include Google BigTable (cloud.google.com/bigtable), and
Amazon DynamoDB (aws.amazon.com/dynamodb).

Google Spanner (cloud.google.com/spanner) and the open source Cock-
roachDB (www.cockroachlabs.com) are scalable parallel databases that support SQL
and transactions, and strongly consistent storage.

Open-source MapReduce systems include Apache Hadoop (hadoop.apache.org),
and Apache Spark (spark.apache.org), while Apache Tez (tez.apache.org) sup-
ports data processing using a DAG of algebraic operators. These are also available
as cloud-based offerings from Amazon Elastic MapReduce (aws.amazon.com/emr),
which also supports Apache HDFS and Apache HBase, and from Microsoft Azure
(azure.microsoft.com).

Apache Hive (hive.apache.org) is a popular open-source SQL implementation
that runs on top of the Apache MapReduce, Apache Tez, as well as Apache Spark;
these systems are designed to support large queries running in parallel on multiple ma-
chines. Apache Impala (impala.apache.org) is an SQL implementation that runs on
Hadoop, and is designed to handle a large number of queries, and to return query results
with minimal delays (latency). Hosted SQL offerings on the cloud that support paral-
lel processing include Amazon EMR (aws.amazon.com/emr), Google Cloud SQL
(cloud.google.com/sql), and Microsoft Azure SQL (azure.microsoft.com).

Apache Kafka (kafka.apache.org) and Apache Flink (flink.apache.org) are
open-source stream-processing systems; Apache Spark also provides support for
stream processing. Hosted stream-processing platforms include Amazon Kinesis
(aws.amazon.com/kinesis), Google Cloud Dataflow (cloud.google.com/dataflow)
and Microsoft Stream Analytics (azure.microsoft.com). Open source graph process-
ing platforms include Neo4J (neo4j.com) and Apache Giraph (giraph.apache.org).

Further Reading

[Davoudian et al. (2018)] provides a nice survey of NoSQL data stores, including data
model querying and internals. More information about Apache Hadoop, including doc-
umentation on HDFS and Hadoop MapReduce, can be found on the Apache Hadoop
homepage, hadoop.apache.org. Information about Apache Spark may be found on
the Spark homepage, spark.apache.org. Information about the Apache Kafka stream-
ing data platform may be found on kafka.apache.org, and details of stream process-
ing in Apache Flink may be found on flink.apache.org. Bulk Synchronous Processing
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was introduced in [Valiant (1990)]. A description of the Pregel system, including its
support for bulk synchronous processing, may be found in [Malewicz et al. (2010)],
while information about the open source equivalent, Apache Giraph, may be found on
giraph.apache.org.
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Data Analytics

Decision-making tasks benefit greatly by using data about the past to predict the future
and using the predictions to make decisions. For example, online advertisement sys-
tems need to decide what advertisement to show to each user. Analysis of past actions
and profiles of other users, as well as past actions and profile of the current user, are
key to deciding which advertisement the user is most likely to respond to. Here, each
decision is low-value, but with high volumes the overall value of making the right deci-
sions is very high. At the other end of the value spectrum, manufacturers and retailers
need to decide what items to manufacture or stock many months ahead of the actual
sale of the items. Predicting future demand of different types of items based on past
sales and other indicators is key to avoiding both overproduction or overstocking of
some items, and underproduction or understocking of other items. Errors can lead to
monetary loss due to unsold inventory of some items, or loss of potential revenue due
to nonavailability of some items.

The term data analytics refers broadly to the processing of data to infer patterns,
correlations, or models for prediction. The results of analytics are then used to drive
business decisions.

The financial benefits of making correct decisions can be substantial, as can the
costs of making wrong decisions. Organizations therefore invest a lot of money to
gather or purchase required data and build systems for data analytics.

11.1 Overview of Analytics

Large companies have diverse sources of data that they need to use for making business
decisions. The sources may store the data under different schemas. For performance
reasons (as well as for reasons of organization control), the data sources usually will
not permit other parts of the company to retrieve data on demand.

Organizations therefore typically gather data from multiple sources into one lo-
cation, referred to as a data warehouse. Data warehouses gather data from multiple
sources at a single site, under a unified schema (which is usually designed to support
efficient analysis, even at the cost of redundant storage). Thus, they provide the user
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a single uniform interface to data. However, data warehouses today also collect and
store data from non-relational sources, where schema unification is not possible. Some
sources of data have errors that can be detected and corrected using business con-
straints; further, organizations may collect data from multiple sources, and there may
be duplicates in the data collected from different sources. These steps of collecting
data, cleaning/deduplicating the data, and loading the data into a warehouse are re-
ferred to as extract, transform and load (ETL) tasks. We study issues in building and
maintaining a data warehouse in Section 11.2.

The most basic form of analytics is generation of aggregates and reports summa-
rizing the data in ways that are meaningful to the organization. Analysts need to get a
number of different aggregates and compare them to understand patterns in the data.
Aggregates, and in some cases the underlying data, are typically presented graphically
as charts, to make it easy for humans to visualize the data. Dashboards that display
charts summarizing key organizational parameters, such as sales, expenses, product
returns, and so forth, are popular means of monitoring the health of an organization.
Analysts also need to visualize data in ways that can highlight anomalies or give insights
into causes for changes in the business.

Systems that support very efficient analysis, where aggregate queries on large data
are answered in almost real time (as opposed to being answered after tens of minutes or
multiple hours) are popular with analysts. Such systems are referred to as online analyti-
cal processing (OLAP) systems. We discuss online analytical processing in Section 11.3,
where we cover the concept of multidimensional data, OLAP operations, relational rep-
resentation of multidimensional summaries. We also discuss graphical representation
of data and visualization in Section 11.3.

Statistical analysis is an important part of data analysis. There are several tools
that are designed for statistical analysis, including the R language/environment, which
is open source, and commercial systems such as SAS and SPSS. The R language is
widely used today, and in addition to features for statistical analysis, it supports facilities
for graphical display of data. A large number of R packages (libraries) are available
that implement a wide variety of data analysis tasks, including many machine-learning
algorithms. R has been integrated with databases as well as with Big Data systems such
as Apache Spark, which allows R programs to be executed in parallel on large datasets.
Statistical analysis is a large area by itself, and we do not discuss it further in this book.
References providing more information may be found in the Further Reading section
at the end of this chapter.

Prediction of different forms is another key aspect of analytics. For example, banks
need to decide whether to give a loan to a loan applicant, and online advertisers need
to decide which advertisement to show to a particular user. As another example, man-
ufacturers and retailers need to make decisions on what items to manufacture or order
in what quantities.

These decisions are driven significantly by techniques for analyzing past data and
using the past to predict the future. For example, the risk of loan default can be pre-
dicted as follows. First, the bank would examine the loan default history of past cus-
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tomers, find key features of customers, such as salary, education level, job history, and
so on, that help in prediction of loan default. The bank would then build a prediction
model (such as a decision tree, which we study later in this chapter) using the chosen
features. When a customer then applies for a loan, the features of that particular cus-
tomer are fed into the model which makes a prediction, such as an estimated likelihood
of loan default. The prediction is used to make business decisions, such as whether to
give a loan to the customer.

Similarly, analysts may look at the past history of sales and use it to predict future
sales, to make decisions on what and how much to manufacture or order, or how to
target their advertising. For example, a car company may search for customer attributes
that help predict who buys different types of cars. It may find that most of its small
sports cars are bought by young women whose annual incomes are above $50,000.
The company may then target its marketing to attract more such women to buy its
small sports cars and may avoid wasting money trying to attract other categories of
people to buy those cars.

Machine-learning techniques are key to finding patterns in data and in making pre-
dictions from these patterns. The field of data mining combines knowledge-discovery
techniques invented by machine-learning researchers with efficient implementation
techniques that enable them to be used on extremely large databases. Section 11.4
discusses data mining.

The term business intelligence (BI) is used in a broadly similar sense to data an-
alytics. The term decision support is also used in a related but narrower sense, with
a focus on reporting and aggregation, but not including machine learning/data min-
ing. Decision-support tasks typically use SQL queries to process large amounts of data.
Decision-support queries are can be contrasted with queries for online transaction pro-
cessing, where each query typically reads only a small amount of data and may perform
a few small updates.

11.2 Data Warehousing

Large organizations have a complex internal organization structure, and therefore dif-
ferent data may be present in different locations, or on different operational systems,
or under different schemas. For instance, manufacturing-problem data and customer-
complaint data may be stored on different database systems. Organizations often pur-
chase data from external sources, such as mailing lists that are used for product pro-
motions, or credit scores of customers that are provided by credit bureaus, to decide
on creditworthiness of customers.1

Corporate decision makers require access to information from multiple such
sources. Setting up queries on individual sources is both cumbersome and inefficient.

1Credit bureaus are companies that gather information about consumers from multiple sources and compute a credit-
worthiness score for each consumer.
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Moreover, the sources of data may store only current data, whereas decision makers
may need access to past data as well; for instance, information about how purchase pat-
terns have changed in the past few years could be of great importance. Data warehouses
provide a solution to these problems.

A data warehouse is a repository (or archive) of information gathered from multi-
ple sources, stored under a unified schema, at a single site. Once gathered, the data are
stored for a long time, permitting access to historical data. Thus, data warehouses pro-
vide the user a single consolidated interface to data, making decision-support queries
easier to write. Moreover, by accessing information for decision support from a data
warehouse, the decision maker ensures that online transaction-processing systems are
not affected by the decision-support workload.

11.2.1 Components of a Data Warehouse

Figure 11.1 shows the architecture of a typical data warehouse and illustrates the gath-
ering of data, the storage of data, and the querying and data analysis support. Among
the issues to be addressed in building a warehouse are the following:

• When and how to gather data. In a source-driven architecture for gathering data,
the data sources transmit new information, either continually (as transaction pro-
cessing takes place), or periodically (nightly, for example). In a destination-driven
architecture, the data warehouse periodically sends requests for new data to the
sources.

Unless updates at the sources are “synchronously” replicated at the warehouse,
the warehouse will never be quite up-to-date with the sources. Synchronous repli-
cation can be expensive, so many data warehouses do not use synchronous repli-
cation, and they perform queries only on data that are old enough that they have

data
loaders

DBMS

data warehouse

query and
analysis tools

data source n 

data source 2

data source 1

...

Figure 11.1 Data-warehouse architecture.
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been completely replicated. Traditionally, analysts were happy with using yester-
day’s data, so data warehouses could be loaded with data up to the end of the
previous day. However, increasingly organizations want more up-to-date data. The
data freshness requirements depend on the application. Data that are within a few
hours old may be sufficient for some applications; others that require real-time re-
sponses to events may use stream processing infrastructure (described in Section
10.5) instead of depending on a warehouse infrastructure.

• What schema to use. Data sources that have been constructed independently are
likely to have different schemas. In fact, they may even use different data models.
Part of the task of a warehouse is to perform schema integration and to convert
data to the integrated schema before they are stored. As a result, the data stored
in the warehouse are not just a copy of the data at the sources. Instead, they can
be thought of as a materialized view of the data at the sources.

• Data transformation and cleansing. The task of correcting and preprocessing data
is called data cleansing. Data sources often deliver data with numerous minor in-
consistencies, which can be corrected. For example, names are often misspelled,
and addresses may have street, area, or city names misspelled, or postal codes en-
tered incorrectly. These can be corrected to a reasonable extent by consulting a
database of street names and postal codes in each city. The approximate matching
of data required for this task is referred to as fuzzy lookup.

Address lists collected from multiple sources may have duplicates that need to
be eliminated in a merge–purge operation (this operation is also referred to as dedu-
plication). Records for multiple individuals in a house may be grouped together so
only one mailing is sent to each house; this operation is called householding.

Data may be transformed in ways other than cleansing, such as changing the
units of measure, or converting the data to a different schema by joining data
from multiple source relations. Data warehouses typically have graphical tools
to support data transformation. Such tools allow transformation to be specified
as boxes, and edges can be created between boxes to indicate the flow of data.
Conditional boxes can route data to an appropriate next step in transformation.

• How to propagate updates. Updates on relations at the data sources must be propa-
gated to the data warehouse. If the relations at the data warehouse are exactly the
same as those at the data source, the propagation is straightforward. If they are
not, the problem of propagating updates is basically the view-maintenance prob-
lem, which was discussed in Section 4.2.3, and is covered in more detail in Section
16.5.

• What data to summarize. The raw data generated by a transaction-processing sys-
tem may be too large to store online. However, we can answer many queries by
maintaining just summary data obtained by aggregation on a relation, rather than
maintaining the entire relation. For example, instead of storing data about every
sale of clothing, we can store total sales of clothing by item name and category.
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The different steps involved in getting data into a data warehouse are called extract,
transform, and load or ETL tasks; extraction refers to getting data from the sources,
while load refers to loading the data into the data warehouse. In current generation
data warehouses that support user-defined functions or MapReduce frameworks, data
may be extracted, loaded into the warehouse, and then transformed. The steps are then
referred to as extract, load, and transform or ELT tasks. The ELT approach permits the
use of parallel processing frameworks for data transformation.

11.2.2 Multidimensional Data and Warehouse Schemas

Data warehouses typically have schemas that are designed for data analysis, using tools
such as OLAP tools. The relations in a data warehouse schema can usually be classi-
fied as fact tables and dimension tables. Fact tables record information about individual
events, such as sales, and are usually very large. A table recording sales information
for a retail store, with one tuple for each item that is sold, is a typical example of a
fact table. The attributes in fact table can be classified as either dimension attributes or
measure attributes, The measure attributes store quantitative information, which can be
aggregated upon; the measure attributes of a sales table would include the number of
items sold and the price of the items. In contrast, dimension attributes are dimensions
upon which measure attributes, and summaries of measure attributes, are grouped and
viewed. The dimension attributes of a sales table would include an item identifier, the
date when the item is sold, which location (store) the item was sold from, the customer
who bought the item, and so on.

Data that can be modeled using dimension attributes and measure attributes are
called multidimensional data.

To minimize storage requirements, dimension attributes are usually short identi-
fiers that are foreign keys into other tables called dimension tables. For instance, a fact
table sales would have dimension attributes item id, store id, customer id, and date, and
measure attributes number and price. The attribute store id is a foreign key into a dimen-
sion table store, which has other attributes such as store location (city, state, country).
The item id attribute of the sales table would be a foreign key into a dimension table
item info, which would contain information such as the name of the item, the category
to which the item belongs, and other item details such as color and size. The customer
id attribute would be a foreign key into a customer table containing attributes such as

name and address of the customer. We can also view the date attribute as a foreign key
into a date info table giving the month, quarter, and year of each date.

The resultant schema appears in Figure 11.2. Such a schema, with a fact table,
multiple dimension tables, and foreign keys from the fact table to the dimension tables
is called a star schema. More complex data-warehouse designs may have multiple levels
of dimension tables; for instance, the item info table may have an attribute manufacturer
id that is a foreign key into another table giving details of the manufacturer. Such

schemas are called snowflake schemas. Complex data-warehouse designs may also have
more than one fact table.
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Figure 11.2 Star schema for a data warehouse.

11.2.3 Database Support for Data Warehouses

The requirements of a database system designed for transaction processing are some-
what different from one designed to support a data-warehouse system. One key differ-
ence is that a transaction-processing database needs to support many small queries,
which may involve updates in addition to reads. In contrast, data warehouses typically
need to process far fewer queries, but each query accesses a much larger amount of
data.

Most importantly, while new records are inserted into relations in a data ware-
house, and old records may be deleted once they are no longer needed, to make space
for new data, records are typically never updated once they are added to a relation.
Thus, data warehouses do not need to pay any overhead for concurrency control. (As
described in Chapter 17 and Chapter 18, if concurrent transactions read and write the
same data, the resultant data may become inconsistent. Concurrency control restricts
concurrent accesses in a way that ensures there is no erroneous update to the database.)
The overhead of concurrency control can be significant in terms of not just time taken
for query processing, but also in terms of storage, since databases often store multiple
versions of data to avoid conflicts between small update transactions and long read-only
transactions. None of these overheads are needed in a data warehouse.

Databases traditionally store all attributes of a tuple together, and tuples are stored
sequentially in a file. Such a storage layout is referred to as row-oriented storage. In con-
trast, in column-oriented storage, each attribute of a relation is stored in a separate file,
with values from successive tuples stored at successive positions in the file. Assuming
fixed-size data types, the value of attribute A of the ith tuple of a relation can be found
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by accessing the file corresponding to attribute A and reading the value at offset (i− 1)
times the size (in bytes) of values in attribute A.

Column-oriented storage has at least two major benefits over row-oriented storage:

1. When a query needs to access only a few attributes of a relation with a large
number of attributes, the remaining attributes need not be fetched from disk into
memory. In contrast, in row-oriented storage, not only are irrelevant attributes
fetched into memory, but they may also get prefetched into processor cache, wast-
ing cache space and memory bandwidth, if they are stored adjacent to attributes
used in the query.

2. Storing values of the same type together increases the effectiveness of compres-
sion; compression can greatly reduce both the disk storage cost and the time to
retrieve data from disk.

On the other hand, column-oriented storage has the drawback that storing or fetching
a single tuple requires multiple I/O operations.

As a result of these trade-offs, column-oriented storage is not widely used for
transaction-processing applications. However, column-oriented storage is today widely
used for data-warehousing applications, where accesses are rarely to individual tuples
but rather require scanning and aggregating multiple tuples. Column-oriented storage
is described in more detail in Section 13.6.

Database implementations that are designed purely for data warehouse applica-
tions include Teradata, Sybase IQ, and Amazon Redshift. Many traditional databases
support efficient execution of data warehousing applications by adding features such
as columnar storage; these include Oracle, SAP HANA, Microsoft SQL Server, and IBM
DB2.

In the 2010s there has been an explosive growth in Big Data systems that are de-
signed to process queries over data stored in files. Such systems are now a key part of
the data warehouse infrastructure. As we saw in Section 10.3, the motivation for such
systems was the growth of data generated by online systems in the form of log files,
which have a lot of valuable information that can be exploited for decision support.
However, these systems can handle any kind of data, including relational data. Apache
Hadoop is one such system, and the Hive system allows SQL queries to be executed on
top of the Hadoop system.

A number of companies provide software to optimize Hive query processing, in-
cluding Cloudera and Hortonworks. Apache Spark is another popular Big Data system
that supports SQL queries on data stored in files. Compressed file structures contain-
ing records with columns, such as Orc and Parquet, are increasingly used to store such
log records, simplifying integration with SQL. Such file formats are discussed in more
detail in Section 13.6.
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11.2.4 Data Lakes

While data warehouses pay a lot of attention to ensuring a common data schema to
ease the job of querying the data, there are situations where organizations want to store
data without paying the cost of creating a common schema and transforming data to
the common schema. The term data lake is used to refer to a repository where data
can be stored in multiple formats, including structured records and unstructured file
formats. Unlike data warehouses, data lakes do not require up-front effort to preprocess
data, but they do require more effort when creating queries. Since data may be stored in
many different formats, querying tools also need to be quite flexible. Apache Hadoop
and Apache Spark are popular tools for querying such data, since they support querying
of both unstructured and structured data.

11.3 Online Analytical Processing

Data analysis often involves looking for patterns that arise when data values are
grouped in “interesting” ways. As a simple example, summing credit hours for each
department is a way to discover which departments have high teaching responsibili-
ties. In a retail business, we might group sales by product, the date or month of the
sale, the color or size of the product, or the profile (such as age group and gender) of
the customer who bought the product.

11.3.1 Aggregation on Multidimensional Data

Consider an application where a shop wants to find out what kinds of clothes are pop-
ular. Let us suppose that clothes are characterized by their item name, color, and size,
and that we have a relation sales with the schema.

sales (item name, color, clothes size, quantity)

Suppose that item name can take on the values (skirt, dress, shirt, pants), color can
take on the values (dark, pastel, white), clothes size can take on values (small, medium,
large), and quantity is an integer value representing the total number of items of a given
{item name, color, clothes size }. An instance of the sales relation is shown in Figure 11.3.

Statistical analysis often requires grouping on multiple attributes. The attribute
quantity of the sales relation is a measure attribute, since it measures the number of
units sold, while item name, color, and clothes size are dimension attributes. (A more
realistic version of the sales relation would have additional dimensions, such as time
and sales location, and additional measures such as monetary value of the sale.)

To analyze the multidimensional data, a manager may want to see data laid out as
shown in the table in Figure 11.4. The table shows total quantities for different combi-
nations of item name and color. The value of clothes size is specified to be all, indicating
that the displayed values are a summary across all values of clothes size (i.e., we want
to group the “small,” “medium,” and “large” items into one single group.
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item name color clothes size quantity

dress dark small 2
dress dark medium 6
dress dark large 12
dress pastel small 4
dress pastel medium 3
dress pastel large 3
dress white small 2
dress white medium 3
dress white large 0
pants dark small 14
pants dark medium 6
pants dark large 0
pants pastel small 1
pants pastel medium 0
pants pastel large 1
pants white small 3
pants white medium 0
pants white large 2
shirt dark small 2
shirt dark medium 6
shirt dark large 6
shirt pastel small 4
shirt pastel medium 1
shirt pastel large 2
shirt white small 17
shirt white medium 1
shirt white large 10
skirt dark small 2
skirt dark medium 5
skirt dark large 1
skirt pastel small 11
skirt pastel medium 9
skirt pastel large 15
skirt white small 2
skirt white medium 5
skirt white large 3

Figure 11.3 An example of sales relation.

The table in Figure 11.4 is an example of a cross-tabulation (or cross-tab, for short),
also referred to as a pivot-table. In general, a cross-tab is a table derived from a relation
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Figure 11.4 Cross-tabulation of sales by item name and color.

(say R), where values for one attribute (say A) form the column headers and values for
another attribute (say B) form the row header. For example, in Figure 11.4, the attribute
color corresponds to A (with values “dark,” “pastel,” and “white”), and the attribute item
name corresponds to B (with values “skirt,” “dress,” “shirt,” and “pants”).

Each cell in the pivot-table can be identified by (ai, bj), where ai is a value for A
and bj a value for B. The values of the various cells in the pivot-table are derived from
the relation R as follows: If there is at most one tuple in R with any (ai, bj) value, the
value in the cell is derived from that single tuple (if any); for instance, it could be the
value of one or more other attributes of the tuple. If there can be multiple tuples with
an (ai, bj) value, the value in the cell must be derived by aggregation on the tuples with
that value. In our example, the aggregation used is the sum of the values for attribute
quantity, across all values for clothes size, as indicated by “clothes size: all” above the
cross-tab in Figure 11.4. Thus, the value for cell (skirt, pastel) is 35, since there are
three tuples in the sales table that meet that criteria, with values 11, 9, and 15.

In our example, the cross-tab also has an extra column and an extra row storing
the totals of the cells in the row/column. Most cross-tabs have such summary rows and
columns.

The generalization of a cross-tab, which is two-dimensional, to n dimensions can
be visualized as an n-dimensional cube, called the data cube. Figure 11.5 shows a data
cube on the sales relation. The data cube has three dimensions, item name, color, and
clothes size, and the measure attribute is quantity. Each cell is identified by values for
these three dimensions. Each cell in the data cube contains a value, just as in a cross-
tab. In Figure 11.5, the value contained in a cell is shown on one of the faces of the
cell; other faces of the cell are shown blank if they are visible. All cells contain values,
even if they are not visible. The value for a dimension may be all, in which case the cell
contains a summary over all values of that dimension, as in the case of cross-tabs.

The number of different ways in which the tuples can be grouped for aggregation
can be large. In the example of Figure 11.5, there are 3 colors, 4 items, and 3 sizes
resulting in a cube size of 3 × 4 × 3 = 36. Including the summary values, we obtain a
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Figure 11.5 Three-dimensional data cube.

4× 5× 4 cube, whose size is 80. In fact, for a table with n dimensions, aggregation can
be performed with grouping on each of the 2n subsets of the n dimensions.2

An online analytic processing (OLAP) system allows a data analyst to look at differ-
ent cross-tabs on the same data by interactively selecting the attributes in the cross-tab.
Each cross-tab is a two-dimensional view on a multidimensional data cube. For in-
stance, the analyst may select a cross-tab on item name and clothes size or a cross-tab
on color and clothes size. The operation of changing the dimensions used in a cross-tab
is called pivoting.

OLAP systems allow an analyst to see a cross-tab on item name and color for a
fixed value of clothes size, for example, large, instead of the sum across all sizes. Such
an operation is referred to as slicing, since it can be thought of as viewing a slice of
the data cube. The operation is sometimes called dicing, particularly when values for
multiple dimensions are fixed.

When a cross-tab is used to view a multidimensional cube, the values of dimension
attributes that are not part of the cross-tab are shown above the cross-tab. The value
of such an attribute can be all, as shown in Figure 11.4, indicating that data in the
cross-tab are a summary over all values for the attribute. Slicing/dicing simply consists
of selecting specific values for these attributes, which are then displayed on top of the
cross-tab.

OLAP systems permit users to view data at any desired level of granularity. The
operation of moving from finer-granularity data to a coarser granularity (by means
of aggregation) is called a rollup. In our example, starting from the data cube on the

2Grouping on the set of all n dimensions is useful only if the table may have duplicates.
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sales table, we got our example cross-tab by rolling up on the attribute clothes size. The
opposite operation—that of moving from coarser-granularity data to finer-granularity
data—is called a drill down. Finer-granularity data cannot be generated from coarse-
granularity data; they must be generated either from the original data or from even
finer-granularity summary data.

Analysts may wish to view a dimension at different levels of detail. For instance,
consider an attribute of type datetime that contains a date and a time of day. Using
time precise to a second (or less) may not be meaningful: An analyst who is interested
in rough time of day may look at only the hour value. An analyst who is interested in
sales by day of the week may map the date to a day of the week and look only at that.
Another analyst may be interested in aggregates over a month, or a quarter, or for an
entire year.

The different levels of detail for an attribute can be organized into a hierarchy.
Figure 11.6a shows a hierarchy on the datetime attribute. As another example, Figure
11.6b shows a hierarchy on location, with the city being at the bottom of the hierarchy,
state above it, country at the next level, and region being the top level. In our earlier
example, clothes can be grouped by category (for instance, menswear or womenswear);
category would then lie above item name in our hierarchy on clothes. At the level of
actual values, skirts and dresses would fall under the womenswear category and pants
and shirts under the menswear category.

hour of day date

date time

day of week month

quarter

year

state

country

region

city

(a) time hierarchy (b) location hierarchy

Figure 11.6 Hierarchies on dimensions.
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Figure 11.7 Cross-tabulation of sales with hierarchy on item name.

An analyst may be interested in viewing sales of clothes divided as menswear and
womenswear, and not interested in individual values. After viewing the aggregates at
the level of womenswear and menswear, an analyst may drill down the hierarchy to look
at individual values. An analyst looking at the detailed level may drill up the hierarchy
and look at coarser-level aggregates. Both levels can be displayed on the same cross-tab,
as in Figure 11.7.

11.3.2 Relational Representation of Cross-Tabs

A cross-tab is different from relational tables usually stored in databases, since the num-
ber of columns in the cross-tab depends on the actual data. A change in the data values
may result in adding more columns, which is not desirable for data storage. However,
a cross-tab view is desirable for display to users. It is straightforward to represent a
cross-tab without summary values in a relational form with a fixed number of columns.
A cross-tab with summary rows/columns can be represented by introducing a special
value all to represent subtotals, as in Figure 11.8. The SQL standard actually uses the
null value in place of all, but to avoid confusion with regular null values, we shall con-
tinue to use all.

Consider the tuples (skirt, all, all, 53) and (dress, all, all, 35). We have obtained
these tuples by eliminating individual tuples with different values for color and clothes
size, and by replacing the value of quantity with an aggregate—namely, the sum of

the quantities. The value all can be thought of as representing the set of all values for
an attribute. Tuples with the value all for the color and clothes size dimensions can be
obtained by an aggregation on the sales relation with a group by on the column item
name. Similarly, a group by on color, clothes size can be used to get the tuples with the

value all for item name, and a group by with no attributes (which can simply be omitted
in SQL) can be used to get the tuple with value all for item name, color, and clothes size.
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item name color clothes size quantity

skirt dark all 8
skirt pastel all 35
skirt white all 10
skirt all all 53
dress dark all 20
dress pastel all 10
dress white all 5
dress all all 35
shirt dark all 14
shirt pastel all 7
shirt white all 28
shirt all all 49
pants dark all 20
pants pastel all 2
pants white all 5
pants all all 27
all dark all 62
all pastel all 54
all white all 48
all all all 164

Figure 11.8 Relational representation of the data in Figure 11.4.

Hierarchies can also be represented by relations. For example, the fact that skirts
and dresses fall under the womenswear category and the pants and shirts under the
menswear category can be represented by a relation itemcategory (item name, category).
This relation can be joined with the sales relation to get a relation that includes the
category for each item. Aggregation on this joined relation allows us to get a cross-
tab with hierarchy. As another example, a hierarchy on city can be represented by a
single relation city hierarchy (ID, city, state, country, region), or by multiple relations,
each mapping values in one level of the hierarchy to values at the next level. We assume
here that cities have unique identifiers, stored in the attribute ID, to avoid confusing
between two cities with the same name, for example, the Springfield in Missouri and
the Springfield in Illinois.

11.3.3 OLAP in SQL

Analysts using OLAP systems need answers to multiple aggregates to be generated in-
teractively, without having to wait for multiple minutes or hours. This led initially to
the development of specialized systems for OLAP (see Note 11.1 on page 535). Many
database systems now implement OLAP along with SQL constructs to express OLAP
queries. As we saw in Section 5.5.3, several SQL implementations, such as Microsoft
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SQL Server and Oracle, support a pivot clause that allows creation of cross-tabs. Given
the sales relation from Figure 11.3, the query:

select *
from sales
pivot (

sum(quantity)
for color in ('dark','pastel','white')

)
order by item name;

returns the cross-tab shown in Figure 11.9. Note that the for clause within the pivot
clause specifies the color values that appear as attribute names in the pivot result. The
attribute color itself does not appear in the result, although all other attributes are
retained, except that the values for the newly created attributes are specified to come
from the attribute quantity. In case more than one tuple contributes values to a given
cell, the aggregate operation within the pivot clause specifies how the values should be
combined. In the above example, the quantity values are summed up.

Note that the pivot clause by itself does not compute the subtotals we saw in the
pivot table from Figure 11.4. However, we can first generate the relational representa-
tion shown in Figure 11.8, using a cube operation, as outlined shortly, and then apply
the pivot clause on that representation to get an equivalent result. In this case, the value
all must also be listed in the for clause, and the order by clause needs to be modified to
order all at the end.

The data in a data cube cannot be generated by a single SQL query if we use only the
basic group by constructs, since aggregates are computed for several different groupings

item name clothes size dark pastel white

dress small 2 4 2
dress medium 6 3 3
dress large 12 3 0
pants small 14 1 3
pants medium 6 0 0
pants large 0 1 2
shirt small 2 4 17
shirt medium 6 1 1
shirt large 6 2 10
skirt small 2 11 2
skirt medium 5 9 5
skirt large 1 15 3

Figure 11.9 Result of SQL pivot operation on the sales relation of Figure 11.3.
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Note 11.1 OLAP IMPLEMENTATION

The earliest OLAP systems used multidimensional arrays in memory to store data
cubes and are referred to as multidimensional OLAP (MOLAP) systems. Later,
OLAP facilities were integrated into relational systems, with data stored in a rela-
tional database. Such systems are referred to as relational OLAP (ROLAP) systems.
Hybrid systems, which store some summaries in memory and store the base data
and other summaries in a relational database, are called hybrid OLAP (HOLAP)
systems.

Many OLAP systems are implemented as client-server systems. The server con-
tains the relational database as well as any MOLAP data cubes. Client systems
obtain views of the data by communicating with the server.

A näıve way of computing the entire data cube (all groupings) on a relation is
to use any standard algorithm for computing aggregate operations, one grouping at
a time. The näıve algorithm would require a large number of scans of the relation.
A simple optimization is to compute an aggregation on, say, (item name, color)
from an aggregation (item name, color, clothes size), instead of from the original
relation. The amount of data read drops significantly by computing an aggregate
from another aggregate, instead of from the original relation. Further improve-
ments are possible; for instance, multiple groupings can be computed on a single
scan of the data.

Early OLAP implementations precomputed and stored entire data cubes, that
is, groupings on all subsets of the dimension attributes. Precomputation allows
OLAP queries to be answered within a few seconds, even on datasets that may
contain millions of tuples adding up to gigabytes of data. However, there are 2n

groupings with n dimension attributes; hierarchies on attributes increase the num-
ber further. As a result, the entire data cube is often larger than the original relation
that formed the data cube and in many cases it is not feasible to store the entire
data cube.

Instead of precomputing and storing all possible groupings, it makes sense to
precompute and store some of the groupings, and to compute others on demand.
Instead of computing queries from the original relation, which may take a very
long time, we can compute them from other precomputed queries. For instance,
suppose that a query requires grouping by (item name, color), and this has not
been precomputed. The query result can be computed from summaries by (item
name, color, clothes size), if that has been precomputed. See the bibliographical

notes for references on how to select a good set of groupings for precomputation,
given limits on the storage available for precomputed results.
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of the dimension attributes. Using only the basic group by construct, we would have
to write many separate SQL queries and combine them using a union operation. SQL
supports special syntax to allow multiple group by operations to be specified concisely.

As we saw in Section 5.5.4, SQL supports generalizations of the group by construct
to perform the cube and rollup operations. The cube and rollup constructs in the group
by clause allow multiple group by queries to be run in a single query with the result
returned as a single relation in a style similar to that of the relation of Figure 11.8.

Consider again our retail shop example and the relation:

sales (item name, color, clothes size, quantity)

If we want to generate the entire data cube using individual group by queries, we
have to write a separate query for each of the following eight sets of group by attributes:

{ (item name, color, clothes size), (item name, color), (item name, clothes size),
(color, clothes size), (item name), (color), (clothes size), () }

where () denotes an empty group by list.
As we saw in Section 5.5.4, the cube construct allows us to accomplish this in one

query:

select item name, color, clothes size, sum(quantity)
from sales
group by cube(item name, color, clothes size);

The preceding query produces a relation whose schema is:

(item name, color, clothes size, sum(quantity))

So that the result of this query is indeed a relation, tuples in the result contain null as
the value of those attributes not present in a particular grouping. For example, tuples
produced by grouping on clothes size have a schema (clothes size, sum(quantity)). They
are converted to tuples on (item name, color, clothes size, sum(quantity)) by inserting
null for item name and color.

Data cube relations are often very large. The cube query above, with 3 possible
colors, 4 possible item names, and 3 sizes, has 80 tuples. The relation of Figure 11.8
is generated by doing a group by cube on item name and color, with an extra column
specified in the select clause showing all for clothes size.

To generate that relation in SQL, we substitute all for null using the grouping func-
tion, as we saw earlier in Section 5.5.4. The grouping function distinguishes those nulls
generated by OLAP operations from “normal” nulls actually stored in the database or
arising from an outer join. Recall that the grouping function returns 1 if its argument
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is a null value generated by a cube or rollup and 0 otherwise. We may then operate on
the result of a call to grouping using case expressions to replace OLAP-generated nulls
with all. Then the relation in Figure 11.8, with occurrences of null replaced by all, can
be computed by the query:

select case when grouping(item name) = 1 then 'all'
else item name end as item name,

case when grouping(color) = 1 then 'all'
else color end as color,

'all' as clothes size, sum(quantity) as quantity
from sales
group by cube(item name, color);

The rollup construct is the same as the cube construct except that rollup generates
fewer group by queries. We saw that group by cube (item name, color, clothes size) gen-
erated all eight ways of forming a group by query using some (or all or none) of the
attributes. In:

select item name, color, clothes size, sum(quantity)
from sales
group by rollup(item name, color, clothes size);

the clause group by rollup(item name, color, clothes size) generates only four groupings:

{ (item name, color, clothes size), (item name, color), (item name), () }

Notice that the order of the attributes in the rollup makes a difference; the last
attribute (clothes size, in our example) appears in only one grouping, the penultimate
(second last) attribute in two groupings, and so on, with the first attribute appearing
in all groups but one (the empty grouping).

Why might we want the specific groupings that are used in rollup? These groups are
of frequent practical interest for hierarchies (as in Figure 11.6, for example). For the
location hierarchy (Region, Country, State, City), we may want to group by Region to get
sales by region. Then we may want to “drill down” to the level of countries within each
region, which means we would group by Region, Country. Drilling down further, we may
wish to group by Region, Country, State and then by Region, Country, State, City. The
rollup construct allows us to specify this sequence of drilling down for further detail.

As we saw earlier in Section 5.5.4, multiple rollups and cubes can be used in a single
group by clause. For instance, the following query:

select item name, color, clothes size, sum(quantity)
from sales
group by rollup(item name), rollup(color, clothes size);
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generates the groupings:

{ (item name, color, clothes size), (item name, color), (item name),
(color, clothes size), (color), () }

To understand why, observe that rollup(item name) generates two groupings, {(item
name), ()}, and rollup(color, clothes size) generates three groupings, {(color, clothes
size), (color), () }. The Cartesian product of the two gives us the six groupings shown.

Neither the rollup nor the cube clause gives complete control on the groupings
that are generated. For instance, we cannot use them to specify that we want only
groupings {(color, clothes size), (clothes size, item name)}. Such restricted groupings can
be generated by using the grouping sets construct, in which one can specify the specific
list of groupings to be used. To obtain only groupings {(color, clothes size), (clothes size,
item name)}, we would write:

select item name, color, clothes size, sum(quantity)
from sales
group by grouping sets ((color, clothes size), (clothes size, item name));

Specialized languages have been developed for querying multidimensional OLAP
schemas, which allow some common tasks to be expressed more easily than with SQL.
These include the MDX and DAX query languages developed by Microsoft.

11.3.4 Reporting and Visualization Tools

Report generators are tools to generate human-readable summary reports from a
database. They integrate querying the database with the creation of formatted text and
summary charts (such as bar or pie charts). For example, a report may show the total
sales in each of the past 2 months for each sales region.

The application developer can specify report formats by using the formatting fa-
cilities of the report generator. Variables can be used to store parameters such as the
month and the year and to define fields in the report. Tables, graphs, bar charts, or
other graphics can be defined via queries on the database. The query definitions can
make use of the parameter values stored in the variables.

Once we have defined a report structure on a report-generator facility, we can store
it and can execute it at any time to generate a report. Report-generator systems provide
a variety of facilities for structuring tabular output, such as defining table and column
headers, displaying subtotals for each group in a table, automatically splitting long ta-
bles into multiple pages, and displaying subtotals at the end of each page.

Figure 11.10 is an example of a formatted report. The data in the report are gener-
ated by aggregation on information about orders.

Report-generation tools are available from a variety of vendors, such as SAP Crystal
Reports and Microsoft (SQL Server Reporting Services). Several application suites,
such as Microsoft Office, provide a way of embedding formatted query results from
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Region Category Sales

North Computer Hardware 1,000,000

 Computer Software 500,000

 All categories  1,500,000

South Computer Hardware 200,000

 Computer Software 400,000

 All categories  600,000

   2,100,000

Acme Supply Company, Inc. 
Quarterly Sales Report

Period:  Jan. 1 to March 31, 2009

Total Sales

Subtotal

Figure 11.10 A formatted report.

a database directly into a document. Chart-generation facilities provided by Crystal
Reports or by spreadsheets such as Excel can be used to access data from databases and
to generate tabular depictions of data or graphical depictions using charts or graphs.
Such charts can be embedded within text documents. The charts are created initially
from data generated by executing queries against the database; the queries can be re-
executed and the charts regenerated when required, to generate a current version of
the overall report.

Techniques for data visualization, that is, graphical representation of data, that go
beyond the basic chart types, are very important for data analysis. Data-visualization
systems help users to examine large volumes of data and to detect patterns visually.
Visual displays of data—such as maps, charts, and other graphical representations—
allow data to be presented compactly to users. A single graphical screen can encode as
much information as a far larger number of text screens.

For example, if the user wants to find out whether the occurrence of a disease is
correlated to the locations of the patients, the locations of patients can be encoded in
a special color—say, red—on a map. The user can then quickly discover locations where
problems are occurring. The user may then form hypotheses about why problems are
occurring in those locations and may verify the hypotheses quantitatively against the
database.

As another example, information about values can be encoded as a color and can
be displayed with as little as one pixel of screen area. To detect associations between
pairs of items, we can use a two-dimensional pixel matrix, with each row and each
column representing an item. The percentage of transactions that buy both items can
be encoded by the color intensity of the pixel. Items with high association will show
up as bright pixels in the screen—easy to detect against the darker background.
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In recent years a number of tools have been developed for web-based data visual-
ization and for the creation of dashboards that display multiple charts showing key or-
ganizational information. These include Tableau (www.tableau.com), FusionCharts
(www.fusioncharts.com), plotly (plot.ly), Datawrapper (www.datawrapper.de), and
Google Charts (developers.google.com/chart), among others. Since their display is
based on HTML and JavaScript, they can be used on a wide variety of browsers and on
mobile devices.

Interaction is a key element of visualization. For example, a user can “drill down”
into areas of interest, such as moving from an aggregate view showing the total sales
across an entire year to the monthly sales figures for a particular year. Analysts may wish
to interactively add selection conditions to visualize subsets of data. Data visualization
tools such as Tableau offer a rich set of features for interactive visualization.

11.4 Data Mining

The term data mining refers loosely to the process of analyzing large databases to find
useful patterns. Like knowledge discovery in artificial intelligence (also called machine
learning) or statistical analysis, data mining attempts to discover rules and patterns
from data. However, data mining differs from traditional machine learning and statis-
tics in that it deals with large volumes of data, stored primarily on disk. Today, many
machine-learning algorithms also work on very large volumes of data, blurring the dis-
tinction between data mining and machine learning. Data-mining techniques form part
of the process of knowledge discovery in databases (KDD).

Some types of knowledge discovered from a database can be represented by a set
of rules. The following is an example of a rule, stated informally: “Young women with
annual incomes greater than $50,000 are the most likely people to buy small sports
cars.” Of course such rules are not universally true and have degrees of “support” and
“confidence,” as we shall see. Other types of knowledge are represented by equations
relating different variables to each other. More generally, knowledge discovered by ap-
plying machine-learning techniques on past instances in a database is represented by
a model, which is then used for predicting outcomes for new instances. Features or at-
tributes of instances are inputs to the model, and the output of a model is a prediction.

There are a variety of possible types of patterns that may be useful, and different
techniques are used to find different types of patterns. We shall study a few examples
of patterns and see how they may be automatically derived from a database.

Usually there is a manual component to data mining, consisting of preprocessing
data to a form acceptable to the algorithms and post-processing of discovered patterns
to find novel ones that could be useful. There may also be more than one type of pattern
that can be discovered from a given database, and manual interaction may be needed
to pick useful types of patterns. For this reason, data mining is really a semiautomatic
process in real life. However, in our description we concentrate on the automatic aspect
of mining.
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11.4.1 Types of Data-Mining Tasks

The most widely used applications of data mining are those that require some sort
of prediction. For instance, when a person applies for a credit card, the credit-card
company wants to predict if the person is a good credit risk. The prediction is to be
based on known attributes of the person, such as age, income, debts, and past debt-
repayment history. Rules for making the prediction are derived from the same attributes
of past and current credit-card holders, along with their observed behavior, such as
whether they defaulted on their credit-card dues. Other types of prediction include
predicting which customers may switch over to a competitor (these customers may be
offered special discounts to tempt them not to switch), predicting which people are
likely to respond to promotional mail (“junk mail”), or predicting what types of phone
calling-card usage are likely to be fraudulent.

Another class of applications looks for associations, for instance, books that tend
to be bought together. If a customer buys a book, an online bookstore may suggest other
associated books. If a person buys a camera, the system may suggest accessories that
tend to be bought along with cameras. A good salesperson is aware of such patterns
and exploits them to make additional sales. The challenge is to automate the process.
Other types of associations may lead to discovery of causation. For instance, discovery
of unexpected associations between a newly introduced medicine and cardiac problems
led to the finding that the medicine may cause cardiac problems in some people. The
medicine was then withdrawn from the market.

Associations are an example of descriptive patterns. Clusters are another example
of such patterns. For example, over a century ago a cluster of typhoid cases was found
around a well, which led to the discovery that the water in the well was contaminated
and was spreading typhoid. Detection of clusters of disease remains important even
today.

11.4.2 Classification

Abstractly, the classification problem is this: Given that items belong to one of several
classes, and given past instances (called training instances) of items along with the
classes to which they belong, the problem is to predict the class to which a new item
belongs. The class of the new instance is not known, so other attributes of the instance
must be used to predict the class.

As an example, suppose that a credit-card company wants to decide whether or not
to give a credit card to an applicant. The company has a variety of information about
the person, such as her age, educational background, annual income, and current debts,
that it can use for making a decision.

To make the decision, the company assigns a credit worthiness level of excellent,
good, average, or bad to each of a sample set of current or past customers according to
each customer’s payment history. These instances form the set of training instances.

Then, the company attempts to learn rules or models that classify the credit-
worthiness of a new applicant as excellent, good, average, or bad, on the basis of the
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information about the person, other than the actual payment history (which is unavail-
able for new customers). There are a number of techniques for classification, and we
outline a few of them in this section.

11.4.2.1 Decision-Tree Classifiers

Decision-tree classifiers are a widely used technique for classification. As the name
suggests, decision-tree classifiers use a tree; each leaf node has an associated class, and
each internal node has a predicate (or more generally, a function) associated with it.
Figure 11.11 shows an example of a decision tree. To keep the example simple, we use
just two attributes: education level (highest degree earned) and income.

To classify a new instance, we start at the root and traverse the tree to reach a leaf;
at an internal node we evaluate the predicate (or function) on the data instance to find
which child to go to. The process continues until we reach a leaf node. For example, if
the degree level of a person is masters, and the person’s income is 40K, starting from
the root we follow the edge labeled “masters,” and from there the edge labeled “25K to
75K,” to reach a leaf. The class at the leaf is “good,” so we predict that the credit risk
of that person is good.

There are a number of techniques for building decision-tree classifiers from a given
training set. We omit details, but you can learn more details from the references pro-
vided in the Further Reading section.

degree

income income income income

bachelors masters doctoratenone

bad average good

bad average good excellent

 <50K >100K
<25K >=25K

>=50K<50K

<25K >75K

25 to 75K50 to 100K

Figure 11.11 Classification tree.
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11.4.2.2 Bayesian Classifiers

Bayesian classifiers find the distribution of attribute values for each class in the training
data; when given a new instance d, they use the distribution information to estimate,
for each class cj, the probability that instance d belongs to class cj, denoted by p(cj|d),
in a manner outlined here. The class with maximum probability becomes the predicted
class for instance d.

To find the probability p(cj|d) of instance d being in class cj, Bayesian classifiers
use Bayes’ theorem, which says:

p(cj|d) =
p(d|cj)p(cj)

p(d)

where p(d|cj) is the probability of generating instance d given class cj, p(cj) is the prob-
ability of occurrence of class cj, and p(d) is the probability of instance d occurring. Of
these, p(d) can be ignored since it is the same for all classes. p(cj) is simply the fraction
of training instances that belong to class cj.

For example, let us consider a special case where only one attribute, income, is
used for classification, and suppose we need to classify a person whose income is
76,000. We assume that income values are broken up into buckets, and we assume
that the bucket containing 76,000 contains values in the range (75,000, 80,000). Sup-
pose among instances of class excellent, the probability of income being in (75,000,
80,000) is 0.1, while among instances of class good, the probability of income being in
(75,000, 80,000) is 0.05. Suppose also that overall 0.1 fraction of people are classified
as excellent, and 0.3 are classified as good. Then, p(d|cj)p(cj) for class excellent is .01,
while for class good, it is 0.015. The person would therefore be classified in class good.

In general, multiple attributes need to be considered for classification. Then, find-
ing p(d|cj) exactly is difficult, since it requires the distribution of instances of cj, across
all combinations of values for the attributes used for classification. The number of such
combinations (for example of income buckets, with degree values and other attributes)
can be very large. With a limited training set used to find the distribution, most combi-
nations would not have even a single training set matching them, leading to incorrect
classification decisions. To avoid this problem, as well as to simplify the task of classifi-
cation, naive Bayesian classifiers assume attributes have independent distributions and
thereby estimate:

p(d|cj) = p(d1|cj) ∗ p(d2|cj) ∗ ⋯ ∗ p(dn|cj)

That is, the probability of the instance d occurring is the product of the probability of
occurrence of each of the attribute values di of d, given the class is cj.

The probabilities p(di|cj) derive from the distribution of values for each attribute i,
for each class cj. This distribution is computed from the training instances that belong
to each class cj; the distribution is usually approximated by a histogram. For instance,
we may divide the range of values of attribute i into equal intervals, and store the frac-
tion of instances of class cj that fall in each interval. Given a value di for attribute i, the
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value of p(di|cj) is simply the fraction of instances belonging to class cj that fall in the
interval to which di belongs.

11.4.2.3 Support Vector Machine Classifiers

The Support Vector Machine (SVM) is a type of classifier that has been found to give
very accurate classification across a range of applications. We provide some basic in-
formation about Support Vector Machine classifiers here; see the references in the
bibliographical notes for further information.

Support Vector Machine classifiers can best be understood geometrically. In the
simplest case, consider a set of points in a two-dimensional plane, some belonging to
class A, and some belonging to class B. We are given a training set of points whose class
(A or B) is known, and we need to build a classifier of points using these training points.
This situation is illustrated in Figure 11.12, where the points in class A are denoted by
X marks, while those in class B are denoted by O marks.

Suppose we can draw a line on the plane, such that all points in class A lie to one
side and all points in line B lie to the other. Then, the line can be used to classify
new points, whose class we don’t already know. But there may be many possible such
lines that can separate points in class A from points in class B. A few such lines are
shown in Figure 11.12. The Support Vector Machine classifier chooses the line whose
distance from the nearest point in either class (from the points in the training dataset)
is maximum. This line (called the maximum margin line) is then used to classify other
points into class A or B, depending on which side of the line they lie on. In Figure 11.12,
the maximum margin line is shown in bold, while the other lines are shown as dashed
lines.

Figure 11.12 Example of a Support Vector Machine classifier.
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The preceding intuition can be generalized to more than two dimensions, allow-
ing multiple attributes to be used for classification; in this case, the classifier finds a
dividing plane, not a line. Further, by first transforming the input points using certain
functions, called kernel functions, Support Vector Machine classifiers can find nonlin-
ear curves separating the sets of points. This is important for cases where the points
are not separable by a line or plane. In the presence of noise, some points of one class
may lie in the midst of points of the other class. In such cases, there may not be any
line or meaningful curve that separates the points in the two classes; then, the line or
curve that most accurately divides the points into the two classes is chosen.

Although the basic formulation of Support Vector Machines is for binary classi-
fiers, i.e., those with only two classes, they can be used for classification into multiple
classes as follows: If there are N classes, we build N classifiers, with classifier i perform-
ing a binary classification, classifying a point either as in class i or not in class i. Given
a point, each classifier i also outputs a value indicating how related a given point is to
class i. We then apply all N classifiers on a given point and choose the class for which
the relatedness value is the highest.

11.4.2.4 Neural Network Classifiers

Neural-net classifiers use the training data to train artificial neural nets. There is a large
body of literature on neural nets; we do not provide details here, but we outline a few
key properties of neural network classifiers.

Neural networks consist of several layers of “neurons,” each of which are connected
to neurons in the preceding layer. An input instance of the problem is fed to the first
layer; neurons at each layer are “activated” based on some function applied to the
inputs at the preceding layer. The function applied at each neuron computes a weighted
combination of the activations of the input neurons and generates an output based on
the weighted combination. The activation of a neuron in one layer thus affects the
activation of neurons in the next layer. The final output layer typically has one neuron
corresponding to each class of the classification problem being addressed. The neuron
with maximum activation for a given input decides the predicted class for that input.

Key to the success of a neural network is the weights used in the computation
described above. These weights are learned, based on training data. They are initially
set to some default value, and then training data are used to learn the weights. Training
is typically done by applying each input to the current state of the neural network and
checking if the prediction is correct. If not, a backpropagation algorithm is used to tweak
the weights of the neurons in the network, to bring the prediction closer to the correct
one for the current input. Repeating this process results in a trained neural network,
which can then be used for classification on new inputs.

In recent years, neural networks have achieved a great degree of success for tasks
which were earlier considered very hard, such as vision (e.g., recognition of objects
in images), speech recognition, and natural language translation. A simple example
of a vision task is that of identifying the species, such as cat or dog, given an image of
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an animal; such problems are basically classification problems. Other examples include
identifying object occurrences in an image and assigning a class label to each identified
object.

Deep neural networks, which are neural networks with a large number of layers,
have proven very successful at such tasks, if given a very large number of training in-
stances. The term deep learning refers to the machine-learning techniques that create
such deep neural networks, and train them on very large numbers of training instances.

11.4.3 Regression

Regression deals with the prediction of a value, rather than a class. Given values for a
set of variables, X1, X2,… , Xn, we wish to predict the value of a variable Y . For instance,
we could treat the level of education as a number and income as another number, and,
on the basis of these two variables, we wish to predict the likelihood of default, which
could be a percentage chance of defaulting, or the amount involved in the default.

One way is to infer coefficients a0, a1, a2,… , an such that:

Y = a0 + a1 ∗ X1 + a2 ∗ X2 +⋯ + an ∗ Xn

Finding such a linear polynomial is called linear regression. In general, we wish to find
a curve (defined by a polynomial or other formula) that fits the data; the process is also
called curve fitting.

The fit may be only approximate, because of noise in the data or because the re-
lationship is not exactly a polynomial, so regression aims to find coefficients that give
the best possible fit. There are standard techniques in statistics for finding regression
coefficients. We do not discuss these techniques here, but the bibliographical notes
provide references.

11.4.4 Association Rules

Retail shops are often interested in associations between different items that people
buy. Examples of such associations are:

• Someone who buys bread is quite likely also to buy milk.

• A person who bought the book Database System Concepts is quite likely also to buy
the book Operating System Concepts.

Association information can be used in several ways. When a customer buys a particu-
lar book, an online shop may suggest associated books. A grocery shop may decide to
place bread close to milk, since they are often bought together, to help shoppers finish
their task faster. Or, the shop may place them at opposite ends of a row and place other
associated items in between to tempt people to buy those items as well as the shoppers
walk from one end of the row to the other. A shop that offers discounts on one associ-
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ated item may not offer a discount on the other, since the customer will probably buy
the other anyway.

An example of an association rule is:

bread ⇒ milk

In the context of grocery-store purchases, the rule says that customers who buy bread
also tend to buy milk with a high probability. An association rule must have an as-
sociated population: The population consists of a set of instances. In the grocery-store
example, the population may consist of all grocery-store purchases; each purchase is an
instance. In the case of a bookstore, the population may consist of all people who made
purchases, regardless of when they made a purchase. Each customer is an instance. In
the bookstore example, the analyst has decided that when a purchase is made is not
significant, whereas for the grocery-store example, the analyst may have decided to
concentrate on single purchases, ignoring multiple visits by the same customer.

Rules have an associated support, as well as an associated confidence. These are
defined in the context of the population:

• Support is a measure of what fraction of the population satisfies both the an-
tecedent and the consequent of the rule.

For instance, suppose only 0.001 percent of all purchases include milk and
screwdrivers. The support for the rule:

milk ⇒ screwdrivers

is low. The rule may not even be statistically significant—perhaps there was only a
single purchase that included both milk and screwdrivers. Businesses are usually
not interested in rules that have low support, since they involve few customers and
are not worth bothering about.

On the other hand, if 50 percent of all purchases involve milk and bread, then
support for rules involving bread and milk (and no other item) is relatively high,
and such rules may be worth attention. Exactly what minimum degree of support
is considered desirable depends on the application.

• Confidence is a measure of how often the consequent is true when the antecedent
is true. For instance, the rule:

bread ⇒ milk

has a confidence of 80 percent if 80 percent of the purchases that include bread
also include milk. A rule with a low confidence is not meaningful. In business
applications, rules usually have confidences significantly less than 100 percent,
whereas in other domains, such as in physics, rules may have high confidences.

Note that the confidence of bread ⇒ milk may be very different from the
confidence of milk ⇒ bread, although both have the same support.
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11.4.5 Clustering

Intuitively, clustering refers to the problem of finding clusters of points in the given
data. The problem of clustering can be formalized from distance metrics in several
ways. One way is to phrase it as the problem of grouping points into k sets (for a given
k) so that the average distance of points from the centroid of their assigned cluster
is minimized. 3 Another way is to group points so that the average distance between
every pair of points in each cluster is minimized. There are other definitions too; see
the bibliographical notes for details. But the intuition behind all these definitions is to
group similar points together in a single set.

Another type of clustering appears in classification systems in biology. (Such clas-
sification systems do not attempt to predict classes; rather they attempt to cluster re-
lated items together.) For instance, leopards and humans are clustered under the class
mammalia, while crocodiles and snakes are clustered under reptilia. Both mammalia
and reptilia come under the common class chordata. The clustering of mammalia has
further subclusters, such as carnivora and primates. We thus have hierarchical cluster-
ing. Given characteristics of different species, biologists have created a complex hier-
archical clustering scheme grouping related species together at different levels of the
hierarchy.

The statistics community has studied clustering extensively. Database research has
provided scalable clustering algorithms that can cluster very large datasets (that may
not fit in memory).

An interesting application of clustering is to predict what new movies (or books or
music) a person is likely to be interested in on the basis of:

1. The person’s past preferences in movies.

2. Other people with similar past preferences.

3. The preferences of such people for new movies.

One approach to this problem is as follows: To find people with similar past preferences
we create clusters of people based on their preferences for movies. The accuracy of
clustering can be improved by previously clustering movies by their similarity, so even
if people have not seen the same movies, if they have seen similar movies they would
be clustered together. We can repeat the clustering, alternately clustering people, then
movies, then people, and so on until we reach an equilibrium. Given a new user, we
find a cluster of users most similar to that user, on the basis of the user’s preferences
for movies already seen. We then predict movies in movie clusters that are popular
with that user’s cluster as likely to be interesting to the new user. In fact, this problem

3The centroid of a set of points is defined as a point whose coordinate on each dimension is the average of the coor-
dinates of all the points of that set on that dimension. For example, in two dimensions, the centroid of a set of points

{ (x1, y1), (x2, y2), … , (xn, yn) } is given by
(∑n
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n
,
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is an instance of collaborative filtering, where users collaborate in the task of filtering
information to find information of interest.

11.4.6 Text Mining

Text mining applies data-mining techniques to textual documents. There are a number
of different text mining tasks. One such task is sentiment analysis. For example, sup-
pose a company wishes to find out how users have reacted to a new product. There
are typically a large number of product reviews on the web—for example, reviews by
different users on e-commerce platforms. Reading each review to find out reactions
is not practical for a human. Instead, the company may analyze reviews to find the
sentiment of the reviews of the product; the sentiment could be positive, negative, or
neutral. The occurrence of specific words such as excellent, good, awesome, beautiful,
and so on are correlated with a positive sentiment, while words such as awful, average,
worthless, poor quality, and so on are correlated with a negative sentiment. Sentiment
analysis techniques can be used to analyze the reviews and come up with an overall
score reflecting the broad sense of the reviews.

Another task is information extraction, which creates structured information from
unstructured textual descriptions, or semi-structured data such as tabular displays of
data in documents. A key subtask of this process is entity recognition, that is, the task of
identifying mentions of entities in text and disambiguating them. For example, an arti-
cle may mention the name Michael Jordan. There are at least two famous people named
Michael Jordan: one was a basketball player, while the other is a professor who is a well
known machine-learning expert. Disambiguation is the process of figuring out which
of these two is being referred to in a particular article, and it can be done based on the
article context; in this case, an occurrence of the name Michael Jordan in a sports arti-
cle probably refers to the basketball player, while an occurrence in a machine-learning
paper probably refers to the professor. After entity recognition, other techniques may
be used to learn attributes of entities and to learn relationships between entities.

Information extraction can be used in many ways. For example, it can be used to
analyze customer support conversations or reviews posted on social media, to judge
customer satisfaction, and to decide when intervention is needed to retain customers.
Service providers may want to know what aspect of the service such as pricing, quality,
hygiene, or behavior of the person providing the service, a review was positive or nega-
tive about; information extraction techniques can be used to infer what aspect an article
or a part of an article is about, and to infer the associated sentiment. Attributes such
as the location of service can also be extracted and are important for taking corrective
action.

Information extracted from the enormous collection of documents and other re-
sources on the web can be valuable for many tasks. Such extracted information can be
represented in a graph, called a knowledge graph, which we outlined in Section 8.1.4.
Such knowledge graphs are used by web search engines to generate more meaningful
answers to user queries.
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11.5 Summary

• Data analytics systems analyze online data collected by transaction-processing sys-
tems, along with data collected from other sources, to help people make business
decisions. Decision-support systems come in various forms, including OLAP sys-
tems and data-mining systems.

• Data warehouses help gather and archive important operational data. Warehouses
are used for decision support and analysis on historical data, for instance, to pre-
dict trends. Data cleansing from input data sources is often a major task in data
warehousing. Warehouse schemas tend to be multidimensional, involving one or
a few very large fact tables and several much smaller dimension tables.

• Online analytical processing (OLAP) tools help analysts view data summarized in
different ways, so that they can gain insight into the functioning of an organization.

° OLAP tools work on multidimensional data, characterized by dimension at-
tributes and measure attributes.

° The data cube consists of multidimensional data summarized in different ways.
Precomputing the data cube helps speed up queries on summaries of data.

° Cross-tab displays permit users to view two dimensions of multidimensional
data at a time, along with summaries of the data.

° Drill down, rollup, slicing, and dicing are among the operations that users per-
form with OLAP tools.

• The SQL standard provides a variety of operators for data analysis, including cube,
rollup, and pivot operations.

• Data mining is the process of semiautomatically analyzing large databases to find
useful patterns. There are a number of applications of data mining, such as predic-
tion of values based on past examples, finding of associations between purchases,
and automatic clustering of people and movies.

• Classification deals with predicting the class of test instances by using attributes
of the test instances, based on attributes of training instances, and the actual class
of training instances. There are several types of classifiers, such as:

° Decision-tree classifiers, which perform classification by constructing a tree
based on training instances with leaves having class labels.

° Bayesian classifiers, which are based on probability theory.

° The support vector machine is another widely used classification technique.

° Neural networks, and in particular deep learning, has been very successful in
classification and related tasks in the context of vision, speech recognition, and
language understanding and translation.
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• Association rules identify items that co-occur frequently, for instance, items that
tend to be bought by the same customer. Correlations look for deviations from
expected levels of association.

• Other types of data mining include clustering and text mining.

Review Terms

• Decision-support systems

• Business intelligence

• Data warehousing

° Gathering data

° Source-driven architecture

° Destination-driven architecture

° Data cleansing

° Extract, transform, load (ETL)

° Extract, load, transform (ELT)

• Warehouse schemas

° Fact table

° Dimension tables

° Star schema

° Snowflake schema

• Column-oriented storage

• Online analytical processing
(OLAP)

• Multidimensional data

° Measure attributes

° Dimension attributes

° Hierarchy

° Cross-tabulation / Pivoting

° Data cube

° Rollup and drill down

° SQL group by cube, group by rollup

• Data visualization

• Data mining

• Prediction

• Classification

° Training data

° Test data

• Decision-tree classifiers

• Bayesian classifiers

° Bayes’ theorem

° Naive Bayesian classifiers

• Support Vector Machine (SVM)

• Regression

• Neural-networks

• Deep learning

• Association rules

• Clustering

• Text mining

° Sentiment analysis

° Information extraction

° Named entity recognition

° Knowledge graph
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Practice Exercises

11.1 Describe benefits and drawbacks of a source-driven architecture for gathering
of data at a data warehouse, as compared to a destination-driven architecture.

11.2 Draw a diagram that shows how the classroom relation of our university exam-
ple as shown in Appendix A would be stored under a column-oriented storage
structure.

11.3 Consider the takes relation. Write an SQL query that computes a cross-tab
that has a column for each of the years 2017 and 2018, and a column for all,
and one row for each course, as well as a row for all. Each cell in the table
should contain the number of students who took the corresponding course in
the corresponding year, with column all containing the aggregate across all
years, and row all containing the aggregate across all courses.

11.4 Consider the data warehouse schema depicted in Figure 11.2. Give an SQL
query to summarize sales numbers and price by store and date, along with the
hierarchies on store and date.

11.5 Classification can be done using classification rules, which have a condition, a
class, and a confidence; the confidence is the percentage of the inputs satisfying
the condition that fall in the specified class.

For example, a classification rule for credit ratings may have a condition
that salary is between $30,000 and $50,000, and education level is graduate,
with the credit rating class of good, and a confidence of 80%. A second rule may
have a condition that salary is between $30,000 and $50,000, and education
level is high-school, with the credit rating class of satisfactory, and a confidence
of 80%. A third rule may have a condition that salary is above $50,001, with
the credit rating class of excellent, and confidence of 90%. Show a decision tree
classifier corresponding to the above rules.

Show how the decision tree classifier can be extended to record the confi-
dence values.

11.6 Consider a classification problem where the classifier predicts whether a per-
son has a particular disease. Suppose that 95% of the people tested do not
suffer from the disease. Let pos denote the fraction of true positives, which is
5% of the test cases, and let neg denote the fraction of true negatives, which is
95% of the test cases. Consider the following classifiers:

• Classifier C1, which always predicts negative (a rather useless classifier, of
course).

• Classifier C2, which predicts positive in 80% of the cases where the person
actually has the disease but also predicts positive in 5% of the cases where
the person does not have the disease.
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• Classifier C3, which predicts positive in 95% of the cases where the person
actually has the disease but also predicts positive in 20% of the cases where
the person does not have the disease.

For each classifier, let t pos denote the true positive fraction, that is the fraction
of cases where the classifier prediction was positive, and the person actually
had the disease. Let f pos denote the false positive fraction, that is the fraction
of cases where the prediction was positive, but the person did not have the
disease. Let t neg denote true negative and f neg denote false negative fractions,
which are defined similarly, but for the cases where the classifier prediction
was negative.

a. Compute the following metrics for each classifier:

i. Accuracy, defined as (t pos + t neg)∕(pos+neg), that is, the fraction of
the time when the classifier gives the correct classification.

ii. Recall (also known as sensitivity) defined as t pos∕pos, that is, how
many of the actual positive cases are classified as positive.

iii. Precision, defined as t pos/(t pos+f pos), that is, how often the positive
prediction is correct.

iv. Specificity, defined as t neg/neg.

b. If you intend to use the results of classification to perform further screen-
ing for the disease, how would you choose between the classifiers?

c. On the other hand, if you intend to use the result of classification to start
medication, where the medication could have harmful effects if given to
someone who does not have the disease, how would you choose between
the classifiers?

Exercises

11.7 Why is column-oriented storage potentially advantageous in a database system
that supports a data warehouse?

11.8 Consider each of the takes and teaches relations as a fact table; they do not have
an explicit measure attribute, but assume each table has a measure attribute
reg count whose value is always 1. What would the dimension attributes and
dimension tables be in each case. Would the resultant schemas be star schemas
or snowflake schemas?

11.9 Consider the star schema from Figure 11.2. Suppose an analyst finds that
monthly total sales (sum of the price values of all sales tuples) have decreased,
instead of growing, from April 2018 to May 2018. The analyst wishes to check
if there are specific item categories, stores, or customer countries that are re-
sponsible for the decrease.
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a. What are the aggregates that the analyst would start with, and what are
the relevant drill-down operations that the analyst would need to exe-
cute?

b. Write an SQL query that shows the item categories that were responsible
for the decrease in sales, ordered by the impact of the category on the
sales decrease, with categories that had the highest impact sorted first.

11.10 Suppose half of all the transactions in a clothes shop purchase jeans, and one-
third of all transactions in the shop purchase T-shirts. Suppose also that half
of the transactions that purchase jeans also purchase T-shirts. Write down all
the (nontrivial) association rules you can deduce from the above information,
giving support and confidence of each rule.

11.11 The organization of parts, chapters, sections, and subsections in a book is re-
lated to clustering. Explain why, and to what form of clustering.

11.12 Suggest how predictive mining techniques can be used by a sports team, using
your favorite sport as an example.

Tools

Data warehouse systems are available from Teradata, Teradata Aster, SAP IQ (formerly
known as Sybase IQ), and Amazon Redshift, all of which support parallel process-
ing across a large number of machines. A number of databases including Oracle, SAP
HANA, Microsoft SQL Server, and IBM DB2 support data warehouse applications by
adding features such as columnar storage. There are a number of commercial ETL
tools including tools from Informatica, Business Objects, IBM InfoSphere, Microsoft
Azure Data Factory, Microsoft SQL Server Integration Services, Oracle Warehouse
Builder, and Pentaho Data Integration. Open-source ETL tools include Apache NiFi
(nifi.apache.org), Jasper ETL (www.jaspersoft.com/data-integration) and Talend
(sourceforge.net/projects/talend-studio). Apache Kafka (kafka.apache.org) can
also be used to build ETL systems.

Most database vendors provide OLAP tools as part of their database systems, or as
add-on applications. These include OLAP tools from Microsoft Corp., Oracle, IBM and
SAP. The Mondrian OLAP server (github.com/pentaho/mondrian) is an open-source
OLAP server. Apache Kylin (kylin.apache.org) is an open-source distributed analytics
engine which can process data stored in Hadoop, build OLAP cubes and store them in
the HBase key-value store, and then query the stored cubes using SQL. Many compa-
nies also provide analysis tools for specific applications, such as customer relationship
management.

Tools for visualization include Tableau (www.tableau.com), FusionCharts
(www.fusioncharts.com), plotly (plot.ly), Datawrapper (www.datawrapper.de), and
Google Charts (developers.google.com/chart).
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The Python language is very popular for machine-learning tasks, due to the avail-
ability of a number of open-source libraries for machine-learning tasks. The R language
is also used widely for statistical analysis and machine learning, for the same reasons.
Popular utility libraries in Python include are NumPy (www.numpy.org) which pro-
vides operations on arrays and matrices, SciPy (www.scipy.org), which provides lin-
ear algebra, optimization and statistics functions, and Pandas (pandas.pydata.org),
which provides a relational abstraction of data. Popular machine-learning libraries
in Python include SciKit-Learn (scikit-learn.org), which adds image-processing and
machine-learning functionality to SciPy. Deep learning libraries in Python include
Keras (keras.io), and TensorFlow (www.tensorflow.org) which was developed by
Google; TensorFlow provides APIs in several languages, with particularly good support
for Python. Text mining is supported by natural language processing libraries, such as
NLTK (www.nltk.org) and web crawling libraries, such as Scrapy (scrapy.org). Visu-
alization is supported by libraries such as Matplotlib (matplotlib.org), Plotly (plot.ly)
and Bokeh (bokeh.pydata.org).

Open-source tools for data mining include RapidMiner (rapidminer.com), Weka
(www.cs.waikato.ac.nz/ml/weka), and Orange (orange.biolab.si). Commercial tools
include SAS Enterprise Miner, IBM Intelligent Miner, and Oracle Data Mining.

Further Reading

[Kimball et al. (2008)] and [Kimball and Ross (2013)] provide textbook coverage of
data warehouses and multidimensional modeling.

[Mitchell (1997)] is a classic textbook on machine learning and covers classifica-
tion techniques in detail. [Goodfellow et al. (2016)] is a definitive text on deep learning.
[Witten et al. (2011)] and [Han et al. (2011)] provide textbook coverage of data mining.
[Agrawal et al. (1993)] introduced the notion of association rules.

Information about the R language and environment may be found at
www.r-project.org; information about the SparkR package, which provides an R fron-
tend to Apache Spark, may be found at spark.apache.org/docs/latest/sparkr.html.

[Chakrabarti (2002)], [Manning et al. (2008)] and [Baeza-Yates and Ribeiro-Neto
(2011)] provide textbook description of information retrieval, including extensive cov-
erage of data-mining tasks related to textual and hypertext data, such as classification
and clustering.
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PART 5

STORAGE MANAGEMENT
AND INDEXING

Although a database system provides a high-level view of data, ultimately data have to
be stored as bits on one or more storage devices. A vast majority of database systems
today store data on magnetic disk, with data having higher performance requirements
stored on flash-based solid-state drives. Database systems fetch data into main memory
for processing, and write data back to storage for persistence. Data are also copied
to tapes and other backup devices for archival storage. The physical characteristics of
storage devices play a major role in the way data are stored, in particular because access
to a random piece of data on magnetic disk is much slower than main-memory access.
Magnetic disk access takes tens of milliseconds, flash-based storage access takes 20 to
100 microseconds, whereas main-memory access takes a tenth of a microsecond.

Chapter 12 begins with an overview of physical storage media, including magnetic
disks and flash-based solid-state drives (SSD). The chapter then covers mechanisms to
minimize the chance of data loss due to device failures, including RAID. The chapter
concludes with a discussion of techniques for efficient disk-block access.

Chapter 13 describes how records are mapped to files, which in turn are mapped
to bits on the disk. The chapter then covers techniques for the efficient management
of the main-memory buffer for disk-based data. Column-oriented storage, used in data
analytics systems, is also covered in this chapter.

Many queries reference only a small proportion of the records in a file. An index
is a structure that helps locate desired records of a relation quickly, without examining
all records. Chapter 14 describes several types of indices used in database systems.
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CHAP T E R 12
Physical Storage Systems

In preceding chapters, we have emphasized the higher-level models of a database. For
example, at the conceptual or logical level, we viewed the database, in the relational
model, as a collection of tables. Indeed, the logical model of the database is the correct
level for database users to focus on. This is because the goal of a database system is
to simplify and facilitate access to data; users of the system should not be burdened
unnecessarily with the physical details of the implementation of the system.

In this chapter, however, as well as in Chapter 13, Chapter 14, Chapter 15, and
Chapter 16, we probe below the higher levels as we describe various methods for imple-
menting the data models and languages presented in preceding chapters. We start with
characteristics of the underlying storage media, with a particular focus on magnetic
disks and flash-based solid-state disks, and then discuss how to create highly reliable
storage structures by using multiple storage devices.

12.1 Overview of Physical Storage Media

Several types of data storage exist in most computer systems. These storage media are
classified by the speed with which data can be accessed, by the cost per unit of data to
buy the medium, and by the medium’s reliability. Among the media typically available
are these:

• Cache. The cache is the fastest and most costly form of storage. Cache memory is
relatively small; its use is managed by the computer system hardware. We shall not
be concerned about managing cache storage in the database system. It is, however,
worth noting that database implementors do pay attention to cache effects when
designing query processing data structures and algorithms, and we shall return to
this issue in later chapters.

• Main memory. The storage medium used for data that are available to be operated
on is main memory. The general-purpose machine instructions operate on main
memory. Main memory may contain tens of gigabytes of data on a personal com-
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puter, and even hundreds to thousands of gigabytes of data in large server systems.
It is generally too small (or too expensive) for storing the entire database for very
large databases, but many enterprise databases can fit in main memory. However,
the contents of main memory are lost in the event of a power failure or system
crash; main memory is therefore said to be volatile.

• Flash memory. Flash memory differs from main memory in that stored data are
retained even if power is turned off (or fails)—that is, it is non-volatile. Flash mem-
ory has a lower cost per byte than main memory, but a higher cost per byte than
magnetic disks.

Flash memory is widely used for data storage in devices such as cameras and
cell phones. Flash memory is also used for storing data in “USB flash drives,” also
known as “pen drives,” which can be plugged into the Universal Serial Bus (USB)
slots of computing devices.

Flash memory is also increasingly used as a replacement for magnetic disks
in personal computers as well as in servers. A solid-state drive (SSD) uses flash
memory internally to store data but provides an interface similar to a magnetic
disk, allowing data to be stored or retrieved in units of a block; such an interface
is called a block-oriented interface. Block sizes typically range from 512 bytes to 8-
kilobytes. As of 2018, a 1-terabyte SSD costs around $250. We provide more details
about flash memory in Section 12.4.

• Magnetic-disk storage. The primary medium for the long-term online storage of
data is the magnetic disk drive, which is also referred to as the hard disk drive
(HDD). Magnetic disk, like flash memory, is non-volatile: that is, magnetic disk
storage survives power failures and system crashes. Disks may sometimes fail and
destroy data, but such failures are quite rare compared to system crashes or power
failures.

To access data stored on magnetic disk, the system must first move the data
from disk to main memory, from where they can be accessed. After the system has
performed the designated operations, the data that have been modified must be
written to disk.

Disk capacities have grown steadily over the years. As of 2018, the size of mag-
netic disks ranges from 500 gigabytes to 14 terabytes, and a 1-terabyte disk costs
about $50, while an 8-terabyte disk around $150. Although significantly cheaper
than SSDs, magnetic disks provide lower performance in terms of number of data
access operations that they can support per second. We provide further details
about magnetic disks in Section 12.3.

• Optical storage. The digital video disk (DVD) is an optical storage medium, with
data written and read back using a laser light source. The Blu-ray DVD format has
a capacity of 27 gigabytes to 128 gigabytes, depending on the number of layers
supported. Although the original (and still main) use of DVDs was to store video
data, they are capable of storing any type of digital data, including backups of
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database contents. DVDs are not suitable for storing active database data since the
time required to access a given piece of data can be quite long compared to the
time taken by a magnetic disk.

Some DVD versions are read-only, written at the factory where they are pro-
duced, other versions support write-once, allowing them to be written once, but not
overwritten, and some versions can be rewritten multiple times. Disks that can be
written only once are called write-once, read-many (WORM) disks.

Optical disk jukebox systems contain a few drives and numerous disks that can
be loaded into one of the drives automatically (by a robot arm) on demand.

• Tape storage. Tape storage is used primarily for backup and archival data. Archival
data refers to data that must be stored safely for a long period of time, often for legal
reasons. Magnetic tape is cheaper than disks and can safely store data for many
years. However, access to data is much slower because the tape must be accessed
sequentially from the beginning of the tape; tapes can be very long, requiring tens
to hundreds of seconds to access data. For this reason, tape storage is referred to as
sequential-access storage. In contrast, magnetic disk and SSD storage are referred
to as direct-access storage because it is possible to read data from any location on
disk.

Tapes have a high capacity (1 to 12 terabyte capacities are currently available),
and can be removed from the tape drive. Tape drives tend to be expensive, but in-
dividual tapes are usually significantly cheaper than magnetic disks of the same
capacity. As a result, tapes are well suited to cheap archival storage and to trans-
ferring large amounts of data between different locations. Archival storage of large
video files, as well as storage of large volumes of scientific data, which can range
up to many petabytes (1 petabyte = 1015 bytes) of data, are two common use cases
for tapes.

Tape libraries (jukeboxes) are used to hold large collections of tapes, allowing
automated storage and retrieval of tapes without human intervention.

The various storage media can be organized in a hierarchy (Figure 12.1) according
to their speed and their cost. The higher levels are expensive, but fast. As we move
down the hierarchy, the cost per bit decreases, whereas the access time increases. This
trade-off is reasonable; if a given storage system were both faster and less expensive
than another—other properties being the same—then there would be no reason to use
the slower, more expensive memory.

The fastest storage media—for example, cache and main memory—are referred to
as primary storage. The media in the next level in the hierarchy—for example, flash
memory and magnetic disks—are referred to as secondary storage, or online storage.
The media in the lowest level in the hierarchy—for example, magnetic tape and optical-
disk jukeboxes—are referred to as tertiary storage, or offline storage.

In addition to the speed and cost of the various storage systems, there is also the
issue of storage volatility. In the hierarchy shown in Figure 12.1, the storage systems
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cache

main memory

flash memory

magnetic disk

optical disk

magnetic tapes

Figure 12.1 Storage device hierarchy.

from main memory up are volatile, whereas the storage systems from flash memory
down are non-volatile. Data must be written to non-volatile storage for safekeeping. We
shall return to the subject of safe storage of data in the face of system failures later, in
Chapter 19.

12.2 Storage Interfaces

Magnetic disks as well as flash-based solid-state disks are connected to a computer
system through a high-speed interconnection. Disks typically support either the Serial
ATA (SATA) interface, or the Serial Attached SCSI (SAS) interface; the SAS interface
is typically used only in servers. The SATA-3 version of SATA nominally supports 6
gigabytes per second, allowing data transfer speeds of up to 600 megabytes per second,
while SAS version 3 supports data transfer rates of 12 gigabits per second. The Non-
Volatile Memory Express (NVMe) interface is a logical interface standard developed to
better support SSDs and is typically used with the PCIe interface (the PCIe interface
provides high-speed data transfer internal to computer systems).

While disks are usually connected directly by cables to the disk interface of the
computer system, they can be situated remotely and connected by a high-speed network
to the computer. In the storage area network (SAN) architecture, large numbers of disks
are connected by a high-speed network to a number of server computers. The disks
are usually organized locally using a storage organization technique called redundant
arrays of independent disks (RAID) (described later, in Section 12.5), to give the servers
a logical view of a very large and very reliable disk. Interconnection technologies used
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in storage area networks include iSCSI, which allows SCSI commands to be sent over
an IP network, Fiber Channel FC, which supports transfer rates of 1.6 to 12 gigabytes
per second, depending on the version, and InfiniBand, which provides very low latency
high-bandwidth network communication.

Network attached storage (NAS) is an alternative to SAN. NAS is much like SAN,
except that instead of the networked storage appearing to be a large disk, it provides a
file system interface using networked file system protocols such as NFS or CIFS. Recent
years have also seen the growth of cloud storage, where data are stored in the cloud
and accessed via an API. Cloud storage has a very high latency of tens to hundreds of
milliseconds, if the data are not co-located with the database, and is thus not ideal as
the underlying storage for databases. However, applications often use cloud storage for
storing objects. Cloud-based storage systems are discussed further in Section 21.7.

12.3 Magnetic Disks

Magnetic disks provide the bulk of secondary storage for modern computer systems.
Magnetic disk capacities have been growing steadily year after year, but the storage
requirements of large applications have also been growing very fast, in some cases even
faster than the growth rate of disk capacities. Very large databases at “web-scale” require
thousands to tens of thousands of disks to store their data.1

In recent years, SSD storage sizes have grown rapidly, and the cost of SSDs has
come down significantly; the increasing affordability of SSDs coupled with their much
better performance has resulted in SSDs increasingly becoming a competitor to mag-
netic disk storage for several applications. However, the fact that the per-byte cost of
storage on SSDs is around six to eight times the per-byte cost of storage on magnetic
disks means that magnetic disks continue to be the preferred choice for storing very
large volumes of data in many applications. Example of such data include video and
image data, as well as data that is accessed less frequently, such as user-generated data
in many web-scale applications. SSDs have however, increasingly become the preferred
choice for enterprise data.

12.3.1 Physical Characteristics of Disks

Figure 12.2 shows a schematic diagram of a magnetic disk, while Figure 12.3 shows
the internals of an actual magnetic disk. Each disk platter has a flat, circular shape. Its
two surfaces are covered with a magnetic material, and information is recorded on the
surfaces. Platters are made from rigid metal or glass.

When the disk is in use, a drive motor spins it at a constant high speed, typically
5400 to 10,000 revolutions per minute, depending on the model. There is a read-write
head positioned just above the surface of the platter. The disk surface is logically di-

1We study later, in Chapter 21, how to partition such large amounts of data across multiple nodes in a parallel computing
system.
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Figure 12.2 Schematic diagram of a magnetic disk.

vided into tracks, which are subdivided into sectors. A sector is the smallest unit of
information that can be read from or written to the disk. Sector sizes are typically 512
bytes, and current generation disks have between 2 billion and 24 billion sectors. The
inner tracks (closer to the spindle) are of smaller length than the outer tracks, and the
outer tracks contain more sectors than the inner tracks.

The read–write head stores information on a sector magnetically as reversals of
the direction of magnetization of the magnetic material.

Figure 12.3 Internals of an actual magnetic disk.
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Each side of a platter of a disk has a read-write head that moves across the platter
to access different tracks. A disk typically contains many platters, and the read-write
heads of all the tracks are mounted on a single assembly called a disk arm and move
together. The disk platters mounted on a spindle and the heads mounted on a disk
arm are together known as head-disk assemblies. Since the heads on all the platters
move together, when the head on one platter is on the ith track, the heads on all other
platters are also on the ith track of their respective platters. Hence, the ith tracks of all
the platters together are called the ith cylinder.

The read-write heads are kept as close as possible to the disk surface to increase the
recording density. The head typically floats or flies only microns from the disk surface;
the spinning of the disk creates a small breeze, and the head assembly is shaped so that
the breeze keeps the head floating just above the disk surface. Because the head floats
so close to the surface, platters must be machined carefully to be flat.

Head crashes can be a problem. If the head contacts the disk surface, the head can
scrape the recording medium off the disk, destroying the data that had been there. In
older-generation disks, the head touching the surface caused the removed medium to
become airborne and to come between the other heads and their platters, causing more
crashes; a head crash could thus result in failure of the entire disk. Current-generation
disk drives use a thin film of magnetic metal as recording medium. They are much
less susceptible to failure of the entire disk, but are susceptible to failure of individual
sectors.

A disk controller interfaces between the computer system and the actual hardware
of the disk drive; in modern disk systems, the disk controller is implemented within
the disk drive unit. A disk controller accepts high-level commands to read or write a
sector, and initiates actions, such as moving the disk arm to the right track and actually
reading or writing the data. Disk controllers also attach checksums to each sector that
is written; the checksum is computed from the data written to the sector. When the
sector is read back, the controller computes the checksum again from the retrieved
data and compares it with the stored checksum; if the data are corrupted, with a high
probability the newly computed checksum will not match the stored checksum. If such
an error occurs, the controller will retry the read several times; if the error continues
to occur, the controller will signal a read failure.

Another interesting task that disk controllers perform is remapping of bad sectors.
If the controller detects that a sector is damaged when the disk is initially formatted, or
when an attempt is made to write the sector, it can logically map the sector to a different
physical location (allocated from a pool of extra sectors set aside for this purpose). The
remapping is noted on disk or in non-volatile memory, and the write is carried out on
the new location.

12.3.2 Performance Measures of Disks

The main measures of the qualities of a disk are capacity, access time, data-transfer
rate, and reliability.



566 Chapter 12 Physical Storage Systems

Access time is the time from when a read or write request is issued to when data
transfer begins. To access (i.e., to read or write) data on a given sector of a disk, the arm
first must move so that it is positioned over the correct track, and then must wait for
the sector to appear under it as the disk rotates. The time for repositioning the arm is
called the seek time, and it increases with the distance that the arm must move. Typical
seek times range from 2 to 20 milliseconds depending on how far the track is from the
initial arm position. Smaller disks tend to have lower seek times since the head has to
travel a smaller distance.

The average seek time is the average of the seek times, measured over a sequence of
(uniformly distributed) random requests. If all tracks have the same number of sectors,
and we disregard the time required for the head to start moving and to stop moving, we
can show that the average seek time is one-third the worst-case seek time. Taking these
factors into account, the average seek time is around one-half of the maximum seek
time. Average seek times currently range between 4 and 10 milliseconds, depending on
the disk model.2

Once the head has reached the desired track, the time spent waiting for the sector
to be accessed to appear under the head is called the rotational latency time. Rotational
speeds of disks today range from 5400 rotations per minute (90 rotations per second)
up to 15,000 rotations per minute (250 rotations per second), or, equivalently, 4 mil-
liseconds to 11.1 milliseconds per rotation. On an average, one-half of a rotation of the
disk is required for the beginning of the desired sector to appear under the head. Thus,
the average latency time of the disk is one-half the time for a full rotation of the disk.
Disks with higher rotational speeds are used for applications where latency needs to
be minimized.

The access time is then the sum of the seek time and the latency; average access
times range from 5 to 20 milliseconds depending on the disk model. Once the first
sector of the data to be accessed has come under the head, data transfer begins. The
data-transfer rate is the rate at which data can be retrieved from or stored to the disk.
Current disk systems support maximum transfer rates of 50 to 200 megabytes per sec-
ond; transfer rates are significantly lower than the maximum transfer rates for inner
tracks of the disk, since they have fewer sectors. For example, a disk with a maximum
transfer rate of 100 megabytes per second may have a sustained transfer rate of around
30 megabytes per second on its inner tracks.

Requests for disk I/O are typically generated by the file system but can be generated
directly by the database system. Each request specifies the address on the disk to be
referenced; that address is in the form of a block number. A disk block is a logical unit
of storage allocation and retrieval, and block sizes today typically range from 4 to 16

2Smaller 2.5-inch diameter disks have a lesser arm movement distance than larger 3.5-inch disks, and thus have lower
seek times. As a result 2.5-inch disks have been the preferred choice for applications where latency needs to be mini-
mized, although SSDs are increasingly preferred for such applications. Larger 3.5-inch diameter disks have a lower cost
per byte and are used in data storage applications where cost is an important factor.
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kilobytes. Data are transferred between disk and main memory in units of blocks. The
term page is often used to refer to blocks, although in a few contexts (such as flash
memory) they refer to different things.

A sequence of requests for blocks from disk may be classified as a sequential access
pattern or a random access pattern. In a sequential access pattern, successive requests
are for successive block numbers, which are on the same track, or on adjacent tracks.
To read blocks in sequential access, a disk seek may be required for the first block, but
successive requests would either not require a seek, or require a seek to an adjacent
track, which is faster than a seek to a track that is farther away. Data transfer rates are
highest with a sequential access pattern, since seek time is minimal.

In contrast, in a random access pattern, successive requests are for blocks that are
randomly located on disk. Each such request would require a seek. The number of I/O
operations per second (IOPS), that is, the number random block accesses that can be
satisfied by a disk in a second, depends on the access time, and the block size, and
the data transfer rate of the disk. With a 4-kilobyte block size, current generation disks
support between 50 and 200 IOPS, depending on the model. Since only a small amount
(one block) of data are read per seek, the data transfer rate is significantly lower with
a random access pattern than with a sequential access pattern.

The final commonly used measure of a disk is the mean time to failure (MTTF),3

which is a measure of the reliability of the disk. The mean time to failure of a disk (or
of any other system) is the amount of time that, on average, we can expect the system
to run continuously without any failure. According to vendors’ claims, the mean time
to failure of disks today ranges from 500,000 to 1,200,000 hours—about 57 to 136
years. In practice the claimed mean time to failure is computed on the probability of
failure when the disk is new—the figure means that given 1000 relatively new disks,
if the MTTF is 1,200,000 hours, on an average one of them will fail in 1200 hours. A
mean time to failure of 1,200,000 hours does not imply that the disk can be expected
to function for 136 years! Most disks have an expected life span of about 5 years and
have significantly higher rates of failure once they become more than a few years old.

12.4 Flash Memory

There are two types of flash memory, NOR flash and NAND flash. NAND flash is the
variant that is predominantly used for data storage. Reading from NAND flash requires
an entire page of data, which is very commonly 4096 bytes, to be fetched from NAND
flash into main memory. Pages in a NAND flash are thus similar to sectors in a magnetic
disk.

3The term mean time between failures (MTBF) is often used to refer to MTTF in the context of disk drives, although
technically MTBF should only be used in the context of systems that can be repaired after failure, and may fail again;
MTBF would then be the sum of MTTF and the mean time to repair. Magnetic disks can almost never be repaired after
a failure.
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Solid-state disks (SSDs) are built using NAND flash and provide the same block-
oriented interface as disk storage. Compared to magnetic disks, SSDs can provide much
faster random access: the latency to retrieve a page of data ranges from 20 to 100 mi-
croseconds for SSDs, whereas a random access on disk would take 5 to 10 milliseconds.
The data transfer rate of SSDs is higher than that of magnetic disks and is usually lim-
ited by the interconnect technology; transfer rates range from around 500 megabytes
per second with SATA interfaces, up to 3 gigabytes per second using NVMe PCIe in-
terfaces, depending on the specific SSD model, in contrast to a maximum of about
200 megabytes per second with magnetic disk. The power consumption of SSDs is also
significantly lower than that of magnetic disks.

Writes to flash memory are a little more complicated. A write to a page of flash
memory typically takes about 100 microseconds. However, once written, a page of
flash memory cannot be directly overwritten. Instead, it has to be erased and rewritten
subsequently. The erase operation must be performed on a group of pages, called an
erase block, erasing all the pages in the block, and takes about 2 to 5 milliseconds.
An erase block (often referred to as just “block” in flash literature), is typically 256
kilobytes to 1 megabyte, and contains around 128 to 256 pages. Further, there is a limit
to how many times a flash page can be erased, typically around 100,000 to 1,000,000
times. Once this limit is reached, errors in storing bits are likely to occur.

Flash memory systems limit the impact of both the slow erase speed and the update
limits by mapping logical page numbers to physical page numbers. When a logical page
is updated, it can be remapped to any already erased physical page, and the original
location can be erased later. Each physical page has a small area of memory where its
logical address is stored; if the logical address is remapped to a different physical page,
the original physical page is marked as deleted. Thus, by scanning the physical pages,
we can find where each logical page resides. The logical-to-physical page mapping is
replicated in an in-memory translation table for quick access.

Blocks containing multiple deleted pages are periodically erased, taking care to
first copy nondeleted pages in those blocks to a different block (the translation table is
updated for these nondeleted pages). Since each physical page can be updated only a
fixed number of times, physical pages that have been erased many times are assigned
“cold data,” that is, data that are rarely updated, while pages that have not been erased
many times are used to store “hot data,” that is, data that are updated frequently. This
principle of evenly distributing erase operations across physical blocks is called wear
leveling and is usually performed transparently by flash-memory controllers. If a phys-
ical page is damaged due to an excessive number of updates, it can be removed from
usage, without affecting the flash memory as a whole.

All the above actions are carried out by a layer of software called the flash transla-
tion layer; above this layer, flash storage looks identical to magnetic disk storage, pro-
viding the same page/sector-oriented interface, except that flash storage is much faster.
File systems and database storage structures can thus see an identical logical view of
the underlying storage structure, regardless of whether it is flash or magnetic storage.
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Note 12.1 STORAGE CLASS MEMORY

Although flash is the most widely used type of non-volatile memory, there have
been a number of alternative non-volatile memory technologies developed over
the years. Several of these technologies allow direct read and write access to indi-
vidual bytes or words, avoiding the need to read or write in units of pages (and also
avoiding the erase overhead of NAND flash). Such types of non-volatile memory
are referred to as storage class memory, since they can be treated as a large non-
volatile block of memory. The 3D-XPoint memory technology, developed by Intel
and Micron, is a recently developed storage class memory technology. In terms
of cost per byte, latency of access, and capacity, 3D-XPoint memory lies in be-
tween main memory and flash memory. Intel Optane SSDs based on 3D-XPoint
started shipping in 2017, and Optane persistent memory modules were announced
in 2018.

SSD performance is usually expressed in terms of:

1. The number of random block reads per second, with 4-kilobyte blocks being the
standard. Typical values in 2018 are about 10,000 random reads per second (also
referred to as 10,000 IOPS) with 4-kilobyte blocks, although some models support
higher rates.

Unlike magnetic disks, SSDs can support multiple random requests in paral-
lel, with 32 parallel requests being commonly supported; a flash disk with SATA
interface supports nearly 100,000 random 4-kilobyte block reads in a second with
32 requests sent in parallel, while SSDs connected using NVMe PCIe can support
over 350,000 random 4-kilobyte block reads per second. These numbers are spec-
ified as QD-1 for rates without parallelism and QD-n for n-way parallelism, with
QD-32 being the most commonly used number.

2. The data transfer rate for sequential reads and sequential writes. Typical rates for
both sequential reads and sequential writes are 400 to 500 megabytes per second
for SSDs with a SATA 3 interface, and 2 to 3 gigabytes per second for SSDs using
NVMe over the PCIe 3.0x4 interface.

3. The number of random block writes per second, with 4-kilobyte blocks being the
standard. Typical values in 2018 are about 40,000 random 4-kilobyte writes per
second for QD-1 (without parallelism), and around 100,000 IOPS for QD-32.
although some models support higher rates for both QD-1 and QD-32.

Hybrid disk drives are hard-disk systems that combine magnetic storage with a
smaller amount of flash memory, which is used as a cache for frequently accessed data.
Frequently accessed data that are rarely updated are ideal for caching in flash memory.
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Modern SAN and NAS systems support the use of a combination of magnetic disks
and SSDs, and they can be configured to use the SSDs as a cache for data that reside
on magnetic disks.

12.5 RAID

The data-storage requirements of some applications (in particular web, database, and
multimedia applications) have been growing so fast that a large number of disks are
needed to store their data, even though disk-drive capacities have been growing very
fast.

Having a large number of disks in a system presents opportunities for improving
the rate at which data can be read or written, if the disks are operated in parallel. Several
independent reads or writes can also be performed in parallel. Furthermore, this setup
offers the potential for improving the reliability of data storage, because redundant
information can be stored on multiple disks. Thus, failure of one disk does not lead to
loss of data.

A variety of disk-organization techniques, collectively called redundant arrays of
independent disks (RAID), have been proposed to achieve improved performance and
reliability.

In the past, system designers viewed storage systems composed of several small,
cheap disks as a cost-effective alternative to using large, expensive disks; the cost per
megabyte of the smaller disks was less than that of larger disks. In fact, the I in RAID,
which now stands for independent, originally stood for inexpensive. Today, however,
all disks are physically small, and larger-capacity disks actually have a lower cost per
megabyte. RAID systems are used for their higher reliability and higher performance
rate, rather than for economic reasons. Another key justification for RAID use is easier
management and operations.

12.5.1 Improvement of Reliability via Redundancy

Let us first consider reliability. The chance that at least one disk out of a set of N disks
will fail is much higher than the chance that a specific single disk will fail. Suppose that
the mean time to failure of a disk is 100,000 hours, or slightly over 11 years. Then, the
mean time to failure of some disk in an array of 100 disks will be 100,000∕100 = 1000
hours, or around 42 days, which is not long at all! If we store only one copy of the data,
then each disk failure will result in loss of a significant amount of data (as discussed in
Section 12.3.1). Such a high frequency of data loss is unacceptable.

The solution to the problem of reliability is to introduce redundancy; that is, we
store extra information that is not needed normally but that can be used in the event
of failure of a disk to rebuild the lost information. Thus, even if a disk fails, data are
not lost, so the effective mean time to failure is increased, provided that we count only
failures that lead to loss of data or to non-availability of data.
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The simplest (but most expensive) approach to introducing redundancy is to du-

plicate every disk. This technique is called mirroring (or, sometimes, shadowing). A

logical disk then consists of two physical disks, and every write is carried out on both

disks. If one of the disks fails, the data can be read from the other. Data will be lost

only if the second disk fails before the first failed disk is repaired.

The mean time to failure (where failure is the loss of data) of a mirrored disk

depends on the mean time to failure of the individual disks, as well as on the mean time
to repair, which is the time it takes (on an average) to replace a failed disk and to restore

the data on it. Suppose that the failures of the two disks are independent; that is, there is

no connection between the failure of one disk and the failure of the other. Then, if the

mean time to failure of a single disk is 100,000 hours, and the mean time to repair is

10 hours, the mean time to data loss of a mirrored disk system is 100, 0002∕(2 ∗ 10) =
500 ∗ 106 hours, or 57,000 years! (We do not go into the derivations here; references

in the bibliographical notes provide the details.)

You should be aware that the assumption of independence of disk failures is not

valid. Power failures and natural disasters such as earthquakes, fires, and floods may

result in damage to both disks at the same time. As disks age, the probability of failure

increases, increasing the chance that a second disk will fail while the first is being

repaired. In spite of all these considerations, however, mirrored-disk systems offer much

higher reliability than do single-disk systems. Mirrored-disk systems with mean time to

data loss of about 500,000 to 1,000,000 hours, or 55 to 110 years, are available today.

Power failures are a particular source of concern, since they occur far more fre-

quently than do natural disasters. Power failures are not a concern if there is no data

transfer to disk in progress when they occur. However, even with mirroring of disks,

if writes are in progress to the same block in both disks, and power fails before both

blocks are fully written, the two blocks can be in an inconsistent state. The solution to

this problem is to write one copy first, then the next, so that one of the two copies is al-

ways consistent. Some extra actions are required when we restart after a power failure,

to recover from incomplete writes. This matter is examined in Practice Exercise 12.6.

12.5.2 Improvement in Performance via Parallelism

Now let us consider the benefit of parallel access to multiple disks. With disk mirroring,

the rate at which read requests can be handled is doubled, since read requests can be

sent to either disk (as long as both disks in a pair are functional, as is almost always

the case). The transfer rate of each read is the same as in a single-disk system, but the

number of reads per unit time has doubled.

With multiple disks, we can improve the transfer rate as well (or instead) by striping
data across multiple disks. In its simplest form, data striping consists of splitting the

bits of each byte across multiple disks; such striping is called bit-level striping. For

example, if we have an array of eight disks, we write bit i of each byte to disk i. In such

an organization, every disk participates in every access (read or write), so the number

of accesses that can be processed per second is about the same as on a single disk, but

each access can read eight times as much data in the same time as on a single disk.
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Block-level striping stripes blocks across multiple disks. It treats the array of disks

as a single large disk, and it gives blocks logical numbers; we assume the block numbers

start from 0. With an array of n disks, block-level striping assigns logical block i of the

disk array to disk (i mod n) + 1; it uses the ⌊i∕n⌋th physical block of the disk to store

logical block i. For example, with eight disks, logical block 0 is stored in physical block

0 of disk 1, while logical block 11 is stored in physical block 1 of disk 4. When reading

a large file, block-level striping fetches n blocks at a time in parallel from the n disks,

giving a high data-transfer rate for large reads. When a single block is read, the data-

transfer rate is the same as on one disk, but the remaining n−1 disks are free to perform

other actions.

Block-level striping offers several advantages over bit-level striping, including the

ability to support a larger number of block reads per second, and lower latency for

single block reads. As a result, bit-level striping is not used in any practical system.

In summary, there are two main goals of parallelism in a disk system:

1. Load-balance multiple small accesses (block accesses), so that the throughput of

such accesses increases.

2. Parallelize large accesses so that the response time of large accesses is reduced.

12.5.3 RAID Levels

Mirroring provides high reliability, but it is expensive. Striping provides high data-

transfer rates, but does not improve reliability. Various alternative schemes aim to pro-

vide redundancy at lower cost by combining disk striping with “parity blocks”.

Blocks in a RAID system are partitioned into sets, as we shall see. For a given set

of blocks, a parity block can be computed and stored on disk; the ith bit of the parity

block is computed as the “exclusive or” (XOR) of the ith bits of the all blocks in the

set. If the contents of any one of the blocks in a set is lost due to a failure, the block

contents can be recovered by computing the bitwise-XOR of the remaining blocks in

the set, along with the parity block.

Whenever a block is written, the parity block for its set must be recomputed and

written to disk. The new value of the parity block can be computed by either (i) reading

all the other blocks in the set from disk and computing the new parity block, or (ii) by

computing the XOR of the old value of the parity block with the old and new value of

the updated block.

These schemes have different cost-performance trade-offs. The schemes are classi-

fied into RAID levels.4. Figure 12.4 illustrates the four levels that are used in practice. In

the figure, P indicates error-correcting bits, and C indicates a second copy of the data.

For all levels, the figure depicts four disks’ worth of data, and the extra disks depicted

are used to store redundant information for failure recovery.

4There are 7 different RAID levels, numbered 0 to 6; Levels 2, 3, and 4 are not used in practice anymore and thus are

not covered in the text
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(a) RAID 0: nonredundant striping

(b) RAID 1: mirrored disks

(c) RAID 5: block-interleaved distributed parity

(d) RAID 6: P + Q redundancy

P

P
Q

P

P P

P P

P P

C CCC

P P
Q Q Q Q Q

Figure 12.4 RAID levels.

• RAID level 0 refers to disk arrays with striping at the level of blocks, but without
any redundancy (such as mirroring or parity bits). Figure 12.4a shows an array of
size 4.

• RAID level 1 refers to disk mirroring with block striping. Figure 12.4b shows a
mirrored organization that holds four disks’ worth of data.

Note that some vendors use the term RAID level 1+0 or RAID level 10 to refer
to mirroring with striping, and they use the term RAID level 1 to refer to mirroring
without striping. Mirroring without striping can also be used with arrays of disks,
to give the appearance of a single large, reliable disk: if each disk has M blocks,
logical blocks 0 to M − 1 are stored on disk 0, M to 2M − 1 on disk 1(the second
disk), and so on, and each disk is mirrored.5

• RAID level 5 refers to block-interleaved distributed parity. The data and parity are
partitioned among all N + 1 disks. For each set of N logical blocks, one of the
disks stores the parity, and the other N disks store the blocks. The parity blocks
are stored on different disks for different sets of N blocks. Thus, all disks can
participate in satisfying read requests.6

Figure 12.4c shows the setup. The P’s are distributed across all the disks. For
example, with an array of five disks, the parity block, labeled Pk, for logical blocks

5Note that some vendors use the term RAID 0+1 to refer to a version of RAID that uses striping to create a RAID 0
array, and mirrors the array onto another array, with the difference from RAID 1 being that if a disk fails, the RAID
0 array containing the disk becomes unusable. The mirrored array can still be used, so there is no loss of data. This
arrangement is inferior to RAID 1 when a disk has failed, since the other disks in the RAID 0 array can continue to be
used in RAID 1, but remain idle in RAID 0+1.
6In RAID level 4 (which is not used in practice) all parity blocks are stored on one disk. That disk would not be useful
for reads, and it would also have a higher load than other disks if there were many random writes.
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4k, 4k + 1, 4k + 2, 4k + 3 is stored in disk k mod 5; the corresponding blocks of
the other four disks store the four data blocks 4k to 4k + 3. The following table
indicates how the first 20 blocks, numbered 0 to 19, and their parity blocks are
laid out. The pattern shown gets repeated on further blocks.

P0
4
8

12
16

0
P1

9
13
17

1
5

P2
14
18

2
6

10
P3
19

3
7

11
15
P4

Note that a parity block cannot store parity for blocks in the same disk, since
then a disk failure would result in loss of data as well as of parity, and hence would
not be recoverable.

• RAID level 6, the P + Q redundancy scheme, is much like RAID level 5, but it stores
extra redundant information to guard against multiple disk failures. Instead of us-
ing parity, level 6 uses error-correcting codes such as the Reed-Solomon codes (see
the bibliographical notes). In the scheme in Figure 12.4g, two bits of redundant
data are stored for every four bits of data—unlike one parity bit in level 5—and the
system can tolerate two disk failures.

The letters P and Q in the figure denote blocks containing the two correspond-
ing error-correcting blocks for a given set of data blocks. The layout of blocks is an
extension of that for RAID 5. For example, with six disks, the two parity blocks,
labeled Pk and Qk, for logical blocks 4k, 4k + 1, 4k + 2, and4k + 3 are stored in
disk k mod 6 and (k + 1) mod 6, and the corresponding blocks of the other four
disks store the four data blocks 4k to 4k + 3.

Finally, we note that several variations have been proposed to the basic RAID
schemes described here, and different vendors use different terminologies for the vari-
ants. Some vendors support nested schemes that create multiple separate RAID arrays,
and then stripe data across the RAID arrays; one of RAID levels 1, 5 or 6 is chosen for
the individual arrays. References to further information on this idea are provided in
the Further Reading section at the end of the chapter.

12.5.4 Hardware Issues

RAID can be implemented with no change at the hardware level, using only software
modification. Such RAID implementations are called software RAID. However, there are
significant benefits to be had by building special-purpose hardware to support RAID,
which we outline below; systems with special hardware support are called hardware
RAID systems.
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Hardware RAID implementations can use non-volatile RAM to record writes be-
fore they are performed. In case of power failure, when the system comes back up,
it retrieves information about any incomplete writes from non-volatile RAM and then
completes the writes. Normal operations can then commence.

In contrast, with software RAID extra work needs to be done to detect blocks that
may have been partially written before power failure. For RAID 1, all blocks of the disks
are scanned to see if any pair of blocks on the two disks have different contents. For
RAID 5, the disks need to be scanned and parity recomputed for each set of blocks and
compared to the stored parity. Such scans take a long time, and they are done in the
background using a small fraction of the disks’ available bandwidth. See Practice Ex-
ercise 12.6 for details of how to recover data to the latest value, when an inconsistency
is detected; we revisit this issue in the context of database system recovery in Section
19.2.1. The RAID system is said to be resynchronizing (or resynching) during this phase;
normal reads and writes are allowed while resynchronization is in progress, but a failure
of a disk during this phase could result in data loss for blocks with incomplete writes.
Hardware RAID does not have this limitation.

Even if all writes are completed properly, there is a small chance of a sector in a
disk becoming unreadable at some point, even though it was successfully written earlier.
Reasons for loss of data on individual sectors could range from manufacturing defects
to data corruption on a track when an adjacent track is written repeatedly. Such loss of
data that were successfully written earlier is sometimes referred to as a latent failure, or
as bit rot. When such a failure happens, if it is detected early the data can be recovered
from the remaining disks in the RAID organization. However, if such a failure remains
undetected, a single disk failure could lead to data loss if a sector in one of the other
disks has a latent failure.

To minimize the chance of such data loss, good RAID controllers perform scrub-
bing; that is, during periods when disks are idle, every sector of every disk is read, and
if any sector is found to be unreadable, the data are recovered from the remaining disks
in the RAID organization, and the sector is written back. (If the physical sector is dam-
aged, the disk controller would remap the logical sector address to a different physical
sector on disk.)

Server hardware is often designed to permit hot swapping; that is, faulty disks can
be removed and replaced by new ones without turning power off. The RAID controller
can detect that a disk was replaced by a new one and can immediately proceed to
reconstruct the data that was on the old disk, and write it to the new disk. Hot swapping
reduces the mean time to repair, since replacement of a disk does not have to wait until
a time when the system can be shut down. In fact, many critical systems today run on
a 24 × 7 schedule; that is, they run 24 hours a day, 7 days a week, providing no time for
shutting down and replacing a failed disk. Further, many RAID implementations assign
a spare disk for each array (or for a set of disk arrays). If a disk fails, the spare disk is
immediately used as a replacement. As a result, the mean time to repair is reduced
greatly, minimizing the chance of any data loss. The failed disk can be replaced at
leisure.
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The power supply, or the disk controller, or even the system interconnection in a
RAID system could become a single point of failure that could stop the functioning
of the RAID system. To avoid this possibility, good RAID implementations have multi-
ple redundant power supplies (with battery backups so they continue to function even
if power fails). Such RAID systems have multiple disk interfaces and multiple inter-
connections to connect the RAID system to the computer system (or to a network of
computer systems). Thus, failure of any single component will not stop the functioning
of the RAID system.

12.5.5 Choice of RAID Level

The factors to be taken into account in choosing a RAID level are:

• Monetary cost of extra disk-storage requirements.

• Performance requirements in terms of number of I/O operations per second.

• Performance when a disk has failed.

• Performance during rebuild (i.e., while the data in a failed disk are being rebuilt
on a new disk).

The time to rebuild the data of a failed disk can be significant, and it varies with
the RAID level that is used. Rebuilding is easiest for RAID level 1, since data can be
copied from another disk; for the other levels, we need to access all the other disks in
the array to rebuild data of a failed disk. The rebuild performance of a RAID system
may be an important factor if continuous availability of data is required, as it is in high-
performance database systems. Furthermore, since rebuild time can form a significant
part of the repair time, rebuild performance also influences the mean time to data loss.

RAID level 0 is used in a few high-performance applications where data safety is
not critical, but not anywhere else.

RAID level 1 is popular for applications such as storage of log files in a database
system, since it offers the best write performance. RAID level 5 has a lower storage
overhead than level 1, but it has a higher time overhead for writes. For applications
where data are read frequently, and written rarely, level 5 is the preferred choice.

Disk-storage capacities have been increasing rapidly for many years. Capacities
were effectively doubling every 13 months at one point; although the current rate of
growth is much less now, capacities have continued to increase rapidly. The cost per
byte of disk storage has been falling at about the same rate as the capacity increase. As
a result, for many existing database applications with moderate storage requirements,
the monetary cost of the extra disk storage needed for mirroring has become rela-
tively small (the extra monetary cost, however, remains a significant issue for storage-
intensive applications such as video data storage). Disk access speeds have not im-
proved significantly in recent years, while the number of I/O operations required per
second has increased tremendously, particularly for web application servers.
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RAID level 5 has a significant overhead for random writes, since a single random

block write requires 2 block reads (to get the old values of the block and parity block)

and 2 block writes to write these blocks back. In contrast, the overhead is low for large

sequential writes, since the parity block can be computed from the new blocks in most

cases, without any reads. RAID level 1 is therefore the RAID level of choice for many

applications with moderate storage requirements and high random I/O requirements.

RAID level 6 offers better reliability than level 1 or 5, since it can tolerate two

disk failures without losing data. In terms of performance during normal operation,

it is similar to RAID level 5, but it has a higher storage cost than RAID level 5. RAID

level 6 is used in applications where data safety is very important. It is being viewed as

increasingly important since latent sector failures are not uncommon, and it may take a

long time to be detected and repaired. A failure of a different disk before a latent failure

is detected and repaired would then be similar to a two-disk failure for that sector and

result in loss of data of that sector. RAID levels 1 and 5 would suffer from data loss in

such a scenario, unlike level 6.

Mirroring can also be extended to store copies on three disks instead of two to

survive two-disk failures. Such triple-redundancy schemes are not commonly used in

RAID systems, although they are used in distributed file systems, where data are stored

in multiple machines, since the probability of machine failure is significantly higher

than that of disk failure.

RAID system designers have to make several other decisions as well. For example,

how many disks should there be in an array? How many bits should be protected by

each parity bit? If there are more disks in an array, data-transfer rates are higher, but the

system will be more expensive. If there are more bits protected by a parity bit, the space

overhead due to parity bits is lower, but there is an increased chance that a second disk

will fail before the first failed disk is repaired, and that will result in data loss.

12.5.6 Other RAID Applications

The concepts of RAID have been generalized to other storage devices, including in the

flash memory devices within SSDs, arrays of tapes, and even to the broadcast of data

over wireless systems. Individual flash pages have a higher rate of data loss than sectors

of magnetic disks. Flash devices such as SSDs implement RAID internally, to ensure

that the device does not lose data due to the loss of a flash page. When applied to

arrays of tapes, the RAID structures are able to recover data even if one of the tapes in

an array of tapes is damaged. When applied to broadcast of data, a block of data are

split into short units and is broadcast along with a parity unit; if one of the units is not

received for any reason, it can be reconstructed from the other units.

12.6 Disk-Block Access

Requests for disk I/O are generated by the database system, with the query processing

subsystem responsible for most of the disk I/O. Each request specifies a disk identifier

and a logical block number on the disk; in case database data are stored in operating
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system files, the request instead specifies the file identifier and a block number within
the file. Data are transferred between disk and main memory in units of blocks.

As we saw earlier, a sequence of requests for blocks from disk may be classified as
a sequential access pattern or a random access pattern. In a sequential access pattern,
successive requests are for successive block numbers, which are on the same track,
or on adjacent tracks. In contrast, in a random access pattern, successive requests are
for blocks that are randomly located on disk. Each such request would require a seek,
resulting in a longer access time, and a lower number of random I/O operations per
second.

A number of techniques have been developed for improving the speed of access
to blocks, by minimizing the number of accesses, and in particular minimizing the
number of random accesses. We describe these techniques below. Reducing the number
of random accesses is very important for data stored on magnetic disks; SSDs support
much faster random access than do magnetic disks, so the impact of random access is
less with SSDs, but data access from SSDs can still benefit from some of the techniques
described below.

• Buffering. Blocks that are read from disk are stored temporarily in an in-memory
buffer, to satisfy future requests. Buffering is done by both the operating system
and the database system. Database buffering is discussed in more detail in Section
13.5.

• Read-ahead. When a disk block is accessed, consecutive blocks from the same track
are read into an in-memory buffer even if there is no pending request for the blocks.
In the case of sequential access, such read-ahead ensures that many blocks are
already in memory when they are requested, and it minimizes the time wasted in
disk seeks and rotational latency per block read. Operating systems also routinely
perform read-ahead for consecutive blocks of an operating system file. Read-ahead
is, however, not very useful for random block accesses.

• Scheduling. If several blocks from a cylinder need to be transferred from disk to
main memory, we may be able to save access time by requesting the blocks in the
order in which they will pass under the heads. If the desired blocks are on differ-
ent cylinders, it is advantageous to request the blocks in an order that minimizes
disk-arm movement. Disk-arm–scheduling algorithms attempt to order accesses to
tracks in a fashion that increases the number of accesses that can be processed.
A commonly used algorithm is the elevator algorithm, which works in the same
way many elevators do. Suppose that, initially, the arm is moving from the inner-
most track toward the outside of the disk. Under the elevator algorithm’s control,
for each track for which there is an access request, the arm stops at that track,
services requests for the track, and then continues moving outward until there are
no waiting requests for tracks farther out. At this point, the arm changes direction
and moves toward the inside, again stopping at each track for which there is a re-
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quest, until it reaches a track where there is no request for tracks farther toward
the center. Then, it reverses direction and starts a new cycle.

Disk controllers usually perform the task of reordering read requests to improve
performance, since they are intimately aware of the organization of blocks on disk,
of the rotational position of the disk platters, and of the position of the disk arm. To
enable such reordering, the disk controller interface must allow multiple requests
to be added to a queue; results may be returned in a different order from the request
order.

• File organization. To reduce block-access time, we can organize blocks on disk in a
way that corresponds closely to the way we expect data to be accessed. For exam-
ple, if we expect a file to be accessed sequentially, then we should ideally keep all
the blocks of the file sequentially on adjacent cylinders. Modern disks hide the ex-
act block location from the operating system but use a logical numbering of blocks
that gives consecutive numbers to blocks that are adjacent to each other. By allo-
cating consecutive blocks of a file to disk blocks that are consecutively numbered,
operating systems ensure that files are stored sequentially.

Storing a large file in a single long sequence of consecutive blocks poses chal-
lenges to disk block allocation; instead, operating systems allocate some number
of consecutive blocks (an extent) at a time to a file. Different extents allocated to
a file may not be adjacent to each other on disk. Sequential access to the file needs
one seek per extent, instead of one seek per block if blocks are randomly allocated;
with large enough extents, the cost of seeks relative to data transfer costs can be
minimized.

Over time, a sequential file that has multiple small appends may become frag-
mented; that is, its blocks become scattered all over the disk. To reduce fragmen-
tation, the system can make a backup copy of the data on disk and restore the
entire disk. The restore operation writes back the blocks of each file contiguously
(or nearly so). Some systems (such as different versions of the Windows operat-
ing system) have utilities that scan the disk and then move blocks to decrease the
fragmentation. The performance increases realized from these techniques can be
quite significant.

• Non-volatile write buffers. Since the contents of main memory are lost in a power
failure, information about database updates has to be recorded on disk to sur-
vive possible system crashes. For this reason, the performance of update-intensive
database applications, such as transaction-processing systems, is heavily depen-
dent on the latency of disk writes.

We can use non-volatile random-access memory (NVRAM) to speed up disk
writes. The contents of NVRAM are not lost in power failure. NVRAM was im-
plemented using battery-backed-up RAM in earlier days, but flash memory is cur-
rently the primary medium for non-volatile write buffering. The idea is that, when
the database system (or the operating system) requests that a block be written to
disk, the disk controller writes the block to a non-volatile write buffer and imme-
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diately notifies the operating system that the write completed successfully. The
controller can subsequently write the data to their destination on disk in a way
that minimizes disk arm movement, using the elevator algorithm, for example. If
such write reordering is done without using non-volatile write buffers, the database
state may become inconsistent in the event of a system crash; recovery algorithms
that we study later in Chapter 19 depend on writes being written in the specified
order. When the database system requests a block write, it notices a delay only if
the NVRAM buffer is full. On recovery from a system crash, any pending buffered
writes in the NVRAM are written back to the disk. NVRAM buffers are found in
certain high-end disks, but are more frequently found in RAID controllers.

In addition to the above low-level optimizations, optimizations to minimize random
accesses can be done at a higher level, by clever design of query processing algorithms.
We study efficient query processing techniques in Chapter 15.

12.7 Summary

• Several types of data storage exist in most computer systems. They are classified
by the speed with which they can access data, by their cost per unit of data to buy
the memory, and by their reliability. Among the media available are cache, main
memory, flash memory, magnetic disks, optical disks, and magnetic tapes.

• Magnetic disks are mechanical devices, and data access requires a read–write head
to move to the required cylinder, and the rotation of the platters must then bring
the required sector under the read–write head. Magnetic disks thus have a high
latency for data access.

• SSDs have a much lower latency for data access, and higher data transfer band-
width than magnetic disks. However, they also have a higher cost per byte than
magnetic disks.

• Disks are vulnerable to failure, which could result in loss of data stored on the
disk. We can reduce the likelihood of irretrievable data loss by retaining multiple
copies of data.

• Mirroring reduces the probability of data loss greatly. More sophisticated methods
based on redundant arrays of independent disks (RAID) offer further benefits.
By striping data across disks, these methods offer high throughput rates on large
accesses; by introducing redundancy across disks, they improve reliability greatly.

• Several different RAID organizations are possible, each with different cost, perfor-
mance, and reliability characteristics. RAID level 1 (mirroring) and RAID level 5
are the most commonly used.

• Several techniques have been developed to optimize disk block access, such as read
ahead, buffering, disk arm scheduling, prefetching, and non-volatile write buffers.



Review Terms 581

Review Terms

• Physical storage media

° Cache

° Main memory

° Flash memory

° Magnetic disk

° Optical storage

° Tape storage

• Volatile storage

• Non-volatile storage

• Sequential-access

• Direct-access

• Storage interfaces

° Serial ATA (SATA)

° Serial Attached SCSI (SAS)

° Non-Volatile Memory Express
(NVMe)

° Storage area network (SAN)

° Network attached storage (NAS)

• Magnetic disk

° Platter

° Hard disks

° Tracks

° Sectors

° Read–write head

° Disk arm

° Cylinder

° Disk controller

° Checksums

° Remapping of bad sectors

• Disk block

• Performance measures of disks

° Access time

° Seek time

° Latency time

° I/O operations per second (IOPS)

° Rotational latency

° Data-transfer rate

° Mean time to failure (MTTF)

• Flash Storage

° Erase Block

° Wear leveling

° Flash translation table

° Flash Translation Layer

• Storage class memory

° 3D-XPoint

• Redundant arrays of independent
disks (RAID)

° Mirroring

° Data striping

° Bit-level striping

° Block-level striping

• RAID levels

° Level 0 (block striping,
no redundancy)

° Level 1 (block striping,
mirroring)

° Level 5 (block striping,
distributed parity)
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° Level 6 (block striping,
P + Q redundancy)

• Rebuild performance

• Software RAID

• Hardware RAID

• Hot swapping

• Optimization of disk-block access

° Disk-arm scheduling

° Elevator algorithm

° File organization

° Defragmenting

° Non-volatile write buffers

° Log disk

Practice Exercises

12.1 SSDs can be used as a storage layer between memory and magnetic disks, with
some parts of the database (e.g., some relations) stored on SSDs and the rest
on magnetic disks. Alternatively, SSDs can be used as a buffer or cache for
magnetic disks; frequently used blocks would reside on the SSD layer, while
infrequently used blocks would reside on magnetic disk.

a. Which of the two alternatives would you choose if you need to support
real-time queries that must be answered within a guaranteed short period
of time? Explain why.

b. Which of the two alternatives would you choose if you had a very large
customer relation, where only some disk blocks of the relation are ac-
cessed frequently, with other blocks rarely accessed.

12.2 Some databases use magnetic disks in a way that only sectors in outer tracks are
used, while sectors in inner tracks are left unused. What might be the benefits
of doing so?

12.3 Flash storage:

a. How is the flash translation table, which is used to map logical page
numbers to physical page numbers, created in memory?

b. Suppose you have a 64-gigabyte flash storage system, with a 4096-byte
page size. How big would the flash translation table be, assuming each
page has a 32-bit address, and the table is stored as an array?

c. Suggest how to reduce the size of the translation table if very often long
ranges of consecutive logical page numbers are mapped to consecutive
physical page numbers.

12.4 Consider the following data and parity-block arrangement on four disks:
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Disk 1 Disk 2 Disk 3 Disk 4

B1

P1

B8…

B2

B5

P2…

B3

B6

B9…

B4

B7

B10…

The Bis represent data blocks; the Pis represent parity blocks. Parity block Pi
is the parity block for data blocks B4i−3 to B4i. What, if any, problem might this
arrangement present?

12.5 A database administrator can choose how many disks are organized into a
single RAID 5 array. What are the trade-offs between having fewer disks ver-
sus more disks, in terms of cost, reliability, performance during failure, and
performance during rebuild?

12.6 A power failure that occurs while a disk block is being written could result in
the block being only partially written. Assume that partially written blocks can
be detected. An atomic block write is one where either the disk block is fully
written or nothing is written (i.e., there are no partial writes). Suggest schemes
for getting the effect of atomic block writes with the following RAID schemes.
Your schemes should involve work on recovery from failure.

a. RAID level 1 (mirroring)

b. RAID level 5 (block interleaved, distributed parity)

12.7 Storing all blocks of a large file on consecutive disk blocks would minimize
seeks during sequential file reads. Why is it impractical to do so? What do op-
erating systems do instead, to minimize the number of seeks during sequential
reads?

Exercises

12.8 List the physical storage media available on the computers you use routinely.
Give the speed with which data can be accessed on each medium.

12.9 How does the remapping of bad sectors by disk controllers affect data-retrieval
rates?

12.10 Operating systems try to ensure that consecutive blocks of a file are stored on
consecutive disk blocks. Why is doing so very important with magnetic disks?
If SSDs were used instead, is doing so still important, or is it irrelevant? Explain
why.
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12.11 RAID systems typically allow you to replace failed disks without stopping ac-
cess to the system. Thus, the data in the failed disk must be rebuilt and written
to the replacement disk while the system is in operation. Which of the RAID
levels yields the least amount of interference between the rebuild and ongoing
disk accesses? Explain your answer.

12.12 What is scrubbing, in the context of RAID systems, and why is scrubbing im-
portant?

12.13 Suppose you have data that should not be lost on disk failure, and the applica-
tion is write-intensive. How would you store the data?

Further Reading

[Hennessy et al. (2017)] is a popular textbook on computer architecture, which in-
cludes coverage of cache and memory organization.

The specifications of current-generation magnetic disk drives can be obtained from
the web sites of their manufacturers, such as Hitachi, Seagate, Maxtor, and Western
Digital. The specifications of current-generation SSDs can be obtained from the web
sites of their manufacturers, such as Crucial, Intel, Micron, Samsung, SanDisk, Toshiba
and Western Digital.

[Patterson et al. (1988)] provided early coverage of RAID levels and helped stan-
dardize the terminology. [Chen et al. (1994)] presents a survey of RAID principles and
implementation.

A comprehensive coverage of RAID levels supported by most modern RAID sys-
tems, including the nested RAID levels, 10, 50 and 60, which combine RAID levels 1,
5 and 6 with striping as in RAID level 0, can be found in the “Introduction to RAID”
chapter of [Cisco (2018)]. Reed-Solomon codes are covered in [Pless (1998)].
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CHAP T E R 13
Data Storage Structures

In Chapter 12 we studied the characteristics of physical storage media, focusing on
magnetic disks and SSDs, and saw how to build fast and reliable storage systems using
multiple disks in a RAID structure. In this chapter, we focus on the organization of data
stored on the underlying storage media, and how data are accessed.

13.1 Database Storage Architecture

Persistent data are stored on non-volatile storage, which, as we saw in Chapter 12, is
typically magnetic disk or SSD. Magnetic disks as well as SSDs are block structured
devices, that is, data are read or written in units of a block. In contrast, databases deal
with records, which are usually much smaller than a block (although in some cases
records may have attributes that are very large).

Most databases use operating system files as an intermediate layer for storing
records, which abstract away some details of the underlying blocks. However, to en-
sure efficient access, as well as to support recovery from failures (as we will see later in
Chapter 19), databases must continue to be aware of blocks. Thus, in Section 13.2, we
study how individual records are stored in files, taking block structure into account.

Given a set of records, the next decision lies in how to organize them in the file
structure; for example, they may stored in sorted order, in the order they are created,
or in an arbitrary order. Section 13.3 studies several alternative file organizations.

Section 13.4 then describes how databases organize data about the relational
schemas as well as storage organization, in the data dictionary. Information in the
data dictionary is crucial for many tasks, for example, to locate and retrieve records of
a relation when given the name of the relation.

For a CPU to access data, it must be in main memory, whereas persistent data must
be resident on non-volatile storage such as magnetic disks or SSDs. For databases that
are larger than main memory, which is the usual case, data must be fetched from non-
volatile storage and saved back if it is updated. Section 13.5 describes how databases
use a region of memory called the database buffer to store blocks that are fetched from
non-volatile storage.

587
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An approach to storing data based on storing all values of a particular column
together, rather than storing all attributes of a particular row together, has been found to
work very well for analytical query processing. This idea, called column-oriented storage,
is discussed in Section 13.6.

Some applications need very fast access to data and have small enough data sizes
that the entire database can fit into the main memory of a database server machine.
In such cases, we can keep a copy of the entire database in memory.1 Databases that
store the entire database in memory and optimize in-memory data structures as well as
query processing and other algorithms used by the database to exploit the memory resi-
dency of data are called main-memory databases. Storage organization in main-memory
databases is discussed in Section 13.7. We note that non-volatile memory that allows
direct access to individual bytes or cache lines, called storage class memory, is under
development. Main-memory database architectures can be further optimized for such
storage.

13.2 File Organization

A database is mapped into a number of different files that are maintained by the un-
derlying operating system. These files reside permanently on disks. A file is organized
logically as a sequence of records. These records are mapped onto disk blocks. Files are
provided as a basic construct in operating systems, so we shall assume the existence of
an underlying file system. We need to consider ways of representing logical data models
in terms of files.

Each file is also logically partitioned into fixed-length storage units called blocks,
which are the units of both storage allocation and data transfer. Most databases use
block sizes of 4 to 8 kilobytes by default, but many databases allow the block size to be
specified when a database instance is created. Larger block sizes can be useful in some
database applications.

A block may contain several records; the exact set of records that a block contains
is determined by the form of physical data organization being used. We shall assume
that no record is larger than a block. This assumption is realistic for most data-processing
applications, such as our university example. There are certainly several kinds of large
data items, such as images, that can be significantly larger than a block. We briefly
discuss how to handle such large data items in Section 13.2.2, by storing large data
items separately, and storing a pointer to the data item in the record.

In addition, we shall require that each record is entirely contained in a single block;
that is, no record is contained partly in one block, and partly in another. This restriction
simplifies and speeds up access to data items.

1To be safe, not only should the current database fit in memory, but there should be a reasonable certainty that the
database will continue to fit in memory in the medium term future, despite potential growth of the organization.
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In a relational database, tuples of distinct relations are generally of different sizes.
One approach to mapping the database to files is to use several files and to store records
of only one fixed length in any given file. An alternative is to structure our files so
that we can accommodate multiple lengths for records; however, files of fixed-length
records are easier to implement than are files of variable-length records. Many of the
techniques used for the former can be applied to the variable-length case. Thus, we
begin by considering a file of fixed-length records and consider storage of variable-
length records later.

13.2.1 Fixed-Length Records

As an example, let us consider a file of instructor records for our university database.
Each record of this file is defined (in pseudocode) as:

type instructor = record
ID varchar (5);
name varchar(20);
dept name varchar (20);
salary numeric (8,2);

end

Assume that each character occupies 1 byte and that numeric (8,2) occupies 8
bytes. Suppose that instead of allocating a variable amount of bytes for the attributes
ID, name, and dept name, we allocate the maximum number of bytes that each attribute
can hold. Then, the instructor record is 53 bytes long. A simple approach is to use the
first 53 bytes for the first record, the next 53 bytes for the second record, and so on
(Figure 13.1).

Srinivasan Comp. Sci. 65000
Wu Finance 90000
Mozart Music 40000
Einstein Physics 95000
El Said History 60000
Gold Physics 87000
Katz Comp. Sci. 75000
Califieri History 62000
Singh Finance 80000
Crick Biology 72000
Brandt Comp. Sci. 92000

15151

10101
12121

22222
32343
33456
45565
58583
76543
76766
83821
98345 Kim Elec. Eng. 80000

record 0

record 1
record 2
record 3
record 4
record 5
record 6
record 7
record 8
record 9
record 10
record 11

Figure 13.1 File containing instructor records.
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Srinivasan Comp. Sci. 65000

Wu Finance 90000

Mozart Music 40000

El Said History 60000

Gold Physics 87000

Katz Comp. Sci. 75000

Califieri History 62000

Singh Finance 80000

Crick Biology 72000

Brandt Comp. Sci. 92000

15151

10101
12121

32343
33456
45565
58583
76543
76766
83821
98345 Kim Elec. Eng. 80000

record 0
record 1
record 2
record 4
record 5
record 6
record 7
record 8
record 9
record 10
record 11

Figure 13.2 File of Figure 13.1, with record 3 deleted and all records moved.

However, there are two problems with this simple approach:

1. Unless the block size happens to be a multiple of 53 (which is unlikely), some
records will cross block boundaries. That is, part of the record will be stored in
one block and part in another. It would thus require two block accesses to read
or write such a record.

2. It is difficult to delete a record from this structure. The space occupied by the
record to be deleted must be filled with some other record of the file, or we must
have a way of marking deleted records so that they can be ignored.

To avoid the first problem, we allocate only as many records to a block as would fit
entirely in the block (this number can be computed easily by dividing the block size by
the record size, and discarding the fractional part). Any remaining bytes of each block
are left unused.

When a record is deleted, we could move the record that comes after it into the
space formerly occupied by the deleted record, and so on, until every record following
the deleted record has been moved ahead (Figure 13.2). Such an approach requires
moving a large number of records. It might be easier simply to move the final record
of the file into the space occupied by the deleted record (Figure 13.3).

It is undesirable to move records to occupy the space freed by a deleted record,
since doing so requires additional block accesses. Since insertions tend to be more
frequent than deletions, it is acceptable to leave open the space occupied by the deleted
record and to wait for a subsequent insertion before reusing the space. A simple marker
on a deleted record is not sufficient, since it is hard to find this available space when
an insertion is being done. Thus, we need to introduce an additional structure.

At the beginning of the file, we allocate a certain number of bytes as a file header.
The header will contain a variety of information about the file. For now, all we need
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Srinivasan Comp. Sci. 65000
Wu Finance 90000
Mozart Music 40000

El Said History 60000
Gold Physics 87000
Katz Comp. Sci. 75000
Califieri History 62000
Singh Finance 80000
Crick Biology 72000
Brandt Comp. Sci. 92000

15151

10101
12121

32343
33456
45565
58583
76543
76766
83821

record 0
record 1
record 2

record 4
record 5
record 6
record 7
record 8
record 9
record 10

98345 Kim Elec. Eng. 80000record 11

Figure 13.3 File of Figure 13.1, with record 3 deleted and final record moved.

to store there is the address of the first record whose contents are deleted. We use this
first record to store the address of the second available record, and so on. Intuitively,
we can think of these stored addresses as pointers, since they point to the location of a
record. The deleted records thus form a linked list, which is often referred to as a free
list. Figure 13.4 shows the file of Figure 13.1, with the free list, after records 1, 4, and
6 have been deleted.

On insertion of a new record, we use the record pointed to by the header. We
change the header pointer to point to the next available record. If no space is available,
we add the new record to the end of the file.

header

record 0

record 1

record 2

record 3

record 4

record 5

record 6

record 7

record 8

record 9

record 10

record 11

72000

92000

80000

65000

40000

95000

87000

62000

76766

83821

98345

10101

15151

22222

33456

58583

76543

Crick

Brandt

Kim

Srinivasan

Mozart

Einstein

Gold

Califieri

Singh

Biology

Elec. Eng.

Comp. Sci.

Comp. Sci.

Music

Physics

Physics

History

Finance 80000

Figure 13.4 File of Figure 13.1, with free list after deletion of records 1, 4, and 6.
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Insertion and deletion for files of fixed-length records are simple to implement
because the space made available by a deleted record is exactly the space needed to
insert a record. If we allow records of variable-length in a file, this match no longer
holds. An inserted record may not fit in the space left free by a deleted record, or it
may fill only part of that space.

13.2.2 Variable-Length Records

Variable-length records arise in database systems due to several reasons. The most com-
mon reason is the presence of variable length fields, such as strings. Other reasons
include record types that contain repeating fields such as arrays or multisets, and the
presence of multiple record types within a file.

Different techniques for implementing variable-length records exist. Two different
problems must be solved by any such technique:

1. How to represent a single record in such a way that individual attributes can be
extracted easily, even if they are of variable length

2. How to store variable-length records within a block, such that records in a block
can be extracted easily

The representation of a record with variable-length attributes typically has two
parts: an initial part with fixed-length information, whose structure is the same for
all records of the same relation, followed by the contents of variable-length attributes.
Fixed-length attributes, such as numeric values, dates, or fixed-length character strings
are allocated as many bytes as required to store their value. Variable-length attributes,
such as varchar types, are represented in the initial part of the record by a pair (off-
set, length), where offset denotes where the data for that attribute begins within the
record, and length is the length in bytes of the variable-sized attribute. The values for
the variable-length attributes are stored consecutively, after the initial fixed-length part
of the record. Thus, the initial part of the record stores a fixed size of information about
each attribute, whether it is fixed-length or variable-length.

An example of such a record representation is shown in Figure 13.5. The figure
shows an instructor record whose first three attributes ID, name, and dept name are
variable-length strings, and whose fourth attribute salary is a fixed-sized number. We
assume that the offset and length values are stored in two bytes each, for a total of 4

21, 5 26, 10 36, 10 65000 10101 Srinivasan Comp. Sci.

Bytes 0 4 8 12 20 21 26 36 45

0000
Null bitmap (stored in 1 byte)

Figure 13.5 Representation of a variable-length record of the instructor relation.
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# EntriesSize
Location

Block Header Records

Free Space

End of Free Space

Figure 13.6 Slotted-page structure.

bytes per attribute. The salary attribute is assumed to be stored in 8 bytes, and each
string takes as many bytes as it has characters.

The figure also illustrates the use of a null bitmap, which indicates which attributes
of the record have a null value. In this particular record, if the salary were null, the
fourth bit of the bitmap would be set to 1, and the salary value stored in bytes 12
through 19 would be ignored. Since the record has four attributes, the null bitmap for
this record fits in 1 byte, although more bytes may be required with more attributes. In
some representations, the null bitmap is stored at the beginning of the record, and for
attributes that are null, no data (value, or offset/length) are stored at all. Such a repre-
sentation would save some storage space, at the cost of extra work to extract attributes
of the record. This representation is particularly useful for certain applications where
records have a large number of fields, most of which are null.

We next address the problem of storing variable-length records in a block. The
slotted-page structure is commonly used for organizing records within a block and is
shown in Figure 13.6.2 There is a header at the beginning of each block, containing the
following information:

• The number of record entries in the header

• The end of free space in the block

• An array whose entries contain the location and size of each record

The actual records are allocated contiguously in the block, starting from the end
of the block. The free space in the block is contiguous between the final entry in the
header array and the first record. If a record is inserted, space is allocated for it at the
end of free space, and an entry containing its size and location is added to the header.

If a record is deleted, the space that it occupies is freed, and its entry is set to deleted
(its size is set to −1, for example). Further, the records in the block before the deleted
record are moved, so that the free space created by the deletion gets occupied, and all

2Here, “page” is synonymous with “block.”
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free space is again between the final entry in the header array and the first record. The
end-of-free-space pointer in the header is appropriately updated as well. Records can
be grown or shrunk by similar techniques, as long as there is space in the block. The
cost of moving the records is not too high, since the size of a block is limited: typical
values are around 4 to 8 kilobytes.

The slotted-page structure requires that there be no pointers that point directly to
records. Instead, pointers must point to the entry in the header that contains the actual
location of the record. This level of indirection allows records to be moved to prevent
fragmentation of space inside a block, while supporting indirect pointers to the record.

13.2.3 Storing Large Objects

Databases often store data that can be much larger than a disk block. For instance, an
image or an audio recording may be multiple megabytes in size, while a video object
may be multiple gigabytes in size. Recall that SQL supports the types blob and clob,
which store binary and character large objects.

Many databases internally restrict the size of a record to be no larger than the size
of a block.3 These databases allow records to logically contain large objects, but they
store the large objects separate from the other (short) attributes of records in which
they occur. A (logical) pointer to the object is then stored in the record containing the
large object.

Large objects may be stored either as files in a file system area managed by the
database, or as file structures stored in and managed by the database. In the latter case,
such in-database large objects can optionally be represented using B+-tree file organiza-
tions, which we study in Section 14.4.1, to allow efficient access to any location within
the object. B+-tree file organizations permit us to read an entire object, or specified byte
ranges in the object, as well as to insert and delete parts of the object.

However, there are some performance issues with storing very large objects in
databases. The efficiency of accessing large objects via database interfaces is one con-
cern. A second concern is the size of database backups. Many enterprises periodically
create “database dumps,” that is, backup copies of their databases; storing large objects
in the database can result in a large increase in the size of the database dumps.

Many applications therefore choose to store very large objects, such as video data,
outside of the database, in a file system. In such cases, the application may store the
file name (usually a path in the file system) as an attribute of a record in the database.
Storing data in files outside the database can result in file names in the database point-
ing to files that do not exist, perhaps because they have been deleted, which results in
a form of foreign-key constraint violation. Further, database authorization controls are
not applicable to data stored in the file system.

3This restriction helps simplify buffer management; as we see in Section 13.5, disk blocks are brought into an area of
memory called the buffer before they are accessed. Records larger than a block would get split between blocks, which
may be different areas of the buffer, and thus cannot be guaranteed to be in a contiguous area of memory.
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Some databases support file system integration with the database, to ensure that
constraints are satisfied (for example, deletion of files will be blocked if the database
has a pointer to the file), and to ensure that access authorizations are enforced. Files
can be accessed both from a file system interface and from the database SQL interface.
For example, Oracle supports such integration through its SecureFiles and Database
File System features.

13.3 Organization of Records in Files

So far, we have studied how records are represented in a file structure. A relation is a
set of records. Given a set of records, the next question is how to organize them in a
file. Several of the possible ways of organizing records in files are:

• Heap file organization. Any record can be placed anywhere in the file where there
is space for the record. There is no ordering of records. Typically, there is either a
single file or a set of files for each relation. Heap file organization is discussed in
Section 13.3.1.

• Sequential file organization. Records are stored in sequential order, according to
the value of a “search key” of each record. Section 13.3.2 describes this organiza-
tion.

• Multitable clustering file organization: Generally, a separate file or set of files is
used to store the records of each relation. However, in a multitable clustering file
organization, records of several different relations are stored in the same file, and
in fact in the same block within a file, to reduce the cost of certain join operations.
Section 13.3.3 describes the multitable clustering file organization.

• B+-tree file organization. The traditional sequential file organization described in
Section 13.3.2 does support ordered access even if there are insert, delete, and
update operations, which may change the ordering of records. However, in the
face of a large number of such operations, efficiency of ordered access suffers.
We study another way of organizing records, called the B+-tree file organization, in
Section 14.4.1. The B+-tree file organization is related to the B+-tree index structure
described in that chapter and can provide efficient ordered access to records even if
there are a large number of insert, delete, or update operations. Further, it supports
very efficient access to specific records, based on the search key.

• Hashing file organization. A hash function is computed on some attribute of each
record. The result of the hash function specifies in which block of the file the record
should be placed. Section 14.5 describes this organization; it is closely related to
the indexing structures described in that chapter.
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13.3.1 Heap File Organization

In a heap file organization, a record may be stored anywhere in the file corresponding
to a relation. Once placed in a particular location, the record is not usually moved.4

When a record is inserted in a file, one option for choosing the location is to always
add it at the end of the file. However, if records get deleted, it makes sense to use the
space thus freed up to store new records. It is important for a database system to be
able to efficiently find blocks that have free space, without having to sequentially search
through all the blocks of the file.

Most databases use a space-efficient data structure called a free-space map to track
which blocks have free space to store records. The free-space map is commonly repre-
sented by an array containing 1 entry for each block in the relation. Each entry rep-
resents a fraction f such that at least a fraction f of the space in the block is free. In
PostgreSQL, for example, an entry is 1 byte, and the value stored in the entry must
be divided by 256 to get the free-space fraction. The array is stored in a file, whose
blocks are fetched into memory, 5 as required. Whenever a record is inserted, deleted,
or changed in size, if the occupancy fraction changes enough to affect the entry value,
the entry is updated in the free-space map. An example of a free-space map for a file
with 16 blocks is shown below. We assume that 3 bits are used to store the occupancy
fraction; the value at position i should be divided by 8 to get the free-space fraction for
block i.

4 2 1 4 7 3 6 5 1 2 0 1 1 0 5 6

For example, a value of 7 indicates that at least 7∕8th of the space in the block is free.
To find a block to store a new record of a given size, the database can scan the

free-space map to find a block that has enough free space to store that record. If there
is no such block, a new block is allocated for the relation.

While such a scan is much faster than actually fetching blocks to find free space,
it can still be very slow for large files. To further speed up the task of locating a block
with sufficient free space, we can create a second-level free-space map, which has, say 1
entry for every 100 entries of the main free-space map. That 1 entry stores the maximum
value amongst the 100 entries in the main free-space map that it corresponds to. The
free-space map below is a second level free-space map for our earlier example, with 1
entry for every 4 entries in the main free-space map.

4 7 2 6

4Records may be occasionally moved, for example, if the database sorts the records of the relation; but note that even
if the relation is reordered by sorting, subsequent insertions and updates may result in the records no longer being
ordered.
5Via the database buffer, which we discuss in Section 13.5.
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With 1 entry for every 100 entries in the main free-space map, a scan of the second-
level free space map would take only 1/100th of the time to scan the main free-space
map; once a suitable entry indicating enough free space is found there, its correspond-
ing 100 entries in the main free-space map can be examined to find a block with suffi-
cient free space. Such a block must exist, since the second-level free-space map entry
stores the maximum of the entries in the main free-space map. To deal with very large
relations, we can create more levels beyond the second level, using the same idea.

Writing the free-space map to disk every time an entry in the map is updated would
be very expensive. Instead, the free-space map is written periodically; as a result, the
free-space map on disk may be outdated, and when a database starts up, it may get
outdated data about available free space. The free-space map may, as a result, claim a
block has free space when it does not; such an error will be detected when the block is
fetched, and can be dealt with by a further search in the free-space map to find another
block. On the other hand, the free-space map may claim that a block does not have free
space when it does; generally this will not result in any problem other than unused free
space. To fix any such errors, the relation is scanned periodically and the free-space
map recomputed and written to disk.

13.3.2 Sequential File Organization

A sequential file is designed for efficient processing of records in sorted order based on
some search key. A search key is any attribute or set of attributes; it need not be the
primary key, or even a superkey. To permit fast retrieval of records in search-key order,
we chain together records by pointers. The pointer in each record points to the next
record in search-key order. Furthermore, to minimize the number of block accesses in
sequential file processing, we store records physically in search-key order, or as close
to search-key order as possible.

Figure 13.7 shows a sequential file of instructor records taken from our university
example. In that example, the records are stored in search-key order, using ID as the
search key.

The sequential file organization allows records to be read in sorted order; that can
be useful for display purposes, as well as for certain query-processing algorithms that
we shall study in Chapter 15.

It is difficult, however, to maintain physical sequential order as records are inserted
and deleted, since it is costly to move many records as a result of a single insertion or
deletion. We can manage deletion by using pointer chains, as we saw previously. For
insertion, we apply the following two rules:

1. Locate the record in the file that comes before the record to be inserted in search-
key order.

2. If there is a free record (i.e., space left after a deletion) within the same block
as this record, insert the new record there. Otherwise, insert the new record in
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10101 Srinivasan

45565 Katz
58583 Califieri
76543 Singh
76766 Crick
83821 Brandt
98345 Kim

12121 Wu
15151 Mozart
22222 Einstein
32343 El Said
33456 Gold

Comp. Sci.

Comp. Sci.

Comp. Sci.
History
Finance
Biology

Elec. Eng.

Finance
Music
Physics
History
Physics

65000

75000
62000
80000
72000
92000
80000

90000
40000
95000
60000
87000

Figure 13.7 Sequential file for instructor records.

an overflow block. In either case, adjust the pointers so as to chain together the
records in search-key order.

Figure 13.8 shows the file of Figure 13.7 after the insertion of the record (32222,
Verdi, Music, 48000). The structure in Figure 13.8 allows fast insertion of new records,
but it forces sequential file-processing applications to process records in an order that
does not match the physical order of the records.

If relatively few records need to be stored in overflow blocks, this approach works
well. Eventually, however, the correspondence between search-key order and physical
order may be totally lost over a period of time, in which case sequential processing will
become much less efficient. At this point, the file should be reorganized so that it is once
again physically in sequential order. Such reorganizations are costly and must be done
during times when the system load is low. The frequency with which reorganizations
are needed depends on the frequency of insertion of new records. In the extreme case
in which insertions rarely occur, it is possible always to keep the file in physically sorted
order. In such a case, the pointer field in Figure 13.7 is not needed.

The B+-tree file organization, which we describe in Section 14.4.1, provides efficient
ordered access even if there are many inserts, deletes, and updates, without requiring
expensive reorganizations.

13.3.3 Multitable Clustering File Organization

Most relational database systems store each relation in a separate file, or a separate set
of files. Thus, each file, and as a result, each block, stores records of only one relation,
in such a design.
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Figure 13.8 Sequential file after an insertion.

However, in some cases it can be useful to store records of more than one relation
in a single block. To see the advantage of storing records of multiple relations in one
block, consider the following SQL query for the university database:

select dept name, building, budget, ID, name, salary
from department natural join instructor;

This query computes a join of the department and instructor relations. Thus, for each
tuple of department, the system must locate the instructor tuples with the same value
for dept name. Ideally, these records will be located with the help of indices, which we
shall discuss in Chapter 14. Regardless of how these records are located, however, they
need to be transferred from disk into main memory. In the worst case, each record will
reside on a different block, forcing us to do one block read for each record required by
the query.

As a concrete example, consider the department and instructor relations of Figure
13.9 and Figure 13.10, respectively (for brevity, we include only a subset of the tuples

dept name building budget

Comp. Sci. Taylor 100000
Physics Watson 70000

Figure 13.9 The department relation.
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ID name dept name salary

10101 Srinivasan Comp. Sci. 65000
33456 Gold Physics 87000
45565 Katz Comp. Sci. 75000
83821 Brandt Comp. Sci. 92000

Figure 13.10 The instructor relation.

of the relations we have used thus far). In Figure 13.11, we show a file structure de-
signed for the efficient execution of queries involving the natural join of department
and instructor. All the instructor tuples for a particular dept name are stored near the
department tuple for that dept name. We say that the two relations are clustered on the
key dept name. We assume that each record contains the identifier of the relation to
which it belongs, although this is not shown in Figure 13.11.

Although not depicted in the figure, it is possible to store the value of the dept
name attribute, which defines the clustering, only once for a group of tuples (from

both relations), reducing storage overhead.
This structure allows for efficient processing of the join. When a tuple of the de-

partment relation is read, the entire block containing that tuple is copied from disk into
main memory. Since the corresponding instructor tuples are stored on the disk near the
department tuple, the block containing the department tuple contains tuples of the in-
structor relation needed to process the query. If a department has so many instructors
that the instructor records do not fit in one block, the remaining records appear on
nearby blocks.

A multitable clustering file organization is a file organization, such as that illustrated
in Figure 13.11, that stores related records of two or more relations in each block.6

The cluster key is the attribute that defines which records are stored together; in our
preceding example, the cluster key is dept name.

Comp. Sci. Taylor 100000
10101 Srinivasan Comp. Sci. 65000
45565 Katz Comp. Sci. 75000
83821 Brandt Comp. Sci. 92000
Physics Watson 70000
33456 Gold Physics 87000

Figure 13.11 Multitable clustering file structure.

6Note that the word cluster is often used to refer to a group of machines that together constitute a parallel database;
that use of the word cluster is unrelated to the concept of multitable clustering.
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Although a multitable clustering file organization can speed up certain join queries,
it can result in slowing processing of other types of queries. For example, in our pre-
ceding example,

select *
from department;

requires more block accesses than it did in the scheme under which we stored each
relation in a separate file, since each block now contains significantly fewer department
records. To locate efficiently all tuples of the department relation within a particular
block, we can chain together all the records of that relation using pointers; however,
the number of blocks read does not get affected by using such chains.

When multitable clustering is to be used depends on the types of queries that the
database designer believes to be most frequent. Careful use of multitable clustering can
produce significant performance gains in query processing.

Multitable clustering is supported by the Oracle database system. Clusters can be
created by using a create cluster command, with a specified cluster key. An extension
of the create table command can be used to specify that a relation is to be stored in
a specific cluster, with a particular attribute used as the cluster key. Multiple relations
can thus be allocated to a cluster.

13.3.4 Partitioning

Many databases allow the records in a relation to be partitioned into smaller relations
that are stored separately. Such table partitioning is typically done on the basis of an
attribute value; for example, records in a transaction relation in an accounting database
may be partitioned by year into smaller relations corresponding to each year, such as
transaction 2018, transaction 2019, and so on. Queries can be written based on the trans-
action relation but are translated into queries on the year-wise relations. Most accesses
are to records of the current year and include a selection based on the year. Query op-
timizers can rewrite such a query to only access the smaller relation corresponding to
the requested year, and they can avoid reading records corresponding to other years.
For example, a query

select *
from transaction
where year=2019

would only access the relation transaction 2019, ignoring the other relations, while a
query without the selection condition would read all the relations.

The cost of some operations, such as finding free space for a record, increase with
relation size; by reducing the size of each relation, partitioning helps reduce such over-
heads. Partitioning can also be used to store different parts of a relation on different
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storage devices; for example, in the year 2019, transaction 2018 and earlier year trans-
actions can which are infrequently accessed could be stored on magnetic disk, while
transaction 2019 could be stored on SSD, for faster access.

13.4 Data-Dictionary Storage

So far, we have considered only the representation of the relations themselves. A rela-
tional database system needs to maintain data about the relations, such as the schema
of the relations. In general, such “data about data” are referred to as metadata.

Relational schemas and other metadata about relations are stored in a structure
called the data dictionary or system catalog. Among the types of information that the
system must store are these:

• Names of the relations

• Names of the attributes of each relation

• Domains and lengths of attributes

• Names of views defined on the database, and definitions of those views

• Integrity constraints (e.g., key constraints)

In addition, many systems keep the following data on users of the system:

• Names of users, the default schemas of the users, and passwords or other informa-
tion to authenticate users

• Information about authorizations for each user

Further, the database may store statistical and descriptive data about the relations and
attributes, such as the number of tuples in each relation, or the number of distinct
values for each attribute.

The data dictionary may also note the storage organization (heap, sequential, hash,
etc.) of relations, and the location where each relation is stored:

• If relations are stored in operating system files, the dictionary would note the
names of the file (or files) containing each relation.

• If the database stores all relations in a single file, the dictionary may note the blocks
containing records of each relation in a data structure such as a linked list.

In Chapter 14, in which we study indices, we shall see a need to store information about
each index on each of the relations:

• Name of the index
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• Name of the relation being indexed

• Attributes on which the index is defined

• Type of index formed

All this metadata information constitutes, in effect, a miniature database. Some
database systems store such metadata by using special-purpose data structures and
code. It is generally preferable to store the data about the database as relations in the
database itself. By using database relations to store system metadata, we simplify the
overall structure of the system and harness the full power of the database for fast access
to system data.

The exact choice of how to represent system metadata by relations must be made
by the system designers. We show the schema diagram of a toy data dictionary in Figure
13.12, storing part of the information mentioned above. The schema is only illustrative;
real implementations store far more information than what the figure shows. Read the
manuals for whichever database you use to see what system metadata it maintains.

In the metadata representation shown, the attribute index attributes of the relation
Index metadata is assumed to contain a list of one or more attributes, which can be
represented by a character string such as “dept name, building”. The Index metadata
relation is thus not in first normal form; it can be normalized, but the preceding repre-
sentation is likely to be more efficient to access. The data dictionary is often stored in
a nonnormalized form to achieve fast access.

Relation_metadata

relation name
number_of_attributes
storage_organization
location

Index_metadata

index_name
relation name
index_type
index_attributes

View_metadata

view_name
definition

Attribute_metadata

relation name
attribute_name
domain_type
position
length

User_metadata

user name
encrypted_password
group

Figure 13.12 Relational schema representing part of the system metadata.
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Whenever the database system needs to retrieve records from a relation, it must
first consult the Relation metadata relation to find the location and storage organization
of the relation, and then fetch records using this information.

However, the storage organization and location of the Relation metadata relation
itself must be recorded elsewhere (e.g., in the database code itself, or in a fixed loca-
tion in the database), since we need this information to find the contents of Relation
metadata.

Since system metadata are frequently accessed, most databases read it from the
database into in-memory data structures that can be accessed very efficiently. This is
done as part of the database startup, before the database starts processing any queries.

13.5 Database Buffer

The size of main memory on servers has increased greatly over the years, and many
medium-sized databases can fit in memory. However, a server has many demands on
its memory, and the amount of memory it can give to a database may be much smaller
than the database size even for medium-sized databases. And many large databases are
much larger than the available memory on servers.

Thus, even today, database data reside primarily on disk in most databases, and
they must be brought into memory to be read or updated; updated data blocks must be
written back to disk subsequently.

Since data access from disk is much slower than in-memory data access, a major
goal of the database system is to minimize the number of block transfers between the
disk and memory. One way to reduce the number of disk accesses is to keep as many
blocks as possible in main memory. The goal is to maximize the chance that, when a
block is accessed, it is already in main memory, and, thus, no disk access is required.

Since it is not possible to keep all blocks in main memory, we need to manage the
allocation of the space available in main memory for the storage of blocks. The buffer
is that part of main memory available for storage of copies of disk blocks. There is
always a copy kept on disk of every block, but the copy on disk may be a version of the
block older than the version in the buffer. The subsystem responsible for the allocation
of buffer space is called the buffer manager.

13.5.1 Buffer Manager

Programs in a database system make requests (i.e., calls) on the buffer manager when
they need a block from disk. If the block is already in the buffer, the buffer manager
passes the address of the block in main memory to the requester. If the block is not in
the buffer, the buffer manager first allocates space in the buffer for the block, throwing
out some other block, if necessary, to make space for the new block. The thrown-out
block is written back to disk only if it has been modified since the most recent time
that it was written to the disk. Then, the buffer manager reads in the requested block
from the disk to the buffer, and passes the address of the block in main memory to the



13.5 Database Buffer 605

requester. The internal actions of the buffer manager are transparent to the programs
that issue disk-block requests.

If you are familiar with operating-system concepts, you will note that the buffer
manager appears to be nothing more than a virtual-memory manager, like those found
in most operating systems. One difference is that the size of the database might be
larger than the hardware address space of a machine, so memory addresses are not
sufficient to address all disk blocks. Further, to serve the database system well, the
buffer manager must use techniques more sophisticated than typical virtual-memory
management schemes:

13.5.1.1 Buffer replacement strategy

When there is no room left in the buffer, a block must be evicted, that is, removed, from
the buffer before a new one can be read in. Most operating systems use a least recently
used (LRU) scheme, in which the block that was referenced least recently is written
back to disk and is removed from the buffer. This simple approach can be improved on
for database applications(see Section 13.5.2).

13.5.1.2 Pinned blocks

Once a block has been brought into the buffer, a database process can read the con-
tents of the block from the buffer memory. However, while the block is being read, if
a concurrent process evicts the block and replaces it with a different block, the reader
that was reading the contents of the old block will see incorrect data; if the block was
being written when it was evicted, the writer would end up damaging the contents of
the replacement block.

It is therefore important that before a process reads data from a buffer block, it
ensures that the block will not get evicted. To do so, the process executes a pin operation
on the block; the buffer manager never evicts a pinned block. When it has finished
reading data, the process should execute an unpin operation, allowing the block to be
evicted when required. The database code should be written carefully to avoid pinning
too many blocks: if all the blocks in the buffer get pinned, no blocks can be evicted,
and no other block can be brought into the buffer. If this happens, the database will be
unable to carry out any further processing!

Multiple processes can read data from a block that is in the buffer. Each of them is
required to execute a pin operation before accessing data, and an unpin after completing
access. The block cannot be evicted until all processes that have executed a pin have
then executed an unpin operation. A simple way to ensure this property is to keep a pin
count for each buffer block. Each pin operation increments the count, and an unpin
operation decrements the count. A page can be evicted only if the pin count equals 0.

13.5.1.3 Shared and Exclusive Locks on Buffer

A process that adds or deletes a tuple from a page may need to move the page contents
around; during this period, no other process should read the contents of the page, since
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they may be inconsistent. Database buffer managers allow processes to get shared and
exclusive locks on the buffer.

We will study locking in more detail in Chapter 18, but here we discuss a limited
form of locking in the context of the buffer manager. The locking system provided by
the buffer manager allows a database process to lock a buffer block either in shared
mode or in exclusive mode before accessing the block, and to release the lock later,
after the access is completed. Here are the rules for locking:

• Any number of processes may have shared locks on a block at the same time.

• Only one process is allowed to get an exclusive lock at a time, and further when
a process has an exclusive lock, no other process may have a shared lock on the
block. Thus, an exclusive lock can be granted only when no other process has a
lock on the buffer block.

• If a process requests an exclusive lock when a block is already locked in shared or
exclusive mode, the request is kept pending until all earlier locks are released.

• If a process requests a shared lock when a block is not locked, or already shared
locked, the lock may be granted; however, if another process has an exclusive lock,
the shared lock is granted only after the exclusive lock has been released.

Locks are acquired and released as follows:

• Before carrying out any operation on a block, a process must pin the block as we
saw earlier. Locks are obtained subsequently and must be released before unpin-
ning the block.

• Before reading data from a buffer block, a process must get a shared lock on the
block. When it is done reading the data, the process must release the lock.

• Before updating the contents of a buffer block, a process must get an exclusive lock
on the block; the lock must be released after the update is complete.

These rules ensure that a block cannot be updated while another process is reading
it, and conversely, a block cannot be read while another process is updating it. These
rules are required for safety of buffer access; however, to protect a database system from
problems due to concurrent access, these steps are not sufficient: further steps need to
be taken. These are discussed further in Chapter 17 and Chapter 18.

13.5.1.4 Output of blocks

It is possible to output a block only when the buffer space is needed for another block.
However, it makes sense to not wait until the buffer space is needed, but to rather write
out updated blocks ahead of such a need. Then, when space is required in the buffer,
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a block that has already been written out can be evicted, provided it is not currently
pinned.

However, for the database system to be able to recover from crashes (Chapter 19),
it is necessary to restrict those times when a block may be written back to disk. For
instance, most recovery systems require that a block should not be written to disk while
an update on the block is in progress. To enforce this requirement, a process that wishes
to write the block to disk must obtain a shared lock on the block.

Most databases have a process that continually detects updated blocks and writes
them back to disk.

13.5.1.5 Forced output of blocks

There are situations in which it is necessary to write a block to disk, to ensure that
certain data on disk are in a consistent state. Such a write is called a forced output of a
block. We shall see the reason for forced output in Chapter 19.

Memory contents and thus buffer contents are lost in a crash, whereas data on
disk (usually) survive a crash. Forced output is used in conjunction with a logging
mechanism to ensure that when a transaction that has performed updates commits,
enough data has been written to disk to ensure the updates of the transaction are not
lost. How exactly this is done is covered in detail in Chapter 19.

13.5.2 Buffer-Replacement Strategies

The goal of a replacement strategy for blocks in the buffer is to minimize accesses to
the disk. For general-purpose programs, it is not possible to predict accurately which
blocks will be referenced. Therefore, operating systems use the past pattern of block
references as a predictor of future references. The assumption generally made is that
blocks that have been referenced recently are likely to be referenced again. Therefore, if
a block must be replaced, the least recently referenced block is replaced. This approach
is called the least recently used (LRU) block-replacement scheme.

LRU is an acceptable replacement scheme in operating systems. However, a data-
base system is able to predict the pattern of future references more accurately than
an operating system. A user request to the database system involves several steps. The
database system is often able to determine in advance which blocks will be needed by
looking at each of the steps required to perform the user-requested operation. Thus,
unlike operating systems, which must rely on the past to predict the future, database
systems may have information regarding at least the short-term future.

To illustrate how information about future block access allows us to improve the
LRU strategy, consider the processing of the SQL query:

select *
from instructor natural join department;
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Assume that the strategy chosen to process this request is given by the pseudocode
program shown in Figure 13.13. (We shall study other, more efficient, strategies in
Chapter 15.)

Assume that the two relations of this example are stored in separate files. In this
example, we can see that, once a tuple of instructor has been processed, that tuple is
not needed again. Therefore, once processing of an entire block of instructor tuples is
completed, that block is no longer needed in main memory, even though it has been
used recently. The buffer manager should be instructed to free the space occupied by an
instructor block as soon as the final tuple has been processed. This buffer-management
strategy is called the toss-immediate strategy.

Now consider blocks containing department tuples. We need to examine every
block of department tuples once for each tuple of the instructor relation. When process-
ing of a department block is completed, we know that that block will not be accessed
again until all other department blocks have been processed. Thus, the most recently
used department block will be the final block to be re-referenced, and the least recently
used department block is the block that will be referenced next. This assumption set
is the exact opposite of the one that forms the basis for the LRU strategy. Indeed, the
optimal strategy for block replacement for the above procedure is the most recently
used (MRU) strategy. If a department block must be removed from the buffer, the MRU
strategy chooses the most recently used block (blocks are not eligible for replacement
while they are being used).

for each tuple i of instructor do
for each tuple d of department do

if i[dept name] = d[dept name]
then begin

let x be a tuple defined as follows:
x[ID] := i[ID]
x[dept name] := i[dept name]
x[name] := i[name]
x[salary] := i[salary]
x[building] := d[building]
x[budget] := d[budget]
include tuple x as part of result of instructor ⋈ department

end
end

end

Figure 13.13 Procedure for computing join.
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For the MRU strategy to work correctly for our example, the system must pin the
department block currently being processed. After the final department tuple has been
processed, the block is unpinned, and it becomes the most recently used block.

In addition to using knowledge that the system may have about the request being
processed, the buffer manager can use statistical information about the probability that
a request will reference a particular relation. For example, the data dictionary, which
we saw in Section 13.4, is one of the most frequently accessed parts of the database,
since the processing of every query needs to access the data dictionary. Thus, the buffer
manager should try not to remove data-dictionary blocks from main memory, unless
other factors dictate that it do so. In Chapter 14, we discuss indices for files. Since an
index for a file may be accessed more frequently than the file itself, the buffer man-
ager should, in general, not remove index blocks from main memory if alternatives are
available.

The ideal database block-replacement strategy needs knowledge of the database
operations—both those being performed and those that will be performed in the fu-
ture. No single strategy is known that handles all the possible scenarios well. Indeed,
a surprisingly large number of database systems use LRU, despite that strategy’s faults.
The practice questions and exercises explore alternative strategies.

The strategy that the buffer manager uses for block replacement is influenced by
factors other than the time at which the block will be referenced again. If the system is
processing requests by several users concurrently, the concurrency-control subsystem
(Chapter 18) may need to delay certain requests, to ensure preservation of database
consistency. If the buffer manager is given information from the concurrency-control
subsystem indicating which requests are being delayed, it can use this information to
alter its block-replacement strategy. Specifically, blocks needed by active (nondelayed)
requests can be retained in the buffer at the expense of blocks needed by the delayed
requests.

The crash-recovery subsystem (Chapter 19) imposes stringent constraints on block
replacement. If a block has been modified, the buffer manager is not allowed to write
back the new version of the block in the buffer to disk, since that would destroy the
old version. Instead, the block manager must seek permission from the crash-recovery
subsystem before writing out a block. The crash-recovery subsystem may demand that
certain other blocks be force-output before it grants permission to the buffer manager to
output the block requested. In Chapter 19, we define precisely the interaction between
the buffer manager and the crash-recovery subsystem.

13.5.3 Reordering of Writes and Recovery

Database buffers allow writes to be performed in-memory and output to disk at a later
time, possibly in an order different from the order in which the writes were performed.
File systems, too, routinely reorder write operations. However, such reordering can lead
to inconsistent data on disk in the event of a system crash.
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To understand the problem in the context of a file system, suppose that a file system
uses a linked list to track which blocks are part of a file. Suppose also that it inserts a
new node at the end of the list by first writing the data for the new node, then updating
the pointer from the previous node. Suppose further that the writes were reordered, so
the pointer was updated first, and the system crashes before the new node is written.
The contents of the node would then be whatever happened to be on that disk earlier,
resulting in a corrupted data structure.

To deal with the possibility of such data structure corruption, earlier-generation file
systems had to perform a file system consistency check on system restart, to ensure that
the data structures were consistent. And if they were not, extra steps had to be taken
to restore them to consistency. These checks resulted in long delays in system restart
after a crash, and the delays became worse as disk systems grew to higher capacities.

The file system can avoid inconsistencies in many cases if it writes updates to meta-
data in a carefully chosen order. But doing so would mean that optimizations such as
disk arm scheduling cannot be done, affecting the efficiency of the update. If a non-
volatile write buffer were available, it could be used to perform the writes in order to
non-volatile RAM and later reorder the writes when writing them to disk.

However, most disks do not come with a non-volatile write buffer; instead, mod-
ern file systems assign a disk for storing a log of the writes in the order that they are
performed. Such a disk is called a log disk. For each write, the log contains the block
number to be written to, and the data to be written, in the order in which the writes
were performed. All access to the log disk is sequential, essentially eliminating seek
time, and several consecutive blocks can be written at once, making writes to the log
disk several times faster than random writes. As before, the data have to be written to
their actual location on disk as well, but the write to the actual location can be done
later; the writes can be reordered to minimize disk-arm movement.

If the system crashes before some writes to the actual disk location have been
completed, when the system comes back up it reads the log disk to find those writes
that had not been completed and carries them out then. After the writes have been
performed, the records are deleted from the log disk.

File systems that support log disks as above are called journaling file systems. Jour-
naling file systems can be implemented even without a separate log disk, keeping data
and the log on the same disk. Doing so reduces the monetary cost at the expense of
lower performance.

Most modern file systems implement journaling and use the log disk when writing
file system metadata such as file allocation information. Journaling file systems allow
quick restart without the need for such file system consistency checks.

However, writes performed by applications are usually not written to the log disk.
Database systems instead implement their own forms of logging, which we study in
Chapter 19, to ensure that the contents of a database can be safely recovered in the
event of a failure, even if writes were reordered.
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13.6 Column-Oriented Storage

Databases traditionally store all attributes of a tuple together in a record, and tuples are
stored in a file as we have just seen. Such a storage layout is referred to as a row-oriented
storage.

In contrast, in column-oriented storage, also called a columnar storage, each at-
tribute of a relation is stored separately, with values of the attribute from successive
tuples stored at successive positions in the file. Figure 13.14 shows how the instructor
relation would be stored in column-oriented storage, with each attribute stored sepa-
rately.

In the simplest form of column-oriented storage, each attribute is stored in a sepa-
rate file. Further, each file is compressed, to reduce its size. (We discuss more complex
schemes that store columns consecutively in a single file later in this section.)

If a query needs to access the entire contents of the ith row of a table, the values at
the ith position in each of the columns are retrieved and used to reconstruct the row.
Column-oriented storage thus has the drawback that fetching multiple attributes of a
single tuple requires multiple I/O operations. Thus, it is not suitable for queries that
fetch multiple attributes from a few rows of a relation.

However, column-oriented storage is well suited for data analysis queries, which
process many rows of a relation, but often only access some of the attributes. The
reasons are as follows:

• Reduced I/O. When a query needs to access only a few attributes of a relation with a
large number of attributes, the remaining attributes need not be fetched from disk
into memory. In contrast, in row-oriented storage, irrelevant attributes are fetched
into memory from disk. The reduction in I/O can lead to significant reduction in
query execution cost.
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Figure 13.14 Columnar representation of the instructor relation.
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• Improved CPU cache performance. When the query processor fetches the con-
tents of a particular attribute, with modern CPU architectures multiple consecutive
bytes, called a cache line, are fetched from memory to CPU cache. If these bytes
are accessed later, access is much faster if they are in cache than if they have to
be fetched from main memory. However, if these adjacent bytes contain values for
attributes that are not be needed by the query, fetching them into cache wastes
memory bandwidth and uses up cache space that could have been used for other
data. Column-oriented storage does not suffer from this problem, since adjacent
bytes are from the same column, and data analysis queries usually access all these
values consecutively.

• Improved compression. Storing values of the same type together significantly in-
creases the effectiveness of compression, when compared to compressing data
stored in row format; in the latter case, adjacent attributes are of different types, re-
ducing the efficiency of compression. Compression significantly reduces the time
taken to retrieve data from disk, which is often the highest-cost component for
many queries. If the compressed files are stored in memory, the in-memory stor-
age space is also reduced correspondingly, which is particularly important since
main memory is significantly more expensive than disk storage.

• Vector processing. Many modern CPU architectures support vector processing,
which allows a CPU operation to be applied in parallel on a number of elements
of an array. Storing data columnwise allows vector processing of operations such
as comparing an attribute with a constant, which is important for applying selec-
tion conditions on a relation. Vector processing can also be used to compute an
aggregate of multiple values in parallel, instead of aggregating the values one at a
time.

As a result of these benefits, column-oriented storage is increasingly used in data-
warehousing applications, where queries are primarily data analysis queries. It should
be noted that indexing and query processing techniques need to be carefully designed
to get the performance benefits of column-oriented storage. We outline indexing and
query processing techniques based on bitmap representations, which are well suited to
column-oriented storage, in Section 14.9; further details are provided in Section 24.3.

Databases that use column-oriented storage are referred to as column stores, while
databases that use row-oriented storage are referred to as row stores.

It should be noted that column-oriented storage does have several drawbacks,
which make them unsuitable for transaction processing.

• Cost of tuple reconstruction. As we saw earlier, reconstructing a tuple from the
individual columns can be expensive, negating the benefits of columnar represen-
tation if many columns need to be reconstructed. While tuple reconstruction is
common in transaction-processing applications, data analysis applications usually
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output only a few columns out of many that are stored in “fact tables” in data
warehouses.

• Cost of tuple deletion and update. Deleting or updating a single tuple in a com-
pressed representation would require rewriting the entire sequence of tuples that
are compressed as one unit. Since updates and deletes are common in transaction-
processing applications, column-oriented storage would result in a high cost for
these operations if a large number of tuples were compressed as one unit.

In contrast, data-warehousing systems typically do not support updates to tu-
ples, and instead support only insert of new tuples and bulk deletes of a large
number of old tuples at a time. Inserts are done at the end of the relation repre-
sentation, that is, new tuples are appended to the relation. Since small deletes and
updates do not occur in a data warehouse, large sequences of attribute values can
be stored and compressed together as one unit, allowing for better compression
than with small sequences.

• Cost of decompression. Fetching data from a compressed representation requires
decompression, which in the simplest compressed representations requires reading
all the data from the beginning of a file. Transaction processing queries usually
only need to fetch a few records; sequential access is expensive in such a scenario,
since many irrelevant records may have to be decompressed to access a few relevant
records.

Since data analysis queries tend to access many consecutive records, the time spent
on decompression is typically not wasted. However, even data analysis queries do not
need to access records that fail selection conditions, and attributes of such records
should be skipped to reduce disk I/O.

To allow skipping of attribute values from such records, compressed representa-
tions for column stores allow decompression to start at any of a number of points in
the file, skipping earlier parts of the file. This could be done by starting compression
afresh after every 10,000 values (for example). By keeping track of where in the file the
data start for each group of 10,000 values, it is possible to access the ith value by going
to the start of the group ⌊i∕10000⌋ and starting decompression from there.

ORC and Parquet are columnar file representations used in many big-data pro-
cessing applications. In ORC, a row-oriented representation is converted to column-
oriented representation as follows: A sequence of tuples occupying several hundred
megabytes is broken up into a columnar representation called a stripe. An ORC file
contains several such stripes, with each stripe occupying around 250 megabytes.

Figure 13.15 illustrates some details of the ORC file format. Each stripe has index
data followed by row data. The row data area stores a compressed representation of
the sequence of value for the first column, followed by the compressed representation
of the second column, and so on. The index data region of a stripe stores for each
attribute the starting point within the stripe for each group of (say) 10,000 values of
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Figure 13.15 Columnar data representation in the ORC file format.

that attribute.7 The index is useful for quick access to a desired tuple or sequence of
tuples; the index also allows queries containing selections to skip groups of tuples if
the query determines that no tuple in those groups satisfies the selections. ORC files
store several other pieces of information in the stripe footer and file footer, which we
skip here.

Some column-store systems allow groups of columns that are often accessed to-
gether to be stored together, instead of breaking up each column into a different file.
Such systems thus allow a spectrum of choices that range from pure column-oriented
storage, where every column is stored separately, to pure row-oriented storage, where all
columns are stored together. The choice of which attributes to store together depends
on the query workload.

7ORC files have some other information that we ignore here.



13.7 Storage Organization in Main-Memory Databases 615

Some of the benefits of column-oriented storage can be obtained even in a row-
oriented storage system by logically decomposing a relation into multiple relations. For
example, the instructor relation could be decomposed into three relations, containing
(ID, name), (ID, dept name) and (ID, salary), respectively. Then, queries that access
only the name do not have to fetch the dept name and salary attributes. However, in
this case the same ID attribute occurs in three tuples, resulting in wasted space.

Some database systems use a column-oriented representation for data within a disk
block, without using compression.8 Thus, a block contains data for a set of tuples, and
all attributes for that set of tuples are stored in the same block. Such a scheme is useful
in transaction-processing systems, since retrieving all attribute values does not require
multiple disk accesses. At the same time, using column-oriented storage within the
block provides the benefits of more efficient memory access and cache usage, as well
as the potential for using vector processing on the data. However, this scheme does
not allow irrelevant disk blocks to be skipped when only a few attributes are retrieved,
nor does it give the benefits of compression. Thus, it represents a point in the space
between pure row-oriented storage and pure column-oriented storage.

Some databases, such as SAP HANA support two underlying storage systems, one
a row-oriented one designed for transaction processing, and the second a column-
oriented one, designed for data analysis. Tuples are normally created in the row-
oriented store but are later migrated to the column-oriented store when they are no
longer likely to be accessed in a row-oriented manner. Such systems are called hybrid
row/column stores.

In other cases, applications store transactional data in a row-oriented store, but
copy data periodically (e.g., once a day or a few times a day) to a data warehouse,
which may use a column-oriented storage system.

Sybase IQ was one of the early products to use column-oriented storage, but there
are now several research projects and companies that have developed database systems
based on column stores, including C-Store, Vertica, MonetDB, Vectorwise, among oth-
ers. See Further Reading at the end of the chapter for more details.

13.7 Storage Organization in Main-Memory Databases

Today, main-memory sizes are large enough, and main memory is cheap enough, that
many organizational databases fit entirely in memory. Such large main memories can
be used by allocating a large amount of memory to the database buffer, which will allow
the entire database to be loaded into buffer, avoiding disk I/O operations for reading
data; updated blocks still have to be written back to disk for persistence. Thus, such a
setup would provide much better performance than one where only part of the database
can fit in the buffer.

8Compression can be applied to data in a disk block, but accessing them requires decompression, and the decom-
pressed data may no longer fit in a block. Significant changes need to be made to the database code, including buffer
management, to handle such issues.
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However, if the entire database fits in memory, performance can be improved sig-
nificantly by tailoring the storage organization and database data structures to exploit
the fact that data are fully in memory. A main-memory database is a database where
all data reside in memory; main-memory database systems are typically designed to
optimize performance by making use of this fact. In particular, they do away entirely
with the buffer manager.

As an example of optimizations that can be done with memory-resident data, con-
sider the cost of accessing a record, given a record pointer. With disk-based databases,
records are stored in blocks, and pointers to records consist of a block identifier and
an offset or slot number within the block. Following such a record pointer requires
checking if the block is in the buffer (usually done by using an in-memory hash index),
and if it is, finding where in the buffer it is located. If it is not in buffer, it has to be
fetched. All these actions take a significant number of CPU cycles.

In contrast, in a main-memory database, it is possible to keep direct pointers to
records in memory, and accessing a record is just an in-memory pointer traversal, which
is a very efficient operation. This is possible as long as records are not moved around.
Indeed, one reason for such movement, namely loading into buffer and eviction from
buffer, is no longer an issue.

If records are stored in a slotted-page structure within a block, records may move
within a block as other records are deleted or resized. Direct pointers to records are
not possible in that case, although records can be accessed with one level of indirection
through the entries in the slotted page header. Locking of the block may be required to
ensure that a record does not get moved while another process is reading its data. To
avoid these overheads, many main-memory databases do not use a slotted-page struc-
ture for allocating records. Instead they directly allocate records in main memory, and
ensure that records never get moved due to updates to other records. However, a prob-
lem with direct allocation of records is that memory may get fragmented if variable
sized records are repeatedly inserted and deleted. The database must ensure that main
memory does not get fragmented over time, either by using suitably designed memory
management schemes or by periodically performing compaction of memory; the latter
scheme will result in record movement, but it can be done without acquiring locks on
blocks.

If a column-oriented storage scheme is used in main memory, all the values of
a column can be stored in consecutive memory locations. However, if there are ap-
pends to the relation, ensuring contiguous allocation would require existing data be
reallocated. To avoid this overhead, the logical array for a column may be divided into
multiple physical arrays. An indirection table stores pointers to all the physical arrays.
This scheme is depicted in Figure 13.16. To find the ith element of a logical array, the
indirection table is used to locate the physical array containing the ith element, and
then an appropriate offset is computed and looked up within that physical array.

There are other ways in which processing can be optimized with main-memory
databases, as we shall see in later chapters.
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Figure 13.16 In-memory columnar data representation.

13.8 Summary

• We can organize a file logically as a sequence of records mapped onto disk blocks.
One approach to mapping the database to files is to use several files, and to store
records of only one fixed length in any given file. An alternative is to structure
files so that they can accommodate multiple lengths for records. The slotted-page
method is widely used to handle varying-length records within a disk block.

• Since data are transferred between disk storage and main memory in units of a
block, it is worthwhile to assign file records to blocks in such a way that a single
block contains related records. If we can access several of the records we want with
only one block access, we save disk accesses. Since disk accesses are usually the
bottleneck in the performance of a database system, careful assignment of records
to blocks can pay significant performance dividends.

• The data dictionary, also referred to as the system catalog, keeps track of metadata,
that is, data about data, such as relation names, attribute names and types, storage
information, integrity constraints, and user information.
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• One way to reduce the number of disk accesses is to keep as many blocks as pos-
sible in main memory. Since it is not possible to keep all blocks in main memory,
we need to manage the allocation of the space available in main memory for the
storage of blocks. The buffer is that part of main memory available for storage of
copies of disk blocks. The subsystem responsible for the allocation of buffer space
is called the buffer manager.

• Column-oriented storage systems provide good performance for many data ware-
housing applications.

Review Terms

• File Organization

° File

° Blocks

• Fixed-length records
• File header
• Free list
• Variable-length records
• Null bitmap
• Slotted-page structure
• Large objects
• Organization of records
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Practice Exercises

13.1 Consider the deletion of record 5 from the file of Figure 13.3. Compare the
relative merits of the following techniques for implementing the deletion:

a. Move record 6 to the space occupied by record 5, and move record 7 to
the space occupied by record 6.

b. Move record 7 to the space occupied by record 5.

c. Mark record 5 as deleted, and move no records.

13.2 Show the structure of the file of Figure 13.4 after each of the following steps:

a. Insert (24556, Turnamian, Finance, 98000).

b. Delete record 2.

c. Insert (34556, Thompson, Music, 67000).

13.3 Consider the relations section and takes. Give an example instance of these
two relations, with three sections, each of which has five students. Give a file
structure of these relations that uses multitable clustering.

13.4 Consider the bitmap representation of the free-space map, where for each
block in the file, two bits are maintained in the bitmap. If the block is between
0 and 30 percent full the bits are 00, between 30 and 60 percent the bits are
01, between 60 and 90 percent the bits are 10, and above 90 percent the bits
are 11. Such bitmaps can be kept in memory even for quite large files.

a. Outline two benefits and one drawback to using two bits for a block,
instead of one byte as described earlier in this chapter.

b. Describe how to keep the bitmap up to date on record insertions and
deletions.

c. Outline the benefit of the bitmap technique over free lists in searching
for free space and in updating free space information.

13.5 It is important to be able to quickly find out if a block is present in the buffer,
and if so where in the buffer it resides. Given that database buffer sizes are
very large, what (in-memory) data structure would you use for this task?

13.6 Suppose your university has a very large number of takes records, accumulated
over many years. Explain how table partitioning can be done on the takes rela-
tion, and what benefits it could offer. Explain also one potential drawback of
the technique.
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13.7 Give an example of a relational-algebra expression and a query-processing strat-
egy in each of the following situations:

a. MRU is preferable to LRU.

b. LRU is preferable to MRU.

13.8 PostgreSQL normally uses a small buffer, leaving it to the operating system
buffer manager to manage the rest of main memory available for file system
buffering. Explain (a) what is the benefit of this approach, and (b) one key
limitation of this approach.

Exercises

13.9 In the variable-length record representation, a null bitmap is used to indicate
if an attribute has the null value.

a. For variable-length fields, if the value is null, what would be stored in the
offset and length fields?

b. In some applications, tuples have a very large number of attributes, most
of which are null. Can you modify the record representation such that
the only overhead for a null attribute is the single bit in the null bitmap?

13.10 Explain why the allocation of records to blocks affects database-system perfor-
mance significantly.

13.11 List two advantages and two disadvantages of each of the following strategies
for storing a relational database:

a. Store each relation in one file.

b. Store multiple relations (perhaps even the entire database) in one file.

13.12 In the sequential file organization, why is an overflow block used even if there
is, at the moment, only one overflow record?

13.13 Give a normalized version of the Index metadata relation, and explain why
using the normalized version would result in worse performance.

13.14 Standard buffer managers assume each block is of the same size and costs the
same to read. Consider a buffer manager that, instead of LRU, uses the rate
of reference to objects, that is, how often an object has been accessed in the
last n seconds. Suppose we want to store in the buffer objects of varying sizes,
and varying read costs (such as web pages, whose read cost depends on the
site from which they are fetched). Suggest how a buffer manager may choose
which block to evict from the buffer.
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Further Reading

[Hennessy et al. (2017)] is a popular textbook on computer architecture, which in-
cludes coverage of hardware aspects of translation look-aside buffers, caches, and
memory-management units.

The storage structure of specific database systems, such as IBM DB2, Oracle, Mi-
crosoft SQL Server, and PostgreSQL are documented in their respective system man-
uals, which are available online.

Algorithms for buffer management in database systems, along with a performance
evaluation, were presented by [Chou and Dewitt (1985)]. Buffer management in op-
erating systems is discussed in most operating-system texts, including in [Silberschatz
et al. (2018)].

[Abadi et al. (2008)] presents a comparison of column-oriented and row-oriented
storage, including issues related to query processing and optimization.

Sybase IQ, developed in the mid 1990s, was the first commercially successful
column-oriented database, designed for analytics. MonetDB and C-Store were column-
oriented databases developed as academic research projects. The Vertica column-
oriented database is a commercial database that grew out of C-Store, while VectorWise
is a commercial database that grew out of MonetDB. As its name suggests, VectorWise
supports vector processing of data, and as a result supports very high processing rates
for many analytical queries. [Stonebraker et al. (2005)] describe C-Store, while [Idreos
et al. (2012)] give an overview of the MonetDB project and [Zukowski et al. (2012)]
describes Vectorwise.

The ORC and Parquet columnar file formats were developed to support compressed
storage of data for big-data applications that run on the Apache Hadoop platform.

Bibliography

[Abadi et al. (2008)] D. J. Abadi, S. Madden, and N. Hachem, “Column-Stores vs. Row-S-
tores: How Different Are They Really?”, In Proc. of the ACM SIGMOD Conf. on Management
of Data (2008), pages 967–980.

[Chou and Dewitt (1985)] H. T. Chou and D. J. Dewitt, “An Evaluation of Buffer Manage-
ment Strategies for Relational Database Systems”, In Proc. of the International Conf. on Very
Large Databases (1985), pages 127–141.

[Hennessy et al. (2017)] J. L. Hennessy, D. A. Patterson, and D. Goldberg, Computer Archi-
tecture: A Quantitative Approach, 6th edition, Morgan Kaufmann (2017).

[Idreos et al. (2012)] S. Idreos, F. Groffen, N. Nes, S. Manegold, K. S. Mullender, and M. L.
Kersten, “MonetDB: Two Decades of Research in Column-oriented Database Architec-
tures”, IEEE Data Engineering Bulletin, Volume 35, Number 1 (2012), pages 40–45.

[Silberschatz et al. (2018)] A. Silberschatz, P. B. Galvin, and G. Gagne, Operating System
Concepts, 10th edition, John Wiley and Sons (2018).



622 Chapter 13 Data Storage Structures

[Stonebraker et al. (2005)] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack,
M. Ferreira, E. Lau, A. Lin, S. Madden, E. J. O’Neil, P. E. O’Neil, A. Rasin, N. Tran, and
S. B. Zdonik, “C-Store: A Column-oriented DBMS”, In Proc. of the International Conf. on
Very Large Databases (2005), pages 553–564.

[Zukowski et al. (2012)] M. Zukowski, M. van de Wiel, and P. A. Boncz, “Vectorwise: A
Vectorized Analytical DBMS”, In Proc. of the International Conf. on Data Engineering (2012),
pages 1349–1350.

Credits

The photo of the sailboats in the beginning of the chapter is due to ©Pavel Nes-
vadba/Shutterstock.



CHAP T E R 14
Indexing

Many queries reference only a small proportion of the records in a file. For example, a
query like “Find all instructors in the Physics department” or “Find the total number of
credits earned by the student with ID 22201” references only a fraction of the instructor
or student records. It is inefficient for the system to read every tuple in the instructor
relation to check if the dept name value is “Physics”. Likewise, it is inefficient to read
the entire student relation just to find the one tuple for the ID “22201”. Ideally, the
system should be able to locate these records directly. To allow these forms of access,
we design additional structures that we associate with files.

14.1 Basic Concepts

An index for a file in a database system works in much the same way as the index in this
textbook. If we want to learn about a particular topic (specified by a word or a phrase)
in this textbook, we can search for the topic in the index at the back of the book, find
the pages where it occurs, and then read the pages to find the information for which
we are looking. The words in the index are in sorted order, making it easy to find the
word we want. Moreover, the index is much smaller than the book, further reducing
the effort needed.

Database-system indices play the same role as book indices in libraries. For exam-
ple, to retrieve a student record given an ID, the database system would look up an index
to find on which disk block1 the corresponding record resides, and then fetch the disk
block, to get the appropriate student record.

Indices are critical for efficient processing of queries in databases. Without indices,
every query would end up reading the entire contents of every relation that it uses;
doing so would be unreasonably expensive for queries that only fetch a few records, for
example, a single student record, or the records in the takes relation corresponding to
a single student.

1As in earlier chapters, we use the term disk to refer to persistent storage devices, such as magnetic disks and solid-state
drives.

623



624 Chapter 14 Indexing

Implementing an index on the student relation by keeping a sorted list of students’
ID would not work well on very large databases, since (i) the index would itself be
very big, (ii) even though keeping the index sorted reduces the search time, finding a
student can still be rather time-consuming, and (iii) updating a sorted list as students are
added or removed from the database can be very expensive. Instead, more sophisticated
indexing techniques are used in database systems. We shall discuss several of these
techniques in this chapter.

There are two basic kinds of indices:

• Ordered indices. Based on a sorted ordering of the values.

• Hash indices. Based on a uniform distribution of values across a range of buckets.
The bucket to which a value is assigned is determined by a function, called a hash
function.

We shall consider several techniques for ordered indexing. No one technique is the
best. Rather, each technique is best suited to particular database applications. Each
technique must be evaluated on the basis of these factors:

• Access types: The types of access that are supported efficiently. Access types can
include finding records with a specified attribute value and finding records whose
attribute values fall in a specified range.

• Access time: The time it takes to find a particular data item, or set of items, using
the technique in question.

• Insertion time: The time it takes to insert a new data item. This value includes the
time it takes to find the correct place to insert the new data item, as well as the
time it takes to update the index structure.

• Deletion time: The time it takes to delete a data item. This value includes the time
it takes to find the item to be deleted, as well as the time it takes to update the
index structure.

• Space overhead: The additional space occupied by an index structure. Provided that
the amount of additional space is moderate, it is usually worthwhile to sacrifice
the space to achieve improved performance.

We often want to have more than one index for a file. For example, we may wish
to search for a book by author, by subject, or by title.

An attribute or set of attributes used to look up records in a file is called a search
key. Note that this definition of key differs from that used in primary key, candidate
key, and superkey. This duplicate meaning for key is (unfortunately) well established in
practice. Using our notion of a search key, we see that if there are several indices on a
file, there are several search keys.
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Figure 14.1 Sequential file for instructor records.

14.2 Ordered Indices

To gain fast random access to records in a file, we can use an index structure. Each
index structure is associated with a particular search key. Just like the index of a book
or a library catalog, an ordered index stores the values of the search keys in sorted order
and associates with each search key the records that contain it.

The records in the indexed file may themselves be stored in some sorted order, just
as books in a library are stored according to some attribute such as the Dewey decimal
number. A file may have several indices, on different search keys. If the file containing
the records is sequentially ordered, a clustering index is an index whose search key
also defines the sequential order of the file. Clustering indices are also called primary
indices; the term primary index may appear to denote an index on a primary key, but
such indices can in fact be built on any search key. The search key of a clustering index
is often the primary key, although that is not necessarily so. Indices whose search key
specifies an order different from the sequential order of the file are called nonclustering
indices, or secondary indices. The terms “clustered” and “nonclustered” are often used
in place of “clustering” and “nonclustering.”

In Section 14.2.1 through Section 14.2.3, we assume that all files are ordered se-
quentially on some search key. Such files, with a clustering index on the search key,
are called index-sequential files. They represent one of the oldest index schemes used
in database systems. They are designed for applications that require both sequential
processing of the entire file and random access to individual records. In Section 14.2.4
we cover secondary indices.

Figure 14.1 shows a sequential file of instructor records taken from our university
example. In the example of Figure 14.1, the records are stored in sorted order of in-
structor ID, which is used as the search key.
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14.2.1 Dense and Sparse Indices

An index entry, or index record, consists of a search-key value and pointers to one or
more records with that value as their search-key value. The pointer to a record consists
of the identifier of a disk block and an offset within the disk block to identify the record
within the block.

There are two types of ordered indices that we can use:

• Dense index: In a dense index, an index entry appears for every search-key value
in the file. In a dense clustering index, the index record contains the search-key
value and a pointer to the first data record with that search-key value. The rest of
the records with the same search-key value would be stored sequentially after the
first record, since, because the index is a clustering one, records are sorted on the
same search key.

In a dense nonclustering index, the index must store a list of pointers to all
records with the same search-key value.

• Sparse index: In a sparse index, an index entry appears for only some of the search-
key values. Sparse indices can be used only if the relation is stored in sorted order
of the search key; that is, if the index is a clustering index. As is true in dense
indices, each index entry contains a search-key value and a pointer to the first data
record with that search-key value. To locate a record, we find the index entry with
the largest search-key value that is less than or equal to the search-key value for
which we are looking. We start at the record pointed to by that index entry and
follow the pointers in the file until we find the desired record.

Figure 14.2 and Figure 14.3 show dense and sparse indices, respectively, for the
instructor file. Suppose that we are looking up the record of instructor with ID “22222”.
Using the dense index of Figure 14.2, we follow the pointer directly to the desired
record. Since ID is a primary key, there exists only one such record and the search is
complete. If we are using the sparse index (Figure 14.3), we do not find an index entry
for “22222”. Since the last entry (in numerical order) before “22222” is “10101”, we
follow that pointer. We then read the instructor file in sequential order until we find the
desired record.

Consider a (printed) dictionary. The header of each page lists the first word alpha-
betically on that page. The words at the top of each page of the book index together
form a sparse index on the contents of the dictionary pages.

As another example, suppose that the search-key value is not a primary key. Figure
14.4 shows a dense clustering index for the instructor file with the search key being
dept name. Observe that in this case the instructor file is sorted on the search key dept
name, instead of ID, otherwise the index on dept name would be a nonclustering index.

Suppose that we are looking up records for the History department. Using the dense
index of Figure 14.4, we follow the pointer directly to the first History record. We
process this record and follow the pointer in that record to locate the next record in
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Figure 14.2 Dense index.

search-key (dept name) order. We continue processing records until we encounter a
record for a department other than History.

As we have seen, it is generally faster to locate a record if we have a dense index
rather than a sparse index. However, sparse indices have advantages over dense indices
in that they require less space and they impose less maintenance overhead for insertions
and deletions.

There is a trade-off that the system designer must make between access time and
space overhead. Although the decision regarding this trade-off depends on the specific
application, a good compromise is to have a sparse index with one index entry per
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Figure 14.3 Sparse index.
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Figure 14.4 Dense index with search key dept name.

block. The reason this design is a good trade-off is that the dominant cost in processing a
database request is the time that it takes to bring a block from disk into main memory.
Once we have brought in the block, the time to scan the entire block is negligible.
Using this sparse index, we locate the block containing the record that we are seeking.
Thus, unless the record is on an overflow block (see Section 13.3.2), we minimize block
accesses while keeping the size of the index (and thus our space overhead) as small as
possible.

For the preceding technique to be fully general, we must consider the case where
records for one search-key value occupy several blocks. It is easy to modify our scheme
to handle this situation.

14.2.2 Multilevel Indices

Suppose we build a dense index on a relation with 1,000,000 tuples. Index entries are
smaller than data records, so let us assume that 100 index entries fit on a 4-kilobyte
block. Thus, our index occupies 10,000 blocks. If the relation instead had 100,000,000
tuples, the index would instead occupy 1,000,000 blocks, or 4 gigabytes of space. Such
large indices are stored as sequential files on disk.

If an index is small enough to be kept entirely in main memory, the search time
to find an entry is low. However, if the index is so large that not all of it can be kept
in memory, index blocks must be fetched from disk when required. (Even if an index
is smaller than the main memory of a computer, main memory is also required for a
number of other tasks, so it may not be possible to keep the entire index in memory.)
The search for an entry in the index then requires several disk-block reads.

Binary search can be used on the index file to locate an entry, but the search still
has a large cost. If the index would occupy b blocks, binary search requires as many as
⌈log2(b)⌉ blocks to be read. (⌈x⌉ denotes the least integer that is greater than or equal
to x; that is, we round upward.) Note that the blocks that are read are not adjacent
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to each other, so each read requires a random (i.e., non-sequential) I/O operation. For
a 10,000-block index, binary search requires 14 random block reads. On a magnetic
disk system where a random block read takes on average 10 milliseconds, the index
search will take 140 milliseconds. This may not seem much, but we would be able to
carry out only seven index searches a second on a single disk, whereas a more efficient
search mechanism would let us carry out far more searches per second, as we shall see
shortly. Note that, if overflow blocks have been used, binary search is only possible on
the non-overflow blocks, and the actual cost may be even higher than the logarithmic
bound above. A sequential search requires b sequential block reads, which may take
even longer (although in some cases the lower cost of sequential block reads may result
in sequential search being faster than a binary search). Thus, the process of searching
a large index may be costly.

To deal with this problem, we treat the index just as we would treat any other
sequential file, and we construct a sparse outer index on the original index, which we
now call the inner index, as shown in Figure 14.5. Note that the index entries are always
in sorted order, allowing the outer index to be sparse. To locate a record, we first use
binary search on the outer index to find the record for the largest search-key value less

…

…
…

…

outer index

index
block 0

index
block 1

data
block 0

data
block 1

inner index

Figure 14.5 Two-level sparse index.
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than or equal to the one that we desire. The pointer points to a block of the inner index.
We scan this block until we find the record that has the largest search-key value less
than or equal to the one that we desire. The pointer in this record points to the block
of the file that contains the record for which we are looking.

In our example, an inner index with 10,000 blocks would require 10,000 entries in
the outer index, which would occupy just 100 blocks. If we assume that the outer index
is already in main memory, we would read only one index block for a search using a
multilevel index, rather than the 14 blocks we read with binary search. As a result, we
can perform 14 times as many index searches per second.

If our file is extremely large, even the outer index may grow too large to fit in main
memory. With a 100,000,000-tuple relation, the inner index would occupy 1,000,000
blocks, and the outer index would occupy 10,000 blocks, or 40 megabytes. Since there
are many demands on main memory, it may not be possible to reserve that much main
memory just for this particular outer index. In such a case, we can create yet another
level of index. Indeed, we can repeat this process as many times as necessary. Indices
with two or more levels are called multilevel indices. Searching for records with a mul-
tilevel index requires significantly fewer I/O operations than does searching for records
by binary search.2

Multilevel indices are closely related to tree structures, such as the binary trees
used for in-memory indexing. We shall examine the relationship later, in Section 14.3.

14.2.3 Index Update

Regardless of what form of index is used, every index must be updated whenever a
record is either inserted into or deleted from the file. Further, in case a record in the
file is updated, any index whose search-key attribute is affected by the update must also
be updated; for example, if the department of an instructor is changed, an index on
the dept name attribute of instructor must be updated correspondingly. Such a record
update can be modeled as a deletion of the old record, followed by an insertion of
the new value of the record, which results in an index deletion followed by an index
insertion. As a result we only need to consider insertion and deletion on an index, and
we do not need to consider updates explicitly.

We first describe algorithms for updating single-level indices.

14.2.3.1 Insertion

First, the system performs a lookup using the search-key value that appears in the record
to be inserted. The actions the system takes next depend on whether the index is dense
or sparse:

2In the early days of disk-based indices, each level of the index corresponded to a unit of physical storage. Thus, we may
have indices at the track, cylinder, and disk levels. Such a hierarchy does not make sense today since disk subsystems
hide the physical details of disk storage, and the number of disks and platters per disk is very small compared to the
number of cylinders or bytes per track.
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• Dense indices:

1. If the search-key value does not appear in the index, the system inserts an
index entry with the search-key value in the index at the appropriate position.

2. Otherwise the following actions are taken:
a. If the index entry stores pointers to all records with the same search-key

value, the system adds a pointer to the new record in the index entry.
b. Otherwise, the index entry stores a pointer to only the first record with

the search-key value. The system then places the record being inserted
after the other records with the same search-key values.

• Sparse indices: We assume that the index stores an entry for each block. If the
system creates a new block, it inserts the first search-key value (in search-key order)
appearing in the new block into the index. On the other hand, if the new record has
the least search-key value in its block, the system updates the index entry pointing
to the block; if not, the system makes no change to the index.

14.2.3.2 Deletion

To delete a record, the system first looks up the record to be deleted. The actions the
system takes next depend on whether the index is dense or sparse:

• Dense indices:

1. If the deleted record was the only record with its particular search-key value,
then the system deletes the corresponding index entry from the index.

2. Otherwise the following actions are taken:
a. If the index entry stores pointers to all records with the same search-key

value, the system deletes the pointer to the deleted record from the index
entry.

b. Otherwise, the index entry stores a pointer to only the first record with
the search-key value. In this case, if the deleted record was the first record
with the search-key value, the system updates the index entry to point to
the next record.

• Sparse indices:

1. If the index does not contain an index entry with the search-key value of the
deleted record, nothing needs to be done to the index.

2. Otherwise the system takes the following actions:
a. If the deleted record was the only record with its search key, the system

replaces the corresponding index record with an index record for the
next search-key value (in search-key order). If the next search-key value
already has an index entry, the entry is deleted instead of being replaced.
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b. Otherwise, if the index entry for the search-key value points to the record
being deleted, the system updates the index entry to point to the next
record with the same search-key value.

Insertion and deletion algorithms for multilevel indices are a simple extension of
the scheme just described. On deletion or insertion, the system updates the lowest-
level index as described. As far as the second level is concerned, the lowest-level index
is merely a file containing records—thus, if there is any change in the lowest-level index,
the system updates the second-level index as described. The same technique applies to
further levels of the index, if there are any.

14.2.4 Secondary Indices

Secondary indices must be dense, with an index entry for every search-key value, and a
pointer to every record in the file. A clustering index may be sparse, storing only some
of the search-key values, since it is always possible to find records with intermediate
search-key values by a sequential access to a part of the file, as described earlier. If a
secondary index stores only some of the search-key values, records with intermediate
search-key values may be anywhere in the file and, in general, we cannot find them
without searching the entire file.

A secondary index on a candidate key looks just like a dense clustering index,
except that the records pointed to by successive values in the index are not stored
sequentially. In general, however, secondary indices may have a different structure from
clustering indices. If the search key of a clustering index is not a candidate key, it suffices
if the index points to the first record with a particular value for the search key, since
the other records can be fetched by a sequential scan of the file.

In contrast, if the search key of a secondary index is not a candidate key, it is
not enough to point to just the first record with each search-key value. The remaining
records with the same search-key value could be anywhere in the file, since the records
are ordered by the search key of the clustering index, rather than by the search key
of the secondary index. Therefore, a secondary index must contain pointers to all the
records.

If a relation can have more than one record containing the same search key value
(that is, two or more records can have the same values for the indexed attributes), the
search key is said to be a nonunique search key.

One way to implement secondary indices on nonunique search keys is as follows:
Unlike the case of primary indices, the pointers in such a secondary index do not point
directly to the records. Instead, each pointer in the index points to a bucket that in
turn contains pointers to the file. Figure 14.6 shows the structure of a secondary index
that uses such an extra level of indirection on the instructor file, on the search key dept
name.

However, this approach has a few drawbacks. First, index access takes longer, due
to an extra level of indirection, which may require a random I/O operation. Second,
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10101 Srinivasan Comp. Sci. 65000
 12121 Wu Finance 90000
15151 Mozart Music 40000
22222 Einstein Physics 95000
32343 El Said History 60000
33456 Gold Physics 87000
45565 Katz Comp. Sci. 75000
58583 Califieri History 62000
76543 Singh Finance 80000
76766 Crick Biology 72000
83821 Brandt Comp. Sci. 92000
98345 Kim Elec. Eng. 80000
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Figure 14.6 Secondary index on instructor file, on noncandidate key dept name.

if a key has very few or no duplicates, if a whole block is allocated to its associated
bucket, a lot of space would be wasted. Later in this chapter, we study more efficient
alternatives for implementing secondary indices, which avoid these drawbacks.

A sequential scan in clustering index order is efficient because records in the file
are stored physically in the same order as the index order. However, we cannot (except
in rare special cases) store a file physically ordered by both the search key of the clus-
tering index and the search key of a secondary index. Because secondary-key order and
physical-key order differ, if we attempt to scan the file sequentially in secondary-key
order, the reading of each record is likely to require the reading of a new block from
disk, which is very slow.

The procedure described earlier for deletion and insertion can also be applied to
secondary indices; the actions taken are those described for dense indices storing a
pointer to every record in the file. If a file has multiple indices, whenever the file is
modified, every index must be updated.

Secondary indices improve the performance of queries that use keys other than
the search key of the clustering index. However, they impose a significant overhead
on modification of the database. The designer of a database decides which secondary
indices are desirable on the basis of an estimate of the relative frequency of queries and
modifications.

14.2.5 Indices on Multiple Keys

Although the examples we have seen so far have had a single attribute in a search key,
in general a search key can have more than one attribute. A search key containing more
than one attribute is referred to as a composite search key. The structure of the index is
the same as that of any other index, the only difference being that the search key is not
a single attribute, but rather is a list of attributes. The search key can be represented as
a tuple of values, of the form (a1,… , an), where the indexed attributes are A1,… , An.
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The ordering of search-key values is the lexicographic ordering. For example, for the
case of two attribute search keys, (a1, a2) < (b1, b2) if either a1 < b1 or a1 = b1 and
a2 < b2. Lexicographic ordering is basically the same as alphabetic ordering of words.

As an example, consider an index on the takes relation, on the composite search
key (course id, semester, year). Such an index would be useful to find all students who
have registered for a particular course in a particular semester/year. An ordered index
on a composite key can also be used to answer several other kinds of queries efficiently,
as we shall see in Section 14.6.2.

14.3 B+-Tree Index Files

The main disadvantage of the index-sequential file organization is that performance
degrades as the file grows, both for index lookups and for sequential scans through the
data. Although this degradation can be remedied by reorganization of the file, frequent
reorganizations are undesirable.

The B+-tree index structure is the most widely used of several index structures that
maintain their efficiency despite insertion and deletion of data. A B+-tree index takes
the form of a balanced tree in which every path from the root of the tree to a leaf of
the tree is of the same length. Each nonleaf node in the tree (other than the root)
has between ⌈n∕2⌉ and n children, where n is fixed for a particular tree; the root has
between 2 and n children.

We shall see that the B+-tree structure imposes performance overhead on insertion
and deletion and adds space overhead. The overhead is acceptable even for frequently
modified files, since the cost of file reorganization is avoided. Furthermore, since nodes
may be as much as half empty (if they have the minimum number of children), there
is some wasted space. This space overhead, too, is acceptable given the performance
benefits of the B+-tree structure.

14.3.1 Structure of a B+-Tree

A B+-tree index is a multilevel index, but it has a structure that differs from that of the
multilevel index-sequential file. We assume for now that there are no duplicate search
key values, that is, each search key is unique and occurs in at most one record; we
consider the issue of nonunique search keys later.

Figure 14.7 shows a typical node of a B+-tree. It contains up to n − 1 search-key
values K1, K2,… , Kn− 1, and n pointers P1, P2,… , Pn. The search-key values within a
node are kept in sorted order; thus, if i < j, then Ki < Kj.

P1 K1 P2 Pn 1 Kn 1 Pn…

Figure 14.7 Typical node of a B+-tree.
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Figure 14.8 A leaf node for instructor B+-tree index (n = 4).

We consider first the structure of the leaf nodes. For i = 1, 2,… , n − 1, pointer Pi
points to a file record with search-key value Ki. Pointer Pn has a special purpose that
we shall discuss shortly.

Figure 14.8 shows one leaf node of a B+-tree for the instructor file, in which we have
chosen n to be 4, and the search key is name.

Now that we have seen the structure of a leaf node, let us consider how search-key
values are assigned to particular nodes. Each leaf can hold up to n − 1 values. We
allow leaf nodes to contain as few as ⌈(n − 1)∕2⌉ values. With n = 4 in our example
B+-tree, each leaf must contain at least two values, and at most three values.

If Li and Lj are leaf nodes and i < j (that is, Li is to the left of Lj in the tree), then
every search-key value vi in Li is less than every search-key value vj in Lj.

If the B+-tree index is used as a dense index (as is usually the case), every search-key
value must appear in some leaf node.

Now we can explain the use of the pointer Pn. Since there is a linear order on the
leaves based on the search-key values that they contain, we use Pn to chain together the
leaf nodes in search-key order. This ordering allows for efficient sequential processing
of the file.

The nonleaf nodes of the B+-tree form a multilevel (sparse) index on the leaf nodes.
The structure of nonleaf nodes is the same as that for leaf nodes, except that all pointers
are pointers to tree nodes. A nonleaf node may hold up to n pointers and must hold
at least ⌈n∕2⌉ pointers. The number of pointers in a node is called the fanout of the
node. Nonleaf nodes are also referred to as internal nodes.
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Figure 14.9 B+-tree for instructor file (n = 4).

Let us consider a node containing m pointers (m ≤ n). For i = 2, 3,… , m − 1,
pointer Pi points to the subtree that contains search-key values less than Ki and greater
than or equal to Ki− 1. Pointer Pm points to the part of the subtree that contains those
key values greater than or equal to Km− 1, and pointer P1 points to the part of the subtree
that contains those search-key values less than K1.

Unlike other nonleaf nodes, the root node can hold fewer than ⌈n∕2⌉ pointers;
however, it must hold at least two pointers, unless the tree consists of only one node. It
is always possible to construct a B+-tree, for any n, that satisfies the preceding require-
ments.

Figure 14.9 shows a complete B+-tree for the instructor file (with n = 4). We have
omitted null pointers for simplicity; any pointer field in the figure that does not have
an arrow is understood to have a null value.

Figure 14.10 shows another B+-tree for the instructor file, this time with n = 6.
Observe that the height of this tree is less than that of the previous tree, which had
n = 4.

Brandt CrickCalifieri Einstein El Said Gold Katz Kim Mozart Singh Srinivasan Wu

El Said Mozart

Figure 14.10 B+-tree for instructor file with n = 6.
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These examples of B+-trees are all balanced. That is, the length of every path from
the root to a leaf node is the same. This property is a requirement for a B+-tree. Indeed,
the “B” in B+-tree stands for “balanced.” It is the balance property of B+-trees that
ensures good performance for lookup, insertion, and deletion.

In general, search keys could have duplicates. One way to handle the case of
nonunique search keys is to modify the tree structure to store each search key at a leaf
node as many times as it appears in records, with each copy pointing to one record.
The condition that Ki < Kj if i < j will need to be modified to Ki ≤ Kj. However, this
approach can result in duplicate search key values at internal nodes, making the inser-
tion and deletion procedures more complicated and expensive. Another alternative is
to store a set (or bucket) of record pointers with each search key value, as we saw ear-
lier. This approach is more complicated and can result in inefficient access, especially
if the number of record pointers for a particular key is very large.

Most database implementations instead make search keys unique as follows: Sup-
pose the desired search key attribute ai of relation r is nonunique. Let Ap be the primary
key of r. Then the unique composite search key (ai, Ap) is used instead of ai when build-
ing the index. (Any set of attributes that together with ai guarantee uniqueness can also
be used instead of Ap.) For example, if we wished to create an index on the instructor
relation on the attribute name, we instead create an index on the composite search key
(name, ID), since ID is the primary key for instructor. Index lookups on just name can
be efficiently handled using this index, as we shall see shortly. Section 14.3.5 covers
issues in handling of nonunique search keys in more detail.

In our examples, we show indices on some nonunique search keys, such as instruc-
tor.name, assuming for simplicity that there are no duplicates; in reality most databases
would automatically add extra attributes internally, to ensure the absence of duplicates.

14.3.2 Queries on B+-Trees

Let us consider how we process queries on a B+-tree. Suppose that we wish to find a
record with a given value v for the search key. Figure 14.11 presents pseudocode for a
function find(v) to carry out this task, assuming there are no duplicates, that is, there
is at most one record with a particular search key. We address the issue of nonunique
search keys later in this section.

Intuitively, the function starts at the root of the tree and traverses the tree down
until it reaches a leaf node that would contain the specified value if it exists in the
tree. Specifically, starting with the root as the current node, the function repeats the
following steps until a leaf node is reached. First, the current node is examined, looking
for the smallest i such that search-key value Ki is greater than or equal to v. Suppose
such a value is found; then, if Ki is equal to v, the current node is set to the node pointed
to by Pi+1, otherwise Ki > v, and the current node is set to the node pointed to by Pi. If
no such value Ki is found, then v > Km−1, where Pm is the last nonnull pointer in the
node. In this case the current node is set to that pointed to by Pm. The above procedure
is repeated, traversing down the tree until a leaf node is reached.



638 Chapter 14 Indexing

function find(v)
/* Assumes no duplicate keys, and returns pointer to the record with
* search key value v if such a record exists, and null otherwise */

Set C = root node
while (C is not a leaf node) begin

Let i = smallest number such that v ≤ C.Ki
if there is no such number i then begin

Let Pm = last non-null pointer in the node
Set C = C.Pm

end
else if (v = C.Ki) then Set C = C.Pi+1
else Set C = C.Pi /* v < C.Ki */

end
/* C is a leaf node */
if for some i, Ki = v

then return Pi
else return null ; /* No record with key value v exists*/

Figure 14.11 Querying a B+-tree.

At the leaf node, if there is a search-key value Ki = v, pointer Pi directs us to a
record with search-key value Ki. The function then returns the pointer to the record,
Pi. If no search key with value v is found in the leaf node, no record with key value v
exists in the relation, and function find returns null, to indicate failure.

B+-trees can also be used to find all records with search key values in a specified
range [lb, ub]. For example, with a B+-tree on attribute salary of instructor, we can find
all instructor records with salary in a specified range such as [50000, 100000] (in other
words, all salaries between 50000 and 100000). Such queries are called range queries.

To execute such queries, we can create a procedure findRange (lb, ub), shown in
Figure 14.12. The procedure does the following: it first traverses to a leaf in a manner
similar to find(lb); the leaf may or may not actually contain value lb. It then steps
through records in that and subsequent leaf nodes collecting pointers to all records
with key values C.Ki s.t. lb ≤ C.Ki ≤ ub into a set resultSet. The function stops when
C.Ki > ub, or there are no more keys in the tree.

A real implementation would provide a version of findRange supporting an iterator
interface similar to that provided by the JDBC ResultSet, which we saw in Section 5.1.1.
Such an iterator interface would provide a method next(), which can be called repeat-
edly to fetch successive records. The next() method would step through the entries at
the leaf level, in a manner similar to findRange, but each call takes only one step and
records where it left off, so that successive calls to next() step through successive en-
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function findRange(lb, ub)
/* Returns all records with search key value V such that lb ≤ V ≤ ub. */

Set resultSet = {};
Set C = root node
while (C is not a leaf node) begin

Let i = smallest number such that lb ≤ C.Ki
if there is no such number i then begin

Let Pm = last non-null pointer in the node
Set C = C.Pm

end
else if (lb = C.Ki) then Set C = C.Pi+1
else Set C = C.Pi /* lb < C.Ki */

end
/* C is a leaf node */
Let i be the least value such that Ki ≥ lb
if there is no such i

then Set i = 1 + number of keys in C; /* To force move to next leaf */
Set done = false;
while (not done) begin

Let n = number of keys in C.
if ( i ≤ n and C.Ki ≤ ub) then begin

Add C.Pi to resultSet
Set i = i + 1

end
else if (i ≤ n and C.Ki > ub)

then Set done = true;
else if (i > n and C.Pn+1 is not null)

then Set C = C.Pn+1, and i = 1 /* Move to next leaf */
else Set done = true; /* No more leaves to the right */

end
return resultSet;

Figure 14.12 Range query on a B+-tree.

tries. We omit details for simplicity, and leave the pseudocode for the iterator interface
as an exercise for the interested reader.

We now consider the cost of querying on a B+-tree index. In processing a query,
we traverse a path in the tree from the root to some leaf node. If there are N records in
the file, the path is no longer than ⌈log⌈n∕2⌉(N)⌉.

Typically, the node size is chosen to be the same as the size of a disk block, which
is typically 4 kilobytes. With a search-key size of 12 bytes, and a disk-pointer size of
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8 bytes, n is around 200. Even with a more conservative estimate of 32 bytes for the
search-key size, n is around 100. With n = 100, if we have 1 million search-key values in
the file, a lookup requires only ⌈log50(1,000,000)⌉ = 4 nodes to be accessed. Thus, at
most four blocks need to be read from disk to traverse the path from the root to a leaf.
The root node of the tree is usually heavily accessed and is likely to be in the buffer, so
typically only three or fewer blocks need to be read from disk.

An important difference between B+-tree structures and in-memory tree structures,
such as binary trees, is the size of a node, and as a result, the height of the tree. In a
binary tree, each node is small and has at most two pointers. In a B+-tree, each node
is large—typically a disk block—and a node can have a large number of pointers. Thus,
B+-trees tend to be fat and short, unlike thin and tall binary trees. In a balanced binary
tree, the path for a lookup can be of length ⌈log2(N)⌉, where N is the number of
records in the file being indexed. With N = 1,000,000 as in the previous example, a
balanced binary tree requires around 20 node accesses. If each node were on a different
disk block, 20 block reads would be required to process a lookup, in contrast to the
four block reads for the B+-tree. The difference is significant with a magnetic disk, since
each block read could require a disk arm seek which, together with the block read, takes
about 10 milliseconds on a magnetic disk. The difference is not quite as drastic with
flash storage, where a read of a 4 kilobyte page takes around 10 to 100 microseconds,
but it is still significant.

After traversing down to the leaf level, queries on a single value of a unique search
key require one more random I/O operation to fetch any matching record.

Range queries have an additional cost, after traversing down to the leaf level: all
the pointers in the given range must be retrieved. These pointers are in consecutive leaf
nodes; thus, if M such pointers are retrieved, at most ⌈M∕(n∕2)⌉ + 1 leaf nodes need
to be accessed to retrieve the pointers (since each leaf node has at least n∕2 pointers,
but even two pointers may be split across two pages). To this cost, we need to add the
cost of accessing the actual records. For secondary indices, each such record may be
on a different block, which could result in M random I/O operations in the worst case.
For clustered indices, these records would be in consecutive blocks, with each block
containing multiple records, resulting in a significantly lower cost.

Now, let us consider the case of nonunique keys. As explained earlier, if we wish
to create an index on an attribute ai that is not a candidate key, and may thus have
duplicates, we instead create an index on a composite key that is duplicate-free. The
composite key is created by adding extra attributes, such as the primary key, to ai, to
ensure uniqueness. Suppose we created an index on the composite key (ai, Ap) instead
of creating an index on ai.

An important question, then, is how do we retrieve all tuples with a given value
v for ai using the above index? This question is easily answered by using the function
findRange(lb, ub), with lb = (v,−∞) and ub = (v,∞), where −∞ and ∞ denote the
smallest and largest possible values of Ap. All records with ai = v would be returned
by the above function call. Range queries on ai can be handled similarly. These range
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queries retrieve pointers to the records quite efficiently, although retrieval of the records
may be expensive, as discussed earlier.

14.3.3 Updates on B+-Trees

When a record is inserted into, or deleted from a relation, indices on the relation must
be updated correspondingly. Recall that updates to a record can be modeled as a dele-
tion of the old record followed by insertion of the updated record. Hence we only
consider the case of insertion and deletion.

Insertion and deletion are more complicated than lookup, since it may be neces-
sary to split a node that becomes too large as the result of an insertion, or to coalesce
nodes (i.e., combine nodes) if a node becomes too small (fewer than ⌈n∕2⌉ pointers).
Furthermore, when a node is split or a pair of nodes is combined, we must ensure that
balance is preserved. To introduce the idea behind insertion and deletion in a B+-tree,
we shall assume temporarily that nodes never become too large or too small. Under
this assumption, insertion and deletion are performed as defined next.

• Insertion. Using the same technique as for lookup from the find() function (Figure
14.11), we first find the leaf node in which the search-key value would appear. We
then insert an entry (i.e., a search-key value and record pointer pair) in the leaf
node, positioning it such that the search keys are still in order.

• Deletion. Using the same technique as for lookup, we find the leaf node containing
the entry to be deleted by performing a lookup on the search-key value of the
deleted record; if there are multiple entries with the same search-key value, we
search across all entries with the same search-key value until we find the entry that
points to the record being deleted. We then remove the entry from the leaf node.
All entries in the leaf node that are to the right of the deleted entry are shifted left
by one position, so that there are no gaps in the entries after the entry is deleted.

We now consider the general case of insertion and deletion, dealing with node
splitting and node coalescing.

14.3.3.1 Insertion

We now consider an example of insertion in which a node must be split. Assume that
a record is inserted on the instructor relation, with the name value being Adams. We
then need to insert an entry for “Adams” into the B+-tree of Figure 14.9. Using the
algorithm for lookup, we find that “Adams” should appear in the leaf node containing
“Brandt”, “Califieri”, and “Crick.” There is no room in this leaf to insert the search-
key value “Adams.” Therefore, the node is split into two nodes. Figure 14.13 shows the
two leaf nodes that result from the split of the leaf node on inserting “Adams”. The
search-key values “Adams” and “Brandt” are in one leaf, and “Califieri” and “Crick”
are in the other. In general, we take the n search-key values (the n− 1 values in the leaf
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Adams Califieri CrickBrandt

Figure 14.13 Split of leaf node on insertion of “Adams”.

node plus the value being inserted), and put the first ⌈n∕2⌉ in the existing node and
the remaining values in a newly created node.

Having split a leaf node, we must insert the new leaf node into the B+-tree structure.
In our example, the new node has “Califieri” as its smallest search-key value. We need
to insert an entry with this search-key value, and a pointer to the new node, into the
parent of the leaf node that was split. The B+-tree of Figure 14.14 shows the result of the
insertion. It was possible to perform this insertion with no further node split, because
there was room in the parent node for the new entry. If there were no room, the parent
would have had to be split, requiring an entry to be added to its parent. In the worst
case, all nodes along the path to the root must be split. If the root itself is split, the
entire tree becomes deeper.

Splitting of a nonleaf node is a little different from splitting of a leaf node. Figure
14.15 shows the result of inserting a record with search key “Lamport” into the tree
shown in Figure 14.14. The leaf node in which “Lamport” is to be inserted already has
entries “Gold”, “Katz”, and “Kim”, and as a result the leaf node has to be split. The
new right-hand-side node resulting from the split contains the search-key values “Kim”
and “Lamport”. An entry (Kim, n1) must then be added to the parent node, where n1
is a pointer to the new node, However, there is no space in the parent node to add a new
entry, and the parent node has to be split. To do so, the parent node is conceptually
expanded temporarily, the entry added, and the overfull node is then immediately split.

When an overfull nonleaf node is split, the child pointers are divided among the
original and the newly created nodes; in our example, the original node is left with
the first three pointers, and the newly created node to the right gets the remaining two
pointers. The search key values are, however, handled a little differently. The search key
values that lie between the pointers moved to the right node (in our example, the value
“Kim”) are moved along with the pointers, while those that lie between the pointers
that stay on the left (in our example, “Califieri” and “Einstein”) remain undisturbed.

Adams Brandt Einstein El Said Gold Katz Kim Mozart Singh Srinivasan Wu

Gold Srinivasan

Mozart

EinsteinCalifieri

CrickCalifieri

Figure 14.14 Insertion of “Adams” into the B+-tree of Figure 14.9.
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Adams Brandt Einstein El Said Gold Katz Kim Lamport Mozart Singh Srinivasan WuCrickCalifieri

Figure 14.15 Insertion of “Lamport” into the B+-tree of Figure 14.14.

However, the search key value that lies between the pointers that stay on the left,
and the pointers that move to the right node is treated differently. In our example, the
search key value “Gold” lies between the three pointers that went to the left node, and
the two pointers that went to the right node. The value “Gold” is not added to either of
the split nodes. Instead, an entry (Gold, n2) is added to the parent node, where n2 is a
pointer to the newly created node that resulted from the split. In this case, the parent
node is the root, and it has enough space for the new entry.

The general technique for insertion into a B+-tree is to determine the leaf node l
into which insertion must occur. If a split results, insert the new node into the parent

procedure insert(value K , pointer P)
if (tree is empty) create an empty leaf node L, which is also the root
else Find the leaf node L that should contain key value K
if (L has less than n − 1 key values)

then insert in leaf (L, K , P)
else begin /* L has n − 1 key values already, split it */

Create node L′

Copy L.P1 …L.Kn−1 to a block of memory T that can
hold n (pointer, key-value) pairs

insert in leaf (T , K , P)
Set L′

.Pn = L.Pn; Set L.Pn = L′

Erase L.P1 through L.Kn−1 from L
Copy T .P1 through T .K⌈n∕2⌉ from T into L starting at L.P1
Copy T .P⌈n∕2⌉+1 through T .Kn from T into L′ starting at L′

.P1
Let K ′ be the smallest key-value in L′

insert in parent(L, K ′, L′)
end

Figure 14.16 Insertion of entry in a B+-tree.
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of node l. If this insertion causes a split, proceed recursively up the tree until either an
insertion does not cause a split or a new root is created.

Figure 14.16 outlines the insertion algorithm in pseudocode. The procedure in-
sert inserts a key-value pointer pair into the index, using two subsidiary procedures
insert in leaf and insert in parent, shown in Figure 14.17. In the pseudocode, L, N , P
and T denote pointers to nodes, with L being used to denote a leaf node. L.Ki and L.Pi
denote the ith value and the ith pointer in node L, respectively; T .Ki and T .Pi are used
similarly. The pseudocode also makes use of the function parent(N) to find the parent
of a node N . We can compute a list of nodes in the path from the root to the leaf while
initially finding the leaf node, and we can use it later to find the parent of any node in
the path efficiently.

procedure insert in leaf (node L, value K , pointer P)
if (K < L.K1)

then insert P, K into L just before L.P1
else begin

Let Ki be the highest value in L that is less than or equal to K
Insert P, K into L just after L.Ki

end
procedure insert in parent(node N , value K ′, node N ′)

if (N is the root of the tree)
then begin

Create a new node R containing N , K ′, N ′ /* N and N ′ are pointers */
Make R the root of the tree
return

end
Let P = parent (N)
if (P has less than n pointers)

then insert (K ′, N ′) in P just after N
else begin /* Split P */

Copy P to a block of memory T that can hold P and (K ′, N ′)
Insert (K ′, N ′) into T just after N
Erase all entries from P; Create node P′

Copy T .P1 …T .P⌈(n+1)∕2⌉ into P
Let K ′′ = T .K⌈(n+1)∕2⌉
Copy T .P⌈(n+1)∕2⌉+1 …T .Pn+1 into P′

insert in parent(P, K ′′, P′)
end

Figure 14.17 Subsidiary procedures for insertion of entry in a B+-tree.
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The procedure insert in parent takes as parameters N , K ′, N ′, where node N was
split into N and N ′, with K ′ being the least value in N ′. The procedure modifies the
parent of N to record the split. The procedures insert into index and insert in parent
use a temporary area of memory T to store the contents of a node being split. The
procedures can be modified to copy data from the node being split directly to the newly
created node, reducing the time required for copying data. However, the use of the
temporary space T simplifies the procedures.

14.3.3.2 Deletion

We now consider deletions that cause tree nodes to contain too few pointers. First, let
us delete “Srinivasan” from the B+-tree of Figure 14.14. The resulting B+-tree appears
in Figure 14.18. We now consider how the deletion is performed. We first locate the
entry for “Srinivasan” by using our lookup algorithm. When we delete the entry for
“Srinivasan” from its leaf node, the node is left with only one entry, “Wu”. Since, in
our example, n = 4 and 1 < ⌈(n − 1)∕2⌉, we must either merge the node with a
sibling node or redistribute the entries between the nodes, to ensure that each node
is at least half-full. In our example, the underfull node with the entry for “Wu” can be
merged with its left sibling node. We merge the nodes by moving the entries from both
the nodes into the left sibling and deleting the now-empty right sibling. Once the node
is deleted, we must also delete the entry in the parent node that pointed to the just
deleted node.

In our example, the entry to be deleted is (Srinivasan, n3), where n3 is a pointer
to the leaf containing “Srinivasan”. (In this case the entry to be deleted in the nonleaf
node happens to be the same value as that deleted from the leaf; that would not be the
case for most deletions.) After deleting the above entry, the parent node, which had
a search key value “Srinivasan” and two pointers, now has one pointer (the leftmost
pointer in the node) and no search-key values. Since 1 < ⌈n∕2⌉ for n = 4, the parent
node is underfull. (For larger n, a node that becomes underfull would still have some
values as well as pointers.)

Adams Brandt Califieri Crick Einstein El Said Gold Katz Kim Mozart Singh Wu

Califieri

Gold

MozartEinstein

Figure 14.18 Deletion of “Srinivasan” from the B+-tree of Figure 14.14.
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In this case, we look at a sibling node; in our example, the only sibling is the nonleaf
node containing the search keys “Califieri”, “Einstein”, and “Gold”. If possible, we try
to coalesce the node with its sibling. In this case, coalescing is not possible, since the
node and its sibling together have five pointers, against a maximum of four. The solution
in this case is to redistribute the pointers between the node and its sibling, such that each
has at least ⌈n∕2⌉ = 2 child pointers. To do so, we move the rightmost pointer from
the left sibling (the one pointing to the leaf node containing “Gold”) to the underfull
right sibling. However, the underfull right sibling would now have two pointers, namely,
its leftmost pointer, and the newly moved pointer, with no value separating them. In
fact, the value separating them is not present in either of the nodes, but is present
in the parent node, between the pointers from the parent to the node and its sibling.
In our example, the value “Mozart” separates the two pointers and is present in the
right sibling after the redistribution. Redistribution of the pointers also means that the
value “Mozart” in the parent no longer correctly separates search-key values in the two
siblings. In fact, the value that now correctly separates search-key values in the two
sibling nodes is the value “Gold”, which was in the left sibling before redistribution.

As a result, as can be seen in the B+-tree in Figure 14.18, after redistribution of
pointers between siblings, the value “Gold” has moved up into the parent, while the
value that was there earlier, “Mozart”, has moved down into the right sibling.

We next delete the search-key values “Singh” and “Wu” from the B+-tree of Figure
14.18. The result is shown in Figure 14.19. The deletion of the first of these values does
not make the leaf node underfull, but the deletion of the second value does. It is not
possible to merge the underfull node with its sibling, so a redistribution of values is
carried out, moving the search-key value “Kim” into the node containing “Mozart”,
resulting in the tree shown in Figure 14.19. The value separating the two siblings has
been updated in the parent, from “Mozart” to “Kim”.

Now we delete “Gold” from the above tree; the result is shown in Figure 14.20. This
results in an underfull leaf, which can now be merged with its sibling. The resultant
deletion of an entry from the parent node (the nonleaf node containing “Kim”) makes
the parent underfull (it is left with just one pointer). This time around, the parent
node can be merged with its sibling. This merge results in the search-key value “Gold”

Adams Brandt Califieri Crick Einstein El Said Gold Katz Kim      Mozart

Califieri Einstein Kim

Gold

Figure 14.19 Deletion of “Singh” and “Wu” from the B+-tree of Figure 14.18.
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Figure 14.20 Deletion of “Gold” from the B+-tree of Figure 14.19.

moving down from the parent into the merged node. As a result of this merge, an entry
is deleted from its parent, which happens to be the root of the tree. And as a result
of that deletion, the root is left with only one child pointer and no search-key value,
violating the condition that the root must have at least two children. As a result, the
root node is deleted and its sole child becomes the root, and the depth of the B+-tree
has been decreased by 1.

It is worth noting that, as a result of deletion, a key value that is present in a nonleaf
node of the B+-tree may not be present at any leaf of the tree. For example, in Figure
14.20, the value “Gold” has been deleted from the leaf level but is still present in a
nonleaf node.

In general, to delete a value in a B+-tree, we perform a lookup on the value and
delete it. If the node is too small, we delete it from its parent. This deletion results
in recursive application of the deletion algorithm until the root is reached, a parent
remains adequately full after deletion, or redistribution is applied.

Figure 14.21 outlines the pseudocode for deletion from a B+-tree. The procedure
swap variables(N , N ′) merely swaps the values of the (pointer) variables N and N ′;
this swap has no effect on the tree itself. The pseudocode uses the condition “too few
pointers/values.” For nonleaf nodes, this criterion means less than ⌈n∕2⌉ pointers; for
leaf nodes, it means less than ⌈(n−1)∕2⌉ values. The pseudocode redistributes entries
by borrowing a single entry from an adjacent node. We can also redistribute entries by
repartitioning entries equally between the two nodes. The pseudocode refers to deleting
an entry (K , P) from a node. In the case of leaf nodes, the pointer to an entry actually
precedes the key value, so the pointer P precedes the key value K . For nonleaf nodes,
P follows the key value K .

14.3.4 Complexity of B+-Tree Updates

Although insertion and deletion operations on B+-trees are complicated, they require
relatively few I/O operations, which is an important benefit since I/O operations are
expensive. It can be shown that the number of I/O operations needed in the worst case
for an insertion is proportional to log⌈n∕2⌉(N), where n is the maximum number of
pointers in a node, and N is the number of records in the file being indexed.

The worst-case complexity of the deletion procedure is also proportional to
log⌈n∕2⌉(N), provided there are no duplicate values for the search key; we discuss the
case of nonunique search keys later in this chapter.
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procedure delete(value K , pointer P)
find the leaf node L that contains (K , P)
delete entry(L, K , P)

procedure delete entry(node N , value K , pointer P)
delete (K , P) from N
if (N is the root and N has only one remaining child)
then make the child of N the new root of the tree and delete N
else if (N has too few values/pointers) then begin

Let N ′ be the previous or next child of parent(N)
Let K ′ be the value between pointers N and N ′ in parent(N)
if (entries in N and N ′ can fit in a single node)

then begin /* Coalesce nodes */
if (N is a predecessor of N ′) then swap variables(N , N ′)
if (N is not a leaf)

then append K ′ and all pointers and values in N to N ′

else append all (Ki, Pi) pairs in N to N ′; set N ′
.Pn = N .Pn

delete entry(parent(N), K ′, N); delete node N
end

else begin /* Redistribution: borrow an entry from N ′ */
if (N ′ is a predecessor of N) then begin

if (N is a nonleaf node) then begin
let m be such that N ′

.Pm is the last pointer in N ′

remove (N ′
.Km−1, N ′

.Pm) from N ′

insert (N ′
.Pm, K ′) as the first pointer and value in N ,

by shifting other pointers and values right
replace K ′ in parent(N) by N ′

.Km−1
end
else begin

let m be such that (N ′
.Pm, N ′

.Km) is the last pointer/value
pair in N ′

remove (N ′
.Pm, N ′

.Km) from N ′

insert (N ′
.Pm, N ′

.Km) as the first pointer and value in N ,
by shifting other pointers and values right

replace K ′ in parent(N) by N ′
.Km

end
end
else … symmetric to the then case …

end
end

Figure 14.21 Deletion of entry from a B+-tree.
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In other words, the cost of insertion and deletion operations in terms of I/O oper-
ations is proportional to the height of the B+-tree, and is therefore low. It is the speed
of operation on B+-trees that makes them a frequently used index structure in database
implementations.

In practice, operations on B+-trees result in fewer I/O operations than the worst-
case bounds. With fanout of 100, and assuming accesses to leaf nodes are uniformly
distributed, the parent of a leaf node is 100 times more likely to get accessed than the
leaf node. Conversely, with the same fanout, the total number of nonleaf nodes in a B+-
tree would be just a little more than 1/100th of the number of leaf nodes. As a result,
with memory sizes of several gigabytes being common today, for B+-trees that are used
frequently, even if the relation is very large it is quite likely that most of the nonleaf
nodes are already in the database buffer when they are accessed. Thus, typically only
one or two I/O operations are required to perform a lookup. For updates, the probability
of a node split occurring is correspondingly very small. Depending on the ordering of
inserts, with a fanout of 100, only from 1 in 100 to 1 in 50 insertions will result in a
node split, requiring more than one block to be written. As a result, on an average an
insert will require just a little more than one I/O operation to write updated blocks.

Although B+-trees only guarantee that nodes will be at least half full, if entries are
inserted in random order, nodes can be expected to be more than two-thirds full on
average. If entries are inserted in sorted order, on the other hand, nodes will be only
half full. (We leave it as an exercise to the reader to figure out why nodes would be only
half full in the latter case.)

14.3.5 Nonunique Search Keys

We have assumed so far that search keys are unique. Recall also that we described
earlier, in Section 14.3.1, how to make search keys unique by creating a composite
search key containing the original search key and extra attributes, that together are
unique across all records.

The extra attribute can be a record-id, which is a pointer to the record, or a primary
key, or any other attribute whose value is unique among all records with the same
search-key value. The extra attribute is called a uniquifier attribute.

A search with the original search-key attribute can be carried out using a range
search as we saw in Section 14.3.2; alternatively, we can create a variant of the findRange
function that takes only the original search key value as parameter and ignores the value
of the uniquifier attribute when comparing search-key values.

It is also possible to modify the B+-tree structure to support duplicate search keys.
The insert, delete, and lookup methods all have to be modified correspondingly.

• One alternative is to store each key value only once in the tree, and to keep a
bucket (or list) of record pointers with a search-key value, to handle nonunique
search keys. This approach is space efficient since it stores the key value only once;
however, it creates several complications when B+-trees are implemented. If the
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buckets are kept in the leaf node, extra code is needed to deal with variable-size
buckets, and to deal with buckets that grow larger than the size of the leaf node. If
the buckets are stored in separate blocks, an extra I/O operation may be required
to fetch records.

• Another option is to store the search key value once per record; this approach
allows a leaf node to be split in the usual way if it is found to be full during an in-
sert. However, this approach makes handling of split and search on internal nodes
significantly more complicated, since two leaves may contain the same search key
value. It also has a higher space overhead, since key values are stored as many
times as there are records containing that value.

A major problem with both these approaches, as compared to the unique search-
key approach, lies in the efficiency of record deletion. (The complexity of lookup and
insertion are the same with both these approaches, as well as with the unique search-key
approach.) Suppose a particular search-key value occurs a large number of times, and
one of the records with that search key is to be deleted. The deletion may have to search
through a number of entries with the same search-key value, potentially across multiple
leaf nodes, to find the entry corresponding to the particular record being deleted. Thus,
the worst-case complexity of deletion may be linear in the number of records.

In contrast, record deletion can be done efficiently using the unique search key
approach. When a record is to be deleted, the composite search-key value is computed
from the record and then used to look up the index. Since the value is unique, the
corresponding leaf-level entry can be found with a single traversal from root to leaf,
with no further accesses at the leaf level. The worst-case cost of deletion is logarithmic
in the number of records, as we saw earlier.

Due to the inefficiency of deletion, as well as other complications due to du-
plicate search keys, B+-tree implementations in most database systems only handle
unique search keys, and they automatically add record-ids or other attributes to make
nonunique search keys unique.

14.4 B+-Tree Extensions

In this section, we discuss several extensions and variations of the B+-tree index struc-
ture.

14.4.1 B+-Tree File Organization

As mentioned in Section 14.3, the main drawback of index-sequential file organization
is the degradation of performance as the file grows: With growth, an increasing percent-
age of index entries and actual records become out of order and are stored in overflow
blocks. We solve the degradation of index lookups by using B+-tree indices on the file.
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Figure 14.22 B+-tree file organization.

We solve the degradation problem for storing the actual records by using the leaf level
of the B+-tree to organize the blocks containing the actual records. We use the B+-tree
structure not only as an index, but also as an organizer for records in a file. In a B+-tree
file organization, the leaf nodes of the tree store records, instead of storing pointers to
records. Figure 14.22 shows an example of a B+-tree file organization. Since records
are usually larger than pointers, the maximum number of records that can be stored
in a leaf node is less than the number of pointers in a nonleaf node. However, the leaf
nodes are still required to be at least half full.

Insertion and deletion of records from a B+-tree file organization are handled in
the same way as insertion and deletion of entries in a B+-tree index. When a record
with a given key value v is inserted, the system locates the block that should contain
the record by searching the B+-tree for the largest key in the tree that is ≤ v. If the block
located has enough free space for the record, the system stores the record in the block.
Otherwise, as in B+-tree insertion, the system splits the block in two and redistributes
the records in it (in the B+-tree–key order) to create space for the new record. The split
propagates up the B+-tree in the normal fashion. When we delete a record, the system
first removes it from the block containing it. If a block B becomes less than half full
as a result, the records in B are redistributed with the records in an adjacent block B′.
Assuming fixed-sized records, each block will hold at least one-half as many records as
the maximum that it can hold. The system updates the nonleaf nodes of the B+-tree in
the usual fashion.

When we use a B+-tree for file organization, space utilization is particularly impor-
tant, since the space occupied by the records is likely to be much more than the space
occupied by keys and pointers. We can improve the utilization of space in a B+-tree by
involving more sibling nodes in redistribution during splits and merges. The technique
is applicable to both leaf nodes and nonleaf nodes, and it works as follows:

During insertion, if a node is full, the system attempts to redistribute some of its
entries to one of the adjacent nodes, to make space for a new entry. If this attempt fails
because the adjacent nodes are themselves full, the system splits the node and divides
the entries evenly among one of the adjacent nodes and the two nodes that it obtained
by splitting the original node. Since the three nodes together contain one more record
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than can fit in two nodes, each node will be about two-thirds full. More precisely, each
node will have at least ⌊2n∕3⌋ entries, where n is the maximum number of entries that
the node can hold. (⌊x⌋ denotes the greatest integer that is less than or equal to x; that
is, we drop the fractional part, if any.)

During deletion of a record, if the occupancy of a node falls below ⌊2n∕3⌋, the
system attempts to borrow an entry from one of the sibling nodes. If both sibling nodes
have ⌊2n∕3⌋ records, instead of borrowing an entry, the system redistributes the entries
in the node and in the two siblings evenly between two of the nodes and deletes the third
node. We can use this approach because the total number of entries is 3⌊2n∕3⌋ − 1,
which is less than 2n. With three adjacent nodes used for redistribution, each node can
be guaranteed to have ⌊3n∕4⌋ entries. In general, if m nodes (m−1 siblings) are involved
in redistribution, each node can be guaranteed to contain at least ⌊(m−1)n∕m⌋ entries.
However, the cost of update becomes higher as more sibling nodes are involved in the
redistribution.

Note that in a B+-tree index or file organization, leaf nodes that are adjacent to each
other in the tree may be located at different places on disk. When a file organization
is newly created on a set of records, it is possible to allocate blocks that are mostly
contiguous on disk to leaf nodes that are contiguous in the tree. Thus, a sequential
scan of leaf nodes would correspond to a mostly sequential scan on disk. As insertions
and deletions occur on the tree, sequentiality is increasingly lost, and sequential access
has to wait for disk seeks increasingly often. An index rebuild may be required to restore
sequentiality.

B+-tree file organizations can also be used to store large objects, such as SQL clobs
and blobs, which may be larger than a disk block, and as large as multiple gigabytes.
Such large objects can be stored by splitting them into sequences of smaller records that
are organized in a B+-tree file organization. The records can be sequentially numbered,
or numbered by the byte offset of the record within the large object, and the record
number can be used as the search key.

14.4.2 Secondary Indices and Record Relocation

Some file organizations, such as the B+-tree file organization, may change the location
of records even when the records have not been updated. As an example, when a leaf
node is split in a B+-tree file organization, a number of records are moved to a new
node. In such cases, all secondary indices that store pointers to the relocated records
would have to be updated, even though the values in the records may not have changed.
Each leaf node may contain a fairly large number of records, and each of them may be
in different locations on each secondary index. Thus, a leaf-node split may require tens
or even hundreds of I/O operations to update all affected secondary indices, making it
a very expensive operation.

A widely used solution for this problem is as follows: In secondary indices, in place
of pointers to the indexed records, we store the values of the primary-index search-key
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attributes. For example, suppose we have a primary index on the attribute ID of relation
instructor; then a secondary index on dept name would store with each department
name a list of instructor’s ID values of the corresponding records, instead of storing
pointers to the records.

Relocation of records because of leaf-node splits then does not require any update
on any such secondary index. However, locating a record using the secondary index
now requires two steps: First we use the secondary index to find the primary-index
search-key values, and then we use the primary index to find the corresponding records.

This approach thus greatly reduces the cost of index update due to file reorganiza-
tion, although it increases the cost of accessing data using a secondary index.

14.4.3 Indexing Strings

Creating B+-tree indices on string-valued attributes raises two problems. The first prob-
lem is that strings can be of variable length. The second problem is that strings can be
long, leading to a low fanout and a correspondingly increased tree height.

With variable-length search keys, different nodes can have different fanouts even if
they are full. A node must then be split if it is full, that is, there is no space to add a
new entry, regardless of how many search entries it has. Similarly, nodes can be merged
or entries redistributed depending on what fraction of the space in the nodes is used,
instead of being based on the maximum number of entries that the node can hold.

The fanout of nodes can be increased by using a technique called prefix compres-
sion. With prefix compression, we do not store the entire search key value at nonleaf
nodes. We only store a prefix of each search key value that is sufficient to distinguish
between the key values in the subtrees that it separates. For example, if we had an index
on names, the key value at a nonleaf node could be a prefix of a name; it may suffice
to store “Silb” at a nonleaf node, instead of the full “Silberschatz” if the closest values
in the two subtrees that it separates are, say, “Silas” and “Silver” respectively.

14.4.4 Bulk Loading of B+-Tree Indices

As we saw earlier, insertion of a record in a B+-tree requires a number of I/O operations
that in the worst case is proportional to the height of the tree, which is usually fairly
small (typically five or less, even for large relations).

Now consider the case where a B+-tree is being built on a large relation. Suppose
the relation is significantly larger than main memory, and we are constructing a non-
clustering index on the relation such that the index is also larger than main memory.
In this case, as we scan the relation and add entries to the B+-tree, it is quite likely that
each leaf node accessed is not in the database buffer when it is accessed, since there is
no particular ordering of the entries. With such randomly ordered accesses to blocks,
each time an entry is added to the leaf, a disk seek will be required to fetch the block
containing the leaf node. The block will probably be evicted from the disk buffer before
another entry is added to the block, leading to another disk seek to write the block back
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to disk. Thus, a random read and a random write operation may be required for each
entry inserted.

For example, if the relation has 100 million records, and each I/O operation takes
about 10 milliseconds on a magnetic disk, it would take at least 1 million seconds to
build the index, counting only the cost of reading leaf nodes, not even counting the cost
of writing the updated nodes back to disk. This is clearly a very large amount of time;
in contrast, if each record occupies 100 bytes, and the disk subsystem can transfer data
at 50 megabytes per second, it would take just 200 seconds to read the entire relation.

Insertion of a large number of entries at a time into an index is referred to as bulk
loading of the index. An efficient way to perform bulk loading of an index is as follows:
First, create a temporary file containing index entries for the relation, then sort the
file on the search key of the index being constructed, and finally scan the sorted file
and insert the entries into the index. There are efficient algorithms for sorting large
relations, described later in Section 15.4, which can sort even a large file with an I/O
cost comparable to that of reading the file a few times, assuming a reasonable amount
of main memory is available.

There is a significant benefit to sorting the entries before inserting them into the
B+-tree. When the entries are inserted in sorted order, all entries that go to a particular
leaf node will appear consecutively, and the leaf needs to be written out only once;
nodes will never have to be read from disk during bulk load, if the B+-tree was empty
to start with. Each leaf node will thus incur only one I/O operation even though many
entries may be inserted into the node. If each leaf contains 100 entries, the leaf level
will contain 1 million nodes, resulting in only 1 million I/O operations for creating
the leaf level. Even these I/O operations can be expected to be sequential, if succes-
sive leaf nodes are allocated on successive disk blocks, and few disk seeks would be
required. With magnetic disks, 1 millisecond per block is a reasonable estimate for
mostly sequential I/O operations, in contrast to 10 milliseconds per block for random
I/O operations.

We shall study the cost of sorting a large relation later, in Section 15.4, but as a
rough estimate, the index which would have otherwise taken up to 1,000,000 seconds
to build on a magnetic disk can be constructed in well under 1000 seconds by sorting
the entries before inserting them into the B+-tree.

If the B+-tree is initially empty, it can be constructed faster by building it bottom-
up, from the leaf level, instead of using the usual insert procedure. In bottom-up B+-
tree construction, after sorting the entries as we just described, we break up the sorted
entries into blocks, keeping as many entries in a block as can fit in the block; the
resulting blocks form the leaf level of the B+-tree. The minimum value in each block,
along with the pointer to the block, is used to create entries in the next level of the B+-
tree, pointing to the leaf blocks. Each further level of the tree is similarly constructed
using the minimum values associated with each node one level below, until the root is
created. We leave details as an exercise for the reader.

Most database systems implement efficient techniques based on sorting of entries,
and bottom-up construction, when creating an index on a relation, although they use
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Figure 14.23 B-tree equivalent of B+-tree in Figure 14.9.

the normal insertion procedure when tuples are added one at a time to a relation with
an existing index. Some database systems recommend that if a very large number of
tuples are added at once to an already existing relation, indices on the relation (other
than any index on the primary key) should be dropped, and then re-created after the
tuples are inserted, to take advantage of efficient bulk-loading techniques.

14.4.5 B-Tree Index Files

B-tree indices are similar to B+-tree indices. The primary distinction between the two
approaches is that a B-tree eliminates the redundant storage of search-key values. In the
B+-tree of Figure 14.9, the search keys “Einstein”, “Gold”, “Mozart”, and “Srinivasan”
appear in nonleaf nodes, in addition to appearing in the leaf nodes. Every search-key
value appears in some leaf node; several are repeated in nonleaf nodes.

A B-tree allows search-key values to appear only once (if they are unique), unlike
a B+-tree, where a value may appear in a nonleaf node, in addition to appearing in
a leaf node. Figure 14.23 shows a B-tree that represents the same search keys as the
B+-tree of Figure 14.9. Since search keys are not repeated in the B-tree, we may be
able to store the index in fewer tree nodes than in the corresponding B+-tree index.
However, since search keys that appear in nonleaf nodes appear nowhere else in the
B-tree, we are forced to include an additional pointer field for each search key in a
nonleaf node. These additional pointers point to either file records or buckets for the
associated search key.

It is worth noting that many database system manuals, articles in industry litera-
ture, and industry professionals use the term B-tree to refer to the data structure that
we call the B+-tree. In fact, it would be fair to say that in current usage, the term B-tree
is assumed to be synonymous with B+-tree. However, in this book we use the terms
B-tree and B+-tree as they were originally defined, to avoid confusion between the two
data structures.

A generalized B-tree leaf node appears in Figure 14.24a; a nonleaf node appears in
Figure 14.24b. Leaf nodes are the same as in B+-trees. In nonleaf nodes, the pointers
Pi are the tree pointers that we used also for B+-trees, while the pointers Bi are bucket
or file-record pointers. In the generalized B-tree in the figure, there are n − 1 keys in
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Figure 14.24 Typical nodes of a B-tree. (a) Leaf node. (b) Nonleaf node.

the leaf node, but there are m − 1 keys in the nonleaf node. This discrepancy occurs
because nonleaf nodes must include pointers Bi, thus reducing the number of search
keys that can be held in these nodes. Clearly, m < n, but the exact relationship between
m and n depends on the relative size of search keys and pointers.

The number of nodes accessed in a lookup in a B-tree depends on where the search
key is located. A lookup on a B+-tree requires traversal of a path from the root of the
tree to some leaf node. In contrast, it is sometimes possible to find the desired value in a
B-tree before reaching a leaf node. However, roughly n times as many keys are stored in
the leaf level of a B-tree as in the nonleaf levels, and, since n is typically large, the benefit
of finding certain values early is relatively small. Moreover, the fact that fewer search
keys appear in a nonleaf B-tree node, compared to B+-trees, implies that a B-tree has
a smaller fanout and therefore may have depth greater than that of the corresponding
B+-tree. Thus, lookup in a B-tree is faster for some search keys but slower for others,
although, in general, lookup time is still proportional to the logarithm of the number
of search keys.

Deletion in a B-tree is more complicated. In a B+-tree, the deleted entry always
appears in a leaf. In a B-tree, the deleted entry may appear in a nonleaf node. The proper
value must be selected as a replacement from the subtree of the node containing the
deleted entry. Specifically, if search key Ki is deleted, the smallest search key appearing
in the subtree of pointer Pi+ 1 must be moved to the field formerly occupied by Ki.
Further actions need to be taken if the leaf node now has too few entries. In contrast,
insertion in a B-tree is only slightly more complicated than is insertion in a B+-tree.

The space advantages of B-trees are marginal for large indices and usually do not
outweigh the disadvantages that we have noted. Thus, pretty much all database-system
implementations use the B+-tree data structure, even if (as we discussed earlier) they
refer to the data structure as a B-tree.

14.4.6 Indexing on Flash Storage

In our description of indexing so far, we have assumed that data are resident on mag-
netic disks. Although this assumption continues to be true for the most part, flash stor-
age capacities have grown significantly, and the cost of flash storage per gigabyte has
dropped correspondingly, and flash based SSD storage has now replaced magnetic-disk
storage for many applications.
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Standard B+-tree indices can continue to be used even on SSDs, with acceptable
update performance and significantly improved lookup performance compared to disk
storage.

Flash storage is structured as pages, and the B+-tree index structure can be used
with flash based SSDs. SSDs provide much faster random I/O operations than magnetic
disks, requiring only around 20 to 100 microseconds for a random page read, instead
of about 5 to 10 milliseconds with magnetic disks. Thus, lookups run much faster with
data on SSDs, compared to data on magnetic disks.

The performance of write operations is more complicated with flash storage. An
important difference between flash storage and magnetic disks is that flash storage does
not permit in-place updates to data at the physical level, although it appears to do so
logically. Every update turns into a copy+write of an entire flash-storage page, requiring
the old copy of the page to be erased subsequently. A new page can be written in 20 to
100 microseconds, but eventually old pages need to be erased to free up the pages for
further writes. Erases are done at the level of blocks containing multiple pages, and a
block erase takes 2 to 5 milliseconds.

The optimum B+-tree node size for flash storage is smaller than that with magnetic
disk, since flash pages are smaller than disk blocks; it makes sense for tree-node sizes
to match to flash pages, since larger nodes would lead to multiple page writes when a
node is updated. Although smaller pages lead to taller trees and more I/O operations
to access data, random page reads are so much faster with flash storage that the overall
impact on read performance is quite small.

Although random I/O is much cheaper with SSDs than with magnetic disks, bulk
loading still provides significant performance benefits, compared to tuple-at-a-time in-
sertion, with SSDs. In particular, bottom-up construction reduces the number of page
writes compared to tuple-at-a-time insertion, even if the entries are sorted on the search
key. Since page writes on flash cannot be done in place and require relatively expen-
sive block erases at a later point in time, the reduction of number of page writes with
bottom-up B+-tree construction provides significant performance benefits.

Several extensions and alternatives to B+-trees have been proposed for flash stor-
age, with a focus on reducing the number of erase operations that result due to page
rewrites. One approach is to add buffers to internal nodes of B+-trees and record up-
dates temporarily in buffers at higher levels, pushing the updates down to lower levels
lazily. The key idea is that when a page is updated, multiple updates are applied to-
gether, reducing the number of page writes per update. Another approach creates mul-
tiple trees and merges them; the log-structured merge tree and its variants are based on
this idea. In fact, both these approaches are also useful for reducing the cost of writes
on magnetic disks; we outline both these approaches in Section 14.8.

14.4.7 Indexing in Main Memory

Main memory today is large and cheap enough that many organizations can afford
to buy enough main memory to fit all their operational data in-memory. B+-trees can
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be used to index in-memory data, with no change to the structure. However, some
optimizations are possible.

First, since memory is costlier than disk space, internal data structures in main
memory databases have to be designed to reduce space requirements. Techniques that
we saw in Section 14.4.1 to improve B+-tree storage utilization can be used to reduce
memory usage for in-memory B+-trees.

Data structures that require traversal of multiple pointers are acceptable for in-
memory data, unlike in the case of disk-based data, where the cost of the I/Os to tra-
verse multiple pages would be excessively high. Thus, tree structures in main memory
databases can be relatively deep, unlike B+-trees.

The speed difference between cache memory and main memory, and the fact that
data are transferred between main memory and cache in units of a cache-line (typically
about 64 bytes), results in a situation where the relationship between cache and main
memory is not dissimilar to the relationship between main memory and disk (although
with smaller speed differences). When reading a memory location, if it is present in
cache the CPU can complete the read in 1 or 2 nanoseconds, whereas a cache miss
results in about 50 to 100 nanoseconds of delay to read data from main memory.

B+-trees with small nodes that fit in a cache line have been found to provide very
good performance with in-memory data. Such B+-trees allow index operations to be
completed with far fewer cache misses than tall, skinny tree structures such as binary
trees, since each node traversal is likely to result in a cache miss. Compared to B+-trees
with nodes that match cache lines, trees with large nodes also tend to have more cache
misses since locating data within a node requires either a full scan of the node content,
spanning multiple cache lines, or a binary search, which also results in multiple cache
misses.

For databases where data do not fit entirely in memory, but frequently used data
are often memory resident, the following idea is used to create B+-tree structures that
offer good performance on disk as well as in-memory. Large nodes are used to optimize
disk-based access, but instead of treating data in a node as single large array of keys and
pointers, the data within a node are structured as a tree, with smaller nodes that match
the size of a cache line. Instead of scanning data linearly or using binary search within
a node, the tree-structure within the large B+-tree node is used to access the data with
a minimal number of cache misses.

14.5 Hash Indices

Hashing is a widely used technique for building indices in main memory; such indices
may be transiently created to process a join operation (as we will see in Section 15.5.5)
or may be a permanent structure in a main memory database. Hashing has also been
used as a way of organizing records in a file, although hash file organizations are not
very widely used. We initially consider only in-memory hash indices, and we consider
disk-based hashing later in this section.
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In our description of hashing, we shall use the term bucket to denote a unit of
storage that can store one or more records. For in-memory hash indices, a bucket could
be a linked list of index entries or records. For disk-based indices, a bucket would be a
linked list of disk blocks. In a hash file organization, instead of record pointers, buckets
store the actual records; such structures only make sense with disk-resident data. The
rest of our description does not depend on whether the buckets store record pointers
or actual records.

Formally, let K denote the set of all search-key values, and let B denote the set
of all bucket addresses. A hash function h is a function from K to B. Let h denote a
hash function. With in-memory hash indices, the set of buckets is simply an array of
pointers, with the ith bucket at offset i. Each pointer stores the head of a linked list
containing the entries in that bucket.

To insert a record with search key Ki, we compute h(Ki), which gives the address
of the bucket for that record. We add the index entry for the record to the list at offset
i. Note that there are other variants of hash indices that handle the case of multiple
records in a bucket differently; the form described here is the most widely used variant
and is called overflow chaining.

Hash indexing using overflow chaining is also called closed addressing (or, less
commonly, closed hashing). An alternative hashing scheme called open addressing is
used in some applications, but is not suitable for most database indexing applications
since open addressing does not support deletes efficiently. We do not consider it further.

Hash indices efficiently support equality queries on search keys. To perform a
lookup on a search-key value Ki, we simply compute h(Ki), then search the bucket with
that address. Suppose that two search keys, K5 and K7, have the same hash value; that
is, h(K5) = h(K7). If we perform a lookup on K5, the bucket h(K5) contains records
with search-key values K5 and records with search-key values K7. Thus, we have to check
the search-key value of every record in the bucket to verify that the record is one that
we want.

Unlike B+-tree indices, hash indices do not support range queries; for example, a
query that wishes to retrieve all search key values v such that l ≤ v ≤ u cannot be
efficiently answered using a hash index.

Deletion is equally straightforward. If the search-key value of the record to be
deleted is Ki, we compute h(Ki), then search the corresponding bucket for that record
and delete the record from the bucket. With a linked list representation, deletion from
the linked list is straightforward.

In a disk-based hash index, when we insert a record, we locate the bucket by using
hashing on the search key, as described earlier. Assume for now that there is space in the
bucket to store the record. Then, the record is stored in that bucket. If the bucket does
not have enough space, a bucket overflow is said to occur. We handle bucket overflow by
using overflow buckets. If a record must be inserted into a bucket b, and b is already full,
the system provides an overflow bucket for b and inserts the record into the overflow
bucket. If the overflow bucket is also full, the system provides another overflow bucket,
and so on. All the overflow buckets of a given bucket are chained together in a linked
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Figure 14.25 Overflow chaining in a disk-based hash structure.

list, as in Figure 14.25. With overflow chaining, given search key k, the lookup algorithm
must then search not only bucket h(k), but also the overflow buckets linked from bucket
h(k).

Bucket overflow can occur if there are insufficient buckets for the given number of
records. If the number of records that are indexed is known ahead of time, the required
number of buckets can be allocated; we will shortly see how to deal with situations
where the number of records becomes significantly more than what was initially antic-
ipated. Bucket overflow can also occur if some buckets are assigned more records than
are others, resulting in one bucket overflowing even when other buckets still have a lot
of free space.

Such skew in the distribution of records can occur if multiple records may have
the same search key. But even if there is only one record per search key, skew may
occur if the chosen hash function results in nonuniform distribution of search keys.
This chance of this problem can be minimized by choosing hash functions carefully,
to ensure the distribution of keys across buckets is uniform and random. Nevertheless,
some skew may occur.

So that the probability of bucket overflow is reduced, the number of buckets is
chosen to be (nr∕fr) ∗ (1 + d), where nr denotes the number of records, fr denotes the
number of records per bucket, d is a fudge factor, typically around 0.2. With a fudge
factor of 0.2, about 20 percent of the space in the buckets will be empty. But the benefit
is that the probability of overflow is reduced.

Despite allocation of a few more buckets than required, bucket overflow can still
occur, especially if the number of records increases beyond what was initially expected.



14.6 Multiple-Key Access 661

Hash indexing as described above, where the number of buckets is fixed when the
index is created, is called static hashing. One of the problems with static hashing is that
we need to know how many records are going to be stored in the index. If over time a
large number of records are added, resulting in far more records than buckets, lookups
would have to search through a large number of records stored in a single bucket, or in
one or more overflow buckets, and would thus become inefficient.

To handle this problem, the hash index can be rebuilt with an increased number of
buckets. For example, if the number of records becomes twice the number of buckets,
the index can be rebuilt with twice as many buckets as before. However, rebuilding the
index has the drawback that it can take a long time if the relations are large, causing
disruption of normal processing. Several schemes have been proposed that allow the
number of buckets to be increased in a more incremental fashion. Such schemes are
called dynamic hashing techniques; the linear hashing technique and the extendable
hashing technique are two such schemes; see Section 24.5 for further details of these
techniques.

14.6 Multiple-Key Access

Until now, we have assumed implicitly that only one index on one attribute is used to
process a query on a relation. However, for certain types of queries, it is advantageous
to use multiple indices if they exist, or to use an index built on a multiattribute search
key.

14.6.1 Using Multiple Single-Key Indices

Assume that the instructor file has two indices: one for dept name and one for salary.
Consider the following query: “Find all instructors in the Finance department with
salary equal to $80,000.” We write

select ID
from instructor
where dept name = 'Finance' and salary = 80000;

There are three strategies possible for processing this query:

1. Use the index on dept name to find all records pertaining to the Finance depart-
ment. Examine each such record to see whether salary = 80000.

2. Use the index on salary to find all records pertaining to instructors with salary
of $80,000. Examine each such record to see whether the department name is
“Finance”.
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3. Use the index on dept name to find pointers to all records pertaining to the Fi-
nance department. Also, use the index on salary to find pointers to all records
pertaining to instructors with a salary of $80,000. Take the intersection of these
two sets of pointers. Those pointers that are in the intersection point to records
pertaining to instructors of the Finance department and with salary of $80,000.

The third strategy is the only one of the three that takes advantage of the existence of
multiple indices. However, even this strategy may be a poor choice if all of the following
hold:

• There are many records pertaining to the Finance department.

• There are many records pertaining to instructors with a salary of $80,000.

• There are only a few records pertaining to both the Finance department and in-
structors with a salary of $80,000.

If these conditions hold, we must scan a large number of pointers to produce a small
result. An index structure called a “bitmap index” can in some cases greatly speed up
the intersection operation used in the third strategy. Bitmap indices are outlined in
Section 14.9.

14.6.2 Indices on Multiple Keys

An alternative strategy for this case is to create and use an index on a composite search
key (dept name, salary)—that is, the search key consisting of the department name
concatenated with the instructor salary.

We can use an ordered (B+-tree) index on the preceding composite search key to
answer efficiently queries of the form

select ID
from instructor
where dept name = 'Finance' and salary = 80000;

Queries such as the following query, which specifies an equality condition on the first
attribute of the search key (dept name) and a range on the second attribute of the search
key (salary), can also be handled efficiently since they correspond to a range query on
the search attribute.

select ID
from instructor
where dept name = 'Finance' and salary < 80000;

We can even use an ordered index on the search key (dept name, salary) to answer the
following query on only one attribute efficiently:
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select ID
from instructor
where dept name = 'Finance';

An equality condition dept name = “Finance” is equivalent to a range query on the
range with lower end (Finance, −∞) and upper end (Finance, +∞). Range queries on
just the dept name attribute can be handled in a similar manner.

The use of an ordered-index structure on a composite search key, however, has a
few shortcomings. As an illustration, consider the query

select ID
from instructor
where dept name < 'Finance' and salary < 80000;

We can answer this query by using an ordered index on the search key (dept name,
salary): For each value of dept name that is less than “Finance” in alphabetic order, the
system locates records with a salary value of 80000. However, each record is likely to
be in a different disk block, because of the ordering of records in the file, leading to
many I/O operations.

The difference between this query and the previous two queries is that the condition
on the first attribute (dept name) is a comparison condition, rather than an equality
condition. The condition does not correspond to a range query on the search key.

To speed the processing of general composite search-key queries (which can involve
one or more comparison operations), we can use several special structures. We shall
consider bitmap indices in Section 14.9. There is another structure, called the R-tree,
that can be used for this purpose. The R-tree is an extension of the B+-tree to handle
indexing on multiple dimensions and is discussed in Section 14.10.1.

14.6.3 Covering Indices

Covering indices are indices that store the values of some attributes (other than the
search-key attributes) along with the pointers to the record. Storing extra attribute val-
ues is useful with secondary indices, since they allow us to answer some queries using
just the index, without even looking up the actual records.

For example, suppose that we have a nonclustering index on the ID attribute of the
instructor relation. If we store the value of the salary attribute along with the record
pointer, we can answer queries that require the salary (but not the other attribute, dept
name) without accessing the instructor record.

The same effect could be obtained by creating an index on the search key (ID,
salary), but a covering index reduces the size of the search key, allowing a larger fanout
in the nonleaf nodes, and potentially reducing the height of the index.
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14.7 Creation of Indices

Although the SQL standard does not specify any specific syntax for creation of indices,
most databases support SQL commands to create and drop indices. As we saw in Sec-
tion 4.6, indices can be created using the following syntax, which is supported by most
databases.

create index <index-name> on <relation-name> (<attribute-list>);

The attribute-list is the list of attributes of the relations that form the search key for the
index. Indices can be dropped using a command of the form

drop index <index-name>;

For example, to define an index named dept index on the instructor relation with
dept name as the search key, we write:

create index dept index on instructor (dept name);

To declare that an attribute or list of attributes is a candidate key, we can use the
syntax create unique index in place of create index above. Databases that support mul-
tiple types of indices also allow the type of index to be specified as part of the index
creation command. Refer to the manual of your database system to find out what index
types are available, and the syntax for specifying the index type.

When a user submits an SQL query that can benefit from using an index, the SQL
query processor automatically uses the index.

Indices can be very useful on attributes that participate in selection conditions or
join conditions of queries, since they can reduce the cost of queries significantly. Con-
sider a query that retrieves takes records for a particular student ID 12345 (expressed
in relational algebra as σID=12345(takes)). If there were an index on the ID attribute of
takes, pointers to the required records could be obtained with only a few I/O opera-
tions. Since students typically only take a few tens of courses, even fetching the actual
records would take only a few tens of I/O operations subsequently. In contrast, in the
absence of this index, the database system would be forced to read all takes records and
select those with matching ID values. Reading an entire relation can be very expensive
if there are a large number of students.

However, indices do have a cost, since they have to be updated whenever there is an
update to the underlying relation. Creating too many indices would slow down update
processing, since each update would have to also update all affected indices.

Sometimes performance problems are apparent during testing, for example, if a
query takes tens of seconds, it is clear that it is quite slow. However, suppose each
query takes 1 second to scan a large relation without an index, versus 10 milliseconds
to retrieve the same records using an index. If testers run one query at a time, queries
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respond quickly, even without an index. However, suppose that the queries are part of
a registration system that is used by a thousand students in an hour, and the actions
of each student require 10 such queries to be executed. The total execution time would
then be 10,000 seconds for queries submitted in 1 hour, that is, 3600 seconds. Students
are then likely to find that the registration system is extremely slow, or even totally unre-
sponsive. In contrast, if the required indices were present, the execution time required
would be 100 seconds for queries submitted in 1 hour, and the performance of the
registration system would be very good.

It is therefore important when building an application to figure out which indices
are important for performance and to create them before the application goes live.

If a relation is declared to have a primary key, most database systems automatically
create an index on the primary key. Whenever a tuple is inserted into the relation, the
index can be used to check that the primary-key constraint is not violated (i.e., there
are no duplicates on the primary-key value). Without the index on the primary key,
whenever a tuple is inserted, the entire relation has to be scanned to ensure that the
primary-key constraint is satisfied.

Although most database systems do not automatically create them, it is often
a good idea to create indices on foreign-key attributes, too. Most joins are between
foreign-key and primary-key attributes, and queries containing such joins, where there
is also a selection condition on the referenced table, are not uncommon. Consider a
query takes ⋈ σname=Shankar(student), where the foreign-key attribute ID of takes refer-
ences the primary-key attribute ID of student. Since very few students are likely to be
named Shankar, the index on the foreign-key attribute takes.ID can be used to efficiently
retrieve the takes tuples corresponding to these students.

Many database systems provide tools that help database administrators track what
queries and updates are being executed on the system and recommend the creation
of indices depending on the frequencies of the queries and updates. Such tools are
referred to as index tuning wizards or advisors.

Some recent cloud-based database systems also support completely automated cre-
ation of indices whenever the system finds that doing so would avoid repeated relation
scans, without the intervention of a database administrator.

14.8 Write-Optimized Index Structures

One of the drawbacks of the B+-tree index structure is that performance can be quite
poor with random writes. Consider an index that is too large to fit in memory; since
the bulk of the space is at the leaf level, and memory sizes are quite large these days,
we assume for simplicity that higher levels of the index fit in memory.

Now suppose writes or inserts are done in an order that does not match the sort
order of the index. Then, each write/insert is likely to touch a different leaf node; if the
number of leaf nodes is significantly larger than the buffer size, most of these leaf ac-
cesses would require a random read operation, as well as a subsequent write operation
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to write the updated leaf page back to disk. On a system with a magnetic disk, with a
10-millisecond access time, the index would support not more than 100 writes/inserts
per second per disk; and this is an optimistic estimate, assuming that the seek takes
the bulk of the time, and the head has not moved between the read and the write of a
leaf page. On a system with flash based SSDs, random I/O is much faster, but a page
write still has a significant cost since it (eventually) requires a page erase, which is an
expensive operation. Thus, the basic B+-tree structure is not ideal for applications that
need to support a very large number of random writes/inserts per second.

Several alternative index structures have been proposed to handle workloads with
a high write/insert rate. The log-structured merge tree or LSM tree and its variants are
write-optimized index structures that have seen very significant adoption. The buffer
tree is an alternative approach, which can be used with a variety of search tree struc-
tures. We outline these structures in the rest of this section.

14.8.1 LSM Trees

An LSM tree consists of several B+-trees, starting with an in-memory tree, called L0,
and on-disk trees L1, L2,… , Lk for some k, where k is called the level. Figure 14.26
depicts the structure of an LSM tree for k = 3.

An index lookup is performed by using separate lookup operations on each of
the trees L0,… , Lk, and merging the results of the lookups. (We assume for now that
there are only inserts, and no updates or deletes; index lookups in the presence of
updates/deletes are more complicated and are discussed later.)

When a record is first inserted into an LSM tree, it is inserted into the in-memory
B+-tree structure L0. A fairly large amount of memory space is allocated for this tree.
The tree grows as more inserts are processed, until it fills the memory allocated to it.
At this point, we need to move data from the in-memory structure to a B+-tree on disk.

L0

L1

L2

L3

Memory

Disk

Figure 14.26 Log-structured merge tree with three levels.
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If tree L1 is empty, the entire in-memory tree L0 is written to disk to create the
initial tree L1. However, if L1 is not empty, the leaf level of L0 is scanned in increasing
key order, and entries are merged with the leaf level entries of L1 (also scanned in
increasing key order). The merged entries are used to create a new B+-tree, using the
bottom-up build process. The new tree with the merged entries then replaces the old
L1. In either case, after entries of L0 have been moved to L1, all entries in L0 as well
as the old L1, if it existed, are deleted. Inserts can then be made to the now empty L0
in-memory.

Note that all entries in the leaf level of the old L1 tree, including those in leaf nodes
that do not have any updates, are copied to the new tree instead of performing updates
on the existing L1 tree node. This gives the following benefits.

1. The leaves of the new tree are sequentially located, avoiding random I/O during
subsequent merges.

2. The leaves are full, avoiding the overhead of partially occupied leaves that can
occur with page splits.

There is, however, a cost to using the LSM structure as described above: the entire
contents of the tree are copied each time a set of entries from L0 are copied into L1.
One of two techniques is used to reduce this cost:

1. Multiple levels are used, with level Li+1 trees having a maximum size that is k
times the maximum size of level Li trees. Thus, each record is written at most k
times at a particular level. The number of levels is proportional logk(I∕M) where
I is the number of entries and M is the number of entries that fit in the in-memory
tree L0.

2. Each level (other than L0) can have up to some number b of trees, instead of
just 1 tree. When an L0 tree is written to disk, a new L1 tree is created instead
of merging it with an existing L1 tree. When there are b such L1 trees, they are
merged into a single new L2 tree. Similarly, when there are b trees at level Li they
are merged into a new Li+1 tree.

This variant of the LSM tree is called a stepped-merge index. The stepped-
merge index decreases the insert cost significantly compared to having only one
tree per level, but it can result in an increase in query cost, since multiple trees
may need to be searched. Bitmap-based structures called Bloom filters, described
in Section 24.1, are used to reduce the number of lookups by efficiently detecting
that a search key is not present in a particular tree. Bloom filters occupy very
little space, but they are quite effective at reducing query cost.

Details of all these variants of LSM trees can be found in Section 24.2.
So far we have only described inserts and lookups. Deletes are handled in an in-

teresting manner. Instead of directly finding an index entry and deleting it, deletion
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results in insertion of a new deletion entry that indicates which index entry is to be
deleted. The process of inserting a deletion entry is identical to the process of inserting
a normal index entry.

However, lookups have to carry out an extra step. As mentioned earlier, lookups
retrieve entries from all the trees and merge them in sorted order of key value. If there
is a deletion entry for some entry, both of them would have the same key value. Thus,
a lookup would find both the deletion entry and the original entry for that key, which
is to be deleted. If a deletion entry is found, the to-be-deleted entry is filtered out and
not returned as part of the lookup result.

When trees are merged, if one of the trees contains an entry, and the other had
a matching deletion entry, the entries get matched up during the merge (both would
have the same key), and are both discarded.

Updates are handled in a manner similar to deletes, by inserting an update entry.
Lookups need to match update entries with the original entries and return the latest
value. The update is actually applied during a merge, when one tree has an entry and
another has its matching update entry; the merge process would find a record and an
update record with the same key, apply the update, and discard the update entry.

LSM trees were initially designed to reduce the write and seek overheads of mag-
netic disks. Flash based SSDs have a relatively low overhead for random I/O operations
since they do not require seek, and thus the benefit of avoiding random I/O that LSM
tree variants provide is not particularly important with SSDs.

However, recall that flash memory does not allow in-place update, and writing even
a single byte to a page requires the whole page to be rewritten to a new physical location;
the original location of the page needs to be erased eventually, which is a relatively
expensive operation. The reduction in number of writes using LSM tree variants, as
compared to traditional B+-trees, can provide substantial performance benefits when
LSM trees are used with SSDs.

A variant of the LSM tree similar to the stepped-merge index, with multiple trees in
each layer, was used in Google’s BigTable system, as well as in Apache HBase, the open
source clone of BigTable. These systems are built on top of distributed file systems that
allow appends to files but do not support updates to existing data. The fact that LSM
trees do not perform in-place update made LSM trees a very good fit for these systems.

Subsequently, a large number of BigData storage systems such as Apache Cas-
sandra, Apache AsterixDB, and MongoDB added support for LSM trees, with most
implementing versions with multiple trees in each layer. LSM trees are also supported
in MySQL (using the MyRocks storage engine) and in the embedded database systems
SQLite4 and LevelDB.

14.8.2 Buffer Tree

The buffer tree is an alternative to the log-structured merge tree approach. The key
idea behind the buffer tree is to associate a buffer with each internal node of a B+-tree,
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Figure 14.27 Structure of an internal node of a buffer tree.

including the root node; this is depicted pictorially in Figure 14.27. We first outline how
inserts and lookups are handled, and subsequently we outline how deletes and updates
are handled.

When an index record is inserted into the buffer tree, instead of traversing the tree
to the leaf, the index record is inserted into the buffer of the root. If the buffer becomes
full, each index record in the buffer is pushed one level down the tree to the appropriate
child node. If the child node is an internal node, the index record is added to the child
node’s buffer; if that buffer is full, all records in that buffer are similarly pushed down.
All records in a buffer are sorted on the search key before being pushed down. If the
child node is a leaf node, index records are inserted into the leaf in the usual manner. If
the insert results in an overfull leaf node, the node is split in the usual B+-tree manner,
with the split potentially propagating to parent nodes. Splitting of an overfull internal
node is done in the usual way, with the additional step of also splitting the buffer; the
buffer entries are partitioned between the two split nodes based on their key values.

Lookups are done by traversing the B+-tree structure in the usual way, to find leaves
that contain records matching the lookup key. But there is one additional step: at each
internal node traversed by a lookup, the node’s buffer must be examined to see if there
are any records matching the lookup key. Range lookups are done as in a normal B+-
tree, but they must also examine the buffers of all internal nodes above any of the leaf
nodes that are accessed.

Suppose the buffer at an internal node holds k times as many records as there are
child nodes. Then, on average, k records would be pushed down at a time to each child
(regardless of whether the child is an internal node or a leaf node). Sorting of records
before they are pushed ensures that all these records are pushed down consecutively.
The benefit of the buffer-tree approach for inserts is that the cost of accessing the child
node from storage, and of writing the updated node back, is amortized (divided), on
average, between k records. With sufficiently large k, the savings can be quite significant
compared to inserts in a regular B+-tree.

Deletes and updates can be processed in a manner similar to LSM trees, using
deletion entries or update entries. Alternatively, deletes and updates could be processed
using the normal B+-tree algorithms, at the risk of a higher I/O cost per delete/update
as compared to the cost when using deletion/update entries.

Buffer trees provide better worst-case complexity bounds on the number of I/O
operations than do LSM tree variants. In terms of read cost, buffer trees are significantly
faster than LSM trees. However, write operations on buffer trees involve random I/O,
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requiring more seeks, in contrast to sequential I/O operations with LSM tree variants.
For magnetic disk storage, the high cost of seeks results in buffer trees performing
worse than LSM trees on write-intensive workloads. LSM trees have thus found greater
acceptance for write-intensive workloads with data stored on magnetic disk. However,
since random I/O operations are very efficient on SSDs, and buffer trees tend to perform
fewer write operations overall compared to LSM trees, buffer trees can provide better
write performance on SSDs. Several index structures designed for flash storage make
use of the buffer concept introduced by buffer trees.

Another benefit of buffer trees is that the key idea of associating buffers with inter-
nal nodes, to reduce the number of writes, can be used with any type of tree-structured
index. For example, buffering has been used as a way of supporting bulk loading of spa-
tial indices such as R-trees (which we study in Section 14.10.1), as well as other types
of indices, for which sorting and bottom-up construction are not applicable.

Buffer trees have been implemented as part of the Generalized Search Tree (GiST)
index structure in PostgreSQL. The GiST index allows user-defined code to be executed
to implement search, update, and split operations on nodes and has been used to im-
plement R-trees and other spatial index structures.

14.9 Bitmap Indices

Bitmap indices are a specialized type of index designed for easy querying on multiple
keys, although each bitmap index is built on a single key. We describe key features of
bitmap indices in this section but provide further details in Section 24.3.

For bitmap indices to be used, records in a relation must be numbered sequentially,
starting from, say, 0. Given a number n, it must be easy to retrieve the record numbered
n. This is particularly easy to achieve if records are fixed in size and allocated on con-
secutive blocks of a file. The record number can then be translated easily into a block
number and a number that identifies the record within the block.

Consider a relation with an attribute that can take on only one of a small number
(e.g., 2 to 20) of values. For instance, consider a relation instructor info, which has (in
addition to an ID attribute) an attribute gender, which can take only values m (male)
or f (female). Suppose the relation also has an attribute income level, which stores the
income level, where income has been broken up into five levels: L1: 0–9999, L2: 10, 000
–19, 999, L3: 20, 000–39, 999, L4: 40, 000–74, 999, and L5: 75, 000 − ∞. Here, the
raw data can take on many values, but a data analyst has split the values into a small
number of ranges to simplify analysis of the data. An instance of this relation is shown
on the left side of Figure 14.28.

A bitmap is simply an array of bits. In its simplest form, a bitmap index on the
attribute A of relation r consists of one bitmap for each value that A can take. Each
bitmap has as many bits as the number of records in the relation. The ith bit of the
bitmap for value vj is set to 1 if the record numbered i has the value vj for attribute A.
All other bits of the bitmap are set to 0.
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Figure 14.28 Bitmap indices on relation instructor info.

In our example, there is one bitmap for the value m and one for f. The ith bit of
the bitmap for m is set to 1 if the gender value of the record numbered i is m. All other
bits of the bitmap for m are set to 0. Similarly, the bitmap for f has the value 1 for bits
corresponding to records with the value f for the gender attribute; all other bits have the
value 0. Figure 14.28 shows bitmap indices on the gender and income level attributes
of instructor info relation, for the relation instance shown in the same figure.

We now consider when bitmaps are useful. The simplest way of retrieving all
records with value m (or value f) would be to simply read all records of the relation and
select those records with value m (or f, respectively). The bitmap index doesn’t really
help to speed up such a selection. While it would allow us to read only those records
for a specific gender, it is likely that every disk block for the file would have to be read
anyway.

In fact, bitmap indices are useful for selections mainly when there are selections
on multiple keys. Suppose we create a bitmap index on attribute income level, which
we described earlier, in addition to the bitmap index on gender.

Consider now a query that selects women with income in the range 10,000 to
19,999. This query can be expressed as

select *
from instructor info
where gender = 'f' and income level = 'L2';

To evaluate this selection, we fetch the bitmaps for gender value f and the bitmap for
income level value L2, and perform an intersection (logical-and) of the two bitmaps. In
other words, we compute a new bitmap where bit i has value 1 if the ith bit of the two
bitmaps are both 1, and has a value 0 otherwise. In the example in Figure 14.28, the
intersection of the bitmap for gender = 𝖿 (01101) and the bitmap for income level = L2
(01000) gives the bitmap 01000.
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Since the first attribute can take two values, and the second can take five values, we
would expect only about 1 in 10 records, on an average, to satisfy a combined condition
on the two attributes. If there are further conditions, the fraction of records satisfying
all the conditions is likely to be quite small. The system can then compute the query
result by finding all bits with value 1 in the intersection bitmap and retrieving the cor-
responding records. If the fraction is large, scanning the entire relation would remain
the cheaper alternative.

More detailed coverage of bitmap indices, including how to efficiently implement
aggregate operations, how to speed up bitmap operations, and hybrid indices that com-
bine B+-trees with bitmaps, can be found in Section 24.3.

14.10 Indexing of Spatial and Temporal Data

Traditional index structures, such as hash indices and B+-trees, are not suitable for
indexing of spatial data, which are typically of two or more dimensions. Similarly,
when tuples have temporal intervals associated with them, and queries may specify
time points or time intervals, the traditional index structures may result in poor perfor-
mance.

14.10.1 Indexing of Spatial Data

In this section we provide an overview of techniques for indexing spatial data. Further
details can be found in Section 24.4. Spatial data refers to data referring to a point or
a region in two or higher dimensional space. For example, the location of restaurants,
identified by a (latitude, longitude) pair, is a form of spatial data. Similarly, the spatial
extent of a farm or a lake can be identified by a polygon, with each corner identified by
a (latitude, longitude) pair.

There are many forms of queries on spatial data, which need to be efficiently sup-
ported using indices. A query that asks for restaurants at a precisely specified (latitude,
longitude) pair can be answered by creating a B+-tree on the composite attribute (lati-
tude, longitude). However, such a B+-tree index cannot efficiently answer a query that
asks for all restaurants that are within a 500-meter radius of a user’s location, which
is identified by a (latitude, longitude) pair. Nor can such an index efficiently answer a
query that asks for all restaurants that are within a rectangular region of interest. Both
of these are forms of range queries, which retrieve objects within a specified area. Nor
can such an index efficiently answer a query that asks for the nearest restaurant to a
specified location; such a query is an example of a nearest neighbor query.

The goal of spatial indexing is to support different forms of spatial queries, with
range and nearest neighbor queries being of particular interest, since they are widely
used.

To understand how to index spatial data consisting of two or more dimensions, we
consider first the indexing of points in one-dimensional data. Tree structures, such as
binary trees and B+-trees, operate by successively dividing space into smaller parts. For
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Figure 14.29 Division of space by a k-d tree.

instance, each internal node of a binary tree partitions a one-dimensional interval in
two. Points that lie in the left partition go into the left subtree; points that lie in the right
partition go into the right subtree. In a balanced binary tree, the partition is chosen so
that approximately one-half of the points stored in the subtree fall in each partition.
Similarly, each level of a B+-tree splits a one-dimensional interval into multiple parts.

We can use that intuition to create tree structures for two-dimensional space as well
as in higher-dimensional spaces. A tree structure called a k-d tree was one of the early
structures used for indexing in multiple dimensions. Each level of a k-d tree partitions
the space into two. The partitioning is done along one dimension at the node at the top
level of the tree, along another dimension in nodes at the next level, and so on, cycling
through the dimensions. The partitioning proceeds in such a way that, at each node,
approximately one-half of the points stored in the subtree fall on one side and one-
half fall on the other. Partitioning stops when a node has less than a given maximum
number of points.

Figure 14.29 shows a set of points in two-dimensional space, and a k-d tree repre-
sentation of the set of points, where the maximum number of points in a leaf node has
been set at 1. Each line in the figure (other than the outside box) corresponds to a node
in the k-d tree. The numbering of the lines in the figure indicates the level of the tree at
which the corresponding node appears.

Rectangular range queries, which ask for points within a specified rectangular re-
gion, can be answered efficiently using a k-d tree as follows: Such a query essentially
specifies an interval on each dimension. For example, a range query may ask for all
points whose x dimension lies between 50 and 80, and y dimension lies between 40
and 70. Recall that each internal node splits space on one dimension, and as in a B+-
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tree. Range search can be performed by the following recursive procedure, starting at
the root:

1. Suppose the node is an internal node, and let it be split on a particular dimension,
say x, at a point xi. Entries in the left subtree have x values < xi, and those in the
right subtree have x values ≥ xi. If the query range contains xi, search is recur-
sively performed on both children. If the query range is to the left of xi, search is
recursively performed only on the left child, and otherwise it is performed only
on the right subtree.

2. If the node is a leaf, all entries that are contained in the query range are retrieved.

Nearest neighbor search is more complicated, and we shall not describe it here, but
nearest neighbor queries can also be answered quite efficiently using k-d trees.

The k-d-B tree extends the k-d tree to allow multiple child nodes for each internal
node, just as a B-tree extends a binary tree, to reduce the height of the tree. k-d-B trees
are better suited for secondary storage than k-d trees. Range search as outlined above
can be easily extended to k-d-B trees, and nearest neighbor queries too can be answered
quite efficiently using k-d-B trees.

There are a number of alternative index structures for spatial data. Instead of di-
viding the data one dimension at a time, quadtrees divide up a two-dimensional space
into four quadrants at each node of the tree. Details may be found in Section 24.4.1.

Indexing of regions of space, such as line segments, rectangles, and other polygons,
presents new problems. There are extensions of k-d trees and quadtrees for this task.
A key idea is that if a line segment or polygon crosses a partitioning line, it is split
along the partitioning line and represented in each of the subtrees in which its pieces
occur. Multiple occurrences of a line segment or polygon can result in inefficiencies in
storage, as well as inefficiencies in querying.

A storage structure called an R-tree is useful for indexing of objects spanning re-
gions of space, such as line segments, rectangles, and other polygons, in addition to
points. An R-tree is a balanced tree structure with the indexed objects stored in leaf
nodes, much like a B+-tree. However, instead of a range of values, a rectangular bound-
ing box is associated with each tree node. The bounding box of a leaf node is the small-
est rectangle parallel to the axes that contains all objects stored in the leaf node. The
bounding box of internal nodes is, similarly, the smallest rectangle parallel to the axes
that contains the bounding boxes of its child nodes. The bounding box of an object
(such as a polygon) is defined, similarly, as the smallest rectangle parallel to the axes
that contains the object.

Each internal node stores the bounding boxes of the child nodes along with the
pointers to the child nodes. Each leaf node stores the indexed objects.

Figure 14.30 shows an example of a set of rectangles (drawn with a solid line) and
the bounding boxes (drawn with a dashed line) of the nodes of an R-tree for the set of
rectangles. Note that the bounding boxes are shown with extra space inside them, to
make them stand out pictorially. In reality, the boxes would be smaller and fit tightly
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Figure 14.30 An R-tree.

on the objects that they contain; that is, each side of a bounding box B would touch at
least one of the objects or bounding boxes that are contained in B.

The R-tree itself is at the right side of Figure 14.30. The figure refers to the coor-
dinates of bounding box i as BBi in the figure. More details about R-trees, including
details of how to answer range queries using R-trees, may be found in Section 24.4.2.

Unlike some alternative structures for storing polygons and line segments, such as
R∗-trees and interval trees, R-trees store only one copy of each object, and we can ensure
easily that each node is at least half full. However, querying may be slower than with
some of the alternatives, since multiple paths have to be searched. However, because of
their better storage efficiency and their similarity to B-trees, R-trees and their variants
have proved popular in database systems that support spatial data.

14.10.2 Indexing Temporal Data

Temporal data refers to data that has an associated time period, as discussed in Section
7.10. The time period associated with a tuple indicates the period of time for which the
tuple is valid. For example, a particular course identifier may have its title changed at
some point of time. Thus, a course identifier is associated with a title for a given time
interval, after which the same course identifier is associated with a different title. This
can be modeled by having two or more tuples in the course relation with the same course
id, but different title values, each with its own valid time interval.

A time interval has a start time and an end time. Further a time interval indicates
whether the interval starts at the start time, or just after the start time, that is, whether
the interval is closed or open at the start time. Similarly, the time interval indicates
whether it is closed or open at the end time. To represent the fact that a tuple is valid
currently, until it is next updated, the end time is conceptually set to infinity (which
can be represented by a suitably large time, such as midnight of 9999-12-31).
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In general, the valid period for a particular fact may not consist of just one time
interval; for example, a student may be registered in a university one academic year,
take a leave of absence for the next year, and register again the following year. The
valid period for the student’s registration at the university is clearly not a single time
interval. However, any valid period can be represented by multiple intervals; thus, a
tuple with any valid period can be represented by multiple tuples, each of which has a
valid period that is a single time interval. We shall therefore only consider time intervals
when modeling temporal data.

Suppose we wish to retrieve the value of a tuple, given a value v for an attribute a,
and a point in time t1. We can create an index on the a, and use it to retrieve all tuples
with value v for attribute a. While such an index may be adequate if the number of time
intervals for that search-key value is small, in general the index may retrieve a number
of tuples whose time intervals do not include the time point t1.

A better solution is to use a spatial index such as an R-tree, with the indexed tuple
treated as having two dimensions, one being the indexed attribute a, and the other
being the time dimension. In this case, the tuple forms a line segment, with value v for
dimension a, and the valid time interval of the tuple as interval in the time dimension.

One issue that complicates the use of a spatial index such as an R-tree is that the
end time interval may be infinity (perhaps represented by a very large value), whereas
spatial indices typically assume that bounding boxes are finite, and may have poor
performance if bounding boxes are very large. This problem can be dealt with as follows:

• All current tuples (i.e., those with end time as infinity, which is perhaps represented
by a large time value) are stored in a separate index from those tuples that have a
non-infinite end time. The index on current tuples can be a B+-tree index on (a,
start time), where a is the indexed attribute and start time is the start time, while
the index for non-current tuples would be a spatial index such as an R-tree.

• Lookups for a key value v at a point in time ti would need to search on both indices;
the search on the current-tuple index would be for tuples with a = v, and start ts
≤ ti, which can be done by a simple range query. Queries with a time range can be
handled similarly.

Instead of using spatial indices that are designed for multidimensional data, one
can use specialized indices, such as the interval B+-tree, that are designed to index
intervals in a single dimension, and provide better complexity guarantees than R-tree
indices. However, most database implementations find it simpler to use R-tree indices
instead of implementing yet another type of index for time intervals.

Recall that with temporal data, more than one tuple may have the same value for a
primary key, as long as the tuples with the same primary-key value have non-overlapping
time intervals. Temporal indices on the primary key attribute can be used to efficiently
determine if the temporal primary key constraint is violated when a new tuple is in-
serted or the valid time interval of an existing tuple is updated.
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14.11 Summary

• Many queries reference only a small proportion of the records in a file. To reduce
the overhead in searching for these records, we can construct indices for the files
that store the database.

• There are two types of indices that we can use: dense indices and sparse indices.
Dense indices contain entries for every search-key value, whereas sparse indices
contain entries only for some search-key values.

• If the sort order of a search key matches the sort order of a relation, an index on
the search key is called a clustering index. The other indices are called nonclustering
or secondary indices. Secondary indices improve the performance of queries that
use search keys other than the search key of the clustering index. However, they
impose an overhead on modification of the database.

• Index-sequential files are one of the oldest index schemes used in database systems.
To permit fast retrieval of records in search-key order, records are stored sequen-
tially, and out-of-order records are chained together. To allow fast random access,
we use an index structure.

• The primary disadvantage of the index-sequential file organization is that perfor-
mance degrades as the file grows. To overcome this deficiency, we can use a B+-tree
index.

• A B+-tree index takes the form of a balanced tree, in which every path from the
root of the tree to a leaf of the tree is of the same length. The height of a B+-
tree is proportional to the logarithm to the base N of the number of records in the
relation, where each nonleaf node stores N pointers; the value of N is often around
50 or 100. B+-trees are much shorter than other balanced binary-tree structures
such as AVL trees, and therefore require fewer disk accesses to locate records.

• Lookup on B+-trees is straightforward and efficient. Insertion and deletion, how-
ever, are somewhat more complicated, but still efficient. The number of operations
required for lookup, insertion, and deletion on B+-trees is proportional to the log-
arithm to the base N of the number of records in the relation, where each nonleaf
node stores N pointers.

• We can use B+-trees for indexing a file containing records, as well as to organize
records into a file.

• B-tree indices are similar to B+-tree indices. The primary advantage of a B-tree is
that the B-tree eliminates the redundant storage of search-key values. The major
disadvantages are overall complexity and reduced fanout for a given node size.
System designers almost universally prefer B+-tree indices over B-tree indices in
practice.
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• Hashing is a widely used technique for building indices in main memory as well
as in disk-based systems.

• Ordered indices such as B+-trees can be used for selections based on equality con-
ditions involving single attributes. When multiple attributes are involved in a selec-
tion condition, we can intersect record identifiers retrieved from multiple indices.

• The basic B+-tree structure is not ideal for applications that need to support a
very large number of random writes/inserts per second. Several alternative index
structures have been proposed to handle workloads with a high write/insert rate,
including the log-structured merge tree and the buffer tree.

• Bitmap indices provide a very compact representation for indexing attributes with
very few distinct values. Intersection operations are extremely fast on bitmaps,
making them ideal for supporting queries on multiple attributes.

• R-trees are a multidimensional extension of B-trees; with variants such as R+-trees
and R∗-trees, they have proved popular in spatial databases. Index structures that
partition space in a regular fashion, such as quadtrees, help in processing spatial
join queries.

• There are a number of techniques for indexing temporal data, including the use of
spatial index and the interval B+-tree specialized index.

Review Terms

• Index type

° Ordered indices

° Hash indices

• Evaluation factors

° Access types

° Access time

° Insertion time

° Deletion time

° Space overhead

• Search key

• Ordered indices

° Ordered index

° Clustering index

° Primary indices;

° Nonclustering indices

° Secondary indices

° Index-sequential files

• Index entry

• Index record

• Dense index

• Sparse index

• Multilevel indices

• Nonunique search key

• Composite search key

• B+-tree index files

° Balanced tree

° Leaf nodes
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° Nonleaf nodes

° Internal nodes

° Range queries

° Node split

° Node coalesce

° Redistribute of pointers

° Uniquifier

• B+-tree extensions

° Prefix compression

° Bulk loading

° Bottom-up B+-tree construction

• B-tree indices

• Hash file organization

° Hash function

° Bucket

° Overflow chaining

° Closed addressing

° Closed hashing

° Bucket overflow

° Skew

° Static hashing

° Dynamic hashing

• Multiple-key access

• Covering indices

• Write-optimized index structure

° Log-structured merge (LSM) tree

° Stepped-merge index

° Buffer tree

• Bitmap index

• Bitmap intersection

• Indexing of spatial data

° Range queries

° Nearest neighbor queries

° k-d tree

° k-d-B tree

° Quadtrees

° R-tree

° Bounding box

• Temporal indices

• Time interval

• Closed interval

• Open interval

Practice Exercises

14.1 Indices speed query processing, but it is usually a bad idea to create indices on
every attribute, and every combination of attributes, that are potential search
keys. Explain why.

14.2 Is it possible in general to have two clustering indices on the same relation for
different search keys? Explain your answer.

14.3 Construct a B+-tree for the following set of key values:

(2, 3, 5, 7, 11, 17, 19, 23, 29, 31)
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Assume that the tree is initially empty and values are added in ascending order.
Construct B+-trees for the cases where the number of pointers that will fit in
one node is as follows:

a. Four

b. Six

c. Eight

14.4 For each B+-tree of Exercise 14.3, show the form of the tree after each of the
following series of operations:

a. Insert 9.

b. Insert 10.

c. Insert 8.

d. Delete 23.

e. Delete 19.

14.5 Consider the modified redistribution scheme for B+-trees described on page
651. What is the expected height of the tree as a function of n?

14.6 Give pseudocode for a B+-tree function findRangeIterator(), which is like the
function findRange(), except that it returns an iterator object, as described
in Section 14.3.2. Also give pseudocode for the iterator class, including the
variables in the iterator object, and the next() method.

14.7 What would the occupancy of each leaf node of a B+-tree be if index entries
were inserted in sorted order? Explain why.

14.8 Suppose you have a relation r with nr tuples on which a secondary B+-tree is
to be constructed.

a. Give a formula for the cost of building the B+-tree index by inserting one
record at a time. Assume each block will hold an average of f entries and
that all levels of the tree above the leaf are in memory.

b. Assuming a random disk access takes 10 milliseconds, what is the cost
of index construction on a relation with 10 million records?

c. Write pseudocode for bottom-up construction of a B+-tree, which was
outlined in Section 14.4.4. You can assume that a function to efficiently
sort a large file is available.

14.9 The leaf nodes of a B+-tree file organization may lose sequentiality after a se-
quence of inserts.

a. Explain why sequentiality may be lost.
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b. To minimize the number of seeks in a sequential scan, many databases
allocate leaf pages in extents of n blocks, for some reasonably large n.
When the first leaf of a B+-tree is allocated, only one block of an n-block
unit is used, and the remaining pages are free. If a page splits, and its
n-block unit has a free page, that space is used for the new page. If the
n-block unit is full, another n-block unit is allocated, and the first n∕2 leaf
pages are placed in one n-block unit and the remaining one in the second
n-block unit. For simplicity, assume that there are no delete operations.
i. What is the worst-case occupancy of allocated space, assuming no

delete operations, after the first n-block unit is full?
ii. Is it possible that leaf nodes allocated to an n-node block unit are not

consecutive, that is, is it possible that two leaf nodes are allocated
to one n-node block, but another leaf node in between the two is
allocated to a different n-node block?

iii. Under the reasonable assumption that buffer space is sufficient to
store an n-page block, how many seeks would be required for a leaf-
level scan of the B+-tree, in the worst case? Compare this number
with the worst case if leaf pages are allocated a block at a time.

iv. The technique of redistributing values to siblings to improve space
utilization is likely to be more efficient when used with the preceding
allocation scheme for leaf blocks. Explain why.

14.10 Suppose you are given a database schema and some queries that are executed
frequently. How would you use the above information to decide what indices
to create?

14.11 In write-optimized trees such as the LSM tree or the stepped-merge index, en-
tries in one level are merged into the next level only when the level is full.
Suggest how this policy can be changed to improve read performance during
periods when there are many reads but no updates.

14.12 What trade offs do buffer trees pose as compared to LSM trees?

14.13 Consider the instructor relation shown in Figure 14.1.

a. Construct a bitmap index on the attribute salary, dividing salary values
into four ranges: below 50,000, 50,000 to below 60,000, 60,000 to below
70,000, and 70,000 and above.

b. Consider a query that requests all instructors in the Finance department
with salary of 80,000 or more. Outline the steps in answering the query,
and show the final and intermediate bitmaps constructed to answer the
query.

14.14 Suppose you have a relation containing the x, y coordinates and names of
restaurants. Suppose also that the only queries that will be asked are of the
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following form: The query specifies a point and asks if there is a restaurant ex-
actly at that point. Which type of index would be preferable, R-tree or B-tree?
Why?

14.15 Suppose you have a spatial database that supports region queries with circular
regions, but not nearest-neighbor queries. Describe an algorithm to find the
nearest neighbor by making use of multiple region queries.

Exercises

14.16 When is it preferable to use a dense index rather than a sparse index? Explain
your answer.

14.17 What is the difference between a clustering index and a secondary index?

14.18 For each B+-tree of Exercise 14.3, show the steps involved in the following
queries:

a. Find records with a search-key value of 11.

b. Find records with a search-key value between 7 and 17, inclusive.

14.19 The solution presented in Section 14.3.5 to deal with nonunique search keys
added an extra attribute to the search key. What effect could this change have
on the height of the B+-tree?

14.20 Suppose there is a relation r(A, B, C), with a B+-tree index with search key
(A, B).

a. What is the worst-case cost of finding records satisfying 10 < A < 50
using this index, in terms of the number of records retrieved n1 and the
height h of the tree?

b. What is the worst-case cost of finding records satisfying 10 < A < 50 ∧
5 < B < 10 using this index, in terms of the number of records n2 that
satisfy this selection, as well as n1 and h defined above?

c. Under what conditions on n1 and n2 would the index be an efficient way
of finding records satisfying 10 < A < 50 ∧ 5 < B < 10?

14.21 Suppose you have to create a B+-tree index on a large number of names, where
the maximum size of a name may be quite large (say 40 characters) and the av-
erage name is itself large (say 10 characters). Explain how prefix compression
can be used to maximize the average fanout of nonleaf nodes.

14.22 Suppose a relation is stored in a B+-tree file organization. Suppose secondary
indices store record identifiers that are pointers to records on disk.
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a. What would be the effect on the secondary indices if a node split hap-
pened in the file organization?

b. What would be the cost of updating all affected records in a secondary
index?

c. How does using the search key of the file organization as a logical record
identifier solve this problem?

d. What is the extra cost due to the use of such logical record identifiers?

14.23 What trade-offs do write-optimized indices pose as compared to B+-tree in-
dices?

14.24 An existence bitmap has a bit for each record position, with the bit set to 1
if the record exists, and 0 if there is no record at that position (for example,
if the record were deleted). Show how to compute the existence bitmap from
other bitmaps. Make sure that your technique works even in the presence of
null values by using a bitmap for the value null.

14.25 Spatial indices that can index spatial intervals can conceptually be used to in-
dex temporal data by treating valid time as a time interval. What is the problem
with doing so, and how is the problem solved?

14.26 Some attributes of relations may contain sensitive data, and may be required
to be stored in an encrypted fashion. How does data encryption affect index
schemes? In particular, how might it affect schemes that attempt to store data
in sorted order?

Further Reading

B-tree indices were first introduced in [Bayer and McCreight (1972)] and [Bayer
(1972)]. B+-trees are discussed in [Comer (1979)],[Bayer and Unterauer (1977)], and
[Knuth (1973)]. [Gray and Reuter (1993)] provide a good description of issues in the
implementation of B+-trees.

The log-structured merge (LSM) tree is presented in [O’Neil et al. (1996)], while
the stepped merge tree is presented in [Jagadish et al. (1997)]. The buffer tree is
presented in [Arge (2003)]. [Vitter (2001)] provides an extensive survey of external-
memory data structures and algorithms.

Bitmap indices are described in [O’Neil and Quass (1997)]. They were first in-
troduced in the IBM Model 204 file manager on the AS 400 platform. They provide
very large speedups on certain types of queries and are today implemented on most
database systems.

[Samet (2006)] and [Shekhar and Chawla (2003)] provide textbook coverage of
spatial data structures and spatial databases. [Bentley (1975)] describes the k-d tree,
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and [Robinson (1981)] describes the k-d-B tree. The R-tree was originally presented in
[Guttman (1984)].
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PART 6

QUERY PROCESSING AND
OPTIMIZATION

User queries have to be executed on the database contents, which reside on storage
devices. It is usually convenient to break up queries into smaller operations, roughly
corresponding to the relational-algebra operations. Chapter 15 describes how queries
are processed, presenting algorithms for implementing individual operations and then
outlining how the operations are executed in synchrony to process a query. The algo-
rithms covered include those that can work on data much larger than main-memory,
as well as those that are optimized for in-memory data.

There are many alternative ways of processing a query, and these can have widely
varying costs. Query optimization refers to the process of finding the lowest-cost
method of evaluating a given query. Chapter 16 describes the process of query opti-
mization, covering techniques for estimating query plan cost, and techniques for gen-
erating alternative query plans and picking the lowest cost plans. The chapter also
describes other optimization techniques, such as materialized views, for speeding up
query processing.
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CHAP T E R 15
Query Processing

Query processing refers to the range of activities involved in extracting data from a
database. The activities include translation of queries in high-level database languages
into expressions that can be used at the physical level of the file system, a variety of
query-optimizing transformations, and actual evaluation of queries.

15.1 Overview

The steps involved in processing a query appear in Figure 15.1. The basic steps are:

1. Parsing and translation.

2. Optimization.

3. Evaluation.

Before query processing can begin, the system must translate the query into a us-
able form. A language such as SQL is suitable for human use, but it is ill suited to be
the system’s internal representation of a query. A more useful internal representation
is one based on the extended relational algebra.

Thus, the first action the system must take in query processing is to translate a given
query into its internal form. This translation process is similar to the work performed
by the parser of a compiler. In generating the internal form of the query, the parser
checks the syntax of the user’s query, verifies that the relation names appearing in the
query are names of the relations in the database, and so on. The system constructs a
parse-tree representation of the query, which it then translates into a relational-algebra
expression. If the query was expressed in terms of a view, the translation phase also
replaces all uses of the view by the relational-algebra expression that defines the view.1

Most compiler texts cover parsing in detail.

1For materialized views, the expression defining the view has already been evaluated and stored. Therefore, the stored
relation can be used, instead of uses of the view being replaced by the expression defining the view. Recursive views are
handled differently, via a fixed-point procedure, as discussed in Section 5.4 and Section 27.4.7.
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query
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translator

evaluation engine

relational-algebra

expression

execution plan

optimizer

data statistics

about data

Figure 15.1 Steps in query processing.

Given a query, there are generally a variety of methods for computing the answer.
For example, we have seen that, in SQL, a query could be expressed in several differ-
ent ways. Each SQL query can itself be translated into a relational-algebra expression in
one of several ways. Furthermore, the relational-algebra representation of a query spec-
ifies only partially how to evaluate a query; there are usually several ways to evaluate
relational-algebra expressions. As an illustration, consider the query:

select salary
from instructor
where salary < 75000;

This query can be translated into either of the following relational-algebra expressions:

• σsalary<75000 (Πsalary (instructor))

• Πsalary (σsalary<75000 (instructor))

Further, we can execute each relational-algebra operation by one of several dif-
ferent algorithms. For example, to implement the preceding selection, we can search
every tuple in instructor to find tuples with salary less than 75000. If a B+-tree index is
available on the attribute salary, we can use the index instead to locate the tuples.

To specify fully how to evaluate a query, we need not only to provide the relational-
algebra expression, but also to annotate it with instructions specifying how to evaluate
each operation. Annotations may state the algorithm to be used for a specific opera-
tion or the particular index or indices to use. A relational-algebra operation annotated
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with instructions on how to evaluate it is called an evaluation primitive. A sequence of
primitive operations that can be used to evaluate a query is a query-execution plan or
query-evaluation plan. Figure 15.2 illustrates an evaluation plan for our example query,
in which a particular index (denoted in the figure as “index 1”) is specified for the se-
lection operation. The query-execution engine takes a query-evaluation plan, executes
that plan, and returns the answers to the query.

The different evaluation plans for a given query can have different costs. We do
not expect users to write their queries in a way that suggests the most efficient evalua-
tion plan. Rather, it is the responsibility of the system to construct a query-evaluation
plan that minimizes the cost of query evaluation; this task is called query optimization.
Chapter 16 describes query optimization in detail.

Once the query plan is chosen, the query is evaluated with that plan, and the result
of the query is output.

The sequence of steps already described for processing a query is representative;
not all databases exactly follow those steps. For instance, instead of using the relational-
algebra representation, several databases use an annotated parse-tree representation
based on the structure of the given SQL query. However, the concepts that we describe
here form the basis of query processing in databases.

In order to optimize a query, a query optimizer must know the cost of each opera-
tion. Although the exact cost is hard to compute, since it depends on many parameters
such as actual memory available to the operation, it is possible to get a rough estimate
of execution cost for each operation.

In this chapter, we study how to evaluate individual operations in a query plan and
how to estimate their cost; we return to query optimization in Chapter 16. Section 15.2
outlines how we measure the cost of a query. Section 15.3 through Section 15.6 cover
the evaluation of individual relational-algebra operations. Several operations may be
grouped together into a pipeline, in which each of the operations starts working on its
input tuples even as they are being generated by another operation. In Section 15.7, we
examine how to coordinate the execution of multiple operations in a query evaluation

salary

salary < 75000; use index 1

instructor

σ

π

Figure 15.2 A query-evaluation plan.
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plan, in particular, how to use pipelined operations to avoid writing intermediate results
to disk.

15.2 Measures of Query Cost

There are multiple possible evaluation plans for a query, and it is important to be able
to compare the alternatives in terms of their (estimated) cost, and choose the best plan.
To do so, we must estimate the cost of individual operations and combine them to get
the cost of a query evaluation plan. Thus, as we study evaluation algorithms for each
operation later in this chapter, we also outline how to estimate the cost of the operation.

The cost of query evaluation can be measured in terms of a number of different
resources, including disk accesses, CPU time to execute a query, and, in parallel and
distributed database systems, the cost of communication. (We discuss parallel and dis-
tributed database systems in Chapter 21 through Chapter 23.)

For large databases resident on magnetic disk, the I/O cost to access data from
disk usually dominates the other costs; thus, early cost models focused on the I/O cost
when estimating the cost of query operations. However, with flash storage becoming
larger and less expensive, most organizational data today can be stored on solid-state
drives (SSDs) in a cost effective manner. In addition, main memory sizes have increased
significantly, and the cost of main memory has decreased enough in recent years that for
many organizations, organizational data can be stored cost-effectively in main memory
for querying, although it must of course be stored on flash or magnetic storage to ensure
persistence.

With data resident in-memory or on SSDs, I/O cost does not dominate the overall
cost, and we must include CPU costs when computing the cost of query evaluation.
We do not include CPU costs in our model to simplify our presentation, but note that
they can be approximated by simple estimators. For example, the cost model used by
PostgreSQL (as of 2018) includes (i) a CPU cost per tuple, (ii) a CPU cost for processing
each index entry (in addition to the I/O cost), and (iii) a CPU cost per operator or
function (such as arithmetic operators, comparison operators, and related functions).
The database has default values for each of these costs, which are multiplied by the
number of tuples processed, the number of index entries processed, and the number
of operators and functions executed, respectively. The defaults can be changed as a
configuration parameter.

We use the number of blocks transferred from storage and the number of random I/O
accesses, each of which will require a disk seek on magnetic storage, as two important
factors in estimating the cost of a query-evaluation plan. If the disk subsystem takes an
average of tT seconds to transfer a block of data and has an average block-access time
(disk seek time plus rotational latency) of tS seconds, then an operation that transfers
b blocks and performs S random I/O accesses would take b ∗ tT + S ∗ tS seconds.

The values of tT and tS must be calibrated for the disk system used. We summarize
performance data here; see Chapter 12 for full details on storage systems. Typical values
for high-end magnetic disks in the year 2018 would be tS = 4 milliseconds and tT = 0.1
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milliseconds, assuming a 4-kilobyte block size and a transfer rate of 40 megabytes per
second.2

Although SSDs do not perform a physical seek operation, they have an overhead
for initiating an I/O operation; we refer to the latency from the time an I/O request
is made to the time when the first byte of data is returned as tS. For mid-range SSDs
in 2018 using the SATA interface, tS is around 90 microseconds, while the transfer
time tT is about 10 microseconds for a 4-kilobyte block. Thus, SSDs can support about
10,000 random 4-kilobyte reads per second, and they support 400 megabytes/second
throughput on sequential reads using the standard SATA interface. SSDs using the PCIe
3.0x4 interface have smaller tS, of 20 to 60 microseconds, and much higher transfer
rates of around 2 gigabytes/second, corresponding to tT of 2 microseconds, allowing
around 50,000 to 15,000 random 4-kilobyte block reads per second, depending on the
model.3

For data that are already present in main memory, reads happen at the unit of
cache lines, instead of disk blocks. But assuming entire blocks of data are read, the
time to transfer tT for a 4-kilobyte block is less than 1 microsecond for data in memory.
The latency to fetch data from memory, tS, is less than 100 nanoseconds.

Given the wide diversity of speeds of different storage devices, database systems
must ideally perform test seeks and block transfers to estimate tS and tT for specific
systems/storage devices, as part of the software installation process. Databases that do
not automatically infer these numbers often allow users to specify the numbers as part
of configuration files.

We can refine our cost estimates further by distinguishing block reads from block
writes. Block writes are typically about twice as expensive as reads on magnetic disks,
since disk systems read sectors back after they are written to verify that the write was
successful. On PCIe flash, write throughput may be about 50 percent less than read
throughput, but the difference is almost completely masked by the limited speed of
SATA interfaces, leading to write throughput matching read throughput. However, the
throughput numbers do not reflect the cost of erases that are required if blocks are
overwritten. For simplicity, we ignore this detail.

The cost estimates we give do not include the cost of writing the final result of
an operation back to disk. These are taken into account separately where required.

2Storage device specifications often mention the transfer rate, and the number of random I/O operations that can be
carried out in 1 second. The values tT can be computed as block size divided by transfer rate, while tS can be computed
as (1∕N) − tT , where N is the number of random I/O operations per second that the device supports, since a random
I/O operation performs a random I/O access, followed by data transfer of 1 block.
3The I/O operations per second number used here are for the case of sequential I/O requests, usually denoted as QD-1
in the SSD specifications. SSDs can support multiple random requests in parallel, with 32 to 64 parallel requests being
commonly supported; an SSD with SATA interface supports nearly 100,000 random 4-kilobyte block reads in a second
if multiple requests are sent in parallel, while PCIe disks can support over 350,000 random 4-kilobyte block reads per
second; these numbers are referred to as the QD-32 or QD-64 numbers depending on how many requests are sent in
parallel. We do not explore parallel requests in our cost model, since we only consider sequential query processing
algorithms in this chapter. Shared-memory parallel query processing techniques, discussed in Section 22.6, can be used
to exploit the parallel request capabilities of SSDs.
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The costs of all the algorithms that we consider depend on the size of the buffer in
main memory. In the best case, if data fits in the buffer, the data can be read into
the buffers, and the disk does not need to be accessed again. In the worst case, we
may assume that the buffer can hold only a few blocks of data—approximately one
block per relation. However, with large main memories available today, such worst-case
assumptions are overly pessimistic. In fact, a good deal of main memory is typically
available for processing a query, and our cost estimates use the amount of memory
available to an operator, M , as a parameter. In PostgreSQL the total memory available
to a query, called the effective cache size, is assumed by default to be 4 gigabytes, for
the purpose of cost estimation; if a query has several operators that run concurrently,
the available memory has to be divided amongst the operators.

In addition, although we assume that data must be read from disk initially, it is
possible that a block that is accessed is already present in the in-memory buffer. Again,
for simplicity, we ignore this effect; as a result, the actual disk-access cost during the
execution of a plan may be less than the estimated cost. To account (at least partially)
for buffer residence, PostgreSQL uses the following “hack”: the cost of a random page
read is assumed to be 1/10th of the actual random page read cost, to model the situation
that 90% of reads are found to be resident in cache. Further, to model the situation that
internal nodes of B+-tree indices are traversed often, most database systems assume
that all internal nodes are present in the in-memory buffer, and assume that a traversal
of an index only incurs a single random I/O cost for the leaf node.

The response time for a query-evaluation plan (that is, the wall-clock time required
to execute the plan), assuming no other activity is going on in the computer, would
account for all these costs, and could be used as a measure of the cost of the plan.
Unfortunately, the response time of a plan is very hard to estimate without actually
executing the plan, for the following two reasons:

1. The response time depends on the contents of the buffer when the query begins
execution; this information is not available when the query is optimized and is
hard to account for even if it were available.

2. In a system with multiple disks, the response time depends on how accesses are
distributed among disks, which is hard to estimate without detailed knowledge
of data layout on disk.

Interestingly, a plan may get a better response time at the cost of extra resource con-
sumption. For example, if a system has multiple disks, a plan A that requires extra disk
reads, but performs the reads in parallel across multiple disks may, finish faster than
another plan B that has fewer disk reads, but performs reads from only one disk at a
time. However, if many instances of a query using plan A run concurrently, the overall
response time may actually be more than if the same instances are executed using plan
B, since plan A generates more load on the disks.

As a result, instead of trying to minimize the response time, optimizers generally
try to minimize the total resource consumption of a query plan. Our model of estimating
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the total disk access time (including seek and data transfer) is an example of such a
resource consumption–based model of query cost.

15.3 Selection Operation

In query processing, the file scan is the lowest-level operator to access data. File scans
are search algorithms that locate and retrieve records that fulfill a selection condition.
In relational systems, a file scan allows an entire relation to be read in those cases where
the relation is stored in a single, dedicated file.

15.3.1 Selections Using File Scans and Indices

Consider a selection operation on a relation whose tuples are stored together in one
file. The most straightforward way of performing a selection is as follows:

• A1 (linear search). In a linear search, the system scans each file block and tests
all records to see whether they satisfy the selection condition. An initial seek is
required to access the first block of the file. In case blocks of the file are not stored
contiguously, extra seeks may be required, but we ignore this effect for simplicity.

Although it may be slower than other algorithms for implementing selection,
the linear-search algorithm can be applied to any file, regardless of the ordering
of the file, or the availability of indices, or the nature of the selection operation.
The other algorithms that we shall study are not applicable in all cases, but when
applicable they are generally faster than linear search.

Cost estimates for linear scan, as well as for other selection algorithms, are shown
in Figure 15.3. In the figure, we use hi to represent the height of the B+-tree, and assume
a random I/O operation is required for each node in the path from the root to a leaf.
Most real-life optimizers assume that the internal nodes of the tree are present in the
in-memory buffer since they are frequently accessed, and usually less than 1 percent of
the nodes of a B+-tree are nonleaf nodes. The cost formulae can be correspondingly
simplified, charging only one random I/O cost for a traversal from the root to a leaf, by
setting hi = 1.

Index structures are referred to as access paths, since they provide a path through
which data can be located and accessed. In Chapter 14, we pointed out that it is efficient
to read the records of a file in an order corresponding closely to physical order. Recall
that a clustering index (also referred to as a primary index) is an index that allows the
records of a file to be read in an order that corresponds to the physical order in the
file. An index that is not a clustering index is called a secondary index or a nonclustering
index.
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Search algorithms that use an index are referred to as index scans. We use the
selection predicate to guide us in the choice of the index to use in processing the query.
Search algorithms that use an index are:

Algorithm Cost Reason
A1 Linear Search tS + br ∗ tT One initial seek plus br block transfers,

where br denotes the number of blocks in
the file.

A1 Linear Search,
Equality on Key

Average case
tS+(br∕2) ∗ tT

Since at most one record satisfies the con-
dition, scan can be terminated as soon as
the required record is found. In the worst
case, br block transfers are still required.

A2 Clustering
B+-tree Index,
Equality on Key

(hi + 1) ∗
(tT + tS)

(Where hi denotes the height of the in-
dex.) Index lookup traverses the height of
the tree plus one I/O to fetch the record;
each of these I/O operations requires a
seek and a block transfer.

A3 Clustering
B+-tree Index,
Equality on
Non-key

hi ∗ (tT + tS)+
tS + b ∗ tT

One seek for each level of the tree, one
seek for the first block. Here b is the num-
ber of blocks containing records with the
specified search key, all of which are read.
These blocks are leaf blocks assumed to be
stored sequentially (since it is a clustering
index) and don’t require additional seeks.

A4 Secondary
B+-tree Index,
Equality on Key

(hi + 1) ∗
(tT + tS)

This case is similar to clustering index.

A4 Secondary
B+-tree Index,
Equality on
Non-key

(hi + n) ∗
(tT + tS)

(Where n is the number of records
fetched.) Here, cost of index traversal is
the same as for A3, but each record may
be on a different block, requiring a seek
per record. Cost is potentially very high if
n is large.

A5 Clustering
B+-tree Index,
Comparison

hi ∗ (tT + tS)+
tS + b ∗ tT

Identical to the case of A3, equality on
non-key.

A6 Secondary
B+-tree Index,
Comparison

(hi + n) ∗
(tT + tS)

Identical to the case of A4, equality on
non-key.

Figure 15.3 Cost estimates for selection algorithms.
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• A2 (clustering index, equality on key). For an equality comparison on a key at-
tribute with a clustering index, we can use the index to retrieve a single record that
satisfies the corresponding equality condition. Cost estimates are shown in Figure
15.3. To model the common situation that the internal nodes of the index are in
the in-memory buffer, hi can be set to 1.

• A3 (clustering index, equality on non-key). We can retrieve multiple records by
using a clustering index when the selection condition specifies an equality com-
parison on a non-key attribute, A. The only difference from the previous case is
that multiple records may need to be fetched. However, the records must be stored
consecutively in the file since the file is sorted on the search key. Cost estimates
are shown in Figure 15.3.

• A4 (secondary index, equality). Selections specifying an equality condition can
use a secondary index. This strategy can retrieve a single record if the equality
condition is on a key; multiple records may be retrieved if the indexing field is not
a key.

In the first case, only one record is retrieved. The cost in this case is the same
as that for a clustering index (case A2).

In the second case, each record may be resident on a different block, which may
result in one I/O operation per retrieved record, with each I/O operation requiring
a seek and a block transfer. The worst-case cost in this case is (hi + n) ∗ (tS + tT ),
where n is the number of records fetched, if each record is in a different disk block,
and the block fetches are randomly ordered. The worst-case cost could become
even worse than that of linear search if a large number of records are retrieved.

If the in-memory buffer is large, the block containing the record may already
be in the buffer. It is possible to construct an estimate of the average or expected
cost of the selection by taking into account the probability of the block containing
the record already being in the buffer. For large buffers, that estimate will be much
less than the worst-case estimate.

In certain algorithms, including A2, the use of a B+-tree file organization can save
one access since records are stored at the leaf level of the tree.

As described in Section 14.4.2, when records are stored in a B+-tree file organiza-
tion or other file organizations that may require relocation of records, secondary in-
dices usually do not store pointers to the records.4 Instead, secondary indices store the
values of the attributes used as the search key in a B+-tree file organization. Accessing
a record through such a secondary index is then more expensive: First the secondary
index is searched to find the B+-tree file organization search-key values, then the B+-
tree file organization is looked up to find the records. The cost formulae described for
secondary indices have to be modified appropriately if such indices are used.

4Recall that if B+-tree file organizations are used to store relations, records may be moved between blocks when leaf
nodes are split or merged, and when records are redistributed.
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15.3.2 Selections Involving Comparisons

Consider a selection of the form σA≤v(r). We can implement the selection either by
using linear search or by using indices in one of the following ways:

• A5 (clustering index, comparison). A clustering ordered index (for example, a clus-
tering B+-tree index) can be used when the selection condition is a comparison.
For comparison conditions of the form A > v or A ≥ v, a clustering index on A
can be used to direct the retrieval of tuples, as follows: For A ≥ v, we look up the
value v in the index to find the first tuple in the file that has a value of A ≥ v. A file
scan starting from that tuple up to the end of the file returns all tuples that satisfy
the condition. For A > v, the file scan starts with the first tuple such that A > v.
The cost estimate for this case is identical to that for case A3.

For comparisons of the form A < v or A ≤ v, an index lookup is not required.
For A < v, we use a simple file scan starting from the beginning of the file, and
continuing up to (but not including) the first tuple with attribute A = v. The case
of A ≤ v is similar, except that the scan continues up to (but not including) the
first tuple with attribute A > v. In either case, the index is not useful.

• A6 (secondary index, comparison). We can use a secondary ordered index to guide
retrieval for comparison conditions involving <,≤,≥, or >. The lowest-level index
blocks are scanned, either from the smallest value up to v (for < and ≤), or from
v up to the maximum value (for > and ≥).

The secondary index provides pointers to the records, but to get the actual
records we have to fetch the records by using the pointers. This step may require
an I/O operation for each record fetched, since consecutive records may be on
different disk blocks; as before, each I/O operation requires a disk seek and a block
transfer. If the number of retrieved records is large, using the secondary index may
be even more expensive than using linear search. Therefore, the secondary index
should be used only if very few records are selected.

As long as the number of matching tuples is known ahead of time, a query opti-
mizer can choose between using a secondary index or using a linear scan based on the
cost estimates. However, if the number of matching tuples is not known accurately at
compilation time, either choice may lead to bad performance, depending on the actual
number of matching tuples.

To deal with the above situation, PostgreSQL uses a hybrid algorithm that it calls a
bitmap index scan,5 when a secondary index is available, but the number of matching
records is not known precisely. The bitmap index scan algorithm first creates a bitmap
with as many bits as the number of blocks in the relation, with all bits initialized to 0.
The algorithm then uses the secondary index to find index entries for matching tuples,
but instead of fetching the tuples immediately, it does the following. As each index

5This algorithm should not be confused with a scan using a bitmap index.
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entry is found, the algorithm gets the block number from the index entry, and sets the
corresponding bit in the bitmap to 1.

Once all index entries have been processed, the bitmap is scanned to find all blocks
whose bit is set to 1. These are exactly the blocks containing matching records. The
relation is then scanned linearly, but blocks whose bit is not set to 1 are skipped; only
blocks whose bit is set to 1 are fetched, and then a scan within each block is used to
retrieve all matching records in the block.

In the worst case, this algorithm is only slightly more expensive than linear scan,
but in the best case it is much cheaper than linear scan. Similarly, in the worst case it is
only slightly more expensive than using a secondary index scan to directly fetch tuples,
but in the best case it is much cheaper than a secondary index scan. Thus, this hybrid
algorithm ensures that performance is never much worse than the best plan for that
database instance.

A variant of this algorithm collects all the index entries, and sorts them (using
sorting algorithms which we study later in this chapter), and then performs a relation
scan that skips blocks that do not have any matching entries. Using a bitmap as above
can be cheaper than sorting the index entries.

15.3.3 Implementation of Complex Selections

So far, we have considered only simple selection conditions of the form A op B, where
op is an equality or comparison operation. We now consider more complex selection
predicates.

• Conjunction: A conjunctive selection is a selection of the form:

σθ1∧θ2∧⋯∧θn
(r)

• Disjunction: A disjunctive selection is a selection of the form:

σθ1∨θ2∨⋯∨θn
(r)

A disjunctive condition is satisfied by the union of all records satisfying the indi-
vidual, simple conditions θi.

• Negation: The result of a selection σ¬θ(r) is the set of tuples of r for which the
condition θ evaluates to false. In the absence of nulls, this set is simply the set of
tuples in r that are not in σθ(r).

We can implement a selection operation involving either a conjunction or a dis-
junction of simple conditions by using one of the following algorithms:

• A7 (conjunctive selection using one index). We first determine whether an access
path is available for an attribute in one of the simple conditions. If one is, one of the
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selection algorithms A2 through A6 can retrieve records satisfying that condition.
We complete the operation by testing, in the memory buffer, whether or not each
retrieved record satisfies the remaining simple conditions.

To reduce the cost, we choose a θi and one of algorithms A1 through A6 for
which the combination results in the least cost for σθi

(r). The cost of algorithm
A7 is given by the cost of the chosen algorithm.

• A8 (conjunctive selection using composite index). An appropriate composite index
(that is, an index on multiple attributes) may be available for some conjunctive se-
lections. If the selection specifies an equality condition on two or more attributes,
and a composite index exists on these combined attribute fields, then the index
can be searched directly. The type of index determines which of algorithms A2,
A3, or A4 will be used.

• A9 (conjunctive selection by intersection of identifiers). Another alternative for im-
plementing conjunctive selection operations involves the use of record pointers
or record identifiers. This algorithm requires indices with record pointers, on the
fields involved in the individual conditions. The algorithm scans each index for
pointers to tuples that satisfy an individual condition. The intersection of all the
retrieved pointers is the set of pointers to tuples that satisfy the conjunctive condi-
tion. The algorithm then uses the pointers to retrieve the actual records. If indices
are not available on all the individual conditions, then the algorithm tests the re-
trieved records against the remaining conditions.

The cost of algorithm A9 is the sum of the costs of the individual index scans,
plus the cost of retrieving the records in the intersection of the retrieved lists of
pointers. This cost can be reduced by sorting the list of pointers and retrieving
records in the sorted order. Thereby, (1) all pointers to records in a block come
together, hence all selected records in the block can be retrieved using a single I/O
operation, and (2) blocks are read in sorted order, minimizing disk-arm movement.
Section 15.4 describes sorting algorithms.

• A10 (disjunctive selection by union of identifiers). If access paths are available on
all the conditions of a disjunctive selection, each index is scanned for pointers to
tuples that satisfy the individual condition. The union of all the retrieved pointers
yields the set of pointers to all tuples that satisfy the disjunctive condition. We
then use the pointers to retrieve the actual records.

However, if even one of the conditions does not have an access path, we have
to perform a linear scan of the relation to find tuples that satisfy the condition.
Therefore, if there is even one such condition in the disjunct, the most efficient
access method is a linear scan, with the disjunctive condition tested on each tuple
during the scan.

The implementation of selections with negation conditions is left to you as an
exercise (Practice Exercise 15.6).
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15.4 Sorting

Sorting of data plays an important role in database systems for two reasons. First, SQL
queries can specify that the output be sorted. Second, and equally important for query
processing, several of the relational operations, such as joins, can be implemented ef-
ficiently if the input relations are first sorted. Thus, we discuss sorting here before
discussing the join operation in Section 15.5.

We can sort a relation by building an index on the sort key and then using that
index to read the relation in sorted order. However, such a process orders the relation
only logically, through an index, rather than physically. Hence, the reading of tuples
in the sorted order may lead to a disk access (disk seek plus block transfer) for each
record, which can be very expensive, since the number of records can be much larger
than the number of blocks. For this reason, it may be desirable to order the records
physically.

The problem of sorting has been studied extensively, both for relations that fit
entirely in main memory and for relations that are bigger than memory. In the first
case, standard sorting techniques such as quick-sort can be used. Here, we discuss how
to handle the second case.

15.4.1 External Sort-Merge Algorithm

Sorting of relations that do not fit in memory is called external sorting. The most com-
monly used technique for external sorting is the external sort–merge algorithm. We
describe the external sort–merge algorithm next. Let M denote the number of blocks
in the main memory buffer available for sorting, that is, the number of disk blocks
whose contents can be buffered in available main memory.

1. In the first stage, a number of sorted runs are created; each run is sorted but
contains only some of the records of the relation.

i = 0;
repeat

read M blocks of the relation, or the rest of the relation,
whichever is smaller;

sort the in-memory part of the relation;
write the sorted data to run file Ri;
i = i + 1;

until the end of the relation

2. In the second stage, the runs are merged. Suppose, for now, that the total number
of runs, N, is less than M, so that we can allocate one block to each run and have
space left to hold one block of output. The merge stage operates as follows:
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read one block of each of the N files Ri into a buffer block in memory;
repeat

choose the first tuple (in sort order) among all buffer blocks;
write the tuple to the output, and delete it from the buffer block;
if the buffer block of any run Ri is empty and not end-of-file(Ri)

then read the next block of Ri into the buffer block;
until all input buffer blocks are empty

The output of the merge stage is the sorted relation. The output file is buffered to
reduce the number of disk write operations. The preceding merge operation is a gener-
alization of the two-way merge used by the standard in-memory sort–merge algorithm;
it merges N runs, so it is called an N-way merge.

In general, if the relation is much larger than memory, there may be M or more
runs generated in the first stage, and it is not possible to allocate a block for each run
during the merge stage. In this case, the merge operation proceeds in multiple passes.
Since there is enough memory for M−1 input buffer blocks, each merge can take M−1
runs as input.

The initial pass functions in this way: It merges the first M − 1 runs (as described
in item 2 above) to get a single run for the next pass. Then, it merges the next M − 1
runs similarly, and so on, until it has processed all the initial runs. At this point, the
number of runs has been reduced by a factor of M − 1. If this reduced number of runs
is still greater than or equal to M , another pass is made, with the runs created by the
first pass as input. Each pass reduces the number of runs by a factor of M − 1. The
passes repeat as many times as required, until the number of runs is less than M ; a final
pass then generates the sorted output.

Figure 15.4 illustrates the steps of the external sort–merge for an example relation.
For illustration purposes, we assume that only one tuple fits in a block (fr = 1), and we
assume that memory holds at most three blocks. During the merge stage, two blocks
are used for input and one for output.

15.4.2 Cost Analysis of External Sort-Merge

We compute the disk-access cost for the external sort–merge in this way: Let
br denote the number of blocks containing records of relation r. The first stage
reads every block of the relation and writes them out again, giving a total of 2br block
transfers. The initial number of runs is ⌈br∕M⌉. During the merge pass, reading in
each run one block at a time leads to a large number of seeks; to reduce the number of
seeks, a larger number of blocks, denoted bb, are read or written at a time, requiring bb
buffer blocks to be allocated to each input run and to the output run. Then, ⌊M∕bb⌋−1
runs can be merged in each merge pass, decreasing the number of runs by a factor of
⌊M∕bb⌋− 1. The total number of merge passes required is ⌈log⌊M∕bb⌋−1(br∕M)⌉. Each
of these passes reads every block of the relation once and writes it out once, with two
exceptions. First, the final pass can produce the sorted output without writing its result



15.4 Sorting 703

g

a   

d   31

c    33

b   14

e   16

r   16

d   21

m    3

p     2

d     7

a   14

a    14

a    19

b    14

c    33

d     7

d    21

d    31

e    16

g    24

m    3

p     2

r    16

a    19

b    14

c    33

d    31

e    16

g    24

a    14

d     7

d    21

m    3

p     2

r    16

a   19

d   31

g   24

b   14

c   33

e   16

d   21

m    3

r    16

a    14

d     7

p     2
initial

relation
create
runs

merge
pass–1

merge
pass–2

runs runs
sorted
output

24

19

Figure 15.4 External sorting using sort–merge.

to disk. Second, there may be runs that are not read in or written out during a pass
—for example, if there are ⌊M∕bb⌋ runs to be merged in a pass, ⌊M∕bb⌋ − 1 are read
in and merged, and one run is not accessed during the pass. Ignoring the (relatively
small) savings due to the latter effect, the total number of block transfers for external
sorting of the relation is:

br(2⌈log⌊M∕bb⌋−1(br∕M)⌉ + 1)

Applying this equation to the example in Figure 15.4, with bb set to 1, we get a total of
12 ∗ (4 + 1) = 60 block transfers, as you can verify from the figure. Note that these
above numbers do not include the cost of writing out the final result.

We also need to add the disk-seek costs. Run generation requires seeks for reading
data for each of the runs as well as for writing the runs. Each merge pass requires
around ⌈br∕bb⌉ seeks for reading data.6 Although the output is written sequentially, if
it is on the same disk as the input runs, the head may have moved away between writes
of consecutive blocks. Thus we would have to add a total of 2⌈br∕bb⌉ seeks for each
merge pass, except the final pass (since we assume the final result is not written back
to disk).

6To be more precise, since we read each run separately and may get fewer than bb blocks when reading the end of a
run, we may require an extra seek for each run. We ignore this detail for simplicity.
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2⌈br∕M⌉ + ⌈br∕bb⌉(2⌈log⌊M∕bb⌋−1(br∕M)⌉ − 1)

Applying this equation to the example in Figure 15.4, we get a total of 8 + 12 ∗ (2 ∗
2 − 1) = 44 disk seeks if we set the number of buffer blocks per run bb to 1.

15.5 Join Operation

In this section, we study several algorithms for computing the join of relations, and we
analyze their respective costs.

We use the term equi-join to refer to a join of the form r ⋈r A=s.B s, where A and B
are attributes or sets of attributes of relations r and s, respectively.

We use as a running example the expression:

student ⋈ takes

using the same relation schemas that we used in Chapter 2. We assume the following
information about the two relations:

• Number of records of student: nstudent = 5000.

• Number of blocks of student: bstudent = 100.

• Number of records of takes: ntakes = 10, 000.

• Number of blocks of takes: btakes = 400.

15.5.1 Nested-Loop Join

Figure 15.5 shows a simple algorithm to compute the theta join, r ⋈θ s, of two relations
r and s. This algorithm is called the nested-loop join algorithm, since it basically consists
of a pair of nested for loops. Relation r is called the outer relation and relation s the
inner relation of the join, since the loop for r encloses the loop for s. The algorithm
uses the notation tr ⋅ ts, where tr and ts are tuples; tr ⋅ ts denotes the tuple constructed
by concatenating the attribute values of tuples tr and ts.

Like the linear file-scan algorithm for selection, the nested-loop join algorithm re-
quires no indices, and it can be used regardless of what the join condition is. Extending
the algorithm to compute the natural join is straightforward, since the natural join can
be expressed as a theta join followed by elimination of repeated attributes by a projec-
tion. The only change required is an extra step of deleting repeated attributes from the
tuple tr ⋅ ts, before adding it to the result.

The nested-loop join algorithm is expensive, since it examines every pair of tuples
in the two relations. Consider the cost of the nested-loop join algorithm. The number
of pairs of tuples to be considered is nr ∗ ns, where nr denotes the number of tuples in
r, and ns denotes the number of tuples in s. For each record in r, we have to perform
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for each tuple tr in r do begin
for each tuple ts in s do begin

test pair (tr, ts) to see if they satisfy the join condition θ
if they do, add tr ⋅ ts to the result;

end
end

Figure 15.5 Nested-loop join.

a complete scan on s. In the worst case, the buffer can hold only one block of each
relation, and a total of nr ∗ bs + br block transfers would be required, where br and bs
denote the number of blocks containing tuples of r and s, respectively. We need only
one seek for each scan on the inner relation s since it is read sequentially, and a total
of br seeks to read r, leading to a total of nr + br seeks. In the best case, there is enough
space for both relations to fit simultaneously in memory, so each block would have to
be read only once; hence, only br + bs block transfers would be required, along with
two seeks.

If one of the relations fits entirely in main memory, it is beneficial to use that
relation as the inner relation, since the inner relation would then be read only once.
Therefore, if s is small enough to fit in main memory, our strategy requires only a total
br + bs block transfers and two seeks—the same cost as that for the case where both
relations fit in memory.

Now consider the natural join of student and takes. Assume for now that we have
no indices whatsoever on either relation, and that we are not willing to create any
index. We can use the nested loops to compute the join; assume that student is the
outer relation and takes is the inner relation in the join. We will have to examine 5000
∗ 10,000 = 50 ∗ 106 pairs of tuples. In the worst case, the number of block transfers
is 5000 ∗ 400 + 100 = 2,000,100, plus 5000 + 100 = 5100 seeks. In the best-case
scenario, however, we can read both relations only once and perform the computation.
This computation requires at most 100 + 400 = 500 block transfers, plus two seeks
—a significant improvement over the worst-case scenario. If we had used takes as the
relation for the outer loop and student for the inner loop, the worst-case cost of our
final strategy would have been 10,000 ∗ 100 + 400 = 1,000,400 block transfers, plus
10,400 disk seeks. The number of block transfers is significantly less, and although the
number of seeks is higher, the overall cost is reduced, assuming tS = 4 milliseconds
and tT = 0.1 milliseconds.

15.5.2 Block Nested-Loop Join

If the buffer is too small to hold either relation entirely in memory, we can still obtain
a major saving in block accesses if we process the relations on a per-block basis, rather
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than on a per-tuple basis. Figure 15.6 shows block nested-loop join, which is a variant of
the nested-loop join where every block of the inner relation is paired with every block
of the outer relation. Within each pair of blocks, every tuple in one block is paired with
every tuple in the other block, to generate all pairs of tuples. As before, all pairs of
tuples that satisfy the join condition are added to the result.

The primary difference in cost between the block nested-loop join and the basic
nested-loop join is that, in the worst case, each block in the inner relation s is read only
once for each block in the outer relation, instead of once for each tuple in the outer
relation. Thus, in the worst case, there will be a total of br ∗ bs + br block transfers,
where br and bs denote the number of blocks containing records of r and s, respectively.
Each scan of the inner relation requires one seek, and the scan of the outer relation
requires one seek per block, leading to a total of 2 ∗ br seeks. It is more efficient to
use the smaller relation as the outer relation, in case neither of the relations fits in
memory. In the best case, where the inner relation fits in memory, there will be br + bs
block transfers and just two seeks (we would choose the smaller relation as the inner
relation in this case).

Now return to our example of computing student ⋈ takes, using the block nested-
loop join algorithm. In the worst case, we have to read each block of takes once for each
block of student. Thus, in the worst case, a total of 100 ∗ 400 + 100 = 40,100 block
transfers plus 2 ∗ 100 = 200 seeks are required. This cost is a significant improvement
over the 5000 ∗ 400 + 100 = 2,000,100 block transfers plus 5100 seeks needed in the
worst case for the basic nested-loop join. The best-case cost remains the same—namely,
100 + 400 = 500 block transfers and two seeks.

The performance of the nested-loop and block nested-loop procedures can be fur-
ther improved:

for each block Br of r do begin
for each block Bs of s do begin

for each tuple tr in Br do begin
for each tuple ts in Bs do begin

test pair (tr, ts) to see if they satisfy the join condition
if they do, add tr ⋅ ts to the result;

end
end

end
end

Figure 15.6 Block nested-loop join.
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• If the join attributes in a natural join or an equi-join form a key on the inner rela-
tion, then for each outer relation tuple the inner loop can terminate as soon as the
first match is found.

• In the block nested-loop algorithm, instead of using disk blocks as the blocking
unit for the outer relation, we can use the biggest size that can fit in memory, while
leaving enough space for the buffers of the inner relation and the output. In other
words, if memory has M blocks, we read in M − 2 blocks of the outer relation at
a time, and when we read each block of the inner relation we join it with all the
M − 2 blocks of the outer relation. This change reduces the number of scans of
the inner relation from br to ⌈br∕(M − 2)⌉, where br is the number of blocks of
the outer relation. The total cost is then ⌈br∕(M − 2)⌉ ∗ bs + br block transfers
and 2⌈br∕(M − 2)⌉ seeks.

• We can scan the inner loop alternately forward and backward. This scanning
method orders the requests for disk blocks so that the data remaining in the buffer
from the previous scan can be reused, thus reducing the number of disk accesses
needed.

• If an index is available on the inner loop’s join attribute, we can replace file scans
with more efficient index lookups. Section 15.5.3 describes this optimization.

15.5.3 Indexed Nested-Loop Join

In a nested-loop join (Figure 15.5), if an index is available on the inner loop’s join
attribute, index lookups can replace file scans. For each tuple tr in the outer relation r,
the index is used to look up tuples in s that will satisfy the join condition with tuple tr.

This join method is called an indexed nested-loop join; it can be used with existing
indices, as well as with temporary indices created for the sole purpose of evaluating the
join.

Looking up tuples in s that will satisfy the join conditions with a given tuple tr is
essentially a selection on s. For example, consider student ⋈ takes. Suppose that we
have a student tuple with ID “00128”. Then, the relevant tuples in takes are those that
satisfy the selection “ID = 00128”.

The cost of an indexed nested-loop join can be computed as follows: For each tuple
in the outer relation r, a lookup is performed on the index for s, and the relevant tuples
are retrieved. In the worst case, there is space in the buffer for only one block of r and
one block of the index. Then, br I/O operations are needed to read relation r, where br
denotes the number of blocks containing records of r; each I/O requires a seek and a
block transfer, since the disk head may have moved in between each I/O. For each tuple
in r, we perform an index lookup on s. Then, the cost of the join can be computed as
br(tT + tS) + nr ∗ c, where nr is the number of records in relation r, and c is the cost of
a single selection on s using the join condition. We have seen in Section 15.3 how to
estimate the cost of a single selection algorithm (possibly using indices); that estimate
gives us the value of c.
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The cost formula indicates that, if indices are available on both relations r and s, it
is generally most efficient to use the one with fewer tuples as the outer relation.

For example, consider an indexed nested-loop join of student ⋈ takes, with student
as the outer relation. Suppose also that takes has a clustering B+-tree index on the join
attribute ID, which contains 20 entries on average in each index node. Since takes has
10,000 tuples, the height of the tree is 4, and one more access is needed to find the
actual data. Since nstudent is 5000, the total cost is 100 + 5000 ∗ 5 = 25,100 disk
accesses, each of which requires a seek and a block transfer. In contrast, as we saw
before, 40,100 block transfers plus 200 seeks were needed for a block nested-loop join.
Although the number of block transfers has been reduced, the seek cost has actually
increased, increasing the total cost since a seek is considerably more expensive than a
block transfer. However, if we had a selection on the student relation that reduces the
number of rows significantly, indexed nested-loop join could be significantly faster than
block nested-loop join.

15.5.4 Merge Join

The merge-join algorithm (also called the sort-merge-join algorithm) can be used to
compute natural joins and equi-joins. Let r(R) and s(S) be the relations whose natural
join is to be computed, and let R ∩ S denote their common attributes. Suppose that
both relations are sorted on the attributes R ∩ S. Then, their join can be computed by
a process much like the merge stage in the merge–sort algorithm.

15.5.4.1 Merge-Join Algorithm

Figure 15.7 shows the merge-join algorithm. In the algorithm, JoinAttrs refers to the
attributes in R ∩ S, and tr ⋈ ts, where tr and ts are tuples that have the same values for
JoinAttrs, denotes the concatenation of the attributes of the tuples, followed by project-
ing out repeated attributes. The merge-join algorithm associates one pointer with each
relation. These pointers point initially to the first tuple of the respective relations. As
the algorithm proceeds, the pointers move through the relation. A group of tuples of
one relation with the same value on the join attributes is read into Ss. The algorithm
in Figure 15.7 requires that every set of tuples Ss fit in main memory; we discuss ex-
tensions of the algorithm to avoid this requirement shortly. Then, the corresponding
tuples (if any) of the other relation are read in and are processed as they are read.

Figure 15.8 shows two relations that are sorted on their join attribute a1. It is
instructive to go through the steps of the merge-join algorithm on the relations shown
in the figure.

The merge-join algorithm of Figure 15.7 requires that each set Ss of all tuples with
the same value for the join attributes must fit in main memory. This requirement can
usually be met, even if the relation s is large. If there are some join attribute values for
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pr := address of first tuple of r;
ps := address of first tuple of s;
while (ps ≠ null and pr ≠ null) do

begin
ts := tuple to which ps points;
Ss := {ts};
set ps to point to next tuple of s;
done := false;
while (not done and ps ≠ null) do

begin
ts
′ := tuple to which ps points;

if (ts
′[JoinAttrs] = ts[JoinAttrs])

then begin
Ss := Ss ∪ {ts′};
set ps to point to next tuple of s;

end
else done := true;

end
tr := tuple to which pr points;
while (pr ≠ null and tr[JoinAttrs] < ts[JoinAttrs]) do

begin
set pr to point to next tuple of r;
tr := tuple to which pr points;

end
while (pr ≠ null and tr[JoinAttrs] = ts[JoinAttrs]) do

begin
for each ts in Ss do

begin
add ts ⋈ tr to result;

end
set pr to point to next tuple of r;
tr := tuple to which pr points;

end
end.

Figure 15.7 Merge join.

which Ss is larger than available memory, a block nested-loop join can be performed
for such sets Ss, matching them with corresponding blocks of tuples in r with the same
values for the join attributes.
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Figure 15.8 Sorted relations for merge join.

If either of the input relations r and s is not sorted on the join attributes, they can be
sorted first, and then the merge-join algorithm can be used. The merge-join algorithm
can also be easily extended from natural joins to the more general case of equi-joins.

15.5.4.2 Cost Analysis

Once the relations are in sorted order, tuples with the same value on the join attributes
are in consecutive order. Thereby, each tuple in the sorted order needs to be read only
once, and, as a result, each block is also read only once. Since it makes only a single
pass through both files (assuming all sets Ss fit in memory), the merge-join method is
efficient; the number of block transfers is equal to the sum of the number of blocks in
both files, br + bs.

Assuming that bb buffer blocks are allocated to each relation, the number of disk
seeks required would be ⌈br∕bb⌉ + ⌈bs∕bb⌉ disk seeks. Since seeks are much more
expensive than data transfer, it makes sense to allocate multiple buffer blocks to each
relation, provided extra memory is available. For example, with tT = 0.1 milliseconds
per 4-kilobyte block, and tS = 4 milliseconds, the buffer size is 400 blocks (or 1.6
megabytes), so the seek time would be 4 milliseconds for every 40 milliseconds of
transfer time; in other words, seek time would be just 10 percent of the transfer time.

If either of the input relations r and s is not sorted on the join attributes, they must
be sorted first; the cost of sorting must then be added to the above costs. If some sets
Ss do not fit in memory, the cost would increase slightly.

Suppose the merge-join scheme is applied to our example of student ⋈ takes.
The join attribute here is ID. Suppose that the relations are already sorted on the join
attribute ID. In this case, the merge join takes a total of 400+100 = 500 block transfers.
If we assume that in the worst case only one buffer block is allocated to each input
relation (that is, bb = 1), a total of 400 + 100 = 500 seeks would also be required; in
reality bb can be set much higher since we need to buffer blocks for only two relations,
and the seek cost would be significantly less.
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Suppose the relations are not sorted, and the memory size is the worst case, only
three blocks. The cost is as follows:

1. Using the formulae that we developed in Section 15.4, we can see that sorting
relation takes requires ⌈log3−1(400∕3)⌉ = 8 merge passes. Sorting of relation
takes then takes 400 ∗ (2⌈log3−1(400∕3)⌉ + 1), or 6800, block transfers, with
400 more transfers to write out the result. The number of seeks required is 2 ∗
⌈400∕3⌉+400 ∗ (2 ∗ 8−1) or 6268 seeks for sorting, and 400 seeks for writing
the output, for a total of 6668 seeks, since only one buffer block is available for
each run.

2. Similarly, sorting relation student takes ⌈log3−1(100∕3)⌉ = 6 merge passes and
100 ∗ (2⌈log3−1(100∕3)⌉+ 1), or 1300, block transfers, with 100 more transfers
to write it out. The number of seeks required for sorting student is 2 ∗ ⌈100∕3⌉+
100 ∗ (2 ∗ 6 − 1) = 1168, and 100 seeks are required for writing the output, for
a total of 1268 seeks.

3. Finally, merging the two relations takes 400+100 = 500 block transfers and 500
seeks.

Thus, the total cost is 9100 block transfers plus 8932 seeks if the relations are not
sorted, and the memory size is just 3 blocks.

With a memory size of 25 blocks, and the relations not sorted, the cost of sorting
followed by merge join would be as follows:

1. Sorting the relation takes can be done with just one merge step and takes a total
of just 400 ∗ (2⌈log24(400∕25)⌉ + 1) = 1200 block transfers. Similarly, sorting
student takes 300 block transfers. Writing the sorted output to disk requires 400
+ 100 = 500 block transfers, and the merge step requires 500 block transfers
to read the data back. Adding up these costs gives a total cost of 2500 block
transfers.

2. If we assume that only one buffer block is allocated for each run, the number of
seeks required in this case is 2 ∗ ⌈400∕25⌉+ 400 + 400 = 832 seeks for sorting
takes and writing the sorted output to disk, and similarly 2 ∗ ⌈100∕25⌉ + 100 +
100 = 208 for student, plus 400 + 100 seeks for reading the sorted data in the
merge-join step. Adding up these costs gives a total cost of 1640 seeks.

The number of seeks can be significantly reduced by setting aside more buffer
blocks for each run. For example, if 5 buffer blocks are allocated for each run
and for the output from merging the 4 runs of student, the cost is reduced to
2 ∗ ⌈100∕25⌉ + ⌈100∕5⌉ + ⌈100∕5⌉ = 48 seeks, from 208 seeks. If the merge-
join step sets aside 12 blocks each for buffering takes and student, the number
of seeks for the merge-join step goes down to ⌈400∕12⌉ + ⌈100∕12⌉ = 43, from
500. The total number of seeks is then 251.



712 Chapter 15 Query Processing

Thus, the total cost is 2500 block transfers plus 251 seeks if the relations are not sorted,
and the memory size is 25 blocks.

15.5.4.3 Hybrid Merge Join

It is possible to perform a variation of the merge-join operation on unsorted tuples, if
secondary indices exist on both join attributes. The algorithm scans the records through
the indices, resulting in their being retrieved in sorted order. This variation presents
a significant drawback, however, since records may be scattered throughout the file
blocks. Hence, each tuple access could involve accessing a disk block, and that is costly.

To avoid this cost, we can use a hybrid merge-join technique that combines indices
with merge join. Suppose that one of the relations is sorted; the other is unsorted, but
has a secondary B+-tree index on the join attributes. The hybrid merge-join algorithm
merges the sorted relation with the leaf entries of the secondary B+-tree index. The
result file contains tuples from the sorted relation and addresses for tuples of the un-
sorted relation. The result file is then sorted on the addresses of tuples of the unsorted
relation, allowing efficient retrieval of the corresponding tuples, in physical storage or-
der, to complete the join. Extensions of the technique to handle two unsorted relations
are left as an exercise for you.

15.5.5 Hash Join

Like the merge-join algorithm, the hash-join algorithm can be used to implement natu-
ral joins and equi-joins. In the hash-join algorithm, a hash function h is used to partition
tuples of both relations. The basic idea is to partition the tuples of each of the relations
into sets that have the same hash value on the join attributes.

We assume that:

• h is a hash function mapping JoinAttrs values to {0, 1,… , nh}, where JoinAttrs
denotes the common attributes of r and s used in the natural join.

• r0, r1,… , rnh
denote partitions of r tuples, each initially empty. Each tuple tr ∈ r

is put in partition ri, where i = h(tr[JoinAttrs]).

• s0, s1, ..., snh
denote partitions of s tuples, each initially empty. Each tuple ts ∈ s is

put in partition si, where i = h(ts[JoinAttrs]).

The hash function h should have the “goodness” properties of randomness and uni-
formity that we discussed in Chapter 14. Figure 15.9 depicts the partitioning of the
relations.

15.5.5.1 Basics

The idea behind the hash-join algorithm is this: Suppose that an r tuple and an s tuple
satisfy the join condition; then, they have the same value for the join attributes. If that
value is hashed to some value i, the r tuple has to be in ri and the s tuple in si. Therefore,
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Figure 15.9 Hash partitioning of relations.

r tuples in ri need only be compared with s tuples in si; they do not need to be compared
with s tuples in any other partition.

For example, if d is a tuple in student, c a tuple in takes, and h a hash function
on the ID attributes of the tuples, then d and c must be tested only if h(c) = h(d). If
h(c) ≠ h(d), then c and d must have different values for ID. However, if h(c) = h(d), we
must test c and d to see whether the values in their join attributes are the same, since
it is possible that c and d have different iids that have the same hash value.

Figure 15.10 shows the details of the hash-join algorithm to compute the natural
join of relations r and s. As in the merge-join algorithm, tr ⋈ ts denotes the concatena-
tion of the attributes of tuples tr and ts, followed by projecting out repeated attributes.
After the partitioning of the relations, the rest of the hash-join code performs a sepa-
rate indexed nested-loop join on each of the partition pairs i, for i = 0,… , nh. To do so,
it first builds a hash index on each si, and then probes (that is, looks up si) with tuples
from ri. The relation s is the build input, and r is the probe input.

The hash index on si is built in memory, so there is no need to access the disk to
retrieve the tuples. The hash function used to build this hash index must be different
from the hash function h used earlier, but it is still applied to only the join attributes. In
the course of the indexed nested-loop join, the system uses this hash index to retrieve
records that match records in the probe input.

The build and probe phases require only a single pass through both the build and
probe inputs. It is straightforward to extend the hash-join algorithm to compute general
equi-joins.

The value nh must be chosen to be large enough such that, for each i, the tuples in
the partition si of the build relation, along with the hash index on the partition, fit in
memory. It is not necessary for the partitions of the probe relation to fit in memory. It is
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/* Partition s */
for each tuple ts in s do begin

i := h(ts[JoinAttrs]);
Hsi

:= Hsi
∪ {ts};

end
/* Partition r */
for each tuple tr in r do begin

i := h(tr[JoinAttrs]);
Hri

:= Hri
∪ {tr};

end
/* Perform join on each partition */
for i := 0 to nh do begin

read Hsi
and build an in-memory hash index on it;

for each tuple tr in Hri
do begin

probe the hash index on Hsi
to locate all tuples ts

such that ts[JoinAttrs] = tr[JoinAttrs];
for each matching tuple ts in Hsi

do begin
add tr ⋈ ts to the result;

end
end

end

Figure 15.10 Hash join.

best to use the smaller input relation as the build relation. If the size of the build relation
is bs blocks, then, for each of the nh partitions to be of size less than or equal to M , nh
must be at least ⌈bs∕M⌉. More precisely stated, we have to account for the extra space
occupied by the hash index on the partition as well, so nh should be correspondingly
larger. For simplicity, we sometimes ignore the space requirement of the hash index in
our analysis.

15.5.5.2 Recursive Partitioning

If the value of nh is greater than or equal to the number of blocks of memory, the rela-
tions cannot be partitioned in one pass, since there will not be enough buffer blocks.
Instead, partitioning has to be done in repeated passes. In one pass, the input can be
split into at most as many partitions as there are blocks available for use as output
buffers. Each bucket generated by one pass is separately read in and partitioned again
in the next pass, to create smaller partitions. The hash function used in a pass is dif-
ferent from the one used in the previous pass. The system repeats this splitting of the
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input until each partition of the build input fits in memory. Such partitioning is called
recursive partitioning.

A relation does not need recursive partitioning if M > nh + 1, or equivalently
M > (bs∕M)+1, which simplifies (approximately) to M >

√
bs. For example, consider

a memory size of 12 megabytes, divided into 4-kilobyte blocks; it would contain a total
of 3-kilobyte (3072) blocks. We can use a memory of this size to partition relations
of size up to 3-kilobyte ∗ 3-kilobyte blocks, which is 36 gigabytes. Similarly, a relation
of size 1 gigabyte requires just over

√
256K blocks, or 2 megabytes, to avoid recursive

partitioning.

15.5.5.3 Handling of Overflows

Hash-table overflow occurs in partition i of the build relation s if the hash index on si
is larger than main memory. Hash-table overflow can occur if there are many tuples in
the build relation with the same values for the join attributes, or if the hash function
does not have the properties of randomness and uniformity. In either case, some of
the partitions will have more tuples than the average, whereas others will have fewer;
partitioning is then said to be skewed.

We can handle a small amount of skew by increasing the number of partitions so
that the expected size of each partition (including the hash index on the partition) is
somewhat less than the size of memory. The number of partitions is therefore increased
by a small value, called the fudge factor, that is usually about 20 percent of the number
of hash partitions computed as described in Section 15.5.5.

Even if, by using a fudge factor, we are conservative on the sizes of the partitions,
overflows can still occur. Hash-table overflows can be handled by either overflow reso-
lution or overflow avoidance. Overflow resolution is performed during the build phase if
a hash-index overflow is detected. Overflow resolution proceeds in this way: If si, for
any i, is found to be too large, it is further partitioned into smaller partitions by using
a different hash function. Similarly, ri is also partitioned using the new hash function,
and only tuples in the matching partitions need to be joined.

In contrast, overflow avoidance performs the partitioning carefully, so that overflows
never occur during the build phase. In overflow avoidance, the build relation s is initially
partitioned into many small partitions, and then some partitions are combined in such
a way that each combined partition fits in memory. The probe relation r is partitioned
in the same way as the combined partitions on s, but the sizes of ri do not matter.

If a large number of tuples in s have the same value for the join attributes, the
resolution and avoidance techniques may fail on some partitions. In that case, instead
of creating an in-memory hash index and using a nested-loop join to join the partitions,
we can use other join techniques, such as block nested-loop join, on those partitions.

15.5.5.4 Cost of Hash Join

We now consider the cost of a hash join. Our analysis assumes that there is no hash-
table overflow. First, consider the case where recursive partitioning is not required.
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• The partitioning of the two relations r and s calls for a complete reading of both
relations and a subsequent writing back of them. This operation requires 2(br+bs)
block transfers, where br and bs denote the number of blocks containing records
of relations r and s, respectively. The build and probe phases read each of the
partitions once, calling for further br + bs block transfers. The number of blocks
occupied by partitions could be slightly more than br + bs, as a result of partially
filled blocks. Accessing such partially filled blocks can add an overhead of at most
2nh for each of the relations, since each of the nh partitions could have a partially
filled block that has to be written and read back. Thus, a hash join is estimated to
require:

3(br + bs) + 4nh

block transfers. The overhead 4nh is usually quite small compared to br + bs and
can be ignored.

• Assuming bb blocks are allocated for the input buffer and each output buffer, parti-
tioning requires a total of 2(⌈br∕bb⌉+ ⌈bs∕bb⌉) seeks. The build and probe phases
require only one seek for each of the nh partitions of each relation, since each par-
tition can be read sequentially. The hash join thus requires 2(⌈br∕bb⌉+⌈bs∕bb⌉)+
2nh seeks.

Now consider the case where recursive partitioning is required. Again we assume
that bb blocks are allocated for buffering each partition. Each pass then reduces the size
of each of the partitions by an expected factor of ⌊M∕bb⌋− 1; and passes are repeated
until each partition is of size at most M blocks. The expected number of passes required
for partitioning s is therefore ⌈log⌊M∕bb⌋−1(bs∕M)⌉.

• Since, in each pass, every block of s is read in and written out, the total number
of block transfers for partitioning of s is 2bs⌈log⌊M∕bb⌋−1(bs∕M)⌉. The number of
passes for partitioning of r is the same as the number of passes for partitioning of
s, therefore the join is estimated to require

2(br + bs)⌈log⌊M∕bb⌋−1(bs∕M)⌉ + br + bs

block transfers.

• Ignoring the relatively small number of seeks during the build and probe phases,
hash join with recursive partitioning requires

2(⌈br∕bb⌉ + ⌈bs∕bb⌉)⌈log⌊M∕bb⌋−1(bs∕M)⌉
disk seeks.

Consider, for example, the natural join takes ⋈ student. With a memory size of 20
blocks, the student relation can be partitioned into five partitions, each of size 20 blocks,
which size will fit into memory. Only one pass is required for the partitioning. The
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relation takes is similarly partitioned into five partitions, each of size 80. Ignoring the
cost of writing partially filled blocks, the cost is 3(100 + 400) = 1500 block transfers.
There is enough memory to allocate the buffers for the input and each of the five outputs
during partitioning (i.e, bb = 3) leading to 2(⌈100∕3⌉ + ⌈400∕3⌉) = 336 seeks.

The hash join can be improved if the main memory size is large. When the entire
build input can be kept in main memory, nh can be set to 0; then, the hash-join algorithm
executes quickly, without partitioning the relations into temporary files, regardless of
the probe input’s size. The cost estimate goes down to br + bs block transfers and two
seeks.

Indexed nested loops join can have a much lower cost than hash join in case the
outer relation is small, and the index lookups fetch only a few tuples from the inner
(indexed) relation. However, in case a secondary index is used, and the number of
tuples in the outer relation is large, indexed nested loops join can have a very high cost,
as compared to hash join. If the number of tuples in the outer relation is known at
query optimization time, the best join algorithm can be chosen at that time. However,
in some cases, for example, when there is a selection condition on the outer input, the
optimizer makes a decision based on an estimate that may potentially be imprecise. The
number of tuples in the outer relation may be found only at runtime, for example, after
executing selection. Some systems allow a dynamic choice between the two algorithms
at run time, after finding the number of tuples in the outer input.

15.5.5.5 Hybrid Hash Join

The hybrid hash-join algorithm performs another optimization; it is useful when mem-
ory sizes are relatively large but not all of the build relation fits in memory. The parti-
tioning phase of the hash-join algorithm needs a minimum of one block of memory as
a buffer for each partition that is created, and one block of memory as an input buffer.
To reduce the impact of seeks, a larger number of blocks would be used as a buffer;
let bb denote the number of blocks used as a buffer for the input and for each parti-
tion. Hence, a total of (nh + 1) ∗ bb blocks of memory are needed for partitioning the
two relations. If memory is larger than (nh + 1) ∗ bb, we can use the rest of memory
(M − (nh + 1) ∗ bb blocks) to buffer the first partition of the build input (i.e, s0) so
that it will not need to be written out and read back in. Further, the hash function is
designed in such a way that the hash index on s0 fits in M − (nh + 1) ∗ bb blocks, in
order that, at the end of partitioning of s, s0 is completely in memory and a hash index
can be built on s0.

When the system partitions r, it again does not write tuples in r0 to disk; instead, as
it generates them, the system uses them to probe the memory-resident hash index on
s0, and to generate output tuples of the join. After they are used for probing, the tuples
can be discarded, so the partition r0 does not occupy any memory space. Thus, a write
and a read access have been saved for each block of both r0 and s0. The system writes
out tuples in the other partitions as usual and joins them later. The savings of hybrid
hash join can be significant if the build input is only slightly bigger than memory.
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If the size of the build relation is bs, nh is approximately equal to bs∕M . Thus, hybrid
hash join is most useful if M >> (bs∕M) ∗ bb, or M >>

√
bs ∗ bb, where the notation

>> denotes much larger than. For example, suppose the block size is 4 kilobytes, the
build relation size is 5 gigabytes, and bb is 20. Then, the hybrid hash-join algorithm
is useful if the size of memory is significantly more than 20 megabytes; memory sizes
of gigabytes or more are common on computers today. If we devote 1 gigabyte for the
join algorithm, s0 would be nearly 1 gigabyte, and hybrid hash join would be nearly 20
percent cheaper than hash join.

15.5.6 Complex Joins

Nested-loop and block nested-loop joins can be used regardless of the join conditions.
The other join techniques are more efficient than the nested-loop join and its variants,
but they can handle only simple join conditions, such as natural joins or equi-joins. We
can implement joins with complex join conditions, such as conjunctions and disjunc-
tions, by using the efficient join techniques, if we apply the techniques developed in
Section 15.3.3 for handling complex selections.

Consider the following join with a conjunctive condition:

r ⋈ θ1∧θ2∧⋯∧θn
s

One or more of the join techniques described earlier may be applicable for joins on the
individual conditions r ⋈θ1

s, r ⋈θ2
s, r ⋈θ3

s, and so on. We can compute the overall
join by first computing the result of one of these simpler joins r ⋈θi

s; each pair of
tuples in the intermediate result consists of one tuple from r and one from s. The result
of the complete join consists of those tuples in the intermediate result that satisfy the
remaining conditions:

θ1 ∧⋯ ∧ θi−1 ∧ θi+1 ∧⋯ ∧ θn

These conditions can be tested as tuples in r ⋈ θi
s are being generated.

A join whose condition is disjunctive can be computed in this way. Consider:

r ⋈ θ1 ∨θ2∨⋯∨θn
s

The join can be computed as the union of the records in individual joins r ⋈ θi
s:

(r ⋈ θ1
s) ∪ (r ⋈ θ2

s) ∪⋯ ∪ (r ⋈ θn
s)

Section 15.6 describes algorithms for computing the union of relations.
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15.5.7 Joins over Spatial Data

The join algorithms we have presented make no specific assumptions about the type of
data being joined, but they do assume the use of standard comparison operations such
as equality, less than, or greater than, where the values are linearly ordered.

Selection and join conditions on spatial data involve comparison operators that
check if one region contains or overlaps another, or whether a region contains a partic-
ular point; and the regions may be multi-dimensional. Comparisons may pertain also
to the distance between points, for example, finding a set of points closest to a given
point in a two-dimensional space.

Merge-join cannot be used with such comparison operations, since there is no sim-
ple sort order over spatial data in two or more dimensions. Partitioning of data based
on hashing is also not applicable, since there is no way to ensure that tuples that sat-
isfy an overlap or containment predicate are hashed to the same value. Nested loops
join can always be used regardless of the complexity of the conditions, but can be very
inefficient on large datasets.

Indexed nested-loops join can however be used, if appropriate spatial indices are
available. In Section 14.10, we saw several types of indices for spatial data, including
R-trees, k-d trees, k-d-B trees, and quadtrees. Additional details on those indices appear
in Section 24.4. These index structures enable efficient retrieval of spatial data based
on predicates such as contains, contained in, or overlaps, and can also be effectively
used to find nearest neighbors.

Most major database systems today incorporate support for indexing spatial data,
and make use of them when processing queries using spatial comparison conditions.

15.6 Other Operations

Other relational operations and extended relational operations—such as duplicate elim-
ination, projection, set operations, outer join, and aggregation—can be implemented as
outlined in Section 15.6.1 through Section 15.6.5.

15.6.1 Duplicate Elimination

We can implement duplicate elimination easily by sorting. Identical tuples will appear
adjacent to each other as a result of sorting, and all but one copy can be removed. With
external sort–merge, duplicates found while a run is being created can be removed
before the run is written to disk, thereby reducing the number of block transfers. The
remaining duplicates can be eliminated during merging, and the final sorted run has
no duplicates. The worst-case cost estimate for duplicate elimination is the same as the
worst-case cost estimate for sorting of the relation.

We can also implement duplicate elimination by hashing, as in the hash-join algo-
rithm. First, the relation is partitioned on the basis of a hash function on the whole
tuple. Then, each partition is read in, and an in-memory hash index is constructed.
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While constructing the hash index, a tuple is inserted only if it is not already present.
Otherwise, the tuple is discarded. After all tuples in the partition have been processed,
the tuples in the hash index are written to the result. The cost estimate is the same as
that for the cost of processing (partitioning and reading each partition) of the build
relation in a hash join.

Because of the relatively high cost of duplicate elimination, SQL requires an explicit
request by the user to remove duplicates; otherwise, the duplicates are retained.

15.6.2 Projection

We can implement projection easily by performing projection on each tuple, which
gives a relation that could have duplicate records, and then removing duplicate rec-
ords. Duplicates can be eliminated by the methods described in Section 15.6.1. If the at-
tributes in the projection list include a key of the relation, no duplicates will exist; hence,
duplicate elimination is not required. Generalized projection can be implemented in
the same way as projection.

15.6.3 Set Operations

We can implement the union, intersection, and set-difference operations by first sorting
both relations, and then scanning once through each of the sorted relations to produce
the result. In r ∪ s, when a concurrent scan of both relations reveals the same tuple in
both files, only one of the tuples is retained. The result of r ∩ s will contain only those
tuples that appear in both relations. We implement set difference, r − s, similarly, by
retaining tuples in r only if they are absent in s.

For all these operations, only one scan of the two sorted input relations is required,
so the cost is br + bs block transfers if the relations are sorted in the same order. As-
suming a worst case of one block buffer for each relation, a total of br + bs disk seeks
would be required in addition to br + bs block transfers. The number of seeks can be
reduced by allocating extra buffer blocks.

If the relations are not sorted initially, the cost of sorting has to be included. Any
sort order can be used in the evaluation of set operations, provided that both inputs
have that same sort order.

Hashing provides another way to implement these set operations. The first step in
each case is to partition the two relations by the same hash function and thereby create
the partitions r0, r1,… , rnh

and s0, s1,… , snh
. Depending on the operation, the system

then takes these steps on each partition i = 0, 1,… , nh:

• r ∪ s

1. Build an in-memory hash index on ri.

2. Add the tuples in si to the hash index only if they are not already present.

3. Add the tuples in the hash index to the result.
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Note 15.1 Answering Keyword Queries

Keyword search on documents is widely used in the context of web search. In
its simplest form, a keyword query provides a set of words K1, K2,… , Kn, and the
goal is to find documents di from a collection of documents D such that di con-
tains all the keywords in the query. Real-life keyword search is more complicated,
since it requires ranking of documents based on various metrics such TF–IDF and
PageRank, as we saw earlier in Section 8.3.

Documents that contain a specified keyword can be located efficiently by using
an index (often referred to as an inverted index) that maps each keyword Ki to a
list Si of identifiers of the documents that contain Ki. The list is kept sorted. For
example, if documents d1, d9 and d21 contain the term “Silberschatz”, the inverted
list for the keyword Silberschatz would be “d1; d9; d21”. Compression techniques
are used to reduce the size of the inverted lists. A B+-tree index can be used to
map each keyword Ki to its associated inverted list Si.

To answer a query with keyword K1, K2,… , Kn, we retrieve the inverted list Si
for each keyword Ki, and then compute the intersection S1 ∩ S2 ∩⋯ ∩ Sn to find
documents that appear in all the lists. Since the lists are sorted, the intersection can
be efficiently implemented by merging the lists using concurrent scans of all the
lists. Many information-retrieval systems return documents that contain several,
even if not all, of the keywords; the merge step can be easily modified to output
documents that contain at least k of the n keywords.

To support ranking of keyword-query results, extra information can be stored
in each inverted list, including the inverse document frequency of the term, and
for each document the PageRank, the term frequency of the term, as well as the
positions within the document where the term occurs. This information can be
used to compute scores that are then used to rank the documents. For example,
documents where the keywords occur close to each other may receive a higher
score for keyword proximity than those where they occur farther from each other.
The keyword proximity score may be combined with the TF–IDF score, and PageR-
ank to compute an overall score. Documents are then ranked on this score. Since
most web searches retrieve only the top few answers, search engines incorporate a
number of optimizations that help to find the top few answers efficiently, without
computing the full list and then finding the ranking. References providing further
details may be found in the Further Reading section at the end of the chapter.

• r ∩ s

1. Build an in-memory hash index on ri.

2. For each tuple in si, probe the hash index and output the tuple to the result
only if it is already present in the hash index.
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• r − s

1. Build an in-memory hash index on ri.

2. For each tuple in si, probe the hash index, and, if the tuple is present in the
hash index, delete it from the hash index.

3. Add the tuples remaining in the hash index to the result.

15.6.4 Outer Join

Recall the outer-join operations described in Section 4.1.3. For example, the natural left
outer join takes⟕ student contains the join of takes and student, and, in addition, for
each takes tuple t that has no matching tuple in student (i.e, where ID is not in student),
the following tuple t1 is added to the result. For all attributes in the schema of takes,
tuple t1 has the same values as tuple t. The remaining attributes (from the schema of
student) of tuple t1 contain the value null.

We can implement the outer-join operations by using one of two strategies:

1. Compute the corresponding join, and then add further tuples to the join result to
get the outer-join result. Consider the left outer-join operation and two relations:
r(R) and s(S). To evaluate r ⟕θ s, we first compute r ⋈θ s and save that result
as temporary relation q1. Next, we compute r − ΠR(q1) to obtain those tuples in
r that do not participate in the theta join. We can use any of the algorithms for
computing the joins, projection, and set difference described earlier to compute
the outer joins. We pad each of these tuples with null values for attributes from
s, and add it to q1 to get the result of the outer join.

The right outer-join operation r ⟖ θ s is equivalent to s⟕θ r and can therefore
be implemented in a symmetric fashion to the left outer join. We can implement
the full outer-join operation r ⟗ θ s by computing the join r ⋈ s and then adding
the extra tuples of both the left and right outer-join operations, as before.

2. Modify the join algorithms. It is easy to extend the nested-loop join algorithms
to compute the left outer join: Tuples in the outer relation that do not match any
tuple in the inner relation are written to the output after being padded with null
values. However, it is hard to extend the nested-loop join to compute the full outer
join.

Natural outer joins and outer joins with an equi-join condition can be com-
puted by extensions of the merge-join and hash-join algorithms. Merge join can
be extended to compute the full outer join as follows: When the merge of the two
relations is being done, tuples in either relation that do not match any tuple in
the other relation can be padded with nulls and written to the output. Similarly,
we can extend merge join to compute the left and right outer joins by writing out
nonmatching tuples (padded with nulls) from only one of the relations. Since the
relations are sorted, it is easy to detect whether or not a tuple matches any tuples
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from the other relation. For example, when a merge join of takes and student is
done, the tuples are read in sorted order of ID, and it is easy to check, for each
tuple, whether there is a matching tuple in the other.

The cost estimates for implementing outer joins using the merge-join algo-
rithm are the same as are those for the corresponding join. The only difference
lies in the size of the result, and therefore in the block transfers for writing it out,
which we did not count in our earlier cost estimates.

The extension of the hash-join algorithm to compute outer joins is left for you
to do as an exercise (Exercise 15.21).

15.6.5 Aggregation

Recall the aggregation function (operator), discussed in Section 3.7. For example, the
function

select dept name, avg (salary)
from instructor
group by dept name;

computes the average salary in each university department.
The aggregation operation can be implemented in the same way as duplicate elim-

ination. We use either sorting or hashing, just as we did for duplicate elimination, but
based on the grouping attributes (dept name in the preceding example). However, in-
stead of eliminating tuples with the same value for the grouping attribute, we gather
them into groups and apply the aggregation operations on each group to get the result.

The cost estimate for implementing the aggregation operation is the same as the
cost of duplicate elimination for aggregate functions such as min, max, sum, count, and
avg.

Instead of gathering all the tuples in a group and then applying the aggregation
operations, we can implement the aggregation operations sum, min, max, count, and
avg on the fly as the groups are being constructed. For the case of sum, min, and max,
when two tuples in the same group are found, the system replaces them with a single
tuple containing the sum, min, or max, respectively, of the columns being aggregated.
For the count operation, it maintains a running count for each group for which a tuple
has been found. Finally, we implement the avg operation by computing the sum and
the count values on the fly, and finally dividing the sum by the count to get the average.

If all tuples of the result fit in memory, the sort-based and the hash-based imple-
mentations do not need to write any tuples to disk. As the tuples are read in, they can
be inserted in a sorted tree structure or in a hash index. When we use on-the-fly ag-
gregation techniques, only one tuple needs to be stored for each of the groups. Hence,
the sorted tree structure or hash index fits in memory, and the aggregation can be pro-
cessed with just br block transfers (and 1 seek) instead of the 3br transfers (and a worst
case of up to 2br seeks) that would be required otherwise.
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15.7 Evaluation of Expressions

So far, we have studied how individual relational operations are carried out. Now we
consider how to evaluate an expression containing multiple operations. The obvious
way to evaluate an expression is simply to evaluate one operation at a time, in an ap-
propriate order. The result of each evaluation is materialized in a temporary relation
for subsequent use. A disadvantage to this approach is the need to construct the tem-
porary relations, which (unless they are small) must be written to disk. An alternative
approach is to evaluate several operations simultaneously in a pipeline, with the results
of one operation passed on to the next, without the need to store a temporary relation.

In Section 15.7.1 and Section 15.7.2, we consider both the materialization approach
and the pipelining approach. We shall see that the costs of these approaches can differ
substantially, but also that there are cases where only the materialization approach is
feasible.

15.7.1 Materialization

It is easiest to understand intuitively how to evaluate an expression by looking at a
pictorial representation of the expression in an operator tree. Consider the expression:

Πname(σbuilding= “Watson”(department) ⋈ instructor)

in Figure 15.11.
If we apply the materialization approach, we start from the lowest-level operations

in the expression (at the bottom of the tree). In our example, there is only one such
operation: the selection operation on department. The inputs to the lowest-level oper-
ations are relations in the database. We execute these operations using the algorithms
that we studied earlier, and we store the results in temporary relations. We can use these
temporary relations to execute the operations at the next level up in the tree, where the
inputs now are either temporary relations or relations stored in the database. In our

Π

σ

name

building = “Watson”

department

instructor

Figure 15.11 Pictorial representation of an expression.
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example, the inputs to the join are the instructor relation and the temporary relation
created by the selection on department. The join can now be evaluated, creating another
temporary relation.

By repeating the process, we will eventually evaluate the operation at the root of the
tree, giving the final result of the expression. In our example, we get the final result by
executing the projection operation at the root of the tree, using as input the temporary
relation created by the join.

Evaluation as just described is called materialized evaluation, since the results of
each intermediate operation are created (materialized) and then are used for evaluation
of the next-level operations.

The cost of a materialized evaluation is not simply the sum of the costs of the
operations involved. When we computed the cost estimates of algorithms, we ignored
the cost of writing the result of the operation to disk. To compute the cost of evaluating
an expression as done here, we have to add the costs of all the operations, as well as
the cost of writing the intermediate results to disk. We assume that the records of the
result accumulate in a buffer, and, when the buffer is full, they are written to disk. The
number of blocks written out, br, can be estimated as nr∕fr, where nr is the estimated
number of tuples in the result relation r and fr is the blocking factor of the result relation,
that is, the number of records of r that will fit in a block. In addition to the transfer
time, some disk seeks may be required, since the disk head may have moved between
successive writes. The number of seeks can be estimated as ⌈br∕bb⌉ where bb is the size
of the output buffer (measured in blocks).

Double buffering (using two buffers, with one continuing execution of the algorithm
while the other is being written out) allows the algorithm to execute more quickly by
performing CPU activity in parallel with I/O activity. The number of seeks can be re-
duced by allocating extra blocks to the output buffer and writing out multiple blocks
at once.

15.7.2 Pipelining

We can improve query-evaluation efficiency by reducing the number of temporary files
that are produced. We achieve this reduction by combining several relational operations
into a pipeline of operations, in which the results of one operation are passed along
to the next operation in the pipeline. Evaluation as just described is called pipelined
evaluation.

For example, consider the expression (Πa1,a2(r ⋈ s)). If materialization were ap-
plied, evaluation would involve creating a temporary relation to hold the result of the
join and then reading back in the result to perform the projection. These operations
can be combined: When the join operation generates a tuple of its result, it passes that
tuple immediately to the project operation for processing. By combining the join and
the projection, we avoid creating the intermediate result and instead create the final
result directly.
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Creating a pipeline of operations can provide two benefits:

1. It eliminates the cost of reading and writing temporary relations, reducing the
cost of query evaluation. Note that the cost formulae that we saw earlier for each
operation included the cost of reading the result from disk. If the input to an
operator oi is pipelined from a preceding operator oj, the cost of oi should not
include the cost of reading the input from disk; the cost formulae that we saw
earlier can be modified accordingly.

2. It can start generating query results quickly, if the root operator of a query-
evaluation plan is combined in a pipeline with its inputs. This can be quite useful
if the results are displayed to a user as they are generated, since otherwise there
may be a long delay before the user sees any query results.

15.7.2.1 Implementation of Pipelining

We can implement a pipeline by constructing a single, complex operation that com-
bines the operations that constitute the pipeline. Although this approach may be feasi-
ble for some frequently occurring situations, it is desirable in general to reuse the code
for individual operations in the construction of a pipeline.

In the example of Figure 15.11, all three operations can be placed in a pipeline,
which passes the results of the selection to the join as they are generated. In turn,
it passes the results of the join to the projection as they are generated. The memory
requirements are low, since results of an operation are not stored for long. However,
as a result of pipelining, the inputs to the operations are not available all at once for
processing.

Pipelines can be executed in either of two ways:

1. In a demand-driven pipeline, the system makes repeated requests for tuples from
the operation at the top of the pipeline. Each time that an operation receives
a request for tuples, it computes the next tuple (or tuples) to be returned and
then returns that tuple. If the inputs of the operation are not pipelined, the next
tuple(s) to be returned can be computed from the input relations, while the sys-
tem keeps track of what has been returned so far. If it has some pipelined inputs,
the operation also makes requests for tuples from its pipelined inputs. Using the
tuples received from its pipelined inputs, the operation computes tuples for its
output and passes them up to its parent.

2. In a producer-driven pipeline, operations do not wait for requests to produce tu-
ples, but instead generate the tuples eagerly. Each operation in a producer-driven
pipeline is modeled as a separate process or thread within the system that takes
a stream of tuples from its pipelined inputs and generates a stream of tuples for
its output.
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We describe next how demand-driven and producer-driven pipelines can be imple-
mented.

Each operation in a demand-driven pipeline can be implemented as an iterator that
provides the following functions: open(), next(), and close(). After a call to open(), each
call to next() returns the next output tuple of the operation. The implementation of the
operation in turn calls open() and next() on its inputs, to get its input tuples when
required. The function close() tells an iterator that no more tuples are required. The
iterator maintains the state of its execution in between calls so that successive next()
requests receive successive result tuples.

For example, for an iterator implementing the select operation using linear search,
the open() operation starts a file scan, and the iterator’s state records the point to which
the file has been scanned. When the next() function is called, the file scan continues
from after the previous point; when the next tuple satisfying the selection is found by
scanning the file, the tuple is returned after storing the point where it was found in
the iterator state. A merge-join iterator’s open() operation would open its inputs, and
if they are not already sorted, it would also sort the inputs. On calls to next(), it would
return the next pair of matching tuples. The state information would consist of up to
where each input had been scanned. Details of the implementation of iterators are left
for you to complete in Practice Exercise 15.7.

Producer-driven pipelines, on the other hand, are implemented in a different man-
ner. For each pair of adjacent operations in a producer-driven pipeline, the system cre-
ates a buffer to hold tuples being passed from one operation to the next. The processes
or threads corresponding to different operations execute concurrently. Each operation
at the bottom of a pipeline continually generates output tuples, and puts them in its
output buffer, until the buffer is full. An operation at any other level of a pipeline gen-
erates output tuples when it gets input tuples from lower down in the pipeline until its
output buffer is full. Once the operation uses a tuple from a pipelined input, it removes
the tuple from its input buffer. In either case, once the output buffer is full, the opera-
tion waits until its parent operation removes tuples from the buffer so that the buffer
has space for more tuples. At this point, the operation generates more tuples until the
buffer is full again. The operation repeats this process until all the output tuples have
been generated.

It is necessary for the system to switch between operations only when an output
buffer is full or when an input buffer is empty and more input tuples are needed to gen-
erate any more output tuples. In a parallel-processing system, operations in a pipeline
may be run concurrently on distinct processors (see Section 22.5.1).

Using producer-driven pipelining can be thought of as pushing data up an oper-
ation tree from below, whereas using demand-driven pipelining can be thought of as
pulling data up an operation tree from the top. Whereas tuples are generated eagerly
in producer-driven pipelining, they are generated lazily, on demand, in demand-driven
pipelining. Demand-driven pipelining is used more commonly than producer-driven
pipelining because it is easier to implement. However, producer-driven pipelining is
very useful in parallel processing systems. Producer-driven pipelining has also been
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found to be more efficient than demand-driven pipelining on modern CPUs since it re-
duces the number of function call invocations as compared to demand-driven pipelin-
ing. Producer-driven pipelining is increasingly used in systems that generate machine
code for high performance query evaluation.

15.7.2.2 Evaluation Algorithms for Pipelining

Query plans can be annotated to mark edges that are pipelined; such edges are called
pipelined edges. In contrast, non-pipelined edges are referred to as blocking edges or
materialized edges. The two operators connected by a pipelined edge must be executed
concurrently, since one consumes tuples as the other generates them. Since a plan can
have multiple pipelined edges, the set of all operators that are connected by pipelined
edges must be executed concurrently. A query plan can be divided into subtrees such
that each subtree has only pipelined edges, and the edges between the subtrees are non-
pipelined. Each such subtree is called a pipeline stage. The query processor executes
the plan one pipeline stage at a time, and concurrently executes all the operators in a
single pipeline stage.

Some operations, such as sorting, are inherently blocking operations, that is, they
may not be able to output any results until all tuples from their inputs have been exam-
ined.7 But interestingly, blocking operators can consume tuples as they are generated,
and can output tuples to their consumers as they are generated; such operations actu-
ally execute in two or more stages, and blocking actually happens between two stages
of the operation.

For example, the external sort-merge operation actually has two steps: (i) run-
generation, followed by (ii) merging. The run-generation step can accept tuples as they
are generated by the input to the sort, and can thus be pipelined with the sort input.
The merge step, on the other hand, can send tuples to its consumer as they are gener-
ated, and can thus be pipelined with the consumer of the sort operation. But the merge
step can start only after the run-generation step has finished. We can thus model the
sort-merge operator as two sub-operators connected to each other by a non-pipelined
edge, but each of the sub-operators can be connected by pipelined edges to their input
and output respectively.

Other operations, such as join, are not inherently blocking, but specific evaluation
algorithms may be blocking. For example, the indexed nested loops join algorithm can
output result tuples as it gets tuples for the outer relation. It is therefore pipelined on its
outer (left-hand side) relation; however, it is blocking on its indexed (right-hand side)
input, since the index must be fully constructed before the indexed nested-loop join
algorithm can execute.

The hash-join algorithm is a blocking operation on both inputs, since it requires
both its inputs to be fully retrieved and partitioned before it outputs any tuples. How-

7Blocking operations such as sorting may be able to output tuples early if the input is known to satisfy some special
properties such as being sorted, or partially sorted, already. However, in the absence of such information, blocking
operations cannot output tuples early.
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(a) Logical Query (b) Pipelined Plan
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Figure 15.12 Query plan with pipelining.

ever, hash-join partitions each of its inputs, and then performs multiple build-probe
steps, once per partition. Thus, the hash-join algorithm has 3 steps: (i) partitioning of
the first input, (ii) partitioning of the second input, and (iii) the build-probe step. The
partitioning step for each input can accept tuples as they are generated by the input,
and can thus be pipelined with its input. The build-probe step can output tuples to its
consumer as the tuples are generated, and can thus be pipelined with its consumer.
But the two partitioning steps are connected to the build-probe step by non-pipelined
edges, since build-probe can start only after partitioning has been completed on both
inputs.

Hybrid hash join can be viewed as partially pipelined on the probe relation, since
it can output tuples from the first partition as tuples are received for the probe relation.
However, tuples that are not in the first partition will be output only after the entire
pipelined input relation is received. Hybrid hash join thus provides fully pipelined eval-
uation on its probe input if the build input fits entirely in memory, or nearly pipelined
evaluation if most of the build input fits in memory.

Figure 15.12a shows a query that joins two relations r and s, and then performs an
aggregation on the result; details of the join predicate, group by attributes and aggre-
gation functions are omitted for simplicity. Figure 15.12b shows a pipelined plan for
the query using hash join and in-memory hash aggregation. Pipelined edges are shown
using a normal line, while blocking edges are shown using a bold line. Pipeline stages
are enclosed in dashed boxes. Note that hash join has been split into three suboper-
ators. Two of suboperators, shown abbreviated to Part., partition r and s respectively.
The third, abbreviated to HJ-BP, performs the build and probe phase of the hash join.
The HA-IM operator is the in-memory hash aggregation operator. The edges from the
partition operators to the HJ-BP operator are blocking edges, since the HJ-BP operator
can start execution only after the partition operators have completed execution. The
edges from the relations (assumed to be scanned using a relation scan operator) to the
partition operators are pipelined, as is the edge from the HJ-BP operator to the HA-IM
operator. The resultant pipeline stages are shown enclosed in dashed boxes.

In general, for each materialized edge we need to add the cost of writing the data
to disk, and the cost of the consumer operator should include the cost of reading the
data from disk. However, when a materialized edge is between suboperators of a single
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doner := false;
dones := false;
r := ∅;
s := ∅;
result := ∅;
while not doner or not dones do

begin
if queue is empty, then wait until queue is not empty;
t := top entry in queue;
if t = Endr then doner := true

else if t = Ends then dones := true
else if t is from input r

then
begin

r := r ∪ {t};
result := result ∪ ({t} ⋈ s);

end
else /* t is from input s */

begin
s := s ∪ {t};
result := result ∪ (r ⋈ {t});

end
end

Figure 15.13 Double-pipelined join algorithm.

operator, for example between run generation and merge, the materialization cost has
already been accounted for in the operators cost, and should not be added again.

In some applications, a join algorithm that is pipelined on both its inputs and its
output is desirable. If both inputs are sorted on the join attribute, and the join condition
is an equi-join, merge join can be used, with both its inputs and its output pipelined.

However, in the more common case that the two inputs that we desire to pipeline
into the join are not already sorted, another alternative is the double-pipelined join tech-
nique, shown in Figure 15.13. The algorithm assumes that the input tuples for both
input relations, r and s, are pipelined. Tuples made available for both relations are
queued for processing in a single queue. Special queue entries, called Endr and Ends,
which serve as end-of-file markers, are inserted in the queue after all tuples from r and s
(respectively) have been generated. For efficient evaluation, appropriate indices should
be built on the relations r and s. As tuples are added to r and s, the indices must be kept
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up to date. When hash indices are used on r and s, the resultant algorithm is called the
double-pipelined hash-join technique.

The double-pipelined join algorithm in Figure 15.13 assumes that both inputs fit in
memory. In case the two inputs are larger than memory, it is still possible to use the
double-pipelined join technique as usual until available memory is full. When available
memory becomes full, r and s tuples that have arrived up to that point can be treated
as being in partition r0 and s0, respectively. Tuples for r and s that arrive subsequently
are assigned to partitions r1 and s1, respectively, which are written to disk, and are
not added to the in-memory index. However, tuples assigned to r1 and s1 are used to
probe s0 and r0, respectively, before they are written to disk. Thus, the join of r1 with
s0, and s1 with r0, is also carried out in a pipelined fashion. After r and s have been
fully processed, the join of r1 tuples with s1 tuples must be carried out to complete the
join; any of the join techniques we have seen earlier can be used to join r1 with s1.

15.7.3 Pipelines for Continuous-Stream Data

Pipelining is also applicable in situations where data are entered into the database
in a continuous manner, as is the case, for example, for inputs from sensors that are
continuously monitoring environmental data. Such data are called data streams, as we
saw earlier in Section 10.5. Queries may be written over stream data in order to respond
to data as they arrive. Such queries are called continuous queries.

The operations in a continuous query should be implemented using pipelined al-
gorithms, so that results from the pipeline can be output without blocking. Producer-
driven pipelines (which we discussed earlier in Section 15.7.2.1) are the best suited for
continuous query evaluation.

Many such queries perform aggregation with windowing; tumbling windows which
divide time into fixed size intervals, such as 1 minute, or 1 hour, are commonly used.
Grouping and aggregation is performed separately on each window, as tuples are re-
ceived; assuming memory size is large enough, an in-memory hash index is used to
perform aggregation.

The result of aggregation on a window can be output once the system knows that no
further tuples in that window will be received in future. If tuples are guaranteed to arrive
sorted by timestamp, the arrival of a tuple of a following window indicates no more
tuples will be received for an earlier window. If tuples may arrive out of order, streams
must carry punctuations that indicate that all future tuples will have a timestamp greater
than some specified value. The arrival of a punctuation allows the output of aggregates
of windows whose end-timestamp is less than or equal to the timestamp specified by
the punctuation.

15.8 Query Processing in Memory

The query processing algorithms that we have described so far focus on minimizing
I/O cost. In this section, we discuss extensions to the query processing techniques that
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help minimize memory access costs by using cache-conscious query processing algo-
rithms and query compilation. We then discuss query processing with column-oriented
storage. The algorithms we describe in this section give significant benefits for memory
resident data; they are also very useful with disk-resident data, since they can speed up
processing once data has been brought into the in-memory buffer.

15.8.1 Cache-Conscious Algorithms

When data is resident in memory, access is much faster than if data were resident on
magnetic disks, or even SSDs. However, it must be kept in mind that data already in
CPU cache can be accessed as much as 100 times faster than data in memory. Modern
CPUs have several levels of cache. Commonly used CPUs today have an L1 cache of size
around 64 kilobytes, with a latency of about 1 nanosecond, an L2 cache of size around
256 kilobytes, with a latency of around 5 nanoseconds, and an L3 cache of having a size
of around 10 megabytes, with a latency of 10 to 15 nanoseconds. In contrast, reading
data in memory results in a latency of around 50 to 100 nanoseconds. For simplicity
in the rest of this section we ignore the difference between the L1, L2 and L3 cache
levels, and assume that there is only a single cache level.

As we saw in Section 14.4.7, the speed difference between cache memory and main
memory, and the fact that data are transferred between main memory and cache in units
of a cache-line (typically about 64 bytes), results in a situation where the relationship
between cache and main memory is not dissimilar to the relationship between main
memory and disk (although with smaller speed differences). But there is a difference:
while the contents of the main memory buffers disk-based data are controlled by the
database system, CPU cache is controlled by the algorithms built into the computer
hardware. Thus, the database system cannot directly control what is kept in cache.

However, query processing algorithms can be designed in a way that the makes the
best use of cache, to optimize performance. Here are some ways this can be done:

• To sort a relation that is in-memory, we use the external merge-sort algorithm, with
the run size chosen such that the run fits into the cache; assuming we focus on the
L3 cache, each run should be a few megabytes in size. We then use an in-memory
sorting algorithm on each run; since the run fits in cache, cache misses are likely to
be minimal when the run is sorted. The sorted runs (all of which are in memory)
are then merged. Merging is cache efficient, since access to the runs is sequential:
when a particular word is accessed from memory, the cache line that is fetched
will contain the words that would be accessed next from that run.

To sort a relation larger than memory, we can use external sort-merge with
much larger run sizes, but use the in-memory merge-sort technique we just de-
scribed to perform the in-memory sort of the large runs.

• Hash-join requires probing of an index on the build relation. If the build relation
fits in memory, an index could be built on the whole relation; however, cache hits
during probe can be maximized by partitioning the relations into smaller pieces
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such that each partition of the build-relation along with the index fits in the cache.
Each partition is processed separately, with a build and a probe phase; since the
build partition and its index fit in cache, cache misses are minimized during the
build as well as the probe phase.

For relations larger than memory, the first stage of hash-join should partition
the two relations such that for each partition, the partitions of the two relations
together fit in memory. The technique just described can then be used to perform
the hash join on each of these partitions, after fetching the contents into memory.

• Attributes in a tuple can be arranged such that attributes that tend to be accessed
together are laid out consecutively. For example, if a relation is often used for aggre-
gation, those attributes used as group by attributes, and those that are aggregated
upon, can be stored consecutively. As a result, if there is a cache miss on one at-
tribute, the cache line that is fetched would contain attributes that are likely to be
used immediately.

Cache-aware algorithms are of increasing importance in modern database systems,
since memory sizes are often large enough that much of the data is memory-resident.

In cases where the requisite data item is not in cache, there is a processing stall
while the data item is retrieved from memory and loaded into cache. In order to con-
tinue to make use of the core that made the request resulting in the stall, the operating
system maintains multiple threads of execution on which a core may work. Parallel
query processing algorithms, which we study in Chapter 22 can use multiple threads
running on a single CPU core; if one thread is stalled, another can start execution so
the CPU core is utilized better.

15.8.2 Query Compilation

With data resident in memory, CPU cost becomes the bottleneck, and minimizing CPU
cost can give significant benefits. Traditional databases query processors act as inter-
preters that execute a query plan. However, there is a significant overhead due to inter-
pretation: for example, to access an attribute of a record, the query execution engine
may repeatedly look up the relation meta-data to find the offset of the attribute within
the record, since the same code must work for all relations. There is also significant
overhead due to function calls that are performed for each record processed by an
operation.

To avoid overhead due to interpretation, modern main-memory databases com-
pile query plans into machine code or intermediate level byte-code. For example, the
compiler can compute the offset of an attribute at compile time, and generate code
where the offset is a constant. The compiler can also combine the code for multiple
functions in a way that minimizes function calls. With these, and other related opti-
mizations, compiled code has been found to execute faster, by up to a factor of 10, than
interpreted code.
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15.8.3 Column-Oriented Storage

In Section 13.6, we saw that in data-analytic applications, only a few attributes of a
large schema may be needed, and that in such cases, storing a relation by column
instead of by row may be advantageous. Selection operations on a single attribute (or
small number of attributes) have significantly lower cost in a column store since only
the relevant attributes need to be accessed. However, since accessing each attribute
requires its own data access, the cost of retrieving many attributes is higher and may
incur additional seeks if data are stored on disk.

Because column stores permit efficient access to many values for a given attribute
at once, they are well suited to exploit the vector-processing capabilities of modern
processors. This capability allows certain operations (such as comparisons and aggre-
gations) to be performed in a parallel on multiple attribute values. When compiling
query plans to machine code, the compiler can generate vector-processing instructions
supported by the processor.

15.9 Summary

• The first action that the system must perform on a query is to translate the query
into its internal form, which (for relational database systems) is usually based on
the relational algebra. In the process of generating the internal form of the query,
the parser checks the syntax of the user’s query, verifies that the relation names
appearing in the query are names of relations in the database, and so on. If the
query was expressed in terms of a view, the parser replaces all references to the
view name with the relational-algebra expression to compute the view.

• Given a query, there are generally a variety of methods for computing the answer.
It is the responsibility of the query optimizer to transform the query as entered by
the user into an equivalent query that can be computed more efficiently. Chapter
16 covers query optimization.

• We can process simple selection operations by performing a linear scan or by
making use of indices. We can handle complex selections by computing unions
and intersections of the results of simple selections.

• We can sort relations larger than memory by the external sort–merge algorithm.

• Queries involving a natural join may be processed in several ways, depending on
the availability of indices and the form of physical storage for the relations.

° If the join result is almost as large as the Cartesian product of the two relations,
a block nested-loop join strategy may be advantageous.

° If indices are available, the indexed nested-loop join can be used.
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° If the relations are sorted, a merge join may be desirable. It may be advantageous
to sort a relation prior to join computation (so as to allow use of the merge-join
strategy).

° The hash-join algorithm partitions the relations into several pieces, such that
each piece of one of the relations fits in memory. The partitioning is carried
out with a hash function on the join attributes so that corresponding pairs of
partitions can be joined independently.

• Duplicate elimination, projection, set operations (union, intersection, and differ-
ence), and aggregation can be done by sorting or by hashing.

• Outer-join operations can be implemented by simple extensions of join algorithms.

• Hashing and sorting are dual, in the sense that any operation such as duplicate
elimination, projection, aggregation, join, and outer join that can be implemented
by hashing can also be implemented by sorting, and vice versa; that is, any opera-
tion that can be implemented by sorting can also be implemented by hashing.

• An expression can be evaluated by means of materialization, where the system
computes the result of each subexpression and stores it on disk and then uses it to
compute the result of the parent expression.

• Pipelining helps to avoid writing the results of many subexpressions to disk by
using the results in the parent expression even as they are being generated.

Review Terms

• Query processing

• Evaluation primitive

• Query-execution plan

• Query-evaluation plan

• Query-execution engine

• Measures of query cost

• Sequential I/O

• Random I/O

• File scan

• Linear search

• Selections using indices

• Access paths

• Index scans

• Conjunctive selection

• Disjunctive selection

• Composite index

• Intersection of identifiers

• External sorting

• External sort–merge

• Runs

• N -way merge

• Equi-join

• Nested-loop join

• Block nested-loop join

• Indexed nested-loop join

• Merge join

• Sort-merge join

• Hybrid merge join
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• Hash-join

° Build

° Probe

° Build input

° Probe input

° Recursive partitioning

° Hash-table overflow

° Skew

° Fudge factor

° Overflow resolution

° Overflow avoidance

• Hybrid hash-join

• Spatial join

• Operator tree

• Materialized evaluation

• Double buffering

• Pipelined evaluation

° Demand-driven pipeline
(lazy, pulling)

° Producer-driven pipeline
(eager, pushing)

° Iterator

° Pipeline stages

• Double-pipelined join

• Continuous query evaluation

Practice Exercises

15.1 Assume (for simplicity in this exercise) that only one tuple fits in a block and
memory holds at most three blocks. Show the runs created on each pass of
the sort-merge algorithm when applied to sort the following tuples on the first
attribute: (kangaroo, 17), (wallaby, 21), (emu, 1), (wombat, 13), (platypus,
3), (lion, 8), (warthog, 4), (zebra, 11), (meerkat, 6), (hyena, 9), (hornbill, 2),
(baboon, 12).

15.2 Consider the bank database of Figure 15.14, where the primary keys are un-
derlined, and the following SQL query:

select T.branch name
from branch T, branch S
where T.assets > S.assets and S.branch city = “Brooklyn”

Write an efficient relational-algebra expression that is equivalent to this query.
Justify your choice.

15.3 Let relations r1(A, B, C) and r2(C, D, E) have the following properties: r1 has
20,000 tuples, r2 has 45,000 tuples, 25 tuples of r1 fit on one block, and 30
tuples of r2 fit on one block. Estimate the number of block transfers and seeks
required using each of the following join strategies for r1 ⋈ r2:

a. Nested-loop join.

b. Block nested-loop join.
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c. Merge join.

d. Hash join.

15.4 The indexed nested-loop join algorithm described in Section 15.5.3 can be
inefficient if the index is a secondary index and there are multiple tuples with
the same value for the join attributes. Why is it inefficient? Describe a way,
using sorting, to reduce the cost of retrieving tuples of the inner relation. Under
what conditions would this algorithm be more efficient than hybrid merge join?

15.5 Let r and s be relations with no indices, and assume that the relations are not
sorted. Assuming infinite memory, what is the lowest-cost way (in terms of I/O
operations) to compute r ⋈ s? What is the amount of memory required for
this algorithm?

15.6 Consider the bank database of Figure 15.14, where the primary keys are un-
derlined. Suppose that a B+-tree index on branch city is available on relation
branch, and that no other index is available. List different ways to handle the
following selections that involve negation:

a. σ¬(branch city<“Brooklyn”)(branch)

b. σ¬(branch city=“Brooklyn”)(branch)

c. σ¬(branch city<“Brooklyn” ∨ assets<5000)(branch)

15.7 Write pseudocode for an iterator that implements indexed nested-loop join,
where the outer relation is pipelined. Your pseudocode must define the stan-
dard iterator functions open(), next(), and close(). Show what state information
the iterator must maintain between calls.

15.8 Design sort-based and hash-based algorithms for computing the relational di-
vision operation (see Practice Exercise 2.9 for a definition of the division op-
eration).

branch(branch name, branch city, assets)
customer (customer name, customer street, customer city)
loan (loan number, branch name, amount)
borrower (customer name, loan number)
account (account number, branch name, balance)
depositor (customer name, account number)

Figure 15.14 Bank database.
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15.9 What is the effect on the cost of merging runs if the number of buffer blocks
per run is increased while overall memory available for buffering runs remains
fixed?

15.10 Consider the following extended relational-algebra operators. Describe how to
implement each operation using sorting and using hashing.

a. Semijoin (⋉θ): The multiset semijoin operator r⋉θs is defined as follows:
if a tuple ri appears n times in r, it appears n times in the result of r⋉θ
if there is at least one tuple sj such that ri and sj satisfy predicate θ;
otherwise ri does not appear in the result.

b. Anti-semijoin (⋉θ): The multiset anti-semijoin operator r⋉θs is defined
as follows: if a tuple ri appears n times in r, it appears n times in the result
of r⋉θ if there does not exist any tuple sj in s such that ri and sj satisfy
predicate θ; otherwise ri does not appear in the result.

15.11 Suppose a query retrieves only the first K results of an operation and termi-
nates after that. Which choice of demand-driven or producer-driven pipelining
(with buffering) would be a good choice for such a query? Explain your an-
swer.

15.12 Current generation CPUs include an instruction cache, which caches recently
used instructions. A function call then has a significant overhead because the
set of instructions being executed changes, resulting in cache misses on the
instruction cache.

a. Explain why producer-driven pipelining with buffering is likely to result
in a better instruction cache hit rate, as compared to demand-driven
pipelining.

b. Explain why modifying demand-driven pipelining by generating multiple
results on one call to next(), and returning them together, can improve
the instruction cache hit rate.

15.13 Suppose you want to find documents that contain at least k of a given set of n
keywords. Suppose also you have a keyword index that gives you a (sorted) list
of identifiers of documents that contain a specified keyword. Give an efficient
algorithm to find the desired set of documents.

15.14 Suggest how a document containing a word (such as “leopard”) can be in-
dexed such that it is efficiently retrieved by queries using a more general con-
cept (such as “carnivore” or “mammal”). You can assume that the concept
hierarchy is not very deep, so each concept has only a few generalizations (a
concept can, however, have a large number of specializations). You can also
assume that you are provided with a function that returns the concept for each
word in a document. Also suggest how a query using a specialized concept can
retrieve documents using a more general concept.
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15.15 Explain why the nested-loops join algorithm (see Section 15.5.1) would work
poorly on a database stored in a column-oriented manner. Describe an alterna-
tive algorithm that would work better, and explain why your solution is better.

15.16 Consider the following queries. For each query, indicate if column-oriented
storage is likely to be beneficial or not, and explain why.

a. Fetch ID, name and dept name of the student with ID 12345.

b. Group the takes relation by year and course id, and find the total number
of students for each (year, course id) combination.

Exercises

15.17 Suppose you need to sort a relation of 40 gigabytes, with 4-kilobyte blocks,
using a memory size of 40 megabytes. Suppose the cost of a seek is 5 millisec-
onds, while the disk transfer rate is 40 megabytes per second.

a. Find the cost of sorting the relation, in seconds, with bb = 1 and with
bb = 100.

b. In each case, how many merge passes are required?

c. Suppose a flash storage device is used instead of a disk, and it has a
latency of 20 microsecond and a transfer rate of 400 megabytes per sec-
ond. Recompute the cost of sorting the relation, in seconds, with bb = 1
and with bb = 100, in this setting.

15.18 Why is it not desirable to force users to make an explicit choice of a query-
processing strategy? Are there cases in which it is desirable for users to be aware
of the costs of competing query-processing strategies? Explain your answer.

15.19 Design a variant of the hybrid merge-join algorithm for the case where both
relations are not physically sorted, but both have a sorted secondary index on
the join attributes.

15.20 Estimate the number of block transfers and seeks required by your solution to
Exercise 15.19 for r1 ⋈ r2, where r1 and r2 are as defined in Exercise 15.3.

15.21 The hash-join algorithm as described in Section 15.5.5 computes the natural
join of two relations. Describe how to extend the hash-join algorithm to com-
pute the natural left outer join, the natural right outer join, and the natural full
outer join. (Hint: Keep extra information with each tuple in the hash index to
detect whether any tuple in the probe relation matches the tuple in the hash
index.) Try out your algorithm on the takes and student relations.
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15.22 Suppose you have to compute Aγsum(C)(r) as well as A,Bγsum(C)(r). Describe how
to compute these together using a single sorting of r.

15.23 Write pseudocode for an iterator that implements a version of the sort–merge
algorithm where the result of the final merge is pipelined to its consumers.
Your pseudocode must define the standard iterator functions open(), next(),
and close(). Show what state information the iterator must maintain between
calls.

15.24 Explain how to split the hybrid hash-join operator into sub-operators to model
pipelining. Also explain how this split is different from the split for a hash-join
operator.

15.25 Suppose you need to sort relation r using sort—merge and merge—join the re-
sult with an already sorted relation s.

a. Describe how the sort operator is broken into suboperators to model the
pipelining in this case.

b. The same idea is applicable even if both inputs to the merge join are the
outputs of sort—merge operations. However, the available memory has to
be shared between the two merge operations (the merge—join algorithm
itself needs very little memory). What is the effect of having to share
memory on the cost of each sort-merge operation?

Further Reading

[Graefe (1993)] presents an excellent survey of query-evaluation techniques. [Faerber
et al. (2017)] describe main-memory database implementation techniques, including
query processing techniques for main-memory databases, while [Kemper et al. (2012)]
describes techniques for query processing with in-memory columnar data. [Samet
(2006)] provides a textbook description of spatial data structures, while [Shekhar and
Chawla (2003)] provides a textbook description of spatial databases, including index-
ing and query processing techniques. Textbook descriptions of techniques for indexing
documents, and efficiently computing ranked answers to keyword queries may be found
in [Manning et al. (2008)].
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CHAP T E R 16
Query Optimization

Query optimization is the process of selecting the most efficient query-evaluation plan
from among the many strategies usually possible for processing a given query, especially
if the query is complex. We do not expect users to write their queries so that they can be
processed efficiently. Rather, we expect the system to construct a query-evaluation plan
that minimizes the cost of query evaluation. This is where query optimization comes
into play.

One aspect of optimization occurs at the relational-algebra level, where the system
attempts to find an expression that is equivalent to the given expression, but more
efficient to execute. Another aspect is selecting a detailed strategy for processing the
query, such as choosing the algorithm to use for executing an operation, choosing the
specific indices to use, and so on.

The difference in cost (in terms of evaluation time) between a good strategy and a
bad strategy is often substantial and may be several orders of magnitude. Hence, it is
worthwhile for the system to spend a substantial amount of time on the selection of a
good strategy for processing a query, even if the query is executed only once.

16.1 Overview

Consider the following relational-algebra expression, for the query “Find the names of
all instructors in the Music department together with the course title of all the courses
that the instructors teach.”1

Πname,title (σdept name= “Music” (instructor ⋈ (teaches ⋈ Πcourse id,title(course))))

The subexpression instructor ⋈ teaches ⋈ Πcourse id,title(course) in the preceding ex-
pression can create a very large intermediate result. However, we are interested in only
a few tuples of this intermediate result, namely, those pertaining to instructors in the

1Note that the projection of course on (course id, title) is required since course shares an attribute dept name with
instructor; if we did not remove this attribute using the projection, the above expression using natural joins would
return only courses from the Music department, even if some Music department instructors taught courses in other
departments.

743
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instructor

instructorteaches teaches

course course

∏name, title

∏ course_id, title ∏ course_id, title

∏name, titleσdept_name = Music

σdept_name = Music

(a) Initial expression tree                            (b) Transformed expression tree

Figure 16.1 Equivalent expressions.

Music department, and in only two of the nine attributes of this relation. Since we are
concerned with only those tuples in the instructor relation that pertain to the Music
department, we do not need to consider those tuples that do not have dept name =
“Music”. By reducing the number of tuples of the instructor relation that we need to
access, we reduce the size of the intermediate result. Our query is now represented by
the relational-algebra expression:

Πname,title ((σdept name= “Music” (instructor)) ⋈ (teaches ⋈ Πcourse id,title(course)))

which is equivalent to our original algebra expression, but which generates smaller
intermediate relations. Figure 16.1 depicts the initial and transformed expressions.

An evaluation plan defines exactly what algorithm should be used for each op-
eration and how the execution of the operations should be coordinated. Figure 16.2
illustrates one possible evaluation plan for the expression from Figure 16.1(b). As we
have seen, several different algorithms can be used for each relational operation, giving
rise to alternative evaluation plans. In the figure, hash join has been chosen for one
of the join operations, while the other uses merge join, after sorting the relations on
the join attribute, which is ID. All edges are assumed to be pipelined, unless marked
as materialized. With pipelined edges the output of the producer is sent directly to
the consumer, without being written out to disk; with materialized edges, on the other
hand, the output is written to disk, and then read from the disk by the consumer. There
are no materialized edges in the evaluation plan in Figure 16.2, although some of the
operators, such as sort and hash join, can be represented using suboperators with ma-
terialized edges between the suboperators, as we saw in Section 15.7.2.2.

Given a relational-algebra expression, it is the job of the query optimizer to come
up with a query-evaluation plan that computes the same result as the given expression,
and is the least costly way of generating the result (or, at least, is not much costlier than
the least costly way).
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Π name, title

instructor

σdept_name = Music
                                   (use index 1)

sortID

teaches

(sort to remove duplicates)

(hash join)

(merge join)

course

Πcourse_id, title

sortID

Figure 16.2 An evaluation plan.

The expression that we saw in Figure 16.1 may not necessarily lead to the least-
cost evaluation plan for computing the result, since it still computes the join of the
entire teaches relation with the course relation. The following expression gives the same
final result, but generates smaller intermediate results, since it joins teaches with only
instructor tuples corresponding to the Music department, and then joins that result
with course.

Πname,title ((σdept name= “Music” (instructor) ⋈ teaches) ⋈ Πcourse id,title(course))

Regardless of the way the query is written, it is the job of the optimizer to find the
least-cost plan for the query.

To find the least costly query-evaluation plan, the optimizer needs to generate al-
ternative plans that produce the same result as the given expression and to choose the
least costly one. Generation of query-evaluation plans involves three steps: (1) gener-
ating expressions that are logically equivalent to the given expression, (2) annotating
the resultant expressions in alternative ways to generate alternative query-evaluation
plans, and (3) estimating the cost of each evaluation plan, and choosing the one whose
estimated cost is the least.

Steps (1), (2), and (3) are interleaved in the query optimizer—some expressions
are generated and annotated to generate evaluation plans, then further expressions are
generated and annotated, and so on. As evaluation plans are generated, their costs are
estimated by using statistical information about the relations, such as relation sizes and
index depths.

To implement the first step, the query optimizer must generate expressions equiv-
alent to a given expression. It does so by means of equivalence rules that specify how
to transform an expression into a logically equivalent one. We describe these rules in
Section 16.2.

In Section 16.3 we describe how to estimate statistics of the results of each opera-
tion in a query plan. Using these statistics with the cost formulae in Chapter 15 allows
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Note 16.1 VIEWING QUERY EVALUATION PLANS

Most database systems provide a way to view the evaluation plan chosen to execute
a given query. It is usually best to use the GUI provided with the database system
to view evaluation plans. However, if you use a command line interface, many
databases support variations of a command “explain <query>”, which displays
the execution plan chosen for the specified query<query>. The exact syntax varies
with different databases:

• PostgreSQL uses the syntax shown above.

• Oracle uses the syntax explain plan for. However, the command stores the
resultant plan in a table called plan table, instead of displaying it. The query
“select * from table(dbms xplan.display);” displays the stored plan.

• DB2 follows a similar approach to Oracle, but requires the program db2exfmt
to be executed to display the stored plan.

• SQL Server requires the command set showplan text on to be executed before
submitting the query; then, when a query is submitted, instead of executing
the query, the evaluation plan is displayed.

• MySQL uses the same explain<query> syntax as PostgreSQL, but the output is
a table whose contents are not easy to understand. However, executing show
warnings after the explain command displays the evaluation plan in a more
human-readable format.

The estimated costs for the plan are also displayed along with the plan. It is
worth noting that the costs are usually not in any externally meaningful unit, such
as seconds or I/O operations, but rather in units of whatever cost model the opti-
mizer uses. Some optimizers such as PostgreSQL display two cost-estimate num-
bers; the first indicates the estimated cost for outputting the first result, and the
second indicates the estimated cost for outputting all results.

us to estimate the costs of individual operations. The individual costs are combined
to determine the estimated cost of evaluating a given relational-algebra expression, as
outlined in Section 15.7.

In Section 16.4, we describe how to choose a query-evaluation plan. We can choose
one based on the estimated cost of the plans. Since the cost is an estimate, the selected
plan is not necessarily the least costly plan; however, as long as the estimates are good,
the plan is likely to be the least costly one, or not much more costly than it.
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Finally, materialized views help to speed up processing of certain queries. In Sec-
tion 16.5, we study how to “maintain” materialized views—that is, to keep them up-to-
date—and how to perform query optimization with materialized views.

16.2 Transformation of Relational Expressions

A query can be expressed in several different ways, with different costs of evaluation. In
this section, rather than take the relational expression as given, we consider alternative,
equivalent expressions.

Two relational-algebra expressions are said to be equivalent if, on every legal data-
base instance, the two expressions generate the same set of tuples. (Recall that a legal
database instance is one that satisfies all the integrity constraints specified in the data-
base schema.) Note that the order of the tuples is irrelevant; the two expressions may
generate the tuples in different orders, but would be considered equivalent as long as
the set of tuples is the same.

In SQL, the inputs and outputs are multisets of tuples, and the multiset version of
the relational algebra (described in Note 3.1 on page 80, Note 3.2 on page 97, and Note
3.3 on page 108) is used for evaluating SQL queries. Two expressions in the multiset
version of the relational algebra are said to be equivalent if on every legal database the
two expressions generate the same multiset of tuples. The discussion in this chapter
is based on the relational algebra. We leave extensions to the multiset version of the
relational algebra to you as exercises.

16.2.1 Equivalence Rules

An equivalence rule says that expressions of two forms are equivalent. We can replace
an expression of the first form with an expression of the second form, or vice versa—
that is, we can replace an expression of the second form by an expression of the first
form—since the two expressions generate the same result on any valid database. The
optimizer uses equivalence rules to transform expressions into other logically equiva-
lent expressions.

We now describe several equivalence rules on relational-algebra expressions. Some
of the equivalences listed appear in Figure 16.3. We use θ, θ1, θ2, and so on to denote
predicates, L1, L2, L3, and so on to denote lists of attributes, and E, E1, E2, and so on
to denote relational-algebra expressions. A relation name r is simply a special case of
a relational-algebra expression and can be used wherever E appears.

1. Conjunctive selection operations can be deconstructed into a sequence of indi-
vidual selections. This transformation is referred to as a cascade of σ.

σθ1∧θ2
(E) ≡ σθ1

(σθ2
(E))

2. Selection operations are commutative.

σθ1
(σθ2

(E)) ≡ σθ2
(σθ1

(E))
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E1 E2

θ

E2 E1

Rule 5

E3

E1 E2 E2 E3

E1

Rule 6.a

Rule 7.a

If θ only has
attributes from E1 

E1 E2 E1

E2

σθ

σθ

θ

Figure 16.3 Pictorial representation of equivalences.

3. Only the final operations in a sequence of projection operations are needed; the
others can be omitted. This transformation can also be referred to as a cascade
of Π.

ΠL1
(ΠL2

(… (ΠLn
(E))…)) ≡ ΠL1

(E)

where L1 ⊆ L2 ⊆ … ⊆ Ln.

4. Selections can be combined with Cartesian products and theta joins.

a. σθ(E1 × E2) ≡ E1 ⋈θ E2

This expression is just the definition of the theta join.

b. σθ1
(E1 ⋈θ2

E2) ≡ E1 ⋈θ1∧θ2
E2

5. Theta-join operations are commutative.

E1 ⋈θ E2 ≡ E2 ⋈θ E1

Recall that the natural-join operator is simply a special case of the theta-join
operator; hence, natural joins are also commutative.

The order of attributes differs between the left-hand side and right-hand side
of the commutativity rule, so the equivalence does not hold if the order of at-
tributes is taken into account. Since we use a version of relational algebra where
every attribute must have a name for it to be referenced, the order of attributes



16.2 Transformation of Relational Expressions 749

does not actually matter, except when the result is finally displayed. When the
order does matter, a projection operation can be added to one of the sides of the
equivalence to appropriately reorder attributes. However, for simplicity, we omit
the projection and ignore the attribute order in all our equivalence rules.

6. a. Natural-join operations are associative.

(E1 ⋈ E2) ⋈ E3 ≡ E1 ⋈ (E2 ⋈ E3)

b. Theta joins are associative in the following manner:

(E1 ⋈θ1
E2) ⋈θ2∧θ3

E3 ≡ E1 ⋈θ1∧θ3
(E2 ⋈θ2

E3)

where θ2 involves attributes from only E2 and E3. Any of these conditions
may be empty; hence, it follows that the Cartesian product (×) operation
is also associative. The commutativity and associativity of join operations
are important for join reordering in query optimization.

7. The selection operation distributes over the theta-join operation under the fol-
lowing two conditions:

a. Selection distributes over the theta-join operation when all the attributes in
selection condition θ1 involve only the attributes of one of the expressions
(say, E1) being joined.

σθ1
(E1 ⋈θ E2) ≡ (σθ1

(E1)) ⋈θ E2

b. Selection distributes over the theta-join operation when selection condition
θ1 involves only the attributes of E1 and θ2 involves only the attributes of
E2.

σθ1∧θ2
(E1 ⋈θ E2) ≡ (σθ1

(E1)) ⋈θ (σθ2
(E2))

8. The projection operation distributes over the theta-join operation under the fol-
lowing conditions.

a. Let L1 and L2 be attributes of E1 and E2, respectively. Suppose that the join
condition θ involves only attributes in L1 ∪ L2. Then,

ΠL1∪L2
(E1 ⋈θ E2) ≡ (ΠL1

(E1)) ⋈θ (ΠL2
(E2))

b. Consider a join E1 ⋈θ E2. Let L1 and L2 be sets of attributes from E1 and
E2, respectively. Let L3 be attributes of E1 that are involved in join condition
θ, but are not in L1 and let L4 be attributes of E2 that are involved in join
condition θ, but are not in L2. Then,

ΠL1∪L2
(E1 ⋈θ E2) ≡ ΠL1∪L2

((ΠL1∪L3
(E1)) ⋈θ (ΠL2∪L4

(E2)))

Similar equivalences hold for outer join operations ⟕,⟖ and ⟗.
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9. The set operations union and intersection are commutative.

a. E1 ∪ E2 ≡ E2 ∪ E1

b. E1 ∩ E2 ≡ E2 ∩ E1

Set difference is not commutative.

10. Set union and intersection are associative.

a. (E1 ∪ E2) ∪ E3 ≡ E1 ∪ (E2 ∪ E3)

b. (E1 ∩ E2) ∩ E3 ≡ E1 ∩ (E2 ∩ E3)

11. The selection operation distributes over the union, intersection, and set-
difference operations.

a. σθ(E1 ∪ E2) ≡ σθ(E1) ∪ σθ(E2)

b. σθ(E1 ∩ E2) ≡ σθ(E1) ∩ σθ(E2)

c. σθ(E1 − E2) ≡ σθ(E1) − σθ(E2)

d. σθ(E1 ∩ E2) ≡ σθ(E1) ∩ E2

e. σθ(E1 − E2) ≡ σθ(E1) − E2

The preceding equivalence does not hold if − is replaced by ∪.

12. The projection operation distributes over the union operation

ΠL(E1 ∪ E2) ≡ (ΠL(E1)) ∪ (ΠL(E2))

provided E1 and E2 have the same schema.

13. Selection distributes over aggregation under the following conditions. Let G be
a set of group by attributes, and A a set of aggregate expressions. When θ only
involves attributes in G, the following equivalence holds.

σθ(GγA(E) ≡ GγA(σθ(E))

14. a. Full outer join is commutative.

E1 ⟗E2 ≡ E2 ⟗E2

b. Left and right outer join are not commutative. However, left outer join and
right outer join can be exchanged as follows.

E1 ⟕E2 ≡ E2 ⟖E1

15. Selection distributes over left and right outer join under some conditions. Specif-
ically, when the selection condition θ1 involves only the attributes of one of the
expressions being joined, say E1, the following equivalences hold.
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a. σθ1
(E1 ⟕θ E2) ≡ (σθ1

(E1))⟕θ E2

b. σθ1
(E2 ⟖θ E1) ≡ (E2 ⟖θ (σθ1

(E1)))

16. Outer joins can be replaced by inner joins under some conditions. Specifically, if
θ1 has the property that it evaluates to false or unknown whenever the attributes
of E2 are null, then the following equivalences hold.

a. σθ1
(E1 ⟕θ E2) ≡ σθ1

(E1 ⋈ θ E2)

b. σθ1
(E2 ⟖θ E1) ≡ σθ1

(E2 ⋈ θ E2)

A predicate θ1 satisfying the above property is said to be null rejecting on E2. For
example, if θ1 is of the form A < 4 where A is an attribute from E2, then θ1 would
evaluate to unknown whenever A is null, and as a result any tuples in E1 ⟕θ E2
that are not in E1 ⋈ θ E2 would be rejected by σθ1

. We can therefore replace the
outer join by an inner join (or vice versa).

More generally, the condition would hold if θ1 is of the form θ1
1∧θ

2
1∧…∧θk

1,
and at least one of the terms θi

1 is of the form e1 relop e2, where e1 and e2 are
arithmetic or string expressions involving at least one attribute from E2, and relop
is any of <,≤,=,≥,>.

This is only a partial list of equivalences. More equivalences are discussed in the
exercises.

Some equivalences that hold for joins do not hold for outer joins. For example, the
selection operation does not distribute over outer join when the conditions specified
in rule 15.a or rule 15.b do hold. To see this, we look at the expression:

σyear=2017(instructor ⟕ teaches)

and consider the case of an instructor who teaches no courses at all, regardless of
year. In the above expression, the left outer join retains a tuple for each such instructor
with a null value for year. Then the selection operation removes those tuples since
the predicate null=2017 evaluates to unknown, and such instructors do not appear in
the result. However, if we push the selection operation down to teaches, the resulting
expression:

instructor ⟕ σyear=2017(teaches)

is syntactically correct since the selection predicate includes only attributes from
teaches, but the result is different. For an instructor that does not teach at all, the instruc-
tor tuple appears in the result of instructor ⟕σyear=2017(teaches), but not in the result
of σyear=2017(instructor ⟕ teaches). The following equivalence, however, does hold:

σyear=2017(instructor ⟕ teaches) ≡ σyear=2017(instructor ⋈ teaches)

As another example, unlike inner joins, outer joins are not associative. We show
thus using an example for the natural left outer join. Similar examples can be con-
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structed for natural right and natural full outer join, as well as for the corresponding
theta-join versions of the outer join operations.

Let relation r(A, B) be a relation consisting of the single tuple (1, 1), s(B, C) be a
relation consisting of the single tuple (1, 1), and t(A, C) be an empty relation with no
tuples. We shall show that for this example,

(r ⟕ s)⟕ t ≢ r ⟕(s⟕ t)

To see this, note first that (r ⟕ s) produces a result with schema (A, B, C) having one
tuple (1, 1, 1). Computing the left outer join of that result with relation t produces a
result with schema (A, B, C) having one tuple (1, 1, 1). Next, we look at the expression
r ⟕(s⟕ t), and note that s⟕ t produces a result with schema (A, B, C) having one
tuple (null, 1, 1). Computing the left outer join of r with that result produces a result
with schema (A, B, C) having one tuple (1, 1, null).

16.2.2 Examples of Transformations

We now illustrate the use of the equivalence rules. We use our university example with
the relation schemas:

instructor(ID, name, dept name, salary)
teaches(ID, course id, sec id, semester, year)
course(course id, title, dept name, credits)

In our example in Section 16.1, the expression:

Πname,title (σdept name= “Music” (instructor ⋈ (teaches ⋈ Πcourse id,title(course))))

was transformed into the following expression:

Πname,title ((σdept name= “Music” (instructor)) ⋈ (teaches ⋈ Πcourse id,title(course)))

which is equivalent to our original algebra expression but generates smaller intermedi-
ate relations. We can carry out this transformation by using rule 7.a. Remember that
the rule merely says that the two expressions are equivalent; it does not say that one is
better than the other.

Multiple equivalence rules can be used, one after the other, on a query or on parts
of the query. As an illustration, suppose that we modify our original query to restrict
attention to instructors who have taught a course in 2017. The new relational-algebra
query is:

Πname,title (σdept name= “Music”∧ year = 2017
(instructor ⋈ (teaches ⋈ Πcourse id,title(course))))
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We cannot apply the selection predicate directly to the instructor relation, since the
predicate involves attributes of both the instructor and teaches relations. However, we
can first apply rule 6.a (associativity of natural join) to transform the join instructor ⋈
(teaches ⋈ Πcourse id,title(course)) into (instructor ⋈ teaches) ⋈ Πcourse id,title(course):

Πname,title (σdept name= “Music”∧ year = 2017
((instructor ⋈ teaches) ⋈ Πcourse id,title(course)))

Then, using rule 7.a, we can rewrite our query as:

Πname,title ((σdept name= “Music”∧ year = 2017
(instructor ⋈ teaches)) ⋈ Πcourse id,title(course))

Let us examine the selection subexpression within this expression. Using rule 1,
we can break the selection into two selections to get the following subexpression:

σdept name= “Music” (σyear = 2017 (instructor ⋈ teaches))

Both of the preceding expressions select tuples with dept name = “Music” and
course id = 2017. However, the latter form of the expression provides a new opportunity
to apply rule 7.a (“perform selections early”), resulting in the subexpression:

σdept name= “Music” (instructor) ⋈ σyear = 2017 (teaches)

Figure 16.4 depicts the initial expression and the final expression after all these
transformations. We could equally well have used rule 7.b to get the final expression
directly, without using rule 1 to break the selection into two selections. In fact, rule 7.b
can itself be derived from rules 1 and 7.a.

(a) Initial expression tree (b) Tree after multiple transformations

∏name, title

∏ course_id, title

σdept_name = Music
                                  year = 2017

instructor

teaches

course

∏name, title

∏ course_id, title

year = 2017σdept_name = Music σ

instructor teaches course

^

Figure 16.4 Multiple transformations.
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A set of equivalence rules is said to be minimal if no rule can be derived from any
combination of the others. The preceding example illustrates that the set of equiva-
lence rules in Section 16.2.1 is not minimal. An expression equivalent to the original
expression may be generated in different ways; the number of different ways of generat-
ing an expression increases when we use a nonminimal set of equivalence rules. Query
optimizers therefore use minimal sets of equivalence rules.

Now consider the following form of our example query:

Πname,title ((σdept name= “Music” (instructor) ⋈ teaches) ⋈ Πcourse id,title(course))

When we compute the subexpression:

(σdept name= “Music” (instructor) ⋈ teaches)

we obtain a relation whose schema is:

(ID, name, dept name, salary, course id, sec id, semester, year)

We can eliminate several attributes from the schema by pushing projections based on
equivalence rules 8.a and 8.b. The only attributes that we must retain are those that ei-
ther appear in the result of the query or are needed to process subsequent operations.
By eliminating unneeded attributes, we reduce the number of columns of the interme-
diate result. Thus, we reduce the size of the intermediate result. In our example, the
only attributes we need from the join of instructor and teaches are name and course id.
Therefore, we can modify the expression to:

Πname,title ((Πname,course id ((σdept name= “Music” (instructor)) ⋈ teaches))
⋈ Πcourse id,title(course))

The projection Πname,course id reduces the size of the intermediate join results.

16.2.3 Join Ordering

A good ordering of join operations is important for reducing the size of temporary
results; hence, most query optimizers pay a lot of attention to the join order. As men-
tioned in equivalence rule 6.a, the natural-join operation is associative. Thus, for all
relations r1, r2, and r3:

(r1 ⋈ r2) ⋈ r3 ≡ r1 ⋈ (r2 ⋈ r3)

Although these expressions are equivalent, the costs of computing them may differ.
Consider again the expression:

Πname,title ((σdept name= “Music” (instructor)) ⋈ teaches ⋈ Πcourse id,title(course))
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We could choose to compute teaches ⋈ Πcourse id,title(course) first, and then to join the
result with:

σdept name= “Music” (instructor)

However, teaches ⋈ Πcourse id,title(course) is likely to be a large relation, since it
contains one tuple for every course taught. In contrast:

σdept name= “Music” (instructor) ⋈ teaches

is probably a small relation. To see that it is, we note that a university has fewer in-
structors than courses and, since a university has a large number of departments, it
is likely that only a small fraction of the university instructors are associated with
the Music department. Thus, the preceding expression results in one tuple for each
course taught by an instructor in the Music department. Therefore, the temporary
relation that we must store is smaller than it would have been had we computed
teaches ⋈ Πcourse id,title(course) first.

There are other options to consider for evaluating our query. We do not care about
the order in which attributes appear in a join, since it is easy to change the order before
displaying the result. Thus, for all relations r1 and r2:

r1 ⋈ r2 ≡ r2 ⋈ r1

That is, natural join is commutative (equivalence rule 5).
Using the associativity and commutativity of the natural join (rules 5 and 6), con-

sider the following relational-algebra expression:

(instructor ⋈ Πcourse id,title(course)) ⋈ teaches

Note that there are no attributes in common between Πcourse id,title(course) and instruc-
tor, so the join is just a Cartesian product. If there are a tuples in instructor and b tuples
in Πcourse id,title(course), this Cartesian product generates a ∗ b tuples, one for every
possible pair of instructor tuple and course (without regard for whether the instruc-
tor taught the course). This Cartesian product would produce a very large temporary
relation. However, if the user had entered the preceding expression, we could use the
associativity and commutativity of the natural join to transform this expression to the
more efficient expression:

(instructor ⋈ teaches) ⋈ Πcourse id,title(course)

16.2.4 Enumeration of Equivalent Expressions

Query optimizers can use equivalence rules to systematically generate expressions
equivalent to the given query expression. The cost of an expression is computed based
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procedure genAllEquivalent(E)
EQ = {E}
repeat

Match each expression Ei in EQ with each equivalence rule Rj
if any subexpression ei of Ei matches one side of Rj

Create a new expression E′ which is identical to Ei, except that
ei is transformed to match the other side of Rj

Add E′ to EQ if it is not already present in EQ
until no new expression can be added to EQ

Figure 16.5 Procedure to generate all equivalent expressions.

on statistics that are discussed in Section 16.3. Cost-based query optimizers, described
in Section 16.4 compute the cost of each alternative and pick the least cost alternative.

Conceptually, enumeration of equivalent expressions can be done as outlined in
Figure 16.5. The process proceeds as follows: Given a query expression E, the set of
equivalent expressions EQ initially contains only E. Now, each expression in EQ is
matched with each equivalence rule. If a subexpression ej of any expression Ei ∈ EQ
(as a special case, ej could be Ei itself) matches one side of an equivalence rule, the
optimizer generates a copy Ek of Ei, in which ej is transformed to match the other side
of the rule, and adds Ek to EQ. This process continues until no more new expressions
can be generated. With a properly chosen set of equivalence rules, the set of equivalent
expressions is finite, and the process can be guaranteed to terminate.

For example, given an expression r ⋈ (s ⋈ t), the commutativity rule can match
the subexpression (s ⋈ t), and would create a new expression r ⋈ (t ⋈ s). The
commutativity rule also matches the join at the root of r ⋈ (s ⋈ t), and creates a
new expression (s ⋈ t) ⋈ r. Associativity and commutativity rules can continue to
be applied to generate new expressions. But eventually applying any equivalence rule
will only generate expressions that were already generated earlier, and the process will
terminate.

The preceding process is extremely costly both in space and in time, but optimizers
can greatly reduce both the space and time cost, using two key ideas.

1. If we generate an expression E′ from an expression E1 by using an equivalence
rule on subexpression ei, then E′ and E1 have identical subexpressions except for
ei and its transformation. Even ei and its transformed version usually share many
identical subexpressions. Expression-representation techniques that allow both
expressions to point to shared subexpressions can reduce the space requirement
significantly.
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2. It is not always necessary to generate every expression that can be generated
with the equivalence rules. If an optimizer takes cost estimates of evaluation into
account, it may be able to avoid examining some of the expressions, as we shall
see in Section 16.4. We can reduce the time required for optimization by using
techniques such as these.

With these and other techniques to reduce the optimization time, equivalence rules can
be used to enumerate alternative plans, whose costs can be computed; the lowest-cost
plan amongst the alternatives is then chosen. We discuss efficient implementation of
cost-based query optimization based on equivalence rules in Section 16.4.2.

Some query optimizers use equivalence rules in a heuristic manner. With such an
approach, if the left-hand side of an equivalence rule matches a subtree in a query plan,
the subtree is rewritten to match the right-hand side of the rule. This process is repeated
till the query plan cannot be further rewritten. Rules must be carefully chosen such
that the cost decreases when a rule is applied, and rewriting must eventually terminate.
Although this approach can be implemented to execute quite fast, there is no guarantee
that it will find the optimal plan.

Yet other query optimizers focus on join order selection, which is often a key factor
in query cost. We discuss algorithms for join-order optimization in Section 16.4.1.

16.3 Estimating Statistics of Expression Results

The cost of an operation depends on the size and other statistics of its inputs. Given
an expression such as r ⋈ (s ⋈ t) to estimate the cost of joining r with (s ⋈ t), we
need to have estimates of statistics such as the size of s ⋈ t.

In this section, we first list some statistics about database relations that are stored
in database-system catalogs, and then show how to use the stored statistics to estimate
statistics on the results of various relational operations.

Given a query expression, we consider it as a tree; we can start from the bottom-
level operations, and estimate their statistics, and continue the process on higher-level
operations, till we reach the root of the tree. The size estimates that we compute as
part of these statistics can be used to compute the cost of algorithms for individual
operations in the tree, and these costs can be added up to find the cost of an entire
query plan, as we saw in Chapter 15.

One thing that will become clear later in this section is that the estimates are not
very accurate, since they are based on assumptions that may not hold exactly. A query-
evaluation plan that has the lowest estimated execution cost may therefore not actually
have the lowest actual execution cost. However, real-world experience has shown that
even if estimates are not precise, the plans with the lowest estimated costs usually have
actual execution costs that are either the lowest actual execution costs or are close to
the lowest actual execution costs.
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16.3.1 Catalog Information

The database-system catalog stores the following statistical information about database
relations:

• nr, the number of tuples in the relation r.

• br, the number of blocks containing tuples of relation r.

• lr, the size of a tuple of relation r in bytes.

• fr, the blocking factor of relation r —that is, the number of tuples of relation r that
fit into one block.

• V (A, r), the number of distinct values that appear in the relation r for attribute A.
This value is the same as the size of ΠA(r). If A is a key for relation r, V (A, r) is nr.

The last statistic, V (A, r), can also be maintained for sets of attributes, if desired, instead
of just for individual attributes. Thus, given a set of attributes, , V (, r) is the size of
Π(r).

If we assume that the tuples of relation r are stored together physically in a file, the
following equation holds:

br =
⌈

nr

fr

⌉

Statistics about indices, such as the heights of B+-tree indices and number of leaf pages
in the indices, are also maintained in the catalog.

If we wish to maintain accurate statistics, then every time a relation is modified, we
must also update the statistics. This update incurs a substantial amount of overhead.
Therefore, most systems do not update the statistics on every modification. Instead,
they update the statistics during periods of light system load. As a result, the statistics
used for choosing a query-processing strategy may not be completely accurate. How-
ever, if not too many updates occur in the intervals between the updates of the statistics,
the statistics will be sufficiently accurate to provide a good estimation of the relative
costs of the different plans.

The statistical information noted here is simplified. Real-world optimizers often
maintain further statistical information to improve the accuracy of their cost estimates
of evaluation plans. For instance, most databases store the distribution of values for
each attribute as a histogram: in a histogram, the values for the attribute are divided
into a number of ranges, and with each range the histogram associates the number
of tuples whose attribute value lies in that range. Figure 16.6 shows an example of a
histogram for an integer-valued attribute that takes values in the range 1 to 25.

As an example of a histogram, the range of values for an attribute age of a relation
person could be divided into 0—9, 10—19, . . . , 90—99 (assuming a maximum age of 99).
With each range we store a count of the number of person tuples whose age values lie
in that range.
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Figure 16.6 Example of histogram.

The histogram shown in Figure 16.6, is an equi-width histogram since it divides the
range of values into equal-sized ranges. In contrast, an equi-depth histogram adjusts the
boundaries of the ranges such that each range has the same number of values. Thus,
an equi-depth histogram merely stores the boundaries of partitions of the range, and
need not store the number of values. For example, the following could be the equidepth
histogram for the data whose equi-width histogram is shown in Figure 16.6:

(4, 8, 14, 19)

The histogram indicates that 1∕5th of the tuples have age less than 4, another 1∕5th
have age≥ 4 but< 8, and so on, with the last 1∕5th having age ≥ 19. Information about
the total number of tuples is also stored with the equi-width histogram. Equi-depth
histograms are preferred to equi-width histograms since they provide better estimates,
and occupy less space.

Histograms used in database systems can also record the number of distinct values
in each range, in addition to the number of tuples with attribute values in that range.
In our example, the histogram could store the number of distinct age values that lie in
each range. Without such histogram information, an optimizer would have to assume
that the distribution of values is uniform; that is, each range has the same number of
distinct values.

In many database applications, some values are very frequent, compared to other
values. To get better estimates for queries that specify these values, many databases
store a list of n most frequent values for some n (say 5 or 10), along with the number of
times each value appears. In our example, if ages 4, 7, 18, 19, and 23 are the five most
frequently occurring values, the database could store the number of persons having
each of these ages. The histogram then only stores statistics for age values other than
these five values, since we have now have exact counts for these values.
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A histogram takes up only a little space, so histograms on several different at-
tributes can be stored in the system catalog.

16.3.2 Selection Size Estimation

The size estimate of the result of a selection operation depends on the selection predi-
cate. We first consider a single equality predicate, then a single comparison predicate,
and finally combinations of predicates.

• σA= a(r): If a is a frequently occurring value for which the occurrence count is
available, we can use that value directly as the size estimate for the selection.

Otherwise if there is no histogram available, we assume uniform distribution
of values (i.e., each value appears with equal probability), the selection result is
estimated to have nr∕V (A, r) tuples, assuming that the value a appears in attribute
A of some record of r. The assumption that the value a in the selection appears in
some record is generally true, and cost estimates often make it implicitly. However,
it is often not realistic to assume that each value appears with equal probability.
The course id attribute in the takes relation is an example where the assumption
is not valid. It is reasonable to expect that a popular undergraduate course will
have many more students than a smaller specialized graduate course. Therefore,
certain course id values appear with greater probability than do others. Despite the
fact that the uniform-distribution assumption is often not correct, it is a reasonable
approximation of reality in many cases, and it helps us to keep our presentation
relatively simple.

If a histogram is available on attribute A, we can locate the range that contains
the value a, and modify the above-mentioned estimate nr∕V (A, r) by using the
frequency count for that range instead of nr, and the number of distinct values
that occurs in that range instead of V (A, r).

• σA≤v(r): Consider a selection of the form σA≤v(r). Suppose that the lowest and
highest values (min(A, r) and max(A, r)) for the attribute are stored in the catalog.
Assuming that values are uniformly distributed, we can estimate the number of
records that will satisfy the condition A ≤ v as:

° 0 if v < min(A, r)

° nr if v ≥ max(A, r), and,

° nr ⋅
v−min(A,r)

max(A,r)−min(A,r)
, otherwise.

If a histogram is available on attribute A, we can get a more accurate estimate;
we leave the details as an exercise for you.

In some cases, such as when the query is part of a stored procedure, the value
v may not be available when the query is optimized. In such cases, we assume that
approximately one-half the records will satisfy the comparison condition. That is,
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Note 16.2 COMPUTING AND MAINTAINING STATISTICS

Conceptually, statistics on relations can be thought of as materialized views, which
should be automatically maintained when relations are modified. Unfortunately,
keeping statistics up-to-date on every insert, delete or update to the database can be
very expensive. On the other hand, optimizers generally do not need exact statis-
tics: an error of a few percent may result in a plan that is not quite optimal being
chosen, but the alternative plan chosen is likely to have a cost which is within a
few percent of the optimal cost. Thus, it is acceptable to have statistics that are
approximate.

Database systems reduce the cost of generating and maintaining statistics, as
outlined below, by exploiting the fact that statistics can be approximate.

• Statistics are often computed from a sample of the underlying data, instead
of examining the entire collection of data. For example, a fairly accurate his-
togram can be computed from a sample of a few thousand tuples, even on a
relation that has millions, or hundreds of millions of records. However, the
sample used must be a random sample; a sample that is not random may have
an excessive representation of one part of the relation and can give misleading
results. For example, if we used a sample of instructors to compute a histogram
on salaries, if the sample has an overrepresentation of lower-paid instructors
the histogram would result in wrong estimates. Database systems today rou-
tinely use random sampling to create statistics. See the bibliographical notes
online for references on sampling.

• Statistics are not maintained on every update to the database. In fact, some
database systems never update statistics automatically. They rely on database
administrators periodically running a command to update statistics. Oracle
and PostgreSQL provide an SQL command called analyze that generates statis-
tics on specified relations, or on all relations. IBM DB2 supports an equivalent
command called runstats. See the system manuals for details. You should be
aware that optimizers sometimes choose very bad plans due to incorrect statis-
tics. Many database systems, such as IBM DB2, Oracle, and SQL Server, update
statistics automatically at certain points of time. For example, the system can
keep approximate track of how many tuples there are in a relation and re-
compute statistics if this number changes significantly. Another approach is
to compare estimated cardinalities of a relation scan with actual cardinalities
when a query is executed, and if they differ significantly, initiate an update of
statistics for that relation.
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we assume the result has nr∕2 tuples; the estimate may be very inaccurate, but it
is the best we can do without any further information.

• Complex selections:

° Conjunction: A conjunctive selection is a selection of the form:

σθ1∧θ2∧⋯∧θn
(r)

We can estimate the result size of such a selection: For each θi, we estimate
the size of the selection σθi

(r), denoted by si, as described previously. Thus, the
probability that a tuple in the relation satisfies selection condition θi is si∕nr.

The preceding probability is called the selectivity of the selection σθi
(r).

Assuming that the conditions are independent of each other, the probability that
a tuple satisfies all the conditions is simply the product of all these probabilities.
Thus, we estimate the number of tuples in the full selection as:

nr ∗
s1 ∗ s2 ∗ ⋯ ∗ sn

nn
r

° Disjunction: A disjunctive selection is a selection of the form:

σθ1∨θ2∨⋯∨θn
(r)

A disjunctive condition is satisfied by the union of all records satisfying the
individual, simple conditions θi.

As before, let si∕nr denote the probability that a tuple satisfies condition θi.
The probability that the tuple will satisfy the disjunction is then 1 minus the
probability that it will satisfy none of the conditions:

1 − (1 −
s1

nr
) ∗ (1 −

s2

nr
) ∗ ⋯ ∗ (1 −

sn

nr
)

Multiplying this value by nr gives us the estimated number of tuples that satisfy
the selection.

° Negation: In the absence of nulls, the result of a selection σ¬θ(r) is simply the
tuples of r that are not in σθ(r). We already know how to estimate the number
of tuples in σθ(r). The number of tuples in σ¬θ(r) is therefore estimated to be
nr minus the estimated number of tuples in σθ(r).

We can account for nulls by estimating the number of tuples for which
the condition θ would evaluate to unknown, and subtracting that number from
the above estimate, ignoring nulls. Estimating that number would require extra
statistics to be maintained in the catalog.

16.3.3 Join Size Estimation

In this section, we see how to estimate the size of the result of a join.
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The Cartesian product r × s contains nr ∗ ns tuples. Each tuple of r × s occupies
lr + ls bytes, from which we can calculate the size of the Cartesian product.

Estimating the size of a natural join is somewhat more complicated than estimating
the size of a selection or of a Cartesian product. Let r(R) and s(S) be relations.

• If R ∩ S = ∅—that is, the relations have no attribute in common—then r ⋈ s is
the same as r × s, and we can use our estimation technique for Cartesian products.

• If R ∩ S is a key for R, then we know that a tuple of s will join with at most
one tuple from r. Therefore, the number of tuples in r ⋈ s is no greater than the
number of tuples in s. The case where R ∩ S is a key for S is symmetric to the
case just described. If R ∩ S forms a foreign key of S, referencing R, the number
of tuples in r ⋈ s is exactly the same as the number of tuples in s.

• The most difficult case is when R ∩ S is a key for neither R nor S. In this case, we
assume, as we did for selections, that each value appears with equal probability.
Consider a tuple t of r, and assume R ∩ S = {A}. We estimate that tuple t produces

ns

V (A, s)

tuples in r ⋈ s, since this number is the average number of tuples in s with a given
value for the attributes A. Considering all the tuples in r, we estimate that there
are

nr ∗ ns

V (A, s)

tuples in r ⋈ s. Observe that, if we reverse the roles of r and s in the preceding
estimate, we obtain an estimate of

nr ∗ ns

V (A, r)

tuples in r ⋈ s. These two estimates differ if V (A, r) ≠ V (A, s). If this situation
occurs, there are likely to be dangling tuples that do not participate in the join.
Thus, the lower of the two estimates is probably the more accurate one.

The preceding estimate of join size may be too high if the V (A, r) values for
attribute A in r have few values in common with the V (A, s) values for attribute A
in s. However, this situation is unlikely to happen in the real world, since dangling
tuples either do not exist or constitute only a small fraction of the tuples, in most
real-world relations.

More important, the preceding estimate depends on the assumption that each
value appears with equal probability. More sophisticated techniques for size esti-
mation have to be used if this assumption does not hold. For example, if we have
histograms on the join attributes of both relations, and both histograms have the
same ranges, then we can use the above estimation technique within each range,
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using the number of rows with values in the range instead of nr or ns, and the
number of distinct values in that range, instead of V (A, r) or V (A, s). We then add
up the size estimates obtained for each range to get the overall size estimate. We
leave the case where both relations have histograms on the join attribute, but the
histograms have different ranges, as an exercise for you.

We can estimate the size of a theta join r ⋈θ s by rewriting the join as σθ(r × s)
and using the size estimates for Cartesian products along with the size estimates for
selections, which we saw in Section 16.3.2.

To illustrate all these ways of estimating join sizes, consider the expression:

student ⋈ takes

Assume the following catalog information about the two relations:

• nstudent = 5000.

• ntakes = 10000.

• V (ID, takes) = 2500, which implies that only half the students have taken any
course (this is unrealistic, but we use it to show that our size estimates are correct
even in this case), and on average, each student who has taken a course has taken
four courses.

Note that since ID is a primary key of student, V (ID, student) = nstudent = 5000.
The attribute ID in takes is a foreign key on student, and null values do not occur in

takes.ID, since ID is part of the primary key of takes; thus, the size of student ⋈ takes
is exactly ntakes, which is 10000.

We now compute the size estimates for student ⋈ takes without using information
about foreign keys. Since V (ID, takes) = 2500 and V (ID, student) = 5000, the two
estimates we get are 5000 ∗ 10000∕2500 = 20000 and 5000 ∗ 10000∕5000 = 10000,
and we choose the lower one. In this case, the lower of these estimates is the same as
that which we computed earlier from information about foreign keys.

16.3.4 Size Estimation for Other Operations

Next we outline how to estimate the sizes of the results of other relational-algebra op-
erations.

• Projection: The estimated size (number of records or number of tuples) of a pro-
jection of the form ΠA(r) is V (A, r), since projection eliminates duplicates.

• Aggregation: The size of GγA(r) is simply V (G, r), since there is one tuple in GγA(r)
for each distinct value of G.

• Set operations: If the two inputs to a set operation are selections on the same rela-
tion, we can rewrite the set operation as disjunctions, conjunctions, or negations.
For example, σθ1

(r) ∪ σθ2
(r) can be rewritten as σθ1∨θ2

(r). Similarly, we can rewrite
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intersections as conjunctions, and we can rewrite set difference by using negation,
so long as the two relations participating in the set operations are selections on the
same relation. We can then use the estimates for selections involving conjunctions,
disjunctions, and negation in Section 16.3.2.

If the inputs are not selections on the same relation, we estimate the sizes this
way: The estimated size of r ∪ s is the sum of the sizes of r and s. The estimated
size of r∩ s is the minimum of the sizes of r and s. The estimated size of r− s is the
same size as r. All three estimates may be inaccurate, but provide upper bounds
on the sizes.

• Outer join: The estimated size of r ⟕ s is the size of r ⋈ s plus the size of r; that of
r ⟖ s is symmetric, while that of r ⟗ s is the size of r ⋈ s plus the sizes of r and
s. All three estimates may be inaccurate, but provide upper bounds on the sizes.

16.3.5 Estimation of Number of Distinct Values

The size estimates discussed earlier depend on statistics such as histograms, or at a
minimum, the number of distinct values for an attribute. While these statistics can be
precomputed and stored for relations in the database, we need to compute them for
intermediate results. Note that estimation of the number of sizes and the number of
distinct values of attributes in an intermediate result Ei helps us estimate the sizes and
number of distinct values of attributes in the next level intermediate results that use Ei.

For selections, the number of distinct values of an attribute (or set of attributes) A
in the result of a selection, V (A, σθ(r)), can be estimated in these ways:

• If the selection condition θ forces A to take on a specified value (e.g., A = 3),
V (A, σθ(r)) = 1.

• If θ forces A to take on one of a specified set of values (e.g., (A = 1∨A = 3∨A = 4)),
then V (A, σθ(r)) is set to the number of specified values.

• If the selection condition θ is of the form A op v, where op is a comparison operator,
V (A, σθ(r)) is estimated to be V (A, r) ∗ s, where s is the selectivity of the selection.

• In all other cases of selections, we assume that the distribution of A values is inde-
pendent of the distribution of the values on which selection conditions are speci-
fied, and we use an approximate estimate of min(V (A, r), nσθ(r)). A more accurate
estimate can be derived for this case using probability theory, but the preceding
approximation works fairly well.

For joins, the number of distinct values of an attribute (or set of attributes) A in
the result of a join, V (A, r ⋈ s), can be estimated in these ways:
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• If all attributes in A are from r, V (A, r ⋈ s) is estimated as min(V (A, r), nr ⋈ s),
and similarly if all attributes in A are from s, V (A, r ⋈ s) is estimated to be
min(V (A, s), nr ⋈ s).

• If A contains attributes A1 from r and A2 from s, then V (A, r ⋈ s) is estimated as:

min(V (A1, r) ∗ V (A2 − A1, s), V (A1 − A2, r) ∗ V (A2, s), nr ⋈ s)

Note that some attributes may be in A1 as well as in A2, and A1− A2 and A2− A1
denote, respectively, attributes in A that are only from r and attributes in A that are
only from s. Again, more accurate estimates can be derived by using probability
theory, but the above approximations work fairly well.

The estimates of distinct values are straightforward for projections: They are the
same inΠA(r) as in r. The same holds for grouping attributes of aggregation. For results
of sum, count, and average, we can assume, for simplicity, that all aggregate values
are distinct. For min(A) and max(A), the number of distinct values can be estimated
as min(V (A, r), V (G, r)), where G denotes the grouping attributes. We omit details of
estimating distinct values for other operations.

16.4 Choice of Evaluation Plans

Generation of expressions is only part of the query-optimization process, since each
operation in the expression can be implemented with different algorithms. An evalua-
tion plan defines exactly what algorithm should be used for each operation, and how
the execution of the operations should be coordinated.

Given an evaluation plan, we can estimate its cost using statistics estimated by
the techniques in Section 16.3 coupled with cost estimates for various algorithms and
evaluation methods described in Chapter 15.

A cost-based optimizer explores the space of all query-evaluation plans that are
equivalent to the given query, and chooses the one with the least estimated cost. We
have seen how equivalence rules can be used to generate equivalent plans. However,
cost-based optimization with arbitrary equivalence rules is fairly complicated. We first
cover a simpler version of cost-based optimization, which involves only join-order and
join algorithm selection, in Section 16.4.1. Then, in Section 16.4.2, we briefly sketch
how a general-purpose optimizer based on equivalence rules can be built, without going
into details.

Exploring the space of all possible plans may be too expensive for complex queries.
Most optimizers include heuristics to reduce the cost of query optimization, at the
potential risk of not finding the optimal plan. We study some such heuristics in Section
16.4.3.
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16.4.1 Cost-Based Join-Order Selection

The most common type of query in SQL consists of a join of a few relations, with join
predicates and selections specified in the where clause. In this section we consider the
problem of choosing the optimal join order for such a query.

For a complex join query, the number of different query plans that are equivalent
to the query can be large. As an illustration, consider the expression:

r1 ⋈ r2 ⋈ ⋯ ⋈ rn

where the joins are expressed without any ordering. With n = 3, there are 12 different
join orderings:

r1 ⋈ (r2 ⋈ r3) r1 ⋈ (r3 ⋈ r2) (r2 ⋈ r3) ⋈ r1 (r3 ⋈ r2) ⋈ r1
r2 ⋈ (r1 ⋈ r3) r2 ⋈ (r3 ⋈ r1) (r1 ⋈ r3) ⋈ r2 (r3 ⋈ r1) ⋈ r2
r3 ⋈ (r1 ⋈ r2) r3 ⋈ (r2 ⋈ r1) (r1 ⋈ r2) ⋈ r3 (r2 ⋈ r1) ⋈ r3

In general, with n relations, there are (2(n − 1))!∕(n − 1)! different join orders.
(We leave the computation of this expression for you to do in Exercise 16.12.) For
joins involving small numbers of relations, this number is acceptable; for example, with
n = 5, the number is 1680. However, as n increases, this number rises quickly. With
n = 7, the number is 665,280; with n = 10, the number is greater than 17.6 billion!

Luckily, it is not necessary to generate all the expressions equivalent to a given
expression. For example, suppose we want to find the best join order of the form:

(r1 ⋈ r2 ⋈ r3) ⋈ r4 ⋈ r5

which represents all join orders where r1, r2, and r3 are joined first (in some order), and
the result is joined (in some order) with r4 and r5. There are 12 different join orders
for computing r1 ⋈ r2 ⋈ r3, and 12 orders for computing the join of this result with
r4 and r5. Thus, there appear to be 144 join orders to examine. However, once we have
found the best join order for the subset of relations {r1, r2, r3}, we can use that order for
further joins with r4 and r5, and we can ignore all costlier join orders of r1 ⋈ r2 ⋈ r3.
Thus, instead of 144 choices to examine, we need to examine only 12 + 12 choices.

Using this idea, we can develop a dynamic-programming algorithm for finding opti-
mal join orders. Dynamic-programming algorithms store results of computations and
reuse them, a procedure that can reduce execution time greatly.

We now consider how to find the optimal join order for a set of n relations S =
{r1, r2,… , rn}, where each relation may have selection conditions, and a set of join
conditions between the relations ri is provided. We assume that relations have unique
names.

A recursive procedure implementing the dynamic-programming algorithm appears
in Figure 16.7 and is invoked as FindBestPlan(S), where S is the set of relations above.
The procedure applies selections on individual relations at the earliest possible point,
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procedure FindBestPlan(S)
if (bestplan[S].cost ≠ ∞) /* bestplan[S] already computed */

return bestplan[S]
if (S contains only 1 relation)

set bestplan[S].plan and bestplan[S].cost based on the best way of
accessing S using selection conditions (if any) on S.

else for each non-empty subset S1 of S such that S1 ≠ S
P1 = FindBestPlan(S1)
P2 = FindBestPlan(S − S1)
for each algorithm A for joining the results of P1 and P2

// For indexed-nested loops join, the outer relation could be P1 or P2.
// Similarly for hash-join, the build relation could be P1 or P2.
// We assume the alternatives are considered as separate algorithms.
// We assume cost of A does not include cost of reading the inputs.
if algorithm A is indexed nested loops

Let Po and Pi denote the outer and inner inputs of A
if Pi has a single relation ri, and ri has an index on the join

attributes
plan = “execute Po.plan; join results of Po and ri using A”,

with any selection condition on Pi performed as
part of the join condition

cost = Po.cost + cost of A
else /* Cannot use indexed nested loops join */

cost = ∞
else

plan = “execute P1.plan; execute P2.plan;
join results of P1 and P2 using A”

cost = P1.cost + P2.cost + cost of A
if cost < bestplan[S].cost

bestplan[S].cost = cost
bestplan[S].plan = plan

return bestplan[S]

Figure 16.7 Dynamic-programming algorithm for join-order optimization.

that is, when the relations are accessed. It is easiest to understand the procedure as-
suming that all joins are natural joins, although the procedure works unchanged with
any join condition. With arbitrary join conditions, the join of two subexpressions is
understood to include all join conditions that relate attributes from the two subexpres-
sions.
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The procedure stores the evaluation plans it computes in an associative array
bestplan, which is indexed by sets of relations. Each element of the associative array
contains two components: the cost of the best plan of S, and the plan itself. The value
of bestplan[S].cost is assumed to be initialized to ∞ if bestplan[S] has not yet been
computed.

The procedure first checks if the best plan for computing the join of the given set
of relations S has been computed already (and stored in the associative array bestplan);
if so, it returns the already computed plan.

If S contains only one relation, the best way of accessing S (taking selections on S,
if any, into account) is recorded in bestplan. This may involve using an index to identify
tuples, and then fetching the tuples (often referred to as an index scan), or scanning the
entire relation (often referred to as a relation scan).2 If there is any selection condition
on S, other than those ensured by an index scan, a selection operation is added to the
plan to ensure all selections on S are satisfied.

Otherwise, if S contains more than one relation, the procedure tries every way of
dividing S into two disjoint subsets. For each division, the procedure recursively finds
the best plans for each of the two subsets. It then considers all possible algorithms
for joining the results of the two subsets. Note that since indexed nested loops join can
potentially use either input P1 or P2 as the inner input, we consider the two alternatives
as two different algorithms. The choice of build versus probe input also leads us to
consider the two choices for hash join as two different algorithms.

The cost of each alternative is considered, and the least cost option chosen. The
join cost considered should not include the cost of reading the inputs, since we as-
sume that the input is pipelined from the preceding operators, which could be a rela-
tion/index scan, or a preceding join. Recall that some operators, such as hash join, can
be treated as having suboperators with a blocking (materialized) edge between them,
but with the input and output edges of the join being pipelined. The join cost formulae
that we saw in Chapter 15 can be used with appropriate modifications to ignore the
cost of reading the input relations. Note that indexed nested loops join is treated differ-
ently from other join techniques: the plan as well as the cost are different in this case,
since we do not perform a relation/index scan of the inner input, and the index lookup
cost is included in the cost of indexed nested loops join.

The procedure picks the cheapest plan from among all the alternatives for dividing
S into two sets and the algorithms for joining the results of the two sets. The cheapest
plan and its cost are stored in the array bestplan and returned by the procedure. The
time complexity of the procedure can be shown to be O(3n) (see Practice Exercise
16.13).

The order in which tuples are generated by the join of a set of relations is important
for finding the best overall join order, since it can affect the cost of further joins. For

2If an index contains all the attributes of a relation that are used in a query, it is possible to perform an index-only scan,
which retrieves the required attribute values from the index, without fetching actual tuples.
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instance, if merge join is used, a potentially expensive sort operation is required on the
input, unless the input is already sorted on the join attribute.

A particular sort order of the tuples is said to be an interesting sort order if it could
be useful for a later operation. For instance, generating the result of r1 ⋈ r2 ⋈ r3 sorted
on the attributes common with r4 or r5 may be useful, but generating it sorted on the
attributes common to only r1 and r2 is not useful. Using merge join for computing
r1 ⋈ r2 ⋈ r3 may be costlier than using some other join technique, but it may provide
an output sorted in an interesting sort order.

Hence, it is not sufficient to find the best join order for each subset of the set of
n given relations. Instead, we have to find the best join order for each subset, for each
interesting sort order of the join result for that subset. The bestplan array can now
be indexed by [S, o], where S is a set of relations, and o is an interesting sort order.
The FindBestPlan function can then be modified to take interesting sort orders into
consideration; we leave details as an exercise for you (see Practice Exercise 16.11).

The number of subsets of n relations is 2n. The number of interesting sort orders
is generally not large. Thus, about 2n join expressions need to be stored. The dynamic-
programming algorithm for finding the best join order can be extended to handle sort
orders. Specifically, when considering sort-merge join, the cost of sorting has to be
added if an input (which may be a relation, or the result of a join operation) is not
sorted on the join attribute, but is not added if it is sorted.

The cost of the extended algorithm depends on the number of interesting orders
for each subset of relations; since this number has been found to be small in practice,
the cost remains at O(3n). With n = 10, this number is around 59,000, which is much
better than the 17.6 billion different join orders. More important, the storage required
is much less than before, since we need to store only one join order for each interesting
sort order of each of 1024 subsets of r1,… , r10. Although both numbers still increase
rapidly with n, commonly occurring joins usually have less than 10 relations and can
be handled easily.

The code shown in Figure 16.7 actually considers each possible way of dividing S
into two disjoint subsets twice, since each of the two subsets can play the role of S1.
Considering the division twice does not affect correctness, but wastes time. The code
can be optimized as follows: find the alphabetically smallest relation ri in S1, and the
alphabetically smallest relation rj in S − S1, and execute the loop only if ri < rj. Doing
so ensures that each division is considered only once.

Further, the code also considers all possible join orders, including those that con-
tain Cartesian products; for example, if two relations r1 and r3 do not have any join
condition linking the two relations, the code will still consider S = {r1, r3}, which will
result in a Cartesian product. It is possible to take join conditions into account, and
modify the code to only generate divisions that do not result in Cartesian products. This
optimization can save a great deal of time for many queries. See the Further Reading
section at the end of the chapter for references providing more details on Cartesian-
product-free join order enumeration.
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16.4.2 Cost-Based Optimization with Equivalence Rules

The join-order optimization technique we just saw handles the most common class
of queries, which perform an inner join of a set of relations. However, many queries
use other features, such as aggregation, outer join, and nested queries, which are not
addressed by join-order selection, but can be handled by using equivalence rules.

In this section we outline how to create a general-purpose cost-based optimizer
based on equivalence rules. Equivalence rules can help explore alternatives with a wide
variety of operations, such as outer joins, aggregations, and set operations, as we have
seen earlier. Equivalence rules can be added if required for further operations, such as
operators that return the top-K results in sorted order.

In Section 16.2.4, we saw how an optimizer could systematically generate all ex-
pressions equivalent to the given query. The procedure for generating equivalent expres-
sions can be modified to generate all possible evaluation plans as follows: A new class
of equivalence rules, called physical equivalence rules, is added that allows a logical op-
eration, such as a join, to be transformed to a physical operation, such as a hash join,
or a nested-loops join. By adding such rules to the original set of equivalence rules, the
procedure can generate all possible evaluation plans. The cost estimation techniques
we have seen earlier can then be used to choose the optimal (i.e., the least-cost) plan.

However, the procedure shown in Section 16.2.4 is very expensive, even if we do
not consider generation of evaluation plans. To make the approach work efficiently
requires the following:

1. A space-efficient representation of expressions that avoids making multiple
copies of the same subexpressions when equivalence rules are applied.

2. E fficient techniques for detecting duplicate derivations of the same expression.

3. A form of dynamic programming based on memoization, which stores the optimal
query evaluation plan for a subexpression when it is optimized for the first time;
subsequent requests to optimize the same subexpression are handled by returning
the already memorized plan.

4. Techniques that avoid generating all possible equivalent plans by keeping track
of the cheapest plan generated for any subexpression up to any point of time, and
pruning away any plan that is more expensive than the cheapest plan found so
far for that subexpression.

The details are more complex than we wish to deal with here. This approach was pi-
oneered by the Volcano research project, and the query optimizer of SQL Server is
based on this approach. See the bibliographical notes for references containing further
information.

16.4.3 Heuristics in Optimization

A drawback of cost-based optimization is the cost of optimization itself. Although the
cost of query optimization can be reduced by clever algorithms, the number of different
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evaluation plans for a query can be very large, and finding the optimal plan from this
set requires a lot of computational effort. Hence, optimizers use heuristics to reduce
the cost of optimization.

An example of a heuristic rule is the following rule for transforming relational-
algebra queries:

• Perform selection operations as early as possible.

A heuristic optimizer would use this rule without finding out whether the cost is re-
duced by this transformation. In the first transformation example in Section 16.2, the
selection operation was pushed into a join.

We say that the preceding rule is a heuristic because it usually, but not always,
helps to reduce the cost. For an example of where it can result in an increase in cost,
consider an expression σθ(r ⋈ s), where the condition θ refers to only attributes in
s. The selection can certainly be performed before the join. However, if r is extremely
small compared to s, and if there is an index on the join attributes of s, but no index on
the attributes used by θ, then it is probably a bad idea to perform the selection early.
Performing the selection early—that is, directly on s—would require doing a scan of all
tuples in s. It is probably cheaper, in this case, to compute the join by using the index
and then to reject tuples that fail the selection. (This case is specifically handled by the
dynamic programming algorithm for join order optimization.)

The projection operation, like the selection operation, reduces the size of relations.
Thus, whenever we need to generate a temporary relation, it is advantageous to apply
immediately any projections that are possible. This advantage suggests a companion to
the “perform selections early” heuristic:

• Perform projections early.

It is usually better to perform selections earlier than projections, since selections have
the potential to reduce the sizes of relations greatly, and selections enable the use of
indices to access tuples. An example similar to the one used for the selection heuristic
should convince you that this heuristic does not always reduce the cost.

Optimizers based on join-order enumeration typically use heuristic transforma-
tions to handle constructs other than joins, and applying the cost-based join-order
selection algorithm to subexpressions involving only joins and selections. Details of
such heuristics are for the most part specific to individual optimizers, and we do not
cover them.

Most practical query optimizers have further heuristics to reduce the cost of opti-
mization. For example, many query optimizers, such as the System R optimizer,3 do
not consider all join orders, but rather restrict the search to particular kinds of join or-

3System R was one of the first implementations of SQL, and its optimizer pioneered the idea of cost-based join-order
optimization.
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Figure 16.8 Left-deep join trees.

ders. The System R optimizer considers only those join orders where the right operand
of each join is one of the initial relations r1,… , rn. Such join orders are called left-deep
join orders. Left-deep join orders are particularly convenient for pipelined evaluation,
since the right operand is a stored relation, and thus only one input to each join is
pipelined.

Figure 16.8 illustrates the difference between left-deep join trees and non-left-deep
join trees. The time it takes to consider all left-deep join orders is O(n!), which is much
less than the time to consider all join orders. With the use of dynamic-programming
optimizations, the System R optimizer can find the best join order in time O(n2n).
Contrast this cost with the O(3n) time required to find the best overall join order. The
System R optimizer uses heuristics to push selections and projections down the query
tree.

A heuristic approach to reduce the cost of join-order selection, which was originally
used in some versions of Oracle, works roughly this way: For an n-way join, it considers
n evaluation plans. Each plan uses a left-deep join order, starting with a different one
of the n relations. The heuristic constructs the join order for each of the n evaluation
plans by repeatedly selecting the “best” relation to join next, on the basis of a ranking
of the available access paths. Either nested-loop or sort-merge join is chosen for each
of the joins, depending on the available access paths. Finally, the heuristic chooses one
of the n evaluation plans in a heuristic manner, on the basis of minimizing the number
of nested-loop joins that do not have an index available on the inner relation and on
the number of sort-merge joins.

Query-optimization approaches that apply heuristic plan choices for some parts
of the query, with cost-based choice based on generation of alternative access plans
on other parts of the query, have been adopted in several systems. The approach used
in System R and in its successor, the Starburst project, is a hierarchical procedure
based on the nested-block concept of SQL. The cost-based optimization techniques
described here are used for each block of the query separately. The optimizers in several
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database products, such as IBM DB2 and Oracle, are based on the above approach, with
extensions to handle other operations such as aggregation. For compound SQL queries
(using the ∪, ∩, or − operation), the optimizer processes each component separately
and combines the evaluation plans to form the overall evaluation plan.

Most optimizers allow a cost budget to be specified for query optimization. The
search for the optimal plan is terminated when the optimization cost budget is exceeded,
and the best plan found up to that point is returned. The budget itself may be set dynam-
ically; for example, if a cheap plan is found for a query, the budget may be reduced, on
the premise that there is no point spending a lot of time optimizing the query if the best
plan found so far is already quite cheap. On the other hand, if the best plan found so
far is expensive, it makes sense to invest more time in optimization, which could result
in a significant reduction in execution time. To best exploit this idea, optimizers usually
first apply cheap heuristics to find a plan and then start full cost-based optimization
with a budget based on the heuristically chosen plan.

Many applications execute the same query repeatedly, but with different values for
the constants. For example, a university application may repeatedly execute a query to
find the courses for which a student has registered, but each time for a different student
with a different value for the student ID. As a heuristic, many optimizers optimize
a query once, with whatever values were provided for the constants when the query
was first submitted, and cache the query plan. Whenever the query is executed again,
perhaps with new values for constants, the cached query plan is reused (using new
values for the constants). The optimal plan for the new constants may differ from the
optimal plan for the initial values, but as a heuristic the cached plan is reused.4 Caching
and reuse of query plans is referred to as plan caching.

Even with the use of heuristics, cost-based query optimization imposes a substan-
tial overhead on query processing. However, the added cost of cost-based query op-
timization is usually more than offset by the saving at query-execution time, which is
dominated by slow disk accesses. The difference in execution time between a good plan
and a bad one may be huge, making query optimization essential. The achieved saving
is magnified in those applications that run on a regular basis, where a query can be op-
timized once, and the selected query plan can be used each time the query is executed.
Therefore, most commercial systems include relatively sophisticated optimizers. The
bibliographical notes give references to descriptions of the query optimizers of actual
database systems.

16.4.4 Optimizing Nested Subqueries

SQL conceptually treats nested subqueries in the where clause as functions that take
parameters and return either a single value or a set of values (possibly an empty set).
The parameters are the variables from an outer-level query that are used in the nested

4For the student registration query, the plan would almost certainly be the same for any student ID. But a query that
took a range of student IDs, and returned registration information for all student IDs in that range, would probably have
a different optimal plan if the range were very small than if the range were large.
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subquery (these variables are called correlation variables). For instance, suppose we
have the following query, to find the names of all instructors who taught a course in
2019:

select name
from instructor
where exists (select *

from teaches
where instructor.ID = teaches.ID

and teaches.year = 2019);

Conceptually, the subquery can be viewed as a function that takes a parameter (here,
instructor.ID) and returns the set of all courses taught in 2019 by instructors (with the
same ID).

SQL evaluates the overall query (conceptually) by computing the Cartesian product
of the relations in the outer from clause and then testing the predicates in the where
clause for each tuple in the product. In the preceding example, the predicate tests if
the result of the subquery evaluation is empty. In practice, the predicates in the where
clause that can be used as join predicates, or as selection predicates are evaluated as
part of the selections on relations or to perform joins that avoid Cartesian products.
Predicates involving nested subqueries in the where clause are evaluated subsequently,
since they are usually expensive, by invoking the subquery as a function.

The technique of evaluating a nested subquery by invoking it as a function is called
correlated evaluation. Correlated evaluation is not very efficient, since the subquery is
separately evaluated for each tuple in the outer level query. A large number of random
disk I/O operations may result.

SQL optimizers therefore attempt to transform nested subqueries into joins, where
possible. Efficient join algorithms help avoid expensive random I/O. Where the trans-
formation is not possible, the optimizer keeps the subqueries as separate expressions,
optimizes them separately, and then evaluates them by correlated evaluation.

As an attempt at transforming a nested subquery into a join, the query in the pre-
ceding example can be rewritten in relational algebra as a join:

Πname(instructor ⋈instructor.ID=teaches.ID ∧teaches.year=2019 teaches)

Unfortunately, the above query is not quite correct, since the multiset versions of the
relational algebra operators are used in SQL implementations, and as a result an in-
structor who teaches multiple sections in 2019 will appear multiple times in the result
of the relational algebra query, although that instructor would appear only once in the
SQL query result. Using the set version of the relational algebra operators will not help
either, since if there are two instructors with the same name who teach in 2019, the
name would appear only once with the set version of relational algebra, but would ap-
pear twice in the SQL query result. (We note that the set version of relational algebra
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would give the correct result if the query output contained the primary key of instructor,
namely ID.)

To properly reflect SQL semantics, the number of duplicates of a tuple in the result
should not change because of the rewriting. The semijoin operator of the relational al-
gebra provides a solution to this problem. The multiset version of the semijoin operator
r ⋉θ s is defined as follows: if a tuple ri appears n times in r, it appears n times in the
result of r⋉θ if there is at least one tuple sj such that ri and sj together satisfy predicate
θ; otherwise ri does not appear in the result. The set version of the semijoin operator
r ⋉θ s can be defined as ΠR(r ⋈θ s), where R is the set of attributes in the schema
of r. The multiset version of the semijoin operator outputs the same tuples, but the
number of duplicates of each tuple ri in the semijoin result is the same as the number
of duplicates of ri in r.

The preceding SQL query can be translated into the following equivalent relational
algebra using the multiset semijoin operator:

Πname(instructor ⋉instructor.ID=teaches.ID ∧ teaches.year=2019 teaches)

The above query in the multiset relational algebra gives the same result as the SQL
query, including the counts of duplicates. The query can equivalently be written as:

Πname(instructor ⋉instructor.ID=teaches.ID (σteaches.year=2019(teaches)))

The following SQL query using the in clause is equivalent to the preceding SQL query
using the exists clause, and can be translated to the same relational algebra expression
using semijoin.

select name
from instructor
where instructor.ID in (select teaches.ID

from teaches
where teaches.year = 2019);

The anti-semijoin is useful with not exists queries. The multiset anti-semijoin oper-
ator r ⋉θ s is defined as follows: if a tuple ri appears n times in r, it appears n times
in the result of r ⋉θ s if there does not exist any tuple sj in s such that ri and sj satisfy
predicate θ; otherwise ri does not appear in the result. The anti-semijoin operator is
also known as the anti-join operator.

Consider the SQL query:

select name
from instructor
where not exists (select *

from teaches
where instructor.ID = teaches.ID

and teaches.year = 2019);
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The preceding query can be translated into the following relational algebra using the
anti-semijoin operator:

Πname(instructor ⋉instructor.ID=teaches.ID(σteaches.year=2019(teaches)))

In general, a query of the form:

select A
from r1, r2, . . . , rn
where P1 and exists (select *

from s1, s2, . . . , sm
where P1

2 and P2
2);

where P1
2 are predicates that only reference the relations si in the subquery, and P2

2
predicates that also reference the relations ri from the outer query, can be translated
to:

ΠA((σP1
(r1 × r2 ×… × rn)) ⋉P2

2
σP1

2
(s1 × s2 ×… × sm))

If not exists were used instead of exists, the semijoin should be replaced by anti-semijoin
in the relational algebra query. If an in clause is used instead of exists, the relational
algebra query can be appropriately modified by adding a corresponding predicate in
the semijoin predicate, as our earlier example illustrated.

The process of replacing a nested query by a query with a join, semijoin, or anti-
semijoin is called decorrelation. The semijoin and anti-semijoin operators can be effi-
ciently implemented using modifications of the join algorithms, as explored in Practice
Exercise 15.10.

Consider the following query with aggregation in a scalar subquery, that finds in-
structors who have taught more than one course section in 2019.

select name
from instructor
where 1 < (select count(*)

from teaches
where instructor.ID = teaches.ID

and teaches.year = 2019);

The above query can be rewritten using a semijoin as follows:

Πname(instructor ⋉(instructor.ID=TID)∧(1<cnt)(ID as TIDγcount(∗) as cnt(σyear=2019(teaches)))

Observe that the subquery has a predicate instructor.ID= teaches.ID, and aggregation
without a group by clause. The decorrelated query has the predicate moved into the
semijoin condition, and the aggregation is now grouped by ID. The predicate 1 < (sub-
query) has turned into a semijoin predicate. Intuitively, the subquery performs a sep-
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arate count for each instructor.ID; grouping by ID ensures that counts are computed
separately for each ID.

Decorrelation is clearly more complicated when the nested subquery uses aggre-
gation, or when the nested subquery is used as a scalar subquery. In fact, decorrelation
is not possible for certain cases of subqueries. For example, a subquery that is used
as a scalar subquery is expected to return only one result; if it returns more than one
result, a runtime exception can occur, which is not possible with a decorrelated query.
Further, whether to decorrelate or not should ideally be done in a cost-based manner,
depending on whether decorrelation reduces the cost or not. Some query optimizers
represent nested subqueries using extended relational-algebra constructs, and express
transformations of nested subqueries to semijoin, anti-semijoin, and so forth, as equiv-
alence rules. We do not attempt to give algorithms for the general case, and instead
refer you to relevant items in the online bibliographical notes.

Optimization of complex nested subqueries is a complicated task, as you can in-
fer from the preceding discussion, and many optimizers do only a limited amount of
decorrelation. It better to avoid using complex nested subqueries, where possible, since
we cannot be sure that the query optimizer will succeed in converting them to a form
that can be evaluated efficiently.

16.5 Materialized Views

When a view is defined, normally the database stores only the query defining the view.
In contrast, a materialized view is a view whose contents are computed and stored.
Materialized views constitute redundant data, in that their contents can be inferred
from the view definition and the rest of the database contents. However, it is much
cheaper in many cases to read the contents of a materialized view than to compute the
contents of the view by executing the query defining the view.

Materialized views are important for improving performance in some applications.
Consider this view, which gives the total salary in each department:

create view department total salary(dept name, total salary) as
select dept name, sum (salary)
from instructor
group by dept name;

Suppose the total salary amount at a department is required frequently. Computing the
view requires reading every instructor tuple pertaining to a department and summing
up the salary amounts, which can be time-consuming. In contrast, if the view definition
of the total salary amount were materialized, the total salary amount could be found
by looking up a single tuple in the materialized view.5

5The difference may not be all that large for a medium-sized university, but in other settings the difference can be
very large. For example, if the materialized view computed total sales of each product, from a sales relation with tens
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16.5.1 View Maintenance

A problem with materialized views is that they must be kept up-to-date when the data
used in the view definition changes. For instance, if the salary value of an instructor
is updated, the materialized view will become inconsistent with the underlying data,
and it must be updated. The task of keeping a materialized view up-to-date with the
underlying data is known as view maintenance.

Views can be maintained by manually written code: That is, every piece of code
that updates the salary value can be modified to also update the total salary amount for
the corresponding department. However, this approach is error prone, since it is easy
to miss some places where the salary is updated, and the materialized view will then
no longer match the underlying data.

Another option for maintaining materialized views is to define triggers on insert,
delete, and update of each relation in the view definition. The triggers must modify
the contents of the materialized view, to take into account the change that caused the
trigger to fire. A simplistic way of doing so is to completely recompute the materialized
view on every update.

A better option is to modify only the affected parts of the materialized view, which
is known as incremental view maintenance. We describe how to perform incremental
view maintenance in Section 16.5.2.

Modern database systems provide more direct support for incremental view main-
tenance. Database-system programmers no longer need to define triggers for view main-
tenance. Instead, once a view is declared to be materialized, the database system com-
putes the contents of the view and incrementally updates the contents when the under-
lying data change.

Most database systems perform immediate view maintenance; that is, incremental
view maintenance is performed as soon as an update occurs, as part of the updat-
ing transaction. Some database systems also support deferred view maintenance, where
view maintenance is deferred to a later time; for example, updates may be collected
throughout a day, and materialized views may be updated at night. This approach re-
duces the overhead on update transactions. However, materialized views with deferred
view maintenance may not be consistent with the underlying relations on which they
are defined.

16.5.2 Incremental View Maintenance

To understand how to maintain materialized views incrementally, we start off by con-
sidering individual operations, and then we see how to handle a complete expression.

The changes to a relation that can cause a materialized view to become out-of-date
are inserts, deletes, and updates. To simplify our description, we replace updates to a
tuple by deletion of the tuple followed by insertion of the updated tuple. Thus, we need

of millions of tuples, the difference between computing the aggregate from the underlying data and looking up the
materialized view can be many orders of magnitude.
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to consider only inserts and deletes. The changes (inserts and deletes) to a relation or
expression are referred to as its differential.

16.5.2.1 Join Operation

Consider the materialized view v = r ⋈ s. Suppose we modify r by inserting a set of
tuples denoted by ir. If the old value of r is denoted by r old , and the new value of r by
r new, r new = r old ∪ ir. Now, the old value of the view, v old , is given by r old ⋈ s, and the
new value v new is given by r new ⋈ s. We can rewrite r new ⋈ s as (r old ∪ ir) ⋈ s, which
we can again rewrite as (r old ⋈ s) ∪ (ir ⋈ s). In other words:

v new = v old ∪ (ir ⋈ s)

Thus, to update the materialized view v, we simply need to add the tuples ir ⋈ s to the
old contents of the materialized view. Inserts to s are handled in an exactly symmetric
fashion.

Now suppose r is modified by deleting a set of tuples denoted by dr. Using the same
reasoning as above, we get:

v new = v old − (dr ⋈ s)

Deletes on s are handled in an exactly symmetric fashion.

16.5.2.2 Selection and Projection Operations

Consider a view v = σθ(r). If we modify r by inserting a set of tuples ir, the new value
of v can be computed as:

v new = v old ∪ σθ(ir)

Similarly, if r is modified by deleting a set of tuples dr, the new value of v can be com-
puted as:

v new = v old − σθ(dr)

Projection is a more difficult operation with which to deal. Consider a materialized
view v = ΠA(r). Suppose the relation r is on the schema R = (A, B), and r contains two
tuples (a, 2) and (a, 3). Then, ΠA(r) has a single tuple (a). If we delete the tuple (a, 2)
from r, we cannot delete the tuple (a) from ΠA(r): If we did so, the result would be an
empty relation, whereas in reality ΠA(r) still has a single tuple (a). The reason is that
the same tuple (a) is derived in two ways, and deleting one tuple from r removes only
one of the ways of deriving (a); the other is still present.

This reason also gives us the intuition for a solution: For each tuple in a projection
such as ΠA(r), we will keep a count of how many times it was derived.



16.5 Materialized Views 781

When a set of tuples dr is deleted from r, for each tuple t in dr we do the following:
Let t.A denote the projection of t on the attribute A. We find (t.A) in the materialized
view and decrease the count stored with it by 1. If the count becomes 0, (t A) is deleted
from the materialized view.

Handling insertions is relatively straightforward. When a set of tuples ir is inserted
into r, for each tuple t in ir we do the following: If (t.A) is already present in the ma-
terialized view, we increase the count stored with it by 1. If not, we add (t.A) to the
materialized view, with the count set to 1.

16.5.2.3 Aggregation Operations

Aggregation operations proceed somewhat like projections. The aggregate operations
in SQL are count, sum, avg, min, and max:

• count: Consider a materialized view v = Gγcount(B)(r), which computes the count
of the attribute B, after grouping r by attribute G.

When a set of tuples ir is inserted into r, for each tuple t in ir we do the following:
We look for the group t.G in the materialized view. If it is not present, we add
(t.G, 1) to the materialized view. If the group t.G is present, we add 1 to the count
of the group.

When a set of tuples dr is deleted from r, for each tuple t in dr we do the
following: We look for the group t.G in the materialized view and subtract 1 from
the count for the group. If the count becomes 0, we delete the tuple for the group
t.G from the materialized view.

• sum: Consider a materialized view v = Gγsum(B)(r).
When a set of tuples ir is inserted into r, for each tuple t in ir we do the following:
We look for the group t.G in the materialized view. If it is not present, we add
(t.G, t.B) to the materialized view; in addition, we store a count of 1 associated
with (t.G, t.B), just as we did for projection. If the group t.G is present, we add
the value of t.B to the aggregate value for the group and add 1 to the count of the
group.

When a set of tuples dr is deleted from r, for each tuple t in dr we do the
following: We look for the group t.G in the materialized view and subtract t.B
from the aggregate value for the group. We also subtract 1 from the count for the
group, and if the count becomes 0, we delete the tuple for the group t.G from the
materialized view.

Without keeping the extra count value, we would not be able to distinguish a
case where the sum for a group is 0 from the case where the last tuple in a group
is deleted.

• avg: Consider a materialized view v = Gγavg(B)(r).
Directly updating the average on an insert or delete is not possible, since it depends
not only on the old average and the tuple being inserted/deleted, but also on the
number of tuples in the group.
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Instead, to handle the case of avg, we maintain the sum and count aggregate
values as described earlier and compute the average as the sum divided by the
count.

• min, max: Consider a materialized view v = Gγmin(B)(r). (The case of max is exactly
equivalent.)

Handling insertions on r is straightforward, similar to the case of sum. Main-
taining the aggregate values min and max on deletions may be more expensive. For
example, if the tuple t corresponding to the minimum value for a group is deleted
from r, we have to look at the other tuples of r that are in the same group to find
the new minimum value. It is a good idea to create an ordered index on (G, B)
since it would help us to find the new minimum value for a group very efficiently.

16.5.2.4 Other Operations

The set operation intersection is maintained as follows: Given materialized view v =
r ∩ s, when a tuple is inserted in r we check if it is present in s, and if so we add it
to v. If a tuple is deleted from r, we delete it from the intersection if it is present. The
other set operations, union and set difference, are handled in a similar fashion; we leave
details to you.

Outer joins are handled in much the same way as joins, but with some extra work.
In the case of deletion from r we have to handle tuples in s that no longer match any
tuple in r. In the case of insertion to r, we have to handle tuples in s that did not match
any tuple in r. Again we leave details to you.

16.5.2.5 Handling Expressions

So far we have seen how to update incrementally the result of a single operation. To
handle an entire expression, we can derive expressions for computing the incremental
change to the result of each subexpression, starting from the smallest subexpressions.

For example, suppose we wish to incrementally update a materialized view E1 ⋈ E2
when a set of tuples ir is inserted into relation r. Let us assume r is used in E1 alone.
Suppose the set of tuples to be inserted into E1 is given by expression D1. Then the
expression D1 ⋈ E2 gives the set of tuples to be inserted into E1 ⋈ E2.

See the online bibliographical notes for further details on incremental view main-
tenance with expressions.

16.5.3 Query Optimization and Materialized Views

Query optimization can be performed by treating materialized views just like regular
relations. However, materialized views offer further opportunities for optimization:

• Rewriting queries to use materialized views:
Suppose a materialized view v = r ⋈ s is available, and a user submits a query

r ⋈ s ⋈ t. Rewriting the query as v ⋈ t may provide a more efficient query plan
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than optimizing the query as submitted. Thus, it is the job of the query optimizer
to recognize when a materialized view can be used to speed up a query.

• Replacing a use of a materialized view with the view definition:
Suppose a materialized view v = r ⋈ s is available, but without any index on

it, and a user submits a query σA=10(v). Suppose also that s has an index on the
common attribute B, and r has an index on attribute A. The best plan for this query
may be to replace v with r ⋈ s, which can lead to the query plan σA=10(r) ⋈ s; the
selection and join can be performed efficiently by using the indices on r.A and s.B,
respectively. In contrast, evaluating the selection directly on v may require a full
scan of v, which may be more expensive.

The online bibliographical notes give pointers to research showing how to perform
query optimization efficiently with materialized views.

16.5.4 Materialized View and Index Selection

Another related optimization problem is that of materialized view selection, namely,
“What is the best set of views to materialize?” This decision must be made on the basis
of the system workload, which is a sequence of queries and updates that reflects the
typical load on the system. One simple criterion would be to select a set of materialized
views that minimizes the overall execution time of the workload of queries and updates,
including the time taken to maintain the materialized views. Database administrators
usually modify this criterion to take into account the importance of different queries
and updates: Fast response may be required for some queries and updates, but a slow
response may be acceptable for others.

Indices are just like materialized views, in that they too are derived data, can speed
up queries, and may slow down updates. Thus, the problem of index selection is closely
related to that of materialized view selection, although it is simpler. We examine index
and materialized view selection in more detail in Section 25.1.4.1 and Section 25.1.4.2.

Most database systems provide tools to help the database administrator with index
and materialized view selection. These tools examine the history of queries and updates
and suggest indices and views to be materialized. The Microsoft SQL Server Database
Tuning Assistant, the IBM DB2 Design Advisor, and the Oracle SQL Tuning Wizard
are examples of such tools.

16.6 Advanced Topics in Query Optimization

There are a number of opportunities for optimizing queries, beyond those we have seen
so far. We examine a few of these in this section.
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16.6.1 Top-K Optimization

Many queries fetch results sorted on some attributes, and require only the top K re-
sults for some K . Sometimes the bound K is specified explicitly. For example, some
databases support a limit K clause which results in only the top K results being re-
turned by the query. Other databases support alternative ways of specifying similar
limits. In other cases, the query may not specify such a limit, but the optimizer may
allow a hint to be specified, indicating that only the top K results of the query are likely
to be retrieved, even if the query generates more results.

When K is small, a query optimization plan that generates the entire set of re-
sults, then sorts and generates the top K , is very inefficient since it discards most of
the intermediate results that it computes. Several techniques have been proposed to
optimize such top-K queries. One approach is to use pipelined plans that can generate
the results in sorted order. Another approach is to estimate what is the highest value
on the sorted attributes that will appear in the top-K output, and introduce selection
predicates that eliminate larger values. If extra tuples beyond the top-K are generated
they are discarded, and if too few tuples are generated then the selection condition is
changed and the query is re-executed. See the bibliographical notes for references to
work on top-K optimization.

16.6.2 Join Minimization

When queries are generated through views, sometimes more relations are joined than
are needed for computation of the query. For example, a view v may include the join of
instructor and department, but a use of the view v may use only attributes from instruc-
tor. The join attribute dept name of instructor is a foreign key referencing department.
Assuming that instructor.dept name has been declared not null, the join with department
can be dropped, with no impact on the query. For under the above assumption, the join
with department does not eliminate any tuples from instructor, nor does it result in extra
copies of any instructor tuple.

Dropping a relation from a join as above is an example of join minimization. In fact,
join minimization can be performed in other situations as well. See the bibliographical
notes for references on join minimization.

16.6.3 Optimization of Updates

Update queries often involve subqueries in the set and where clauses, which must also
be taken into account in optimizing the update. Updates that involve a selection on the
updated column (e.g., give a 10 percent salary raise to all employees whose salary is ≥
$100,000) must be handled carefully. If the update is done while the selection is being
evaluated by an index scan, an updated tuple may be reinserted in the index ahead of
the scan and seen again by the scan; the same employee tuple may then get incorrectly
updated multiple times (an infinite number of times, in this case). A similar problem
also arises with updates involving subqueries whose result is affected by the update.
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The problem of an update affecting the execution of a query associated with the up-
date is known as the Halloween problem (named so because it was first recognized on a
Halloween day, at IBM). The problem can be avoided by executing the queries defining
the update first, creating a list of affected tuples, and updating the tuples and indices as
the last step. However, breaking up the execution plan in such a fashion increases the
execution cost. Update plans can be optimized by checking if the Halloween problem
can occur, and if it cannot occur, updates can be performed while the query is being
processed, reducing the update overheads. For example, the Halloween problem can-
not occur if the update does not affect index attributes. Even if it does, if the updates
decrease the value while the index is scanned in increasing order, updated tuples will
not be encountered again during the scan. In such cases, the index can be updated even
while the query is being executed, reducing the overall cost.

Update queries that result in a large number of updates can also be optimized by
collecting the updates as a batch and then applying the batch of updates separately to
each affected index. When applying the batch of updates to an index, the batch is first
sorted in the index order for that index; such sorting can greatly reduce the amount of
random I/O required for updating indices.

Such optimizations of updates are implemented in most database systems. See the
bibliographical notes for references to such optimization.

16.6.4 Multiquery Optimization and Shared Scans

When a batch of queries are submitted together, a query optimizer can potentially
exploit common subexpressions between the different queries, evaluating them once
and reusing them where required. Complex queries may in fact have subexpressions
repeated in different parts of the query, which can be similarly exploited to reduce
query evaluation cost. Such optimization is known as multiquery optimization.

Common subexpression elimination optimizes subexpressions shared by different
expressions in a program by computing and storing the result and reusing it wherever
the subexpression occurs. Common subexpression elimination is a standard optimiza-
tion applied on arithmetic expressions by programming-language compilers. Exploiting
common subexpressions among evaluation plans chosen for each of a batch of queries
is just as useful in database query evaluation, and is implemented by some databases.
However, multiquery optimization can do even better in some cases: A query typically
has more than one evaluation plan, and a judiciously chosen set of query evaluation
plans for the queries may provide for a greater sharing and lesser cost than that afforded
by choosing the lowest cost evaluation plan for each query. More details on multiquery
optimization may be found in references cited in the bibliographical notes.

Sharing of relation scans between queries is another limited form of multiquery op-
timization that is implemented in some databases. The shared-scan optimization works
as follows: Instead of reading the relation repeatedly from disk, once for each query
that needs to scan a relation, data are read once from disk, and pipelined to each of
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the queries. The shared-scan optimization is particularly useful when multiple queries
perform a scan on a single large relation (typically a “fact table”).

16.6.5 Parametric Query Optimization

Plan caching, which we saw in Section 16.4.3, is used as a heuristic in many databases.
Recall that with plan caching, if a query is invoked with some constants, the plan cho-
sen by the optimizer is cached and reused if the query is submitted again, even if the
constants in the query are different. For example, suppose a query takes a department
name as a parameter and retrieves all courses of the department. With plan caching, a
plan chosen when the query is executed for the first time, say for the Music department,
is reused if the query is executed for any other department.

Such reuse of plans by plan caching is reasonable if the optimal query plan is
not significantly affected by the exact value of the constants in the query. However, if
the plan is affected by the value of the constants, parametric query optimization is an
alternative.

In parametric query optimization, a query is optimized without being provided spe-
cific values for its parameters—for example, dept name in the preceding example. The
optimizer then outputs several plans, each optimal for a different parameter value. A
plan would be output by the optimizer only if it is optimal for some possible value of
the parameters. The set of alternative plans output by the optimizer are stored. When
a query is submitted with specific values for its parameters, instead of performing a full
optimization, the cheapest plan from the set of alternative plans computed earlier is
used. Finding the cheapest such plan usually takes much less time than reoptimization.
See the bibliographical notes for references on parametric query optimization.

16.6.6 Adaptive Query Processing

As we noted earlier, query optimization is based on estimates that are at best approxi-
mations. Thus, it is possible at times for the optimizer to choose a plan that turns out
to perform very badly. Adaptive operators that choose the specific operator at execu-
tion time provide a partial solution to this problem. For example, SQL Server supports
an adaptive join algorithm that checks the size of its outer input, and chooses either
nested loops join, or hash join depending on the size of the outer input.

Many systems also include the ability to monitor the behavior of a plan during
query execution, and adapt the plan accordingly. For example, suppose the statistics
collected by the system during early stages of the plan’s execution (or the execution
of subparts of the plan) are found to differ substantially from the optimizers estimates
to such an extent that it is clear that the chosen plan is suboptimal. Then an adaptive
system may abort the execution, choose a new query execution plan using the statis-
tics collected during the initial execution, and restart execution using the new plan;
the statistics collected during the execution of the old plan ensure the old plan is not
selected again. Further, the system must avoid repeated aborts and restarts; ideally, the
system should ensure that the overall cost of query evaluation is close to that with the
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plan that would be chosen if the optimizer had exact statistics. The specific criteria and
mechanisms for such adaptive query processing are complex, and are referenced in the
bibliographic notes available online.

16.7 Summary

• Given a query, there are generally a variety of methods for computing the answer.
It is the responsibility of the system to transform the query as entered by the user
into an equivalent query that can be computed more efficiently. The process of
finding a good strategy for processing a query is called query optimization.

• The evaluation of complex queries involves many accesses to disk. Since the trans-
fer of data from disk is slow relative to the speed of main memory and the CPU
of the computer system, it is worthwhile to allocate a considerable amount of pro-
cessing to choose a method that minimizes disk accesses.

• There are a number of equivalence rules that we can use to transform an expression
into an equivalent one. We use these rules to generate systematically all expressions
equivalent to the given query.

• Each relational-algebra expression represents a particular sequence of operations.
The first step in selecting a query-processing strategy is to find a relational-algebra
expression that is equivalent to the given expression and is estimated to cost less
to execute.

• The strategy that the database system chooses for evaluating an operation depends
on the size of each relation and on the distribution of values within columns. So
that they can base the strategy choice on reliable information, database systems
may store statistics for each relation r. These statistics include:

° The number of tuples in the relation r.

° The size of a record (tuple) of relation r in bytes.

° The number of distinct values that appear in the relation r for a particular
attribute.

• Most database systems use histograms to store the number of values for an at-
tribute within each of several ranges of values. Histograms are often computed
using sampling.

• These statistics allow us to estimate the sizes of the results of various operations, as
well as the cost of executing the operations. Statistical information about relations
is particularly useful when several indices are available to assist in the processing of
a query. The presence of these structures has a significant influence on the choice
of a query-processing strategy.
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• Alternative evaluation plans for each expression can be generated by equivalence
rules, and the cheapest plan across all expressions can be chosen. Several opti-
mization techniques are available to reduce the number of alternative expressions
and plans that need to be generated.

• We use heuristics to reduce the number of plans considered, and thereby to reduce
the cost of optimization. Heuristic rules for transforming relational-algebra queries
include “Perform selection operations as early as possible,” “Perform projections
early,” and “Avoid Cartesian products.”

• Materialized views can be used to speed up query processing. Incremental view
maintenance is needed to efficiently update materialized views when the underly-
ing relations are modified. The differential of an operation can be computed by
means of algebraic expressions involving differentials of the inputs of the opera-
tion. Other issues related to materialized views include how to optimize queries by
making use of available materialized views, and how to select views to be materi-
alized.

• A number of advanced optimization techniques have been proposed, such as top-
K optimization, join minimization, optimization of updates, multiquery optimiza-
tion, and parametric query optimization.

Review Terms

• Query optimization

• Transformation of expressions

• Equivalence of expressions

• Equivalence rules

° Join commutativity

° Join associativity

• Minimal set of equivalence rules

• Enumeration of equivalent
expressions

• Statistics estimation

• Catalog information

• Size estimation

° Selection

° Selectivity

° Join

• Histograms

• Distinct value estimation

• Random sample

• Choice of evaluation plans

• Interaction of evaluation
techniques

• Cost-based optimization

• Join-order optimization

° Dynamic-programming
algorithm

° Left-deep join order

° Interesting sort order

• Heuristic optimization

• Plan caching

• Access-plan selection
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• Correlated evaluation

• Decorrelation

• Semijoin

• Anti-semijoin

• Materialized views

• Materialized view maintenance

° Recomputation

° Incremental maintenance

° Insertion

° Deletion

° Updates

• Query optimization with
materialized views

• Index selection

• Materialized view selection

• Top-K optimization

• Join minimization

• Halloween problem

• Multiquery optimization

Practice Exercises

16.1 Download the university database schema and the large university dataset from
dbbook.com. Create the university schema on your favorite database, and load
the large university dataset. Use the explain feature described in Note 16.1 on
page 746 to view the plan chosen by the database, in different cases as detailed
below.

a. Write a query with an equality condition on student.name (which does
not have an index), and view the plan chosen.

b. Create an index on the attribute student.name, and view the plan chosen
for the above query.

c. Create simple queries joining two relations, or three relations, and view
the plans chosen.

d. Create a query that computes an aggregate with grouping, and view the
plan chosen.

e. Create an SQL query whose chosen plan uses a semijoin operation.

f. Create an SQL query that uses a not in clause, with a subquery using
aggregation. Observe what plan is chosen.

g. Create a query for which the chosen plan uses correlated evaluation (the
way correlated evaluation is represented varies by database, but most
databases would show a filter or a project operator with a subplan or
subquery).

h. Create an SQL update query that updates a single row in a relation. View
the plan chosen for the update query.
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i. Create an SQL update query that updates a large number of rows in a re-
lation, using a subquery to compute the new value. View the plan chosen
for the update query.

16.2 Show that the following equivalences hold. Explain how you can apply them
to improve the efficiency of certain queries:

a. E1 ⋈θ (E2 − E3) ≡ (E1 ⋈θ E2 − E1 ⋈θ E3).

b. σθ( AγF (E)) ≡ AγF (σθ(E)), where θ uses only attributes from A.

c. σθ(E1 ⟕E2) ≡ σθ(E1)⟕E2, where θ uses only attributes from E1.

16.3 For each of the following pairs of expressions, give instances of relations that
show the expressions are not equivalent.

a. ΠA(r − s) and ΠA(r) − ΠA(s).

b. σB<4( Aγmax(B) as B(r)) and Aγmax(B) as B(σB<4(r)).

c. In the preceding expressions, if both occurrences of max were replaced
by min, would the expressions be equivalent?

d. (r ⟖ s)⟖ t and r ⟖(s⟖ t)
In other words, the natural right outer join is not associative.

e. σθ(E1 ⟕E2) and E1 ⟕ σθ(E2), where θ uses only attributes from E2.

16.4 SQL allows relations with duplicates (Chapter 3), and the multiset version of
the relational algebra is defined in Note 3.1 on page 80, Note 3.2 on page 97,
and Note 3.3 on page 108. Check which of the equivalence rules 1 through 7.b
hold for the multiset version of the relational algebra.

16.5 Consider the relations r1(A, B, C), r2(C, D, E), and r3(E, F), with primary keys
A, C, and E, respectively. Assume that r1 has 1000 tuples, r2 has 1500 tuples,
and r3 has 750 tuples. Estimate the size of r1 ⋈ r2 ⋈ r3, and give an efficient
strategy for computing the join.

16.6 Consider the relations r1(A, B, C), r2(C, D, E), and r3(E, F) of Practice Exer-
cise 16.5. Assume that there are no primary keys, except the entire schema.
Let V (C, r1) be 900, V (C, r2) be 1100, V (E, r2) be 50, and V (E, r3) be 100.
Assume that r1 has 1000 tuples, r2 has 1500 tuples, and r3 has 750 tuples. Es-
timate the size of r1 ⋈ r2 ⋈ r3 and give an efficient strategy for computing
the join.

16.7 Suppose that a B+-tree index on building is available on relation department
and that no other index is available. What would be the best way to handle the
following selections that involve negation?

a. σ¬ (building < “Watson”)(department)
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b. σ¬ (building = “Watson”)(department)

c. σ¬ (building < “Watson” ∨ budget < 50000)(department)

16.8 Consider the query:
select *
from r, s
where upper(r.A) = upper(s.A);

where “upper” is a function that returns its input argument with all lowercase
letters replaced by the corresponding uppercase letters.

a. Find out what plan is generated for this query on the database system
you use.

b. Some database systems would use a (block) nested-loop join for this
query, which can be very inefficient. Briefly explain how hash-join or
merge-join can be used for this query.

16.9 Give conditions under which the following expressions are equivalent:

A,Bγagg(C)(E1 ⋈ E2) and (Aγagg(C)(E1)) ⋈ E2

where agg denotes any aggregation operation. How can the above conditions
be relaxed if agg is one of min or max?

16.10 Consider the issue of interesting orders in optimization. Suppose you are given
a query that computes the natural join of a set of relations S. Given a subset
S1 of S, what are the interesting orders of S1?

16.11 Modify the FindBestPlan(S) function to create a function FindBestPlan(S, O),
where O is a desired sort order for S, and which considers interesting sort
orders. A null order indicates that the order is not relevant. Hints: An algorithm
A may give the desired order O; if not a sort operation may need to be added
to get the desired order. If A is a merge-join, FindBestPlan must be invoked on
the two inputs with the desired orders for the inputs.

16.12 Show that, with n relations, there are (2(n−1))!∕(n−1)! different join orders.
Hint: A complete binary tree is one where every internal node has exactly two
children. Use the fact that the number of different complete binary trees with
n leaf nodes is:

1
n

(
2(n − 1)
(n − 1)

)

If you wish, you can derive the formula for the number of complete binary trees
with n nodes from the formula for the number of binary trees with n nodes.
The number of binary trees with n nodes is:

1
n + 1

(
2n
n

)
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This number is known as the Catalan number, and its derivation can be found
in any standard textbook on data structures or algorithms.

16.13 Show that the lowest-cost join order can be computed in time O(3n). Assume
that you can store and look up information about a set of relations (such as
the optimal join order for the set, and the cost of that join order) in constant
time. (If you find this exercise difficult, at least show the looser time bound of
O(22n).)

16.14 Show that, if only left-deep join trees are considered, as in the System R opti-
mizer, the time taken to find the most efficient join order is around n2n. Assume
that there is only one interesting sort order.

16.15 Consider the bank database of Figure 16.9, where the primary keys are under-
lined. Construct the following SQL queries for this relational database.

a. Write a nested query on the relation account to find, for each branch
with name starting with B, all accounts with the maximum balance at
the branch.

b. Rewrite the preceding query without using a nested subquery; in other
words, decorrelate the query, but in SQL.

c. Give a relational algebra expression using semijoin equivalent to the
query.

d. Give a procedure (similar to that described in Section 16.4.4) for decor-
relating such queries.

Exercises

16.16 Suppose that a B+-tree index on (dept name, building) is available on relation
department. What would be the best way to handle the following selection?

σ(building < “Watson”) ∧ (budget < 55000) ∧ (dept name = “Music”)(department)

branch(branch name, branch city, assets)
customer (customer name, customer street, customer city)
loan (loan number, branch name, amount)
borrower (customer name, loan number)
account (account number, branch name, balance )
depositor (customer name, account number)

Figure 16.9 Banking database.



Exercises 793

16.17 Show how to derive the following equivalences by a sequence of transforma-
tions using the equivalence rules in Section 16.2.1.

a. σθ1∧θ2∧θ3
(E) ≡ σθ1

(σθ2
(σθ3

(E)))

b. σθ1∧θ2
(E1 ⋈θ3

E2) ≡ σθ1
(E1 ⋈θ3

(σθ2
(E2))), where θ2 involves only

attributes from E2

16.18 Consider the two expressions σθ(E1 ⟕E2) and σθ(E1 ⋈ E2).

a. Show using an example that the two expressions are not equivalent in
general.

b. Give a simple condition on the predicate θ, which if satisfied will ensure
that the two expressions are equivalent.

16.19 A set of equivalence rules is said to be complete if, whenever two expressions
are equivalent, one can be derived from the other by a sequence of uses of the
equivalence rules. Is the set of equivalence rules that we considered in Section
16.2.1 complete? Hint: Consider the equivalence σ3=5(r) ≡ { }.

16.20 Explain how to use a histogram to estimate the size of a selection of the form
σA≤v(r).

16.21 Suppose two relations r and s have histograms on attributes r.A and s.A, respec-
tively, but with different ranges. Suggest how to use the histograms to estimate
the size of r ⋈ s. Hint: Split the ranges of each histogram further.

16.22 Consider the query

select A, B
from r
where r.B < some (select B

from s
where s.A = r.A)

Show how to decorrelate this query using the multiset version of the semi join
operation.

16.23 Describe how to incrementally maintain the results of the following operations
on both insertions and deletions:

a. Union and set difference.

b. Left outer join.

16.24 Give an example of an expression defining a materialized view and two situa-
tions (sets of statistics for the input relations and the differentials) such that
incremental view maintenance is better than recomputation in one situation,
and recomputation is better in the other situation.
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16.25 Suppose you want to get answers to r ⋈ s sorted on an attribute of r, and
want only the top K answers for some relatively small K . Give a good way of
evaluating the query:

a. When the join is on a foreign key of r referencing s, where the foreign
key attribute is declared to be not null.

b. When the join is not on a foreign key.

16.26 Consider a relation r(A, B, C), with an index on attribute A. Give an example
of a query that can be answered by using the index only, without looking at the
tuples in the relation. (Query plans that use only the index, without accessing
the actual relation, are called index-only plans.)

16.27 Suppose you have an update query U . Give a simple sufficient condition on
U that will ensure that the Halloween problem cannot occur, regardless of the
execution plan chosen or the indices that exist.

Further Reading

The seminal work of [Selinger et al. (1979)] describes access-path selection in the
System R optimizer, which was one of the earliest relational-query optimizers. Query
processing in Starburst, described in [Haas et al. (1989)], forms the basis for query
optimization in IBM DB2.

[Graefe and McKenna (1993)] describes Volcano, an equivalence-rule–based
query optimizer that, along with its successor Cascades ([Graefe (1995)]), forms the
basis of query optimization in Microsoft SQL Server. [Moerkotte (2014)] provides ex-
tensive textbook coverage of query optimization, including optimizations of the dy-
namic programming algorithm for join order optimization to avoid considering Carte-
sian products. Avoiding generation of plans with Cartesian products can result in sub-
stantial reduction in optimization cost for common queries.

The bibliographic notes for this chapter, available online, provides references to
research on a variety of optimization techniques, including optimization of queries
with aggregates, with outer joins, nested subqueries, top-K queries, join minimization,
optimization of update queries, materialized view maintenance and view matching,
index and materialized view selection, parametric query optimization, and multiquery
optimization.

Bibliography

[Graefe (1995)] G. Graefe, “The Cascades Framework for Query Optimization”, Data Engi-
neering Bulletin, Volume 18, Number 3 (1995), pages 19–29.



Further Reading 795

[Graefe and McKenna (1993)] G. Graefe and W. McKenna, “The Volcano Optimizer Gen-
erator”, In Proc. of the International Conf. on Data Engineering (1993), pages 209–218.

[Haas et al. (1989)] L. M. Haas, J. C. Freytag, G. M. Lohman, and H. Pirahesh, “Extensible
Query Processing in Starburst”, In Proc. of the ACM SIGMOD Conf. on Management of Data
(1989), pages 377–388.

[Moerkotte (2014)] G. Moerkotte, Building Query Compilers, available online at http://pi3.
informatik.uni-mannheim.de/∼moer/querycompiler.pdf, retrieved 13 Dec 2018 (2014).

[Selinger et al. (1979)] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and
T. G. Price, “Access Path Selection in a Relational Database System”, In Proc. of the ACM
SIGMOD Conf. on Management of Data (1979), pages 23–34.

Credits

The photo of the sailboats in the beginning of the chapter is due to ©Pavel Nes-
vadba/Shutterstock.





PART 7

TRANSACTION
MANAGEMENT

The term transaction refers to a collection of operations that form a single logical unit
of work. For instance, transfer of money from one account to another is a transaction
consisting of two updates, one to each account.

It is important that either all actions of a transaction be executed completely, or,
in case of some failure, partial effects of each incomplete transaction be undone. This
property is called atomicity. Further, once a transaction is successfully executed, its
effects must persist in the database—a system failure should not result in the database
forgetting about a transaction that successfully completed. This property is called dura-
bility.

In a database system where multiple transactions are executing concurrently, if
updates to shared data are not controlled, there is potential for transactions to see in-
consistent intermediate states created by updates of other transactions. Such a situation
can result in erroneous updates to data stored in the database. Thus, database systems
must provide mechanisms to isolate transactions from the effects of other concurrently
executing transactions. This property is called isolation.

Chapter 17 describes the concept of a transaction in detail, including the proper-
ties of atomicity, durability, isolation, and other properties provided by the transaction
abstraction. In particular, the chapter makes precise the notion of isolation by means
of a concept called serializability.

Chapter 18 describes several concurrency-control techniques that help implement
the isolation property. Chapter 19 describes the recovery management component of
a database, which implements the atomicity and durability properties.

Taken as a whole, the transaction-management component of a database system al-
lows application developers to focus on the implementation of individual transactions,
ignoring the issues of concurrency and fault tolerance.
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Often, a collection of several operations on the database appears to be a single unit from
the point of view of the database user. For example, a transfer of funds from a checking
account to a savings account is a single operation from the customer’s standpoint;
within the database system, however, it consists of several operations. It is essential
that all these operations occur, or that, in case of a failure, none occur. It would be
unacceptable if the checking account were debited but the savings account not credited.

Collections of operations that form a single logical unit of work are called trans-
actions. A database system must ensure proper execution of transactions despite fail-
ures—either the entire transaction executes, or none of it does. Furthermore, it must
manage concurrent execution of transactions in a way that avoids the introduction of
inconsistency. In our funds-transfer example, a transaction computing the customer’s
total balance might see the checking-account balance before it is debited by the funds-
transfer transaction, but see the savings balance after it is credited. As a result, it would
obtain an incorrect result.

This chapter introduces the basic concepts of transaction processing. Details on
concurrent transaction processing and recovery from failures are in Chapter 18 and
Chapter 19, respectively.

17.1 Transaction Concept

A transaction is a unit of program execution that accesses and possibly updates various
data items. Usually, a transaction is initiated by a user program written in a high-level
data-manipulation language (typically SQL), or programming language (e.g., C++ or
Java), with embedded database accesses in JDBC or ODBC. A transaction is delimited
by statements (or function calls) of the form begin transaction and end transaction. The
transaction consists of all operations executed between the begin transaction and end
transaction.

This collection of steps must appear to the user as a single, indivisible unit. Since
a transaction is indivisible, it either executes in its entirety or not at all. Thus, if a
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transaction begins to execute but fails for whatever reason, any changes to the database
that the transaction may have made must be undone. This requirement holds regardless
of whether the transaction itself failed (e.g., if it divided by zero), the operating system
crashed, or the computer itself stopped operating. As we shall see, ensuring that this
requirement is met is difficult since some changes to the database may still be stored
only in the main-memory variables of the transaction, while others may have been
written to the database and stored on disk. This “all-or-none” property is referred to as
atomicity.

Furthermore, since a transaction is a single unit, its actions cannot appear to be
separated by other database operations not part of the transaction. While we wish to
present this user-level impression of transactions, we know that reality is quite differ-
ent. Even a single SQL statement involves many separate accesses to the database, and
a transaction may consist of several SQL statements. Therefore, the database system
must take special actions to ensure that transactions operate properly without interfer-
ence from concurrently executing database statements. This property is referred to as
isolation.

Even if the system ensures correct execution of a transaction, this serves little pur-
pose if the system subsequently crashes and, as a result, the system “forgets” about the
transaction. Thus, a transaction’s actions must persist across crashes. This property is
referred to as durability.

Because of the above three properties, transactions are an ideal way of structuring
interaction with a database. This leads us to impose a requirement on transactions
themselves. A transaction must preserve database consistency—if a transaction is run
atomically in isolation starting from a consistent database, the database must again
be consistent at the end of the transaction. This consistency requirement goes beyond
the data-integrity constraints we have seen earlier (such as primary-key constraints,
referential integrity, check constraints, and the like). Rather, transactions are expected
to go beyond that to ensure preservation of those application-dependent consistency
constraints that are too complex to state using the SQL constructs for data integrity.
How this is done is the responsibility of the programmer who codes a transaction. This
property is referred to as consistency.

To restate the above more concisely, we require that the database system maintain
the following properties of the transactions:

• Atomicity. Either all operations of the transaction are reflected properly in the
database, or none are.

• Consistency. Execution of a transaction in isolation (i.e., with no other transaction
executing concurrently) preserves the consistency of the database.

• Isolation. Even though multiple transactions may execute concurrently, the system
guarantees that, for every pair of transactions Ti and Tj, it appears to Ti that either
Tj finished execution before Ti started or Tj started execution after Ti finished.
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Thus, each transaction is unaware of other transactions executing concurrently in
the system.

• Durability. After a transaction completes successfully, the changes it has made to
the database persist, even if there are system failures.

These properties are often called the ACID properties; the acronym is derived from the
first letter of each of the four properties.

As we shall see later, ensuring the isolation property may have a significant ad-
verse effect on system performance. For this reason, some applications compromise
on the isolation property. We shall study these compromises after first studying the
strict enforcement of the ACID properties.

17.2 A Simple Transaction Model

Because SQL is a powerful and complex language, we begin our study of transactions
with a simple database language that focuses on when data are moved from disk to
main memory and from main memory to disk. In doing this, we ignore SQL insert
and delete operations and defer considering them until Section 18.4. The only actual
operations on the data are restricted in our simple language to arithmetic operations.
Later we shall discuss transactions in a realistic, SQL-based context with a richer set
of operations. The data items in our simplified model contain a single data value (a
number in our examples). Each data item is identified by a name (typically a single
letter in our examples, that is, A, B, C, etc.).

We shall illustrate the transaction concept using a simple bank application consist-
ing of several accounts and a set of transactions that access and update those accounts.
Transactions access data using two operations:

• read(X ), which transfers the data item X from the database to a variable, also
called X , in a buffer in main memory belonging to the transaction that executed
the read operation.

• write(X ), which transfers the value in the variable X in the main-memory buffer
of the transaction that executed the write to the data item X in the database.

It is important to know if a change to a data item appears only in main memory
or if it has been written to the database on disk. In a real database system, the write
operation does not necessarily result in the immediate update of the data on the disk;
the write operation may be temporarily stored elsewhere and executed on the disk
later. For now, however, we shall assume that the write operation updates the database
immediately. We discuss storage issues further in Section 17.3 and discuss the issue of
when database data in main memory are written to the database on disk in Chapter
19.
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Let Ti be a transaction that transfers $50 from account A to account B. This trans-
action can be defined as:

Ti: read(A);
A := A − 50;
write(A);
read(B);
B := B + 50;
write(B).

Let us now consider each of the ACID properties. (For ease of presentation, we consider
them in an order different from the order A-C-I-D.)

• Consistency: The consistency requirement here is that the sum of A and B be un-
changed by the execution of the transaction. Without the consistency requirement,
money could be created or destroyed by the transaction! It can be verified eas-
ily that, if the database is consistent before an execution of the transaction, the
database remains consistent after the execution of the transaction.

Ensuring consistency for an individual transaction is the responsibility of the
application programmer who codes the transaction. This task may be facilitated
by automatic testing of integrity constraints, as we discussed in Section 4.4.

• Atomicity: Suppose that, just before the execution of transaction Ti, the values of
accounts A and B are $1000 and $2000, respectively. Now suppose that, during the
execution of transaction Ti, a failure occurs that prevents Ti from completing its ex-
ecution successfully. Further, suppose that the failure happened after the write(A)
operation but before the write(B) operation. In this case, the values of accounts
A and B reflected in the database are $950 and $2000. The system destroyed $50
as a result of this failure. In particular, we note that the sum A + B is no longer
preserved.

Thus, because of the failure, the state of the system no longer reflects a real
state of the world that the database is supposed to capture. We term such a state
an inconsistent state. We must ensure that such inconsistencies are not visible in
a database system. Note, however, that the system must at some point be in an
inconsistent state. Even if transaction Ti is executed to completion, there exists
a point at which the value of account A is $950 and the value of account B is
$2000, which is clearly an inconsistent state. This state, however, is eventually
replaced by the consistent state where the value of account A is $950, and the value
of account B is $2050. Thus, if the transaction never started or was guaranteed
to complete, such an inconsistent state would not be visible except during the
execution of the transaction. That is the reason for the atomicity requirement: If
the atomicity property is present, all actions of the transaction are reflected in the
database, or none are.
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The basic idea behind ensuring atomicity is this: The database system keeps
track (on disk) of the old values of any data on which a transaction performs a
write. This information is written to a file called the log. If the transaction does
not complete its execution, the database system restores the old values from the log
to make it appear as though the transaction never executed. We discuss these ideas
further in Section 17.4. Ensuring atomicity is the responsibility of the database sys-
tem; specifically, it is handled by a component of the database called the recovery
system, which we describe in detail in Chapter 19.

• Durability: Once the execution of the transaction completes successfully, and the
user who initiated the transaction has been notified that the transfer of funds has
taken place, it must be the case that no system failure can result in a loss of data
corresponding to this transfer of funds. The durability property guarantees that,
once a transaction completes successfully, all the updates that it carried out on the
database persist, even if there is a system failure after the transaction completes
execution.

We assume for now that a failure of the computer system may result in loss of
data in main memory, but data written to disk are never lost. Protection against
loss of data on disk is discussed in Chapter 19. We can guarantee durability by
ensuring that either:

1. The updates carried out by the transaction have been written to disk before
the transaction completes.

2. Information about the updates carried out by the transaction is written to
disk, and such information is sufficient to enable the database to reconstruct
the updates when the database system is restarted after the failure.

The recovery system of the database, described in Chapter 19, is responsible for
ensuring durability, in addition to ensuring atomicity.

• Isolation: Even if the consistency and atomicity properties are ensured for each
transaction, if several transactions are executed concurrently, their operations may
interleave in some undesirable way, resulting in an inconsistent state.

For example, as we saw earlier, the database is temporarily inconsistent while
the transaction to transfer funds from A to B is executing, with the deducted total
written to A and the increased total yet to be written to B. If a second concurrently
running transaction reads A and B at this intermediate point and computes A+ B,
it will observe an inconsistent value. Furthermore, if this second transaction then
performs updates on A and B based on the inconsistent values that it read, the
database may be left in an inconsistent state even after both transactions have
completed.

A way to avoid the problem of concurrently executing transactions is to execute
transactions serially—that is, one after the other. However, concurrent execution
of transactions provides significant performance benefits, as we shall see in Section
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17.5. Other solutions have therefore been developed; they allow multiple transac-
tions to execute concurrently.

We discuss the problems caused by concurrently executing transactions in Sec-
tion 17.5. The isolation property of a transaction ensures that the concurrent ex-
ecution of transactions results in a system state that is equivalent to a state that
could have been obtained had these transactions executed one at a time in some
order. We shall discuss the principles of isolation further in Section 17.6. Ensuring
the isolation property is the responsibility of a component of the database system
called the concurrency-control system, which we discuss in Chapter 18.

17.3 Storage Structure

To understand how to ensure the atomicity and durability properties of a transaction,
we must gain a better understanding of how the various data items in the database may
be stored and accessed.

In Chapter 12, we saw that storage media can be distinguished by their relative
speed, capacity, and resilience to failure, and classified as volatile storage or non-volatile
storage. We review these terms and introduce another class of storage, called stable
storage.

• Volatile storage. Information residing in volatile storage does not usually survive
system crashes. Examples of such storage are main memory and cache memory.
Access to volatile storage is extremely fast, both because of the speed of the mem-
ory access itself and because it is possible to access any data item in volatile storage
directly.

• Non-volatile storage. Information residing in non-volatile storage survives system
crashes. Examples of non-volatile storage include secondary storage devices such
as magnetic disk and flash storage, used for online storage, and tertiary storage
devices such as optical media and magnetic tapes, used for archival storage. At the
current state of technology, non-volatile storage is slower than volatile storage, par-
ticularly for random access. Both secondary and tertiary storage devices, however,
are susceptible to failures that may result in loss of information.

• Stable storage. Information residing in stable storage is never lost (never should
be taken with a grain of salt, since theoretically never cannot be guaranteed—for
example, it is possible, although extremely unlikely, that a black hole may envelop
the earth and permanently destroy all data!). Although stable storage is theoreti-
cally impossible to obtain, it can be closely approximated by techniques that make
data loss extremely unlikely. To implement stable storage, we replicate the informa-
tion in several non-volatile storage media (usually disk) with independent failure
modes. Updates must be done with care to ensure that a failure during an update
to stable storage does not cause a loss of information. Section 19.2.1 discusses
stable-storage implementation.
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The distinctions among the various storage types can be less clear in practice than in
our presentation. For example, certain systems, for example some RAID controllers,
provide battery backup, so that some main memory can survive system crashes and
power failures.

For a transaction to be durable, its changes need to be written to stable storage.
Similarly, for a transaction to be atomic, log records need to be written to stable storage
before any changes are made to the database on disk. The degree to which a system
ensures durability and atomicity depends on how stable its implementation of stable
storage really is. In some cases, a single copy on disk is considered sufficient, but ap-
plications whose data are highly valuable and whose transactions are highly important
require multiple copies, or, in other words, a closer approximation of the idealized
concept of stable storage.

17.4 Transaction Atomicity and Durability

As we noted earlier, a transaction may not always complete its execution successfully.
Such a transaction is termed aborted. If we are to ensure the atomicity property, an
aborted transaction must have no effect on the state of the database. Thus, any changes
that the aborted transaction made to the database must be undone. Once the changes
caused by an aborted transaction have been undone, we say that the transaction has
been rolled back. It is part of the responsibility of the recovery scheme to manage trans-
action aborts. This is done typically by maintaining a log. Each database modification
made by a transaction is first recorded in the log. We record the identifier of the trans-
action performing the modification, the identifier of the data item being modified, and
both the old value (prior to modification) and the new value (after modification) of
the data item. Only then is the database itself modified. Maintaining a log provides
the possibility of redoing a modification to ensure atomicity and durability as well as
the possibility of undoing a modification to ensure atomicity in case of a failure during
transaction execution. Details of log-based recovery are discussed in Chapter 19.

A transaction that completes its execution successfully is said to be committed. A
committed transaction that has performed updates transforms the database into a new
consistent state, which must persist even if there is a system failure.

Once a transaction has committed, we cannot undo its effects by aborting it. The
only way to undo the effects of a committed transaction is to execute a compensating
transaction. For instance, if a transaction added $20 to an account, the compensating
transaction would subtract $20 from the account. However, it is not always possible to
create such a compensating transaction. Therefore, the responsibility of writing and ex-
ecuting a compensating transaction is left to the user and is not handled by the database
system.

We need to be more precise about what we mean by successful completion of a
transaction. We therefore establish a simple abstract transaction model. A transaction
must be in one of the following states:
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• Active, the initial state; the transaction stays in this state while it is executing.

• Partially committed, after the final statement has been executed.

• Failed, after the discovery that normal execution can no longer proceed.

• Aborted, after the transaction has been rolled back and the database has been
restored to its state prior to the start of the transaction.

• Committed, after successful completion.

The state diagram corresponding to a transaction appears in Figure 17.1. We say
that a transaction has committed only if it has entered the committed state. Similarly,
we say that a transaction has aborted only if it has entered the aborted state. A trans-
action is said to have terminated if it has either committed or aborted.

A transaction starts in the active state. When it finishes its final statement, it enters
the partially committed state. At this point, the transaction has completed its execution,
but it is still possible that it may have to be aborted, since the actual output may still
be temporarily residing in main memory, and thus a hardware failure may preclude its
successful completion.

The database system then writes out enough information to disk that, even in the
event of a failure, the updates performed by the transaction can be re-created when the
system restarts after the failure. When the last of this information is written out, the
transaction enters the committed state.

As mentioned earlier, we assume for now that failures do not result in loss of data
on disk. Chapter 19 discusses techniques to deal with loss of data on disk.

A transaction enters the failed state after the system determines that the transac-
tion can no longer proceed with its normal execution (e.g., because of hardware or
logical errors). Such a transaction must be rolled back. Then, it enters the aborted
state. At this point, the system has two options:

active

failed

partially
committed

committed

aborted

Figure 17.1 State diagram of a transaction.
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• It can restart the transaction, but only if the transaction was aborted as a result of
some hardware or software error that was not created through the internal logic
of the transaction. A restarted transaction is considered to be a new transaction.

• It can kill the transaction. It usually does so because of some internal logical error
that can be corrected only by rewriting the application program, or because the
input was bad, or because the desired data were not found in the database.

We must be cautious when dealing with observable external writes, such as writes
to a user’s screen, or sending email. Once such a write has occurred, it cannot be
erased, since it may have been seen external to the database system. Most systems
allow such writes to take place only after the transaction has entered the committed
state. One way to implement such a scheme is for the database system to store any value
associated with such external writes temporarily in a special relation in the database,
and to perform the actual writes only after the transaction enters the committed state. If
the system should fail after the transaction has entered the committed state, but before
it could complete the external writes, the database system will carry out the external
writes (using the data in non-volatile storage) when the system is restarted.

Handling external writes can be more complicated in some situations. For example,
suppose the external action is that of dispensing cash at an automated teller machine,
and the system fails just before the cash is actually dispensed (we assume that cash
can be dispensed atomically). It makes no sense to dispense cash when the system is
restarted, since the user may have left the machine. In such a case a compensating trans-
action, such as depositing the cash back into the user’s account, needs to be executed
when the system is restarted.

As another example, consider a user making a booking over the web. It is possi-
ble that the database system or the application server crashes just after the booking
transaction commits. It is also possible that the network connection to the user is lost
just after the booking transaction commits. In either case, even though the transaction
has committed, the external write has not taken place. To handle such situations, the
application must be designed such that when the user connects to the web application
again, she will be able to see whether her transaction had succeeded or not.

For certain applications, it may be desirable to allow active transactions to display
data to users, particularly for long-duration transactions that run for minutes or hours.
Unfortunately, we cannot allow such output of observable data unless we are willing to
compromise transaction atomicity.

17.5 Transaction Isolation

Transaction-processing systems usually allow multiple transactions to run concurrently.
Allowing multiple transactions to update data concurrently causes several complica-
tions with consistency of the data, as we saw earlier. Ensuring consistency in spite of
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Note 17.1 TRENDS IN CONCURRENCY

Several current trends in the field of computing are giving rise to an increase in the
amount of concurrency possible. As database systems exploit this concurrency to
increase overall system performance, there will necessarily be an increasing num-
ber of transactions run concurrently.

Early computers had only one processor. Therefore, there was never any real
concurrency in the computer. The only concurrency was apparent concurrency
created by the operating system as it shared the processor among several distinct
tasks or processes. Modern computers are likely to have many processors. Each
processor is referred to as a core; a single processor chip may contain several cores,
and several such chips may be connected together in a single system, which all
share a common system memory. Further, parallel database systems may contain
multiple such systems. Parallel database architectures are discussed in Chapter 20.

The parallelism provided by multiple processors and cores is used for two pur-
poses. One is to execute different parts of a single long running query in parallel,
to speed up query execution. The other is to allow a large number of queries (often
much smaller queries) to execute concurrently, for example to support a very large
number of concurrent users. Chapter 21 through Chapter 23 describe algorithms
for building parallel database systems.

concurrent execution of transactions requires extra work; it is far easier to insist that
transactions run serially—that is, one at a time, each starting only after the previous
one has completed. However, there are two good reasons for allowing concurrency:

• Improved throughput and resource utilization. A transaction consists of many steps.
Some involve I/O activity; others involve CPU activity. The CPU and the disks in
a computer system can operate in parallel. Therefore, I/O activity can be done
in parallel with processing at the CPU. The parallelism of the CPU and the I/O
system can therefore be exploited to run multiple transactions in parallel. While
a read or write on behalf of one transaction is in progress on one disk, another
transaction can be running in the CPU, while another disk may be executing a
read or write on behalf of a third transaction. All of this increases the throughput
of the system—that is, the number of transactions executed in a given amount of
time. Correspondingly, the processor and disk utilization also increase; in other
words, the processor and disk spend less time idle, or not performing any useful
work.

• Reduced waiting time. There may be a mix of transactions running on a system,
some short and some long. If transactions run serially, a short transaction may
have to wait for a preceding long transaction to complete, which can lead to un-
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predictable delays in running a transaction. If the transactions are operating on
different parts of the database, it is better to let them run concurrently, sharing
the CPU cycles and disk accesses among them. Concurrent execution reduces the
unpredictable delays in running transactions. Moreover, it also reduces the average
response time: the average time for a transaction to be completed after it has been
submitted.

The motivation for using concurrent execution in a database is essentially the same
as the motivation for using multiprogramming in an operating system.

When several transactions run concurrently, the isolation property may be vio-
lated, resulting in database consistency being destroyed despite the correctness of each
individual transaction. In this section, we present the concept of schedules to help
identify those executions that are guaranteed to ensure the isolation property and thus
database consistency.

The database system must control the interaction among the concurrent trans-
actions to prevent them from destroying the consistency of the database. It does
so through a variety of mechanisms called concurrency-control schemes. We study
concurrency-control schemes in Chapter 18; for now, we focus on the concept of cor-
rect concurrent execution.

Consider again the simplified banking system of Section 17.1, which has several
accounts, and a set of transactions that access and update those accounts. Let T1 and
T2 be two transactions that transfer funds from one account to another. Transaction T1
transfers $50 from account A to account B. It is defined as:

T1: read(A);
A := A − 50;
write(A);
read(B);
B := B + 50;
write(B).

Transaction T2 transfers 10 percent of the balance from account A to account B. It is
defined as:

T2: read(A);
temp := A * 0.1;
A := A − temp;
write(A);
read(B);
B := B + temp;
write(B).
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T1 T2

read(A)
A := A − 50
write(A)
read(B)
B := B + 50
write(B)
commit

read(A)
temp := A ∗ 0.1
A := A − temp
write(A)
read(B)
B := B + temp
write(B)
commit

Figure 17.2 Schedule 1—a serial schedule in which T1 is followed by T2.

Suppose the current values of accounts A and B are $1000 and $2000, respectively.
Suppose also that the two transactions are executed one at a time in the order T1 fol-
lowed by T2. This execution sequence appears in Figure 17.2. In the figure, the sequence
of instruction steps is in chronological order from top to bottom, with instructions of
T1 appearing in the left column and instructions of T2 appearing in the right column.
The final values of accounts A and B, after the execution in Figure 17.2 takes place, are
$855 and $2145, respectively. Thus, the total amount of money in accounts A and B—
that is, the sum A + B—is preserved after the execution of both transactions.

Similarly, if the transactions are executed one at a time in the order T2 followed
by T1, then the corresponding execution sequence is that of Figure 17.3. Again, as
expected, the sum A + B is preserved, and the final values of accounts A and B are $850
and $2150, respectively.

The execution sequences just described are called schedules. They represent the
chronological order in which instructions are executed in the system. Clearly, a sched-
ule for a set of transactions must consist of all instructions of those transactions and
they must preserve the order in which the instructions appear in each individual trans-
action. For example, in transaction T1, the instruction write(A) must appear before
the instruction read(B), in any valid schedule. Note that we include in our schedules
the commit operation to indicate that the transaction has entered the committed state.
In the following discussion, we shall refer to the first execution sequence (T1 followed
by T2) as schedule 1, and to the second execution sequence (T2 followed by T1) as
schedule 2.
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T1 T2

read(A)
temp := A ∗ 0.1
A := A − temp
write(A)
read(B)
B := B + temp
write(B)
commit

read(A)
A := A − 50
write(A)
read(B)
B := B + 50
write(B)
commit

Figure 17.3 Schedule 2—a serial schedule in which T2 is followed by T1.

These schedules are serial: Each serial schedule consists of a sequence of instruc-
tions from various transactions, where the instructions belonging to one single trans-
action appear together in that schedule. Recalling a well-known formula from combi-
natorics, we note that, for a set of n transactions, there exist n factorial (n!) different
valid serial schedules.

When the database system executes several transactions concurrently, the corre-
sponding schedule no longer needs to be serial. If two transactions are running concur-
rently, the operating system may execute one transaction for a little while, then perform
a context switch, execute the second transaction for some time, and then switch back
to the first transaction for some time, and so on. With multiple transactions, the CPU
time is shared among all the transactions.

Several execution sequences are possible, since the various instructions from both
transactions may now be interleaved. In general, it is not possible to predict exactly
how many instructions of a transaction will be executed before the CPU switches to
another transaction.1

Returning to our previous example, suppose that the two transactions are executed
concurrently. One possible schedule appears in Figure 17.4. After this execution takes
place, we arrive at the same state as the one in which the transactions are executed
serially in the order T1 followed by T2. The sum A + B is indeed preserved.

1The number of possible schedules for a set of n transactions is very large. There are n! different serial schedules.
Considering all the possible ways that steps of transactions might be interleaved, the total number of possible schedules
is much larger than n!.
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T1 T2

read(A)
A := A − 50
write(A)

read(A)
temp := A ∗ 0.1
A := A − temp
write(A)

read(B)
B := B + 50
write(B)
commit

read(B)
B := B + temp
write(B)
commit

Figure 17.4 Schedule 3—a concurrent schedule equivalent to schedule 1.

Not all concurrent executions result in a correct state. To illustrate, consider the
schedule of Figure 17.5. After the execution of this schedule, we arrive at a state where
the final values of accounts A and B are $950 and $2100, respectively. This final state is
an inconsistent state, since we have gained $50 in the process of the concurrent execu-
tion. Indeed, the sum A + B is not preserved by the execution of the two transactions.

If control of concurrent execution is left entirely to the operating system, many
possible schedules, including ones that leave the database in an inconsistent state, such
as the one just described, are possible. It is the job of the database system to ensure
that any schedule that is executed will leave the database in a consistent state. The
concurrency-control component of the database system carries out this task.

We can ensure consistency of the database under concurrent execution by making
sure that any schedule that is executed has the same effect as a schedule that could
have occurred without any concurrent execution. That is, the schedule should, in some
sense, be equivalent to a serial schedule. Such schedules are called serializable sched-
ules.

17.6 Serializability

Before we can consider how the concurrency-control component of the database sys-
tem can ensure serializability, we consider how to determine when a schedule is serial-
izable. Certainly, serial schedules are serializable, but if steps of multiple transactions
are interleaved, it is harder to determine whether a schedule is serializable. Since trans-
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T1 T2

read(A)
A := A − 50

read(A)
temp := A ∗ 0.1
A := A − temp
write(A)
read(B)

write(A)
read(B)
B := B + 50
write(B)
commit

B := B + temp
write(B)
commit

Figure 17.5 Schedule 4—a concurrent schedule resulting in an inconsistent state.

actions are programs, it is difficult to determine exactly what operations a transaction
performs and how operations of various transactions interact. For this reason, we shall
not consider the various types of operations that a transaction can perform on a data
item, but instead consider only two operations: read and write. We assume that, be-
tween a read(Q) instruction and a write(Q) instruction on a data item Q, a transaction
may perform an arbitrary sequence of operations on the copy of Q that is residing in
the local buffer of the transaction. In this model, the only significant operations of a
transaction, from a scheduling point of view, are its read and write instructions. Com-
mit operations, though relevant, are not considered until Section 17.7. We therefore
may show only read and write instructions in schedules, as we do for schedule 3 in
Figure 17.6.

In this section, we discuss different forms of schedule equivalence but focus on a
particular form called conflict serializability.

Let us consider a schedule S in which there are two consecutive instructions, I
and J , of transactions Ti and Tj, respectively (i ≠ j). If I and J refer to different data
items, then we can swap I and J without affecting the results of any instruction in the
schedule. However, if I and J refer to the same data item Q, then the order of the two
steps may matter. Since we are dealing with only read and write instructions, there are
four cases that we need to consider:

1. I = read(Q), J = read(Q). The order of I and J does not matter, since the same
value of Q is read by Ti and Tj, regardless of the order.
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T1 T2

read(A)
write(A)

read(A)
write(A)

read(B)
write(B)

read(B)
write(B)

Figure 17.6 Schedule 3—showing only the read and write instructions.

2. I = read(Q), J = write(Q). If I comes before J , then Ti does not read the value
of Q that is written by Tj in instruction J . If J comes before I , then Ti reads the
value of Q that is written by Tj. Thus, the order of I and J matters.

3. I = write(Q), J = read(Q). The order of I and J matters for reasons similar to
those of the previous case.

4. I = write(Q), J = write(Q). Since both instructions are write operations, the
order of these instructions does not affect either Ti or Tj. However, the value
obtained by the next read(Q) instruction of S is affected, since the result of only
the latter of the two write instructions is preserved in the database. If there is no
other write(Q) instruction after I and J in S, then the order of I and J directly
affects the final value of Q in the database state that results from schedule S.

Thus, only in the case where both I and J are read instructions does the relative order
of their execution not matter.

We say that I and J conflict if they are operations by different transactions on the
same data item, and at least one of these instructions is a write operation.

To illustrate the concept of conflicting instructions, we consider schedule 3 in Fig-
ure 17.6. The write(A) instruction of T1 conflicts with the read(A) instruction of T2.
However, the write(A) instruction of T2 does not conflict with the read(B) instruction
of T1 because the two instructions access different data items.

Let I and J be consecutive instructions of a schedule S. If I and J are instructions
of different transactions and I and J do not conflict, then we can swap the order of I
and J to produce a new schedule S′. S is equivalent to S′, since all instructions appear
in the same order in both schedules except for I and J , whose order does not matter.

Since the write(A) instruction of T2 in schedule 3 of Figure 17.6 does not con-
flict with the read(B) instruction of T1, we can swap these instructions to generate an
equivalent schedule, schedule 5, in Figure 17.7. Regardless of the initial system state,
schedules 3 and 5 both produce the same final system state.
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T1 T2

read(A)
write(A)

read(A)
read(B)

write(A)
write(B)

read(B)
write(B)

Figure 17.7 Schedule 5—schedule 3 after swapping of a pair of instructions.

We continue to swap nonconflicting instructions:

• Swap the read(B) instruction of T1 with the read(A) instruction of T2.

• Swap the write(B) instruction of T1 with the write(A) instruction of T2.

• Swap the write(B) instruction of T1 with the read(A) instruction of T2.

The final result of these swaps, schedule 6 of Figure 17.8, is a serial schedule. Note
that schedule 6 is exactly the same as schedule 1, but it shows only the read and write
instructions. Thus, we have shown that schedule 3 is equivalent to a serial schedule.
This equivalence implies that, regardless of the initial system state, schedule 3 produces
the same final state as some serial schedule.

If a schedule S can be transformed into a schedule S′ by a series of swaps of non-
conflicting instructions, we say that S and S′ are conflict equivalent.2

T1 T2

read(A)
write(A)
read(B)
write(B)

read(A)
write(A)
read(B)
write(B)

Figure 17.8 Schedule 6—a serial schedule that is equivalent to schedule 3.

2We use the term conflict equivalent to distinguish the way we have just defined equivalence from other definitions that
we shall discuss later on in this section.
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T3 T4

read(Q)
write(Q)

write(Q)

Figure 17.9 Schedule 7.

Not all serial schedules are conflict equivalent to each other. For example, sched-
ules 1 and 2 are not conflict equivalent.

The concept of conflict equivalence leads to the concept of conflict serializability.
We say that a schedule S is conflict serializable if it is conflict equivalent to a serial
schedule. Thus, schedule 3 is conflict serializable, since it is conflict equivalent to the
serial schedule 1.

Finally, consider schedule 7 of Figure 17.9; it consists of only the significant op-
erations (that is, the read and write) of transactions T3 and T4. This schedule is not
conflict serializable, since it is not equivalent to either the serial schedule <T3,T4> or
the serial schedule <T4,T3>.

We now present a simple and efficient method for determining the conflict serial-
izability of a schedule. Consider a schedule S. We construct a directed graph, called
a precedence graph, from S. This graph consists of a pair G = (V, E), where V is a set
of vertices and E is a set of edges. The set of vertices consists of all the transactions
participating in the schedule. The set of edges consists of all edges Ti → Tj for which
one of three conditions holds:

1. Ti executes write(Q) before Tj executes read(Q).

2. Ti executes read(Q) before Tj executes write(Q).

3. Ti executes write(Q) before Tj executes write(Q).

If an edge Ti → Tj exists in the precedence graph, then, in any serial schedule S′ equiv-
alent to S, Ti must appear before Tj.

For example, the precedence graph for schedule 1 in Figure 17.10a contains the
single edge T1 → T2, since all the instructions of T1 are executed before the first in-
struction of T2 is executed. Similarly, Figure 17.10b shows the precedence graph for

(a) (b)

T1 T2 T2 T1

Figure 17.10 Precedence graph for (a) schedule 1 and (b) schedule 2.
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T1 T2

Figure 17.11 Precedence graph for schedule 4.

schedule 2 with the single edge T2 → T1, since all the instructions of T2 are executed
before the first instruction of T1 is executed.

The precedence graph for schedule 4 appears in Figure 17.11. It contains the edge
T1 → T2 because T1 executes read(A) before T2 executes write(A). It also contains the
edge T2 → T1 because T2 executes read(B) before T1 executes write(B).

If the precedence graph for S has a cycle, then schedule S is not conflict serializ-
able. If the graph contains no cycles, then the schedule S is conflict serializable.

A serializability order of the transactions can be obtained by finding a linear order
consistent with the partial order of the precedence graph. This process is called topo-
logical sorting. There are, in general, several possible linear orders that can be obtained
through a topological sort. For example, the graph of Figure 17.12a has the two accept-
able linear orderings shown in Figure 17.12b and Figure 17.12c.

Thus, to test for conflict serializability, we need to construct the precedence graph
and to invoke a cycle-detection algorithm. Cycle-detection algorithms can be found
in standard textbooks on algorithms. Cycle-detection algorithms, such as those based
on depth-first search, require on the order of n2 operations, where n is the number of
vertices in the graph (that is, the number of transactions).3

Returning to our previous examples, note that the precedence graphs for schedules
1 and 2 (Figure 17.10) indeed do not contain cycles. The precedence graph for sched-
ule 4 (Figure 17.11), on the other hand, contains a cycle, indicating that this schedule
is not conflict serializable.

It is possible to have two schedules that produce the same outcome but that are
not conflict equivalent. For example, consider transaction T5, which transfers $10 from
account B to account A. Let schedule 8 be as defined in Figure 17.13. We claim that
schedule 8 is not conflict equivalent to the serial schedule <T1,T5>, since, in sched-
ule 8, the write(B) instruction of T5 conflicts with the read(B) instruction of T1. This
creates an edge T5 → T1 in the precedence graph. Similarly, we see that the write(A)
instruction of T1 conflicts with the read instruction of T5, creating an edge T1 → T5.
This shows that the precedence graph has a cycle and that schedule 8 is not serializable.
However, the final values of accounts A and B after the execution of either schedule 8
or the serial schedule <T1,T5> are the same—$960 and $2040, respectively.

3If instead we measure complexity in terms of the number of edges, which corresponds to the number of actual conflicts
between active transactions, then depth-first-based cycle detection is linear.
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Figure 17.12 Illustration of topological sorting.

We can see from this example that there are less-stringent definitions of schedule
equivalence than conflict equivalence. For the system to determine that schedule 8
produces the same outcome as the serial schedule <T1,T5>, it must analyze the com-
putation performed by T1 and T5, rather than just the read and write operations. In
general, such analysis is hard to implement and is computationally expensive. In our
example, the final result is the same as that of a serial schedule because of the math-
ematical fact that the increment and decrement operations are commutative. While
this may be easy to see in our simple example, the general case is not so easy since a
transaction may be expressed as a complex SQL statement, a Java program with JDBC
calls, etc.

However, there are other definitions of schedule equivalence based purely on the
read and write operations. One such definition is view equivalence, a definition that
leads to the concept of view serializability. View serializability is not used in practice
due to its high degree of computational complexity.4 We therefore defer discussion of

4Testing for view serializability has been proven to be NP-complete, which means that it is virtually certain that no
efficient test for view serializability exists.
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T1 T5

read(A)
A := A − 50
write(A)

read(B)
B := B − 10
write(B)

read(B)
B := B + 50
write(B)

read(A)
A := A + 10
write(A)

Figure 17.13 Schedule 8.

view serializability to Chapter 18, but, for completeness, note here that the example of
schedule 8 is not view serializable.

17.7 Transaction Isolation and Atomicity

So far, we have studied schedules while assuming implicitly that there are no transaction
failures. We now address the effect of transaction failures during concurrent execution.

If a transaction Ti fails, for whatever reason, we need to undo the effect of this
transaction to ensure the atomicity property of the transaction. In a system that allows
concurrent execution, the atomicity property requires that any transaction Tj that is
dependent on Ti (i.e., Tj has read data written by Ti) is also aborted. To achieve this,
we need to place restrictions on the types of schedules permitted in the system.

In the following two subsections, we address the issue of what schedules are accept-
able from the viewpoint of recovery from transaction failure. We describe in Chapter
18 how to ensure that only such acceptable schedules are generated.

17.7.1 Recoverable Schedules

Consider the partial schedule 9 in Figure 17.14, in which T7 is a transaction that per-
forms only one instruction: read(A). We call this a partial schedule because we have
not included a commit or abort operation for T6. Notice that T7 commits immediately
after executing the read(A) instruction. Thus, T7 commits while T6 is still in the ac-
tive state. Now suppose that T6 fails before it commits. T7 has read the value of data
item A written by T6. Therefore, we say that T7 is dependent on T6. Because of this, we
must abort T7 to ensure atomicity. However, T7 has already committed and cannot be
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T6 T7

read(A)
write(A)

read(A)
commit

read(B)

Figure 17.14 Schedule 9, a nonrecoverable schedule.

aborted. Thus, we have a situation where it is impossible to recover correctly from the
failure of T6.

Schedule 9 is an example of a nonrecoverable schedule. A recoverable schedule is one
where, for each pair of transactions Ti and Tj such that Tj reads a data item previously
written by Ti, the commit operation of Ti appears before the commit operation of Tj.
For the example of schedule 9 to be recoverable, T7 would have to delay committing
until after T6 commits.

17.7.2 Cascadeless Schedules

Even if a schedule is recoverable, to recover correctly from the failure of a transac-
tion Ti, we may have to roll back several transactions. Such situations occur if transac-
tions have read data written by Ti. As an illustration, consider the partial schedule of
Figure 17.15. Transaction T8 writes a value of A that is read by transaction T9. Transac-
tion T9 writes a value of A that is read by transaction T10. Suppose that, at this point,
T8 fails. T8 must be rolled back. Since T9 is dependent on T8, T9 must be rolled back.
Since T10 is dependent on T9, T10 must be rolled back. This phenomenon, in which a
single transaction failure leads to a series of transaction rollbacks, is called cascading
rollback.

T8 T9 T10

read(A)
read(B)
write(A)

read(A)
write(A)

read(A)
abort

Figure 17.15 Schedule 10.



17.8 Transaction Isolation Levels 821

Cascading rollback is undesirable, since it leads to the undoing of a significant
amount of work. It is desirable to restrict the schedules to those where cascading roll-
backs cannot occur. Such schedules are called cascadeless schedules. Formally, a cas-
cadeless schedule is one where, for each pair of transactions Ti and Tj such that Tj reads
a data item previously written by Ti, the commit operation of Ti appears before the read
operation of Tj. It is easy to verify that every cascadeless schedule is also recoverable.

17.8 Transaction Isolation Levels

Serializability is a useful concept because it allows programmers to ignore issues related
to concurrency when they code transactions. If every transaction has the property that
it maintains database consistency if executed alone, then serializability ensures that
concurrent executions maintain consistency. However, the protocols required to ensure
serializability may allow too little concurrency for certain applications. In these cases,
weaker levels of consistency are used. The use of weaker levels of consistency places
additional burdens on programmers for ensuring database correctness.

The SQL standard also allows a transaction to specify that it may be executed in
such a way that it becomes nonserializable with respect to other transactions. For in-
stance, a transaction may operate at the isolation level of read uncommitted, which
permits the transaction to read a data item even if it was written by a transaction that
has not been committed. SQL provides such features for the benefit of long transac-
tions whose results do not need to be precise. If these transactions were to execute in
a serializable fashion, they could interfere with other transactions, causing the others’
execution to be delayed.

The isolation levels specified by the SQL standard are as follows:

• Serializable usually ensures serializable execution. However, as we shall explain
shortly, some database systems implement this isolation level in a manner that
may, in certain cases, allow nonserializable executions.

• Repeatable read allows only committed data to be read and further requires that,
between two reads of a data item by a transaction, no other transaction is allowed
to update it. However, the transaction may not be serializable with respect to other
transactions. For instance, when it is searching for data satisfying some conditions,
a transaction may find some of the data inserted by a committed transaction, but
may not find other data inserted by the same transaction.

• Read committed allows only committed data to be read, but does not require re-
peatable reads. For instance, between two reads of a data item by the transaction,
another transaction may have updated the data item and committed.

• Read uncommitted allows uncommitted data to be read. It is the lowest isolation
level allowed by SQL.



822 Chapter 17 Transactions

All the isolation levels above additionally disallow dirty writes, that is, they disallow
writes to a data item that has already been written by another transaction that has not
yet committed or aborted.

Many database systems run, by default, at the read-committed isolation level. In
SQL, it is possible to set the isolation level explicitly, rather than accepting the system’s
default setting. For example, the statement

set transaction isolation level serializable

sets the isolation level to serializable; any of the other isolation levels may be specified
instead. The preceding syntax is supported by Oracle, PostgreSQL, and SQL Server;
Oracle uses the syntax

alter session set isolation level = serializable

while DB2 uses the syntax “change isolation level” with its own abbreviations for iso-
lation levels. Changing of the isolation level must be done as the first statement of a
transaction.

By default, most databases commit individual statements as soon as they are exe-
cuted. Such automatic commit of individual statements must be turned off to allow mul-
tiple statements to run as a single transaction. The command start transaction ensures
that subsequent SQL statements, until a subsequent commit or rollback, are executed
as a single transaction. As expected, the commit operation commits the preceding SQL
statements, while rollback rolls back the preceding SQL statements. (SQL Server uses
begin transaction in place of start transaction, while Oracle and PostgreSQL treat begin
as identical to start transaction.)

APIs such as JDBC and ODBC provide functions to turn off automatic commit. In
JDBC the setAutoCommit method of the Connection interface (which we saw earlier
in Section 5.1.1.8) can be used to turn automatic commit off by invoking setAutoCom-
mit(false), or on by invoking setAutoCommit(true). Further, in JDBC the method set-
TransactionIsolation(int level) of the Connection interface can be invoked with any
one of

• Connection.TRANSACTION SERIALIZABLE,

• Connection.TRANSACTION REPEATABLE READ,

• Connection.TRANSACTION READ COMMITTED, or

• Connection.TRANSACTION READ UNCOMMITTED

to set the transaction isolation level correspondingly.
An application designer may decide to accept a weaker isolation level in order to

improve system performance. As we shall see in Section 17.9 and Chapter 18, ensuring
serializability may force a transaction to wait for other transactions or, in some cases,
to abort because the transaction can no longer be executed as part of a serializable ex-
ecution. While it may seem shortsighted to risk database consistency for performance,
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this trade-off makes sense if we can be sure that the inconsistency that may occur is
not relevant to the application.

There are many means of implementing isolation levels. As long as the implemen-
tation ensures serializability, the designer of a database application or a user of an
application does not need to know the details of such implementations, except per-
haps for dealing with performance issues. Unfortunately, even if the isolation level is
set to serializable, some database systems actually implement a weaker level of isola-
tion, which does not rule out every possible nonserializable execution; we revisit this
issue in Section 17.9. If weaker levels of isolation are used, either explicitly or implic-
itly, the application designer has to be aware of some details of the implementation, to
avoid or minimize the chance of inconsistency due to lack of serializability.

17.9 Implementation of Isolation Levels

So far, we have seen what properties a schedule must have if it is to leave the database
in a consistent state and allow transaction failures to be handled in a safe manner.

There are various concurrency-control policies that we can use to ensure that, even
when multiple transactions are executed concurrently, only acceptable schedules are
generated, regardless of how the operating system time-shares resources (such as CPU
time) among the transactions.

As a trivial example of a concurrency-control policy, consider this: A transaction
acquires a lock on the entire database before it starts and releases the lock after it
has committed. While a transaction holds a lock, no other transaction is allowed to
acquire the lock, and all must therefore wait for the lock to be released. As a result of
the locking policy, only one transaction can execute at a time. Therefore, only serial
schedules are generated. These are trivially serializable, and it is easy to verify that they
are recoverable and cascadeless as well.

A concurrency-control policy such as this one leads to poor performance, since it
forces transactions to wait for preceding transactions to finish before they can start. In
other words, it provides a poor degree of concurrency (indeed, no concurrency at all).
As we saw in Section 17.5, concurrent execution has substantial performance benefits.

The goal of concurrency-control policies is to provide a high degree of concurrency,
while ensuring that all schedules that can be generated are conflict or view serializable,
recoverable, and cascadeless.

Here we provide an overview of how some of most important concurrency-control
mechanisms work, and we defer the details to Chapter 18.

17.9.1 Locking

Instead of locking the entire database, a transaction could instead lock only those data
items that it accesses. Under such a policy, the transaction must hold locks long enough
to ensure serializability, but for a period short enough not to harm performance exces-
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Note 17.2 SERIALIZABILITY IN THE REAL WORLD

Serializable schedules are the ideal way to ensure consistency, but in our day-to-
day lives, we don’t impose such stringent requirements. A web site offering goods
for sale may list an item as being in stock, yet by the time a user selects the item
and goes through the checkout process, that item might no longer be available.
Viewed from a database perspective, this would be a nonrepeatable read.

As another example, consider seat selection for air travel. Assume that a trav-
eler has already booked an itinerary and now is selecting seats for each flight. Many
airline web sites allow the user to step through the various flights and choose a seat,
after which the user is asked to confirm the selection. It could be that other trav-
elers are selecting seats or changing their seat selections for the same flights at
the same time. The seat availability that the traveler was shown is thus actually
changing, but the traveler is shown a snapshot of the seat availability as of when
the traveler started the seat selection process.

Even if two travelers are selecting seats at the same time, most likely they will
select different seats, and if so there would be no real conflict. However, the trans-
actions are not serializable, since each traveler has read data that was subsequently
updated by the other traveler, leading to a cycle in the precedence graph. If two
travelers performing seat selection concurrently actually selected the same seat,
one of them would not be able to get the seat they selected; however, the situation
could be easily resolved by asking the traveler to perform the selection again, with
updated seat availability information.

It is possible to enforce serializability by allowing only one traveler to do seat
selection for a particular flight at a time. However, doing so could cause significant
delays as travelers would have to wait for their flight to become available for seat
selection; in particular a traveler who takes a long time to make a choice could
cause serious problems for other travelers. Instead, any such transaction is typically
broken up into a part that requires user interaction and a part that runs exclusively
on the database. In the example above, the database transaction would check if
the seats chosen by the user are still available, and if so update the seat selection
in the database. Serializability is ensured only for the transactions that run on the
database, without user interaction.

sively. Complicating matters are SQL statements where the data items accessed depend
on a where clause, which we discuss in Section 17.10. In Chapter 18, we present the
two-phase locking protocol, a simple, widely used technique that ensures serializability.
Stated simply, two-phase locking requires a transaction to have two phases, one where
it acquires locks but does not release any, and a second phase where the transaction re-
leases locks but does not acquire any. (In practice, locks are usually released only when
the transaction completes its execution and has been either committed or aborted.)
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Further improvements to locking result if we have two kinds of locks: shared and
exclusive. Shared locks are used for data that the transaction reads and exclusive locks
are used for those it writes. Many transactions can hold shared locks on the same data
item at the same time, but a transaction is allowed an exclusive lock on a data item
only if no other transaction holds any lock (regardless of whether shared or exclusive)
on the data item. This use of two modes of locks along with two-phase locking allows
concurrent reading of data while still ensuring serializability.

17.9.2 Timestamps

Another category of techniques for the implementation of isolation assigns each trans-
action a timestamp, typically when it begins. For each data item, the system keeps two
timestamps. The read timestamp of a data item holds the largest (that is, the most re-
cent) timestamp of those transactions that read the data item. The write timestamp of
a data item holds the timestamp of the transaction that wrote the current value of the
data item. Timestamps are used to ensure that transactions access each data item in or-
der of the transactions’ timestamps if their accesses conflict. When this is not possible,
offending transactions are aborted and restarted with a new timestamp.

17.9.3 Multiple Versions and Snapshot Isolation

By maintaining more than one version of a data item, it is possible to allow a trans-
action to read an old version of a data item rather than a newer version written by an
uncommitted transaction or by a transaction that should come later in the serializa-
tion order. There are a variety of multiversion concurrency-control techniques. One in
particular, called snapshot isolation, is widely used in practice.

In snapshot isolation, we can imagine that each transaction is given its own version,
or snapshot, of the database when it begins.5 It reads data from this private version and
is thus isolated from the updates made by other transactions. If the transaction updates
the database, that update appears only in its own version, not in the actual database
itself. Information about these updates is saved so that the updates can be applied to
the “real” database if the transaction commits.

When a transaction T enters the partially committed state, it then proceeds to
the committed state only if no other concurrent transaction has modified data that T
intends to update. Transactions that, as a result, cannot commit abort instead.

Snapshot isolation ensures that attempts to read data never need to wait (unlike
locking). Read-only transactions cannot be aborted; only those that modify data run a
slight risk of aborting. Since each transaction reads its own version or snapshot of the
database, reading data does not cause subsequent update attempts by other transactions
to wait (unlike locking). Since most transactions are read-only (and most others read
more data than they update), this is often a major source of performance improvement
as compared to locking.

5In reality, the entire database is not copied. Multiple versions are kept only of those data items that are changed.
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The problem with snapshot isolation is that, paradoxically, it provides too much
isolation. Consider two transactions T and T ′. In a serializable execution, either T sees
all the updates made by T ′ or T ′ sees all the updates made by T , because one must
follow the other in the serialization order. Under snapshot isolation, there are cases
where neither transaction sees the updates of the other. This is a situation that cannot
occur in a serializable execution. In many (indeed, most) cases, the data accesses by
the two transactions do not conflict and there is no problem. However, if T reads some
data item that T ′ updates and T ′ reads some data item that T updates, it is possible
that both transactions fail to read the update made by the other. The result, as we shall
see in Chapter 18, may be an inconsistent database state that, of course, could not be
obtained in any serializable execution.

Oracle, PostgreSQL, and SQL Server offer the option of snapshot isolation. Oracle
and PostgreSQL versions prior to PostgreSQL 9.1 implement the serializable isolation
level using snapshot isolation. As a result, their implementation of serializability can,
in exceptional circumstances, result in a nonserializable execution being allowed. SQL
Server instead includes an additional isolation level beyond the standard ones, called
snapshot, to offer the option of snapshot isolation. PostgreSQL versions subsequent
to 9.1 implement a form of concurrency control called serializable snapshot isolation,
which provides the benefits of snapshot isolation while ensuring serializability.

17.10 Transactions as SQL Statements

In Section 4.3, we presented the SQL syntax for specifying the beginning and end of
transactions. Now that we have seen some of the issues in ensuring the ACID proper-
ties for transactions, we are ready to consider how those properties are ensured when
transactions are specified as a sequence of SQL statements rather than the restricted
model of simple reads and writes that we considered up to this point.

In our simple model, we assumed a set of data items exists. While our simple
model allowed data-item values to be changed, it did not allow data items to be created
or deleted. In SQL, however, insert statements create new data and delete statements
delete data. These two statements are, in effect, write operations, since they change the
database, but their interactions with the actions of other transactions are different from
what we saw in our simple model. As an example, consider how insertion or deletion
would conflict with the following SQL query, which finds all instructors who earn more
than $90,000:

select ID, name
from instructor
where salary > 90000;

Using our sample instructor relation (Section A.3), we find that only Einstein and
Brandt satisfy the condition. Now assume that around the same time we are running our
query, another user inserts a new instructor named “James” whose salary is $100,000.



17.10 Transactions as SQL Statements 827

insert into instructor values ('11111', 'James', 'Marketing', 100000);

The result of our query depends on whether this insert comes before or after our query
is run. In a concurrent execution of these transactions, it is intuitively clear that they
conflict, but this is a conflict that may not be captured by our simple model. This situ-
ation is referred to as the phantom phenomenon because a conflict may exist on “phan-
tom” data.

Our simple model of transactions required that operations operate on a specific
data item given as an argument to the operation. In our simple model, we can look at the
read and write steps to see which data items are referenced. But in an SQL statement, the
specific data items (tuples) referenced may be determined by a where clause predicate.
So the same transaction, if run more than once, might reference different data items
each time it is run if the values in the database change between runs. In our example,
the 'James' tuple is referenced only if our query comes after the insertion. Let T denote
the query and let T ′ denote the insert. If T ′ comes first, then there is an edge T ′ → T
in the precedence graph. However, in the case where the query T comes first, there
is no edge in the precedence graph between T and T ′ despite the actual conflict on
phantom data that forces T to be serialized before T ′.

The above-mentioned problem demonstrates that it is not sufficient for concur-
rency control to consider only the tuples that are accessed by a transaction; the in-
formation used to find the tuples that are accessed by the transaction must also be
considered for the purpose of concurrency control. The information used to find tu-
ples could be updated by an insertion or deletion, or in the case of an index, even by an
update to a search-key attribute. For example, if locking is used for concurrency control,
the data structures that track the tuples in a relation, as well as index structures, must
be appropriately locked. However, such locking can lead to poor concurrency in some
situations; index-locking protocols that maximize concurrency, while ensuring serial-
izability in spite of inserts, deletes, and predicates in queries, are discussed in Section
18.4.3.

Let us consider again the query:

select ID, name
from instructor
where salary> 90000;

and the following SQL update:

update instructor
set salary = salary * 0.9
where name = ’Wu’;

We now face an interesting situation in determining whether our query conflicts with
the update statement. If our query reads the entire instructor relation, then it reads the
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tuple with Wu’s data and conflicts with the update. However, if an index were available
that allowed our query direct access to those tuples with salary > 90000, then our query
would not have accessed Wu’s data at all because Wu’s salary is initially $90,000 in our
example instructor relation and reduces to $81,000 after the update.

However, using the above approach, it would appear that the existence of a conflict
depends on a low-level query processing decision by the system that is unrelated to a
user-level view of the meaning of the two SQL statements! An alternative approach to
concurrency control treats an insert, delete, or update as conflicting with a predicate
on a relation, if it could affect the set of tuples selected by a predicate. In our example
query above, the predicate is “salary > 90000”, and an update of Wu’s salary from
$90,000 to a value greater than $90,000, or an update of Einstein’s salary from a value
greater than $90,000 to a value less than or equal to $90,000, would conflict with this
predicate. Locking based on this idea is called predicate locking; predicate locking is
often implemented using locks on index nodes as we see in Section 18.4.3.

17.11 Summary

• A transaction is a unit of program execution that accesses and possibly updates
various data items. Understanding the concept of a transaction is critical for un-
derstanding and implementing updates of data in a database in such a way that
concurrent executions and failures of various forms do not result in the database
becoming inconsistent.

• Transactions are required to have the ACID properties: atomicity, consistency, iso-
lation, and durability.

° Atomicity ensures that either all the effects of a transaction are reflected in the
database, or none are; a failure cannot leave the database in a state where a
transaction is partially executed.

° Consistency ensures that, if the database is initially consistent, the execution
of the transaction (by itself) leaves the database in a consistent state.

° Isolation ensures that concurrently executing transactions are isolated from
one another, so that each has the impression that no other transaction is exe-
cuting concurrently with it.

° Durability ensures that, once a transaction has been committed, that transac-
tion’s updates do not get lost, even if there is a system failure.

• Concurrent execution of transactions improves throughput of transactions and
system utilization and also reduces the waiting time of transactions.

• The various types of storage in a computer are volatile storage, non-volatile storage,
and stable storage. Data in volatile storage, such as in RAM, are lost when the
computer crashes. Data in non-volatile storage, such as disk, are not lost when
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the computer crashes but may occasionally be lost because of failures such as disk
crashes. Data in stable storage are never lost.

• Stable storage that must be accessible online is approximated with mirrored disks,
or other forms of RAID, which provide redundant data storage. Offline, or archival,
stable storage may consist of multiple tape copies of data stored in physically se-
cure locations.

• When several transactions execute concurrently on the database, the consistency
of data may no longer be preserved. It is therefore necessary for the system to
control the interaction among the concurrent transactions.

° Since a transaction is a unit that preserves consistency, a serial execution of
transactions guarantees that consistency is preserved.

° A schedule captures the key actions of transactions that affect concurrent ex-
ecution, such as read and write operations, while abstracting away internal
details of the execution of the transaction.

° We require that any schedule produced by concurrent processing of a set of
transactions will have an effect equivalent to a schedule produced when these
transactions are run serially in some order.

° A system that guarantees this property is said to ensure serializability.

° There are several different notions of equivalence leading to the concepts of
conflict serializability and view serializability.

• Serializability of schedules generated by concurrently executing transactions can
be ensured through one of a variety of mechanisms called concurrency-control poli-
cies.

• We can test a given schedule for conflict serializability by constructing a prece-
dence graph for the schedule and by searching for the absence of cycles in the
graph. However, there are more efficient concurrency-control policies for ensur-
ing serializability.

• Schedules must be recoverable, to make sure that if transaction a sees the effects
of transaction b, and b then aborts, then a also gets aborted.

• Schedules should preferably be cascadeless, so that the abort of a transaction does
not result in cascading aborts of other transactions. Cascadelessness is ensured by
allowing transactions to only read committed data.

• The concurrency-control management component of the database is responsible
for handling the concurrency-control policies. Techniques include locking, times-
tamp ordering, and snapshot isolation. Chapter 18 describes concurrency-control
policies.
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• Database systems offer isolation levels weaker than serializability to allow less re-
striction of concurrency and thus improved performance. This introduces a risk
of inconsistency that some applications find acceptable.

• Ensuring correct concurrent execution in the presence of SQL update, insert, and
delete operations requires additional care due to the phantom phenomenon.
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Practice Exercises

17.1 Suppose that there is a database system that never fails. Is a recovery manager
required for this system?

17.2 Consider a file system such as the one on your favorite operating system.

a. What are the steps involved in the creation and deletion of files and in
writing data to a file?

b. Explain how the issues of atomicity and durability are relevant to the
creation and deletion of files and to writing data to files.

17.3 Database-system implementers have paid much more attention to the ACID
properties than have file-system implementers. Why might this be the case?

17.4 What class or classes of storage can be used to ensure durability? Why?

17.5 Since every conflict-serializable schedule is view serializable, why do we em-
phasize conflict serializability rather than view serializability?

17.6 Consider the precedence graph of Figure 17.16. Is the corresponding schedule
conflict serializable? Explain your answer.

17.7 What is a cascadeless schedule? Why is cascadelessness of schedules desir-
able? Are there any circumstances under which it would be desirable to allow
noncascadeless schedules? Explain your answer.

17.8 The lost update anomaly is said to occur if a transaction Tj reads a data item,
then another transaction Tk writes the data item (possibly based on a previous
read), after which Tj writes the data item. The update performed by Tk has
been lost, since the update done by Tj ignored the value written by Tk.

T1

T4

T5

T3

T2

Figure 17.16 Precedence graph for Practice Exercise 17.6.
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a. Give an example of a schedule showing the lost update anomaly.

b. Give an example schedule to show that the lost update anomaly is possi-
ble with the read committed isolation level.

c. Explain why the lost update anomaly is not possible with the repeatable
read isolation level.

17.9 Consider a database for a bank where the database system uses snapshot iso-
lation. Describe a particular scenario in which a nonserializable execution oc-
curs that would present a problem for the bank.

17.10 Consider a database for an airline where the database system uses snapshot
isolation. Describe a particular scenario in which a nonserializable execution
occurs, but the airline may be willing to accept it in order to gain better overall
performance.

17.11 The definition of a schedule assumes that operations can be totally ordered
by time. Consider a database system that runs on a system with multiple pro-
cessors, where it is not always possible to establish an exact ordering between
operations that executed on different processors. However, operations on a
data item can be totally ordered.

Does this situation cause any problem for the definition of conflict serializ-
ability? Explain your answer.

Exercises

17.12 List the ACID properties. Explain the usefulness of each.

17.13 During its execution, a transaction passes through several states, until it finally
commits or aborts. List all possible sequences of states through which a trans-
action may pass. Explain why each state transition may occur.

17.14 Explain the distinction between the terms serial schedule and serializable sched-
ule.

17.15 Consider the following two transactions:

T13: read(A);
read(B);
if A = 0 then B := B + 1;
write(B).

T14: read(B);
read(A);
if B = 0 then A := A + 1;
write(A).
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Let the consistency requirement be A = 0 ∨ B = 0, with A = B = 0 as
the initial values.

a. Show that every serial execution involving these two transactions pre-
serves the consistency of the database.

b. Show a concurrent execution of T13 and T14 that produces a nonserializ-
able schedule.

c. Is there a concurrent execution of T13 and T14 that produces a serializable
schedule?

17.16 Give an example of a serializable schedule with two transactions such that the
order in which the transactions commit is different from the serialization order.

17.17 What is a recoverable schedule? Why is recoverability of schedules desirable?
Are there any circumstances under which it would be desirable to allow non-
recoverable schedules? Explain your answer.

17.18 Why do database systems support concurrent execution of transactions, de-
spite the extra effort needed to ensure that concurrent execution does not cause
any problems?

17.19 Explain why the read-committed isolation level ensures that schedules are
cascade-free.

17.20 For each of the following isolation levels, give an example of a schedule that
respects the specified level of isolation but is not serializable:

a. Read uncommitted

b. Read committed

c. Repeatable read

17.21 Suppose that in addition to the operations read and write, we allow an opera-
tion pred read(r, P), which reads all tuples in relation r that satisfy predicate
P.

a. Give an example of a schedule using the pred read operation that ex-
hibits the phantom phenomenon and is nonserializable as a result.

b. Give an example of a schedule where one transaction uses the
pred read operation on relation r and another concurrent transaction
deletes a tuple from r, but the schedule does not exhibit a phantom con-
flict. (To do so, you have to give the schema of relation r and show the
attribute values of the deleted tuple.)
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Further Reading

[Gray and Reuter (1993)] provides detailed textbook coverage of transaction-
processing concepts, techniques, and implementation details, including concurrency
control and recovery issues. [Bernstein and Newcomer (2009)] provides textbook cov-
erage of various aspects of transaction processing.

The concept of serializability was formalized by [Eswaran et al. (1976)] in connec-
tion with work on concurrency control for System R.

References covering specific aspects of transaction processing, such as concur-
rency control and recovery, are cited in Chapter 18 and Chapter 19.
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CHAP T E R 18
Concurrency Control

We saw in Chapter 17 that one of the fundamental properties of a transaction is iso-
lation. When several transactions execute concurrently in the database, however, the
isolation property may no longer be preserved. To ensure that it is, the system must
control the interaction among the concurrent transactions; this control is achieved
through one of a variety of mechanisms called concurrency-control schemes. In this
chapter, we consider the management of concurrently executing transactions, and we
ignore failures. In Chapter 19, we shall see how the system can recover from failures.

As we shall see, there are a variety of concurrency-control schemes. No one scheme
is clearly the best; each one has advantages. In practice, the most frequently used
schemes are two-phase locking and snapshot isolation.

18.1 Lock-Based Protocols

One way to ensure isolation is to require that data items be accessed in a mutually exclu-
sive manner; that is, while one transaction is accessing a data item, no other transaction
can modify that data item. The most common method used to implement this require-
ment is to allow a transaction to access a data item only if it is currently holding a lock
on that item. We introduced the concept of locking in Section 17.9.

18.1.1 Locks

There are various modes in which a data item may be locked. In this section, we restrict
our attention to two modes:

1. Shared. If a transaction Ti has obtained a shared-mode lock (denoted by S) on
item Q, then Ti can read, but cannot write, Q.

2. Exclusive. If a transaction Ti has obtained an exclusive-mode lock (denoted by X)
on item Q, then Ti can both read and write Q.

We require that every transaction request a lock in an appropriate mode on data
item Q, depending on the types of operations that it will perform on Q. The transaction

835
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S X

S true false

X false false

Figure 18.1 Lock-compatibility matrix comp.

makes the request to the concurrency-control manager. The transaction can proceed
with the operation only after the concurrency-control manager grants the lock to the
transaction. The use of these two lock modes allows multiple transactions to read a
data item but limits write access to just one transaction at a time.

To state this more generally, given a set of lock modes, we can define a compatibility
function on them as follows: Let A and B represent arbitrary lock modes. Suppose that
a transaction Ti requests a lock of mode A on item Q on which transaction Tj (Ti
≠ Tj) currently holds a lock of mode B. If transaction Ti can be granted a lock on
Q immediately, in spite of the presence of the mode B lock, then we say mode A is
compatible with mode B. Such a function can be represented conveniently by a matrix.
The compatibility relation between the two modes of locking discussed in this section
appears in the matrix comp of Figure 18.1. An element comp(A, B) of the matrix has
the value true if and only if mode A is compatible with mode B.

Note that shared mode is compatible with shared mode, but not with exclusive
mode. At any time, several shared-mode locks can be held simultaneously (by different
transactions) on a particular data item. A subsequent exclusive-mode lock request has
to wait until the currently held shared-mode locks are released.

A transaction requests a shared lock on data item Q by executing the lock-S(Q)
instruction. Similarly, a transaction requests an exclusive lock through the lock-X(Q)
instruction. A transaction can unlock a data item Q by the unlock(Q) instruction.

To access a data item, transaction Ti must first lock that item. If the data item is al-
ready locked by another transaction in an incompatible mode, the concurrency-control
manager will not grant the lock until all incompatible locks held by other transactions
have been released. Thus, Ti is made to wait until all incompatible locks held by other
transactions have been released.

Transaction Ti may unlock a data item that it had locked at some earlier point.
Note that a transaction must hold a lock on a data item as long as it accesses that
item. Moreover, it is not necessarily desirable for a transaction to unlock a data item
immediately after its final access of that data item, since serializability may not be
ensured.

As an illustration, consider again the banking example that we introduced in Chap-
ter 17. Let A and B be two accounts that are accessed by transactions T1 and T2. Trans-
action T1 transfers $50 from account B to account A (Figure 18.2). Transaction T2
displays the total amount of money in accounts A and B—that is, the sum A + B (Figure
18.3).
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T1: lock-X(B);
read(B);
B := B − 50;
write(B);
unlock(B);
lock-X(A);
read(A);
A := A + 50;
write(A);
unlock(A).

Figure 18.2 Transaction T1.

Suppose that the values of accounts A and B are $100 and $200, respectively. If
these two transactions are executed serially, either in the order T1, T2 or the order T2,
T1, then transaction T2 will display the value $300. If, however, these transactions are
executed concurrently, then schedule 1, in Figure 18.4, is possible. In this case, trans-
action T2 displays $250, which is incorrect. The reason for this mistake is that the
transaction T1 unlocked data item B too early, as a result of which T2 saw an inconsis-
tent state.

The schedule shows the actions executed by the transactions, as well as the points
at which the concurrency-control manager grants the locks. The transaction making
a lock request cannot execute its next action until the concurrency-control manager
grants the lock. Hence, the lock must be granted in the interval of time between the
lock-request operation and the following action of the transaction. Exactly when within
this interval the lock is granted is not important; we can safely assume that the lock is
granted just before the following action of the transaction. We shall therefore drop the

T2: lock-S(A);
read(A);
unlock(A);
lock-S(B);
read(B);
unlock(B);
display(A + B).

Figure 18.3 Transaction T2.
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T1 T2 concurrency-control manager

lock-X(B)
grant-X(B, T1)

read(B)
B := B − 50
write(B)
unlock(B)

lock-S(A)
grant-S(A, T2)

read(A)
unlock(A)
lock-S(B)

grant-S(B, T2)
read(B)
unlock(B)
display(A + B)

lock-X(A)
grant-X(A, T1)

read(A)
A := A + 50
write(A)
unlock(A)

Figure 18.4 Schedule 1.

column depicting the actions of the concurrency-control manager from all schedules
depicted in the rest of the chapter. We let you infer when locks are granted.

Suppose now that unlocking is delayed to the end of the transaction. Transaction
T3 corresponds to T1 with unlocking delayed (Figure 18.5). Transaction T4 corresponds
to T2 with unlocking delayed (Figure 18.6).

You should verify that the sequence of reads and writes in schedule 1, which lead to
an incorrect total of $250 being displayed, is no longer possible with T3 and T4. Other
schedules are possible. T4 will not print out an inconsistent result in any of them; we
shall see why later.

Unfortunately, locking can lead to an undesirable situation. Consider the partial
schedule of Figure 18.7 for T3 and T4. Since T3 is holding an exclusive-mode lock on
B and T4 is requesting a shared-mode lock on B, T4 is waiting for T3 to unlock B.
Similarly, since T4 is holding a shared-mode lock on A and T3 is requesting an exclusive-
mode lock on A, T3 is waiting for T4 to unlock A. Thus, we have arrived at a state
where neither of these transactions can ever proceed with its normal execution. This
situation is called deadlock. When deadlock occurs, the system must roll back one of
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T3: lock-X(B);
read(B);
B := B − 50;
write(B);
lock-X(A);
read(A);
A := A + 50;
write(A);
unlock(B);
unlock(A).

Figure 18.5 Transaction T3 (transaction T1 with unlocking delayed).

the two transactions. Once a transaction has been rolled back, the data items that were
locked by that transaction are unlocked. These data items are then available to the
other transaction, which can continue with its execution. We shall return to the issue
of deadlock handling in Section 18.2.

If we do not use locking, or if we unlock data items too soon after reading or writing
them, we may get inconsistent states. On the other hand, if we do not unlock a data
item before requesting a lock on another data item, deadlocks may occur. There are
ways to avoid deadlock in some situations, as we shall see in Section 18.1.5. However,
in general, deadlocks are a necessary evil associated with locking, if we want to avoid
inconsistent states. Deadlocks are definitely preferable to inconsistent states, since they
can be handled by rolling back transactions, whereas inconsistent states may lead to
real-world problems that cannot be handled by the database system.

We shall require that each transaction in the system follow a set of rules, called a
locking protocol, indicating when a transaction may lock and unlock each of the data
items. Locking protocols restrict the number of possible schedules. The set of all such

T4: lock-S(A);
read(A);
lock-S(B);
read(B);
display(A + B);
unlock(A);
unlock(B).

Figure 18.6 Transaction T4 (transaction T2 with unlocking delayed).
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T3 T4

lock-X(B)
read(B)
B := B − 50
write(B)

lock-S(A)
read(A)
lock-S(B)

lock-X(A)

Figure 18.7 Schedule 2.

schedules is a proper subset of all possible serializable schedules. We shall present
several locking protocols that allow only conflict-serializable schedules, and thereby
ensure isolation. Before doing so, we introduce some terminology.

Let {T0, T1,… , Tn} be a set of transactions participating in a schedule S. We say
that Ti precedes Tj in S, written Ti → Tj, if there exists a data item Q such that Ti has
held lock mode A on Q, and Tj has held lock mode B on Q later, and comp(A,B) = false.
If Ti → Tj, then that precedence implies that in any equivalent serial schedule, Ti must
appear before Tj. Observe that this graph is similar to the precedence graph that we
used in Section 17.6 to test for conflict serializability. Conflicts between instructions
correspond to noncompatibility of lock modes.

We say that a schedule S is legal under a given locking protocol if S is a possible
schedule for a set of transactions that follows the rules of the locking protocol. We say
that a locking protocol ensures conflict serializability if and only if all legal schedules
are conflict serializable; in other words, for all legal schedules the associated → relation
is acyclic.

18.1.2 Granting of Locks

When a transaction requests a lock on a data item in a particular mode, and no other
transaction has a lock on the same data item in a conflicting mode, the lock can be
granted. However, care must be taken to avoid the following scenario. Suppose a trans-
action T2 has a shared-mode lock on a data item, and another transaction T1 requests
an exclusive-mode lock on the data item. T1 has to wait for T2 to release the shared-
mode lock. Meanwhile, a transaction T3 may request a shared-mode lock on the same
data item. The lock request is compatible with the lock granted to T2, so T3 may be
granted the shared-mode lock. At this point T2 may release the lock, but still T1 has
to wait for T3 to finish. But again, there may be a new transaction T4 that requests a
shared-mode lock on the same data item, and is granted the lock before T3 releases it.
In fact, it is possible that there is a sequence of transactions that each requests a shared-
mode lock on the data item, and each transaction releases the lock a short while after it
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is granted, but T1 never gets the exclusive-mode lock on the data item. The transaction
T1 may never make progress, and is said to be starved.

We can avoid starvation of transactions by granting locks in the following manner:
When a transaction Ti requests a lock on a data item Q in a particular mode M , the
concurrency-control manager grants the lock provided that:

• There is no other transaction holding a lock on Q in a mode that conflicts with M .

• There is no other transaction that is waiting for a lock on Q and that made its lock
request before Ti.

Thus, a lock request will never get blocked by a lock request that is made later.

18.1.3 The Two-Phase Locking Protocol

One protocol that ensures serializability is the two-phase locking protocol. This protocol
requires that each transaction issue lock and unlock requests in two phases:

1. Growing phase. A transaction may obtain locks, but may not release any lock.

2. Shrinking phase. A transaction may release locks, but may not obtain any new
locks.

Initially, a transaction is in the growing phase. The transaction acquires locks as needed.
Once the transaction releases a lock, it enters the shrinking phase, and it can issue no
more lock requests.

For example, transactions T3 and T4 are two phase. On the other hand, transactions
T1 and T2 are not two phase. Note that the unlock instructions do not need to appear
at the end of the transaction. For example, in the case of transaction T3, we could
move the unlock(B) instruction to just after the lock-X(A) instruction and still retain
the two-phase locking property.

We can show that the two-phase locking protocol ensures conflict serializability.
Consider any transaction. The point in the schedule where the transaction has obtained
its final lock (the end of its growing phase) is called the lock point of the transaction.
Now, transactions can be ordered according to their lock points—this ordering is, in
fact, a serializability ordering for the transactions. We leave the proof as an exercise for
you to do (see Practice Exercise 18.1).

Two-phase locking does not ensure freedom from deadlock. Observe that transac-
tions T3 and T4 are two phase, but, in schedule 2 (Figure 18.7), they are deadlocked.

Recall from Section 17.7.2 that, in addition to being serializable, schedules should
be cascadeless. Cascading rollback may occur under two-phase locking. As an illus-
tration, consider the partial schedule of Figure 18.8. Each transaction observes the
two-phase locking protocol, but the failure of T5 after the read(A) step of T7 leads to
cascading rollback of T6 and T7.
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T5 T6 T7

lock-X(A)
read(A)
lock-S(B)
read(B)
write(A)
unlock(A)

lock-X(A)
read(A)
write(A)
unlock(A)

lock-S(A)
read(A)

Figure 18.8 Partial schedule under two-phase locking.

Cascading rollbacks can be avoided by a modification of two-phase locking called
the strict two-phase locking protocol. This protocol requires not only that locking be two
phase, but also that all exclusive-mode locks taken by a transaction be held until that
transaction commits. This requirement ensures that any data written by an uncommit-
ted transaction are locked in exclusive mode until the transaction commits, preventing
any other transaction from reading the data.

Another variant of two-phase locking is the rigorous two-phase locking protocol,
which requires that all locks be held until the transaction commits. We can easily verify
that, with rigorous two-phase locking, transactions can be serialized in the order in
which they commit.

Consider the following two transactions, for which we have shown only some of
the significant read and write operations:

T8: read(a1);
read(a2);
. . .
read(an);
write(a1).

T9: read(a1);
read(a2);
display(a1 + a2).

If we employ the two-phase locking protocol, then T8 must lock a1 in exclusive
mode. Therefore, any concurrent execution of both transactions amounts to a serial
execution. Notice, however, that T8 needs an exclusive lock on a1 only at the end of



18.1 Lock-Based Protocols 843

T8 T9

lock-S(a1)
lock-S(a1)

lock-S(a2)
lock-S(a2)

lock-S(a3)
lock-S(a4)

unlock(a1)
unlock(a2)

lock-S(an)
upgrade(a1)

Figure 18.9 Incomplete schedule with a lock conversion.

its execution, when it writes a1. Thus, if T8 could initially lock a1 in shared mode, and
then could later change the lock to exclusive mode, we could get more concurrency,
since T8 and T9 could access a1 and a2 simultaneously.

This observation leads us to a refinement of the basic two-phase locking protocol,
in which lock conversions are allowed. We shall provide a mechanism for upgrading a
shared lock to an exclusive lock, and downgrading an exclusive lock to a shared lock. We
denote conversion from shared to exclusive modes by upgrade, and from exclusive to
shared by downgrade. Lock conversion cannot be allowed arbitrarily. Rather, upgrading
can take place in only the growing phase, whereas downgrading can take place in only
the shrinking phase.

Returning to our example, transactions T8 and T9 can run concurrently under the
refined two-phase locking protocol, as shown in the incomplete schedule of Figure 18.9,
where only some of the locking instructions are shown.

Note that a transaction attempting to upgrade a lock on an item Q may be forced
to wait. This enforced wait occurs if Q is currently locked by another transaction in
shared mode.

Just like the basic two-phase locking protocol, two-phase locking with lock conver-
sion generates only conflict-serializable schedules, and transactions can be serialized
by their lock points. Further, if exclusive locks are held until the end of the transaction,
the schedules are cascadeless.

For a set of transactions, there may be conflict-serializable schedules that can-
not be obtained through the two-phase locking protocol. However, to obtain conflict-
serializable schedules through non-two-phase locking protocols, we need either to have
additional information about the transactions or to impose some structure or ordering
on the set of data items in the database. We shall see examples when we consider other
locking protocols later in this chapter.

Strict two-phase locking and rigorous two-phase locking (with lock conversions)
are used extensively in commercial database systems.
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A simple but widely used scheme automatically generates the appropriate lock and
unlock instructions for a transaction, on the basis of read and write requests from the
transaction:

• When a transaction Ti issues a read(Q) operation, the system issues a lock-S(Q)
instruction followed by the read(Q) instruction.

• When Ti issues a write(Q) operation, the system checks to see whether Ti already
holds a shared lock on Q. If it does, then the system issues an upgrade(Q) in-
struction, followed by the write(Q) instruction. Otherwise, the system issues a
lock-X(Q) instruction, followed by the write(Q) instruction.

• All locks obtained by a transaction are unlocked after that transaction commits or
aborts.

18.1.4 Implementation of Locking

A lock manager can be implemented as a process that receives messages from trans-
actions and sends messages in reply. The lock-manager process replies to lock-request
messages with lock-grant messages, or with messages requesting rollback of the trans-
action (in case of deadlocks). Unlock messages require only an acknowledgment in
response, but may result in a grant message to another waiting transaction.

The lock manager uses this data structure: For each data item that is currently
locked, it maintains a linked list of records, one for each request, in the order in which
the requests arrived. It uses a hash table, indexed on the name of a data item, to find
the linked list (if any) for a data item; this table is called the lock table. Each record of
the linked list for a data item notes which transaction made the request, and what lock
mode it requested. The record also notes if the request has currently been granted.

Figure 18.10 shows an example of a lock table. The table contains locks for five
different data items, I4, I7, I23, I44, and I912. The lock table uses overflow chaining,
so there is a linked list of data items for each entry in the lock table. There is also a
list of transactions that have been granted locks, or are waiting for locks, for each of
the data items. Granted locks are the rectangles filled in a darker shade, while waiting
requests are the rectangles filled in a lighter shade. We have omitted the lock mode to
keep the figure simple. It can be seen, for example, that T23 has been granted locks on
I912 and I7 and is waiting for a lock on I4.

Although the figure does not show it, the lock table should also maintain an index
on transaction identifiers so that it is possible to determine efficiently the set of locks
held by a given transaction.

The lock manager processes requests this way:

• When a lock request message arrives, it adds a record to the end of the linked list
for the data item, if the linked list is present. Otherwise it creates a new linked list,
containing only the record for the request.
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granted

waiting

T8

I44

T1 T23

I4

T23

I7 I23

T23 T1 T8 T2

I912

Figure 18.10 Lock table.

It always grants a lock request on a data item that is not currently locked. But
if the transaction requests a lock on an item on which a lock is currently held,
the lock manager grants the request only if it is compatible with the locks that are
currently held, and all earlier requests have been granted already. Otherwise the
request has to wait.

• When the lock manager receives an unlock message from a transaction, it deletes
the record for that data item in the linked list corresponding to that transaction. It
tests the record that follows, if any, as described in the previous paragraph, to see
if that request can now be granted. If it can, the lock manager grants that request
and processes the record following it, if any, similarly, and so on.

• If a transaction aborts, the lock manager deletes any waiting request made by the
transaction. Once the database system has taken appropriate actions to undo the
transaction (see Section 19.3), it releases all locks held by the aborted transaction.



846 Chapter 18 Concurrency Control

This algorithm guarantees freedom from starvation for lock requests, since a re-
quest can never be granted while a request received earlier is waiting to be granted.
We study how to detect and handle deadlocks later, in Section 18.2.2. Section 20.3.1
describes an alternative implementation—one that uses shared memory instead of mes-
sage passing for lock request/grant.

18.1.5 Graph-Based Protocols

As noted in Section 18.1.3, if we wish to develop protocols that are not two phase, we
need additional information on how each transaction will access the database. There
are various models that can give us the additional information, each differing in the
amount of information provided. The simplest model requires that we have prior knowl-
edge about the order in which the database items will be accessed. Given such infor-
mation, it is possible to construct locking protocols that are not two phase, but that,
nevertheless, ensure conflict serializability.

To acquire such prior knowledge, we impose a partial ordering → on the set
D = {d1, d2,… , dh} of all data items. If di → dj, then any transaction accessing both
di and dj must access di before accessing dj. This partial ordering may be the result of
either the logical or the physical organization of the data, or it may be imposed solely
for the purpose of concurrency control.

The partial ordering implies that the set D may now be viewed as a directed acyclic
graph, called a database graph. In this section, for the sake of simplicity, we will restrict
our attention to only those graphs that are rooted trees. We shall present a simple
protocol, called the tree protocol, which is restricted to employ only exclusive locks.
References to other, more complex, graph-based locking protocols are in the online
bibliographical notes.

In the tree protocol, the only lock instruction allowed is lock-X. Each transaction
Ti can lock a data item at most once, and must observe the following rules:

1. The first lock by Ti may be on any data item.

2. Subsequently, a data item Q can be locked by Ti only if the parent of Q is currently
locked by Ti.

3. Data items may be unlocked at any time.

4. A data item that has been locked and unlocked by Ti cannot subsequently be
relocked by Ti.

All schedules that are legal under the tree protocol are conflict serializable.
To illustrate this protocol, consider the database graph of Figure 18.11. The follow-

ing four transactions follow the tree protocol on this graph. We show only the lock and
unlock instructions:
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A

CB

F

E

IH

J

D

G

Figure 18.11 Tree-structured database graph.

T10: lock-X(B); lock-X(E); lock-X(D); unlock(B); unlock(E); lock-X(G);
unlock(D); unlock(G).

T11: lock-X(D); lock-X(H); unlock(D); unlock(H).
T12: lock-X(B); lock-X(E); unlock(E); unlock(B).
T13: lock-X(D); lock-X(H); unlock(D); unlock(H).

One possible schedule in which these four transactions participated appears in
Figure 18.12. Note that, during its execution, transaction T10 holds locks on two disjoint
subtrees.

Observe that the schedule of Figure 18.12 is conflict serializable. It can be shown
not only that the tree protocol ensures conflict serializability, but also that this protocol
ensures freedom from deadlock.

The tree protocol in Figure 18.12 does not ensure recoverability and cascadeless-
ness. To ensure recoverability and cascadelessness, the protocol can be modified to
not permit release of exclusive locks until the end of the transaction. Holding exclu-
sive locks until the end of the transaction reduces concurrency. Here is an alternative
that improves concurrency, but ensures only recoverability: For each data item with
an uncommitted write, we record which transaction performed the last write to the
data item. Whenever a transaction Ti performs a read of an uncommitted data item,
we record a commit dependency of Ti on the transaction that performed the last write
to the data item. Transaction Ti is then not permitted to commit until the commit of all
transactions on which it has a commit dependency. If any of these transactions aborts,
Ti must also be aborted.
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T10 T11 T12 T13

lock-X(B)
lock-X(D)
lock-X(H)
unlock(D)

lock-X(E)
lock-X(D)
unlock(B)
unlock(E)

lock-X(B)
lock-X(E)

unlock(H)
lock-X(G)
unlock(D)

lock-X(D)
lock-X(H)
unlock(D)
unlock(H)

unlock(E)
unlock(B)

unlock(G)

Figure 18.12 Serializable schedule under the tree protocol.

The tree-locking protocol has an advantage over the two-phase locking protocol
in that, unlike two-phase locking, it is deadlock-free, so no rollbacks are required. The
tree-locking protocol has another advantage over the two-phase locking protocol in that
unlocking may occur earlier. Earlier unlocking may lead to shorter waiting times and
to an increase in concurrency.

However, the protocol has the disadvantage that, in some cases, a transaction may
have to lock data items that it does not access. For example, a transaction that needs
to access data items A and J in the database graph of Figure 18.11 must lock not only
A and J , but also data items B, D, and H . This additional locking results in increased
locking overhead, the possibility of additional waiting time, and a potential decrease
in concurrency. Further, without prior knowledge of what data items will need to be
locked, transactions will have to lock the root of the tree, and that can reduce concur-
rency greatly.

For a set of transactions, there may be conflict-serializable schedules that cannot
be obtained through the tree protocol. Indeed, there are schedules possible under the
two-phase locking protocol that are not possible under the tree protocol, and vice versa.
Examples of such schedules are explored in the exercises.
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18.2 Deadlock Handling

A system is in a deadlock state if there exists a set of transactions such that every
transaction in the set is waiting for another transaction in the set. More precisely, there
exists a set of waiting transactions {T0, T1,… , Tn} such that T0 is waiting for a data
item that T1 holds, and T1 is waiting for a data item that T2 holds, and … , and Tn−1
is waiting for a data item that Tn holds, and Tn is waiting for a data item that T0 holds.
None of the transactions can make progress in such a situation.

The only remedy to this undesirable situation is for the system to invoke some
drastic action, such as rolling back some of the transactions involved in the deadlock.
Rollback of a transaction may be partial: That is, a transaction may be rolled back to
the point where it obtained a lock whose release resolves the deadlock.

There are two principal methods for dealing with the deadlock problem. We can
use a deadlock prevention protocol to ensure that the system will never enter a deadlock
state. Alternatively, we can allow the system to enter a deadlock state, and then try to
recover by using a deadlock detection and deadlock recovery scheme. As we shall see,
both methods may result in transaction rollback. Prevention is commonly used if the
probability that the system would enter a deadlock state is relatively high; otherwise,
detection and recovery are more efficient.

Note that a detection and recovery scheme requires overhead that includes not
only the run-time cost of maintaining the necessary information and of executing the
detection algorithm, but also the potential losses inherent in recovery from a deadlock.

18.2.1 Deadlock Prevention

There are two approaches to deadlock prevention. One approach ensures that no cyclic
waits can occur by ordering the requests for locks, or requiring all locks to be acquired
together. The other approach is closer to deadlock recovery, and it performs transaction
rollback instead of waiting for a lock whenever the wait could potentially result in a
deadlock.

The simplest scheme under the first approach requires that each transaction locks
all its data items before it begins execution. Moreover, either all are locked in one step
or none are locked. There are two main disadvantages to this protocol: (1) it is often
hard to predict, before the transaction begins, what data items need to be locked; (2)
data-item utilization may be very low, since many of the data items may be locked but
unused for a long time.

Another approach for preventing deadlocks is to impose an ordering of all data
items and to require that a transaction lock data items only in a sequence consistent
with the ordering. We have seen one such scheme in the tree protocol, which uses a
partial ordering of data items.

A variation of this approach is to use a total order of data items, in conjunction with
two-phase locking. Once a transaction has locked a particular item, it cannot request
locks on items that precede that item in the ordering. This scheme is easy to implement,
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as long as the set of data items accessed by a transaction is known when the transaction
starts execution. There is no need to change the underlying concurrency-control system
if two-phase locking is used: All that is needed is to ensure that locks are requested in
the right order.

The second approach for preventing deadlocks is to use preemption and transac-
tion rollbacks. In preemption, when a transaction Tj requests a lock that transaction
Ti holds, the lock granted to Ti may be preempted by rolling back of Ti, and granting
of the lock to Tj. To control the preemption, we assign a unique timestamp, based on
a counter or on the system clock, to each transaction when it begins. The system uses
these timestamps only to decide whether a transaction should wait or roll back. Lock-
ing is still used for concurrency control. If a transaction is rolled back, it retains its
old timestamp when restarted. Two different deadlock-prevention schemes using times-
tamps have been proposed:

1. The wait–die scheme is a nonpreemptive technique. When transaction Ti requests
a data item currently held by Tj, Ti is allowed to wait only if it has a timestamp
smaller than that of Tj (i.e., Ti is older than Tj). Otherwise, Ti is rolled back (dies).

For example, suppose that transactions T14, T15, and T16 have timestamps 5,
10, and 15, respectively. If T14 requests a data item held by T15, then T14 will wait.
If T16 requests a data item held by T15, then T16 will be rolled back.

2. The wound–wait scheme is a preemptive technique. It is a counterpart to the wait–
die scheme. When transaction Ti requests a data item currently held by Tj, Ti is
allowed to wait only if it has a timestamp larger than that of Tj (i.e., Ti is younger
than Tj). Otherwise, Tj is rolled back (Tj is wounded by Ti).

Returning to our example, with transactions T14, T15, and T16, if T14 requests
a data item held by T15, then the data item will be preempted from T15, and T15
will be rolled back. If T16 requests a data item held by T15, then T16 will wait.

The major problem with both of these schemes is that unnecessary rollbacks may
occur.

Another simple approach to deadlock prevention is based on lock timeouts. In this
approach, a transaction that has requested a lock waits for at most a specified amount
of time. If the lock has not been granted within that time, the transaction is said to time
out, and it rolls itself back and restarts. If there was in fact a deadlock, one or more
transactions involved in the deadlock will time out and roll back, allowing the others to
proceed. This scheme falls somewhere between deadlock prevention, where a deadlock
will never occur, and deadlock detection and recovery, which Section 18.2.2 discusses.

The timeout scheme is particularly easy to implement, and it works well if transac-
tions are short and if long waits are likely to be due to deadlocks. However, in general
it is hard to decide how long a transaction must wait before timing out. Too long a wait
results in unnecessary delays once a deadlock has occurred. Too short a wait results
in transaction rollback even when there is no deadlock, leading to wasted resources.
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Starvation is also a possibility with this scheme. Hence, the timeout-based scheme has
limited applicability.

18.2.2 Deadlock Detection and Recovery

If a system does not employ some protocol that ensures deadlock freedom, then a
detection and recovery scheme must be used. An algorithm that examines the state
of the system is invoked periodically to determine whether a deadlock has occurred.
If one has, then the system must attempt to recover from the deadlock. To do so, the
system must:

• Maintain information about the current allocation of data items to transactions,
as well as any outstanding data item requests.

• Provide an algorithm that uses this information to determine whether the system
has entered a deadlock state.

• Recover from the deadlock when the detection algorithm determines that a dead-
lock exists.

In this section, we elaborate on these issues.

18.2.2.1 Deadlock Detection

Deadlocks can be described precisely in terms of a directed graph called a wait-for
graph. This graph consists of a pair G = (V , E), where V is a set of vertices and E is
a set of edges. The set of vertices consists of all the transactions in the system. Each
element in the set E of edges is an ordered pair Ti → Tj. If Ti → Tj is in E, then there
is a directed edge from transaction Ti to Tj, implying that transaction Ti is waiting for
transaction Tj to release a data item that it needs.

When transaction Ti requests a data item currently being held by transaction Tj,
then the edge Ti → Tj is inserted in the wait-for graph. This edge is removed only
when transaction Tj is no longer holding a data item needed by transaction Ti.

A deadlock exists in the system if and only if the wait-for graph contains a cycle.
Each transaction involved in the cycle is said to be deadlocked. To detect deadlocks, the
system needs to maintain the wait-for graph, and periodically to invoke an algorithm
that searches for a cycle in the graph.

To illustrate these concepts, consider the wait-for graph in Figure 18.13, which
depicts the following situation:

• Transaction T17 is waiting for transactions T18 and T19.

• Transaction T19 is waiting for transaction T18.

• Transaction T18 is waiting for transaction T20.



852 Chapter 18 Concurrency Control

T18 T20

T17

T19

Figure 18.13 Wait-for graph with no cycle.

Since the graph has no cycle, the system is not in a deadlock state.
Suppose now that transaction T20 is requesting an item held by T19. The edge T20 →

T19 is added to the wait-for graph, resulting in the new system state in Figure 18.14. This
time, the graph contains the cycle:

T18 → T20 → T19 → T18

implying that transactions T18, T19, and T20 are all deadlocked.
Consequently, the question arises: When should we invoke the detection algo-

rithm? The answer depends on two factors:

1. How often does a deadlock occur?

2. How many transactions will be affected by the deadlock?

If deadlocks occur frequently, then the detection algorithm should be invoked more
frequently. Data items allocated to deadlocked transactions will be unavailable to other
transactions until the deadlock can be broken. In addition, the number of cycles in the
graph may also grow. In the worst case, we would invoke the detection algorithm every
time a request for allocation could not be granted immediately.

T18 T20

T17

T19

Figure 18.14 Wait-for graph with a cycle.
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18.2.2.2 Recovery from Deadlock

When a detection algorithm determines that a deadlock exists, the system must recover
from the deadlock. The most common solution is to roll back one or more transactions
to break the deadlock. Three actions need to be taken:

1. Selection of a victim. Given a set of deadlocked transactions, we must determine
which transaction (or transactions) to roll back to break the deadlock. We should
roll back those transactions that will incur the minimum cost. Unfortunately, the
term minimum cost is not a precise one. Many factors may determine the cost of
a rollback, including:

a. How long the transaction has computed, and how much longer the trans-
action will compute before it completes its designated task.

b. How many data items the transaction has used.

c. How many more data items the transaction needs for it to complete.

d. How many transactions will be involved in the rollback.

2. Rollback. Once we have decided that a particular transaction must be rolled back,
we must determine how far this transaction should be rolled back.

The simplest solution is a total rollback: Abort the transaction and then restart
it. However, it is more effective to roll back the transaction only as far as necessary
to break the deadlock. Such partial rollback requires the system to maintain ad-
ditional information about the state of all the running transactions. Specifically,
the sequence of lock requests/grants and updates performed by the transaction
needs to be recorded. The deadlock detection mechanism should decide which
locks the selected transaction needs to release in order to break the deadlock. The
selected transaction must be rolled back to the point where it obtained the first
of these locks, undoing all actions it took after that point. The recovery mech-
anism must be capable of performing such partial rollbacks. Furthermore, the
transactions must be capable of resuming execution after a partial rollback. See
the online bibliographical notes for relevant references.

3. Starvation. In a system where the selection of victims is based primarily on cost
factors, it may happen that the same transaction is always picked as a victim.
As a result, this transaction never completes its designated task, thus there is
starvation. We must ensure that a transaction can be picked as a victim only
a (small) finite number of times. The most common solution is to include the
number of rollbacks in the cost factor.

18.3 Multiple Granularity

In the concurrency-control schemes described thus far, we have used each individual
data item as the unit on which synchronization is performed.
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There are circumstances, however, where it would be advantageous to group several
data items, and to treat them as one individual synchronization unit. For example, if a
transaction Ti needs to access an entire relation, and a locking protocol is used to lock
tuples, then Ti must lock each tuple in the relation. Clearly, acquiring many such locks
is time-consuming; even worse, the lock table may become very large and no longer fit
in memory. It would be better if Ti could issue a single lock request to lock the entire
relation. On the other hand, if transaction Tj needs to access only a few tuples, it should
not be required to lock the entire relation, since otherwise concurrency is lost.

What is needed is a mechanism to allow the system to define multiple levels of
granularity. This is done by allowing data items to be of various sizes and defining a
hierarchy of data granularities, where the small granularities are nested within larger
ones. Such a hierarchy can be represented graphically as a tree. Note that the tree that
we describe here is significantly different from that used by the tree protocol (Section
18.1.5). A nonleaf node of the multiple-granularity tree represents the data associated
with its descendants. In the tree protocol, each node is an independent data item.

As an illustration, consider the tree of Figure 18.15, which consists of four levels
of nodes. The highest level represents the entire database. Below it are nodes of type
area; the database consists of exactly these areas. Each area in turn has nodes of type
file as its children. Each area contains exactly those files that are its child nodes. No file
is in more than one area. Finally, each file has nodes of type record. As before, the file
consists of exactly those records that are its child nodes, and no record can be present
in more than one file.

Each node in the tree can be locked individually. As we did in the two-phase locking
protocol, we shall use shared and exclusive lock modes. When a transaction locks a
node, in either shared or exclusive mode, the transaction also has implicitly locked all
the descendants of that node in the same lock mode. For example, if transaction Ti
gets an explicit lock on file Fc of Figure 18.15, in exclusive mode, then it has an implicit

ra1
ra2

ran
rb1

rbk
rc1

rcm

Fa Fb Fc

A1 A2

DB

. . .                             . . .                                 . . .           

Figure 18.15 Granularity hierarchy.
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lock in exclusive mode on all the records belonging to that file. It does not need to lock
the individual records of Fc explicitly.

Suppose that transaction Tj wishes to lock record rb6
of file Fb. Since Ti has locked

Fb explicitly, it follows that rb6
is also locked (implicitly). But, when Tj issues a lock

request for rb6
, rb6

is not explicitly locked! How does the system determine whether Tj
can lock rb6

? Tj must traverse the tree from the root to record rb6
. If any node in that

path is locked in an incompatible mode, then Tj must be delayed.
Suppose now that transaction Tk wishes to lock the entire database. To do so, it

simply must lock the root of the hierarchy. Note, however, that Tk should not succeed
in locking the root node, since Ti is currently holding a lock on part of the tree (specifi-
cally, on file Fb). But how does the system determine if the root node can be locked? One
possibility is for it to search the entire tree. This solution, however, defeats the whole
purpose of the multiple-granularity locking scheme. A more efficient way to gain this
knowledge is to introduce a new class of lock modes, called intention lock modes. If a
node is locked in an intention mode, explicit locking is done at a lower level of the tree
(that is, at a finer granularity). Intention locks are put on all the ancestors of a node
before that node is locked explicitly. Thus, a transaction does not need to search the
entire tree to determine whether it can lock a node successfully. A transaction wish-
ing to lock a node—say, Q—must traverse a path in the tree from the root to Q. While
traversing the tree, the transaction locks the various nodes in an intention mode.

There is an intention mode associated with shared mode, and there is one with
exclusive mode. If a node is locked in intention-shared (IS) mode, explicit locking is
being done at a lower level of the tree, but with only shared-mode locks. Similarly, if
a node is locked in intention-exclusive (IX) mode, then explicit locking is being done
at a lower level, with exclusive-mode or shared-mode locks. Finally, if a node is locked
in shared and intention-exclusive (SIX) mode, the subtree rooted by that node is locked
explicitly in shared mode, and that explicit locking is being done at a lower level with
exclusive-mode locks. The compatibility function for these lock modes is shown in
Figure 18.16.
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Figure 18.16 Compatibility matrix.
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The multiple-granularity locking protocol uses these lock modes to ensure serializ-
ability. It requires that a transaction Ti that attempts to lock a node Q must follow these
rules:

• Transaction Ti must observe the lock-compatibility function of Figure 18.16.

• Transaction Ti must lock the root of the tree first and can lock it in any mode.

• Transaction Ti can lock a node Q in S or IS mode only if Ti currently has the parent
of Q locked in either IX or IS mode.

• Transaction Ti can lock a node Q in X, SIX, or IX mode only if Ti currently has the
parent of Q locked in either IX or SIX mode.

• Transaction Ti can lock a node only if Ti has not previously unlocked any node
(i.e., Ti is two phase).

• Transaction Ti can unlock a node Q only if Ti currently has none of the children
of Q locked.

Observe that the multiple-granularity protocol requires that locks be acquired in top-
down (root-to-leaf) order, whereas locks must be released in bottom-up (leaf-to-root)
order. Deadlock is possible in the multiple-granularity protocol, as it is in the two-phase
locking protocol.

As an illustration of the protocol, consider the tree of Figure 18.15 and these trans-
actions:

• Suppose that transaction T21 reads record ra2
in file Fa. Then, T21 needs to lock

the database, area A1, and Fa in IS mode (and in that order), and finally to lock ra2

in S mode.

• Suppose that transaction T22 modifies record ra9
in file Fa. Then, T22 needs to lock

the database, area A1, and file Fa (and in that order) in IX mode, and finally to lock
ra9

in X mode.

• Suppose that transaction T23 reads all the records in file Fa. Then, T23 needs to
lock the database and area A1 (and in that order) in IS mode, and finally to lock
Fa in S mode.

• Suppose that transaction T24 reads the entire database. It can do so after locking
the database in S mode.

We note that transactions T21, T23, and T24 can access the database concurrently. Trans-
action T22 can execute concurrently with T21, but not with either T23 or T24.

This protocol enhances concurrency and reduces lock overhead. It is particularly
useful in applications that include a mix of:

• Short transactions that access only a few data items.

• Long transactions that produce reports from an entire file or set of files.
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The number of locks that an SQL query may need to acquire can usually be esti-
mated based on the relation scan operations performed by a query. A relation scan, for
example, would acquire a lock at a relation level, while an index scan that is expected to
fetch only a few records may acquire an intention lock at the relation level and regular
locks at the tuple level. In case the a transaction acquires a large number of tuple locks,
the lock table may become overfull. To deal with this situation, the lock manager may
perform lock escalation, replacing many lower level locks by a single higher level lock;
in our example, a single relation lock could replace a large number of tuple locks.

18.4 Insert Operations, Delete Operations, and Predicate Reads

Until now, we have restricted our attention to read and write operations. This restric-
tion limits transactions to data items already in the database. Some transactions require
not only access to existing data items, but also the ability to create new data items. Oth-
ers require the ability to delete data items. To examine how such transactions affect
concurrency control, we introduce these additional operations:

• delete(Q) deletes data item Q from the database.

• insert(Q) inserts a new data item Q into the database and assigns Q an initial value.

An attempt by a transaction Ti to perform a read(Q) operation after Q has been deleted
results in a logical error in Ti. Likewise, an attempt by a transaction Ti to perform a
read(Q) operation before Q has been inserted results in a logical error in Ti. It is also
a logical error to attempt to delete a nonexistent data item.

18.4.1 Deletion

To understand how the presence of delete instructions affects concurrency control, we
must decide when a delete instruction conflicts with another instruction. Let Ii and
Ij be instructions of Ti and Tj, respectively, that appear in schedule S in consecutive
order. Let Ii = delete(Q). We consider several instructions Ij.

• Ij = read(Q). Ii and Ij conflict. If Ii comes before Ij, Tj will have a logical error. If
Ij comes before Ii, Tj can execute the read operation successfully.

• Ij = write(Q). Ii and Ij conflict. If Ii comes before Ij, Tj will have a logical error. If
Ij comes before Ii, Tj can execute the write operation successfully.

• Ij = delete(Q). Ii and Ij conflict. If Ii comes before Ij, Tj will have a logical error. If
Ij comes before Ii, Ti will have a logical error.

• Ij = insert(Q). Ii and Ij conflict. Suppose that data item Q did not exist prior to
the execution of Ii and Ij. Then, if Ii comes before Ij, a logical error results for Ti.
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If Ij comes before Ii, then no logical error results. Likewise, if Q existed prior to
the execution of Ii and Ij, then a logical error results if Ij comes before Ii, but not
otherwise.

We can conclude the following:

• Under the two-phase locking protocol, an exclusive lock is required on a data item
before that item can be deleted.

• Under the timestamp-ordering protocol, a test similar to that for a write must be
performed. Suppose that transaction Ti issues delete(Q).

° If TS(Ti) < R-timestamp(Q), then the value of Q that Ti was to delete has al-
ready been read by a transaction Tj with TS(Tj) > TS(Ti). Hence, the delete
operation is rejected, and Ti is rolled back.

° If TS(Ti) < W-timestamp(Q), then a transaction Tj with TS(Tj) > TS(Ti) has
written Q. Hence, this delete operation is rejected, and Ti is rolled back.

° Otherwise, the delete is executed.

18.4.2 Insertion

We have already seen that an insert(Q) operation conflicts with a delete(Q) operation.
Similarly, insert(Q) conflicts with a read(Q) operation or a write(Q) operation; no
read or write can be performed on a data item before it exists.

Since an insert(Q) assigns a value to data item Q, an insert is treated similarly to a
write for concurrency-control purposes:

• Under the two-phase locking protocol, if Ti performs an insert(Q) operation, Ti is
given an exclusive lock on the newly created data item Q.

• Under the timestamp-ordering protocol, if Ti performs an insert(Q) operation, the
values R-timestamp(Q) and W-timestamp(Q) are set to TS(Ti).

18.4.3 Predicate Reads and The Phantom Phenomenon

Consider transaction T30 that executes the following SQL query on the university
database:

select count(*)
from instructor
where dept name = 'Physics' ;

Transaction T30 requires access to all tuples of the instructor relation pertaining to the
Physics department.
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Let T31 be a transaction that executes the following SQL insertion:

insert into instructor
values (11111, 'Feynman', 'Physics', 94000);

Let S be a schedule involving T30 and T31. We expect there to be potential for a
conflict for the following reasons:

• If T30 uses the tuple newly inserted by T31 in computing count(*), then T30 reads
a value written by T31. Thus, in a serial schedule equivalent to S, T31 must come
before T30.

• If T30 does not use the tuple newly inserted by T31 in computing count(*), then in
a serial schedule equivalent to S, T30 must come before T31.

The second of these two cases is curious. T30 and T31 do not access any tuple in com-
mon, yet they conflict with each other! In effect, T30 and T31 conflict on a phantom
tuple. If concurrency control is performed at the tuple granularity, this conflict would
go undetected. As a result, the system could fail to prevent a nonserializable schedule.
This problem is an instance of the phantom phenomenon.

Phantom phenomena can occur not just with inserts, but also with updates. Con-
sider the situation we saw in Section 17.10, where a transaction Ti used an index to
find only tuples with dept name = “Physics”, and as a result did not read any tuples
with other department names. If another transaction Tj updates one of these tuples,
changing its department name to Physics, a problem similar to the above problem oc-
curs: even though Ti and Tj have not accessed any tuples in common, they do conflict
with each other. This problem too is an instance of the phantom phenomenon. In gen-
eral, the phantom phenomenon is rooted in predicate reads that conflict with inserts
or updates that result in new/updated tuples that satisfy the predicate.

We can prevent these problems by allowing transaction T30 to prevent other trans-
actions from creating new tuples in the instructor relation with dept name = “Physics”,
and from updating the department name of an existing instructor tuple to Physics.

To find all instructor tuples with dept name = “Physics”, T30 must search either the
whole instructor relation, or at least an index on the relation. Up to now, we have as-
sumed implicitly that the only data items accessed by a transaction are tuples. However,
T30 is an example of a transaction that reads information about what tuples are in a
relation, and T31 is an example of a transaction that updates that information.

Clearly, it is not sufficient merely to lock the tuples that are accessed; the informa-
tion used to find the tuples that are accessed by the transaction must also be locked.

Locking of information used to find tuples can be implemented by associating a
data item with the relation; the data item represents the information used to find the
tuples in the relation. Transactions, such as T30, that read the information about what
tuples are in a relation would then have to lock the data item corresponding to the
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relation in shared mode. Transactions, such as T31, that update the information about
what tuples are in a relation would have to lock the data item in exclusive mode. Thus,
T30 and T31 would conflict on a real data item, rather than on a phantom. Similarly,
transactions that use an index to retrieve tuples must lock the index itself.

Do not confuse the locking of an entire relation, as in multiple-granularity locking,
with the locking of the data item corresponding to the relation. By locking the data item,
a transaction only prevents other transactions from updating information about what
tuples are in the relation. Locking is still required on tuples. A transaction that directly
accesses a tuple can be granted a lock on the tuples even when another transaction has
an exclusive lock on the data item corresponding to the relation itself.

The major disadvantage of locking a data item corresponding to the relation, or
locking an entire index, is the low degree of concurrency— two transactions that insert
different tuples into a relation are prevented from executing concurrently.

A better solution is an index-locking technique that avoids locking the whole index.
Any transaction that inserts a tuple into a relation must insert information into every
index maintained on the relation. We eliminate the phantom phenomenon by imposing
a locking protocol for indices. For simplicity we shall consider only B+-tree indices.

As we saw in Chapter 14, every search-key value is associated with an index leaf
node. A query will usually use one or more indices to access a relation. An insert
must insert the new tuple in all indices on the relation. In our example, we assume
that there is an index on instructor for attribute dept name. Then, T31 must modify the
leaf containing the key “Physics”. If T30 reads the same leaf node to locate all tuples
pertaining to the Physics department, then T30 and T31 conflict on that leaf node.

The index-locking protocol takes advantage of the availability of indices on a rela-
tion, by turning instances of the phantom phenomenon into conflicts on locks on index
leaf nodes. The protocol operates as follows:

• Every relation must have at least one index.

• A transaction Ti can access tuples of a relation only after first finding them through
one or more of the indices on the relation. For the purpose of the index-locking
protocol, a relation scan is treated as a scan through all the leaves of one of the
indices.

• A transaction Ti that performs a lookup (whether a range lookup or a point
lookup) must acquire a shared lock on all the index leaf nodes that it accesses.

• A transaction Ti may not insert, delete, or update a tuple ti in a relation r without
updating all indices on r. The transaction must obtain exclusive locks on all index
leaf nodes that are affected by the insertion, deletion, or update. For insertion
and deletion, the leaf nodes affected are those that contain (after insertion) or
contained (before deletion) the search-key value of the tuple. For updates, the leaf
nodes affected are those that (before the modification) contained the old value of
the search key, and nodes that (after the modification) contain the new value of
the search key.
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• Locks are obtained on tuples as usual.

• The rules of the two-phase locking protocol must be observed.

Note that the index-locking protocol does not address concurrency control on inter-
nal nodes of an index; techniques for concurrency control on indices, which minimize
lock conflicts, are presented in Section 18.10.2.

Locking an index leaf node prevents any update to the node, even if the update
did not actually conflict with the predicate. A variant called key-value locking, which
minimizes such false lock conflicts, is presented in Section 18.10.2 as part of index
concurrency control.

As noted in Section 17.10, it would appear that the existence of a conflict between
transactions depends on a low-level query-processing decision by the system that is
unrelated to a user-level view of the meaning of the two transactions. An alternative
approach to concurrency control acquires shared locks on predicates in a query, such
as the predicate “salary > 90000” on the instructor relation. Inserts and deletes of the
relation must then be checked to see if they satisfy the predicate; if they do, there is a
lock conflict, forcing the insert or delete to wait till the predicate lock is released. For
updates, both the initial value and the final value of the tuple must be checked against
the predicate. Such conflicting inserts, deletes, and updates affect the set of tuples se-
lected by the predicate, and they cannot be allowed to execute concurrently with the
query that acquired the (shared) predicate lock. We call this protocol predicate lock-
ing;1 predicate locking is not used in practice since it is more expensive to implement
than the index-locking protocol and does not give significant additional benefits.

18.5 Timestamp-Based Protocols

The locking protocols that we have described thus far determine the order between ev-
ery pair of conflicting transactions at execution time by the first lock that both members
of the pair request that involves incompatible modes. Another method for determining
the serializability order is to select an ordering among transactions in advance. The
most common method for doing so is to use a timestamp-ordering scheme.

18.5.1 Timestamps

With each transaction Ti in the system, we associate a unique fixed timestamp, denoted
by TS(Ti). This timestamp is assigned by the database system before the transaction
Ti starts execution. If a transaction Ti has been assigned timestamp TS(Ti), and a new
transaction Tj enters the system, then TS(Ti) < TS(Tj). There are two simple methods
for implementing this scheme:

1The term predicate locking was used for a version of the protocol that used shared and exclusive locks on predicates,
and was thus more complicated. The version we present here, with only shared locks on predicates, is also referred to
as precision locking.
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1. Use the value of the system clock as the timestamp; that is, a transaction’s time-
stamp is equal to the value of the clock when the transaction enters the system.

2. Use a logical counter that is incremented after a new timestamp has been as-
signed; that is, a transaction’s timestamp is equal to the value of the counter
when the transaction enters the system.

The timestamps of the transactions determine the serializability order. Thus, if
TS(Ti) < TS(Tj), then the system must ensure that the produced schedule is equivalent
to a serial schedule in which transaction Ti appears before transaction Tj.

To implement this scheme, we associate with each data item Q two timestamp
values:

1. W-timestamp(Q) denotes the largest timestamp of any transaction that executed
write(Q) successfully.

2. R-timestamp(Q) denotes the largest timestamp of any transaction that executed
read(Q) successfully.

These timestamps are updated whenever a new read(Q) or write(Q) instruction is
executed.

18.5.2 The Timestamp-Ordering Protocol

The timestamp-ordering protocol ensures that any conflicting read andwrite operations
are executed in timestamp order. This protocol operates as follows:

• Suppose that transaction Ti issues read(Q).

° If TS(Ti)<W-timestamp(Q), then Ti needs to read a value of Q that was already
overwritten. Hence, the read operation is rejected, and Ti is rolled back.

° If TS(Ti) ≥ W-timestamp(Q), then the read operation is executed, and R-
timestamp(Q) is set to the maximum of R-timestamp(Q) and TS(Ti).

• Suppose that transaction Ti issues write(Q).

° If TS(Ti) < R-timestamp(Q), then the value of Q that Ti is producing was
needed previously, and the system assumed that that value would never be pro-
duced. Hence, the system rejects the write operation and rolls Ti back.

° If TS(Ti) < W-timestamp(Q), then Ti is attempting to write an obsolete value
of Q. Hence, the system rejects this write operation and rolls Ti back.

° Otherwise, the system executes the write operation and sets W-time-
stamp(Q) to TS(Ti).
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If a transaction Ti is rolled back by the concurrency-control scheme as result of issuance
of either a read or write operation, the system assigns it a new timestamp and restarts
it.

To illustrate this protocol, we consider transactions T25 and T26. Transaction T25
displays the contents of accounts A and B:

T25: read(B);
read(A);
display(A + B).

Transaction T26 transfers $50 from account B to account A, and then displays the con-
tents of both:

T26: read(B);
B := B − 50;
write(B);
read(A);
A := A + 50;
write(A);
display(A + B).

In presenting schedules under the timestamp protocol, we shall assume that a transac-
tion is assigned a timestamp immediately before its first instruction. Thus, in schedule
3 of Figure 18.17, TS(T25) < TS(T26), and the schedule is possible under the timestamp
protocol.

We note that the preceding execution can also be produced by the two-phase lock-
ing protocol. There are, however, schedules that are possible under the two-phase lock-
ing protocol, but are not possible under the timestamp protocol, and vice versa (see
Exercise 18.27).

The timestamp-ordering protocol ensures conflict serializability. This is because
conflicting operations are processed in timestamp order.

The protocol ensures freedom from deadlock, since no transaction ever waits. How-
ever, there is a possibility of starvation of long transactions if a sequence of conflict-
ing short transactions causes repeated restarting of the long transaction. If a transac-
tion is suffering from repeated restarts, conflicting transactions need to be temporarily
blocked to enable the transaction to finish.

The protocol can generate schedules that are not recoverable. However, it can be
extended to make the schedules recoverable, in one of several ways:

• Recoverability and cascadelessness can be ensured by performing all writes to-
gether at the end of the transaction. The writes must be atomic in the following
sense: While the writes are in progress, no transaction is permitted to access any
of the data items that have been written.
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T25 T26

read(B)
read(B)
B := B − 50
write(B)

read(A)
read(A)

display(A + B)
A := A + 50
write(A)
display(A + B)

Figure 18.17 Schedule 3.

• Recoverability and cascadelessness can also be guaranteed by using a limited form
of locking, whereby reads of uncommitted items are postponed until the transac-
tion that updated the item commits (see Exercise 18.28).

• Recoverability alone can be ensured by tracking uncommitted writes and allowing
a transaction Ti to commit only after the commit of any transaction that wrote a
value that Ti read. Commit dependencies, outlined in Section 18.1.5, can be used
for this purpose.

If the timestamp-ordering protocol is applied only to tuples, the protocol would be
vulnerable to the phantom problems that we saw in Section 17.10 and Section 18.4.3.

To avoid this problem, the timestamp-ordering protocol could be applied to all
data that is read by a transaction, including relation metadata and index data. In the
context of locking-based concurrency control, the index-locking protocol, described in
Section 18.4.3, is a more efficient alternative for avoiding the phantom problem; recall
that the index-locking protocol obtains locks on index nodes, in addition to obtaining
locks on tuples. The timestamp-ordering protocol can be similarly modified to treat
each index node as a data item, with associated read and write timestamps, and to
apply the timestamp-ordering tests on these data items, too. This extended version of
the timestamp-ordering protocol avoids phantom problems and ensures serializability
even with predicate reads.

18.5.3 Thomas’ Write Rule

We now present a modification to the timestamp-ordering protocol that allows greater
potential concurrency than does the protocol of Section 18.5.2. Let us consider sched-
ule 4 of Figure 18.18 and apply the timestamp-ordering protocol. Since T27 starts before
T28, we shall assume that TS(T27) < TS(T28). The read(Q) operation of T27 succeeds,
as does the write(Q) operation of T28. When T27 attempts its write(Q) operation,
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T27 T28

read(Q)
write(Q)

write(Q)

Figure 18.18 Schedule 4.

we find that TS(T27) < W-timestamp(Q), since W-timestamp(Q) = TS(T28). Thus, the
write(Q) by T27 is rejected and transaction T27 must be rolled back.

Although the rollback of T27 is required by the timestamp-ordering protocol, it
is unnecessary. Since T28 has already written Q, the value that T27 is attempting to
write is one that will never need to be read. Any transaction Ti with TS(Ti) < TS(T28)
that attempts a read(Q) will be rolled back, since TS(Ti) < W-timestamp(Q). Any
transaction Tj with TS(Tj) > TS(T28) must read the value of Q written by T28, rather
than the value that T27 is attempting to write.

This observation leads to a modified version of the timestamp-ordering protocol in
which obsolete write operations can be ignored under certain circumstances. The pro-
tocol rules for read operations remain unchanged. The protocol rules for write opera-
tions, however, are slightly different from the timestamp-ordering protocol of Section
18.5.2.

The modification to the timestamp-ordering protocol, called Thomas’ write rule, is
this: Suppose that transaction Ti issues write(Q).

1. If TS(Ti) < R-timestamp(Q), then the value of Q that Ti is producing was previ-
ously needed, and it had been assumed that the value would never be produced.
Hence, the system rejects the write operation and rolls Ti back.

2. If TS(Ti) < W-timestamp(Q), then Ti is attempting to write an obsolete value of
Q. Hence, this write operation can be ignored.

3. Otherwise, the system executes the write operation and sets W-timestamp(Q) to
TS(Ti).

The difference between these rules and those of Section 18.5.2 lies in the sec-
ond rule. The timestamp-ordering protocol requires that Ti be rolled back if Ti issues
write(Q) and TS(Ti) < W-timestamp(Q). However, here, in those cases where TS(Ti)
≥ R-timestamp(Q), we ignore the obsolete write.

By ignoring the write, Thomas’ write rule allows schedules that are not conflict seri-
alizable but are nevertheless correct. Those non-conflict-serializable schedules allowed
satisfy the definition of view serializable schedules (see Note 18.1 on page 867). Thomas’
write rule makes use of view serializability by, in effect, deleting obsolete write opera-
tions from the transactions that issue them. This modification of transactions makes it
possible to generate serializable schedules that would not be possible under the other
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protocols presented in this chapter. For example, schedule 4 of Figure 18.18 is not con-
flict serializable and, thus, is not possible under the two-phase locking protocol, the tree
protocol, or the timestamp-ordering protocol. Under Thomas’ write rule, the write(Q)
operation of T27 would be ignored. The result is a schedule that is view equivalent to the
serial schedule <T27, T28>.

18.6 Validation-Based Protocols

In cases where a majority of transactions are read-only transactions, the rate of conflicts
among transactions may be low. Thus, many of these transactions, if executed without
the supervision of a concurrency-control scheme, would nevertheless leave the system
in a consistent state. A concurrency-control scheme imposes overhead of code execu-
tion and possible delay of transactions. It may be better to use an alternative scheme
that imposes less overhead. A difficulty in reducing the overhead is that we do not know
in advance which transactions will be involved in a conflict. To gain that knowledge,
we need a scheme for monitoring the system.

The validation protocol requires that each transaction Ti executes in two or three
different phases in its lifetime, depending on whether it is a read-only or an update
transaction. The phases are, in order:

1. Read phase. During this phase, the system executes transaction Ti. It reads the
values of the various data items and stores them in variables local to Ti. It per-
forms all write operations on temporary local variables, without updates of the
actual database.

2. Validation phase. The validation test (described below) is applied to transaction
Ti. This determines whether Ti is allowed to proceed to the write phase without
causing a violation of serializability. If a transaction fails the validation test, the
system aborts the transaction.

3. Write phase. If the validation test succeeds for transaction Ti, the temporary local
variables that hold the results of any write operations performed by Ti are copied
to the database. Read-only transactions omit this phase.

Each transaction must go through the phases in the order shown. However, phases of
concurrently executing transactions can be interleaved.

To perform the validation test, we need to know when the various phases of trans-
actions took place. We shall, therefore, associate three different timestamps with each
transaction Ti:

1. StartTS(Ti), the time when Ti started its execution.

2. ValidationTS(Ti), the time when Ti finished its read phase and started its valida-
tion phase.

3. FinishTS(Ti), the time when Ti finished its write phase.
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Note 18.1 VIEW SERIALIZABILITY

There is another form of equivalence that is less stringent than conflict equivalence,
but that, like conflict equivalence, is based on only the read and write operations
of transactions.

Consider two schedules S and S′, where the same set of transactions partic-
ipates in both schedules. The schedules S and S′ are said to be view equivalent if
three conditions are met:

1. For each data item Q, if transaction Ti reads the initial value of Q in schedule
S, then transaction Ti must, in schedule S′, also read the initial value of Q.

2. For each data item Q, if transaction Ti executes read(Q) in schedule S, and if
that value was produced by a write(Q) operation executed by transaction Tj,
then the read(Q) operation of transaction Ti must, in schedule S′, also read
the value of Q that was produced by the same write(Q) operation of trans-
action Tj.

3. For each data item Q, the transaction (if any) that performs the final
write(Q) operation in schedule S must perform the final write(Q) in sched-
ule S′.

Conditions 1 and 2 ensure that each transaction reads the same values in both
schedules and, therefore, performs the same computation. Condition 3, coupled
with conditions 1 and 2, ensures that both schedules result in the same final system
state.

The concept of view equivalence leads to the concept of view serializability. We
say that a schedule S is view serializable if it is view equivalent to a serial schedule.

As an illustration, suppose that we augment schedule 4 with transaction T29
and obtain the following view serializable (schedule 5):

T27 T28 T29

read (Q)

write (Q)
write (Q)

write (Q)

Indeed, schedule 5 is view equivalent to the serial schedule <T27, T28, T29>, since
the one read(Q) instruction reads the initial value of Q in both schedules and T29
performs the final write of Q in both schedules.

Every conflict-serializable schedule is also view serializable, but there are view-
serializable schedules that are not conflict serializable. Indeed, schedule 5 is not
conflict serializable, since every pair of consecutive instructions conflicts, and,
thus, no swapping of instructions is possible.
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Note 18.1 VIEW SERIALIZABILITY (Cont.)

Observe that, in schedule 5, transactions T28 and T29 perform write(Q) op-
erations without having performed a read(Q) operation. Writes of this sort are
called blind writes. Blind writes appear in any view-serializable schedule that is not
conflict serializable.

We determine the serializability order by the timestamp-ordering technique, using
the value of the timestamp ValidationTS(Ti). Thus, the value TS(Ti) = ValidationTS(Ti)
and, if TS(Tj) < TS(Tk), then any produced schedule must be equivalent to a serial
schedule in which transaction Tj appears before transaction Tk.

The validation test for transaction Ti requires that, for all transactions Tk with
TS(Tk) < TS(Ti), one of the following two conditions must hold:

1. FinishTS(Tk) < StartTS(Ti). Since Tk completes its execution before Ti started,
the serializability order is indeed maintained.

2. The set of data items written by Tk does not intersect with the set of data items
read by Ti, and Tk completes its write phase before Ti starts its validation phase
(StartTS(Ti)< FinishTS(Tk)< ValidationTS(Ti)). This condition ensures that the
writes of Tk and Ti do not overlap. Since the writes of Tk do not affect the read
of Ti, and since Ti cannot affect the read of Tk, the serializability order is indeed
maintained.

As an illustration, consider again transactions T25 and T26. Suppose that TS(T25)
< TS(T26). Then, the validation phase succeeds in the schedule 6 in Figure 18.19. Note
that the writes to the actual variables are performed only after the validation phase of
T26. Thus, T25 reads the old values of B and A, and this schedule is serializable.

The validation scheme automatically guards against cascading rollbacks, since the
actual writes take place only after the transaction issuing the write has committed.
However, there is a possibility of starvation of long transactions, due to a sequence of
conflicting short transactions that cause repeated restarts of the long transaction. To
avoid starvation, conflicting transactions must be temporarily blocked to enable the
long transaction to finish.

Note also that the validation conditions result in a transaction T only being val-
idated again the set of transactions Ti that finished after T started, and, further, are
serialized before T . Transactions that finished before T started can be ignored in the
validation tests. Transactions Ti that are serialized after T (that is, they have Valida-
tionTS(Ti) > ValidationTS(T )) can also be ignored; when such a transaction Ti is vali-
dated, it would be validated against T if T finished after Ti started.
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T25 T26

read(B)
read(B)
B := B − 50
read(A)
A := A + 50

read(A)
<validate>
display(A + B)

<validate>
write(B)
write(A)

Figure 18.19 Schedule 6, a schedule produced by using validation.

This validation scheme is called the optimistic concurrency-control scheme since
transactions execute optimistically, assuming they will be able to finish execution and
validate at the end. In contrast, locking and timestamp ordering are pessimistic in that
they force a wait or a rollback whenever a conflict is detected, even though there is a
chance that the schedule may be conflict serializable.

It is possible to use TS(Ti) = StartTS(Ti) instead of ValidationTS(Ti) without af-
fecting serializability. However, doing so may result in a transaction Ti entering the
validation phase before a transaction Tj that has TS(Tj) < TS(Ti). Then, the validation
of Ti would have to wait for Tj to complete, so its read and write sets are completely
known. Using ValidationTS avoids this problem.

18.7 Multiversion Schemes

The concurrency-control schemes discussed thus far ensure serializability by either de-
laying an operation or aborting the transaction that issued the operation. For example,
a read operation may be delayed because the appropriate value has not been written
yet; or it may be rejected (that is, the issuing transaction must be aborted) because
the value that it was supposed to read has already been overwritten. These difficulties
could be avoided if old copies of each data item were kept in a system.

In multiversion concurrency-control schemes, each write(Q) operation creates a
new version of Q. When a transaction issues a read(Q) operation, the concurrency-
control manager selects one of the versions of Q to be read. The concurrency-control
scheme must ensure that the version to be read is selected in a manner that ensures
serializability. It is also crucial, for performance reasons, that a transaction be able to
determine easily and quickly which version of the data item should be read.
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18.7.1 Multiversion Timestamp Ordering

The timestamp-ordering protocol can be extended to a multiversion protocol. With
each transaction Ti in the system, we associate a unique static timestamp, denoted
by TS(Ti). The database system assigns this timestamp before the transaction starts
execution, as described in Section 18.5.

With each data item Q, a sequence of versions <Q1, Q2,… , Qm> is associated.
Each version Qk contains three data fields:

1. Content is the value of version Qk.

2. W-timestamp(Qk) is the timestamp of the transaction that created version Qk.

3. R-timestamp(Qk) is the largest timestamp of any transaction that successfully read
version Qk.

A transaction—say, Ti—creates a new version Qk of data item Q by issuing awrite(Q)
operation. The content field of the version holds the value written by Ti. The system
initializes the W-timestamp and R-timestamp to TS(Ti). It updates the R-timestamp
value of Qk whenever a transaction Tj reads the content of Qk and R-timestamp(Qk) <
TS(Tj).

The multiversion timestamp-ordering scheme presented next ensures serializabil-
ity. The scheme operates as follows: Suppose that transaction Ti issues a read(Q) or
write(Q) operation. Let Qk denote the version of Q whose write timestamp is the largest
write timestamp less than or equal to TS(Ti).

1. If transaction Ti issues a read(Q), then the value returned is the content of ver-
sion Qk.

2. If transaction Ti issues write(Q), and if TS(Ti) < R-timestamp(Qk), then
the system rolls back transaction Ti. On the other hand, if TS(Ti) = W-
timestamp(Qk), the system overwrites the contents of Qk; otherwise (if TS(Ti)
> R-timestamp(Qk)), it creates a new version of Q.

The justification for rule 1 is clear. A transaction reads the most recent version
that comes before it in time. The second rule forces a transaction to abort if it is “too
late” in doing a write. More precisely, if Ti attempts to write a version that some other
transaction would have read, then we cannot allow that write to succeed.

The valid interval of a version Qi of Q with W-timestamp t is defined as follows: if
Qi is the latest version of Q, the interval is [t,∞]; otherwise let the next version of Q
have timestamp s; then the valid interval is [t, s). You can easily verify that reads by
a transaction with timestamp ti return the content of the version whose valid interval
contains ti.

Versions that are no longer needed are removed according to the following rule:
Suppose that there are two versions, Qk and Qj, of a data item, and that both versions
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have a W-timestamp less than the timestamp of the oldest transaction in the system.
Then, the older of the two versions Qk and Qj will not be used again, and can be deleted.

The multiversion timestamp-ordering scheme has the desirable property that a read
request never fails and is never made to wait. In typical database systems, where reading
is a more frequent operation than is writing, this advantage may be of major practical
significance.

The scheme, however, suffers from two undesirable properties. First, the reading of
a data item also requires the updating of the R-timestamp field, resulting in two potential
disk accesses, rather than one. Second, the conflicts between transactions are resolved
through rollbacks, rather than through waits. This alternative may be expensive. Section
18.7.2 describes an algorithm to alleviate this problem.

This multiversion timestamp-ordering scheme does not ensure recoverability and
cascadelessness. It can be extended in the same manner as the basic timestamp-
ordering scheme to make it recoverable and cascadeless.

18.7.2 Multiversion Two-Phase Locking

The multiversion two-phase locking protocol attempts to combine the advantages of mul-
tiversion concurrency control with the advantages of two-phase locking. This protocol
differentiates between read-only transactions and update transactions.

Update transactions perform rigorous two-phase locking; that is, they hold all locks
up to the end of the transaction. Thus, they can be serialized according to their commit
order. Each version of a data item has a single timestamp. The timestamp in this case
is not a real clock-based timestamp, but rather is a counter, which we will call the ts-
counter, that is incremented during commit processing.

The database system assigns read-only transactions a timestamp by reading the
current value of ts-counter before they start execution; they follow the multiversion
timestamp-ordering protocol for performing reads. Thus, when a read-only transaction
Ti issues a read(Q), the value returned is the contents of the version whose timestamp
is the largest timestamp less than or equal to TS(Ti).

When an update transaction reads an item, it gets a shared lock on the item and
reads the latest version of that item. When an update transaction wants to write an
item, it first gets an exclusive lock on the item and then creates a new version of the
data item. The write is performed on the new version, and the timestamp of the new
version is initially set to a value ∞, a value greater than that of any possible timestamp.

When the update transaction Ti completes its actions, it carries out commit pro-
cessing; only one update transaction is allowed to perform commit processing at a time.
First, Ti sets the timestamp on every version it has created to 1 more than the value of
ts-counter; then, Ti increments ts-counter by 1, and commits.

Read-only transactions see the old value of ts-counter until Ti has successfully
committed. As a result, read-only transactions that start after Ti commits will see the
values updated by Ti, whereas those that start before Ti commits will see the value
before the updates by Ti. In either case, read-only transactions never need to wait for
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Note 18.2 MULTIVERSIONING AND DATABASE IMPLEMENTATION

Consider a database system that implements a primary key constraint by ensuring
that only one tuple exists for any value of the primary key attribute. The creation
of a second version of the record with the same primary key would appear to be a
violation of the primary key constraint. However, it is logically not a violation, since
the two versions do not coexist at any time in the database. Therefore, primary
constraint enforcement must be modified to allow multiple records with the same
primary key, as long as they are different versions of the same record.

Next, consider the issue of deletion of tuples. This can be implemented by
creating a new version of the tuple, with timestamps created as usual, but with a
special marker denoting that the tuple has been deleted. Transactions that read
such a tuple simply skip it, since it has been deleted.

Further, consider the issue of enforcing foreign-key dependencies. Consider
the case of a relation r whose attribute r.B is a foreign-key referencing attribute
s.B of relation s. In general, deletion of a tuple ts in s or update of a primary key
attribute of tuple ts in s causes a foreign-key violation if there is an r tuple tr such that
tr.B = ts.B. With multiversioning, if the timestamp of the transaction performing
the deletion/update is tsi, the corresponding condition for violation is the existence
of such a tuple version tr, with the additional condition that the valid interval of tr
contains tsi.

Finally, consider the case of an index on attribute r.B of relation r. If there are
multiple versions of a record ti with the same value for B, the index could point to
the latest version of the record, and the latest version could have pointers to earlier
versions. However, if an update was made to attribute ti.B, the index would need
to contain separate entries for different versions of record ti; one entry for the old
value of ti.B and another for the new value of ti.B. When old versions of a record
are deleted, any entry in the index for the old version must also be deleted.

locks. Multiversion two-phase locking also ensures that schedules are recoverable and
cascadeless.

Versions are deleted in a manner like that of multiversion timestamp ordering.
Suppose there are two versions, Qk and Qj, of a data item, and that both versions have
a timestamp less than or equal to the timestamp of the oldest read-only transaction in
the system. Then, the older of the two versions Qk and Qj will not be used again and it
can be deleted.

18.8 Snapshot Isolation

Snapshot isolation is a particular type of concurrency-control scheme that has
gained wide acceptance in commercial and open-source systems, including Oracle,
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PostgreSQL, and SQL Server. We introduced snapshot isolation in Section 17.9.3. Here,
we take a more detailed look into how it works.

Conceptually, snapshot isolation involves giving a transaction a “snapshot” of the
database at the time when it begins its execution. It then operates on that snapshot
in complete isolation from concurrent transactions. The data values in the snapshot
consist only of values written by committed transactions. This isolation is ideal for
read-only transactions since they never wait and are never aborted by the concurrency
manager.

Transactions that update the database potentially have conflicts with other transac-
tions that update the database. Updates performed by a transaction must be validated
before the transaction is allowed to commit. We describe how validation is performed,
later in this section. Updates are kept in the transaction’s private workspace until the
transaction is validated, at which point the updates are written to the database.

When a transaction T is allowed to commit, the transition of T to the committed
state and the writing of all of the updates made by T to the database must be concep-
tually done as an atomic action so that any snapshot created for another transaction
either includes all updates by transaction T or none of them.

18.8.1 Multiversioning in Snapshot Isolation

To implement snapshot isolation, transactions are given two timestamps. The first
timestamp, StartTS(Ti), is the time at which transaction Ti started. The second times-
tamp, CommitTS(Ti) is the time when the transaction Ti requested validation.

Note that timestamps can be wall clock time, as long as no two transactions are
given the same timestamp, but they are usually assigned from a counter that is incre-
mented every time a transaction enters its validation phase.

Snapshot isolation is based on multiversioning, and each transaction that updates
a data item creates a version of the data item. Versions have only one timestamp, which
is the write timestamp, indicating when the version was created. The timestamp of a
version created by transaction Ti is set to CommitTS(Ti). (Since updates to the database
are also only made after validation of the transaction Ti, CommitTS(Ti) is available
when a version is created.)2

When a transaction Ti reads a data item, the latest version of the data item whose
timestamp is ≤ StartTS(Ti) is returned to Ti. Thus, Ti does not see the updates of
any transactions that committed after Ti started, while it does see the updates of all
transactions that commit before it started. As a result, Ti effectively sees a snapshot of
the database as of the time it started.3

2Many implementations create versions even before the transaction starts validation; since the version timestamp is
not available at this point, the timestamp is set to infinity initially, and is updated to the correct value at the time of
validation. Further optimizations are used in actual implementations, but we ignore them for simplicity.
3To efficiently find the correct version of a data item for a given timestamp, many implementations store not only
the timestamp when a version was created, but also the timestamp when the next version was created, which can
be considered an invalidation timestamp for that version; the version is valid between the creation and invalidation
timestamps. The current version of a data item has the invalidation timestamp set to infinity.
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18.8.2 Validation Steps for Update Transactions

Deciding whether or not to allow an update transaction to commit requires some care.
Potentially, two transactions running concurrently might both update the same data
item. Since these two transactions operate in isolation using their own private snap-
shots, neither transaction sees the update made by the other. If both transactions are
allowed to write to the database, the first update written will be overwritten by the
second. The result is a lost update. This must be prevented. There are two variants of
snapshot isolation, both of which prevent lost updates. They are called first committer
wins and first updater wins. Both approaches are based on testing the transaction against
concurrent transactions.

A transaction Tj is said to be concurrent with a given transaction Ti if it was active
or partially committed at any point from the start of T up to the point when validation
of Ti started. Formally, Tj is concurrent with Ti if either

StartTS(Tj) ≤ StartTS(Ti) ≤ CommitTS(Tj), or
StartTS(Ti) ≤ StartTS(Tj) ≤ CommitTS(Ti).

Under first committer wins, when a transaction Ti starts validation, the following
actions are performed as part of validation, after its CommitTS is assigned. (We assume
for simplicity that only one transaction performs validation at a time, although real
implementations do support concurrent validation.)

• A test is made to see if any transaction that was concurrent with T has already
written an update to the database for some data item that T intends to write.
This can be done by checking for each data item d that Ti intends to write, whether
there is a version of the data item d whose timestamp is between StartTS(Ti) and
CommitTS(Ti).

4

• If any such data item is found, then Ti aborts.

• If no such data item is found, then T commits and its updates are written to the
database.

This approach is called “first committer wins” because if transactions conflict, the first
one to be tested using the above rule succeeds in writing its updates, while the subse-
quent ones are forced to abort. Details of how to implement these tests are addressed
in Exercise 18.15.

Under first updater wins, the system uses a locking mechanism that applies only to
updates (reads are unaffected by this, since they do not obtain locks). When a trans-
action Ti attempts to update a data item, it requests a write lock on that data item. If
the lock is not held by a concurrent transaction, the following steps are taken after the
lock is acquired:

• If the item has been updated by any concurrent transaction, then Ti aborts.

4There are alternative implementations, based on keeping track of read and write sets for transactions.
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• Otherwise Ti may proceed with its execution, including possibly committing.

If, however, some other concurrent transaction Tj already holds a write lock on that
data item, then Ti cannot proceed, and the following rules are followed:

• Ti waits until Tj aborts or commits.

° If Tj aborts, then the lock is released and Ti can obtain the lock. After the lock
is acquired, the check for an update by a concurrent transaction is performed
as described earlier: Ti aborts if a concurrent transaction had updated the data
item, and it proceeds with its execution otherwise.

° If Tj commits, then Ti must abort.

Locks are released when the transaction commits or aborts.
This approach is called “first updater wins” because if transactions conflict, the first

one to obtain the lock is the one that is permitted to commit and perform its update.
Those that attempt the update later abort unless the first updater subsequently aborts
for some other reason. (As an alternative to waiting to see if the first updater Tj aborts,
a subsequent updater Ti can be aborted as soon as it finds that the write lock it wishes
to obtain is held by Tj.)

18.8.3 Serializability Issues and Solutions

Snapshot isolation is attractive in practice because transactions that read a lot of data
(typically for data analysis) do not interfere with shorter update transactions (typi-
cally used for transaction processing). With two-phase locking, such long read-only
transactions would block update transactions for long periods of time, which is often
unacceptable.

It is worth noting that integrity constraints that are enforced by the database, such
as primary-key and foreign-key constraints, cannot be checked on a snapshot; other-
wise it would be possible for two concurrent transactions to insert two tuples with the
same primary key value, or for a transaction to insert a foreign key value that is con-
currently deleted from the referenced table. This problem is handled by checking these
constraints on the current state of the database, rather than on the snapshot, as part
of validation at the time of commit.

Even with the above fix, there is still a serious problem with the snapshot isolation
scheme as we have presented it and as it is implemented in practice: snapshot isolation
does not ensure serializability!

Next we give examples of possible nonserializable executions under snapshot iso-
lation. We then outline the serializable snapshot isolation technique that is supported
by some databases, which extends the snapshot isolation technique to ensure serializ-
ability. Snapshot isolation implementations that do not support serializable snapshot
isolation often support SQL extensions that allow the programmer to ensure serializ-
ability even with snapshot isolation; we study these extensions at the end of the section.
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Ti Tj

read(A)
read(B)

read(A)
read(B)

A=B
B=A

write(A)
write(B)

Figure 18.20 Nonserializable schedule under snapshot isolation.

• Consider the transaction schedule shown in Figure 18.20. Two concurrent trans-
actions Ti and Tj both read data items A and B. Ti sets A = B and writes A, while Tj
sets B = A and writes B. Since Ti and Tj are concurrent, under snapshot isolation
neither transaction sees the update by the other in its snapshot. But, since they
update different data items, both are allowed to commit regardless of whether the
system uses the first-update-wins policy or the first-committer-wins policy.

However, the execution is not serializable, since it results in swapping of the
values of A and B, whereas any serializable schedule would set both A and B to the
same value: either the initial value of A or the initial value of B, depending on the
order of Ti and Tj.

It can be easily seen that the precedence graph has a cycle. There is an edge
in the precedence graph from Ti to Tj because Ti reads the value of A that existed
before Tj writes A. There is also an edge in the precedence graph from Tj to Ti
because Tj reads the value of B that existed before Ti writes B. Since there is a
cycle in the precedence graph, the result is a nonserializable schedule.

This situation, where each of a pair of transactions has read a data item that is
written by the other, but the set of data items written by the two transactions do
not have any data item in common, is referred to as write skew.

• As another example of write skew, consider a banking scenario. Suppose that the
bank enforces the integrity constraint that the sum of the balances in the checking
and the savings account of a customer must not be negative. Suppose the checking
and savings balances for a customer are $100 and $200, respectively. Suppose that
transaction T36 withdraws $200 from the checking account, after verifying the in-
tegrity constraint by reading both balances. Suppose that concurrently transaction
T37 withdraws $200 from the savings account, again after verifying the integrity
constraint. Since each of the transactions checks the integrity constraint on its
own snapshot, if they run concurrently each will believe that the sum of the bal-
ances after the withdrawal is $100, and therefore its withdrawal does not violate
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the constraint. Since the two transactions update different data items, they do not
have any update conflict, and under snapshot isolation both of them can commit.

Unfortunately, in the final state after both T36 and T37 have committed, the sum
of the balances is $100, violating the integrity constraint. Such a violation could
never have occurred in any serial execution of T36 and T37.

• Many financial applications create consecutive sequence numbers, for example to
number bills, by taking the maximum current bill number and adding 1 to the
value to get a new bill number. If two such transactions run concurrently, each
would see the same set of bills in its snapshot, and each would create a new bill
with the same number. Both transactions pass the validation tests for snapshot
isolation, since they do not update any tuple in common. However, the execution
is not serializable; the resultant database state cannot be obtained by any serial
execution of the two transactions. Creating two bills with the same number could
have serious legal implications.

The above problem is in fact an example of the phantom phenomenon, which
we saw in Section 18.4.3, since the insert performed by each transaction conflicts
with the read performed by the other transaction to find the maximum bill number,
but the conflict is not detected by snapshot isolation.5

The problems listed above seem to indicate that the snapshot isolation technique
is vulnerable to many serializability problems and should never be used. However, se-
rializability problems are relatively rare for two reasons:

1. The fact that the database must check integrity constraints at the time of com-
mit, and not on a snapshot, helps avoid inconsistencies in many situations. For
example, in the financial application example that we saw earlier, the bill number
would likely have been declared as a primary key. The database system would
detect the primary key violation outside the snapshot and roll back one of the
two transactions.

It was shown that primary key constraints ensured that all transactions in a
popular transaction processing benchmark, TPC-C, were free from nonserializ-
ability problems, when executed under snapshot isolation. This was viewed as an
indication that such problems are rare. However, they do occur occasionally, and
when they occur they must be dealt with.6

2. In many applications that are vulnerable to serializability problems, such as skew
writes, on some data items, the transactions conflict on other data items, ensuring

5The SQL standard uses the term phantom problem to refer to nonrepeatable predicate reads, leading some to claim that
snapshot isolation avoids the phantom problem; however, such a claim is not valid under our definition of phantom
conflict.
6For example, the problem of duplicate bill numbers actually occurred several times in a financial application in I.I.T.
Bombay, where (for reasons too complex to discuss here) the bill number was not a primary key, and it was detected
by financial auditors.
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such transactions cannot execute concurrently; as a result, the execution of such
transactions under snapshot isolation remains serializable.

Nonserializable may nevertheless occur with snapshot isolation. The impact of
nonserializable execution due to snapshot isolation is not very severe for many applica-
tions. For example, consider a university application that implements enrollment limits
for a course by counting the current enrollment before allowing registration. Snapshot
isolation could allow the class enrollment limit to be exceeded. However, this may hap-
pen very rarely, and if it does, having one extra student in a class is usually not a major
problem. The fact that snapshot isolation allows long read transactions to execute with-
out blocking updaters is a large enough benefit for many such applications to live with
occasional glitches.

Nonserializability may not be acceptable for many other applications, such as fi-
nancial applications. There are several possible solutions.

• A modified form of snapshot isolation, called serializable snapshot isolation, can
be used if it is supported by the database system. This technique extends the snap-
shot isolation technique in a way that ensures serializability.

• Some systems allow different transactions to run under different isolation levels,
which can be used to avoid the serializability problems mentioned above.

• Some systems that support snapshot isolation provide a way for SQL programmers
to create artificial conflicts, using a for update clause in SQL, which can be used to
ensure serializability.

We briefly outline each of these solutions below.
Since version 9.1, PostgreSQL implements a technique called serializable snapshot

isolation, which ensures serializability; in addition, PostgreSQL versions from 9.1 on-
wards include an index-locking-based technique to provide protection against phantom
problems.

The intuition behind the serializable snapshot isolation (SSI) protocol is as follows:
Suppose we track all conflicts (i.e., write-write, read-write, and write-read conflicts)
between transactions. Recall from Section 17.6 that we can construct a transaction
precedence graph which has a directed edge from T1 to T2 if transactions T1 and T2
have conflicting operations on a tuple, with T1’s action preceding T2’s action. As we saw
in Section 17.6, one way to ensure serializability is to look for cycles in the transaction
precedence graph and roll back transactions if a cycle is found.

The key reason for loss of serializability with snapshot isolation is that read-write
conflicts, where a transaction T1 writes a version of an object, and a transaction T2 sub-
sequently reads an earlier version of the object, are not tracked by snapshot isolation.
This conflict can be represented by a read-write conflict edge from T2 to T1.

It has been shown that in all cases where snapshot isolation allows nonserializable
schedules, there must be a transaction that has both an incoming read-write conflict
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edge and an outgoing read-write conflict edge (all other cases of cycles in the conflict
graph are caught by the snapshot isolation rules). Thus, serializable snapshot isolation
implementations track all read-write conflicts between concurrent transactions to de-
tect if a transaction has both an incoming and an outgoing read-write conflict edge. If
such a situation is detected, one of the transactions involved in the read-write conflicts
is rolled back. This check is significantly cheaper than tracking all conflicts and looking
for cycles, although it may result in some unnecessary rollbacks.

It is also worth mentioning that the technique used by PostgreSQL to prevent phan-
toms uses index locking, but the locks are not held in a two-phase manner. Instead, they
are used to detect potential conflicts between concurrent transactions and must be re-
tained for some time even after a transaction commits, to allow checks against other
concurrent transactions. The index-locking technique used by PostgreSQL also does
not result in any deadlocks.

SQL Server offers the option of allowing some transactions to run under snapshot
isolation, while allowing others to run under the serializable isolation level. Running
long read-only transactions under the snapshot isolation level while running update
transactions under the serializable isolation level ensures that the read-only transaction
does not block updaters, while also ensuring that the above anomalies cannot occur.

In Oracle versions till at least Oracle 12c (to the best of our knowledge), and in
PostgreSQL versions prior to 9.1, the serializable isolation level actually implements
snapshot isolation. As a result, even with the isolation level set to serializable, it is
possible that the database permits some schedules that are not serializable.

If an application has to run under snapshot isolation, on several of these databases
an application developer can guard against certain snapshot anomalies by appending
a for update clause to the SQL select query as illustrated below:

select *
from instructor
where ID = 22222
for update;

Adding the for update clause causes the system to treat data that are read as if they
had been updated for purposes of concurrency control. In our first example of write
skew shown in Figure 18.20, if the for update clause were appended to the select queries
that read the values of A and B, only one of the two concurrent transactions would be
allowed to commit since it appears that both transactions have updated both A and B.

Formal methods exist (see the online bibliographical notes) to determine whether
a given mix of transactions runs the risk of nonserializable execution under snapshot
isolation and to decide on what conflicts to introduce (using the for update clause, for
example) to ensure serializability. Such methods can work only if we know in advance
what transactions are being executed. In some applications, all transactions are from a
predetermined set of transactions, making this analysis possible. However, if the appli-
cation allows unrestricted, ad hoc transactions, then no such analysis is possible.
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18.9 Weak Levels of Consistency in Practice

In Section 17.8, we discussed the isolation levels specified by the SQL standard: seri-
alizable, repeatable read, read committed, and read uncommitted. In this section, we
first briefly outline some older terminology relating to consistency levels weaker than
serializability and relate it to the SQL standard levels. We then discuss the issue of con-
currency control for transactions that involve user interaction, an issue that we briefly
discussed in Section 17.8.

18.9.1 Degree-Two Consistency

The purpose of degree-two consistency is to avoid cascading aborts without necessarily
ensuring serializability. The locking protocol for degree-two consistency uses the same
two lock modes that we used for the two-phase locking protocol: shared (S) and exclu-
sive (X). A transaction must hold the appropriate lock mode when it accesses a data
item, but two-phase behavior is not required.

In contrast to the situation in two-phase locking, S-locks may be released at any
time, and locks may be acquired at any time. Exclusive locks, however, cannot be re-
leased until the transaction either commits or aborts. Serializability is not ensured by
this protocol. Indeed, a transaction may read the same data item twice and obtain dif-
ferent results. In Figure 18.21, T32 reads the value of Q before that value is written by
T33, and again after it is written by T33.

Reads are not repeatable, but since exclusive locks are held until transaction com-
mit, no transaction can read an uncommitted value. Thus, degree-two consistency is
one particular implementation of the read-committed isolation level.

It is interesting to note that with degree-two consistency, a transaction that is scan-
ning an index may potentially see two versions of a record that was updated while
the scan was in progress and may also potentially see neither version! For example,

T32 T33

lock-S(Q)
read(Q)
unlock(Q)

lock-X(Q)
read(Q)
write(Q)
unlock(Q)

lock-S(Q)
read(Q)
unlock(Q)

Figure 18.21 Nonserializable schedule with degree-two consistency.
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consider a relation r(A, B, C), with primary key A, with an index on attribute B. Now
consider a query that is scanning the relation r using the index on attribute B, using
degree-two consistency. Suppose there is a concurrent update to a tuple t1 ∈ r that
updates attribute t1.B from v1 to v2. Such an update requires deletion of an entry corre-
sponding to value v1 from the index and insertion of a new entry corresponding to v2.
Now, the scan of r could possibly scan the index node corresponding to v1 after the old
tuple is deleted there but visit the index node corresponding to v2 before the updated
tuple is inserted in that node. Then, the scan would completely miss the tuple, even
though it should have seen either the old value or the new value of t1. Further, a scan
using degree-two consistency could possibly visit the node corresponding to v1 before
the delete, and the node corresponding to v2 after the insert, and thereby see two ver-
sions of t1, one from before the update and one from after the update. (This problem
would not arise if the scan and the update both used two-phase locking.)

18.9.2 Cursor Stability

Cursor stability is a form of degree-two consistency designed for programs that iterate
over tuples of a relation by using cursors. Instead of locking the entire relation, cursor
stability ensures that:

• The tuple that is currently being processed by the iteration is locked in shared
mode. Once the tuple is processed, the lock on the tuple can be released.

• Any modified tuples are locked in exclusive mode until the transaction commits.

These rules ensure that degree-two consistency is obtained. But locking is not done
in a two-phase manner, and serializability is not guaranteed. Cursor stability is used
in practice on heavily accessed relations as a means of increasing concurrency and
improving system performance. Applications that use cursor stability must be coded
in a way that ensures database consistency despite the possibility of nonserializable
schedules. Thus, the use of cursor stability is limited to specialized situations with
simple consistency constraints.

When supported by the database, snapshot isolation is a better alternative to
degree-two consistency as well as cursor stability, since it offers a similar or even better
level of concurrency while reducing the risk of nonserializable executions.

18.9.3 Concurrency Control Across User Interactions

Concurrency-control protocols usually consider transactions that do not involve user
interaction. Consider the airline seat selection example from Section 17.8, which in-
volved user interaction. Suppose we treat all the steps from when the seat availability is
initially shown to the user, until the seat selection is confirmed, as a single transaction.

If two-phase locking is used, the entire set of seats on a flight would be locked in
shared mode until the user has completed the seat selection, and no other transaction
would be able to update the seat allocation information in this period. Such locking
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would be a very bad idea since a user may take a long time to make a selection, or even
just abandon the transaction without explicitly cancelling it. Timestamp protocols or
validation could be used instead, which avoid the problem of locking, but both these
protocols would abort the transaction for a user A if any other user B has updated the
seat allocation information, even if the seat selected by B does not conflict with the
seat selected by user A. Snapshot isolation is a good option in this situation, since it
would not abort the transaction of user A as long as B did not select the same seat as
A.

However, snapshot isolation requires the database to remember information about
updates performed by a transaction even after it has committed, as long as any other
concurrent transaction is still active, which can be problematic for long-duration trans-
actions.

Another option is to split a transaction that involves user interaction into two or
more transactions, such that no transaction spans a user interaction. If our seat se-
lection transaction is split thus, the first transaction would read the seat availability,
while the second transaction would complete the allocation of the selected seat. If the
second transaction is written carelessly, it could assign the selected seat to the user,
without checking if the seat was meanwhile assigned to some other user, resulting in
a lost-update problem. To avoid the problem, as we outlined in Section 17.8, the sec-
ond transaction should perform the seat allocation only if the seat was not meanwhile
assigned to some other user.

The above idea has been generalized in an alternative concurrency control scheme,
which uses version numbers stored in tuples to avoid lost updates. The schema of each
relation is altered by adding an extra version number attribute, which is initialized to 0
when the tuple is created. When a transaction reads (for the first time) a tuple that it
intends to update, it remembers the version number of that tuple. The read is performed
as a stand-alone transaction on the database, and hence any locks that may be obtained
are released immediately. Updates are done locally and copied to the database as part
of commit processing, using the following steps which are executed atomically (i.e., as
part of a single database transaction):

• For each updated tuple, the transaction checks if the current version number is the
same as the version number of the tuple when it was first read by the transaction.

1. If the version numbers match, the update is performed on the tuple in the
database, and its version number is incremented by 1.

2. If the version numbers do not match, the transaction is aborted, rolling back
all the updates it performed.

• If the version number check succeeds for all updated tuples, the transaction com-
mits. It is worth noting that a timestamp could be used instead of the version
number without impacting the scheme in any way.
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Observe the close similarity between the preceding scheme and snapshot isolation.
The version number check implements the first-committer-wins rule used in snapshot
isolation, and it can be used even if the transaction was active for a very long time.
However, unlike snapshot isolation, the reads performed by a transaction may not cor-
respond to a snapshot of the database; and unlike the validation-based protocol, reads
performed by the transaction are not validated.

We refer to the above scheme as optimistic concurrency control without read valida-
tion. Optimistic concurrency control without read validation provides a weak level of
serializability, and it does not ensure serializability. A variant of this scheme uses ver-
sion numbers to validate reads at the time of commit, in addition to validating writes,
to ensure that the tuples read by the transaction were not updated subsequent to the
initial read; this scheme is equivalent to the optimistic concurrency-control scheme
which we saw earlier.

This scheme has been widely used by application developers to handle transac-
tions that involve user interaction. An attractive feature of the scheme is that it can
be implemented easily on top of a database system. The validation and update steps
performed as part of commit processing are then executed as a single transaction in
the database, using the concurrency-control scheme of the database to ensure atomic-
ity for commit processing. The scheme is also used by the Hibernate object-relational
mapping system (Section 9.6.2), and other object-relational mapping systems, where
it is referred to as optimistic concurrency control (even though reads are not validated
by default). Hibernate and other object-relational mapping systems therefore perform
the version number checks transparently as part of commit processing. (Transactions
that involve user interaction are called conversations in Hibernate to differentiate them
from regular transactions; validation using version numbers is particularly useful for
such transactions.)

Application developers must, however, be aware of the potential for non-
serializable execution, and they must restrict their usage of the scheme to applications
where non-serializability does not cause serious problems.

18.10 Advanced Topics in Concurrency Control

Instead of using two-phase locking, special-purpose concurrency control techniques
can be used for index structures, resulting in improved concurrency. When using main-
memory databases, conversely, index concurrency control can be simplified. Further,
concurrency control actions often become bottlenecks in main-memory databases, and
techniques such as latch-free data structures have been designed to reduce concurrency
control overheads. Instead of detecting conflicts at the level of reads and writes, it is pos-
sible to consider operations, such as increment of a counter, as basic operations, and
perform concurrency control on the basis of conflicts between operations. Certain ap-
plications require guarantees on transaction completion time. Specialized concurrency
control techniques have been developed for such applications.
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18.10.1 Online Index Creation

When we are dealing with large volumes of data (ranging in the terabytes), operations
such as creating an index can take a long time—perhaps hours or even days. When
the operation finishes, the index contents must be consistent with the contents of the
relation, and all further updates to the relation must maintain the index.

One way of ensuring that the data and the index are consistent is to block all up-
dates to the relation while the index is created, for example by getting a shared lock on
the relation. After the index is created, and the relation metadata are updated to reflect
the existence of the index locks can be released. Subsequent update transactions will
find the index, and carry out index maintenance as part of the transaction.

However, the above approach would make the system unavailable for updates to
the relation for a very long time, which is unacceptable. Instead, most database systems
support online index creation, which allows relation updates to occur even as the index
is being created. Online index creation can be carried out as follows:

1. Index creation gets a snapshot of the relation and uses it to create the index; mean-
while, the system logs all updates to the relation that happen after the snapshot
is created.

2. When the index on the snapshot data is complete, it is not yet ready for use, since
subsequent updates are missing. At this point, the log of updates to the relation is
used to update the index. But while the index update is being carried out, further
updates may be happening on the relation.

3. The index update then obtains a shared lock on the relation to prevent further
updates and applies all remaining updates to the index. At this point, the index
is consistent with the contents of the relation. The relation metadata are then
updated to indicate the existence of the new index. Subsequently all locks are
released.
Any transaction that executes after this will see the existence of the index; if the
transaction updates the relation, it will also update the index.

Creation of materialized views that are maintained immediately, as part of the
transaction that updates any of the relations used in the view, can also benefit from on-
line construction techniques that are similar to online index construction. The query
defining the view is executed on a snapshot of the participating relations, and subse-
quent updates are logged. The updates are applied to the materialized view, with a final
phase of locking and catching up similar to the case of online index creation.

Schema changes such as adding or deleting attributes or constraints can also have
a significant impact if relations are locked while the schema change is implemented on
all tuples.

• For adding or deleting attributes, a version number can be kept with each tuple,
and tuples can be updated in the background, or whenever they are accessed; the
version number is used to determine if the schema change has already been applied
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to the tuple, and the schema change is applied to the tuple if it has not already been
applied.

• Adding of constraints requires that existing data must be checked to ensure that
the constraint is satisfied. For example, adding a primary or unique key constraint
on an attribute ID requires checking of existing tuples to ensure that no two tuples
have the same ID value. Online addition of such constraints is done in a manner
similar to online index construction, by checking the constraints on a relation
snapshot, while keeping a log of updates that occur after the snapshot. The updates
in the log must then be checked to ensure that they do not violate the constraint. In
a final catch-up phase, the constraint is checked on any remaining updates in the
log and added to the relation metadata while holding a shared lock on the relation.

18.10.2 Concurrency in Index Structures

It is possible to treat access to index structures like any other database structure and to
apply the concurrency-control techniques discussed earlier. However, since indices are
accessed frequently, they would become a point of great lock contention, leading to a
low degree of concurrency. Luckily, indices do not have to be treated like other database
structures; it is desirable to release index locks early, in a non-two-phase manner, to
maximize concurrency. In fact, it is perfectly acceptable for a transaction to perform
a lookup on an index twice and to find that the structure of the index has changed
in between, as long as the index lookup returns the correct set of tuples. Informally,
it is acceptable to have nonserializable concurrent access to an index, as long as the
accuracy of the index is maintained; we formalize this notion next.

Operation serializability for index operations is defined as follows: A concurrent
execution of index operations on an index is said to be serializable if there is a se-
rialization order of the operations that is consistent with the results that each index
operation in the concurrent execution sees, as well as with the final state of the index
after all the operations have been executed. Index concurrency control techniques must
ensure that any concurrent execution of index operations is serializable.

We outline two techniques for managing concurrent access to B+-trees as well as
an index-concurrency control technique to prevent the phantom phenomenon. The on-
line bibliographical notes reference other techniques for B+-trees as well as techniques
for other index structures. The techniques that we present for concurrency control on
B+-trees are based on locking, but neither two-phase locking nor the tree protocol is
employed. The algorithms for lookup, insertion, and deletion are those used in Chapter
14, with only minor modifications.

The first technique is called the crabbing protocol:

• When searching for a key value, the crabbing protocol first locks the root node in
shared mode. When traversing down the tree, it acquires a shared lock on the child
node to be traversed further. After acquiring the lock on the child node, it releases
the lock on the parent node. It repeats this process until it reaches a leaf node.
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• When inserting or deleting a key value, the crabbing protocol takes these actions:

° It follows the same protocol as for searching until it reaches the desired leaf
node. Up to this point, it obtains (and releases) only shared locks.

° It locks the leaf node in exclusive mode and inserts or deletes the key value.

° If it needs to split a node or coalesce it with its siblings, or redistribute key
values between siblings, the crabbing protocol locks the parent of the node in
exclusive mode. After performing these actions, it releases the locks on the
node and siblings.

If the parent requires splitting, coalescing, or redistribution of key values,
the protocol retains the lock on the parent, and splitting, coalescing, or redistri-
bution propagates further in the same manner. Otherwise, it releases the lock
on the parent.

The protocol gets its name from the way in which crabs advance by moving side-
ways, moving the legs on one side, then the legs on the other, and so on alternately.
The progress of locking while the protocol both goes down the tree and goes back up
(in case of splits, coalescing, or redistribution) proceeds in a similar crab-like manner.

Once a particular operation releases a lock on a node, other operations can access
that node. There is a possibility of deadlocks between search operations coming down
the tree, and splits, coalescing, or redistribution propagating up the tree. The system
can easily handle such deadlocks by restarting the search operation from the root, after
releasing the locks held by the operation.

Locks that are held for a short duration, instead of being held in a two-phase man-
ner, are often referred to as latches. Latches are used internally in databases to achieve
mutual exclusion on shared data structures. In the above case, locks are held in a way
that does not ensure mutual exclusion during an insert or delete operation, yet the
resultant execution of index operations is serializable.

The second technique achieves even more concurrency, avoiding even holding the
lock on one node while acquiring the lock on another node; thereby, deadlocks are
avoided, and concurrency is increased. This technique uses a modified version of B+-
trees called B-link trees; B-link trees require that every node (including internal nodes,
not just the leaves) maintain a pointer to its right sibling. This pointer is required be-
cause a lookup that occurs while a node is being split may have to search not only that
node but also that node’s right.

Unlike the crabbing protocol, the B-link-tree locking protocol holds locks on only
one internal node at a time. The protocol releases the lock on the current internal
node before requesting a lock on a child node (when traversing downwards), or on a
parent node (while traversing upwards during a split or merge). Doing so can result in
anomalies: for example, between the time the lock on a node is released and the lock
on a parent is requested, a concurrent insert or delete on a sibling may cause a split
or merge on the parent, and the original parent node may no longer be a parent of the
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child node when it is locked. The protocol detects and handles such situations, ensuring
operation serializability while avoiding deadlocks between operations and increasing
concurrency compared to the crabbing protocol.

The phantom phenomenon, where conflicts between a predicate read and an insert
or update are not detected, can allow nonserializable executions to occur. The index-
locking technique, which we saw in Section 18.4.3, prevents the phantom phenomenon
by locking index leaf nodes in a two-phase manner. Instead of locking an entire index
leaf node, some index concurrency-control schemes use key-value locking on individual
key values, allowing other key values to be inserted or deleted from the same leaf. Key-
value locking thus provides increased concurrency.

Using key-value locking näıvely, however, would allow the phantom phenomenon
to occur; to prevent the phantom phenomenon, the next-key locking technique is used.
In this technique, every index lookup must lock not only the keys found within the
range (or the single key, in case of a point lookup) but also the next-key value—that is,
the key value just greater than the last key value that was within the range. Also, every
insert must lock not only the value that is inserted, but also the next-key value. Thus, if
a transaction attempts to insert a value that was within the range of the index lookup
of another transaction, the two transactions would conflict on the key value next to
the inserted key value. Similarly, deletes must also lock the next-key value to the value
being deleted to ensure that conflicts with subsequent range lookups of other queries
are detected.

18.10.3 Concurrency Control in Main-Memory Databases

With data stored on hard disk, the cost of I/O operations often dominates the cost of
transaction processing. When disk I/O is the bottleneck cost in a system, there is little
benefit from optimizing other smaller costs, such as the cost of concurrency control.
However, in a main-memory database, with disk I/O no longer the bottleneck, systems
benefit from reducing other costs, such as query processing costs, as we saw in Section
15.8; we now consider how to reduce the cost of concurrency control in main-memory
databases.

As we saw in Section 18.10.2, concurrency-control techniques for operations on
disk-based index structures acquire locks on individual nodes, to increase the potential
for concurrent access to the index. However, such locking comes at the increased cost
of acquiring the locks. In a main-memory database, where data are in memory, index
operations take very little time for execution. Thus, it may be acceptable to perform
locking at a coarse granularity: for example, the entire index could be locked using a
single latch (i.e., short duration lock), the operation performed, and the latch released.
The reduced overhead of locking has been found to make up for the slightly reduced
concurrency, and to improve overall performance.

There is another way to improve performance with in-memory indices, using
atomic instructions to carry out index updates without acquiring any latches at all.



888 Chapter 18 Concurrency Control

insert(value, head) {
node = new node
node−>value = value
node−>next = head
head = node

}

Figure 18.22 Insertion code that is unsafe with concurrent inserts.

Data structures implementations that support concurrent operations without requir-
ing latches are called latch-free data structure implementations.

Consider a linked list, where each node has a value value and a next pointer, and
the head of the linked list is stored in the variable head. The function insert() shown in
Figure 18.22 would work correctly to insert a node at the head of the list, if there are
no concurrent invocations of the code for the same list.7

However, if two processes execute the insert() function concurrently on the same
list, it is possible that both of them would read the same value of variable head, and
then both would update the variable after that. The final result would contain one of
the two nodes being inserted, while the other node being inserted would be lost.

One way of preventing such a problem is to get an exclusive latch (short term lock)
on the linked list, perform the insert() function, and then release the latch. The insert()
function can be modified to acquire and release a latch on the list.

An alternative implementation, which is faster in practice, is to use an atomic
compare-and-swap() instruction, abbreviated to CAS, which works as follows: The in-
struction CAS(var, oldval, newval) takes three arguments: a variable var and two values,
oldval and newval. The instruction does the following atomically: check if the value of
var is equal to oldval, and if so, set var to newval, and return success. If the value is
not equal, it returns failure. The instruction is supported by most modern processor
architectures, and it executes very quickly.

The function insert latchfree(), shown in Figure 18.23 is a modification of insert()
that works correctly even with concurrent inserts on the same list, without obtaining
any latches. With this code, if two processes concurrently read the old value of head,
and then both execute the CAS instruction, one of them will find the CAS instruction
returning success, while the other one will find it returning failure since the value of
head changes between the time it is read and when the CAS instruction is executed.
The repeat loop then retries the insert using the new value of head, until it succeeds.

Function delete latchfree(), shown in Figure 18.23, similarly implements deletion
from the head of the list using the compare and swap instruction, without requiring
latches. (In this case, the list is used as a stack, since deletion occurs at the head of

7We assume all parameters are passed by reference.
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insert latchfree(head, value) {
node = new node
node−>value = value
repeat

oldhead = head
node−>next = oldhead
result = CAS(head, oldhead, node)

until (result == success)
}

delete latchfree(head) {
/* This function is not quite safe; see explanation in text. */
repeat

oldhead = head
newhead = oldhead−>next
result = CAS(head, oldhead, newhead)

until (result == success)
}

Figure 18.23 Latch-free insertion and deletion on a list.

the list.) However, it has a problem: it does not work correctly in some rare cases. The
problem can occur when a process P1 is performing a delete, with node n1 at the head
of the list, and concurrently a second process P2 deletes the first two elements, n1 and
n2, and then reinserts n1 at the head of the list, with some other element, say n3 as
the next element. If P1 read n1 before P2 deleted it, but performs the CAS after P2
has reinserted n1, the CAS operation of P1 will succeed, but set the head of the list
to point to n2, which has been deleted, leaving the list in an inconsistent state. This
problem is known as the ABA problem.

One solution is to keep a counter along with each pointer, which is incremented
every time the pointer is updated. The CAS instruction is applied on the (pointer,
counter) pair; most CAS implementations on 64 bit processors support such a double
compare-and-swap on 128 bits. The ABA problem can then be avoided since although
the reinsert of n1 would result in the head pointing to n1, the counter would be differ-
ent, resulting in the CAS operation of P1 failing. See the online solutions to Practice
Exercise 18.16 for more details of the ABA problem and the above solution. With such
a modification, both inserts and deletes can be executed concurrently without acquir-
ing latches. There are other solutions that do not require a double compare-and-swap,
but are more complicated.

Deletion from the tail of the list (to implement a queue) as well as more complex
data structures such as hash indices and search trees can also be implemented in a latch-
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free manner. It is best to use latch-free data structure implementations (more often
referred to as lock-free data structure implementations) that are provided by standard
libraries, such as the Boost library for C++, or the ConcurrentLinkedQueue class in
Java; do not build your own, since you may introduce bugs due to “race conditions”
between concurrent accesses, that can be very hard to detect or debug.

Since today’s multiprocessor CPUs have a large number of cores, latch-free imple-
mentations have been found to significantly outperform implementations that obtain
latches, in the context of in-memory indices and other in-memory data structures

18.10.4 Long-Duration Transactions

The transaction concept developed initially in the context of data-processing applica-
tions, in which most transactions are noninteractive and of short duration. Serious
problems arise when this concept is applied to database systems that involve human
interaction. Such transactions have these key properties:

• Long duration. Once a human interacts with an active transaction, that transaction
becomes a long-duration transaction from the perspective of the computer, since
human response time is slow relative to computer speed. Furthermore, in design
applications, the human activity may involve hours, days, or an even longer period.
Thus, transactions may be of long duration in human terms, as well as in machine
terms.

• Exposure of uncommitted data. Data generated and displayed to a user by a long-
duration transaction are uncommitted, since the transaction may abort. Thus,
users—and, as a result, other transactions—may be forced to read uncommitted
data. If several users are cooperating on a project, user transactions may need to
exchange data prior to transaction commit.

• Subtasks. An interactive transaction may consist of a set of subtasks initiated by
the user. The user may wish to abort a subtask without necessarily causing the
entire transaction to abort.

• Recoverability. It is unacceptable to abort a long-duration interactive transaction
because of a system crash. The active transaction must be recovered to a state that
existed shortly before the crash so that relatively little human work is lost.

• Performance. Good performance in an interactive transaction system is defined as
fast response time. This definition is in contrast to that in a noninteractive system,
in which high throughput (number of transactions per second) is the goal. Systems
with high throughput make efficient use of system resources. However, in the case
of interactive transactions, the most costly resource is the user. If the efficiency and
satisfaction of the user are to be optimized, response time should be fast (from a
human perspective). In those cases where a task takes a long time, response time
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T1 T2

read(A)
A := A − 50
write(A)

read(B)
B := B − 10
write(B)

read(B)
B := B + 50
write(B)

read(A)
A := A + 10
write(A)

Figure 18.24 A non-conflict-serializable schedule.

should be predictable (i.e., the variance in response times should be low) so that
users can manage their time well.

Snapshot isolation, described in Section 18.8, can provide a partial solution to
these issues, as can the optimistic concurrency control without read validation protocol
described in Section 18.9.3. The latter protocol was in fact designed specifically to
deal with long-duration transactions that involve user interaction. Although it does
not guarantee serializability, optimistic concurrency control without read validation is
quite widely used.

However, when transactions are of long duration, conflicting updates are more
likely, resulting in additional waits or aborts. These considerations are the basis for the
alternative concepts of correctness of concurrent executions and transaction recovery
that we consider in the remainder of this section.

18.10.5 Concurrency Control with Operations

Consider a bank database consisting of two accounts A and B, with the consistency
requirement that the sum A + B be preserved. Consider the schedule of Figure 18.24.
Although the schedule is not conflict serializable, it nevertheless preserves the sum of
A + B. It also illustrates two important points about the concept of correctness without
serializability.

1. Correctness depends on the specific consistency constraints for the database.

2. Correctness depends on the properties of operations performed by each transac-
tion.



892 Chapter 18 Concurrency Control

While two-phase locking ensures serializability, it can result in poor concurrency
in case a large number of transactions conflict on a particular data item. Timestamp
and validation protocols also have similar problems in this case.

Concurrency can be increased by treating some operations besides read and write
as fundamental low-level operations and to extend concurrency control to deal with
them.

Consider the case of materialized view maintenance, which we saw in Section
16.5.1. Suppose there is a relation sales(date, custID, itemID, amount), and a materi-
alized view daily sales total(date, total amount), that records total sales on each day.
Every sales transaction must update the materialized view as part of the transaction
if immediate view maintenance is used. With a high volume of sales, and every trans-
action updating the same record in the daily sales total relation, the degree of concur-
rency will be quite low if two-phase locking is used on the materialized view.

A better way to perform concurrency control for the materialized view is as follows:
Observe that each transaction increments a record in the daily sales total relation by
some value but does not need to see the value. It would make sense to have an operation
increment(v, n), that adds a value n to a variable v without making the value of v visible
to the transaction; we shall see shortly how this is implemented. In our sales example,
a transaction that inserts a sales tuple with amount n invokes the increment operation
with the first argument being the total amount value of the appropriate tuple in the
materialized view daily sales total, and the second argument being the value n.

The increment operation does not lock the variable in a two-phase manner; how-
ever, individual operations should be executed serially on the variable. Thus, if two
increment operations are initiated concurrently on the same variable, one must fin-
ish before the other is allowed to start. This can be ensured by acquiring an exclusive
latch (lock) on the variable v before starting the operation and releasing the latch after
the operation has finished its updates. Increment operations can also be implemented
using compare-and-swap operations, without getting latches.

Two transactions that invoke the increment operation should be allowed to execute
concurrently to avoid concurrency control bottlenecks. In fact, increment operations
executed by two transactions do not conflict with each other, since the final result is
the same regardless of the order in which the operations were executed. If one of the
transactions rolls back, the increment(v, n) operation must be rolled back by execut-
ing an operation increment(v,−n), which adds a negative of the original value; this
operation is referred to as a compensating operation.

However, if a transaction T wishes to read the materialized view, it clearly conflicts
with any concurrent transaction that has performed an increment operation; the value
that T reads depends on whether the other transaction is serialized before or after T .

We can define a locking protocol to handle the preceding situation by defining an
increment lock. The increment lock is compatible with itself but is not compatible with
shared and exclusive locks. Figure 18.25 shows a lock-compatibility matrix for three
lock modes: share mode, exclusive mode, and increment mode.
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Figure 18.25 Lock-compatibility matrix with increment lock mode.

As another example of special-purpose concurrency control for operations, con-
sider an insert operation on a B+-tree index which releases locks early, as we saw in
Section 18.10.2. In this case, there is no special lock mode, but holding locks on leaf
nodes in a two-phase manner (or using next-key locking) as we saw in Section 18.10.2
ensures serializability. The insert operation may have modified several nodes of the B+-
tree index. Other transactions may have read and updated these nodes further while
processing other operations. To roll back the insertion, we would have to delete the
record inserted by Ti; deletion is the compensating action for insertion. The result is a
correct, consistent B+-tree, but not necessarily one with exactly the same structure as
the one we had before Ti started.

While operation locking can be done in a way that ensures serializability, in some
cases it may even be used in a way that does not guarantee serializability, but where
violations may be acceptable. Consider the case of concert tickets, where every transac-
tion needs to access and update the total ticket sales. We can have an operation incre-
ment conditional(v, n) which increments v by n, provided the resultant value would be
≥ 0; the operation returns a status of success in case the resultant value is ≥ 0 and re-
turns failure otherwise. Consider a transaction Ti executed to purchase tickets. To book
three tickets, where variable avail tickets indicates the number of available tickets, the
transaction can execute increment conditional(avail tickets, −3). A return value of
success indicates that there were enough tickets available, and decrements the avail-
able tickets, while failure indicates insufficient availability of tickets.

If the variable avail tickets is locked in a two-phase manner, concurrency would be
very poor, with customers being forced to wait for bookings while an earlier transaction
commits, even when there are many tickets available. Concurrency can be greatly in-
creased by executing the increment conditional operation, without holding any locks
on avail tickets in a two-phase manner; instead, an exclusive lock is obtained on the
variable, the operation is performed, and the lock is then released.

The transaction Ti also needs to carry out other steps, such as collecting the pay-
ment; if one of the subsequent steps, such as payment, fails, the increment operation
must be rolled back by executing a compensating operation; if the original operation
added −n to avail tickets, the compensating operation adds +n to avail tickets.

It may appear that two increment conditional operations are compatible with
each other, similar to the increment operation that we saw earlier. But that is not
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the case. Consider two concurrent transactions to purchase a single ticket, and assume
that there is only one ticket left. The order in which the operations are executed has an
obvious impact on which one succeeds and which one fails. Nevertheless, many real-
world applications allow operations that hold short-term locks while they execute and
release them at the end of the operation to increase concurrency, even at the cost of
loss of serializability in some situations.

18.10.6 Real-Time Transaction Systems

In certain applications, the constraints include deadlines by which a task must be com-
pleted. Examples of such applications include plant management, traffic control, and
scheduling. When deadlines are included, correctness of an execution is no longer
solely an issue of database consistency. Rather, we are concerned with how many dead-
lines are missed, and by how much time they are missed. Deadlines are characterized
as follows:

• Hard deadline. Serious problems, such as system crash, may occur if a task is not
completed by its deadline.

• Firm deadline. The task has zero value if it is completed after the deadline.

• Soft deadlines. The task has diminishing value if it is completed after the deadline,
with the value approaching zero as the degree of lateness increases.

Systems with deadlines are called real-time systems.
Transaction management in real-time systems must take deadlines into account.

If the concurrency-control protocol determines that a transaction Ti must wait, it may
cause Ti to miss the deadline. In such cases, it may be preferable to pre-empt the trans-
action holding the lock, and to allow Ti to proceed. Pre-emption must be used with
care, however, because the time lost by the pre-empted transaction (due to rollback
and restart) may cause the pre-empted transaction to miss its deadline. Unfortunately,
it is difficult to determine whether rollback or waiting is preferable in a given situation.

Due to the unpredictable nature of delays when reading data from disk, main-
memory databases are often used if real-time constraints have to be met. However, even
if data are resident in main memory, variances in execution time arise from lock waits,
transaction aborts, and so on. Researchers have devoted considerable effort to concur-
rency control for real-time databases. They have extended locking protocols to provide
higher priority for transactions with early deadlines. They have found that optimistic
concurrency protocols perform well in real-time databases; that is, these protocols re-
sult in fewer missed deadlines than even the extended locking protocols. The online
bibliographical notes provide references to research in the area of real-time databases.

18.11 Summary

• When several transactions execute concurrently in the database, the consistency
of data may no longer be preserved. It is necessary for the system to control the in-
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teraction among the concurrent transactions, and this control is achieved through
one of a variety of mechanisms called concurrency-control schemes.

• To ensure serializability, we can use various concurrency-control schemes. All
these schemes either delay an operation or abort the transaction that issued the
operation. The most common ones are locking protocols, timestamp-ordering
schemes, validation techniques, and multiversion schemes.

• A locking protocol is a set of rules that state when a transaction may lock and
unlock each of the data items in the database.

• The two-phase locking protocol allows a transaction to lock a new data item only
if that transaction has not yet unlocked any data item. The protocol ensures serial-
izability, but not deadlock freedom. In the absence of information concerning the
manner in which data items are accessed, the two-phase locking protocol is both
necessary and sufficient for ensuring serializability.

• The strict two-phase locking protocol permits release of exclusive locks only at
the end of transaction, in order to ensure recoverability and cascadelessness of
the resulting schedules. The rigorous two-phase locking protocol releases all locks
only at the end of the transaction.

• Various locking protocols do not guard against deadlocks. One way to prevent
deadlock is to use an ordering of data items and to request locks in a sequence
consistent with the ordering.

• Another way to prevent deadlock is to use preemption and transaction rollbacks.
To control the preemption, we assign a unique timestamp to each transaction. The
system uses these timestamps to decide whether a transaction should wait or roll
back. The wound–wait scheme is a preemptive scheme.

• If deadlocks are not prevented, the system must deal with them by using a deadlock
detection and recovery scheme. To do so, the system constructs a wait-for graph.
A system is in a deadlock state if and only if the wait-for graph contains a cycle.
When the deadlock detection algorithm determines that a deadlock exists, the
system rolls back one or more transactions to break the deadlock.

• There are circumstances where it would be advantageous to group several data
items and to treat them as one aggregate data item for purposes of working, re-
sulting in multiple levels of granularity. We allow data items of various sizes, and
we define a hierarchy of data items where the small items are nested within larger
ones. Such a hierarchy can be represented graphically as a tree. In such multi-
granularity locking protocols, locks are acquired in root-to-leaf order; they are re-
leased in leaf-to-root order. Intention lock modes are used at higher levels to get
better concurrency, without affecting serializability.
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• A timestamp-ordering scheme ensures serializability by selecting an ordering in
advance between every pair of transactions. A unique fixed timestamp is associated
with each transaction in the system. The timestamps of the transactions determine
the serializability order. Thus, if the timestamp of transaction Ti is smaller than the
timestamp of transaction Tj, then the scheme ensures that the produced schedule
is equivalent to a serial schedule in which transaction Ti appears before transaction
Tj. It does so by rolling back a transaction whenever such an order is violated.

• A validation scheme is an appropriate concurrency-control method in cases where
a majority of transactions are read-only transactions, and thus the rate of conflicts
among these transactions is low. A unique fixed timestamp is associated with each
transaction in the system. The serializability order is determined by the timestamp
of the transaction. A transaction in this scheme is never delayed. It must, however,
pass a validation test to complete. If it does not pass the validation test, the system
rolls it back to its initial state.

• A multiversion concurrency-control scheme is based on the creation of a new ver-
sion of a data item for each transaction that writes that item. When a read opera-
tion is issued, the system selects one of the versions to be read. The concurrency-
control scheme ensures that the version to be read is selected in a manner that
ensures serializability by using timestamps. A read operation always succeeds.

° In multiversion timestamp ordering, a write operation may result in the rollback
of the transaction.

° In multiversion two-phase locking, write operations may result in a lock wait
or, possibly, in deadlock.

• Snapshot isolation is a multiversion concurrency-control protocol based on valida-
tion, which, unlike multiversion two-phase locking, does not require transactions
to be declared as read-only or update. Snapshot isolation does not guarantee se-
rializability but is nevertheless supported by many database systems. Serializable
snapshot isolation is an extension of snapshot isolation which guarantees serializ-
ability.

• A delete operation may be performed only if the transaction deleting the tuple has
an exclusive lock on the tuple to be deleted. A transaction that inserts a new tuple
into the database is given an exclusive lock on the tuple.

• Insertions can lead to the phantom phenomenon, in which an insertion logically
conflicts with a query even though the two transactions may access no tuple in
common. Such conflict cannot be detected if locking is done only on tuples ac-
cessed by the transactions. Locking is required on the data used to find the tuples
in the relation. The index-locking technique solves this problem by requiring locks
on certain index nodes. These locks ensure that all conflicting transactions conflict
on a real data item, rather than on a phantom.
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• Weak levels of consistency are used in some applications where consistency
of query results is not critical, and using serializability would result in queries
adversely affecting transaction processing. Degree-two consistency is one such
weaker level of consistency; cursor stability is a special case of degree-two con-
sistency and is widely used.

• Concurrency control is a challenging task for transactions that span user interac-
tions. Applications often implement a scheme based on validation of writes using
version numbers stored in tuples; this scheme provides a weak level of serializabil-
ity and can be implemented at the application level without modifications to the
database.

• Special concurrency-control techniques can be developed for special data struc-
tures. Often, special techniques are applied in B+-trees to allow greater concur-
rency. These techniques allow nonserializable access to the B+-tree, but they en-
sure that the B+-tree structure is correct, and they ensure that accesses to the
database itself are serializable. Latch-free data structures are used to implement
high-performance indices and other data structures in main-memory databases.

Review Terms

• Concurrency control
• Lock types

° Shared-mode (S) lock

° Exclusive-mode (X) lock

• Lock

° Compatibility

° Request

° Wait

° Grant

• Deadlock
• Starvation
• Locking protocol
• Legal schedule
• Two-phase locking protocol

° Growing phase

° Shrinking phase

° Lock point

° Strict two-phase locking

° Rigorous two-phase locking

• Lock conversion

° Upgrade

° Downgrade

• Graph-based protocols

° Tree protocol

° Commit dependency

• Deadlock handling

° Prevention

° Detection

° Recovery

• Deadlock prevention

° Ordered locking

° Preemption of locks

° Wait–die scheme
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° Wound–wait scheme

° Timeout-based schemes

• Deadlock detection

° Wait-for graph

• Deadlock recovery

° Total rollback

° Partial rollback

• Multiple granularity

° Explicit locks

° Implicit locks

° Intention locks

• Intention lock modes

° Intention-shared (IS)

° Intention-exclusive (IX)

° Shared and intention-
exclusive (SIX)

• Multiple-granularity locking
protocol

• Timestamp

° System clock

° Logical counter

° W-timestamp(Q)

° R-timestamp(Q)

• Timestamp-ordering protocol

° Thomas’ write rule

• Validation-based protocols

° Read phase

° Validation phase

° Write phase

° Validation test

• Multiversion timestamp ordering
• Multiversion two-phase locking

° Read-only transactions

° Update transactions

• Snapshot isolation

° Lost update

° First committer wins

° First updater wins

° Write skew

° Select for update

• Insert and delete operations
• Phantom phenomenon
• Index-locking protocol
• Predicate locking
• Weak levels of consistency

° Degree-two consistency

° Cursor stability

• Optimistic concurrency control with-
out read validation

• Conversations
• Concurrency in indices

° Crabbing protocol

° B-link trees

° B-link-tree locking protocol

° Next-key locking

• Latch-free data structures
• Compare-and-swap (CAS) instruction
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Practice Exercises

18.1 Show that the two-phase locking protocol ensures conflict serializability and
that transactions can be serialized according to their lock points.

18.2 Consider the following two transactions:

T34: read(A);
read(B);
if A = 0 then B := B + 1;
write(B).

T35: read(B);
read(A);
if B = 0 then A := A + 1;
write(A).

Add lock and unlock instructions to transactions T31 and T32 so that they ob-
serve the two-phase locking protocol. Can the execution of these transactions
result in a deadlock?

18.3 What benefit does rigorous two-phase locking provide? How does it compare
with other forms of two-phase locking?

18.4 Consider a database organized in the form of a rooted tree. Suppose that we
insert a dummy vertex between each pair of vertices. Show that, if we follow
the tree protocol on the new tree, we get better concurrency than if we follow
the tree protocol on the original tree.

18.5 Show by example that there are schedules possible under the tree protocol that
are not possible under the two-phase locking protocol, and vice versa.

18.6 Locking is not done explicitly in persistent programming languages. Rather,
objects (or the corresponding pages) must be locked when the objects are ac-
cessed. Most modern operating systems allow the user to set access protections
(no access, read, write) on pages, and memory access that violate the access
protections result in a protection violation (see the Unix mprotect command,
for example). Describe how the access-protection mechanism can be used for
page-level locking in a persistent programming language.

18.7 Consider a database system that includes an atomic increment operation, in
addition to the read and write operations. Let V be the value of data item X.
The operation

increment(X) by C
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sets the value of X to V + C in an atomic step. The value of X is not available
to the transaction unless the latter executes a read(X).
Assume that increment operations lock the item in increment mode using the
compatibility matrix in Figure 18.25.

a. Show that, if all transactions lock the data that they access in the corre-
sponding mode, then two-phase locking ensures serializability.

b. Show that the inclusion of increment mode locks allows for increased
concurrency.

18.8 In timestamp ordering, W-timestamp(Q) denotes the largest timestamp of any
transaction that executed write(Q) successfully. Suppose that, instead, we de-
fined it to be the timestamp of the most recent transaction to execute write(Q)
successfully. Would this change in wording make any difference? Explain your
answer.

18.9 Use of multiple-granularity locking may require more or fewer locks than an
equivalent system with a single lock granularity. Provide examples of both sit-
uations, and compare the relative amount of concurrency allowed.

18.10 For each of the following protocols, describe aspects of practical applications
that would lead you to suggest using the protocol, and aspects that would sug-
gest not using the protocol:

• Two-phase locking

• Two-phase locking with multiple-granularity locking.

• The tree protocol

• Timestamp ordering

• Validation

• Multiversion timestamp ordering

• Multiversion two-phase locking

18.11 Explain why the following technique for transaction execution may provide
better performance than just using strict two-phase locking: First execute the
transaction without acquiring any locks and without performing any writes
to the database as in the validation-based techniques, but unlike the validation
techniques do not perform either validation or writes on the database. Instead,
rerun the transaction using strict two-phase locking. (Hint: Consider waits for
disk I/O.)

18.12 Consider the timestamp-ordering protocol, and two transactions, one that
writes two data items p and q, and another that reads the same two data items.



Practice Exercises 901

Give a schedule whereby the timestamp test for a write operation fails and
causes the first transaction to be restarted, in turn causing a cascading abort
of the other transaction. Show how this could result in starvation of both trans-
actions. (Such a situation, where two or more processes carry out actions, but
are unable to complete their task because of interaction with the other pro-
cesses, is called a livelock.)

18.13 Devise a timestamp-based protocol that avoids the phantom phenomenon.

18.14 Suppose that we use the tree protocol of Section 18.1.5 to manage concurrent
access to a B+-tree. Since a split may occur on an insert that affects the root, it
appears that an insert operation cannot release any locks until it has completed
the entire operation. Under what circumstances is it possible to release a lock
earlier?

18.15 The snapshot isolation protocol uses a validation step which, before perform-
ing a write of a data item by transaction T , checks if a transaction concurrent
with T has already written the data item.

a. A straightforward implementation uses a start timestamp and a commit
timestamp for each transaction, in addition to an update set, that, is the
set of data items updated by the transaction. Explain how to perform
validation for the first-committer-wins scheme by using the transaction
timestamps along with the update sets. You may assume that validation
and other commit processing steps are executed serially, that is, for one
transaction at a time,

b. Explain how the validation step can be implemented as part of commit
processing for the first-committer-wins scheme, using a modification of
the above scheme, where instead of using update sets, each data item
has a write timestamp associated with it. Again, you may assume that
validation and other commit processing steps are executed serially.

c. The first-updater-wins scheme can be implemented using timestamps as
described above, except that validation is done immediately after acquir-
ing an exclusive lock, instead of being done at commit time.

i. Explain how to assign write timestamps to data items to implement
the first-updater-wins scheme.

ii. Show that as a result of locking, if the validation is repeated at com-
mit time the result would not change.

iii. Explain why there is no need to perform validation and other commit
processing steps serially in this case.

18.16 Consider functions insert latchfree() and delete latchfree(), shown in Figure
18.23.
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a. Explain how the ABA problem can occur if a deleted node is reinserted.

b. Suppose that adjacent to head we store a counter cnt. Also suppose that
DCAS((head,cnt), (oldhead, oldcnt), (newhead, newcnt)) atomically per-
forms a compare-and-swap on the 128 bit value (head,cnt). Modify the in-
sert latchfree() and delete latchfree() to use the DCAS operation to avoid
the ABA problem.

c. Since most processors use only 48 bits of a 64 bit address to actually
address memory, explain how the other 16 bits can be used to implement
a counter, in case the DCAS operation is not supported.

Exercises

18.17 What benefit does strict two-phase locking provide? What disadvantages re-
sult?

18.18 Most implementations of database systems use strict two-phase locking. Sug-
gest three reasons for the popularity of this protocol.

18.19 Consider a variant of the tree protocol called the forest protocol. The database
is organized as a forest of rooted trees. Each transaction Ti must follow the
following rules:

• The first lock in each tree may be on any data item.

• The second, and all subsequent, locks in a tree may be requested only if
the parent of the requested node is currently locked.

• Data items may be unlocked at any time.

• A data item may not be relocked by Ti after it has been unlocked by Ti.

Show that the forest protocol does not ensure serializability.

18.20 Under what conditions is it less expensive to avoid deadlock than to allow
deadlocks to occur and then to detect them?

18.21 If deadlock is avoided by deadlock-avoidance schemes, is starvation still possi-
ble? Explain your answer.

18.22 In multiple-granularity locking, what is the difference between implicit and
explicit locking?

18.23 Although SIX mode is useful in multiple-granularity locking, an exclusive and
intention-shared (XIS) mode is of no use. Why is it useless?

18.24 The multiple-granularity protocol rules specify that a transaction Ti can lock a
node Q in S or IS mode only if Ti currently has the parent of Q locked in either
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IX or IS mode. Given that SIX and S locks are stronger than IX or IS locks,
why does the protocol not allow locking a node in S or IS mode if the parent
is locked in either SIX or S mode?

18.25 Suppose the lock hierarchy for a database consists of database, relations, and
tuples.

a. If a transaction needs to read a lot of tuples from a relation r, what locks
should it acquire?

b. Now suppose the transaction wants to update a few of the tuples in r
after reading a lot of tuples. What locks should it acquire?

c. If at run-time the transaction finds that it needs to actually update a very
large number of tuples (after acquiring locks assuming only a few tuples
would be updated). What problems would this cause to the lock table,
and what could the database do to avoid the problem?

18.26 When a transaction is rolled-back under timestamp ordering, it is assigned a
new timestamp. Why can it not simply keep its old timestamp?

18.27 Show that there are schedules that are possible under the two-phase locking
protocol but not possible under the timestamp protocol, and vice versa.

18.28 Under a modified version of the timestamp protocol, we require that a commit
bit be tested to see whether a read request must wait. Explain how the com-
mit bit can prevent cascading abort. Why is this test not necessary for write
requests?

18.29 As discussed in Exercise 18.15, snapshot isolation can be implemented using
a form of timestamp validation. However, unlike the multiversion timestamp-
ordering scheme, which guarantees serializability, snapshot isolation does not
guarantee serializability. Explain the key difference between the protocols that
results in this difference.

18.30 Outline the key similarities and differences between the timestamp-based im-
plementation of the first-committer-wins version of snapshot isolation, de-
scribed in Exercise 18.15, and the optimistic-concurrency control-without-read-
validation scheme, described in Section 18.9.3.

18.31 Consider a relation r(A, B, C) and a transaction T that does the following: find
the maximum A value in r, and insert a new tuple in r whose A value is 1+ the
maximum A value. Assume that an index is used to find the maximum A value.

a. Suppose that the transaction locks each tuple it reads in S mode, and
the tuple it creates in X mode, and performs no other locking. Now sup-
pose two instances of T are run concurrently. Explain how the resultant
execution could be non-serializable.
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b. Now suppose that r.A is declared as a primary key. Can the above non-
serializable execution occur in this case? Explain why or why not.

18.32 Explain the phantom phenomenon. Why may this phenomenon lead to an
incorrect concurrent execution despite the use of the two-phase locking proto-
col?

18.33 Explain the reason for the use of degree-two consistency. What disadvantages
does this approach have?

18.34 Give example schedules to show that with key-value locking, if lookup, insert,
or delete does not lock the next-key value, the phantom phenomenon could go
undetected.

18.35 Many transactions update a common item (e.g., the cash balance at a branch)
and private items (e.g., individual account balances). Explain how you can in-
crease concurrency (and throughput) by ordering the operations of the trans-
action.

18.36 Consider the following locking protocol: All items are numbered, and once
an item is unlocked, only higher-numbered items may be locked. Locks may
be released at any time. Only X-locks are used. Show by an example that this
protocol does not guarantee serializability.

Further Reading

[Gray and Reuter (1993)] provides detailed textbook coverage of transaction-
processing concepts, including concurrency-control concepts and implementation de-
tails. [Bernstein and Newcomer (2009)] provides textbook coverage of various aspects
of transaction processing including concurrency control.

The two-phase locking protocol was introduced by [Eswaran et al. (1976)]. The
locking protocol for multiple-granularity data items is from [Gray et al. (1975)]. The
timestamp-based concurrency-control scheme is from [Reed (1983)]. The validation
concurrency-control scheme is from [Kung and Robinson (1981)]. Multiversion times-
tamp order was introduced in [Reed (1983)]. A multiversion tree-locking algorithm
appears in [Silberschatz (1982)].

Degree-two consistency was introduced in [Gray et al. (1975)]. The levels of con-
sistency—or isolation—offered in SQL are explained and critiqued in [Berenson et al.
(1995)]; the snapshot isolation technique was also introduced in the same paper. Seri-
alizable snapshot-isolation was introduced by [Cahill et al. (2009)]; [Ports and Grittner
(2012)] describes the implementation of serializable snapshot isolation in PostgreSQL.

Concurrency in B+-trees was studied by [Bayer and Schkolnick (1977)] and [John-
son and Shasha (1993)]. The crabbing and B-link tree techniques were introduced by
[Kung and Lehman (1980)] and [Lehman and Yao (1981)]. The technique of key-value
locking used in ARIES provides for very high concurrency on B+-tree access and is de-
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scribed in [Mohan (1990)] and [Mohan and Narang (1992)]. [Faerber et al. (2017)]
provide a survey of main-memory databases, including coverage of concurrency con-
trol in main-memory databases. The ABA problem with latch-free data structures as
well as solutions for the problem are discussed in [Dechev et al. (2010)].
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CHAP T E R 19
Recovery System

A computer system, like any other device, is subject to failure from a variety of causes:
disk crash, power outage, software error, a fire in the machine room, even sabotage.
In any failure, information may be lost. Therefore, the database system must take ac-
tions in advance to ensure that the atomicity and durability properties of transactions,
introduced in Chapter 17, are preserved. An integral part of a database system is a re-
covery scheme that can restore the database to the consistent state that existed before
the failure.

The recovery scheme must also support high availability, that is, the database
should be usable for a very high percentage of time. To support high availability in
the face of machine failure (as also planned machine shutdowns for hardware/software
upgrades and maintenance), the recovery scheme must support the ability to keep a
backup copy of the database synchronized with the current contents of the primary
copy of the database. If the machine with the primary copy fails, transaction process-
ing can continue on the backup copy.

19.1 Failure Classification

There are various types of failure that may occur in a system, each of which needs to be
dealt with in a different manner. In this chapter, we shall consider only the following
types of failure:

• Transaction failure. There are two types of errors that may cause a transaction to
fail:

° Logical error. The transaction can no longer continue with its normal execution
because of some internal condition, such as bad input, data not found, overflow,
or resource limit exceeded.

° System error. The system has entered an undesirable state (e.g., deadlock), as
a result of which a transaction cannot continue with its normal execution. The
transaction, however, can be reexecuted at a later time.

907
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• System crash. There is a hardware malfunction, or a bug in the database software
or the operating system, that causes the loss of the content of volatile storage and
brings transaction processing to a halt. The content of non-volatile storage remains
intact and is not corrupted.

The assumption that hardware errors and bugs in the software bring the system
to a halt, but do not corrupt the non-volatile storage contents, is known as the
fail-stop assumption. Well-designed systems have numerous internal checks, at the
hardware and the software level, that bring the system to a halt when there is an
error. Hence, the fail-stop assumption is a reasonable one.

• Disk failure. A disk block loses its content as a result of either a head crash or fail-
ure during a data-transfer operation. Copies of the data on other disks, or archival
backups on tertiary media, such as DVD or tapes, are used to recover from the
failure.

To determine how the system should recover from failures, we need to identify the
failure modes of those devices used for storing data. Next, we must consider how these
failure modes affect the contents of the database. We can then propose algorithms
to ensure database consistency and transaction atomicity despite failures. These algo-
rithms, known as recovery algorithms, have two parts:

1. Actions taken during normal transaction processing to ensure that enough infor-
mation exists to allow recovery from failures.

2. Actions taken after a failure to recover the database contents to a state that en-
sures database consistency, transaction atomicity, and durability.

19.2 Storage

As we saw in Chapter 13, the various data items in the database may be stored and
accessed in a number of different storage media. In Section 17.3, we saw that storage
media can be distinguished by their relative speed, capacity, and resilience against fail-
ure. We identified three categories of storage:

1. Volatile storage

2. Non-Volatile storage

3. Stable storage

Stable storage or, more accurately, an approximation thereof, plays a critical role in
recovery algorithms.
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19.2.1 Stable-Storage Implementation

To implement stable storage, we need to replicate the needed information in several
non-volatile storage media (usually disk) with independent failure modes and to update
the information in a controlled manner to ensure that failure during data transfer does
not damage the needed information.

Recall (from Chapter 12) that RAID systems guarantee that the failure of a single
disk (even during data transfer) will not result in loss of data. The simplest and fastest
form of RAID is the mirrored disk, which keeps two copies of each block on separate
disks. Other forms of RAID offer lower costs, but at the expense of lower performance.

RAID systems, however, cannot guard against data loss due to disasters such as fires
or flooding. Many systems store archival backups of tapes off-site to guard against such
disasters. However, since tapes cannot be carried off-site continually, updates since the
most recent time that tapes were carried off-site could be lost in such a disaster. More
secure systems keep a copy of each block of stable storage at a remote site, writing it
out over a computer network, in addition to storing the block on a local disk system.
Since the blocks are output to a remote system as and when they are output to local
storage, once an output operation is complete, the output is not lost, even in the event
of a disaster such as a fire or flood. We study such remote backup systems in Section
19.7.

In the remainder of this section, we discuss how storage media can be protected
from failure during data transfer. Block transfer between memory and disk storage can
result in:

• Successful completion. The transferred information arrived safely at its destination.

• Partial failure. A failure occurred in the midst of transfer, and the destination block
has incorrect information.

• Total failure. The failure occurred sufficiently early during the transfer that the
destination block remains intact.

We require that, if a data-transfer failure occurs, the system detects it and invokes a
recovery procedure to restore the block to a consistent state. To do so, the system must
maintain two physical blocks for each logical database block; in the case of mirrored
disks, both blocks are at the same location; in the case of remote backup, one of the
blocks is local, whereas the other is at a remote site. An output operation is executed
as follows:

1. Write the information onto the first physical block.

2. When the first write completes successfully, write the same information onto the
second physical block.

3. The output is completed only after the second write completes successfully.
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If the system fails while blocks are being written, it is possible that the two copies
of a block could be inconsistent with each other. During recovery, for each block, the
system would need to examine two copies of the blocks. If both are the same and no
detectable error exists, then no further actions are necessary. (Recall that errors in a
disk block, such as a partial write to the block, are detected by storing a checksum with
each block.) If the system detects an error in one block, then it replaces its content
with the content of the other block. If both blocks contain no detectable error, but
they differ in content, then the system can either replace the content of the first block
with the value of the second, or replace the content of the second block with the value
of the first. Either way, the recovery procedure ensures that a write to stable storage
either succeeds completely (i.e., updates all copies) or results in no change.

The requirement of comparing every corresponding pair of blocks during recovery
is expensive to meet. We can reduce the cost greatly by keeping track of block writes that
are in progress, using a small amount of non-volatile RAM. On recovery, only blocks
for which writes were in progress need to be compared.

The protocols for writing out a block to a remote site are similar to the protocols
for writing blocks to a mirrored disk system, which we examined in Chapter 12, and
particularly in Practice Exercise 12.6.

We can extend this procedure easily to allow the use of an arbitrarily large number
of copies of each block of stable storage. Although a large number of copies reduces
the probability of a failure to even lower than two copies do, it is usually reasonable to
simulate stable storage with only two copies.

19.2.2 Data Access

As we saw in Chapter 12, the database system resides permanently on non-volatile
storage (usually disks), and only parts of the database are in memory at any time.
(In main-memory databases, the entire database resides in memory, but a copy still
resides on non-volatile storage so data can survive the loss of main-memory contents.)
The database is partitioned into fixed-length storage units called blocks. Blocks are the
units of data transfer to and from disk and may contain several data items. We shall
assume that no data item spans two or more blocks. This assumption is realistic for
most data-processing applications, such as a bank or a university.

Transactions input information from the disk into main memory and then output
the information back onto the disk. The input and output operations are done in block
units. The blocks residing on the disk are referred to as physical blocks; the blocks resid-
ing temporarily in main memory are referred to as buffer blocks. The area of memory
where blocks reside temporarily is called the disk buffer.

Block movements between disk and main memory are initiated through the follow-
ing two operations:

1. input(B) transfers the physical block B to main memory.
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2. output(B) transfers the buffer block B to the disk and replaces the appropriate
physical block there.

Figure 19.1 illustrates this scheme.
Conceptually, each transaction Ti has a private work area in which copies of data

items accessed and updated by Ti are kept. The system creates this work area when
the transaction is initiated; the system removes it when the transaction either commits
or aborts. Each data item X kept in the work area of transaction Ti is denoted by xi.
Transaction Ti interacts with the database system by transferring data to and from its
work area to the system buffer. We transfer data by these two operations:

1. read(X) assigns the value of data item X to the local variable xi. It executes this
operation as follows:

a. If block BX on which X resides is not in main memory, it issues input(BX ).

b. It assigns to xi the value of X from the buffer block.

2. write(X) assigns the value of local variable xi to data item X in the buffer block.
It executes this operation as follows:

a. If block BX on which X resides is not in main memory, it issues input(BX ).

b. It assigns the value of xi to X in buffer BX .

Note that both operations may require the transfer of a block from disk to main mem-
ory. They do not, however, specifically require the transfer of a block from main mem-
ory to disk.

A buffer block is eventually written out to the disk either because the buffer man-
ager needs the memory space for other purposes or because the database system wishes

A

B

input(A)

output(B)
B

main memory
disk

Figure 19.1 Block storage operations.
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to reflect the change to B on the disk. We shall say that the database system performs
a force-output of buffer B if it issues an output(B).

When a transaction needs to access a data item X for the first time, it must execute
read(X). The transaction then performs all updates to X on xi. At any point during its
execution a transaction may execute write(X) to reflect the change to X in the database
itself; write(X) must certainly be done after the final write to xi.

The output(BX ) operation for the buffer block BX on which X resides does not need
to take effect immediately after write(X) is executed, since the block BX may contain
other data items that are still being accessed. Thus, the actual output may take place
later. Notice that, if the system crashes after the write(X) operation was executed but
before output(BX ) was executed, the new value of X is never written to disk and, thus,
is lost. As we shall see shortly, the database system executes extra actions to ensure
that updates performed by committed transactions are not lost even if there is a system
crash.

19.3 Recovery and Atomicity

Consider again our simplified banking system and a transaction Ti that transfers $50
from account A to account B, with initial values of A and B being $1000 and $2000,
respectively. Suppose that a system crash has occurred during the execution of Ti, after
output(BA) has taken place, but before output(BB) was executed, where BA and BB
denote the buffer blocks on which A and B reside. Since the memory contents were
lost, we do not know the fate of the transaction.

When the system restarts, the value of A would be $950, while that of B would be
$2000, which is clearly inconsistent with the atomicity requirement for transaction Ti.
Unfortunately, there is no way to find out by examining the database state what blocks
had been output and what had not before the crash. It is possible that the transaction
completed, updating the database on stable storage from an initial state with the values
of A and B being $1000 and $1950; it is also possible that the transaction did not affect
the stable storage at all, and the values of A and B were $950 and $2000 initially; or
that the updated B was output but not the updated A; or that the updated A was output
but the updated B was not.

Our goal is to perform either all or no database modifications made by Ti. How-
ever, if Ti performed multiple database modifications, several output operations may
be required, and a failure may occur after some of these modifications have been made,
but before all of them are made.

To achieve our goal of atomicity, we must first output to stable storage informa-
tion describing the modifications, without modifying the database itself. As we shall
see, this information can help us ensure that all modifications performed by commit-
ted transactions are reflected in the database (perhaps during the course of recovery
actions after a crash). We also need to store information about the old value of any
item updated by a modification in case the transaction performing the modification
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fails (aborts). This information can help us undo the modifications made by the failed
transaction.

The most commonly used technique for recovery is based on log records, and we
study log-based recovery in detail in this chapter. An alternative, called shadow copying,
is used by text editors but is not used in database systems; this approach is summarized
in Note 19.1 on page 914.

19.3.1 Log Records

The most widely used structure for recording database modifications is the log. The log
is a sequence of log records, recording all the update activities in the database.

There are several types of log records. An update log record describes a single data-
base write. It has these fields:

• Transaction identifier, which is the unique identifier of the transaction that per-
formed the write operation.

• Data-item identifier, which is the unique identifier of the data item written. Typi-
cally, it is the location on disk of the data item, consisting of the block identifier
of the block on which the data item resides and an offset within the block.

• Old value, which is the value of the data item prior to the write.

• New value, which is the value that the data item will have after the write.

We represent an update log record as <Ti, Xj, V1, V2>, indicating that transaction Ti
has performed a write on data item Xj. Xj had value V1 before the write and has value
V2 after the write. Other special log records exist to record significant events during
transaction processing, such as the start of a transaction and the commit or abort of a
transaction. Among the types of log records are:

• <Ti start>. Transaction Ti has started.

• <Ti commit>. Transaction Ti has committed.

• <Ti abort>. Transaction Ti has aborted.

We shall introduce several other types of log records later.
Whenever a transaction performs a write, it is essential that the log record for that

write be created and added to the log, before the database is modified. Once a log
record exists, we can output the modification to the database if that is desirable. Also,
we have the ability to undo a modification that has already been output to the database.
We undo it by using the old-value field in log records.

For log records to be useful for recovery from system and disk failures, the log must
reside in stable storage. For now, we assume that every log record is written to the end
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Note 19.1 SHADOW COPIES AND SHADOW PAGING

In the shadow-copy scheme, a transaction that wants to update the database first
creates a complete copy of the database. All updates are done on the new database
copy, leaving the original copy, the shadow copy, untouched. If at any point the
transaction has to be aborted, the system merely deletes the new copy. The old
copy of the database has not been affected. The current copy of the database is
identified by a pointer, called db-pointer, which is stored on disk.

If the transaction partially commits (i.e., executes its final statement) it is com-
mitted as follows: First, the operating system is asked to make sure that all pages
of the new copy of the database have been written out to disk. (Unix systems use
the fsync command for this purpose.) After the operating system has written all
the pages to disk, the database system updates the pointer db-pointer to point to
the new copy of the database; the new copy then becomes the current copy of the
database. The old copy of the database is then deleted. The transaction is said to
have been committed at the point where the updated db-pointer is written to disk.

The implementation actually depends on the write to db-pointer being atomic;
that is, either all its bytes are written or none of its bytes are written. Disk systems
provide atomic updates to entire blocks, or at least to a disk sector. In other words,
the disk system guarantees that it will update db-pointer atomically, as long as we
make sure that db-pointer lies entirely in a single sector, which we can ensure by
storing db-pointer at the beginning of a block.

Shadow-copy schemes are commonly used by text editors (saving the file is
equivalent to transaction commit, while quitting without saving the file is equiva-
lent to transaction abort). Shadow copying can be used for small databases, but
copying a large database would be extremely expensive. A variant of shadow copy-
ing, called shadow paging, reduces copying as follows: the scheme uses a page ta-
ble containing pointers to all pages; the page table itself and all updated pages are
copied to a new location. Any page which is not updated by a transaction is not
copied, but instead the new page table just stores a pointer to the original page.
When a transaction commits, it atomically updates the pointer to the page table,
which acts as db-pointer to point to the new copy.

Shadow paging unfortunately does not work well with concurrent transactions
and is not widely used in databases.

of the log on stable storage as soon as it is created. In Section 19.5, we shall see when
it is safe to relax this requirement so as to reduce the overhead imposed by logging.
Observe that the log contains a complete record of all database activity. As a result,
the volume of data stored in the log may become unreasonably large. In Section 19.3.6,
we shall show when it is safe to erase log information.
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19.3.2 Database Modification

As we noted earlier, a transaction creates a log record prior to modifying the database.
The log records allow the system to undo changes made by a transaction in the event
that the transaction must be aborted; they allow the system also to redo changes made
by a transaction if the transaction has committed but the system crashed before those
changes could be stored in the database on disk. In order for us to understand the role
of these log records in recovery, we need to consider the steps a transaction takes in
modifying a data item:

1. The transaction performs some computations in its own private part of main
memory.

2. The transaction modifies the data block in the disk buffer in main memory hold-
ing the data item.

3. The database system executes the output operation that writes the data block to
disk.

We say a transaction modifies the database if it performs an update on a disk buffer,
or on the disk itself; updates to the private part of main memory do not count as
database modifications. If a transaction does not modify the database until it has com-
mitted, it is said to use the deferred-modification technique. If database modifications
occur while the transaction is still active, the transaction is said to use the immediate-
modification technique. Deferred modification has the overhead that transactions need
to make local copies of all updated data items; further, if a transaction reads a data
item that it has updated, it must read the value from its local copy.

The recovery algorithms we describe in this chapter support immediate modifica-
tion. As described, they work correctly even with deferred modification, but they can be
optimized to reduce overhead when used with deferred modification; we leave details
as an exercise.

A recovery algorithm must take into account a variety of factors, including:

• The possibility that a transaction may have committed although some of its
database modifications exist only in the disk buffer in main memory and not in
the database on disk.

• The possibility that a transaction may have modified the database while in the
active state and, as a result of a subsequent failure, may need to abort.

Because all database modifications must be preceded by the creation of a log
record, the system has available both the old value prior to the modification of the
data item and the new value that is to be written for the data item. This allows the
system to perform undo and redo operations as appropriate.
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• The undo operation using a log record sets the data item specified in the log record
to the old value contained in the log record.

• The redo operation using a log record sets the data item specified in the log record
to the new value contained in the log record.

19.3.3 Concurrency Control and Recovery

If the concurrency control scheme allows a data item X that has been modified by a
transaction T1 to be further modified by another transaction T2 before T1 commits,
then undoing the effects of T1 by restoring the old value of X (before T1 updated X )
would also undo the effects of T2. To avoid such situations, recovery algorithms usually
require that if a data item has been modified by a transaction, no other transaction can
modify the data item until the first transaction commits or aborts.

This requirement can be ensured by acquiring an exclusive lock on any updated
data item and holding the lock until the transaction commits; in other words, by using
strict two-phase locking. Snapshot isolation and validation-based concurrency-control
techniques also acquire exclusive locks on data items at the time of validation, before
modifying the data items, and hold the locks until the transaction is committed; as a
result the above requirement is satisfied even by these concurrency control protocols.

We discuss in Section 19.8 how the above requirement can be relaxed in certain
cases.

When either snapshot isolation or validation is used for concurrency control,
database updates of a transaction are (conceptually) deferred until the transaction is
partially committed; the deferred-modification technique is a natural fit with these con-
currency control schemes. However, it is worth noting that some implementations of
snapshot isolation use immediate modification but provide a logical snapshot on de-
mand: when a transaction needs to read an item that a concurrent transaction has up-
dated, a copy of the (already updated) item is made, and updates made by concurrent
transactions are rolled back on the copy of the item. Similarly, immediate modification
of the database is a natural fit with two-phase locking, but deferred modification can
also be used with two-phase locking.

<T0  start>
<T0 ,  A,  1000,  950>
<T0 ,  B,  2000,  2050>
<T0  commit>
<T1  start>
<T1 ,  C,  700,  600>
<T1  commit>

Figure 19.2 Portion of the system log corresponding to T0 and T1.
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19.3.4 Transaction Commit

We say that a transaction has committed when its commit log record, which is the
last log record of the transaction, has been output to stable storage; at that point all
earlier log records have already been output to stable storage. Thus, there is enough
information in the log to ensure that even if there is a system crash, the updates of the
transaction can be redone. If a system crash occurs before a log record <Ti commit>
is output to stable storage, transaction Ti will be rolled back. Thus, the output of the
block containing the commit log record is the single atomic action that results in a
transaction getting committed.1

With most log-based recovery techniques, including the ones we describe in this
chapter, blocks containing the data items modified by a transaction do not have to be
output to stable storage when the transaction commits but can be output some time
later. We discuss this issue further in Section 19.5.2.

19.3.5 Using the Log to Redo and Undo Transactions

We now provide an overview of how the log can be used to recover from a system crash
and to roll back transactions during normal operation. However, we postpone details
of the procedures for failure recovery and rollback to Section 19.4.

Consider our simplified banking system. Let T0 be a transaction that transfers $50
from account A to account B:

T0: read(A);
A := A − 50;
write(A);
read(B);
B := B + 50;
write(B).

Let T1 be a transaction that withdraws $100 from account C:

T1: read(C);
C := C − 100;
write(C).

The portion of the log containing the relevant information concerning these two trans-
actions appears in Figure 19.2.

Figure 19.3 shows one possible order in which the actual outputs took place in
both the database system and the log as a result of the execution of T0 and T1.2

1The output of a block can be made atomic by techniques for dealing with data-transfer failure, as described in Section
19.2.1.
2Notice that this order could not be obtained using the deferred-modification technique, because the database is mod-
ified by T0 before it commits, and likewise for T1.
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Log Database

A = 950
B = 2050

C = 600

<T0  start>
<T0 ,  A,  1000,  950>
<T0 ,  B,  2000,  2050>

<T0  commit>
<T1  start>
<T1 ,  C,  700,  600>

<T1  commit>

Figure 19.3 State of system log and database corresponding to T0 and T1.

Using the log, the system can handle any failure that does not result in the loss of
information in non-volatile storage. The recovery scheme uses two recovery procedures.
Both these procedures make use of the log to find the set of data items updated by each
transaction Ti and their respective old and new values.

• redo(Ti). The procedure sets the value of all data items updated by transaction Ti
to the new values. The order in which updates are carried out by redo is impor-
tant; when recovering from a system crash, if updates to a particular data item are
applied in an order different from the order in which they were applied originally,
the final state of that data item will have a wrong value. Most recovery algorithms,
including the one we describe in Section 19.4, do not perform redo of each trans-
action separately; instead they perform a single scan of the log, during which redo
actions are performed for each log record as it is encountered. This approach en-
sures the order of updates is preserved, and it is more efficient since the log needs
to be read only once overall, instead of once per transaction.

• undo(Ti). The procedure restores the value of all data items updated by transaction
Ti to the old values. In the recovery scheme that we describe in Section 19.4:

° The undo operation not only restores the data items to their old value, but
also writes log records to record the updates performed as part of the undo
process. These log records are special redo-only log records, since they do not
need to contain the old value of the updated data item; note that when such
log records are used during undo, the “old value” is actually the value written
by the transaction that is being rolled back, and the “new value” is the original
value that is being restored by the undo operation.

As with the redo procedure, the order in which undo operations are per-
formed is important; again we postpone details to Section 19.4.
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° When the undo operation for transaction Ti completes, it writes a <Ti abort>
log record, indicating that the undo has completed.

As we shall see in Section 19.4, the undo(Ti) procedure is executed only
once for a transaction, if the transaction is rolled back during normal process-
ing or if on recovering from a system crash, neither a commit nor an abort
record is found for transaction Ti. As a result, every transaction will eventually
have either a commit or an abort record in the log.

After a system crash has occurred, the system consults the log to determine which
transactions need to be redone and which need to be undone so as to ensure atomicity.

• Transaction Ti needs to be undone if the log contains the record <Ti start> but
does not contain either the record <Ti commit> or the record <Ti abort>.

• Transaction Ti needs to be redone if the log contains the record <Ti start> and
either the record <Ti commit> or the record <Ti abort>. It may seem strange to
redo Ti if the record<Ti abort> is in the log. To see why this works, note that if<Ti
abort> is in the log, so are the redo-only records written by the undo operation.
Thus, the end result will be to undo Ti’s modifications in this case. This slight
redundancy simplifies the recovery algorithm and enables faster overall recovery
time.

As an illustration, return to our banking example, with transaction T0 and T1 ex-
ecuted one after the other in the order T0 followed by T1. Suppose that the system
crashes before the completion of the transactions. We shall consider three cases. The
state of the logs for each of these cases appears in Figure 19.4.

First, let us assume that the crash occurs just after the log record for the step:

write(B)

of transaction T0 has been written to stable storage (Figure 19.4a). When the system
comes back up, it finds the record <T0 start> in the log, but no corresponding <T0
commit> or<T0 abort> record. Thus, transaction T0 must be undone, so an undo(T0)
is performed. As a result, the values in accounts A and B (on the disk) are restored to
$1000 and $2000, respectively.

Next, let us assume that the crash comes just after the log record for the step:

write(C)

of transaction T1 has been written to stable storage (Figure 19.4b). When the system
comes back up, two recovery actions need to be taken. The operation undo(T1) must
be performed, since the record <T1 start> appears in the log, but there is no record
<T1 commit> or <T1 abort>. The operation redo(T0) must be performed, since the
log contains both the record <T0 start> and the record <T0 commit>. At the end of
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<T0  start>
<T0 , A, 1000, 950> 
<T0 ,  B, 2000, 2050> 

<T0  start>
<T0 ,  A, 1000, 950> 
<T0 ,  B, 2000, 2050>  
<T0  commit>
<T1  start>
<T1 , C, 700, 600>  

<T0  start>
<T0 , A, 1000, 950>
<T0 ,  B,  2000, 2050>
<T0  commit>
<T1  start>
<T1 ,  C, 700, 600>
<T1  commit>

(a) (b) (c)

Figure 19.4 The same log, shown at three different times.

the entire recovery procedure, the values of accounts A, B, and C are $950, $2050, and
$700, respectively.

Finally, let us assume that the crash occurs just after the log record:

<T1 commit>

has been written to stable storage (Figure 19.4c). When the system comes back up,
both T0 and T1 need to be redone, since the records <T0 start> and <T0 commit>
appear in the log, as do the records <T1 start> and <T1 commit>. After the system
performs the recovery procedures redo(T0) and redo(T1), the values in accounts A, B,
and C are $950, $2050, and $600, respectively.

19.3.6 Checkpoints

When a system crash occurs, we must consult the log to determine those transactions
that need to be redone and those that need to be undone. In principle, we need to
search the entire log to determine this information. There are two major difficulties
with this approach:

1. The search process is time-consuming.

2. Most of the transactions that, according to our algorithm, need to be redone have
already written their updates into the database. Although redoing them will cause
no harm, it will nevertheless cause recovery to take longer.

To reduce these types of overhead, we introduce checkpoints.
We describe below a simple checkpoint scheme that (a) does not permit any up-

dates to be performed while the checkpoint operation is in progress, and (b) outputs
all modified buffer blocks to disk when the checkpoint is performed. We discuss later
how to modify the checkpointing and recovery procedures to provide more flexibility
by relaxing both these requirements.

A checkpoint is performed as follows:
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1. Output onto stable storage all log records currently residing in main memory.

2. Output to the disk all modified buffer blocks.

3. Output onto stable storage a log record of the form <checkpoint L>, where L is
a list of transactions active at the time of the checkpoint.

Transactions are not allowed to perform any update actions, such as writing to a
buffer block or writing a log record, while a checkpoint is in progress. We discuss how
this requirement can be enforced in Section 19.5.2.

The presence of a <checkpoint L> record in the log allows the system to stream-
line its recovery procedure. Consider a transaction Ti that completed prior to the check-
point. For such a transaction, the <Ti commit> record (or < Ti abort> record) ap-
pears in the log before the <checkpoint> record. Any database modifications made
by Ti must have been written to the database either prior to the checkpoint or as part
of the checkpoint itself. Thus, at recovery time, there is no need to perform a redo
operation on Ti.

After a system crash has occurred, the system examines the log to find the last
<checkpoint L> record (this can be done by searching the log backward, from the
end of the log, until the first <checkpoint L> record is found).

The redo or undo operations need to be applied only to transactions in L, and to
all transactions that started execution after the <checkpoint L> record was written to
the log. Let us denote this set of transactions as T .

• For all transactions Tk in T that have no <Tk commit> record or <Tk abort>
record in the log, execute undo(Tk).

• For all transactions Tk in T such that either the record <Tk commit> or the record
<Tk abort> appears in the log, execute redo(Tk).

Note that we need only examine the part of the log starting with the last checkpoint
log record to find the set of transactions T and to find out whether a commit or abort
record occurs in the log for each transaction in T .

As an illustration, consider the set of transactions {T0, T1,… , T100}. Suppose that
the most recent checkpoint took place during the execution of transaction T67 and
T69, while T68 and all transactions with subscripts lower than 67 completed before the
checkpoint. Thus, only transactions T67, T69,… , T100 need to be considered during
the recovery scheme. Each of them needs to be redone if it has completed (i.e., either
committed or aborted); otherwise, it was incomplete and needs to be undone.

Consider the set of transactions L in a checkpoint log record. For each transaction
Ti in L, log records of the transaction that occur prior to the checkpoint log record
may be needed to undo the transaction, in case it does not commit. However, all log
records prior to the earliest of the <Ti start> log records, among transactions Ti in L,
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are not needed once the checkpoint has completed. These log records can be erased
whenever the database system needs to reclaim the space occupied by these records.

The requirement that transactions must not perform any updates to buffer blocks
or to the log during checkpointing can be bothersome, since transaction processing
has to halt while a checkpoint is in progress. A fuzzy checkpoint is a checkpoint where
transactions are allowed to perform updates even while buffer blocks are being writ-
ten out. Section 19.5.4 describes fuzzy-checkpointing schemes. Later in Section 19.9
we describe a checkpoint scheme that is not only fuzzy, but does not even require all
modified buffer blocks to be output to disk at the time of the checkpoint.

19.4 Recovery Algorithm

Until now, in discussing recovery, we have identified transactions that need to be re-
done and those that need to be undone, but we have not given a precise algorithm for
performing these actions. We are now ready to present the full recovery algorithm using
log records for recovery from transaction failure and a combination of the most recent
checkpoint and log records to recover from a system crash.

The recovery algorithm described in this section requires that a data item that
has been updated by an uncommitted transaction cannot be modified by any other
transaction, until the first transaction has either committed or aborted. Recall that this
restriction was discussed in Section 19.3.3.

19.4.1 Transaction Rollback

First consider transaction rollback during normal operation (i.e., not during recovery
from a system crash). Rollback of a transaction Ti is performed as follows:

1. The log is scanned backward, and for each log record of Ti of the form
<Ti, Xj, V1, V2> that is found:

a. The value V1 is written to data item Xj, and

b. A special redo-only log record <Ti, Xj, V1> is written to the log, where
V1 is the value being restored to data item Xj during the rollback. These
log records are sometimes called compensation log records. Such records
do not need undo information, since we never need to undo such an undo
operation. We shall explain later how they are used.

2. Once the log record <Ti start> is found, the backward scan is stopped, and a log
record <Ti abort> is written to the log.

Observe that every update action performed by the transaction or on behalf of the
transaction, including actions taken to restore data items to their old value, have now
been recorded in the log. In Section 19.4.2 we shall see why this is a good idea.



19.4 Recovery Algorithm 923

19.4.2 Recovery After a System Crash

Recovery actions, when the database system is restarted after a crash, take place in two
phases:

1. In the redo phase, the system replays updates of all transactions by scanning the
log forward from the last checkpoint. The log records that are replayed include
log records for transactions that were rolled back before system crash, and those
that had not committed when the system crash occurred.

This phase also determines all transactions that were incomplete at the time of
the crash, and must therefore be rolled back. Such incomplete transactions would
either have been active at the time of the checkpoint, and thus would appear in the
transaction list in the checkpoint record, or would have started later; further, such
incomplete transactions would have neither a <Ti abort> nor a <Ti commit>
record in the log.

The specific steps taken while scanning the log are as follows:

a. The list of transactions to be rolled back, undo-list, is initially set to the list
L in the <checkpoint L> log record.

b. Whenever a normal log record of the form <Ti, Xj, V1, V2>, or a redo-
only log record of the form <Ti, Xj, V2> is encountered, the operation is
redone; that is, the value V2 is written to data item Xj.

c. Whenever a log record of the form <Ti start> is found, Ti is added to
undo-list.

d. Whenever a log record of the form <Ti abort> or <Ti commit> is found,
Ti is removed from undo-list.

At the end of the redo phase, undo-list contains the list of all transactions that
are incomplete, that is, they neither committed nor completed rollback before
the crash.

2. In the undo phase, the system rolls back all transactions in the undo-list. It per-
forms rollback by scanning the log backward from the end.

a. Whenever it finds a log record belonging to a transaction in the undo-list, it
performs undo actions just as if the log record had been found during the
rollback of a failed transaction.

b. When the system finds a <Ti start> log record for a transaction Ti in undo-
list, it writes a <Ti abort> log record to the log and removes Ti from undo-
list.

c. The undo phase terminates once undo-list becomes empty, that is, the sys-
tem has found <Ti start> log records for all transactions that were initially
in undo-list.
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After the undo phase of recovery terminates, normal transaction processing can
resume.

Observe that the redo phase replays every log record since the most recent check-
point record. In other words, this phase of restart recovery repeats all the update actions
that were executed after the checkpoint, and whose log records reached the stable log.
The actions include actions of incomplete transactions and the actions carried out to
roll back failed transactions. The actions are repeated in the same order in which they
were originally carried out; hence, this process is called repeating history. Although it
may appear wasteful, repeating history even for failed transactions simplifies recovery
schemes.

Figure 19.5 shows an example of actions logged during normal operation and ac-
tions performed during failure recovery. In the log shown in the figure, transaction T1
had committed, and transaction T0 had been completely rolled back, before the system
crashed. Observe how the value of data item B is restored during the rollback of T0.
Observe also the checkpoint record, with the list of active transactions containing T0
and T1.

When recovering from a crash, in the redo phase, the system performs a redo of
all operations after the last checkpoint record. In this phase, the list undo-list initially
contains T0 and T1; T1 is removed first when its commit log record is found, while T2
is added when its start log record is found. Transaction T0 is removed from undo-list
when its abort log record is found, leaving only T2 in undo-list. The undo phase scans
the log backwards from the end, and when it finds a log record of T2 updating A, the
old value of A is restored, and a redo-only log record is written to the log. When the

older

Log records
added during

recovery

newer

<T0 start>

T0 rollback
(during normal

operation)
begins

Start log records
found for all

transactions in
undo list

T2 is incomplete
at crash

T2 rolled back
in undo pass

Undo list: T2 

T0 rollback
complete

<T1 start>

<T2 start>

<T0 abort>

<T2 abort>

<T1 commit>

<checkpoint {T0, T1}>

<T0, B, 2000, 2050>

<T1, C, 700, 600>

<T2, A, 500, 400>

<T2, A, 500>

<T0, B, 2000>

Beginning of log

Redo Pass

Undo Pass

End of log

at crash!

Figure 19.5 Example of logged actions and actions during recovery.
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start record for T2 is found, an abort record is added for T2. Since undo-list contains
no more transactions, the undo phase terminates, completing recovery.

19.4.3 Optimizing Commit Processing

Committing a transaction requires that its log records have been forced to disk. If a sep-
arate log flush is done for each transaction, each commit incurs a significant log write
overhead. The rate of transaction commit can be increased using the group-commit
technique. With this technique, instead of attempting to force the log as soon as a
transaction completes, the system waits until several transactions have completed, or
a certain period of time has passed since a transaction completed execution. It then
commits the group of transactions that are waiting, together. Blocks written to the log
on stable storage would contain records of several transactions. By careful choice of
group size and maximum waiting time, the system can ensure that blocks are full when
they are written to stable storage without making transactions wait excessively. This
technique results, on average, in fewer output operations per committed transaction.

If logging is done to hard disk, writing a block of data can take about 5 to 10
milliseconds. As a result, without group commit, at most 100 to 200 transactions can
be committed per second. If records of 10 transactions fit in a disk block, group commit
will allow 1000 to 2000 transactions to be committed per second.

If logging is done to flash, writing a block can take about 100 microseconds, allow-
ing 10,000 transactions to be committed per second without group commit. If records
of 10 transactions fit in a disk block, group commit will allow 100,000 transactions to
be committed per second on flash. A further benefit of group commit with flash is that
it minimizes the number of times the same page is written, which in turn minimizes the
number of erase operations, which can be expensive. (Recall that flash storage systems
remap logical pages to a pre-erased physical page, avoiding delay at the time a page
is written, but the erase operation must be performed eventually as part of garbage
collection of old versions of pages.)

Although group commit reduces the overhead imposed by logging, it results in a
slight delay in commit of transactions that perform updates. When the rate of commits
is low, the delay may not be worth the benefit, but with high rates of transaction commit,
the overall delay in commit is actually reduced by using group commit.

In addition to optimizations done at the database, programmers can also take some
steps to improve transaction commit performance. For example, consider an applica-
tion that loads data into a database. If the application performs each insert as a separate
transaction, the number of inserts that can be performed per second is limited by the
number of blocks writes that can be performed per second. If the application waits for
one insert to finish before starting the next one, group commit does not offer any bene-
fits and in fact may slow the system down. However, in such a case, performance can be
significantly improved by performing a batch of inserts as a single transaction. The log
records corresponding to multiple inserts are then written together in one page. The
number of inserts that can be performed per second then increases correspondingly.
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19.5 Buffer Management

In this section, we consider several subtle details that are essential to the implementa-
tion of a crash-recovery scheme that ensures data consistency and imposes a minimal
amount of overhead on interactions with the database.

19.5.1 Log-Record Buffering

So far, we have assumed that every log record is output to stable storage at the time it
is created. This assumption imposes a high overhead on system execution for several
reasons: Typically, output to stable storage is in units of blocks. In most cases, a log
record is much smaller than a block. Thus, the output of each log record translates to a
much larger output at the physical level. Furthermore, as we saw in Section 19.2.1, the
output of a block to stable storage may involve several output operations at the physical
level.

The cost of outputting a block to stable storage is sufficiently high that it is desirable
to output multiple log records at once. To do so, we write log records to a log buffer
in main memory, where they stay temporarily until they are output to stable storage.
Multiple log records can be gathered in the log buffer and output to stable storage in a
single output operation. The order of log records in the stable storage must be exactly
the same as the order in which they were written to the log buffer.

As a result of log buffering, a log record may reside in only main memory (volatile
storage) for a considerable time before it is output to stable storage. Since such log
records are lost if the system crashes, we must impose additional requirements on the
recovery techniques to ensure transaction atomicity:

• Transaction Ti enters the commit state after the <Ti commit> log record has been
output to stable storage.

• Before the <Ti commit> log record can be output to stable storage, all log records
pertaining to transaction Ti must have been output to stable storage.

• Before a block of data in main memory can be output to the database (in non-
volatile storage), all log records pertaining to data in that block must have been
output to stable storage.

This rule is called the write-ahead logging (WAL) rule. (Strictly speaking, the
WAL rule requires only that the undo information in the log has been output to sta-
ble storage, and it permits the redo information to be written later. The difference
is relevant in systems where undo information and redo information are stored in
separate log records.)

The three rules state situations in which certain log records must have been output
to stable storage. There is no problem resulting from the output of log records earlier
than necessary. Thus, when the system finds it necessary to output a log record to
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stable storage, it outputs an entire block of log records, if there are enough log records
in main memory to fill a block. If there are insufficient log records to fill the block, all
log records in main memory are combined into a partially full block and are output to
stable storage.

Writing the buffered log to disk is sometimes referred to as a log force.

19.5.2 Database Buffering

In Section 19.2.2, we described the use of a two-level storage hierarchy. The system
stores the database in non-volatile storage (disk), and brings blocks of data into main
memory as needed. Since main memory is typically much smaller than the entire
database, it may be necessary to overwrite a block B1 in main memory when another
block B2 needs to be brought into memory. If B1 has been modified, B1 must be output
prior to the input of B2. As discussed in Section 13.5.1 this storage hierarchy is similar
to the standard operating-system concept of virtual memory.

One might expect that transactions would force-output all modified blocks to disk
when they commit. Such a policy is called the force policy. The alternative, the no-force
policy, allows a transaction to commit even if it has modified some blocks that have
not yet been written back to disk. All the recovery algorithms described in this chapter
work correctly even with the no-force policy. The no-force policy allows faster commit
of transactions; moreover it allows multiple updates to accumulate on a block before it
is output to stable storage, which can reduce the number of output operations greatly
for frequently updated blocks. As a result, the standard approach taken by most systems
is the no-force policy.

Similarly, one might expect that blocks modified by a transaction that is still active
should not be written to disk. This policy is called the no-steal policy. The alternative,
the steal policy, allows the system to write modified blocks to disk even if the transac-
tions that made those modifications have not all committed. As long as the write-ahead
logging rule is followed, all the recovery algorithms we study in the chapter work cor-
rectly even with the steal policy. Further, the no-steal policy does not work with trans-
actions that perform a large number of updates, since the buffer may get filled with
updated pages that cannot be evicted to disk, and the transaction cannot then proceed.
As a result, the standard approach taken by most systems is the steal policy.

To illustrate the need for the write-ahead logging requirement, consider our banking
example with transactions T0 and T1. Suppose that the state of the log is:

<T0 start>
<T0, A, 1000, 950>

and that transaction T0 issues a read(B). Assume that the block on which B resides is
not in main memory and that main memory is full. Suppose that the block on which A
resides is chosen to be output to disk. If the system outputs this block to disk and then a
crash occurs, the values in the database for accounts A, B, and C are $950, $2000, and
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$700, respectively. This database state is inconsistent. However, because of the WAL
requirements, the log record:

<T0, A, 1000, 950>

must be output to stable storage prior to output of the block on which A resides. The
system can use the log record during recovery to bring the database back to a consistent
state.

When a block B1 is to be output to disk, all log records pertaining to data in B1
must be output to stable storage before B1 is output. It is important that no writes to
the block B1 be in progress while the block is being output, since such a write could
violate the write-ahead logging rule. We can ensure that there are no writes in progress
by using a special means of locking:

• Before a transaction performs a write on a data item, it acquires an exclusive lock
on the block in which the data item resides. The lock is released immediately after
the update has been performed.

• The following sequence of actions is taken when a block is to be output:

° Obtain an exclusive lock on the block, to ensure that no transaction is perform-
ing a write on the block.

° Output log records to stable storage until all log records pertaining to block B1
have been output.

° Output block B1 to disk.

° Release the lock once the block output has completed.

Locks on buffer blocks are unrelated to locks used for concurrency control of trans-
actions, and releasing them in a non-two-phase manner does not have any implications
on transaction serializability. These locks, and other similar locks that are held for a
short duration, are often referred to as latches.

Locks on buffer blocks can also be used to ensure that buffer blocks are not up-
dated, and log records are not generated, while a checkpoint is in progress. This re-
striction may be enforced by acquiring exclusive locks on all buffer blocks, as well as
an exclusive lock on the log, before the checkpoint operation is performed. These locks
can be released as soon as the checkpoint operation has completed.

Database systems usually have a process that continually cycles through the buffer
blocks, outputting modified buffer blocks back to disk. The above locking protocol must
of course be followed when the blocks are output. As a result of continuous output of
modified blocks, the number of dirty blocks in the buffer, that is, blocks that have been
modified in the buffer but have not been subsequently output, is minimized. Thus, the
number of blocks that have to be output during a checkpoint is minimized; further,
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when a block needs to be evicted from the buffer, it is likely that there will be a non-
dirty block available for eviction, allowing the input to proceed immediately instead of
waiting for an output to complete.

19.5.3 Operating System Role in Buffer Management

We can manage the database buffer by using one of two approaches:

1. The database system reserves part of main memory to serve as a buffer that it,
rather than the operating system, manages. The database system manages data-
block transfer in accordance with the requirements in Section 19.5.2.

This approach has the drawback of limiting flexibility in the use of main mem-
ory. The buffer must be kept small enough that other applications have sufficient
main memory available for their needs. However, even when the other applica-
tions are not running, the database will not be able to make use of all the available
memory. Likewise, non-database applications may not use that part of main mem-
ory reserved for the database buffer, even if some of the pages in the database
buffer are not being used.

2. The database system implements its buffer within the virtual memory provided
by the operating system. Since the operating system knows about the memory
requirements of all processes in the system, ideally it should be in charge of
deciding what buffer blocks must be force-output to disk, and when. But, to en-
sure the write-ahead logging requirements in Section 19.5.1, the operating system
should not write out the database buffer pages itself, but instead should request
the database system to force-output the buffer blocks. The database system in
turn would force-output the buffer blocks to the database, after writing relevant
log records to stable storage.

Unfortunately, almost all current-generation operating systems retain com-
plete control of virtual memory. The operating system reserves space on disk for
storing virtual-memory pages that are not currently in main memory; this space
is called swap space. If the operating system decides to output a block Bx, that
block is output to the swap space on disk, and there is no way for the database
system to get control of the output of buffer blocks.

Therefore, if the database buffer is in virtual memory, transfers between
database files and the buffer in virtual memory must be managed by the database
system, which enforces the write-ahead logging requirements that we discussed.

This approach may result in extra output of data to disk. If a block Bx is output
by the operating system, that block is not output to the database. Instead, it is
output to the swap space for the operating system’s virtual memory. When the
database system needs to output Bx, the operating system may need first to input
Bx from its swap space. Thus, instead of a single output of Bx, there may be two
outputs of Bx (one by the operating system, and one by the database system) and
one extra input of Bx.
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Although both approaches suffer from some drawbacks, one or the other must be
chosen unless the operating system is designed to support the requirements of database
logging.

19.5.4 Fuzzy Checkpointing

The checkpointing technique described in Section 19.3.6 requires that all updates to the
database be temporarily suspended while the checkpoint is in progress. If the number
of pages in the buffer is large, a checkpoint may take a long time to finish, which can
result in an unacceptable interruption in processing of transactions.

To avoid such interruptions, the checkpointing technique can be modified to permit
updates to start once the checkpoint record has been written, but before the modified
buffer blocks are written to disk. The checkpoint thus generated is a fuzzy checkpoint.

Since pages are output to disk only after the checkpoint record has been written, it
is possible that the system could crash before all pages are written. Thus, a checkpoint
on disk may be incomplete. One way to deal with incomplete checkpoints is this: The
location in the log of the checkpoint record of the last completed checkpoint is stored in
a fixed position, last-checkpoint, on disk. The system does not update this information
when it writes the checkpoint record. Instead, before it writes the checkpoint record,
it creates a list of all modified buffer blocks. The last-checkpoint information is updated
only after all buffer blocks in the list of modified buffer blocks have been output to disk.

Even with fuzzy checkpointing, a buffer block must not be updated while it is being
output to disk, although other buffer blocks may be updated concurrently. The write-
ahead log protocol must be followed so that (undo) log records pertaining to a block
are on stable storage before the block is output.

19.6 Failure with Loss of Non-Volatile Storage

Until now, we have considered only the case where a failure results in the loss of infor-
mation residing in volatile storage while the content of the non-volatile storage remains
intact. Although failures in which the content of non-volatile storage is lost are rare,
we nevertheless need to be prepared to deal with this type of failure. In this section, we
discuss only disk storage. Our discussions apply as well to other non-volatile storage
types.

The basic scheme is to dump the entire contents of the database to stable storage
periodically—say, once per day. For example, we may dump the database to one or
more magnetic tapes. If a failure occurs that results in the loss of physical database
blocks, the system uses the most recent dump in restoring the database to a previous
consistent state. Once this restoration has been accomplished, the system uses the log
to bring the database system to the most recent consistent state.

One approach to database dumping requires that no transaction may be active
during the dump procedure, and it uses a procedure similar to checkpointing:
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1. Output all log records currently residing in main memory onto stable storage.

2. Output all buffer blocks onto the disk.

3. Copy the contents of the database to stable storage.

4. Output a log record <dump> onto the stable storage.

Steps 1, 2, and 4 correspond to the three steps used for checkpoints in Section 19.3.6.
To recover from the loss of non-volatile storage, the system restores the database

to disk by using the most recent dump. Then, it consults the log and redoes all the
actions since the most recent dump occurred. Notice that no undo operations need to
be executed.

In case of a partial failure of non-volatile storage, such as the failure of a single block
or a few blocks, only those blocks need to be restored, and redo actions performed only
for those blocks.

A dump of the database contents is also referred to as an archival dump, since we
can archive the dumps and use them later to examine old states of the database. Dumps
of a database and checkpointing of buffers are similar.

Most database systems also support an SQL dump, which writes out SQL DDL
statements and SQL insert statements to a file, which can then be reexecuted to re-create
the database. Such dumps are useful when migrating data to a different instance of the
database, or to a different version of the database software, since the physical locations
and layout may be different in the other database instance or database software version.

The simple dump procedure described here is costly for the following two reasons.
First, the entire database must be copied to stable storage, resulting in considerable data
transfer. Second, since transaction processing is halted during the dump procedure,
CPU cycles are wasted. Fuzzy dump schemes have been developed that allow transac-
tions to be active while the dump is in progress. They are similar to fuzzy-checkpointing
schemes; see the bibliographical notes for more details.

19.7 High Availability Using Remote Backup Systems

Traditional transaction-processing systems are centralized or client–server systems.
Such systems are vulnerable to environmental disasters such as fire, flooding, or earth-
quakes. Today’s applications need transaction-processing systems that can function in
spite of system failures or environmental disasters. Such systems must provide high
availability; that is, the time for which the system is unusable must be extremely short.

We can achieve high availability by performing transaction processing at one site,
called the primary site, and having a remote backup site where all the data from the pri-
mary site are replicated. The remote backup site is sometimes also called the secondary
site. The remote site must be kept synchronized with the primary site as updates are
performed at the primary. We achieve synchronization by sending all log records from
the primary site to the remote backup site. The remote backup site must be physically
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Figure 19.6 Architecture of remote backup system.

separated from the primary—for example, we can locate it in a different state—so that a
disaster such as a fire, flood or an earthquake at the primary does not also damage the
remote backup site.3 Figure 19.6 shows the architecture of a remote backup system.

When the primary site fails, the remote backup site takes over processing. First,
however, it performs recovery, using its (perhaps outdated) copy of the data from the
primary and the log records received from the primary. In effect, the remote backup
site is performing recovery actions that would have been performed at the primary site
when the latter recovered. Standard recovery algorithms, with minor modifications, can
be used for recovery at the remote backup site. Once recovery has been performed, the
remote backup site starts processing transactions.

Availability is greatly increased over a single-site system, since the system can re-
cover even if all data at the primary site are lost.

Several issues must be addressed in designing a remote backup system:

• Detection of failure. It is important for the remote backup system to detect when
the primary has failed. Failure of communication lines can fool the remote backup
into believing that the primary has failed. To avoid this problem, we maintain sev-
eral communication links with independent modes of failure between the primary
and the remote backup. For example, several independent network connections,
including perhaps a modem connection over a telephone line, may be used. These
connections may be backed up via manual intervention by operators, who can
communicate over the telephone system.

• Transfer of control. When the primary fails, the backup site takes over processing
and becomes the new primary. The decision to transfer control can be done man-
ually or can be automated using software provided by database system vendors.

Queries must now be sent to the new primary. To do so automatically, many sys-
tems assign the IP address of the old primary to the new primary. Existing database
connections will fail, but when an application tries to reopen a connection it gets
connected to the new primary. Some systems instead use a high availability proxy

3Since earthquakes can cause damage over a wide area, the backup is generally required to be in a different seismic
zone.
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machine. Application clients do not connect to the database directly, but connect
through the proxy. The proxy transparently routes application requests to the cur-
rent primary. (There can be more than one machine acting as proxy at the same
time, to deal with a situation where a proxy machine fails; requests can be routed
through any active proxy machine.)

When the original primary site recovers, it can either play the role of remote
backup or it can take over the role of primary site again. In either case, the old
primary must receive a log of updates carried out by the backup site while the old
primary was down. The old primary must catch up with the updates in the log by
applying them locally. The old primary can then act as a remote backup site. If
control must be transferred back, the new primary (which is the old backup site)
can pretend to have failed, resulting in the old primary taking over.

• Time to recover. If the log at the remote backup grows large, recovery will take a
long time. The remote backup site can periodically process the redo log records
that it has received and can perform a checkpoint so that earlier parts of the log
can be deleted. The delay before the remote backup takes over can be significantly
reduced as a result.

A hot-spare configuration can make takeover by the backup site almost instanta-
neous. In this configuration, the remote backup site continually processes redo log
records as they arrive, applying the updates locally. As soon as the failure of the
primary is detected, the backup site completes recovery by rolling back incomplete
transactions; it is then ready to process new transactions.

• Time to commit. To ensure that the updates of a committed transaction are durable,
a transaction must not be declared committed until its log records have reached
the backup site. This delay can result in a longer wait to commit a transaction,
and some systems therefore permit lower degrees of durability. The degrees of
durability can be classified as follows:

° One-safe. A transaction commits as soon as its commit log record is written to
stable storage at the primary site.

The problem with this scheme is that the updates of a committed transac-
tion may not have made it to the backup site when the backup site takes over
processing. Thus, the updates may appear to be lost. When the primary site
recovers, the lost updates cannot be merged in directly, since the updates may
conflict with later updates performed at the backup site. Thus, human inter-
vention may be required to bring the database to a consistent state.

° Two-very-safe. A transaction commits as soon as its commit log record is written
to stable storage at the primary and the backup site.

The problem with this scheme is that transaction processing cannot proceed
if either the primary or the backup site is down. Thus, availability is actually
less than in the single-site case, although the probability of data loss is much
less.
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° Two-safe. This scheme is the same as two-very-safe if both primary and backup
sites are active. If only the primary is active, the transaction is allowed to com-
mit as soon as its commit log record is written to stable storage at the primary
site.

This scheme provides better availability than does two-very-safe, while avoid-
ing the problem of lost transactions faced by the one-safe scheme. It results in
a slower commit than the one-safe scheme, but the benefits generally outweigh
the cost.

Most database systems today provide support for replication to a backup copy,
along with support for hot spares and quick switchover from the primary to the backup.
Many database systems also allow replication to more than one backup; such a feature
can be used to provide a local backup to deal with machine failures, along with a remote
backup to deal with disasters.

Although update transactions cannot be executed at a backup server, many
database systems allow read-only queries to be executed at backup servers. The load
at the primary can be reduced by executing at least some of the read-only transactions
at the backup. Snapshot-isolation can be used at the backup server to give readers a
transaction consistent view of the data, while ensuring that updates are never blocked
from being applied at the backup.

Remote backup is also supported at the level of file systems, typically by network
file system or NAS implementations, as well as at the disk level, typically by storage
area network (SAN) implementations. Remote backups are kept synchronized with the
primary by ensuring that all block writes performed at the primary are also replicated
at the backup. File-system level and disk level backups can be used to replicate the
database data as well as log files. If the primary fails, the backup system can recover
using its replica of the data and log files. However, to ensure that recovery will work
correctly at the backup site, the file system level replication must be done in a way
that ensures that the write-ahead logging (WAL) rule continues to hold. To do so, if
the database forces a block to disk and then performs some other update actions at
the primary, the block must also be forced to disk at the backup, before subsequent
updates are performed at the backup system.

An alternative way of achieving high availability is to use a distributed database,
with data replicated at more than one site. Transactions are then required to update all
replicas of any data item that they update. We study distributed databases, including
replication, in Chapter 23. When properly implemented, distributed databases can pro-
vide a higher level of availability than remote backup systems, but are more complex
and expensive to implement and maintain.

End-users typically interact with applications, rather than directly with database.
To ensure availability of an application, as well as to support handling of a large number
of requests per second, applications may run on multiple application servers. Requests
from clients are load-balanced across the servers. The load-balancer ensures that all
requests from a particular client are sent to a single application server, as long as the
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application server is functional. If an application server fails, client requests are routed
to other application servers, so users can continue to use the application. Although
users may notice a small interruption, application servers can ensure that a user is not
forced to login again, by sharing session information across application servers.

19.8 Early Lock Release and Logical Undo Operations

Any index used in processing a transaction, such as a B+-tree, can be treated as normal
data, but to increase concurrency, we can use the B+-tree concurrency-control algo-
rithm described in Section 18.10.2 to allow locks to be released early, in a non-two-phase
manner. As a result of early lock release, it is possible that a value in a B+-tree node
is updated by one transaction T1, which inserts an entry (V 1, R1), and subsequently
by another transaction T2, which inserts an entry (V 2, R2) in the same node, moving
the entry (V 1, R1) even before T1 completes execution.4 At this point, we cannot undo
transaction T1 by replacing the contents of the node with the old value prior to T1 per-
forming its insert, since that would also undo the insert performed by T2; transaction
T2 may still commit (or may have already committed). In this example, the only way to
undo the effect of insertion of (V 1, R1) is to execute a corresponding delete operation.

In the rest of this section, we see how to extend the recovery algorithm of Section
19.4 to support early lock release.

19.8.1 Logical Operations

The insertion and deletion operations are examples of a class of operations that require
logical undo operations since they release locks early; we call such operations logical
operations. Such early lock release is important not only for indices, but also for oper-
ations on other system data structures that are accessed and updated very frequently;
examples include data structures that track the blocks containing records of a relation,
the free space in a block, and the free blocks in a database. If locks were not released
early after performing operations on such data structures, transactions would tend to
run serially, affecting system performance.

The theory of conflict serializability has been extended to operations, based on
what operations conflict with what other operations. For example, two insert opera-
tions on a B+-tree do not conflict if they insert different key values, even if they both
update overlapping areas of the same index page. However, insert and delete opera-
tions conflict with other insert and delete operations, as well as with read operations,
if they use the same key value. See the bibliographical notes for references to more
information on this topic.

Operations acquire lower-level locks while they execute but release them when they
complete; the corresponding transaction must however retain a higher-level lock in a

4Recall that an entry consists of a key value and a record identifier, or a key value and a record in the case of the leaf
level of a B+-tree file organization.
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two-phase manner to prevent concurrent transactions from executing conflicting ac-
tions. For example, while an insert operation is being performed on a B+-tree page,
a short-term lock is obtained on the page, allowing entries in the page to be shifted
during the insert; the short-term lock is released as soon as the page has been updated.
Such early lock release allows a second insert to execute on the same page. However,
each transaction must obtain a lock on the key values being inserted or deleted and
retain it in a two-phase manner, to prevent a concurrent transaction from executing a
conflicting read, insert, or delete operation on the same key value.

Once the lower-level lock is released, the operation cannot be undone by using the
old values of updated data items and must instead be undone by executing a compen-
sating operation; such an operation is called a logical undo operation. It is important
that the lower-level locks acquired during an operation are sufficient to perform a sub-
sequent logical undo of the operation, for reasons explained later in Section 19.8.4.

19.8.2 Logical Undo Log Records

To allow logical undo of operations, before an operation is performed to modify an
index, the transaction creates a log record <Ti, Oj, operation-begin>, where Oj is a
unique identifier for the operation instance.5 While the system is executing the oper-
ation, it creates update log records in the normal fashion for all updates performed
by the operation. Thus, the usual old-value and new-value information is written out
as usual for each update performed by the operation; the old-value information is re-
quired in case the transaction needs to be rolled back before the operation completes.
When the operation finishes, it writes an operation-end log record of the form <Ti, Oj,
operation-end, U>, where the U denotes undo information.

For example, if the operation inserted an entry in a B+-tree, the undo information
U would indicate that a deletion operation is to be performed and would identify the
B+-tree and what entry to delete from the tree. Such logging of information about op-
erations is called logical logging. In contrast, logging of old-value and new-value infor-
mation is called physical logging, and the corresponding log records are called physical
log records.

Note that in the above scheme, logical logging is used only for undo, not for redo;
redo operations are performed exclusively using physical log record. This is because the
state of the database after a system failure may reflect some updates of an operation and
not other operations, depending on what buffer blocks had been written to disk before
the failure. Data structures such as B+-trees would not be in a consistent state, and
neither logical redo nor logical undo operations can be performed on an inconsistent
data structure. To perform logical redo or undo, the database state on disk must be
operation consistent, that is, it should not have partial effects of any operation. However,
as we shall see, the physical redo processing in the redo phase of the recovery scheme,
along with undo processing using physical log records, ensures that the parts of the

5The position in the log of the operation-begin log record can be used as the unique identifier.
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database accessed by a logical undo operation are in an operation consistent state
before the logical undo operation is performed.

An operation is said to be idempotent if executing it several times in a row gives the
same result as executing it once. Operations such as inserting an entry into a B+-tree
may not be idempotent, and the recovery algorithm must therefore make sure that an
operation that has already been performed is not performed again. On the other hand,
a physical log record is idempotent, since the corresponding data item would have the
same value regardless of whether the logged update is executed one or multiple times.

19.8.3 Transaction Rollback with Logical Undo

When rolling back a transaction Ti, the log is scanned backwards, and log records
corresponding to Ti are processed as follows:

1. Physical log records encountered during the scan are handled as described earlier,
except those that are skipped as described shortly. Incomplete logical operations
are undone using the physical log records generated by the operation.

2. Completed logical operations, identified by operation-end records, are rolled
back differently. Whenever the system finds a log record <Ti, Oj, operation-end,
U>, it takes special actions:

a. It rolls back the operation by using the undo information U in the log
record. It logs the updates performed during the rollback of the operation
just like updates performed when the operation was first executed.

At the end of the operation rollback, instead of generating a log record
<Ti, Oj, operation-end, U>, the database system generates a log record
<Ti, Oj, operation-abort>.

b. As the backward scan of the log continues, the system skips all log records
of transaction Ti until it finds the log record <Ti, Oj, operation-begin>.
After it finds the operation-begin log record, it processes log records of
transaction Ti in the normal manner again.

Observe that the system logs physical undo information for the updates per-
formed during rollback, instead of using redo-only compensation log records.
This is because a crash may occur while a logical undo is in progress, and on re-
covery the system has to complete the logical undo; to do so, restart recovery will
undo the partial effects of the earlier undo, using the physical undo information,
and then perform the logical undo again.

Observe also that skipping over physical log records when the operation-end
log record is found during rollback ensures that the old values in the physical log
record are not used for rollback once the operation completes.
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3. If the system finds a record <Ti, Oj, operation-abort>, it skips all preceding re-
cords (including the operation-end record for Oj) until it finds the record<Ti, Oj,
operation-begin>.

An operation-abort log record would be found only if a transaction that is
being rolled back had been partially rolled back earlier. Recall that logical op-
erations may not be idempotent, and hence a logical undo operation must not
be performed multiple times. These preceding log records must be skipped to
prevent multiple rollback of the same operation in case there had been a crash
during an earlier rollback and the transaction had already been partly rolled back.

4. As before, when the <Ti start> log record has been found, the transaction roll-
back is complete, and the system adds a record <Ti abort> to the log.

If a failure occurs while a logical operation is in progress, the operation-end log
record for the operation will not be found when the transaction is rolled back. However,
for every update performed by the operation, undo information—in the form of the old
value in the physical log records—is available in the log. The physical log records will
be used to roll back the incomplete operation.

Now suppose an operation undo was in progress when the system crash occurred,
which could happen if a transaction was being rolled back when the crash occurred.

<T0, C, 700, 600> 

<T1, C, 600, 400>

<T0, C, 400, 500> 

<T0, B, 2000>

<T0 start>

If T0 aborts before 
operation O1 ends, undo of 
update to C will be physical

T0 has completed operation O1 
on C, releases lower-level 

lock; physical undo cannot be 
done anymore, logical undo 

will add 100 to C

T1 can update C since T0 has 
released lower-level lock on C

Logical undo of O1 adds 100 
on C

T1 releases lower-level lock
on C 

O1 undo complete

T  
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<T0, abort> 
<T1, commit>

<T0, B, 2000, 2050>
<T0, O1, operation-begin> 

<T0, O2, operation-begin>

<T0, O1, operation-abort>

<T1, O2, operation-end, (C, +200)>

<T0, O1, operation-end, (C, +100)>

Beginning of log

0

Figure 19.7 Transaction rollback with logical undo operations.
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Then the physical log records written during operation undo would be found, and the
partial operation undo would itself be undone using these physical log records. Con-
tinuing in the backward scan of the log, the original operation’s operation-end record
would then be found, and the operation undo would be executed again. Rolling back
the partial effects of the earlier undo operation using the physical log records brings
the database to a consistent state, allowing the logical undo operation to be executed
again.

Figure 19.7 shows an example of a log generated by two transactions, which add or
subtract a value from a data item. Early lock release on the data item C by transaction
T0 after operation O1 completes allows transaction T1 to update the data item using
O2, even before T0 completes, but necessitates logical undo. The logical undo operation
needs to add or subtract a value from the data item instead of restoring an old value to
the data item.

The annotations on the figure indicate that before an operation completes, rollback
can perform physical undo; after the operation completes and releases lower-level locks,
the undo must be performed by subtracting or adding a value, instead of restoring the
old value. In the example in the figure, T0 rolls back operation O1 by adding 100 to C;
on the other hand, for data item B, which was not subject to early lock release, undo is
performed physically. Observe that T1, which had performed an update on C, commits,
and its update O2, which added 200 to C and was performed before the undo of O1,
has persisted even though O1 has been undone.

Figure 19.8 shows an example of recovery from a crash with logical undo logging.
In this example, operation T1 was active and executing operation O4 at the time of
checkpoint. In the redo pass, the actions of O4 that are after the checkpoint log record
are redone. At the time of crash, operation O5 was being executed by T2, but the oper-
ation was not complete. The undo-list contains T1 and T2 at the end of the redo pass.
During the undo pass, the undo of operation O5 is carried out using the old value in
the physical log record, setting C to 400; this operation is logged using a redo-only log
record. The start record of T2 is encountered next, resulting in the addition of <T2
abort> to the log and removal of T2 from undo-list.

The next log record encountered is the operation-end record of O4; logical undo
is performed for this operation by adding 300 to C, which is logged physically, and
an operation-abort log record is added for O4. The physical log records that were
part of O4 are skipped until the operation-begin log record for O4 is encountered.
In this example, there are no other intervening log records, but in general log records
from other transactions may be found before we reach the operation-begin log record;
such log records should of course not be skipped (unless they are part of a completed
operation for the corresponding transaction and the algorithm skips those records).
After the operation-begin log record is found for O4, a physical log record is found
for T1, which is rolled back physically. Finally the start log record for T1 is found; this
results in < T1 abort> being added to the log and T1 being deleted from undo-list. At
this point undo-list is empty, and the undo phase is complete.
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Figure 19.8 Failure recovery actions with logical undo operations.

19.8.4 Concurrency Issues in Logical Undo

As mentioned earlier, it is important that the lower-level locks acquired during an op-
eration are sufficient to perform a subsequent logical undo of the operation; otherwise
concurrent operations that execute during normal processing may cause problems in
the undo phase. For example, suppose the logical undo of operation O1 of transaction
T1 can conflict at the data item level with a concurrent operation O2 of transaction T2,
and O1 completes while O2 does not. Assume also that neither transaction had commit-
ted when the system crashed. The physical update log records of O2 may appear before
and after the operation-end record for O1, and during recovery updates done during
the logical undo of O1 may get fully or partially overwritten by old values during the
physical undo of O2. This problem cannot occur if O1 had obtained all the lower-level
locks required for the logical undo of O1, since then there cannot be such a concurrent
O2.

If both the original operation and its logical undo operation access a single page
(such operations are called physiological operations and are discussed in Section 19.9),
the locking requirement above is met easily. Otherwise the details of the specific opera-
tion need to be considered when deciding on what lower-level locks need to be obtained.
For example, update operations on a B+-tree could obtain a short-term lock on the root,
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to ensure that operations execute serially. See the bibliographical notes for references
on B+-tree concurrency control and recovery exploiting logical undo logging. See the
bibliographical notes also for references to an alternative approach, called multilevel
recovery, which relaxes this locking requirement.

19.9 ARIES

The state of the art in recovery methods is best illustrated by the ARIES recovery
method. The recovery technique that we described in Section 19.4, along with the log-
ical undo logging techniques described in Section 19.8, are modeled after ARIES, but
they have been simplified significantly to bring out key concepts and make them easier
to understand. In contrast, ARIES uses a number of techniques to reduce the time taken
for recovery and to reduce the overhead of checkpointing. In particular, ARIES is able
to avoid redoing many logged operations that have already been applied and to reduce
the amount of information logged. The price paid is greater complexity; the benefits
are worth the price.

The four major differences between ARIES and the recovery algorithm presented
earlier are that ARIES:

1. Uses a log sequence number (LSN) to identify log records and stores LSNs in
database pages to identify which operations have been applied to a database page.

2. Supports physiological redo operations, which are physical in that the affected
page is physically identified but can be logical within the page.

For instance, the deletion of a record from a page may result in many other
records in the page being shifted, if a slotted page structure (Section 13.2.2) is
used. With physical redo logging, all bytes of the page affected by the shifting of
records must be logged. With physiological logging, the deletion operation can
be logged, resulting in a much smaller log record. Redo of the deletion operation
would delete the record and shift other records as required.

3. Uses a dirty page table to minimize unnecessary redos during recovery. As men-
tioned earlier, dirty pages are those that have been updated in memory, and the
disk version is not up-to-date.

4. Uses a fuzzy-checkpointing scheme that records only information about dirty
pages and associated information and does not even require writing of dirty pages
to disk. It flushes dirty pages in the background, continuously, instead of writing
them during checkpoints.

In the rest of this section, we provide an overview of ARIES. The bibliographical notes
list some references that provide a complete description of ARIES.
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19.9.1 Data Structures

Each log record in ARIES has a log sequence number (LSN) that uniquely identifies
the record. The number is conceptually just a logical identifier whose value is greater
for log records that occur later in the log. In practice, the LSN is generated in such a
way that it can also be used to locate the log record on disk. Typically, ARIES splits a
log into multiple log files, each of which has a file number. When a log file grows to
some limit, ARIES appends further log records to a new log file; the new log file has a
file number that is higher by 1 than the previous log file. The LSN then consists of a
file number and an offset within the file.

Each page also maintains an identifier called the PageLSN. Whenever an update
operation (whether physical or physiological) occurs on a page, the operation stores
the LSN of its log record in the PageLSN field of the page. During the redo phase of
recovery, any log records with LSN less than or equal to the PageLSN of a page should
not be executed on the page, since their actions are already reflected on the page. In
combination with a scheme for recording PageLSNs as part of checkpointing, which we
present later, ARIES can avoid even reading many pages for which logged operations
are already reflected on disk. Thereby, recovery time is reduced significantly.

The PageLSN is essential for ensuring idempotence in the presence of physiological
redo operations, since reapplying a physiological redo that has already been applied to
a page could cause incorrect changes to a page.

Pages should not be flushed to disk while an update is in progress, since physio-
logical operations cannot be redone on the partially updated state of the page on disk.
Therefore, ARIES uses latches on buffer pages to prevent them from being written to
disk while they are being updated. It releases the buffer page latch only after the update
is completed and the log record for the update has been written to the log.

Each log record also contains the LSN of the previous log record of the same trans-
action. This value, stored in the PrevLSN field, permits log records of a transaction to
be fetched backward, without reading the whole log. There are special redo-only log
records generated during transaction rollback, called compensation log records (CLRs)
in ARIES. These serve the same purpose as the redo-only log records in our earlier re-
covery scheme. In addition, CLRs serve the role of the operation-abort log records in
our scheme. The CLRs have an extra field, called the UndoNextLSN, that records the
LSN of the log that needs to be undone next, when the transaction is being rolled back.
This field serves the same purpose as the operation identifier in the operation-abort
log record in our earlier recovery scheme, which helps to skip over log records that
have already been rolled back.

The DirtyPageTable contains a list of pages that have been updated in the database
buffer. For each page, it stores the PageLSN and a field called the RecLSN, which helps
identify log records that have been applied already to the version of the page on disk.
When a page is inserted into the DirtyPageTable (when it is first modified in the buffer
pool), the value of RecLSN is set to the current end of log. Whenever the page is flushed
to disk, the page is removed from the DirtyPageTable.
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A checkpoint log record contains the DirtyPageTable and a list of active transac-
tions. For each transaction, the checkpoint log record also notes LastLSN, the LSN of
the last log record written by the transaction. A fixed position on disk also notes the
LSN of the last (complete) checkpoint log record.

Figure 19.9 illustrates some of the data structures used in ARIES. The log records
shown in the figure are prefixed by their LSN; these may not be explicitly stored, but
inferred from the position in the log, in an actual implementation. The data item iden-
tifier in a log record is shown in two parts, for example, 4894.1; the first identifies the
page, and the second part identifies a record within the page (we assume a slotted page
record organization within a page). Note that the log is shown with the newest records
on top, since older log records, which are on disk, are shown lower in the figure.

Each page (whether in the buffer or on disk) has an associated PageLSN field. You
can verify that the LSN for the last log record that updated page 4894 is 7567. By com-
paring PageLSNs for the pages in the buffer with the PageLSNs for the corresponding
pages in stable storage, you can observe that the DirtyPageTable contains entries for
all pages in the buffer that have been modified since they were fetched from stable stor-
age. The RecLSN entry in the DirtyPageTable reflects the LSN at the end of the log

7567

7565

2345

7567: <T145,4894.1, 40, 60>

7566: <T143, commit>

(PrevLSN and UndoNextLSN
fields not shown)

PageID PageLSN RecLSN

Page 9923Page 4894

Page 7200

Database Buffer

Stable data Stable log

Dirty Page Table

Log Buffer

Page 4894

Page 9923

Page 7200

4566

2345

4404

7563: <T145begin>
7564: <T145,4894.1, 20, 40>

7565: <T143,7200.2, 60, 80>

4894
7200

7567
7565

7564
7565

Figure 19.9 Data structures used in ARIES.
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when the page was added to DirtyPageTable and would be greater than or equal to the
PageLSN for that page on stable storage.

19.9.2 Recovery Algorithm

ARIES recovers from a system crash in three passes.

• Analysis pass: This pass determines which transactions to undo, which pages were
dirty at the time of the crash, and the LSN from which the redo pass should start.

• Redo pass: This pass starts from a position determined during analysis and per-
forms a redo, repeating history, to bring the database to a state it was in before the
crash.

• Undo pass: This pass rolls back all transactions that were incomplete at the time
of crash.

19.9.2.1 Analysis Pass

The analysis pass finds the last complete checkpoint log record and reads in the Dirty-
PageTable from this record. It then sets RedoLSN to the minimum of the RecLSNs of
the pages in the DirtyPageTable. If there are no dirty pages, it sets RedoLSN to the LSN
of the checkpoint log record. The redo pass starts its scan of the log from RedoLSN. All
the log records earlier than this point have already been applied to the database pages
on disk. The analysis pass initially sets the list of transactions to be undone, undo-list,
to the list of transactions in the checkpoint log record. The analysis pass also reads
from the checkpoint log record the LSNs of the last log record for each transaction in
undo-list.

The analysis pass continues scanning forward from the checkpoint. Whenever it
finds a log record for a transaction not in the undo-list, it adds the transaction to undo-
list. Whenever it finds a transaction end log record, it deletes the transaction from
undo-list. All transactions left in undo-list at the end of analysis have to be rolled back
later, in the undo pass. The analysis pass also keeps track of the last record of each
transaction in undo-list, which is used in the undo pass.

The analysis pass also updates DirtyPageTable whenever it finds a log record for
an update on a page. If the page is not in DirtyPageTable, the analysis pass adds it to
DirtyPageTable and sets the RecLSN of the page to the LSN of the log record.

19.9.2.2 Redo Pass

The redo pass repeats history by replaying every action that is not already reflected in
the page on disk. The redo pass scans the log forward from RedoLSN. Whenever it
finds an update log record, it takes this action:
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• If the page is not in DirtyPageTable or if the LSN of the update log record is less
than the RecLSN of the page in DirtyPageTable, then the redo pass skips the log
record.

• Otherwise the redo pass fetches the page from disk, and if the PageLSN is less than
the LSN of the log record, it redoes the log record.

Note that if either of the tests is negative, then the effects of the log record have
already appeared on the page; otherwise the effects of the log record are not reflected on
the page. Since ARIES allows non-idempotent physiological log records, a log record
should not be redone if its effect is already reflected on the page. If the first test is
negative, it is not even necessary to fetch the page from disk to check its PageLSN.

19.9.2.3 Undo Pass and Transaction Rollback

The undo pass is relatively straightforward. It performs a single backward scan of the
log, undoing all transactions in undo-list. The undo pass examines only log records of
transactions in undo-list; the last LSN recorded during the analysis pass is used to find
the last log record for each transaction in undo-list.

Whenever an update log record is found, it is used to perform an undo (whether
for transaction rollback during normal processing, or during the restart undo pass).
The undo pass generates a CLR containing the undo action performed (which must
be physiological). It sets the UndoNextLSN of the CLR to the PrevLSN value of the
update log record.

If a CLR is found, its UndoNextLSN value indicates the LSN of the next log record
to be undone for that transaction; later log records for that transaction have already
been rolled back. For log records other than CLRs, the PrevLSN field of the log record
indicates the LSN of the next log record to be undone for that transaction. The next
log record to be processed at each stop in the undo pass is the maximum, across all
transactions in undo-list, of next log record LSN.

Figure 19.10 illustrates the recovery actions performed by ARIES on an example
log. We assume that the last completed checkpoint pointer on disk points to the check-
point log record with LSN 7568. The PrevLSN values in the log records are shown using
arrows in the figure, while the UndoNextLSN value is shown using a dashed arrow for
the one compensation log record, with LSN 7565, in the figure. The analysis pass would
start from LSN 7568, and when it is complete, RedoLSN would be 7564. Thus, the redo
pass must start at the log record with LSN 7564. Note that this LSN is less than the
LSN of the checkpoint log record, since the ARIES checkpointing algorithm does not
flush modified pages to stable storage. The DirtyPageTable at the end of analysis would
include pages 4894, 7200 from the checkpoint log record, and 2390 which is updated
by the log record with LSN 7570. At the end of the analysis pass, the list of transactions
to be undone consists of only T145 in this example.

The redo pass for the preceding example starts from LSN 7564 and performs redo
of log records whose pages appear in DirtyPageTable. The undo pass needs to undo
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Figure 19.10 Recovery actions in ARIES.

only transaction T145, and hence it starts from its LastLSN value 7567 and continues
backwards until the record <T145 start> is found at LSN 7563.

19.9.3 Other Features

Among other key features that ARIES provides are:

• Nested top actions: ARIES allows the logging of operations that should not be un-
done even if a transaction gets rolled back; for example, if a transaction allocates a
page to a relation, even if the transaction is rolled back, the page allocation should
not be undone since other transactions may have stored records in the page. Such
operations that should not be undone are called nested top actions. Such opera-
tions can be modeled as operations whose undo action does nothing. In ARIES,
such operations are implemented by creating a dummy CLR whose UndoNextLSN
is set such that transaction rollback skips the log records generated by the opera-
tion.

• Recovery independence: Some pages can be recovered independently from others
so that they can be used even while other pages are being recovered. If some pages
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of a disk fail, they can be recovered without stopping transaction processing on
other pages.

• Savepoints: Transactions can record savepoints and can be rolled back partially up
to a savepoint. This can be quite useful for deadlock handling, since transactions
can be rolled back up to a point that permits release of required locks and then
restarted from that point.

Programmers can also use savepoints to undo a transaction partially, and then
continue execution; this approach can be useful to handle certain kinds of errors
detected during the transaction execution.

• Fine-grained locking: The ARIES recovery algorithm can be used with index
concurrency-control algorithms that permit tuple-level locking on indices, instead
of page-level locking, which improves concurrency significantly.

• Recovery optimizations: The DirtyPageTable can be used to prefetch pages during
redo, instead of fetching a page only when the system finds a log record to be
applied to the page. Out-of-order redo is also possible: Redo can be postponed on a
page being fetched from disk and performed when the page is fetched. Meanwhile,
other log records can continue to be processed.

In summary, the ARIES algorithm is a state-of-the-art recovery algorithm, incor-
porating a variety of optimizations designed to improve concurrency, reduce logging
overhead, and reduce recovery time.

19.10 Recovery in Main-Memory Databases

Main-memory databases support fast querying and updates, since main memory sup-
ports very fast random access. However, the contents of main memory are lost on
system failure, as well as on system shutdown. Thus, data must be additionally stored
on persistent or stable storage to allow recovery of data when the system comes back
up.

Traditional recovery algorithms can be used with main-memory databases. Log
records for updates have to be output to stable storage. On recovery, the database has
to be reloaded from disk and log records applied to restore the database state. Data
blocks that have been modified by committed transactions still have to be written to
disk, and checkpoints have to be performed, so that the amount of log that has to be
replayed at recovery time is reduced.

However, some optimizations are possible with main-memory databases.

• With main-memory databases, indices can be rebuilt very quickly after the under-
lying relation is brought into memory and recovery has been performed on the
relation. Thus, many systems do not perform any redo logging actions for index
updates. Undo logging to support transaction abort is still required, but such undo
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Note 19.2 NON-VOLATILE RAM

Some newly launched non-volatile storage systems support direct access to indi-
vidual words, instead of requiring that an entire page must be read or written. Such
non-volatile RAM systems, also called storage class memory (SCM), support very
fast random access, with latency and bandwidth comparable to RAM access. The
contents of such non-volatile RAM survive power failures, like flash, but offer direct
access, like RAM. In terms of capacity and cost per megabyte, current generation
non-volatile storage lies between RAM and flash storage.

Recovery techniques have been specialized to deal with NVRAM storage. In
particular, redo logging can be avoided, although undo logging may be used to
deal with transaction aborts. Issues such as atomic updates to NVRAM have to be
taken into consideration when designing such recovery techniques.

log records can be kept in memory, and they need not be written to the log on
stable storage.

• Several main-memory databases reduce logging overhead by performing only redo
logging. Checkpoints are taken periodically, either ensuring that uncommitted
data are not written to disk or avoiding in-place updates of records by creating
multiple versions of records. Recovery consists of reloading the checkpoint and
then performing redo operations. (Record versions created by uncommitted trans-
actions must be garbage collected eventually.)

• Fast recovery is crucial for main-memory databases, since the entire database has
to be loaded and recovery actions performed before any transaction processing
can be done.

Several main-memory databases therefore perform recovery in parallel using
multiple cores, to minimize recovery time. To do so, data and log records may be
partitioned, with log records of a partition affecting only data in the corresponding
data partition. Each core is then responsible for performing recovery operations
for a particular partition, and it can perform recovery operations in parallel with
other cores.

19.11 Summary

• A computer system, like any other mechanical or electrical device, is subject to
failure. There are a variety of causes of such failure, including disk crash, power
failure, and software errors. In each of these cases, information concerning the
database system is lost.



19.11 Summary 949

• In addition to system failures, transactions may also fail for various reasons, such
as violation of integrity constraints or deadlocks.

• An integral part of a database system is a recovery scheme that is responsible
for the detection of failures and for the restoration of the database to a state that
existed before the occurrence of the failure.

• The various types of storage in a computer are volatile storage, non-volatile storage,
and stable storage. Data in volatile storage, such as in RAM, are lost when the
computer crashes. Data in non-volatile storage, such as disk, are not lost when
the computer crashes but may occasionally be lost because of failures such as disk
crashes. Data in stable storage are never lost.

• Stable storage that must be accessible online is approximated with mirrored disks,
or other forms of RAID, which provide redundant data storage. Offline, or archival,
stable storage may consist of multiple tape copies of data stored in a physically
secure location.

• In case of failure, the state of the database system may no longer be consistent;
that is, it may not reflect a state of the world that the database is supposed to
capture. To preserve consistency, we require that each transaction be atomic. It is
the responsibility of the recovery scheme to ensure the atomicity and durability
property.

• In log-based schemes, all updates are recorded on a log, which must be kept in
stable storage. A transaction is considered to have committed when its last log
record, which is the commit log record for the transaction, has been output to
stable storage.

• Log records contain old values and new values for all updated data items. The new
values are used in case the updates need to be redone after a system crash. The old
values are used to roll back the updates of the transaction if the transaction aborts
during normal operation, as well as to roll back the updates of the transaction in
case the system crashed before the transaction committed.

• In the deferred-modifications scheme, during the execution of a transaction, all the
write operations are deferred until the transaction has been committed, at which
time the system uses the information on the log associated with the transaction in
executing the deferred writes. With deferred modification, log records do not need
to contain old values of updated data items.

• To reduce the overhead of searching the log and redoing transactions, we can use
checkpointing techniques.

• Modern recovery algorithms are based on the concept of repeating history,
whereby all actions taken during normal operation (since the last completed check-
point) are replayed during the redo pass of recovery. Repeating history restores
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the system state to what it was at the time the last log record was output to sta-
ble storage before the system crashed. Undo is then performed from this state by
executing an undo pass that processes log records of incomplete transactions in
reverse order.

• Undo of an incomplete transaction writes out special redo-only log records and an
abort log record. After that, the transaction can be considered to have completed,
and it will not be undone again.

• Transaction processing is based on a storage model in which main memory holds
a log buffer, a database buffer, and a system buffer. The system buffer holds pages
of system object code and local work areas of transactions.

• Efficient implementation of a recovery scheme requires that the number of writes
to the database and to stable storage be minimized. Log records may be kept in
volatile log buffer initially, but they must be written to stable storage when one of
the following conditions occurs:

° Before the <Ti commit> log record may be output to stable storage, all log
records pertaining to transaction Ti must have been output to stable storage.

° Before a block of data in main memory is output to the database (in non-volatile
storage), all log records pertaining to data in that block must have been output
to stable storage.

• Remote backup systems provide a high degree of availability, allowing transaction
processing to continue even if the primary site is destroyed by a fire, flood, or
earthquake. Data and log records from a primary site are continually backed up
to a remote backup site. If the primary site fails, the remote backup site takes over
transaction processing, after executing certain recovery actions.

• Modern recovery techniques support high-concurrency locking techniques, such
as those used for B+-tree concurrency control. These techniques allow early re-
lease of lower-level locks obtained by operations such as inserts or deletes, which
allows other such operations to be performed by other transactions. After lower-
level locks are released, physical undo is not possible, and instead logical undo,
such as a deletion to undo an insertion, is required. Transactions retain higher-
level locks that ensure that concurrent transactions cannot perform actions that
could make logical undo of an operation impossible.

• To recover from failures that result in the loss of non-volatile storage, we must
dump the entire contents of the database onto stable storage periodically—say,
once per day. If a failure occurs that results in the loss of physical database blocks,
we use the most recent dump in restoring the database to a previous consistent
state. Once this restoration has been accomplished, we use the log to bring the
database system to the most recent consistent state.
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• The ARIES recovery scheme is a state-of-the-art scheme that supports a number of
features to provide greater concurrency, reduce logging overheads, and minimize
recovery time. It is also based on repeating history, and it allows logical undo
operations. The scheme flushes pages on a continuous basis and does not need to
flush all pages at the time of a checkpoint. It uses log sequence numbers (LSNs)
to implement a variety of optimizations that reduce the time taken for recovery.

Review Terms

• Recovery scheme

• Failure classification

° Transaction failure

° Logical error

° System error

° System crash

° Data-transfer failure

• Fail-stop assumption

• Disk failure

• Storage types

° Volatile storage

° Non-Volatile storage

° Stable storage

• Blocks

° Physical blocks

° Buffer blocks

• Disk buffer

• Force-output

• Log-based recovery

• Log

• Log records

• Update log record

• Deferred modification

• Immediate modification

• Uncommitted modifications

• Checkpoints

• Recovery algorithm

• Restart recovery

• Transaction rollback

• Physical undo

• Physical logging

• Transaction rollback

• Restart recovery

• Redo phase

• Undo phase

• Repeating history

• Buffer management

• Log-record buffering

• Write-ahead logging (WAL)

• Log force

• Database buffering

• Latches

• Operating system and buffer
management

• Fuzzy checkpointing

• High availability

• Remote backup systems

° Primary site

° Remote backup site

° Secondary site
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• Detection of failure

• Transfer of control

• Time to recover

• Hot-spare configuration

• Time to commit

° One-safe

° Two-very-safe

° Two-safe

• Early lock release

• Logical operations

• Logical logging

• Logical undo

• Loss of non-volatile storage

• Archival dump

• Fuzzy dump

• ARIES

° Log sequence number (LSN)

° PageLSN

° Physiological redo

° Compensation log record
(CLR)

° DirtyPageTable

° Checkpoint log record

° Analysis pass

° Redo pass

° Undo pass

Practice Exercises

19.1 Explain why log records for transactions on the undo-list must be processed in
reverse order, whereas redo is performed in a forward direction.

19.2 Explain the purpose of the checkpoint mechanism. How often should check-
points be performed? How does the frequency of checkpoints affect:

• System performance when no failure occurs?

• The time it takes to recover from a system crash?

• The time it takes to recover from a media (disk) failure?

19.3 Some database systems allow the administrator to choose between two forms
of logging: normal logging, used to recover from system crashes, and archival
logging, used to recover from media (disk) failure. When can a log record be
deleted, in each of these cases, using the recovery algorithm of Section 19.4?

19.4 Describe how to modify the recovery algorithm of Section 19.4 to implement
savepoints and to perform rollback to a savepoint. (Savepoints are described
in Section 19.9.3.)

19.5 Suppose the deferred modification technique is used in a database.

a. Is the old value part of an update log record required any more? Why or
why not?
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b. If old values are not stored in update log records, transaction undo is
clearly not feasible. How would the redo phase of recovery have to be
modified as a result?

c. Deferred modification can be implemented by keeping updated data
items in local memory of transactions and reading data items that have
not been updated directly from the database buffer. Suggest how to effi-
ciently implement a data item read, ensuring that a transaction sees its
own updates.

d. What problem would arise with the above technique if transactions per-
form a large number of updates?

19.6 The shadow-paging scheme requires the page table to be copied. Suppose the
page table is represented as a B+-tree.

a. Suggest how to share as many nodes as possible between the new copy
and the shadow copy of the B+-tree, assuming that updates are made
only to leaf entries, with no insertions or deletions.

b. Even with the above optimization, logging is much cheaper than a
shadow copy scheme, for transactions that perform small updates. Ex-
plain why.

19.7 Suppose we (incorrectly) modify the recovery algorithm of Section 19.4 to
note log actions taken during transaction rollback. When recovering from a
system crash, transactions that were rolled back earlier would then be included
in undo-list and rolled back again. Give an example to show how actions taken
during the undo phase of recovery could result in an incorrect database state.
(Hint: Consider a data item updated by an aborted transaction and then up-
dated by a transaction that commits.)

19.8 Disk space allocated to a file as a result of a transaction should not be released
even if the transaction is rolled back. Explain why, and explain how ARIES
ensures that such actions are not rolled back.

19.9 Suppose a transaction deletes a record, and the free space generated thus is
allocated to a record inserted by another transaction, even before the first trans-
action commits.

a. What problem can occur if the first transaction needs to be rolled back?

b. Would this problem be an issue if page-level locking is used instead of
tuple-level locking?

c. Suggest how to solve this problem while supporting tuple-level locking,
by logging post-commit actions in special log records, and executing
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them after commit. Make sure your scheme ensures that such actions
are performed exactly once.

19.10 Explain the reasons why recovery of interactive transactions is more difficult
to deal with than is recovery of batch transactions. Is there a simple way to deal
with this difficulty? (Hint: Consider an automatic teller machine transaction
in which cash is withdrawn.)

19.11 Sometimes a transaction has to be undone after it has committed because it
was erroneously executed—for example, because of erroneous input by a bank
teller.

a. Give an example to show that using the normal transaction undo mech-
anism to undo such a transaction could lead to an inconsistent state.

b. One way to handle this situation is to bring the whole database to a state
prior to the commit of the erroneous transaction (called point-in-time re-
covery). Transactions that committed later have their effects rolled back
with this scheme.

Suggest a modification to the recovery algorithm of Section 19.4 to
implement point-in-time recovery using database dumps.

c. Later nonerroneous transactions can be reexecuted logically, if the up-
dates are available in the form of SQL but cannot be reexecuted using
their log records. Why?

19.12 The recovery techniques that we described assume that blocks are written
atomically to disk. However, a block may be partially written when power fails,
with some sectors written, and others not yet written.

a. What problems can partial block writes cause?

b. Partial block writes can be detected using techniques similar to those
used to validate sector reads. Explain how.

c. Explain how RAID 1 can be used to recover from a partially written
block, restoring the block to either its old value or to its new value.

19.13 The Oracle database system uses undo log records to provide a snapshot view
of the database under snapshot isolation. The snapshot view seen by transac-
tion Ti reflects updates of all transactions that had committed when Ti started
and the updates of Ti; updates of all other transactions are not visible to Ti.

Describe a scheme for buffer handling whereby transactions are given a
snapshot view of pages in the buffer. Include details of how to use the log to
generate the snapshot view. You can assume that operations as well as their
undo actions affect only one page.
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Exercises

19.14 Explain the difference between the three storage types—volatile, nonvolatile,
and stable—in terms of I/O cost.

19.15 Stable storage cannot be implemented.

a. Explain why it cannot be.

b. Explain how database systems deal with this problem.

19.16 Explain how the database may become inconsistent if some log records per-
taining to a block are not output to stable storage before the block is output to
disk.

19.17 Outline the drawbacks of the no-steal and force buffer management policies.

19.18 Suppose two-phase locking is used, but exclusive locks are released early, that
is, locking is not done in a strict two-phase manner. Give an example to show
why transaction rollback can result in a wrong final state, when using the log-
based recovery algorithm.

19.19 Physiological redo logging can reduce logging overheads significantly, espe-
cially with a slotted page record organization. Explain why.

19.20 Explain why logical undo logging is used widely, whereas logical redo logging
(other than physiological redo logging) is rarely used.

19.21 Consider the log in Figure 19.5. Suppose there is a crash just before the log
record<T0 abort> is written out. Explain what would happen during recovery.

19.22 Suppose there is a transaction that has been running for a very long time but
has performed very few updates.

a. What effect would the transaction have on recovery time with the recov-
ery algorithm of Section 19.4, and with the ARIES recovery algorithm?

b. What effect would the transaction have on deletion of old log records?

19.23 Consider the log in Figure 19.7. Suppose there is a crash during recovery, just
before the operation abort log record is written for operation O1. Explain what
will happen when the system recovers again.

19.24 Compare log-based recovery with the shadow-copy scheme in terms of their
overheads for the case when data are being added to newly allocated disk pages
(in other words, there is no old value to be restored in case the transaction
aborts).

19.25 In the ARIES recovery algorithm:
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a. If at the beginning of the analysis pass, a page is not in the checkpoint
dirty page table, will we need to apply any redo records to it? Why?

b. What is RecLSN, and how is it used to minimize unnecessary redos?

19.26 Explain the difference between a system crash and a “disaster.”

19.27 For each of the following requirements, identify the best choice of degree of
durability in a remote backup system:

a. Data loss must be avoided, but some loss of availability may be tolerated.

b. Transaction commit must be accomplished quickly, even at the cost of
loss of some committed transactions in a disaster.

c. A high degree of availability and durability is required, but a longer run-
ning time for the transaction commit protocol is acceptable.

Further Reading

[Gray and Reuter (1993)] is an excellent textbook source of information about recov-
ery, including interesting implementation and historical details. [Bernstein and Good-
man (1981)] is an early textbook source of information on concurrency control and
recovery. [Faerber et al. (2017)] provide an overview of main-memory databases, in-
cluding recovery techniques.

An overview of the recovery scheme of System R is presented by [Gray (1978)]
(which also includes extensive coverage of concurrency control and other aspects of
System R), and [Gray et al. (1981)]. A comprehensive presentation of the principles
of recovery is offered by [Haerder and Reuter (1983)]. The ARIES recovery method is
described in [Mohan et al. (1992)]. Many databases support high-availability features;
more details may be found in their online manuals.
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PART 8

PARALLEL AND
DISTRIBUTED DATABASES

Database systems can be centralized, where one server machine executes operations
on the database. Database systems can also be designed to exploit parallel computer
architectures. Distributed databases span multiple geographically separated machines.

Chapter 20 first outlines the architectures of database systems running on server
systems, which are used in centralized and client–server architectures. The chapter then
outlines parallel computer architectures, and parallel database architectures designed
for different types of parallel computers. Finally, the chapter outlines architectural is-
sues in building a distributed database system.

Chapter 21 discusses techniques for data storage and indexing in parallel and dis-
tributed database systems. These include data partitioning and replication. Key-value
stores, which offer some but not all features of a full database system, are discussed
along with their benefits and drawbacks.

Chapter 22 discusses algorithms for query processing in parallel and distributed
database systems. This chapter focuses on query processing in decision-support sys-
tems. Such systems need to execute queries on very large amounts of data, and parallel
processing of the query across multiple nodes is critical for processing queries within
acceptable response times. The chapter covers parallel sort and join, pipelining, the
implementation of MapReduce systems, and parallel stream processing.

Chapter 23 discusses how to carry out transaction processing in parallel and dis-
tributed database systems. In addition to supporting concurrency control and recovery,
the system must deal with issues pertaining to replication of data and with failures that
involve some, but not all, nodes. The chapter covers atomic commit protocols and con-
sensus protocols designed for distributed databases, distributed concurrency control,
replica consistency, and trade-offs of consistency for the sake of performance and avail-
ability.
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CHAP T E R 20
Database-System Architectures

The architecture of a database system is greatly influenced by the underlying computer
system on which it runs, in particular by such aspects as processor and memory archi-
tecture, and networking, as well as by requirements of parallelism and distribution. In
this chapter, we provide a high-level view of database architectures, with a focus on how
they are influenced by the underlying hardware, as well as by requirements of parallel
and distributed processing.

20.1 Overview

The earliest databases were built to run on a single physical machine supporting multi-
tasking; such centralized database systems are still widely used. An enterprise-scale ap-
plication that runs on a centralized database system today may have from tens to thou-
sands of users and database sizes ranging from megabytes to hundreds of gigabytes.

Parallel database systems were developed, starting in the late 1980s to execute tasks
in parallel on a large number of machines. These were developed to handle high-end
enterprise applications whose requirements in terms of transaction processing perfor-
mance, time to process decision support queries, and storage capacity could not be met
by centralized databases. These databases were designed to run in parallel on hundreds
of machines. Today, the growth of parallel databases is driven not just by enterprise ap-
plications, but even more so by web-scale applications, which may have millions to even
hundreds of millions of users and may need to deal with many petabytes of data.

Parallel data storage systems are designed primarily to store and retrieve data based
on keys. Unlike parallel databases, data storage systems typically provide very limited
support for transactions, and they lack support for declarative querying. On the other
hand, such systems can be run in parallel on very large numbers of machines (thou-
sands to tens of thousands), a scale that most parallel databases cannot handle.

Further, data are often generated and stored on different database systems, and
there is a need to execute queries and update transactions across multiple databases.
This need led to the development of distributed database systems. Techniques developed
for fault tolerance in the context of distributed databases today also play a key role in
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ensuring the extremely high reliability and availability of massively parallel database
and data storage systems.

We study the architecture of database systems in this chapter, starting with the
traditional centralized architectures and covering parallel and distributed database ar-
chitectures. We cover issues of parallel and distributed data storage and indexing in
Chapter 21. Chapter 22 covers issues of parallel and distributed query processing, while
Chapter 23 covers issues of parallel and distributed transaction processing.

20.2 Centralized Database Systems

Centralized database systems are those that run on a single computer system. Such
database systems span a range from single-user database systems running on mobile
devices or personal computers to high-performance database systems running on a
server with multiple CPU cores and disks and a large amount of main memory that can
be accessed by any of the CPU cores. Centralized database systems are widely used for
enterprise-scale applications.

We distinguish two ways in which computers are used: as single-user systems and
as multiuser systems. Smartphones and personal computers fall into the first category.
A typical single-user system is a system used by a single person, usually with only one
processor (usually with multiple cores), and one or two disks.1 A typical multiuser
system, on the other hand, has multiple disks, a large amount of memory, and multiple
processors. Such systems serve a large number of users who are connected to the system
remotely, and they are called server systems.

Database systems designed for single-user systems usually do not provide many of
the facilities that a multiuser database provides. In particular, they may support very
simple concurrency control schemes, since highly concurrent access to the database
is very unlikely. Provisions for crash recovery in such systems may also be either very
basic (e.g., making a copy of data before updating it), or even absent in some cases.
Such systems may not support SQL and may instead provide an API for data access.
Such database systems are referred to as embedded databases, since they are usually
designed to be linked to a single application program and are accessible only from that
application.

In contrast, multiuser database systems support the full transactional features that
we have studied earlier. Such databases are usually designed as servers, which service
requests received from application programs; the requests could be in the form of SQL
queries, or they could be requests for retrieving, storing, or updating data specified
using an API.

Most general-purpose computer systems in use today have a few multicore proces-
sors (typically one to four), with each multicore processor having a few cores (typically

1Recall that we use the term disk to refer to hard disks as well as solid-state drives.
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4 to 8). Main memory is shared across all the processors. Parallelism with such a small
number of cores, and with shared memory, is referred to as coarse-grained parallelism.

Operating systems that run on single-processor systems support multitasking, al-
lowing multiple processes to run on the same processor in a time-shared manner. Ac-
tions of different processes may thus be interleaved. Databases designed for single-
processor machines have long been designed to allow multiple processes or threads
to access shared database structures concurrently. Thus, many of the issues in han-
dling multiple processes running truly in parallel, such as concurrent access to data,
are already addressed by databases designed for single-processor machines. As a result,
database systems designed for time-shared single-processor machines could be adapted
relatively easily to run on coarse-grained parallel systems.

Databases running on coarse-grained parallel machines traditionally did not at-
tempt to partition a single query among the processors; instead, they ran each query
on a single processor, allowing multiple queries to run concurrently. Thus, such sys-
tems support a higher throughput; that is, they allow a greater number of transactions
to run per second, although individual transactions do not run any faster. In recent
years, with even mobile phones supporting multiple cores, such systems are evolving
to support parallel processing of individual queries.

In contrast, machines with fine-grained parallelism have a large number of proces-
sors, and database systems running on such machines attempt to parallelize single tasks
(queries, for example) submitted by users.

Parallelism has emerged as a critical issue in the design of software systems in gen-
eral, and in particular in the design of database systems. As a result, parallel database
systems, which once were specialized systems running on specially designed hardware,
are increasingly becoming the norm. We study the architecture of parallel database
systems in Section 20.4.

20.3 Server System Architectures

Server systems can be broadly categorized as transaction servers and data servers.

• Transaction-server systems, also called query-server systems, provide an interface
to which clients can send requests to perform an action, in response to which they
execute the action and send back results to the client. Usually, client machines ship
transactions to the server systems, where those transactions are executed, and re-
sults are shipped back to clients that are in charge of displaying the data. Requests
may be specified through the use of SQL or through a specialized application pro-
gram interface.

• Data-server systems allow clients to interact with the servers by making requests
to read or update data, in units such as files, pages, or objects. For example, file
servers provide a file-system interface where clients can create, update, read, and
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delete files. Data servers for database systems offer much more functionality; they
support units of data—such as pages, tuples, or objects—that are smaller than a file.
They provide indexing facilities for data, and they provide transaction facilities so
that the data are never left in an inconsistent state if a client machine or process
fails.

Of these, the transaction-server architecture is by far the more widely used architecture,
although parallel data servers are widely used to handle traffic at web scale. We shall
elaborate on the transaction-server and data-server architectures in Section 20.3.1 and
Section 20.3.2.

20.3.1 Transaction-Server Architecture

A typical transaction-server system today consists of multiple processes accessing data
in shared memory, as in Figure 20.1. The processes that form part of the database
system include:
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Figure 20.1 Shared memory and process structure.
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• Server processes: These are processes that receive user queries (transactions), exe-
cute them, and send the results back. The queries may be submitted to the server
processes from a user interface, or from a user process running embedded SQL, or
via JDBC, ODBC, or similar protocols. Some database systems use a separate pro-
cess for each user session, and a few use a single database process for all user ses-
sions, but with multiple threads so that multiple queries can execute concurrently.
(A thread is similar to a process, but multiple threads execute as part of the same
process, and all threads within a process run in the same virtual-memory space.
Multiple threads within a process can execute concurrently.) Many database sys-
tems use a hybrid architecture, with multiple processes, each one running multiple
threads.

• Lock manager process: This process implements lock manager functionality, which
includes lock grant, lock release, and deadlock detection.

• Database writer process: There are one or more processes that output modified
buffer blocks back to disk on a continuous basis.

• Log writer process: This process outputs log records from the log record buffer to
stable storage. Server processes simply add log records to the log record buffer in
shared memory, and if a log force is required, they request the log writer process
to output log records (recall that a log force causes the log contents in memory to
be output to stable storage).

• Checkpoint process: This process performs periodic checkpoints.

• Process monitor process: This process monitors other processes, and if any of them
fails, it takes recovery actions for the process, such as aborting any transaction
being executed by the failed process and then restarting the process.

The shared memory contains all shared data, such as:

• Buffer pool.

• Lock table.

• Log buffer, containing log records waiting to be output to the log on stable storage.

• Cached query plans, which can be reused if the same query is submitted again.

All database processes can access the data in shared memory. Since multiple processes
may read or perform updates on data structures in shared memory, there must be a
mechanism to ensure mutual exclusion, that is, to ensure that a data structure is modi-
fied by at most one process at a time, and no process is reading a data structure while
it is being written by other processes.

Such mutual exclusion can be implemented by means of operating system func-
tions called semaphores. Alternative implementations, with less overhead, use one of
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Note 20.1 ATOMIC INSTRUCTIONS

1. The instruction test-and-set (M) performs the following two actions atomi-
cally: (i) test, that is, read the value of memory location M , and then (ii) set
it to 1; the test-and-set instruction returns the value that it read in step (i).

Suppose a memory location M representing an exclusive lock is initially
set to 0. A process that wishes to get the lock executes the test-and-set (M).
If it is the only process executing the instruction on M , the value that is read
and returned would be 0, indicating to the process that it has acquired the
lock, and M would be set to 1. When the process is done using the lock, it
releases the lock by setting M back to 0.

If a second process executes test-and-set (M) before the lock is released,
the value returned would be 1, indicating that some other process already
has the lock. The process could repeat the execution of test-and-set on M
periodically, until it gets a return value of 0, indicating that it has acquired
the lock after it was released by another process.

Now, if two processes execute test-and-set (M) concurrently, one of them
would see a return value of 0, while the other would see a return value of 1;
this is because the read operation and the set operation are executed together,
atomically. The first process to read the value would also set it to 1, and the
second process would find that M is already set to 1. Thus, only one process
acquires the lock, ensuring mutual execution.

2. The compare-and-swap instruction is another atomic instruction similar to
the test-and-set instruction, but it takes the following operands: (M , Vo, Vn),
where M is a memory location, and value Vo and Vn are two values (referred
to as the old and new values). The instruction does the following atomically:
it compares the value at M with Vo, and if it matches, it updates the value
to Vn and returns success. If the values do not match, it does not update M ,
and it returns failure.

Similar to the case of test-and-set, we have a memory location M repre-
senting a lock, which is initially set to 0. A process that wants to acquire
the lock executes compare-and-swap (M , 0, id) where id can be any nonzero
value and is typically the process identifier. If no process has the lock, the
compare-and-swap operation returns success, after storing the process iden-
tifier in M ; otherwise, the operation returns failure.

A benefit of compare-and-swap over the test-and-set implementation is
that it is easy to find out which process has acquired the lock by just reading
the content of M , if the process identifier is used as Vn.
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the atomic instructions, test-and-set, or compare-and-swap, which are supported by the
computer hardware. See Note 20.1 on page 966 for details of these instructions. All
multiprocessor systems today support either the test-and-set or the compare-and-swap
atomic instructions. Further details on these instructions may be found in operating
systems textbooks.

Note that the atomic instructions can be used for mutual exclusion, which is equiv-
alent to supporting exclusive locks, but they do not directly support shared locks.
Thus, they cannot be used directly to implement general-purpose locking in databases.
Atomic instructions are, however, used to implement short-duration locks, also known
as latches, which are used for mutual exclusion in databases.

To avoid the overhead of message passing, in many database systems, server pro-
cesses implement locking by directly updating the lock table (which is in shared mem-
ory) instead of sending lock request messages to a lock manager process. (The lock
table is shown in Figure 18.10.)

Since multiple server processes may access the lock table in shared memory con-
currently, processes must ensure mutual exclusion on access to the lock table. This is
typically done by acquiring a mutex (also referred to as a latch) on the lock table, using
the test-and-set or compare-and-swap instructions on a memory location representing
a lock on the lock table.

A transaction that wants to acquire a lock by directly updating the lock table in
shared memory executes the following steps.

1. Acquire a mutex (latch) on the lock table.

2. Check if the requested lock can be allocated, using the procedure we saw in Sec-
tion 18.1.4. If it can, update the lock table to indicate the lock is allocated. Oth-
erwise, update the lock table to indicate that the lock request is in the queue for
that lock.

3. Release the mutex on the lock table.

If a lock cannot be obtained immediately because of a lock conflict, the transaction
may periodically read the lock table to check if the lock has been allocated to it due to
a lock release, which is described next.

Lock release is done as follows:

1. Acquire a mutex on the lock table

2. Remove the entry in the lock table for the lock being released.

3. If there are any other lock requests pending for the data item that can now be
allocated to the lock, the lock table is updated to mark those requests as allocated.
The rules on which lock requests may be granted are as described in Section
18.1.4.

4. Release the mutex on the lock table.
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To avoid repeated checks on the lock table (an example of the phenomenon of
busy waiting), operating system semaphores can be used by the lock request code to
wait for a lock grant notification. The lock release code must then use the semaphore
mechanism to notify waiting transactions that their locks have been granted.

Even if the system handles lock requests through shared memory, it still uses the
lock manager process for deadlock detection.

20.3.2 Data Servers and Data Storage Systems

Data-server systems were originally developed to support data access from object-
oriented databases; object-oriented databases allow programmers to use a program-
ming language that allows creation, retrieval, and update of persistent objects.

Many of the target applications of object-oriented databases, such as computer-
aided design (CAD) systems, required extensive computation on the retrieved data.
For example, the CAD system may store a model of a computer chip or a building, and
it may perform computations such as simulations on the retrieved model, which may
be expensive in terms of CPU time.

If all the computation were done at the server, the server would be overloaded.
Instead, in such an environment, it makes sense to store data on a separate data server
machine, fetch data to client machines when needed, perform all processing at the
client machines, and then to store new or updated data back on the data server ma-
chine. Thus, the processing power of client machines can be used to carry out the
computation, while the server needs only to store and fetch data, without performing
any computation.

More recently, a number of parallel data storage systems have been developed for
handling very high volumes of data and transactions. Such systems do not necessarily
support SQL, but instead provide APIs for storing, retrieving, and updating data items.
Data items stored in such systems they could be tuples, or could be objects represented
in formats such as JSON or XML, or they could even be files or documents.

We use the term data item to refer to tuples, objects, files, and documents. We also
use the terms data server and data storage system interchangeably.

Data servers support communication of entire data items; in the case of very large
data items, they may also support communication of only specified parts of the data
item, for instance, specified blocks, instead of requiring that the entire data item be
fetched or stored.

Data servers in earlier generations of storage systems supported a concept called
page shipping, where the unit of communication is a database page that may potentially
contain multiple data items. Page shipping is not used today, since storage systems do
not expose the underlying storage layout to clients.

20.3.3 Caching at Clients

The time cost of communication between a client application and a server (whether
a transaction server, or a data server) is high compared to that of a local memory
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reference (milliseconds, versus less than 100 nanoseconds). The time to send a message
over a network, and get a response back, called the network round-trip time, or network
latency, can be nearly a millisecond even if the data server is in the same location as
the client.

As a result, applications running at the clients adopt several optimization strategies
to reduce the effects of network latency. The same strategies can also be useful in par-
allel database systems, where some of the data required for processing a query may be
stored on a different machine from where it is consumed. The optimization strategies
include the following:

• Prefetching. If the unit of communication is a single small item, the overhead of
message passing is high compared to the amount of data transmitted. In particu-
lar, network latency can cause significant delays if a transaction makes repeated
requests for data items across a network.

Thus, when an item is requested, it may make sense to also send other items
that are likely to be used in the near future. Fetching items even before they are
requested is called prefetching.

• Data caching. Data that are shipped to a client on behalf of a transaction can be
cached at the client within the scope of a single transaction. Data can be cached
even after the transaction completes, allowing successive transactions at the same
client to make use of the cached data.

However, cache coherency is an issue: Even if a transaction finds cached data, it
must make sure that those data are up to date, since they may have been updated,
or even deleted, by a different client after they were cached. Thus, a message must
still be exchanged with the server to check validity of the data and to acquire a
lock on the data, unless the application is willing to live with potentially stale data.
Further, new tuples may have been inserted after a transaction caches data, which
may not be in the cache. The transaction may have to contact the server to find
such tuples.

• Lock caching. If the usage of data is mostly partitioned among the clients, with
clients rarely requesting data that are also requested by other clients, locks can
also be cached at the client machine. Suppose that a client finds a data item in
the cache, and that it also finds the lock required for an access to the data item
in the cache. Then, the access can proceed without any communication with the
server. However, the server must keep track of cached locks; if a client requests
a lock from the server, the server must call back all conflicting locks on the data
item from any other client machines that have cached the locks. The task becomes
more complicated when machine failures are taken into account.

• Adaptive lock granularity. If a transaction requires locks on multiple data items,
discovered in the course of a transaction, and each lock acquisition requires a
round trip to a data server, the transaction may waste a good deal of time on
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just lock acquisition. In such a situation, multi-granularity locking can be used to
avoid multiple requests. For example, if multiple data items are stored in a page, a
single page lock (which is at a coarser granularity) can avoid the need to acquire
multiple data-item locks (which are at a finer granularity). This strategy works well
if there is very little lock contention, but with higher contention, acquiring a coarse
granularity lock can affect concurrency significantly.

Lock de-escalation, is a way of adaptively decreasing the lock granularity if there
is higher contention. Lock de-escalation is initiated by the data server sending a
request to the client to de-escalate a lock, and the client responds by acquiring
finer-granularity locks and then releasing the coarser-granularity lock.

When switching to a finer granularity, if some of the locks were for cached data
items that are not currently locked by any transaction at a client, the data item can
be removed from the cache instead of acquiring a finer-granularity lock on it.

20.4 Parallel Systems

Parallel systems improve processing and I/O speeds by using a large number of com-
puters in parallel. Parallel machines are becoming increasingly common, making the
study of parallel database systems correspondingly more important.

In parallel processing, many operations are performed simultaneously, as opposed
to serial processing, in which the computational steps are performed sequentially. A
coarse-grain parallel machine consists of a small number of powerful processors; a mas-
sively parallel or fine-grain parallel machine uses thousands of smaller processors. Vir-
tually all high-end server machines today offer some degree of coarse-grain parallelism,
with up to two or four processors each of which may have 20 to 40 cores.

Massively parallel computers can be distinguished from the coarse-grain parallel
machines by the much larger degree of parallelism that they support. It is not practical
to share memory between a large number of processors. As a result, massively parallel
computers are typically built using a large number of computers, each of which has its
own memory, and often, its own set of disks. Each such computer is referred to as a
node in the system.

Parallel systems at the scale of hundreds to thousands of nodes or more are housed
in a data center, which is a facility that houses a large number of servers. Data centers
provide high-speed network connectivity within the data center, as well as to the outside
world. The numbers and sizes of data centers have grown tremendously in the last
decade, and modern data centers may have several hundred thousand servers.

20.4.1 Motivation for Parallel Databases

The transaction requirements of organizations have grown with the increasing use of
computers. Moreover, the growth of the World Wide Web has created many sites with
millions of viewers, and the increasing amounts of data collected from these viewers
has produced extremely large databases at many companies.



20.4 Parallel Systems 971

The driving force behind parallel database systems is the demands of applications
that have to query extremely large databases (of the order of petabytes—that is, 1000
terabytes, or equivalently, 1015 bytes) or that have to process an extremely large number
of transactions per second (of the order of thousands of transactions per second).
Centralized and client–server database systems are not powerful enough to handle
such applications.

Web-scale applications today often require hundreds to thousands of nodes (and
in some cases, tens of thousands of nodes) to handle the vast number of users on the
web.

Organizations are using these increasingly large volumes of data—such as data
about what items people buy, what web links users click on, and when people make
telephone calls—to plan their activities and pricing. Queries used for such purposes
are called decision-support queries, and the data requirements for such queries may run
into terabytes. Single-node systems are not capable of handling such large volumes of
data at the required rates.

The set-oriented nature of database queries naturally lends itself to parallelization.
A number of commercial and research systems have demonstrated the power and scal-
ability of parallel query processing.

As the cost of computing systems has reduced significantly over the years, parallel
machines have become common and relatively inexpensive. Individual computers have
themselves become parallel machines using multicore architectures. Parallel databases
are thus quite affordable even for small organizations.

Parallel database systems which can support hundreds of nodes have been avail-
able commercially for several decades, but the number of such products has seen a
significant increase since the mid 2000s. Open-source platforms for parallel data stor-
age such as the Hadoop File System (HDFS), and HBase, and for query processing,
such as Hadoop Map-Reduce and Hive (among many others), have also seen extensive
adoption.

It is worth noting that application programs are typically built such that they can
be executed in parallel on a number of application servers, which communicate over
a network with a database server, which may itself be a parallel system. The parallel
architectures described in this section can be used not only for data storage and query
processing in the database but also for parallel processing of application programs.

20.4.2 Measures of Performance for Parallel Systems

There are two main measures of performance of a database system: (1) throughput, the
number of tasks that can be completed in a given time interval, and (2) response time,
the amount of time it takes to complete a single task from the time it is submitted. A
system that processes a large number of small transactions can improve throughput by
processing many transactions in parallel. A system that processes large transactions
can improve response time as well as throughput by performing subtasks of each trans-
action in parallel.
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Figure 20.2 Speedup with increasing resources.

Parallel processing within a computer system allows database-system activities to
be speeded up, allowing faster response to transactions, as well as more transactions to
be executed per second. Queries can be processed in a way that exploits the parallelism
offered by the underlying computer system.

Two important issues in studying parallelism are speedup and scaleup. Running a
given task in less time by increasing the degree of parallelism is called speedup. Han-
dling larger tasks by increasing the degree of parallelism is called scaleup.

Consider a database application running on a parallel system with a certain num-
ber of processors and disks. Now suppose that we increase the size of the system by
increasing the number of processors, disks, and other components of the system. The
goal is to process the task in time inversely proportional to the number of processors
and disks allocated. Suppose that the execution time of a task on the larger machine
is TL, and that the execution time of the same task on the smaller machine is TS. The
speedup due to parallelism is defined as TS∕TL. The parallel system is said to demon-
strate linear speedup if the speedup is N when the larger system has N times the re-
sources (processors, disk, and so on) of the smaller system. If the speedup is less than
N , the system is said to demonstrate sublinear speedup. Figure 20.2 illustrates linear
and sublinear speedup.2

Scaleup relates to the ability to process larger tasks in the same amount of time
by providing more resources. Let Q be a task, and let QN be a task that is N times
bigger than Q. Suppose that the execution time of task Q on a given machine MS is
TS, and the execution time of task QN on a parallel machine ML that is N times larger
than MS is TL. The scaleup is then defined as TS∕TL. The parallel system ML is said
to demonstrate linear scaleup on task Q if TL = TS. If TL > TS, the system is said

2In some cases, a parallel system may provide superlinear speedup, that is, an N times larger system may provide
speedup greater than N . This could happen, for example, because data that did not fit in the main memory of a smaller
system do fit in the main memory of a larger system, avoiding disk I/O. Similarly, data may fit in the cache of a larger
system, reducing memory accesses compared to a smaller system, which could lead to superlinear speedup.
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Figure 20.3 Scaleup with increasing problem size and resources.

to demonstrate sublinear scaleup. Figure 20.3 illustrates linear and sublinear scaleups
(where the resources increase in proportion to problem size). There are two kinds of
scaleup that are relevant in parallel database systems, depending on how the size of the
task is measured:

• In batch scaleup, the size of the database increases, and the tasks are large jobs
whose runtime depends on the size of the database. An example of such a task is
a scan of a relation whose size is proportional to the size of the database. Thus,
the size of the database is the measure of the size of the problem. Batch scaleup
also applies in scientific applications, such as executing a weather simulation at
an N -times finer resolution,3 or performing the simulation for an N -times longer
period of time.

• In transaction scaleup, the rate at which transactions are submitted to the database
increases, and the size of the database increases proportionally to the transaction
rate. This kind of scaleup is what is relevant in transaction-processing systems
where the transactions are small updates—for example, a deposit or withdrawal
from an account—and transaction rates grow as more accounts are created. Such
transaction processing is especially well adapted for parallel execution, since trans-
actions can run concurrently and independently on separate nodes, and each trans-
action takes roughly the same amount of time, even if the database grows.

Scaleup is usually the more important metric for measuring the efficiency of par-
allel database systems. The goal of parallelism in database systems is usually to make
sure that the database system can continue to perform at an acceptable speed, even as
the size of the database and the number of transactions increases. Increasing the ca-

3For example, a weather simulation that divides the atmosphere in a particular region into cubes of side 200 meters
may need to be modified to use a finer resolution, with cubes of side 100 meters; the number of cubes would thus be
scaled up by a factor of 8.
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pacity of the system by increasing the parallelism provides a smoother path for growth
for an enterprise than does replacing a centralized system with a faster machine (even
assuming that such a machine exists). However, we must also look at absolute perfor-
mance numbers when using scaleup measures; a machine that scales up linearly may
perform worse than a machine that scales less than linearly, simply because the latter
machine is much faster to start off with.

A number of factors work against efficient parallel operation and can diminish both
speedup and scaleup.

• Sequential computation. Many tasks have some components that can benefit from
parallel processing, and some components that have to be executed sequentially.
Consider a task that takes time T to run sequentially. Suppose the fraction of the
total execution time that can benefit from parallelization is p, and that part is exe-
cuted by n nodes in parallel. Then the total time taken would be (1−p)T +(p∕n)T ,
and the speedup would be 1

(1−p)+(p∕n)
. (This formula is referred to as Amdahl’s law.)

If the fraction p is, say 9
10

, then the maximum speedup possible, even with very large
n, would be 10.

Now consider scaleup, where the problem size increases. If the time taken
by the sequential part of a task increases along with the problem size, scaleup
will be similarly limited. Suppose fraction p of the execution time of a problem
benefits from increasing resources, while fraction (1−p) is sequential and does not
benefit from increasing resources. Then the scaleup with n times more resources
on a problem that is n times larger will be 1

n(1−p)+p
. (This formula is referred to

as Gustafson’s law.) However, if the time taken by the sequential part does not
increase with problem size, its impact on scaleup will be less as the problem sizes.

Start-up costs. There is a start-up cost associated with initiating a single process.
In a parallel operation consisting of thousands of processes, the start-up time may
overshadow the actual processing time, affecting speedup adversely.

• Interference. Since processes executing in a parallel system often access shared
resources, a slowdown may result from the interference of each new process as it
competes with existing processes for commonly held resources, such as a system
bus, or shared disks, or even locks. Both speedup and scaleup are affected by this
phenomenon.

• Skew. By breaking down a single task into a number of parallel steps, we reduce the
size of the average step. Nonetheless, the service time for the single slowest step
will determine the service time for the task as a whole. It is often difficult to divide
a task into exactly equal-sized parts, and the way that the sizes are distributed is
therefore skewed. For example, if a task of size 100 is divided into 10 parts, and the
division is skewed, there may be some tasks of size less than 10 and some tasks of
size more than 10; if even one task happens to be of size 20, the speedup obtained
by running the tasks in parallel is only 5, instead of 10 as we would have hoped.
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Figure 20.4 Interconnection networks.

20.4.3 Interconnection Networks

Parallel systems consist of a set of components (processors, memory, and disks) that
can communicate with each other via an interconnection network. Figure 20.4 shows
several commonly used types of interconnection networks:

• Bus. All the system components can send data on and receive data from a single
communication bus. This type of interconnection is shown in Figure 20.4a. Bus
interconnects were used in earlier days to connect multiple nodes in a network,
but they are no longer used for this task. However, bus interconnections are still
used for connecting multiple CPUs and memory units within a single node, and
they work well for small numbers of processors. However, they do not scale well
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with increasing parallelism, since the bus can handle communication from only
one component at a time; with increasing numbers of CPUs and memory banks in
a node, other interconnection mechanisms such as ring or mesh interconnections
are now used even within a single node.

• Ring. The components are nodes arranged in a ring (circle), and each node is
connected to its two adjacent nodes in the ring, as shown in Figure 20.4b. Unlike
a bus, each link can transmit data concurrently with other links in the ring, leading
to better scalability. However, to transmit data from one node to another node on
the ring may require a large number of hops; specifically, up to n∕2 hops may
be needed on a ring with n nodes, assuming communication can be done in either
direction on the ring. Furthermore, the transmission delay increases if the number
of nodes in the ring is increased.

• Mesh. The components are nodes in a grid, and each component connects to all its
adjacent components in the grid. In a two-dimensional mesh, each node connects
to (up to) four adjacent nodes, while in a three-dimensional mesh, each node con-
nects to (up to) six adjacent nodes. Figure 20.4c shows a two-dimensional mesh.
Nodes that are not directly connected can communicate with one another by rout-
ing messages via a sequence of intermediate nodes that are directly connected to
one another. The number of communication links grows as the number of com-
ponents grows, and the communication capacity of a mesh therefore scales better
with increasing parallelism.

Mesh interconnects are used to connect multiple cores in a processor, or pro-
cessors in a single server, to each other; each processor core has direct access to
a bank of memory connected to the processor core, but the system transparently
fetches data from other memory banks by sending messages over the mesh inter-
connects.

However, mesh interconnects are no longer used for interconnecting nodes,
since the number of hops required to transmit data increases significantly with the
number of nodes (the number of hops required to transmit data from one node to
another node in a mesh is proportional in the worst case to the square root of the
number of nodes). Parallel systems today have very large numbers of nodes, and
mesh interconnects would thus be impractically slow.

• Hypercube. The components are numbered in binary, and a component is con-
nected to another if the binary representations of their numbers differ in exactly
one bit. Thus, each of the n components is connected to log(n) other components.
Figure 20.4d shows a hypercube with eight nodes. In a hypercube interconnection,
a message from a component can reach any other component by going through
at most log(n) links. In contrast, in a mesh architecture a component may be
2(
√

n − 1) links away from some of the other components (or
√

n links away,
if the mesh interconnection wraps around at the edges of the grid). Thus commu-
nication delays in a hypercube are significantly lower than in a mesh.
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Hypercubes have been used to interconnect nodes in massively parallel com-
puters in earlier days, but they are no longer commonly used.

• Tree-like. Server systems in a data center are typically mounted in racks, with each
rack holding up to about 40 nodes. Multiple racks are used to build systems with
larger numbers of nodes. A key issue is how to interconnect such nodes.

To connect nodes within a rack, there is typically a network switch mounted
at the top of the rack; 48 port switches are commonly used, so a single switch can
be used to connect all the servers in a rack. Current-generation network switches
typically support a bandwidth of 1 to 10 gigabits per second (Gbps) simultaneously
from/to each of the servers connected to the switch, although more expensive
network interconnects with 40 to 100 Gbps bandwidths are available.

Multiple top-of-rack switches (also referred to as edge switches) can in turn be
connected to another switch, called an aggregation switch, allowing interconnec-
tion between racks. If there are a large number of racks, the racks may be divided
into groups, with one aggregation switch connecting a group of racks, and all the
aggregation switches in turn connected to a core switch. Such an architecture is a
tree topology with three tiers. The core switch at the top of the tree also provides
connectivity to outside networks.

A problem with this basic tree structure, which is frequently used in local-area
networks within organizations, is that the available bandwidth between racks is
often not sufficient if multiple machines in a rack try to communicate significant
amounts of data with machines from other racks. Typically, the interconnects of
the aggregation switches support higher bandwidths of 10 to 40 Gbps, although
interconnects of 100 Gbps are available. Interconnects of even higher capacity can
be created by using multiple interconnects in parallel. However, even such high-
speed links can be saturated if a large enough number of servers in a rack attempt
to communicate at their full connection bandwidth to servers in other racks.

To avoid the bandwidth bottleneck of a tree structure, data centers typically
connect each top-of-rack (edge) switch to multiple aggregation switches. Each ag-
gregation switch in turn is linked to a number of core switches at the next layer.
Such an interconnection topology is called a tree-like topology; Figure 20.4e shows
a tree-like topology with three tiers. The tree-like topology is also referred to as a
fat-tree topology, although originally the fat-tree topology referred to a tree topol-
ogy where edges higher in the tree have a higher bandwidth than edges lower in
the tree.

The benefit of the tree-like architecture is that each top-of-rack switch can route
its messages through any of the aggregation switches that it is connected to, in-
creasing the inter-rack bandwidth greatly as compared to the tree topology. Simi-
larly, each aggregation switch can communicate with another aggregation switch
via any of the core switches that it is connected to, increasing the bandwidth avail-
able between the aggregation switches. Further, even if an aggregation or edge
switch fails, there are alternative paths through other switches. With appropriate
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routing algorithms, the network can continue functioning even if a switch fails,
making the network fault-tolerant, at least to failures of one or a few switches.

A tree-like architecture with three tiers can handle a cluster of tens of thou-
sands of machines. Although a tree-like topology improves the inter-rack band-
width greatly compared to a tree topology, parallel processing applications, in-
cluding parallel storage and parallel database systems, perform best if they are
designed in a way that reduces inter-rack traffic.

The tree-like topology and variants of it are widely used in data centers today.
The complex interconnection networks in a data center are referred to as a data
center fabric.

While network topologies are very important for scalability, a key to network per-
formance is network technology used for individual links. The popular technologies
include:

• Ethernet: The dominant technology for network connections today is the Ether-
net technology. Ethernet standards have evolved over time, and the predominant
versions used today are 1-gigabit Ethernet and 10-gigabit Ethernet, which support
bandwidths of 1 and 10 gigabits per second respectively. Forty-gigabit Ethernet and
100-gigabit Ethernet technologies are also available at a higher cost and are seeing
increasing usage. Ethernet protocols can be used over cheaper copper cables for
short distances, and over optical fiber for longer distances.

• Fiber channel: The Fiber Channel Protocol standard was designed for high-speed
interconnection between storage systems and computers, and it is predominantly
used to implement storage area networks (described in Section 20.4.6). The differ-
ent versions of the standard have supported increasing bandwidth over the years,
with 16 gigabits per second available as of 2011, and 32 and 128 gigabits per second
supported from 2016.

• Infiniband: The Infiniband standard was designed for interconnections with a data
center; it was specifically designed for high-performance computing applications
which need not just very high bandwidth, but also very low latency. The Infiniband
standard has evolved, with link speeds of 8-gigabits per second available by 2007
and 24-gigabits per second available by 2014. Multiple links can be aggregated to
give a bandwidth of 120 to 290-gigabits per second.

The latency associated with message delivery is as important as bandwidth for
many applications. A key benefit of Infiniband is that it supports latencies as low
as 0.7 to 0.5 microseconds. In contrast, Ethernet latencies can be up to hundreds
of microseconds in an unoptimized local-area network, while latency-optimized
Ethernet implementations still have latencies of several microseconds.

One of the important techniques used to reduce latency is to allow applications to
send and receive messages by directly interfacing with the hardware, bypassing the oper-
ating system. With the standard implementations of the networking stack, applications
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Figure 20.5 Parallel database architectures.

send messages to the operating system, which in turn interfaces with the hardware,
which in turn delivers the message to the other computer, where again the hardware
interfaces with the operating system, which then interfaces with the application to de-
liver the message. Support for direct access to the network interface, bypassing the
operating system, reduces the communication latency significantly.

Another approach to reducing latency is to use remote direct memory access
(RDMA), a technology which allows a process on one node to directly read or write
to memory on another node, without explicit message passing. Hardware support en-
sures that RDMA can transfer data at very high rates with very low latency. RDMA
implementations can use Infiniband, Ethernet, or other networking technologies for
physical communication between nodes.

20.4.4 Parallel Database Architectures

There are several architectural models for parallel machines. Among the most promi-
nent ones are those in Figure 20.5 (in the figure, M denotes memory, P denotes a
processor, and disks are shown as cylinders):

• Shared memory. All the processors share a common memory (Figure 20.5a).
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• Shared disk. A set of nodes that share a common set of disks; each node has its
own processor and memory (Figure 20.5b). Shared-disk systems are sometimes
called clusters.

• Shared nothing. A set of nodes that share neither a common memory nor common
disk (Figure 20.5c).

• Hierarchical. This model is a hybrid of the preceding three architectures (Figure
20.5d). This model is the most widely used model today.

In Section 20.4.5 through Section 20.4.8, we elaborate on each of these models.
Note that the interconnection networks are shown in an abstract manner in Figure

20.5. Do not interpret the interconnection networks shown in the figures as necessarily
being a bus; in fact other interconnection networks are used in practice. For example,
mesh networks are used within a processor, and tree-like networks are often used to
interconnect nodes.

20.4.5 Shared Memory

In a shared-memory architecture, the processors have access to a common memory,
typically through an interconnection network. Disks are also shared by the processors.
The benefit of shared memory is extremely efficient communication between processes
—data in shared memory can be accessed by any process without being moved with
software. A process can send messages to other processes much faster by using memory
writes (which usually take less than a microsecond) than by sending a message through
a communication mechanism.

Multicore processors with 4 to 8 cores are now common not just in desktop com-
puters, but even in mobile phones. High-end processing systems such as Intel’s Xeon
processor have up to 28 cores per CPU, with up to 8 CPUs on a board, while the Xeon
Phi coprocessor systems contain around 72 cores, as of 2018, and these numbers have
been increasing steadily. The reason for the increasing number of cores is that the sizes
of features such as logic gates in integrated circuits has been decreasing steadily, allow-
ing more gates to be packed in a single chip. The number of transistors that can be
accommodated on a given area of silicon has been doubling approximately every 1 1/2
to 2 years.4

Since the number of gates required for a processor core has not increased corre-
spondingly, it makes sense to have multiple processors on a single chip. To maintain a
distinction between on-chip multiprocessors and traditional processors, the term core
is used for an on-chip processor. Thus, we say that a machine has a multicore processor.

4Gordon Moore, cofounder of Intel, predicted such an exponential growth in the number of transistors back in the
1960s; his prediction is popularly known as Moore’s law, even though, technically, it is not a law, but rather an observa-
tion and a prediction. In earlier decades, processor speeds also increased along with the decrease in the feature sizes,
but that trend ended in the mid-2000s since processor clock frequencies beyond a few gigahertz could not be attained
without unreasonable increase in power consumption and heat generation. Moores’s law is sometimes erroneously
interpreted to have predicted exponential increases in processor speeds.
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All the cores on a single processor typically access a shared memory. Further, a
system can have multiple processors which can share memory. Another effect of the
increasing number of gates has been the steady increase in the size of main memory as
well as a decrease in cost, per-byte, of main memory.

Given the availability of multicore processors at a low cost, as well as the concur-
rent availability of very large amounts of memory at a low cost, shared-memory parallel
processing has become increasingly important in recent years.

20.4.5.1 Shared-Memory Architectures

In earlier generation architectures, processors were connected to memory via a bus,
with all processor cores and memory banks sharing a single bus. A downside of shared-
memory accessed via a common bus is that the bus or the interconnection network
becomes a bottleneck, since it is shared by all processors. Adding more processors
does not help after a point, since the processors will spend most of their time waiting
for their turn on the bus to access memory.

As a result, modern shared-memory architectures associate memory directly with
processors; each processor has locally connected memory, which can be accessed very
quickly; however, each processor can also access memory associated with other proces-
sors; a fast interprocessor communication network ensures that data are fetched with
relatively low overhead. Since there is a difference in memory access speed depend-
ing on which part of memory is accessed, such an architecture is often referred to as
non-uniform memory architecture (NUMA).

Figure 20.6 shows a conceptual architecture of a modern shared-memory system
with multiple processors; note that each processor has a bank of memory directly con-
nected to it, and the processors are linked by a fast interconnect system; processors are
also connected to I/O controllers which interface with external storage.
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Figure 20.6 Architecture of a modern shared-memory system.
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Because shared-memory architectures require specialized high-speed interconnects
between cores and between processors, the number of cores/processors that can be
interconnected in a shared-memory system is relatively small. As a result, the scalability
of shared-memory parallelism is limited to at most a few hundred cores.

Processor architectures include cache memory, since access to cache memory is
much faster than access to main memory (cache can be accessed in a few nanoseconds
compared to nearly a hundred nanoseconds for main memory). Large cache memory
is particularly important in shared-memory architectures, since a large cache can help
minimize the number of accesses to shared memory.

If an instruction needs to access a data item that is not in cache, it must be fetched
from main memory. Because main memory is much slower than processors, a signifi-
cant amount of potential processing speed may be lost while a core waits for data from
main memory. These waits are referred to as cache misses.

Many processor architectures support a feature called hyper-threading, or hardware
threads, where a single physical core appears as two or more logical cores or threads.
Different processes could be mapped to different logical cores. Only one of the logical
cores corresponding to a single physical core can actually execute at any time. But the
motivation for logical cores is that if the code running on one logical core blocks on a
cache miss, waiting for data to be fetched from memory, the hardware of the physical
core can start execution of one of the other logical cores instead of idling while waiting
for data to be fetched from memory.

A typical multicore processor has multiple levels of cache, with the L1 cache being
fastest to access, but also the smallest; lower cache levels such as L2 and L3 are slower
(although still much faster than main memory) but considerably larger than the L1
cache. Lower cache levels are usually shared between multiple cores on a single pro-
cessor. In the cache architecture shown in Figure 20.7, the L1 and L2 caches are local
to each of the 4 cores, while the L3 cache is shared by all cores of the processor. data
are read into, or written from, cache in units of a cache line, which typically consists
of 64 consecutive bytes.

Core 0 Core 1 Core 2 Core 3

L1 Cache L1 Cache L1 Cache
L2 Cache L2 Cache L2 Cache

L1 Cache
L2 Cache

Shared L3 Cache

Figure 20.7 Multilevel cache system.
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20.4.5.2 Cache Coherency

Cache coherency is an issue whenever there are multiple cores or processors, each with
its own cache. An update done on one core may not be seen by another core, if the
local cache on the second core contains an old value of the affected memory location.
Thus, whenever an update occurs to a memory location, copies of the content of that
memory location that are cached on other caches must be invalidated.

Such invalidation is done lazily in many processor architectures; that is, there may
be some time lag between a write to a cache and the dispatch of invalidation mes-
sages to other caches; in addition there may be a further lag in processing invalidation
messages that are received at a cache. (Requiring immediate invalidation to be done
always can cause a significant performance penalty, and thus it is not done in current-
generation systems.) Thus, it is quite possible for a write to happen on one processor,
and a subsequent read on another processor may not see the updated value.

Such a lack of cache coherency can cause problems if a process expects to see an
updated memory location but does not. Modern processors therefore support memory
barrier instructions, which ensure certain orderings between load/store operations be-
fore the barrier and those after the barrier. For example, the store barrier instruction
(sfence) on the x86 architecture forces the processor to wait until invalidation mes-
sages are sent to all caches for all updates done prior to the instruction, before any fur-
ther load/store operations are issued. Similarly, the load barrier instruction (lfence) en-
sures all received invalidation messages have been applied before any further load/store
operations are issued. The mfence instruction does both of these tasks.

Memory barrier instructions must be used with interprocess synchronization pro-
tocols to ensure that the protocols execute correctly. Without the use of memory bar-
riers, if the caches are not “strongly” coherent, the following scenario can happen.
Consider a situation where a process P1 updates memory location A first, then loca-
tion B; a concurrent process P2 running on a different core or processor reads B first
and then reads A. With a coherent cache, if P2 sees the updated value of B, it must also
see the updated value of A. However, in the absence of cache coherence, the writes
may be propagated out of order, and P2 may thus see the updated value of B but the
old value of A. While many architectures disallow out-of-order propagation of writes,
there are other subtle errors that can occur due to lack of cache coherency. However,
executing sfence instructions after each of these writes and lfence before each of the
reads will always ensure that reads see a cache coherent state. As a result, in the above
example, the updated value of B will be seen only if the updated value of A is seen.

It is worth noting that programs do not need to include any extra code to deal
with cache coherency, as long as they acquire locks before accessing data, and release
locks only after performing updates, since lock acquire and release functions typically
include the required memory barrier instructions. Specifically, an sfence instruction is
executed as part of the lock release code, before the data item is actually unlocked. Sim-
ilarly an lfence is executed right after locking a data item, as part of the lock acquisition
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function, and is thus executed before the item is read. Thus, the reader is guaranteed
to see the most recent value written to the data item.

Synchronization primitives supported in a variety of languages also internally ex-
ecute memory barrier instructions; as a result, programmers who use these primitives
need not be concerned about lack of cache coherency.

It is also interesting to note that many processor architectures use a form of
hardware-level shared and exclusive locking of memory locations to ensure cache co-
herency. A widely used protocol, called the MESI protocol, can be understood as fol-
lows: Locking is done at the level of cache lines, containing multiple memory locations,
instead of supporting locks on individual memory locations, since cache lines are the
units of cache access. Locking is implemented in the hardware, rather than in software,
to provide the required high performance.

The MESI protocol keeps track of the state of each cache line, which can be Modi-
fied (updated after exclusive locking), Exclusive locked (locked but not yet modified, or
already written back to memory), Share locked, or Invalid. A read of a memory location
automatically acquires a shared lock on the cache line containing that location, while
a memory write gets an exclusive lock on the cache line before performing the write.
In contrast to database locks, memory lock requests do not wait; instead they immedi-
ately revoke conflicting locks. Thus, an exclusive lock request automatically invalidates
all cached copies of the cache line and revokes all shared locks on the cache line. Sym-
metrically, a shared lock request causes any existing exclusive lock to be revoked and
then fetches the latest copy of the memory location into cache.

In principle, it is possible to ensure “strong” cache coherency with such a locking-
based cache coherence protocol, making memory barrier instructions redundant. How-
ever, many implementations include some optimizations that speed up processing, such
as allowing delayed delivery of invalidation messages, at the cost of not guaranteeing
cache coherence. As a result, memory barrier instructions are required on many pro-
cessor architectures to ensure cache coherency.

20.4.6 Shared Disk

In the shared-disk model, each node has its own processors and memory, but all nodes
can access all disks directly via an interconnection network. There are two advantages
of this architecture over a shared-memory architecture. First, a shared-disk system can
scale to a larger number of processors than a shared-memory system. Second, it offers
a cheap way to provide a degree of fault tolerance: If a node fails, the other nodes can
take over its tasks, since the database is resident on disks that are accessible from all
nodes.

We can make the disk subsystem itself fault tolerant by using a RAID architecture,
as described in Chapter 12, allowing the system to function even if individual disks fail.
The presence of a large number of storage devices in a RAID system also provides some
degree of I/O parallelism.
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Figure 20.8 Storage-area network.

A storage-area network (SAN) is a high-speed local-area network designed to con-
nect large banks of storage devices (disks) to nodes that use the data (see Figure 20.8).
The storage devices physically consist of an array of multiple disks but provide a view
of a logical disk, or set of disks, that hides the details of the underlying disks. For ex-
ample, a logical disk may be much larger than any of the physical disks, and a logical
disk’s size can be increased by adding more physical disks. The processing nodes can
access disks as if they are local disks, even though they are physically separate.

Storage-area networks are usually built with redundancy, such as multiple paths
between nodes, so if a component such as a link or a connection to the network fails,
the network continues to function.

Storage-area networks are well suited for building shared-disk systems. The shared-
disk architecture with storage-area networks has found acceptance in applications that
do not need a very high degree of parallelism but do require high availability.

Compared to shared-memory systems, shared-disk systems can scale to a larger
number of processors, but communication across nodes is slower (up to a few millisec-
onds in the absence of special-purpose hardware for communication), since it has to
go through a communication network.

One limitation of shared-disk systems is that the bandwidth of the network connec-
tion to storage in a shared-disk system is usually less than the bandwidth available to
access local storage. Thus, storage access can become a bottleneck, limiting scalability.

20.4.7 Shared Nothing

In a shared-nothing system, each node consists of a processor, memory, and one or
more disks. The nodes communicate by a high-speed interconnection network. A node
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functions as the server for the data on the disk or disks that the node owns. Since
local disk references are serviced by local disks at each node, the shared-nothing model
overcomes the disadvantage of requiring all I/O to go through a single interconnection
network.

Moreover, the interconnection networks for shared-nothing systems, such as the
tree-like interconnection network, are usually designed to be scalable, so their trans-
mission capacity increases as more nodes are added. Consequently, shared-nothing
architectures are more scalable and can easily support a very large number of nodes.

The main drawbacks of shared-nothing systems are the costs of communication
and of nonlocal disk access, which are higher than in a shared-memory or shared-disk
architecture since sending data involves software interaction at both ends.

Due to their high scalability, shared-nothing architectures are widely used to deal
with very large data volumes, supporting scalability to thousands of nodes, or in ex-
treme cases, even to tens of thousands of nodes.

20.4.8 Hierarchical

The hierarchical architecture combines the characteristics of shared-memory, shared-
disk, and shared-nothing architectures. At the top level, the system consists of nodes
that are connected by an interconnection network and do not share disks or memory
with one another. Thus, the top level is a shared-nothing architecture. Each node of the
system could actually be a shared-memory system with a few processors. Alternatively,
each node could be a shared-disk system, and each of the systems sharing a set of disks
could be a shared-memory system. Thus, a system could be built as a hierarchy, with
shared-memory architecture with a few processors at the base, and a shared-nothing
architecture at the top, with possibly a shared-disk architecture in the middle. Figure
20.5d illustrates a hierarchical architecture with shared-memory nodes connected to-
gether in a shared-nothing architecture.

Parallel database systems today typically run on a hierarchical architecture, where
each node supports shared-memory parallelism, with multiple nodes interconnected in
a shared-nothing manner.

20.5 Distributed Systems

In a distributed database system, the database is stored on nodes located at geographi-
cally separated sites. The nodes in a distributed system communicate with one another
through various communication media, such as high-speed private networks or the in-
ternet. They do not share main memory or disks. The general structure of a distributed
system appears in Figure 20.9.

The main differences between shared-nothing parallel databases and distributed
databases include the following:
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• Distributed databases have sites that are geographically separated. As a result, the
network connections have lower bandwidth, higher latency, and greater probability
of failures, as compared to networks within a single data center.
Systems built on distributed databases therefore need to be aware of network la-
tency, and failures, as well as of physical data location. We discuss these issues
later in this section. In particular, it is often desirable to keep a copy of the data at
a data center close to the end user.

• Parallel database systems address the problem of node failure. However, some fail-
ures, particularly those due to earthquakes, fires, or other natural disasters, may
affect an entire data center, causing failure of a large number of nodes. Distributed
database systems need to continue working even in the event of failure of an en-
tire data center, to ensure high availability. This requires replication of data across
geographically separated data centers, to ensure that a common natural disaster
does not affect all the data centers. Replication and other techniques to ensure
high availability are similar in both parallel and distributed databases, although
implementation details may differ.

• Distributed databases may be separately administered, with each site retaining
some degree of autonomy of operation. Such databases are often the result of
the integration of existing databases to allow queries and transactions to cross
database boundaries. However, distributed databases that are built for providing
geographic distribution, versus those built by integrating existing databases, may
be centrally administered.

• Nodes in a distributed database tend to vary more in size and function, whereas
parallel databases tend to have nodes that are of similar capacity.
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• In a distributed database system, we differentiate between local and global trans-
actions. A local transaction is one that accesses data only from nodes where the
transaction was initiated. A global transaction, on the other hand, is one that ei-
ther accesses data in a node different from the one at which the transaction was
initiated, or accesses data in several different nodes.

Web-scale applications today run on data management systems that combine sup-
port for parallelism and distribution. Parallelism is used within a data center to handle
high loads, while distribution across data centers is used to ensure high availability
even in the event of natural disasters. At the lower end of functionality, such systems
may be distributed data storage systems that support only limited functionality such
as storage and retrieval of data by key, and they may not support schemas, query lan-
guages, or transactions; all such higher-level functionality has to be managed by the
applications. At the higher end of functionality, there are distributed database systems
that support schemas, query language, and transactions. However, one characteristic
of such systems is that they are centrally administered.

In contrast, distributed databases that are built by integrating existing database
systems have somewhat different characteristics.

• Sharing data. The major advantage in building a distributed database system is the
provision of an environment where users at one site may be able to access the data
residing at other sites. For instance, in a distributed university system, where each
campus stores data related to that campus, it is possible for a user in one campus
to access data in another campus. Without this capability, the transfer of student
records from one campus to another campus would have to rely on some external
mechanism.

• Autonomy. The primary advantage of sharing data by means of data distribution
is that each site can retain a degree of control over data that are stored locally.
In a centralized system, the database administrator of the central site controls the
database. In a distributed system, there is a global database administrator respon-
sible for the entire system. A part of these responsibilities is delegated to the local
database administrator for each site. Depending on the design of the distributed
database system, each administrator may have a different degree of local autonomy.

In a homogeneous distributed database system, nodes share a common global
schema (although some relations may be stored only at some nodes), all nodes run
the same distributed database-management software, and the nodes actively cooperate
in processing transactions and queries.

However, in many cases a distributed database has to be constructed by linking
together multiple already-existing database systems, each with its own schema and pos-
sibly running different database-management software. The sites may not be aware of
one another, and they may provide only limited facilities for cooperation in query and
transaction processing. Such systems are sometimes called federated database systems
or heterogeneous distributed database systems.
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Nodes in a distributed database communicate over wide-area networks (WAN). Al-
though wide-area networks have bandwidth much greater than local-area networks, the
bandwidth is usually shared by multiple users/applications and is expensive relative to
local-area network bandwidth. Thus, applications that communicate across wide-area
networks usually have a lower bandwidth.

Communication in a WAN must also contend with significant latency: a message
may take up to a few hundred milliseconds to be delivered across the world, both due
to speed-of-light delays, and due to queuing delays at a number of routers in the path of
the message. Latency in a wide-area setting is a fundamental problem that cannot be
reduced beyond a point. Thus, applications whose data and computing resources are
distributed geographically have to be carefully designed to ensure that latency does not
affect system performance excessively.

Wide-area networks also have to contend with network-link failures, a problem that
is relatively rare in local-area networks. In particular, network-link failures may result in
two sites that are both alive having no way to communicate with each other, a situation
referred to as a network partition.5 In the event of a partition, it may not be possible for
a user or an application to access required data. Thus, network partitioning affects the
availability of a system. Tradeoffs between availability and consistency of data in the
event of network partitions are discussed in Section 23.4.

20.6 Transaction Processing in Parallel and Distributed Systems

Atomicity of transactions is an important issue in building a parallel and distributed
database system. If a transaction runs across two nodes, unless the system designers
are careful, it may commit at one node and abort at another, leading to an inconsistent
state. Transaction commit protocols ensure such a situation cannot arise. The two-phase
commit protocol (2PC) is the most widely used of these protocols.

The 2PC protocol is described in detail in Section 23.2.1, but the key ideas are as
follows: The basic idea behind 2PC is for each node to execute the transaction until
it enters the partially committed state, and then leave the commit decision to a single
coordinator node; the transaction is said to be in the ready state at a node at this point.
The coordinator decides to commit the transaction only if the transaction reaches the
ready state at every node where it executed; otherwise (e.g., if the transaction aborts
at any node), the coordinator decides to abort the transaction. Every node where the
transaction executed must follow the decision of the coordinator. If a node fails when
a transaction is in ready state, when the node recovers from failure it should be in a
position to either commit or abort the transaction, depending on the decision of the
coordinator.

5Do not confuse the term network partitioning with the term data partitioning; data partitioning refers to dividing up of
data items into partitions, which may be stored at different nodes.
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Concurrency control is another issue in parallel and distributed databases. Since
a transaction may access data items at several nodes, transaction managers at several
nodes may need to coordinate to implement concurrency control. If locking is used,
locking can be performed locally at the nodes containing accessed data items, but
there is also a possibility of deadlock involving transactions originating at multiple
nodes. Therefore deadlock detection needs to be carried out across multiple nodes.
Failures are more common in distributed systems since not only may computers fail,
but communication links may also fail. Replication of data items, which is the key to
the continued functioning of distributed databases when failures occur, further compli-
cates concurrency control. We describe concurrency-control techniques for distributed
databases in Section 23.3 (which describes techniques based on locking) and Section
23.3.4 (which describes techniques based on timestamps).

The standard transaction models, based on multiple actions carried out by a single
program unit, are often inappropriate for carrying out tasks that cross the boundaries
of databases that cannot or will not cooperate to implement protocols such as 2PC.
Alternative approaches, based on persistent messaging for communication, are generally
used for such tasks; persistent messaging is discussed in Section 23.2.3.

When the tasks to be carried out are complex, involving multiple databases and/or
multiple interactions with humans, coordination of the tasks and ensuring transaction
properties for the tasks become more complicated. Workflow management systems are
systems designed to help with carrying out such tasks.

20.7 Cloud-Based Services

Traditionally, enterprises purchased and ran servers that execute the database as well
as the applications. There is a high cost to maintaining servers, including setting up
server room infrastructure dealing with all kinds of failures such as air conditioning
and power failures, not to mention failures of CPUs, disks, and other components of
the servers. Further, if there is a sudden increase in demand, it is very difficult to add
infrastructure to service the demand, and if demand falls, the infrastructure may lie
idle.

In contrast, in the cloud computing model, applications of an enterprise are ex-
ecuted on an infrastructure that is managed by another company, typically at a data
center that hosts a large number of machines used by many different enterprises/users.
The service provider may provide not just hardware, but also support platforms such
as databases, and application software.

A variety of vendors offer cloud services; these include major vendors such as
Amazon, Microsoft, IBM, and Google, and a number of smaller vendors. One of the
pioneers of cloud services, Amazon, originally built a large computing infrastructure
purely for its internal use; then, seeing a business opportunity, it offered computing
infrastructure as a service to other users. Cloud services became very popular within
just a few years.
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Figure 20.10 Cloud service models.

20.7.1 Cloud Service Models

There are several ways in which cloud computing can be utilized, which are summa-
rized in Figure 20.10. These include infrastructure-as-a-service, platform-as-a-service,
and software-as-a-service models.

• In the infrastructure-as-a-service model, an enterprise rents computing facilities;
for example, an enterprise may rent one or more physical machines, along with
disk storage space.

More frequently, cloud computing providers provide an abstraction of a virtual
machine (VM), which appears to the user to be a real machine. These machines
are not “real” machines, but rather are simulated by software that allows a single



992 Chapter 20 Database-System Architectures

real computer to simulate several independent computers. Containers are a lower
cost alternative to VMs and are described later in this section. Multiple VMs can
run on a single server machine, and multiple containers can run on a single VM
or server.

By running a very large data center with many machines, cloud-service
providers can exploit economies of scale and deliver computing power at much
lower cost than an enterprise can do using its own infrastructure.

Another major advantage of cloud computing is that the cloud-service provider
usually has a large number of machines, with spare capacity, and thus an enterprise
can rent more (virtual) machines as needed to meet demand and release them at
times of light load. The ability to expand or contract capacity at short notice is
often referred to as elasticity.

The above benefits of on-demand elastic provisioning of server systems have
led to the widespread adoption of infrastructure-as-service platforms, especially by
companies that anticipate rapid growth in their computing usage. However, due to
the potential security risks of storing data outside the enterprise, the use of cloud
computing is still limited in high-security enterprise needs, such as banking.

In the infrastructure-as-service model, the client enterprise runs its own soft-
ware, including database systems, on virtual machines provided by the cloud-
service provider; the client has to install the database system and deal with main-
tenance issues such as backup and restore.

• In the platform-as-a-service model, the service provider not only provides comput-
ing infrastructure, but it also deploys and manages platforms, such as data storage,
databases, and application servers, that are used by application software. The client
has to install and maintain application software, such as enterprise resource plan-
ning (ERP) systems, which run on such platform-provided services as application
servers, database services, or data storage services.

° Cloud-based data storage platforms provide a service that applications can use
to store and retrieve data. The service provider takes care of provisioning suffi-
cient amount of storage and computing power to support the load on the data
storage platform. Such storage systems could support files, which are typically
large, ranging in size from a few megabytes to thousands of megabytes, support-
ing millions of such files. Or such storage systems could support data items,
which are typically small, ranging from hundreds of bytes to a few megabytes,
but supporting billions of such data items. Such distributed file systems and
data storage systems are discussed in Section 21.6 and Section 21.7. Database
applications using cloud-based storage may run on the same cloud (i.e., the
same set of machines), or on another cloud.

One of the main attractions of cloud-based storage is that it can be used by
paying a fee without worrying about purchasing, maintaining, and managing
the computer systems on which such a service runs. Further, if there is an
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increase in demand, the number of servers on which the service runs can be
increased by paying a larger fee, without having to actually purchase and deploy
more servers. The service provider would of course have to deploy extra servers,
but they benefit from economies of scale; the cost of deployment, and especially
the time to deployment, are greatly reduced compared to what they would be
if the end-users did it on their own.

The fees for cloud-based data storage are typically based on the amount of
data stored, and amount of data input to, and the amount of data output from,
the data storage system.

° Database-as-a-service platforms provide a database that can be accessed and
queried by clients. Unlike storage services, database-as-a-service platforms pro-
vide database functionality such as querying using SQL or other query lan-
guages, which data storage systems do not provide. Early offerings of database-
as-a-service only supported databases that run on a single node, although the
node itself can have a substantial number of processors, memory, and storage.
More recently, parallel database systems are being offered as a service on the
cloud.

• In the software-as-a-service model, the service provider provides the application
software as a service. The client does not need to deal with issues such as software
installation or upgrades; these tasks are left to the service provider. The client can
directly use interfaces provided by the software-as-a-service provider, such as web
interfaces, or mobile app interfaces that provide a front end, with the application
software acting as the back end.

The concept of virtual machines was developed in the 1960s to allow an expensive
mainframe computer to be shared concurrently by users running different operating
systems. Although computers are now much cheaper, there is still a cost associated with
supplying electrical power to the computers and maintaining them; virtual machines
allow this cost to be shared by multiple concurrent users. Virtual machines also ease
the task of moving services to new machines: a virtual machine can be shut down
on one physical server and restarted on another physical server with very little delay
or downtime. This feature is particularly important for quick recovery in the event of
hardware failure or upgrade.

Although multiple virtual machines can run on a single real machine, each VM
has a high overhead, since it runs an entire operating system internally. When a single
organization wishes to run a number of services, if it creates a separate VM for each
service, the overhead can be very high. If multiple applications are run on one machine
(or VM), two problems often arise: (1) applications conflict on network ports by each
trying to listen to the same network port, and (2) applications require different versions
of shared libraries, causing conflicts.

Containers solve both these problems; applications run in a container, which has
its own IP address and its own set of shared libraries. Each application can consist of
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Figure 20.11 Application deployment alternatives.

multiple processes, all running within the same container. The cost of using containers
to run applications is much less than the alternative of running each application in
its own VM, since many containers can share the same operating system kernel. Each
container appears to have its own file system, but the files are all stored in a common
underlying file system across all containers. Processes within a container can interact
with each other through the file system as well as interprocess communication, but
they can interact with processes from other containers only via network connections.

Figure 20.11 depicts the different deployment alternatives for a set of applications.
Figure 20.11a shows the alternative of multiple applications running in a single ma-
chine, sharing libraries and operating-system kernel. Figure 20.11b shows the alterna-
tive of running each application in its own VM, with multiple VMs running on a single
machine. The different VMs running on a single real machine are managed by a soft-
ware layer called the hypervisor. Figure 20.11c shows the alternative of using contain-
ers, with each container having its own libraries, and multiple containers running on a
single machine. Since containers have lower overheads, a single machine can support
more containers than VMs.

Containers provide low-cost support for elasticity, since more containers can be
deployed very quickly on existing virtual machines, instead of starting up fresh virtual
machines.

Many applications today are built as a collection of multiple services, each of which
runs as a separate process, offering a network API; that is, the functions provided by
the service are invoked by creating a network connection to the process and sending a
service request over the network connection. Such an application architecture, which
builds an application as a collection of small services, is called a microservices architec-
ture. Containers fit the microservices architecture very well, since they provide a very
low overhead mechanism to execute processes supporting each service.
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Docker is a very widely used container platform, while Kubernetes is a very popular
platform that provides not only containers, but also a microservices platform. Kuber-
netes allows applications to specify declaratively their container needs, and it auto-
matically deploys and links multiple containers to execute the application. It can also
manage a number of pods, which allow multiple containers to share storage (file sys-
tem) and network (IP address) while allowing containers to retain their own copies of
shared libraries. Furthermore, it can manage elasticity by controlling the deployment
of additional containers when required. Kubernetes can support application scalability
by load-balancing API requests across a collection of containers that all run copies of
the same application. Users of the API do not need to know what IP addresses (each
corresponding to a container) the service is running on, and they can instead connect
to a single IP address. The load balancer distributes the requests from the common IP
address to a set of containers (each with its own IP address) running the service.

20.7.2 Benefits and Limitations of Cloud Services

Many enterprises are finding the model of cloud computing and services beneficial.
The cloud model saves client enterprises the need to maintain a large system-support
staff and allows new enterprises to begin operation without having to make a large, up-
front capital investment in computing systems. Further, as the needs of the enterprise
grow, more resources (computing and storage) can be added as required; the cloud-
computing vendor generally has very large clusters of computers, making it easy for
the vendor to allocate resources on demand.

Users of cloud computing must be willing to accept that their data are held by
another organization. This may present a variety of risks in terms of security and legal
liability. If the cloud vendor suffers a security breach, client data may be divulged,
causing the client to face legal challenges from its customers. Yet the client has no
direct control over cloud-vendor security. These issues become more complex if the
cloud vendor chooses to store data (or replicas of data) in a foreign country. Various
legal jurisdictions differ in their privacy laws. So, for example, if a German company’s
data are replicated on a server in New York, then the privacy laws of the United States
may apply instead of or in addition to those of Germany or the European Union. The
cloud vendor might be required to release client data to the U.S. government even
though the client never knew that its data would be stored in a location under U.S.
jurisdiction. Specific cloud vendors offer their clients varying degrees of control over
how their data are distributed geographically and replicated.

Despite the drawbacks, the benefits of cloud services are great enough that there
is a rapidly growing market for such services.

20.8 Summary

• Centralized database systems run entirely on a single computer. Database systems
designed for multiuser systems need to support the full set of transaction features.
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Such systems are usually designed as servers that accept requests from applications
via SQL or their own APIs.

• Parallelism with a small number of cores is referred to as coarse-grained paral-
lelism. Parallelism with a large number of processors is referred to as fine-grained
parallelism.

• Transaction servers have multiple processes, possibly running on multiple proces-
sors. So that these processes have access to common data, such as the database
buffer, systems store such data in shared memory. In addition to processes that
handle queries, there are system processes that carry out tasks such as lock and
log management and checkpointing.

• Access to shared memory is controlled by a mutual-exclusion mechanism based
on machine-level atomic instructions (test-and-set or compare-and-swap).

• Data-server systems supply raw data to clients. Such systems strive to minimize
communication between clients and servers by caching data and locks at the
clients. Parallel database systems use similar optimizations.

• Parallel database systems consist of multiple processors and multiple disks con-
nected by a fast interconnection network. Speedup measures how much we can in-
crease processing speed by increasing parallelism for a single transaction. Scaleup
measures how well we can handle an increased number of transactions by increas-
ing parallelism. Interference, skew, and start-up costs act as barriers to getting ideal
speedup and scaleup.

• The components of a parallel system are connected via several possible types of
interconnection networks: bus, ring, mesh, hypercube, or a tree-like topology.

• Parallel database architectures include the shared-memory, shared-disk, shared-
nothing, and hierarchical architectures. These architectures have different trade-
offs of scalability versus communication speed.

• Modern shared-memory architectures associate some memory with each proces-
sor, resulting in a non-uniform memory architecture (NUMA). Since each proces-
sor has its own cache, there is a problem of ensuring cache coherency, that is,
consistency of data across the caches of multiple processors.

• Storage-area networks are a special type of local-area network designed to provide
fast interconnection between large banks of storage devices and multiple comput-
ers.

• A distributed database system is a collection of partially independent database sys-
tems that (ideally) share a common schema and coordinate processing of transac-
tions that access nonlocal data.
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• Cloud services may be provided at a variety of levels: The infrastructure-as-a-
service model provides clients with a virtual machine on which clients install their
own software. The platform-as-a-service model provides data-storage, database,
and application servers in addition to virtual machines, but the client needs to in-
stall and maintain application software. The software-as-a-service model provides
that application software plus the underlying platform.

• Organizations using cloud services have to consider a wide variety of technical,
economic, and legal issues in order to ensure the privacy and security of data
and adequate performance despite the likelihood of data being stored at a remote
location.

Review Terms

• Centralized Database Systems

° Single-user system

° Multiuser system

° Server systems

° Embedded databases

° Servers

° Coarse-grained parallelism

° Fine-grained parallelism

• Server System Architectures

° Transaction-server

° Query-server

° Data-server systems

° Server processes

• Mutual exclusion

• Atomic instructions

• Data caching

• Parallel Systems

° Coarse-grain parallel machine

° Massively parallel machine

° Fine-grain parallel machine

° Data center

• Decision-support queries

• Measure of performance

° Throughput

° Response time

° Linear speedup

° Sublinear speedup

° Linear scaleup

° Sublinear scaleup

• Sequential computation

• Amdahl’s law

• Start-up costs

• Interconnection network

° Bus

° Ring

° Mesh

° Hypercube

° Tree-like

° Edge switches

• Aggregation switch
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• Ethernet

• Fiber channel

• Infiniband

• Remote direct memory access
(RDMA)

• Parallel Database Architectures

° Shared memory

° Shared disk

° Clusters

° Shared nothing

° Hierarchical

• Moore’s law

• NUMA

• Cache misses

• Hyper-threading

• Hardware threads

• Cache

• Shared-disk

• Fault tolerance

• Storage-area network (SAN)

• Distributed database system

• Local autonomy

• Homogeneous distributed database

• Federated database systems

• Heterogeneous distributed database
systems

• Latency

• Network partition

• Availability

• Cloud computing

• Infrastructure-as-a-service

• Platform-as-a-service

• Cloud-based data storage

• Database-as-a-service

• Software-as-a-service

• Microservices architecture

Practice Exercises

20.1 Is a multiuser system necessarily a parallel system? Why or why not?

20.2 Atomic instructions such as compare-and-swap and test-and-set also execute a
memory fence as part of the instruction on many architectures. Explain what
is the motivation for executing the memory fence, from the viewpoint of data
in shared memory that is protected by a mutex implemented by the atomic
instruction. Also explain what a process should do before releasing a mutex.

20.3 Instead of storing shared structures in shared memory, an alternative archi-
tecture would be to store them in the local memory of a special process and
access the shared data by interprocess communication with the process. What
would be the drawback of such an architecture?

20.4 Explain the distinction between a latch and a lock as used for transactional
concurrency control.

20.5 Suppose a transaction is written in C with embedded SQL, and about 80 per-
cent of the time is spent in the SQL code, with the remaining 20 percent spent
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in C code. How much speedup can one hope to attain if parallelism is used
only for the SQL code? Explain.

20.6 Consider a pair of processes in a shared memory system such that process
A updates a data structure, and then sets a flag to indicate that the update is
completed. Process B monitors the flag, and starts processing the data struc-
ture only after it finds the flag is set.

Explain the problems that could arise in a memory architecture where
writes may be reordered, and explain how the sfence and lfence instructions
can be used to ensure the problem does not occur.

20.7 In a shared-memory architecture, why might the time to access a memory lo-
cation vary depending on the memory location being accessed?

20.8 Most operating systems for parallel machines (i) allocate memory in a local
memory area when a process requests memory, and (ii) avoid moving a pro-
cess from one core to another. Why are these optimizations important with a
NUMA architecture?

20.9 Some database operations such as joins can see a significant difference in
speed when data (e.g., one of the relations involved in a join) fits in mem-
ory as compared to the situation where the data do not fit in memory. Show
how this fact can explain the phenomenon of superlinear speedup, where an
application sees a speedup greater than the amount of resources allocated to
it.

20.10 What is the key distinction between homogeneous and federated distributed
database systems?

20.11 Why might a client choose to subscribe only to the basic infrastructure-as-a-
service model rather than to the services offered by other cloud service mod-
els?

20.12 Why do cloud-computing services support traditional database systems best by
using a virtual machine, instead of running directly on the service provider’s
actual machine, assuming that data is on external storage?

Exercises

20.13 Consider a bank that has a collection of sites, each running a database system.
Suppose the only way the databases interact is by electronic transfer of money
between themselves, using persistent messaging. Would such a system qualify
as a distributed database? Why?

20.14 Assume that a growing enterprise has outgrown its current computer system
and is purchasing a new parallel computer. If the growth has resulted in many
more transactions per unit time, but the length of individual transactions has
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not changed, what measure is most relevant—speedup, batch scaleup, or trans-
action scaleup? Why?

20.15 Database systems are typically implemented as a set of processes (or threads)
accessing shared memory.

a. How is access to the shared-memory area controlled?

b. Is two-phase locking appropriate for serializing access to the data struc-
tures in shared memory? Explain your answer.

20.16 Is it wise to allow a user process to access the shared-memory area of a database
system? Explain your answer.

20.17 What are the factors that can work against linear scale up in a transaction
processing system? Which of the factors are likely to be the most important in
each of the following architectures: shared-memory, shared disk, and shared
nothing?

20.18 Memory systems today are divided into multiple modules, each of which can
be serving a separate request at a given time, in contrast to earlier architec-
tures where there was a single interface to memory. What impact has such a
memory architecture have on the number of processors that can be supported
in a shared-memory system?

20.19 Assume we have data items d1, d2,… , dn with each di protected by a lock stored
in memory location Mi.

a. Describe the implementation of lock-X(di) and unlock(di) via the use
of the test-and-set instruction.

b. Describe the implementation of lock-X(di) and unlock(di) via the use
of the compare-and-swap instruction.

20.20 In a shared-nothing system data access from a remote node can be done by
remote procedure calls, or by sending messages. But remote direct memory
access (RDMA) provides a much faster mechanism for such data access. Ex-
plain why.

20.21 Suppose that a major database vendor offers its database system (e.g., Oracle,
SQL Server DB2) as a cloud service. Where would this fit among the cloud-
service models? Why?

20.22 If an enterprise uses its own ERP application on a cloud service under the
platform-as-a-service model, what restrictions would there be on when that
enterprise may upgrade the ERP system to a new version?
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Further Reading

[Hennessy et al. (2017)] provides an excellent introduction to the area of computer ar-
chitecture, including the topics of shared-memory architectures and cache coherency,
parallel computing architectures, and cloud computing, which we covered in this chap-
ter. [Gray and Reuter (1993)] provides the classic textbook description of transac-
tion processing, including the architecture of client–server and distributed systems.
[Ozsu and Valduriez (2010)] provides textbook coverage of distributed database sys-
tems. [Abts and Felderman (2012)] provides an overview of data center networking.
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CHAP T E R 21
Parallel and Distributed Storage

As we discussed in Chapter 20, parallelism is used to provide speedup, where queries
are executed faster because more resources, such as processors and disks, are provided.
Parallelism is also used to provide scaleup, where increasing workloads are handled
without increased response time, via an increase in the degree of parallelism.

In this chapter, we discuss techniques for data storage and indexing in parallel
database systems.

21.1 Overview

We first describe, in Section 21.2 and Section 21.3, how to partition data amongst multi-
ple nodes. We then discuss, in Section 21.4, replication of data and parallel indexing (in
Section 21.5). Our description focuses on shared-nothing parallel database systems, but
the techniques we describe are also applicable to distributed database systems, where
data are stored in a geographically distributed manner.

File systems that run on a large number of nodes, called distributed file systems,
are a widely used way to store data in a parallel system. We discuss distributed file
systems in Section 21.6.

In recent years parallel data storage and indexing techniques have been extensively
used for storage of nonrelational data, including unstructured text data, and semi-
structured data in XML, JSON, or other formats. Such data are often stored in parallel
key-value stores, which store data items with an associated key. The techniques we de-
scribe for parallel storage of relational data can also be used for key-value stores which
are discussed in Section 21.7. We use the term data storage system to refer to both
key-value stores, and the data storage and access layer of parallel database systems.

Query processing in parallel and distributed databases is discussed in Chapter 22,
while and transaction processing in parallel and distributed databases is discussed in
Chapter 23.

1003
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21.2 Data Partitioning

In its simplest form, I/O parallelism refers to reducing the time required to retrieve data
from disk by partitioning the data over multiple disks.1

At the lowest level, RAID systems allow blocks to be partitioned across multiple
disks, allowing them to be accessed in parallel. Blocks are usually allocated to different
disks in a round-robin fashion, as we saw in Section 12.5. For example, if there are
n disks numbered 0 to n − 1, round-robin allocation assigns block i to disk i mod n.
However, the block-level partitioning techniques supported by RAID systems do not
offer any control in terms of which tuples of a relation are stored on which disk or
node. Therefore, parallel database systems typically do not use block-level partitioning
and instead perform partitioning at the level of tuples.

In systems with multiple nodes (computers), each with multiple disks, partitioning
can potentially be specified to the level of individual disks. However, parallel database
systems typically focus on partitioning data across nodes and leave it to the operating
system on each node to decide on assigning blocks to disks within the node.

In a parallel storage system, the tuples of a relation are partitioned (divided) among
many nodes, so that each tuple resides on one node; such partitioning is referred to as
horizontal partitioning. Several partitioning strategies have been proposed for horizon-
tal partitioning, which we study next.

We note that vertical partitioning, discussed in Section 13.6 in the context of colum-
nar storage, is orthogonal to horizontal partitioning. (As an example of vertical parti-
tioning, a relation r(A, B, C, D) where A is a primary key, may be vertically partitioned
into r(A, B) and r(A, C, D), if many queries require B values, while C and D values are
large in size and not required for many queries.) Once tuples are horizontally parti-
tioned, they may be stored in a vertically partitioned manner at each node.

We also note that several database vendors use the term partitioning to denote the
partitioning of tuples of a relation r into multiple physical relations r1, r2,… , rn, where
all the physical relations ri are stored in a single node. The relation r is not stored, but
treated as a view defined by the query r1 ∪ r2 ∪…∪ rn. Such intra-node partitioning of a
relation is typically used to ensure that frequently accessed tuples are stored separately
from infrequently accessed tuples and is different from horizontal partitioning across
nodes. Intra-node partitioning is described in more detail in Section 25.1.4.3.

In the rest of this chapter, as well as in subsequent chapters, we use the term par-
titioning to refer to horizontal partitioning across multiple nodes.

21.2.1 Partitioning Strategies

We present three basic data-partitioning strategies for partitioning tuples. Assume that
there are n nodes, N1, N1,… , Nn, across which the data are to be partitioned.

1As in earlier chapters, we use the term disk to refer to persistent storage devices, such as magnetic hard disks and
solid-state drives.
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Figure 21.1 Example of range partitioning vector.

• Round-robin. This strategy scans the relation in any order and sends the ith tuple
fetched during the scan to node number N((i−1) mod n)+1. The round-robin scheme
ensures an even distribution of tuples across nodes; that is, each node has approx-
imately the same number of tuples as the others.

• Hash partitioning. This declustering strategy designates one or more attributes
from the given relation’s schema as the partitioning attributes. A hash function
is chosen whose range is {1, 2,… , n}. Each tuple of the original relation is hashed
on the partitioning attributes. If the hash function returns i, then the tuple is placed
on node Ni.

2

• Range partitioning. This strategy distributes tuples by assigning contiguous
attribute-value ranges to each node. It chooses a partitioning attribute, A, and a
partitioning vector [v1, v2,… , vn−1], such that, if i < j, then vi < vj. The relation is
partitioned as follows: Consider a tuple t such that t[A] = x. If x < v1, then t goes
on node N1. If x ≥ vn−1, then t goes on node Nn. If vi ≤ x < vi+1, then t goes on
node Ni+1.

Figure 21.1 shows an example of a range partitioning vector. In the example in the
figure, values less than 15 are mapped to Node 1. Values in the range [15, 40), i.e.,
values ≥ 15 but < 40. are mapped to Node 2; Values in the range [40, 75), i.e., values
≥ 40 but < 75, are mapped to Node 3, while values > 75 are mapped to Node 4.

We now consider how partitioning is maintained when a relation is updated.

1. When a tuple is inserted into a relation, it is sent to the appropriate node based
on the partitioning strategy.

2Hash-function design is discussed in Section 24.5.1.1.
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2. If a tuple is deleted, its location is first found based on the value of its partitioning
attribute (for round-robin, all partitions are searched). The tuple is then deleted
from wherever it is located.

3. If a tuple is updated, its location is not affected if either round-robin partitioning
is used or if the update does not affect a partitioning attribute.
However, if range partitioning or hash partitioning is used, and the update affects
a partitioning attribute, the location of the tuple may be affected. In this case:

a. The original tuple is deleted from the original location, and

b. The updated tuple is inserted and sent to the appropriate node based on
the partitioning strategy used.

21.2.2 Comparison of Partitioning Techniques

Once a relation has been partitioned among several nodes, we can retrieve it in parallel,
using all the nodes. Similarly, when a relation is being partitioned, it can be written
to multiple nodes in parallel. Thus, the transfer rates for reading or writing an entire
relation are much faster with I/O parallelism than without it. However, reading an entire
relation, or scanning a relation, is only one kind of access to data. Access to data can
be classified as follows:

1. Scanning the entire relation.

2. Locating a tuple associatively (e.g., employee name = “Campbell”); these queries,
called point queries, seek tuples that have a specified value for a specific attribute.

3. Locating all tuples for which the value of a given attribute lies within a specified
range (e.g., 10000 < salary < 20000); these queries are called range queries.

The different partitioning techniques support these types of access at different levels
of efficiency:

• Round-robin. The scheme is ideally suited for applications that wish to read the
entire relation sequentially for each query. With this scheme, both point queries
and range queries are complicated to process, since each of the n nodes must be
used for the search.

• Hash partitioning. This scheme is best suited for point queries based on the parti-
tioning attribute. For example, if a relation is partitioned on the telephone number
attribute, then we can answer the query “Find the record of the employee with
telephone number = 555-3333” by applying the partitioning hash function to 555-
3333 and then searching that node. Directing a query to a single node saves the
start-up cost of initiating a query on multiple nodes and leaves the other nodes free
to process other queries.
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Hash partitioning is also useful for sequential scans of the entire relation. If
the hash function is a good randomizing function, and the partitioning attributes
form a key of the relation, then the number of tuples in each of the nodes is ap-
proximately the same, without much variance. Hence, the time taken to scan the
relation is approximately 1∕n of the time required to scan the relation in a single
node system.

The scheme, however, is not well suited for point queries on nonpartition-
ing attributes. Hash-based partitioning is also not well suited for answering range
queries, since, typically, hash functions do not preserve proximity within a range.
Therefore, all the nodes need to be scanned for range queries to be answered.

• Range partitioning. This scheme is well suited for point and range queries on the
partitioning attribute. For point queries, we can consult the partitioning vector to
locate the node where the tuple resides. For range queries, we consult the partition-
ing vector to find the range of nodes on which the tuples may reside. In both cases,
the search narrows to exactly those nodes that might have any tuples of interest.

An advantage of this feature is that, if there are only a few tuples in the queried
range, then the query is typically sent to one node, as opposed to all the nodes.
Since other nodes can be used to answer other queries, range partitioning results
in higher throughput while maintaining good response time. On the other hand, if
there are many tuples in the queried range (as there are when the queried range is
a larger fraction of the domain of the relation), many tuples have to be retrieved
from a few nodes, resulting in an I/O bottleneck (hot spot) at those nodes. In this
example of execution skew, all processing occurs in one—or only a few—partitions.
In contrast, hash partitioning and round-robin partitioning would engage all the
nodes for such queries, giving a faster response time for approximately the same
throughput.

The type of partitioning also affects other relational operations, such as joins, as
we shall see in Section 22.3 and Section 22.4.1.

Thus, the choice of partitioning technique also depends on the operations that
need to be executed. In general, hash partitioning or range partitioning are preferred
to round-robin partitioning.

Partitioning is important for large relations. Large databases that benefit from par-
allel storage often have some small relations. Partitioning is not a good idea for such
small relations, since each node would end up with just a few tuples. Partitioning is
worthwhile only if each node would contain at least a few disk blocks worth of data.
Small relations are best left unpartitioned, while medium-sized relations could be par-
titioned across some of the nodes, rather than across all the nodes, in a large system.

21.3 Dealing with Skew in Partitioning

When a relation is partitioned (by a technique other than round-robin), there may be
a skew in the distribution of tuples, with a high percentage of tuples placed in some
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partitions and fewer tuples in other partitions. Such an imbalance in the distribution
of data is called data distribution skew. Data distribution skew may be caused by one
of two factors.

• Attribute-value skew, which refers to the fact that some values appear in the parti-
tioning attributes of many tuples. All the tuples with the same value for the parti-
tioning attribute end up in the same partition, resulting in skew.

• Partition skew, which refers to the fact that there may be load imbalance in the
partitioning, even when there is no attribute skew.

Attribute-value skew can result in skewed partitioning regardless of whether range
partitioning or hash partitioning is used. If the partition vector is not chosen carefully,
range partitioning may result in partition skew. Partition skew is less likely with hash
partitioning if a good hash function is chosen.

As Section 20.4.2 noted, even a small skew can result in a significant decrease in
performance. Skew becomes an increasing problem with a higher degree of parallelism.
For example, if a relation of 1000 tuples is divided into 10 parts, and the division is
skewed, then there may be some partitions of size less than 100 and some partitions of
size more than 100; if even one partition happens to be of size 200, the speedup that
we would obtain by accessing the partitions in parallel is only 5, instead of the 10 for
which we would have hoped. If the same relation has to be partitioned into 100 parts,
a partition will have 10 tuples on an average. If even one partition has 40 tuples (which
is possible, given the large number of partitions) the speedup that we would obtain by
accessing them in parallel would be 25, rather than 100. Thus, we see that the loss of
speedup due to skew increases with parallelism.

In addition to skew in the distribution of tuples, there may be execution skew even
if there is no skew in the distribution of tuples, if queries tend to access some partitions
more often than others. For example, suppose a relation is partitioned by the timestamp
of the tuples, and most queries refer to recent tuples; then, even if all partitions contain
the same number of tuples, the partition containing recent tuples would experience a
significantly higher load.

In the rest of this section, we consider several approaches to handling skew.

21.3.1 Balanced Range-Partitioning Vectors

Data distribution skew in range partitioning can be avoided by choosing a balanced
range-partitioning vector, which evenly distributes tuples across all nodes.

A balanced range-partitioning vector can be constructed by sorting, as follows:
The relation is first sorted on the partitioning attributes. The relation is then scanned in
sorted order. After every 1∕n of the relation has been read, the value of the partitioning
attribute of the next tuple is added to the partition vector. Here, n denotes the number
of partitions to be constructed.
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The main disadvantage of this method is the extra I/O overhead incurred in doing
the initial sort. The I/O overhead for constructing balanced range-partitioning vectors
can be reduced by using a precomputed frequency table, or histogram, of the attribute
values for each attribute of each relation. Figure 21.2 shows an example of a histogram
for an integer-valued attribute that takes values in the range 1 to 25. It is straightfor-
ward to construct a balanced range-partitioning function given a histogram on the par-
titioning attributes. A histogram takes up only a little space, so histograms on several
different attributes can be stored in the system catalog. If the histogram is not stored,
it can be computed approximately by sampling the relation, using only tuples from a
randomly chosen subset of the disk blocks of the relation. Using a random sample al-
lows the histogram to be constructed in much less time than it would take to sort the
relation.

The preceding approach for creating range-partitioning vectors addresses data-
distribution skew; extensions to handle execution skew are left as an exercise for the
reader (Exercise 21.3).

A drawback of the above approach is that it is static: the partitioning is decided
at some point and is not automatically updated as tuples are inserted, deleted, or up-
dated. The partitioning vectors can be recomputed, and the data repartitioned, when-
ever the system detects skew in data distribution. However, the cost of repartitioning
can be quite large, and doing it periodically would introduce a high load which can
affect normal processing. Dynamic techniques for avoiding skew, which can adapt in a
continuous and less disruptive fashion, are discussed in Section 21.3.2 and in Section
21.3.3.

21.3.2 Virtual Node Partitioning

Another approach to minimizing the effect of skew is to use virtual nodes. In the virtual
nodes approach, we pretend there are several times as many virtual nodes as the number
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Figure 21.2 Example of histogram.
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of real nodes. Any of the partitioning techniques described earlier can be used, but to
map tuples and work to virtual nodes instead of to real nodes.3

Virtual nodes, in turn, are mapped to real nodes. One way to map virtual nodes to
real nodes is round-robin allocation; thus, if there are n real nodes numbered 1 to n,
virtual node i is mapped to real node ((i − 1)modn) + 1. The idea is that even if one
range had many more tuples than the others because of skew, these tuples would get
split across multiple virtual nodes ranges. Round-robin allocation of virtual nodes to
real nodes would distribute the extra work among multiple real nodes, so that one node
does not have to bear all the burden.

A more sophisticated way of doing the mapping is by tracking the number of tuples
in each virtual node, and the load (e.g., the number of accesses per second) on each
virtual node. Virtual nodes are then mapped to real nodes in a way that balances the
number of stored tuples as well as the load across the real nodes. Thus, data-distribution
skew and execution skew can be minimized.

The system must then record this mapping and use it to route accesses to the
correct real node. If virtual nodes are numbered by consecutive integers, this mapping
can be stored as an array virtual to real map[], with m entries, where there are m virtual
nodes; the ith element of this array stores the real node to which virtual node i is
mapped.

Yet another benefit of the virtual node approach is that it allows elasticity of storage,
that is, as the load on the system increases it is possible to add more resources (nodes)
to the system to handle the load. When a new node is added, some of the virtual nodes
are migrated to the new real node, which can be done without affecting any of the other
virtual nodes. If the amount of data mapped to each virtual node is small, the migration
of a virtual node from one node to another can be done relatively fast, minimizing
disruption.

21.3.3 Dynamic Repartitioning

While the virtual-node approach can reduce skew with range partitioning as well as
hash partitioning, it does not work very well if the data distribution changes over time,
resulting in some virtual nodes having a very large number of tuples, or a very high
execution load. For example, if partitioning was done by timestamps of records, the
last timestamp range would get an increasing number of records, as more records are
inserted, while other ranges would not get any new records. Thus, even if the initial
partitioning is balanced, it could become increasingly skewed over time.

Skew can be dealt with by recomputing the partitioning scheme entirely. However,
repartitioning the data based on the new partitioning scheme would, in general, be a
very expensive operation. In the preceding example, we would end up moving a signifi-
cant number of records from each partition to a partition that precedes it in timestamp

3The virtual node approach is also called the virtual processor approach, a term used in earlier editions of this book;
since the term virtual processor is now commonly used in a different sense in the context of virtual machines, we now
use the term virtual node.
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order. When dealing with large amounts of data, such repartitioning would be unrea-
sonably expensive.

Dynamic repartitioning can be done in an efficient manner by instead exploiting
the virtual node scheme. The basic idea is to split a virtual node into two virtual nodes
when it has too many tuples, or too much load; the idea is very similar to a B+-tree node
being split into two nodes when it is overfull. One of the newly created virtual nodes
can then be migrated to a different node to rebalance the data stored at each node, or
the load at each node.

Considering the preceding example, if the virtual node corresponding to a range
of timestamps 2017-01-01 to MaxDate were to become overfull, the partition could be
split into two partitions. For example, if half the tuples in this range have timestamps
less than 2018-01-01, one partition would have timestamps from 2017-01-01 to less than
2018-01-01, and the other would have tuples with timestamps from 2018-01-01 to Max-
Date. To rebalance the number of tuples in a real node, we would just need to move
one of the virtual nodes to a new real node.

Dynamic repartitioning in this way is very widely used in parallel databases and
parallel data storage systems today. In data storage systems, the term table refers to a
collection of data items. Tables are partitioned into multiple tablets. The number of
tablets into which a table is divided is much larger than the number of real nodes in
the system; thus tablets correspond to virtual nodes.

The system needs to maintain a partition table, which provides a mapping from the
partitioning key ranges to a tablet identifier, as well as the real node on which the tablet
data reside. Figure 21.3 shows an example of a partition table, where the partition key
is a date. Tablet0 stores records with key value < 2012-01-01. Tablet1 stores records
with key values ≥ 2012-01-01, but < 2013-01-01. Tablet2 stores records with key values
≥ 2013-01-01, but < 2014-01-01, and so on. Finally, Tablet6 stores values ≥ 2017-01-01.

Read requests must specify a value for the partitioning attribute, which is used to
identify the tablet which could contain a record with that key value; a request that does
not specify a value for the partitioning attribute would have to be sent to all tablets.
A read request is processed by using the partitioning key value v to identify the tablet

Value Tablet ID Node ID

2012-01-01 Tablet0 Node0
2013-01-01 Tablet1 Node1
2014-01-01 Tablet2 Node2
2015-01-01 Tablet3 Node2
2016-01-01 Tablet4 Node0
2017-01-01 Tablet5 Node1
MaxDate Tablet6 Node1

Figure 21.3 Example of a partition table.
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whose range of keys contains v, and then sending the request to the real node where
the tablet resides. The request can be handled efficiently at that node by maintaining,
for each tablet, an index on the partitioning key attribute.

Write, insert, and delete requests are processed similarly, by routing the requests
to the correct tablet and real node, using the mechanism described above for reads.

The above scheme allows tablets to be split if they become too big; the key range
corresponding to the tablet is split into two, with a newly created tablet getting half the
key range. Records whose key range is mapped to the new tablet are then moved from
the original tablet to the new tablet. The partition table is updated to reflect the split,
so requests are then correctly directed to the appropriate tablet.

If a real node gets overloaded, either due to a large number of requests or due to too
much data at the node, some of the tablets from the node can be moved to a different
real node that has a lower load. Tablets can also be moved similarly in case one of the
real nodes has a large amount of data, while another real node has less data. Finally, if
a new real node joins a system, some tables can be moved from existing nodes to the
new node. Whenever a tablet is moved to a different real node, the partition table is
updated; subsequent requests will then be sent to the correct real node.

Figure 21.4 shows the partition table from Figure 21.3 after Tablet6, which had
values ≥ 2017-01-01, has been split into two: Tablet6 now has values ≥ 2017-01-01, but
< 2018-01-01, while the new tablet, Tablet7, has values ≥ 2018-01-01. Such a split could
be caused by a large number of inserts into Tablet6, making it very large; the split
rebalances the sizes of the tablets.

Note also that Tablet1, which was in Node1, has now been moved to Node0 in
Figure 21.4. Such a tablet move could be because Node1 is overloaded due to excessive
data, or due to a high number of requests.

Most parallel data storage systems store the partition table at a master node. How-
ever, to support a large number of requests each second, the partition table is usually
replicated, either to all client nodes that access data or to multiple routers. Routers
accept read/write requests from clients and forward the requests to the appropriate

Value Tablet ID Node ID

2012-01-01 Tablet0 Node0
2013-01-01 Tablet1 Node0
2014-01-01 Tablet2 Node2
2015-01-01 Tablet3 Node2
2016-01-01 Tablet4 Node0
2017-01-01 Tablet5 Node1
2018-01-01 Tablet6 Node1
MaxDate Tablet7 Node1

Figure 21.4 Example partition table after tablet split and tablet move.
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real node containing the tablet/virtual nodes based on the key values specified in the
request.

An alternative fully distributed approach is supported by a hash based partitioning
scheme called consistent hashing. In the consistent hashing approach, keys are hashed
to a large space, such as 32 bit integers. Further, node (or virtual node) identifiers are
also hashed to the same space. A key ki could be logically mapped to the node nj whose
hash value h(nj) is the highest value among all nodes satisfying h(nj) < h(ki). But to
ensure that every key is assigned to a node, hash values are treated as lying on a cycle
similar to the face of a clock, where the maximum hash value maxhash is immediately
followed by 0. Then, key ki is then logically mapped to the node nj whose hash value
h(nj) is the closest among all nodes, when we move anti-clockwise in the circle from
h(ki).

Distributed hash tables based on this idea have been developed where there is no
need for either a master node or a router; instead each participating node keeps track
of a few other peer nodes, and routing is implemented in a cooperative manner. New
nodes can join the system, and integrate themselves by following specified protocols
in a completely peer-to-peer manner, without the need for a master. See the Further
Reading section at the end of the chapter for references providing further details.

21.4 Replication

With a large number of nodes, the probability that at least one node will malfunction in
a parallel system is significantly greater than in a single-node system. A poorly designed
parallel system will stop functioning if any node fails. Assuming that the probability of
failure of a single node is small, the probability of failure of the system goes up linearly
with the number of nodes. For example, if a single node would fail once every 5 years,
a system with 100 nodes would have a failure every 18 days.

Parallel data storage systems must, therefore, be resilient to failure of nodes. Not
only should data not be lost in the event of a node failure, but also, the system should
continue to be available, that is, continue to function, even during such a failure.

To ensure tuples are not lost on node failure, tuples are replicated across at least
two nodes, and often three nodes. If a node fails, the tuples that it stored can still be
accessed from the other nodes where the tuples are replicated.4

Tracking the replicas at the level of individual tuples would result in significant
overhead in terms of storage and query processing. Instead, replication is done at the
level of partitions (tablets, nodes, or virtual nodes). That is, each partition is replicated;
the locations of the partition replicas are recorded as part of the partition table.

Figure 21.5 shows a partition table with replication of tablets. Each tablet is repli-
cated in two nodes.

4Caching also results in replication of data, but with the aim of speeding up access. Since data may be evicted from
cache at any time, caching does not ensure availability in the event of failure.
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Value Tablet ID Node ID

2012-01-01 Tablet0 Node0,Node1
2013-01-01 Tablet1 Node0,Node2
2014-01-01 Tablet2 Node2,Node0
2015-01-01 Tablet3 Node2,Node1
2016-01-01 Tablet4 Node0,Node1
2017-01-01 Tablet5 Node1,Node0
2018-01-01 Tablet6 Node1,Node2
MaxDate Tablet7 Node1,Node2

Figure 21.5 Partition table of Figure 21.4 with replication.

The database system keeps track of failed nodes; requests for data stored at a failed
node are automatically routed to the backup nodes that store a replica of the data.
Issues of how to handle the case where one or more replicas are stored at a currently
failed node are addressed briefly in Section 21.4.2, and in more detail later, in Section
23.4.

21.4.1 Location of Replicas

Replication to two nodes provides protection from data loss/unavailability in the event
of single node failure, while replication to three nodes provides protection even in the
event of two node failures. If all nodes where a partition is replicated fail, obviously
there is no way to prevent data loss/unavailability. Systems that use low-cost commodity
machines for data storage typically use three-way replication, while systems that use
more reliable machines typically use two-way replication.

There are multiple possible failure modes in a parallel system. A single node could
fail due to some internal fault. Further, it is possible for all the nodes in a rack to fail
if there is some problem with the rack such as, for example, failure of power supply to
the entire rack, or failure of the network switches in a rack, making all the nodes in the
rack inaccessible. Further, there is a possibility of failure of an entire data center, for
example, due to fire, flooding, or a large-scale power failure.

The location of the nodes where the replicas of a partition are stored must, there-
fore, be chosen carefully, to maximize the probability of at least one copy being acces-
sible even during a failure. Such replication can be within a data center or across data
centers.

• Replication within a data center: Since single node failures are the most common
failure mode, partitions are often replicated to another node.
With the tree-like interconnection topology commonly used in data center net-
works (described in Section 20.4.3) network bandwidth within a rack is much
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higher than the network bandwidth between racks. As a result, replication to an-
other node within the same rack as the first node reduces network demand on the
network between racks. But to deal with the possibility of a rack failure, partitions
are also replicated to a node on a different rack.

• Replication across data centers: To deal with the possibility of failure of an en-
tire data center, partitions may also be replicated at one or more geographically
separated data centers. Geographic separation is important to deal with disasters
such as earthquakes or storms that may shut down all data centers in a geographic
region.

For many web applications, round-trip delays across a long-distance network
can affect performance significantly, a problem that is increasing with the use
of Ajax applications that require multiple rounds of communication between the
browser and the application. To deal with this problem, users are connected with
application servers that are closest to them geographically, and data replication is
done in such a way that one of the replicas is in the same data center as (or at
least, geographically close to) the application server.

Suppose all the partitions at a node N1 are replicated at a single node N2, and N1
fails. Then, node N2 will have to handle all the requests that would originally have gone
to N1, as well as requests routed to node N2. As a result, node N2 would have to perform
twice as much work as other nodes in the system, resulting in execution skew during
failure of node N1.

To avoid this problem, the replicas of partitions residing at a node, say N1, are
spread across multiple other nodes. For example, consider a system with 10 nodes and
two-way replication. Suppose node N1 had one of the replicas of partitions p1 through
p9. Then, the other replica of partitions p1 could be stored on N2, of p2 on N3, and so
on to p9 on N10. Then in the event of failure of N1, nodes N2 through N10 would share
the extra work equally, instead of burdening a single node with all the extra work.

21.4.2 Updates and Consistency of Replicas

Since each partition is replicated, updates made to tuples in a partition must be per-
formed on all the replicas of the partition. For data that is never updated after it has
been created, reads can be performed at any of the replicas, since all of them will have
the same value. If a storage system ensures that all replicas are exclusive-locked and
updated atomically (using, for example, the two-phase commit protocol which we will
see in Section 23.2.1), reads of a tuple can be performed (after obtaining a shared lock)
at any of the replicas and will see the most recent version of the tuple.

If data are updated, and replicas are not updated atomically, different replicas may
temporarily have different values. Thus, a read may see a different value depending on
which replica it accesses. Most applications require that read requests for a tuple must



1016 Chapter 21 Parallel and Distributed Storage

receive the most recent version of the tuple; updates that are based on reading an older
version could result in a lost update problem.

One way of ensuring that reads get the latest value is to treat one of the replicas
of each partition as a master replica. All updates are sent to the master replica and are
then propagated to other replicas. Reads are also sent to the master replica, so that
reads get the latest version of any data item even if updates have not yet been applied
to the other replicas.

If a master replica fails, a new master is assigned for that partition. It is important
to ensure that every update operation performed by the old master has also been seen
by the new master. Further, the old master may have updated some of the replicas,
but not all, before it failed; the new master must complete the task of updating all the
replicas. We discuss details in Section 23.6.2.

It is important to know which node is the (current) master for each partition. This
information can be stored along with the partition table. Specifically, the partition table
must record, in addition to the range of key values assigned to that partition, where the
replicas of the partition are stored, and further which replica is currently the master.

Three solutions are commonly used to update replicas.

• The two-phase commit (2PC) protocol, which ensures that multiple updates per-
formed by a transaction are applied atomically across multiple sites, is described
in Section 23.2. This protocol can be used with replicas to ensure that an update
is performed atomically on all replicas of a tuple.

We assume for now that all replicas are available and can be updated. Issues of
how to allow two-phase commit to continue execution in the presence of failures,
when some replicas may not be reachable, are discussed in Section 23.4.

• Persistent messaging systems, described in Section 23.2.3, which guarantee that a
message is delivered once it is sent. Persistent messaging systems can be used to
update replicas as follows: An update to a tuple is registered as a persistent mes-
sage, sent to all replicas of the tuple. Once the message is recorded, the persistent
messaging system ensures it will be delivered to all replicas. Thus, all replicas will
get the update, eventually; the property is known as eventual consistency of replicas.

However, there may be a delay in message delivery, and during that time some
replicas may have applied an update while others have not. To ensure that reads get
a consistent version, reads are performed only at a master replica, where updates
are made first. (If the site with a master replica of a tuple has failed, another replica
can take over as the master replica after ensuring all pending persistent messages
with updates have been applied.) Details are presented in Section 23.6.2.

• Protocols called consensus protocols, that allow updates of replicas to proceed even
in the face of failures, when some replicas may not be reachable, can be used to
manage update of replicas. Unlike the preceding protocols, consensus protocols
can work even without a designated master replica. We study consensus protocols
in Section 23.8.
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21.5 Parallel Indexing

Indices in a parallel data storage system can be divided into two kinds: local and global
indices. In the following discussion, when virtual node partitioning is used, the term
node should be understood to mean virtual node (or equivalently, tablet).

• A local index is an index built on tuples stored in a particular node; typically, such
an index would be built on all the partitions of a given relation. The index contents
are stored on the same node as the data.

• A global index is an index built on data stored across multiple nodes; a global index
can be used to efficiently find matching tuples, regardless of where the tuples are
stored.

While the contents of a global index could be stored at a single central location,
such a scheme would result in poor scalability; as a result, the contents of a global
index should partitioned across multiple nodes.

A global primary index on a relation is a global index on the attributes on which
the tuples of the relation are partitioned. A global index on partitioning attribute K is
constructed by merely creating local indices on K on each partition.

A query that is intended to retrieve tuples with a specific key value k1 for K can be
answered by first finding which partition could hold the key value k1, and then using
the local index in that partition to find the required tuples.

For example, suppose the student relation is partitioned on the attribute ID, and a
global index is to be constructed on the attribute ID. All that is required is to construct
a local index on ID on each partition. Figure 21.6(a) shows a global primary index on
the student relation, on attribute ID; the local indices are not shown explicitly in the
figure.

A query that is intended to retrieve tuples with a specific value for ID, say 557, can
be answered by first using the partitioning function on ID to first find which partition
could contain the specified ID value 557; the query is then sent to the corresponding
node, which uses the local index on ID to locate the required tuples.

Note that ID is the primary key for the relation student; however, the above scheme
would work even if the partitioning attribute were not the primary key. The scheme
can be extended to handle range queries, provided the partitioning function is itself
based on ranges of values; a partitioning scheme based on hashing cannot support
range queries.

A global secondary index on a relation is a global index whose index attributes do
not match the attributes on which the tuples are partitioned.

Suppose the partitioning attributes are Kp, while the index attributes are Ki, with
Kp ≠ Ki. One approach for answering a selection query on attributes Ki is as follows: If
a local index is created on Ki on each partition of the relation, the query is sent to each
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Figure 21.6 Global primary and secondary indices on student relation

partition, and the local index is used to find matching tuples. Such an approach using
local indices is very inefficient if the number of partitions is large, since every partition
has to be queried, even if only one or a few partitions contain matching tuples.

We now illustrate an efficient scheme for constructing a global secondary index by
using an example. Consider again the student relation partitioned on the attribute ID,
and suppose a global index is to be constructed on the attribute name. A simple way
to construct such an index is to create a set of (name, ID) tuples, with one tuple per
student tuple; let us call this set of tuples index name. Now, the index name tuples are
partitioned on the attribute name. A local index on name is then constructed on each
partition of index name. In addition, a global index is created on the ID, which is the
partitioning attribute. Figure 21.6(b) shows a secondary index on the student relation
on attribute name; local indices are not explicitly shown in the figure.

Now, a query that needs to retrieve students with a given name can be handled by
first examining the partition function of index name to find which partition could store
index name tuples with the given name; the query is then sent to that partition, which
uses the local index on name to find the corresponding ID value. Next, the global index
on the ID value is used to find the required tuple.

Note that in the example above, the partitioning attribute ID does not have du-
plicates; hence it suffices to add only the index key name and the attribute ID to the
index name relation. Otherwise, further attributes would have to be added to ensure
tuples can be uniquely identified, as described next.

In general, given a relation r, which is partitioned on a set of attributes Kp, if we
wish to create a global secondary index on a set of attributes Ki, we create a new relation
rs
i , containing the following attributes:
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1. Ki, and Kp

2. If the partitioning attributes Kp have duplicates, we would have to add further
attributes Ku, such that Kp ∪ Ku is a key for the relation being indexed.

The relation rs
i is partitioned on Ki, and a local index is created on Ki. In addition, a

local index on attributes (Kp, Ku) is created on each partition of relation r.
We now consider how to use a global secondary index to answer a query. Consider

a query that specifies a particular value v for Ki. The query is processed as follows:

1. The relevant partition of rs
i for the value v is found using the partitioning function

on Ki.

2. Use the local index on Ki at the above partition to find tuples of rs
i that have the

specified value v for Ki.

3. The tuples in the preceding result are partitioned based on the Kp value and sent
to the corresponding nodes.

4. At each node, the tuples received from the preceding step are used along with
the local index on r on attributes Kp ∪ Ku, to find matching r tuples.

Note that relation rs
i is basically a materialized view defined as rs

i = ΠKi ,Kp,Ku
(r).

Whenever r is modified by inserts, deletions, or updates to tuples, the materialized view
rs
i must be correspondingly updated.

Note also that updates to a tuple of r at some node may result in updates to tuples
of rs

i at other nodes. For example, in Figure 21.6, if the name of ID 001 is updated from
Zhang to Yang, the tuple (Zhang, 001) at Tablet8 will be updated to (Yang, 001); since
both Zhang and Yang belong in the same partition of the secondary index, no other
partition is affected. On the other hand, if the name is updated from Zhang to Bolin,
the tuple (Zhang, 001) will be deleted from Tablet8 and a new entry (Bolin, 001) added
to Tablet6.

Performing the above updates to the secondary index as part of the same transac-
tion that updates the base relation requires updates to be committed atomically across
multiple nodes. Two-phase commit, discussed in Section 23.2, can be used for this
task. Alternatives based on persistent messaging can also be used as described in Sec-
tion 23.2.3, provided it is acceptable for the secondary index to be somewhat out of
date.

21.6 Distributed File Systems

A distributed file system stores files across a large collection of machines while giving a
single-file-system view to clients. As with any file system, there is a system of file names
and directories, which clients can use to identify and access files. Clients do not need
to bother about where the files are stored.
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The goal of first-generation distributed file systems was to allow client machines to
access files stored on one or more file servers. In contrast, later-generation distributed
file systems, which we focus on, address distribution of file blocks across a very large
number of nodes. Such distributed file systems can store very large amounts of data and
support very large numbers of concurrent clients. A landmark system in this context
was the Google File System (GFS), developed in the early 2000s, which saw widespread
use within Google. The open-source Hadoop File System (HDFS) is based on the GFS
architecture and is now very widely used.

Distributed file systems are generally designed to efficiently store large files whose
sizes range from tens of megabytes to hundreds of gigabytes or more. However, they
are designed to store moderate numbers of such files, of the order of millions; they are
typically not designed to stores billions of different files. In contrast, the parallel data
storage systems we have seen earlier are designed to store very large numbers (billions
or more) of data items, whose size can range from small (tens of bytes) to medium (a
few megabytes).

As in parallel data storage systems, the data in a distributed file system are stored
across a number of nodes. Since files can be much larger than data items in a data
storage system, files are broken up into multiple blocks. The blocks of a single file can
be partitioned across multiple machines. Further, each file block is replicated across
multiple (typically three) machines, so that a machine failure does not result in the file
becoming inaccessible.

File systems typically support two kinds of metadata:

1. A directory system, which allows a hierarchical organization of files into directo-
ries and subdirectories, and

2. A mapping from a file name to the sequence of identifiers of blocks that store
the actual data in each file.

In the case of a centralized file system, the block identifiers help locate blocks in a
storage device such as a disk. In the case of a distributed file system, in addition to
providing a block identifier, the file system must provide the location (node identifier)
where the block is stored; in fact, due to replication, the file system provides a set of
node identifiers along with each block identifier.

In the rest of this section, we describe the organization of the Hadoop File System
(HDFS), which is shown in Figure 21.7; the architecture of HDFS is derived from that
of the Google File System (GFS). The nodes (machines) which store data blocks in
HDFS are called datanodes. Blocks have an associated ID, and datanodes map the
block ID to a location in their local file system where the block is stored.

The file system metadata too can be partitioned across many nodes, but unless
carefully architected, this could lead to bad performance. GFS and HDFS took a sim-
pler and more pragmatic approach of storing the file system metadata at a single node,
called the namenode in HDFS.
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Figure 21.7 Hadoop Distributed File System (HDFS) architecture

Since all metadata reads have to go to the namenode, if a disk access were required
to satisfy a metadata read, the number of requests that could be satisfied per second
would be very small. To ensure acceptable performance, HDFS namenodes cache the
entire metadata in memory; the size of memory then becomes a limiting factor in the
number of files and blocks that the file system can manage. To reduce the memory size,
HDFS uses very large block sizes (typically 64 MB) to reduce the number of blocks
that the namenode must track for each file. Despite this, the limited amount of main
memory on most machines constrains namenodes to support only a limited number of
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files (of the order of millions). However, with main-memory sizes of many gigabytes,
and block sizes of tens of megabytes, an HDFS system can comfortably handle many
petabytes of data.

In any system with a large number of datanodes, datanode failures are a frequent
occurrence. To deal with datanode failures, data blocks must be replicated to multiple
datanodes. If a datanode fails, the block can still be read from one of the other datan-
odes that stores a replica of the block. Replication to three datanodes is widely used to
provide high availability, without paying too high a storage overhead.

We now consider how a file open and read request is satisfied with HDFS. First,
the client contacts the namenode, with the name of the file. The namenode finds the
list of IDs of blocks containing the file data and returns to the client the list of block
IDs, along with the set of nodes that contain replicas of each of the blocks. The client
then contacts any one of the replicas for each block of the file, sending it the ID of the
block, to retrieve the block. In case that particular replica does not respond, the client
can contact any of the other replicas.

To satisfy a write request, the client first contacts the namenode, which allocates
blocks, and decides which datanodes should store replicas of each block. The metadata
are recorded at the namenode and sent back to the client. The client then writes the
block to all the replicas. As an optimization to reduce network traffic, HDFS implemen-
tations may choose to store two replicas in the same rack; in that case, the block write is
performed to one replica, which then copies the data to the second replica on the same
rack. When all the replicas have processed the write of a block, an acknowledgment is
sent to the client.

Replication introduces the problem of consistency of data across the replicas in
case the file is updated. As an example, suppose one of the replicas of a data block
is updated, but due to system failure, another replica does not get updated; then the
system could end up with inconsistent states across the replicas. And what value is read
would depend on which replica is accessed, which is not an acceptable situation.

While data storage systems in general need to deal with consistency, using tech-
niques that we study in Chapter 23, some distributed file systems such as HDFS take
a different approach: namely, not allowing updates. In other words, a file can be ap-
pended to, but data that are written cannot be updated. As each block of the file is
written, the block is copied to the replicas. The file cannot be read until it is closed,
that is, all data have been written to the file, and the blocks have been written suc-
cessfully at all their replicas. The model of writing data to a file is sometimes referred
to as write-once-read-many access model. Others such as GFS allow updates and de-
tect certain inconsistent states caused by failures while writing to replicas; however,
transactional (atomic) updates are not supported.

The restriction that files cannot be updated, but can only be appended to, is not
a problem for many applications of a distributed file system. Applications that require
updates should use a data-storage system that supports updates instead of using a dis-
tributed file system.
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21.7 Parallel Key-Value Stores

Many Web applications need to store very large numbers (many billions) of relatively
small records (of size ranging from a few kilobytes to a few megabytes). Storage would
have to be distributed across thousands of nodes. Storing such records as files in a
distributed file system is infeasible, since file systems are not designed to store such
large numbers of small files. Ideally, a massively parallel relational database should
be used to store such data. But the parallel relational databases available in the early
2000s were not designed to work at a massive scale; nor did they support the ability to
easily add more nodes to the system without causing significant disruption to ongoing
activities.

A number of parallel key-value storage systems were developed to meet the needs of
such web applications. A key-value store provides a way to store or update a data item
(value) with an associated key and to retrieve the data item with a given key. Some
key-value stores treat the data items as uninterpreted sequences of bytes, while others
allow a schema to be associated with the data item. If the system supports definition of
a schema for data items, it is possible for the system to create and maintain secondary
indices on specified attributes of data items.

Key-value stores support two very basic functions on tables: put(table, key, value),
used to store values, with an associated key, in a table, and get(table, key), which re-
trieves the stored value associated with the specified key. In addition, they may support
other functions, such as range queries on key values, using get(table, key1, key2).

Further, many key-value stores support some form of flexible schema.

• Some allow column names to be specified as part of a schema definition, similar
to relational data stores.

• Others allow columns to be added to, or deleted from, individual tuples; such key-
value stores are sometimes referred to as wide-column stores. Such key-value stores
support functions such as put(table, key, columname, value), to store a value in
a specific column of a row identified by the key (creating the column if it does not
already exist), and get(table, key, columname), which retrieves the value for a
specific column of a specific row identified by the key. Further, delete(table, key,
columname) deletes a specific column from a row.

• Yet other key-value stores allow the value stored with a key to have a complex
structure, typically based on JSON; they are sometimes referred to as document
stores.

The ability to specify a (partial) schema of the stored value allows the key-value store
to evaluate selection predicates at the data store; some stores also use the schema to
support secondary indices.

We use the term key-value store to include all the above types of data stores; how-
ever, some people use the term key-value store to refer more specifically to those that
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do not support any form of schema and treat the value as an uninterpreted sequence
of bytes.

Parallel key-value stores typically support elasticity, whereby the number of nodes
can be increased or decreased incrementally, depending on demand. As nodes are
added, tablets can be moved to the new nodes. To reduce the number of nodes, tablets
can be moved away from some nodes, which can then be removed from the system.

Widely used parallel key-value stores that support flexible columns (also known as
wide-column stores) include Bigtable from Google, Apache HBase, Apache Cassan-
dra (originally developed at Facebook), and Microsoft Azure Table Storage from Mi-
crosoft, among others. Key-value stores that support a schema include Megastore and
Spanner from Google, and Sherpa/PNUTS from Yahoo!. Key-value stores that support
semi-structured data (also known as document-stores) include Couchbase, DynamoDB
from Amazon, and MongoDB, among others. Redis and Memcached are parallel in-
memory key-value stores which are widely used for caching data.

Key-value stores are not full-fledged databases, since they do not provide many of
the features that are viewed as standard on database systems today. Features that key-
value stores typically do not support include declarative querying (using SQL or any
other declarative query language), support for transactions, and support for efficient
retrieval of records based on selections on nonkey attributes (traditional databases
support such retrieval using secondary indices). In fact, they typically do not support
primary-key constraints for attributes other than the key, and do not support foreign-key
constraints.

21.7.1 Data Representation

As an example of data management needs of web applications, consider the profile of
a user, which needs to be accessible to a number of different applications that are run
by an organization. The profile contains a variety of attributes, and there are frequent
additions to the attributes stored in the profile. Some attributes may contain complex
data. A simple relational representation is often not sufficient for such complex data.

Many key-value stores support the JavaScript Object Notation (JSON) representa-
tion, which has found increasing acceptance for representing complex data (JSON is
covered in Section 8.1.2). The JSON representation provides flexibility in the set of
attributes that a record contains, as well as the types of these attributes. Yet others,
such as Bigtable, define their own data model for complex data, including support for
records with a very large number of optional columns.

In Bigtable, a record is not stored as a single value but is instead split into compo-
nent attributes that are stored separately. Thus, the key for an attribute value conceptu-
ally consists of (record-identifier, attribute-name). Each attribute value is just a string
as far as Bigtable is concerned. To fetch all attributes of a record, a range query, or
more precisely a prefix-match query consisting of just the record identifier, is used. The
get() function returns the attribute names along with the values. For efficient retrieval
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of all attributes of a record, the storage system stores entries sorted by the key, so all
attribute values of a particular record are clustered together.

In fact, the record identifier can itself be structured hierarchically, although to
Bigtable itself the record identifier is just a string. For example, an application that
stores pages retrieved from a web crawl could map a URL of the form:

www.cs.yale.edu/people/silberschatz.html

to the record identifier:

edu.yale.cs.www/people/silberschatz.html

so that pages are clustered in a useful order.
Data-storage systems often allow multiple versions of data items to be stored. Ver-

sions are often identified by timestamp, but they may be alternatively identified by an
integer value that is incremented whenever a new version of a data item is created.
Reads can specify the required version of a data item, or they can pick the version with
the highest version number. In Bigtable, for example, a key actually consists of three
parts: (record-identifier, attribute-name, timestamp).

Some key-value stores support columnar storage of rows, with each column of a
row stored separately, with the row key and the column value stored for each row. Such
a representation allows a scan to efficiently retrieve a specified column of all rows,
without having to retrieve other columns from storage. In contrast, if rows are stored
in the usual manner, with all column values stored with the row, a sequential scan of
the storage would fetch columns that are not required, reducing performance.

Further, some key-value stores support the notion of a column family, which groups
sets of columns into a column family. For a given row, all the columns in a specific col-
umn family are stored together, but columns from other column families are stored
separately. If a set of columns are often retrieved together, storing them as a column
family may allow more efficient retrieval, as compared to either columnar storage where
these are stored and retrieved separately, or a row storage, which could result in retriev-
ing unneeded columns from storage.

21.7.2 Storing and Retrieving Data

In this section, we use the term tablet to refer to partitions, as discussed in Section
21.3.3. We also use the term tablet server to refer to the node that acts as the server for
a particular tablet; all requests related to a tablet are sent to the tablet server for that
tablet.5. The tablet server would be one of the nodes that has a replica of the tablet and
plays the role of master replica as discussed in Section 21.4.1.6

5HBase uses the terms region and region server in place of the terms tablet and tablet server
6In BigTable and HBase, replication is handled by the underlying distributed file system; tablet data are stored in files,
and one of the nodes containing a replica of the tablet files is chosen as the tablet server.
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We use the term master to refer to a site that stores a master copy of the partition
information, including, for each tablet, the key ranges for the tablet, the sites storing
the replicas of the tablet, and the current tablet server for that tablet.7 The master is
also responsible for tracking the health of tablet servers; in case a tablet server node
fails, the master assigns one of the other nodes that contains a replica of the tablet to
act as the new tablet server for that tablet. The master is also responsible for reassigning
tablets to balance the load in the system if some node is overloaded or if a new node is
added to the system.

For each request coming into the system, the tablet corresponding to the key must
be identified, and the request routed to the tablet server. If a single master site were
responsible for this task, it would get overloaded. Instead, the routing task is parallelized
in one of two ways:

• By replicating the partition information to the client sites; the key-value store API
used by clients looks up the partition information copy stored at the client to de-
cide where to route a request. This approach is used in Bigtable and HBase.

• By replicating the partition information to a set of router sites, which route requests
to the site with the appropriate tablet. Requests can be sent to any one of the router
sites, which forward the request to the correct tablet master. This approach is used,
for example, in the PNUTS system.

Since there may be a gap between actually splitting or moving a tablet and updating
the partition information at a router (or client), the partition information may be out
of date when the routing decision is made. When the request reaches the identified
tablet master node, the node detects that the tablet has been split, or that the site no
longer stores a (master) replica of the tablet. In such a case, the request is returned to
the router with an indication that the routing was incorrect; the router then retrieves
up-to-date tablet mapping information from the master and reroutes the request to the
correct destination.

Figure 21.8 depicts the architecture of a cloud data-storage system, based loosely
on the PNUTS architecture. Other systems provide similar functionality, although their
architecture may vary. For example, Bigtable/HBase do not have separate routers; the
partitioning and tablet-server mapping information is stored in the Google File Sys-
tem/HDFS, and clients read the information from the file system and decide where to
send their requests.

21.7.2.1 Geographically Distributed Storage

Several key-value stores support replication of data to geographically distributed loca-
tions; some of these also support partitioning of data across geographically distributed
locations, allowing different partitions to be replicated in different sets of locations.

7The term tablet controller is used by PNUTS to refer to the master site.
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Figure 21.8 Architecture of a cloud data storage system.

One of the key motivations for geographic distribution is fault tolerance, which
allows the system to continue functioning even if an entire data center fails due to a
disaster such as a fire or an earthquake; in fact, earthquakes could cause all data centers
in a region to fail. A second key motivation is to allow a copy of the data to reside at a
geographic region close to the user; requiring data to be fetched from across the world
could result in latencies of hundreds of milliseconds.

A key performance issue with geographical replication of data is that the latency
across geographical regions is much higher than the latency within a data center. Some
key-value stores nevertheless support geographically distributed replication, requiring
transactions to wait for confirmation of updates from remote locations. Other key-
value stores support asynchronous replication of updates to remote locations, allowing
a transaction to commit without waiting for confirmation of updates from a remote
location. There is, however, a risk of loss of updates in case of failure before the updates
are replicated. Some key-value stores allow the application to choose whether to wait
for confirmation from remote locations or to commit as soon as updates are performed
locally.

Key-value stores that support geographic replication include Apache Cassandra,
Megastore and Spanner from Google, Windows Azure storage from Microsoft, and
PNUTS/Sherpa from Yahoo!, among others.
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21.7.2.2 Index Structure

The records in each tablet in a key-value store are indexed on the key; range queries
can be efficiently supported by storing records clustered on the key. A B+-tree file orga-
nization is a good option, since it supports indexing with clustered storage of records.

The widely used key-value stores BigTable and HBase are built on top of distributed
file systems in which files are immutable; that is, files cannot be updated once they are
created. Thus B+-tree indices or file organization cannot be stored in immutable files,
since B+-trees require updates, which cannot be done on an immutable file.

Instead, the BigTable and HBase systems use the stepped-merge variant of the log
structured merge tree (LSM tree), which we saw in Section 14.8.1, and is described in
more detail in Section 24.2. The LSM tree does not perform updates on existing trees,
but instead creates new trees either using new data or by merging existing trees. Thus,
it is an ideal fit for use on top of distributed file systems that only support immutable
files. As an extra benefit, the LSM tree supports clustered storage of records, and can
support very high insert and update rates, which has been found very useful in many
applications of key-value stores. Several key-value stores, such as Apache Cassandra
and the WiredTiger storage structure used by MongoDB, use the LSM tree structure.

21.7.3 Support for Transactions

Most key-value stores offer limited support for transactions. For example, key-value
stores typically support atomic updates on a single data item and ensure that updates
on the data item are serialized, that is, run one after the other. Serializability at the level
of individual operations is thus trivially satisfied, since the operations are run serially.
Note that serializability at the level of transactions is not guaranteed by serial execution
of updates on individual data items, since a transaction may access more than one data
item.

Some key-value stores, such as Google’s MegaStore and Spanner, provide full sup-
port for ACID transactions across multiple nodes. However, most key-value stores do
not support transactions across multiple data items.

Some key-value stores provide a test-and-set operation that can help applications
implement limited forms of concurrency control, as we see next.

21.7.3.1 Concurrency Control

Some key-value stores, such as the Megastore and Spanner systems from Google, sup-
port concurrency control via locking. Issues in distributed concurrency control are
discussed in Chapter 23. Spanner also supports versioning and database snapshots
based on timestamps. Details of the multiversion concurrency control technique im-
plemented in Spanner are discussed in Section 23.5.1.

However, most of the other key-value stores, such as Bigtable, PNUTS/Sherpa, and
MongoDB, support atomic operations on single data items (which may have multiple
columns, or may be JSON documents in MongoDB).
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Some key-value stores, such as HBase and PNUTS, provide an atomic test-and-set
function, which allows an update to a data item to be conditional on the current version
of the data item being the same as a specified version number; the check (test) and the
update (set) are performed atomically. This feature can be used to implement a limited
form of validation-based concurrency control, as discussed in Section 23.3.7.

Some data stores support atomic increment operations on data items and atomic
execution of stored procedures. For example, HBase supports the incrementColum-
nValue() operation, which atomically reads and increments a column value, and a
checkAndPut() which atomically checks a condition on a data item and updates it
only if the check succeeds. HBase also supports atomic execution of stored proce-
dures, which are called “coprocessors” in HBase terminology. These procedures run
on a single data item and are executed atomically.

21.7.3.2 Atomic Commit

BigTable, HBase, and PNUTS support atomic commit of multiple updates to a single
row; however, none of these systems supports atomic updates across different rows.

As one of the results of the above limitation, none of these systems supports sec-
ondary indices; updates to a data item would require updates to the secondary index,
which cannot be done atomically.

Some systems, such as PNUTS, support secondary indices or materialized views
with deferred updates; updates to a data item result in updates to the secondary index
or materialized view being added to a messaging service to be delivered to the node
where the update needs to be applied. These updates are guaranteed to be delivered
and applied subsequently; however, until they are applied, the secondary index may be
inconsistent with the underlying data. View maintenance is also supported by PNUTS
in the same deferred fashion. There is no transactional guarantee on the updates of
such secondary indices or materialized views, and only a best-effort guarantee in terms
of when the updates reach their destination. Consistency issues with deferred mainte-
nance are discussed in Section 23.6.3.

In contrast, the Megastore and Spanner systems developed by Google support
atomic commit for transactions spanning multiple data items, which can be spread
across multiple nodes. These systems use two-phase commit (discussed in Section 23.2)
to ensure atomic commit across multiple nodes.

21.7.3.3 Dealing with Failures

If a tablet server node fails, another node that has a copy of the tablet should be assigned
the task of serving the tablet. The master node is responsible for detecting node failures
and reassigning tablet servers.

When a new node takes over as tablet server, it must recover the state of the tablet.
To ensure that updates to the tablet survive node failures, updates to a tablet are logged,
and the log is itself replicated. When a site fails, the tablets at the site are assigned to
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other sites; the new master site of each tablet is responsible for performing recovery
actions using the log to bring its copy of the tablet to an up-to-date state, after which
updates and reads can be performed on the tablet.

In Bigtable, as an example, mapping information is stored in an index structure,
and the index, as well as the actual tablet data, are stored in the file system. Tablet data
updates are not flushed immediately, but log data are. The file system ensures that the
file system data are replicated and will be available even in the face of failure of a few
nodes in the cluster. Thus, when a tablet is reassigned, the new server for that tablet
has access to up-to-date log data.

Yahoo!’s Sherpa/PNUTS system, on the other hand, explicitly replicates tablets to
multiple nodes in a cluster and uses a persistent messaging system to implement the
log. The persistent messaging system replicates log records at multiple sites to ensure
availability in the event of a failure. When a new node takes over as the tablet server,
it must apply any pending log records that were generated by the earlier tablet server
before taking over as the tablet server.

To ensure availability in the face of failures, data must be replicated. As noted in
Section 21.4.2, a key issue with replication is the task of keeping the replicas consis-
tent with each other. Different systems implement atomic update of replicas in differ-
ent fashions. Google BigTable and Apache HBase use replication features provided by
an underlying file system (GFS for BigTable, and HDFS for HBase), instead of im-
plementing replication on their own. Interestingly, neither GFS nor HDFS supports
atomic updates of all replicas of a file; instead they support appends to files, which are
copied to all replicas of the file blocks. An append is successful only when it has been
applied to all replicas. System failures can result in appends that are applied to only
some replicas; such incomplete appends are detected using sequence numbers and are
cleaned up when they are detected.

Some systems such as PNUTS use a persistent messaging service to log updates;
the messaging service guarantees that updates will be delivered to all replicas. Other
systems, such as Google’s Megastore and Spanner, use a technique called distributed
consensus to implement consistent replication, as we discuss in Section 23.8. Such
systems require a majority of replicas to be available to perform an update. Other sys-
tems, such as Apache Cassandra and MongoDB, allow the user control over how many
replicas must be available to perform an update. Setting the value low could result in
conflicting updates, which must be resolved later. We discuss these issues in Section
23.6.

21.7.4 Managing Without Declarative Queries

Key-value stores do not provide any query processing facility, such as SQL language
support, or even lower-level primitives such as joins. Many applications that use key-
value stores can manage without query language support. The primary mode of data
access in such applications is to store data with an associated key and to retrieve data



21.7 Parallel Key-Value Stores 1031

with that key. In the user profile example, the key for user-profile data would be the
user’s identifier.

There are applications that require joins but implement the joins either in appli-
cation code or by a form of view materialization. For example, in a social-networking
application, each user should be shown new posts from all her friends, which concep-
tually requires a join.

One approach to computing the join is to implement it in the application code,
by first finding the set of friends of a given user, and then querying the data object
representing each friend, to find their recent posts.

An alternative approach is as follows: Whenever a user makes a post, for each
friend of the user a message is sent to, the data object representing that friend and the
data associated with the friend are updated with a summary of the new post. When
that user checks for updates, all required data are available in one place and can be
retrieved quickly.

Both approaches can be used without any underlying support for joins. There are
trade-offs between the two alternatives such as higher cost at query time for the first
alternative versus higher storage cost and higher cost at the time of writes for the second
alternative.

21.7.5 Performance Optimizations

When using a data storage system, the physical location of data are decided by the stor-
age system and hidden from the client. When storing multiple relations that need to be
joined, partitioning each independently may be suboptimal in terms of communication
cost. For example, if the join of two relations is computed frequently, it may be best if
they are partitioned in exactly the same way, on their join attributes. As we will see in
Section 22.7.4, doing so would allow the join to be computed in parallel at each storage
site, without data transfer.

To support such scenarios, some data storage systems allow the schema designer
to specify that tuples of one relation should be stored in the same partitions as tuples
of another relation that they reference, typically using a foreign key. A typical use of
this functionality is to store all tuples related to a particular entity together in the same
partition; the set of such tuples is called an entity group.

Further, many data storage systems, such as HBase, support stored functions or
stored procedures. Stored functions/procedures allow clients to invoke a function on
a tuple (or an entity group) and instead of the tuples being fetched and executed lo-
cally, the function is executed at the partition where the tuple is stored. Stored func-
tions/procedures are particularly useful if the stored tuples are large, while the func-
tion/procedure results are small, reducing data transfer.

Many data storage systems provide features such as support for automatically delet-
ing old versions of data items after some period of time, or even deleting data items
that are older than some specified period.
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21.8 Summary

• Parallel databases have gained significant commercial acceptance in the past 20
years.

• Data storage and indexing are two important aspects of parallel database systems.

• Data partitioning involves the distribution of data among multiple nodes. In I/O
parallelism, relations are partitioned among available disks so that they can be re-
trieved faster. Three commonly used partitioning techniques are round-robin par-
titioning, hash partitioning, and range partitioning.

• Skew is a major problem, especially with increasing degrees of parallelism. Bal-
anced partitioning vectors, using histograms, and virtual node partitioning are
among the techniques used to reduce skew.

• Parallel data storage systems must be resilient to failure of nodes. To ensure that
data are not lost on node failure, tuples are replicated across at least two nodes,
and often three nodes. If a node fails, the tuples that it stored can still be accessed
from the other nodes where the tuples are replicated.

• Indices in a parallel data storage system can be divided into two kinds: local and
global. A local index is an index built on tuples stored in a particular node; The
index contents are stored on the same node as the data. A global index is an index
built on data stored across multiple nodes.

• A distributed file system stores files across a large collection of machines, while
giving a single-file-system view to clients. As with any file system, there is a system
of file names and directories, which clients can use to identify and access files.
Clients do not need to bother about where the files are stored.

• Web applications need to store very large numbers (many billions) of relatively
small records (of size ranging from a few kilobytes to a few megabytes). A number
of parallel key-value storage systems were developed to meet the needs of such
web applications. A key-value store provides a way to store or update a data item
(value) with an associated key, and to retrieve the data item with a given key.

Review Terms

• Key-value stores

• Data storage system

• I/O parallelism

• Data partitioning

• Horizontal partitioning

• Partitioning strategies

° Round-robin

° Hash partitioning

° Range partitioning

• Partitioning vector
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• Point queries

• Range queries

• Skew

° Execution skew

° Data distribution skew

° Attribute-value skew

° Partition skew

° Execution skew

• Handling of skew

° Balanced range-partitioning
vector

° Histogram

° Virtual nodes

• Elasticity of storage

• Table

• Tablets

• Partition table

• Master node

• Routers

• Consistent hashing

• Distributed hash tables

• Replication

° Replication within a data center

° Replication across data center

° Master replicas

° Consistency of replicas

• Eventual consistency

• Global primary index

• Global secondary index

• Distributed file system

• Write-once-read-many access model

• Key-value store

• Wide-column stores

• Document stores

• Column family

• Tablet server

Practice Exercises

21.1 In a range selection on a range-partitioned attribute, it is possible that only
one disk may need to be accessed. Describe the benefits and drawbacks of this
property.

21.2 Recall that histograms are used for constructing load-balanced range parti-
tions.

a. Suppose you have a histogram where values are between 1 and 100, and
are partitioned into 10 ranges, 1–10, 11–20, … , 91–100, with frequen-
cies 15, 5, 20, 10, 10, 5, 5, 20, 5, and 5, respectively. Give a load-balanced
range partitioning function to divide the values into five partitions.

b. Write an algorithm for computing a balanced range partition with p par-
titions, given a histogram of frequency distributions containing n ranges.

21.3 Histograms are traditionally constructed on the values of a specific attribute
(or set of attributes) of a relation. Such histograms are good for avoiding data
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distribution skew but are not very useful for avoiding execution skew. Explain
why.

Now suppose you have a workload of queries that perform point lookups.
Explain how you can use the queries in the workload to come up with a parti-
tioning scheme that avoids execution skew.

21.4 Replication:

a. Give two reasons for replicating data across geographically distributed
data centers.

b. Centralized databases support replication using log records. How is
the replication in centralized databases different from that in paral-
lel/distributed databases?

21.5 Parallel indices:

a. Secondary indices in a centralized database store the record identifier.
A global secondary index too could potentially store a partition num-
ber holding the record, and a record identifier within the partition. Why
would this be a bad idea?

b. Global secondary indices are implemented in a way similar to local sec-
ondary indices that are used when records are stored in a B+-tree file
organization. Explain the similarities between the two scenarios that re-
sult in a similar implementation of the secondary indices.

21.6 Parallel database systems store replicas of each data item (or partition) on
more than one node.

a. Why is it a good idea to distribute the copies of the data items allocated
to a node across multiple other nodes, instead of storing all the copies
in the same node (or set of nodes).

b. What are the benefits and drawbacks of using RAID storage instead of
storing an extra copy of each data item?

21.7 Partitioning and replication.

a. Explain why range-partitioning gives better control on tablet sizes than
hash partitioning. List an analogy between this case and the case of B+-
tree indices versus hash indices.

b. Some systems first perform hashing on the key, and then use range par-
titioning on the hash values. What could be a motivation for this choice,
and what are its drawbacks as compared to performing range partition
direction on the key?

c. It is possible to horizontally partition data, and then perform vertical
partitioning locally at each node. It is also possible to do the converse,
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where vertical partitioning is done first, and then each partition is then
horizontally partitioned independently. What are are the benefits of the
first option over the second one?

21.8 In order to send a request to the master replica of a data item, a node must
know which replica is the master for that data item.

a. Suppose that between the time the node identifies which node is the
master replica for a data item, and the time the request reaches the iden-
tified node, the mastership has changed, and a different node is now the
master. How can such a situation be dealt with?

b. While the master replica could be chosen on a per-partition basis, some
systems support a per-record master replica, where the records of a par-
tition (or tablet) are replicated at some set of nodes, but each record’s
master replica can be on any of the nodes from within this set of nodes,
independent of the master replica of other records. List two benefits of
keeping track of master on a per-record basis.

c. Suggest how to keep track of the master replica for each record, when
there are a large number of records.

Exercises

21.9 For each of the three partitioning techniques, namely, round-robin, hash par-
titioning, and range partitioning, give an example of a query for which that
partitioning technique would provide the fastest response.

21.10 What factors could result in skew when a relation is partitioned on one of its
attributes by:

a. Hash partitioning?

b. Range partitioning?

In each case, what can be done to reduce the skew?

21.11 What is the motivation for storing related records together in a key-value store?
Explain the idea using the notion of an entity group.

21.12 Why is it easier for a distributed file system such as GFS or HDFS to support
replication than it is for a key-value store?

21.13 Joins can be expensive in a key-value store, and difficult to express if the system
does not support SQL or a similar declarative query language. What can an
application developer do to efficiently get results of join or aggregate queries
in such a setting?
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Tools

A wide variety of open-source Big Data tools are available, in addition to some com-
mercial tools. In addition, a number of these tools are available on cloud platforms.
Google File System (GFS) was an early generation parallel file system. Apache HDFS
(hadoop.apache.org) is a widely used distributed file system implementation mod-
eled after GFS. HDFS by itself does not define any internal format for files, but Hadoop
implementations today support several optimized file formats such as Sequence files
(which allow binary data), Avro (which supports semi-structured schemas) and Par-
quet and Orc (which support columnar data representation). Hosted cloud storage
systems include the Amazon S3 storage system (aws.amazon.com/s3) and Google
Cloud Storage (cloud.google.com/storage).

Google’s Bigtable was an early generation parallel data storage system, ar-
chitected as a layer on top of GFS. Amazon’s Dynamo is an early generation
parallel key-value store which is based on the idea of consistent hashing, de-
veloped initially for peer-to-peer data storage. Both are available hosted on the
cloud as Google Bigtable (cloud.google.com/bigtable) and Amazon DynamoDB
(aws.amazon.com/dynamodb). Google Spanner (cloud.google.com/spanner) is
a hosted storage system that provides extensive transactional support. Apache
HBase (hbase.apache.org) is a widely used open-source data storage sys-
tem which is based on Bigtable and is implemented as a layer on top of
HDFS. Apache Cassandra (cassandra.apache.org) which was developed at Face-
book, Voldemort (www.project-voldemort.com) developed at LinkedIn, MongoDB
(www.mongodb.com), CouchDB (couchdb.apache.org) and Riak (basho.com) are
all open-source key-value stores. MongoDB and CouchDB use the JSON format for
storing data. Aerospike (www.aerospike.com) is an open-source data storage system
optimized for Flash storage. There are many other open-source parallel data storage
systems available today.

Commercial parallel database systems include Teradata, Teradata Aster Data, IBM
Netezza, and Pivotal Greenplum. IBM Netezza, Pivotal Greenplum, and Teradata Aster
Data all use PostgreSQL as the underlying database, running independently on each
node; each of these systems builds a layer on top, to partition data, and parallelize
query processing across the nodes.

Further Reading

In the late 1970s and early 1980s, as the relational model gained reasonably sound foot-
ing, people recognized that relational operators are highly parallelizable and have good
dataflow properties. Several research projects, including GAMMA ([DeWitt (1990)]),
XPRS ([Stonebraker et al. (1988)]), and Volcano ([Graefe (1990)]) were launched to
investigate the practicality of parallel storage of data and parallel execution of queries.

Teradata was one of the first commercial shared-nothing parallel database systems
designed for decision support systems, and it continues to have a large market share.
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Teradata supports partitioning and replication of data to deal with node failures. The
Red Brick Warehouse was another early parallel database system designed for decision
support (Red Brick was bought by Informix, and later IBM).

Information on the Google file system can be found in [Ghemawat et al. (2003)],
while the Google Bigtable system is described in [Chang et al. (2008)]. The Yahoo!
PNUTS system is described in [Cooper et al. (2008)], while Google Megastore and
Google Spanner are described in [Baker et al. (2011)] and [Corbett et al. (2013)] re-
spectively. Consistent hashing is described in [Karger et al. (1997)], while Dynamo,
which is based on consistent hashing, is described in [DeCandia et al. (2007)].
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CHAP T E R 22
Parallel and Distributed Query
Processing

In this chapter, we discuss algorithms for query processing in parallel database sys-
tems. We assume that the queries are read only, and our focus is on query processing in
decision support systems. Such systems need to execute queries on very large amounts
of data, and parallel processing of the query across multiple nodes is critical for pro-
cessing queries within acceptable response times.

Our focus in the early parts of this chapter is on relational query processing. How-
ever, later in the chapter, we examine issues in parallel processing of queries expressed
in models other than the relational model.

Transaction processing systems execute large numbers of queries that perform up-
dates, but each query affects only a small number of tuples. Parallel execution is key
to handle large transaction processing loads; however, this topic is covered in Chapter
23.

22.1 Overview

Parallel processing can be exploited in two distinct ways in a database system. One
approach is interquery parallelism, which refers to the execution of multiple queries
in parallel with each other, across multiple nodes. The second approach is intraquery
parallelism, which refers to the processing of different parts of the execution of a single
query, in parallel across multiple nodes.

Interquery parallelism is essential for transaction processing systems. Transaction
throughput can be increased by this form of parallelism. However, the response times
of individual transactions are no faster than they would be if the transactions were run
in isolation. Thus, the primary use of interquery parallelism is to scale up a transaction-
processing system to support a larger number of transactions per second. Transaction
processing systems are considered in Chapter 23.

In contrast, intraquery parallelism is essential for speeding up long-running queries,
and it is the focus of this chapter.

1039
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Execution of a single query involves execution of multiple operations, such as se-
lects, joins, or aggregate operations. The key to exploiting large-scale parallelism is to
process each operation in parallel, across multiple nodes. Such parallelism is referred to
as intraoperation parallelism. Since the number of tuples in a relation can be large, the
degree of intraoperation parallelism is also potentially very large; thus, intraoperation
parallelism is natural in a database system.

To illustrate the parallel evaluation of a query, consider a query that requires a rela-
tion to be sorted. Suppose that the relation has been partitioned across multiple disks
by range partitioning on some attribute, and the sort is requested on the partitioning
attribute. The sort operation can be implemented by sorting each partition in parallel,
then concatenating the sorted partitions to get the final sorted relation. Thus, we can
parallelize a query by parallelizing individual operations.

There is another source of parallelism in evaluating a query: The operator tree for
a query can contain multiple operations. We can parallelize the evaluation of the op-
erator tree by evaluating in parallel some of the operations that do not depend on one
another. Further, as Chapter 15 mentions, we may be able to pipeline the output of
one operation to another operation. The two operations can be executed in parallel
on separate nodes, one generating output that is consumed by the other, even as it is
generated. Both these forms of parallelism are examples of interoperation parallelism,
which allows different operators of a query to be executed in parallel.

In summary, the execution of a single query can be parallelized in two different
ways:

• Intraoperation parallelism, which we consider in detail in the next few sections,
where we study parallel implementations of common relational operations such
as sort, join, aggregate and other operations.

• Interoperation parallelism, which we consider in detail in Section 22.5.1.

The two forms of parallelism are complementary and can be used simultaneously
on a query. Since the number of operations in a typical query is small, compared to the
number of tuples processed by each operation, intraoperation parallelism can scale bet-
ter with increasing parallelism. However, interoperation parallelism is also important,
especially in shared memory systems with multiple cores.

To simplify the presentation of the algorithms, we assume a shared nothing ar-
chitecture with n nodes, N1, N2,… , Nn. Each node may have one or more disks, but
typically the number of such disks is small. We do not address how to partition the
data between the disks at a node; RAID organizations can be used with these disks to
exploit parallelism at the storage level, rather than at the query processing level.

The choice of algorithms for parallelizing query evaluation depends on the ma-
chine architecture. Rather than present algorithms for each architecture separately, we
use a shared-nothing architecture in our description. Thus, we explicitly describe when
data have to be transferred from one node to another.
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We can simulate this model easily by using the other architectures, since transfer of
data can be done via shared memory in a shared-memory architecture, and via shared
disks in a shared-disk architecture. Hence, algorithms for shared-nothing architectures
can be used on the other architectures too. In Section 22.6, we discuss how some of
the algorithms can be further optimized for shared-memory systems.

Current-generation parallel systems are typically based on a hybrid architecture,
where each computer has multiple cores with a shared memory, and there are multiple
computers organized in a shared-nothing fashion. For the purpose of our discussion,
with such an architecture, each core can be considered a node in a shared-nothing
system. Optimizations to exploit the fact that some of the cores share memory with
other cores can be performed as discussed in Section 22.6.

22.2 Parallel Sort

Suppose that we wish to sort a relation r that resides on n nodes N1, N2,… , Nn. If the
relation has been range-partitioned on the attributes on which it is to be sorted, we can
sort each partition separately and concatenate the results to get the full sorted relation.
Since the tuples are partitioned on n nodes, the time required for reading the entire
relation is reduced by a factor of n by the parallel access.

If relation r has been partitioned in any other way, we can sort it in one of two
ways:

1. We can range-partition r on the sort attributes, and then sort each partition sep-
arately.

2. We can use a parallel version of the external sort-merge algorithm.

22.2.1 Range-Partitioning Sort

Range-partitioning sort, shown pictorially in Figure 22.1a, works in two steps: first
range-partitioning the relation, then sorting each partition separately. When we sort
by range-partitioning the relation, it is not necessary to range-partition the relation on
the same set of nodes as those on which that relation is stored. Suppose that we choose
nodes N1, N2,… , Nm to sort the relation. There are two steps involved in this operation:

1. Redistribute the tuples in the relation, using a range-partition strategy, so that all
tuples that lie within the ith range are sent to node ni, which stores the relation
temporarily on its local disk.

To implement range partitioning, in parallel every node reads the tuples from
its disk and sends each tuple to its destination node based on the partition func-
tion. Each node N1, N2,… , Nm also receives tuples belonging to its partition and
stores them locally. This step requires disk I/O and network communication.
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Figure 22.1 Parallel sorting algorithms.

2. Each of the nodes sorts its partition of the relation locally, without interaction
with the other nodes. Each node executes the same operation—namely, sorting—
on a different data set. (Execution of the same operation in parallel on different
sets of data are called data parallelism.)

The final merge operation is trivial, because the range partitioning in the first
phase ensures that, for 1 ≤ i < j ≤ m, the key values in node Ni are all less than
the key values in Nj.

We must do range partitioning with a balanced range-partition vector so that each
partition will have approximately the same number of tuples. We saw how to create such
partition vectors in Section 21.3.1. Virtual node partitioning, as discussed in Section
21.3.2, can also be used to reduce skew. Recall that there are several times as many
virtual nodes as real nodes, and virtual node partitioning creates a partition for each
virtual node. Virtual nodes are then mapped to real nodes; doing so in a round-robin
fashion tends to spreads virtual nodes across real nodes in a way that reduces the degree
of skew at real nodes.

22.2.2 Parallel External Sort-Merge

Parallel external sort-merge, shown pictorially in Figure 22.1b, is an alternative to range
partitioning sort. Suppose that a relation has already been partitioned among nodes
N1, N2,… , Nn (it does not matter how the relation has been partitioned). Parallel ex-
ternal sort-merge then works this way:

1. Each node Ni sorts the data available at Ni.

2. The system then merges the sorted runs on each node to get the final sorted
output.
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The merging of the sorted runs in step 2 can be parallelized by this sequence of
actions:

1. The system range-partitions the sorted partitions at each node Ni (all by the same
partition vector) across the nodes N1, N2,… , Nm. It sends the tuples in sorted
order, so each node receives the tuples as sorted streams.

2. Each node Ni performs a merge on the streams of tuples as they are received to
get a single sorted run.

3. The system concatenates the sorted runs on nodes N1, N2,… , Nm to get the final
result.

As described, this sequence of actions results in an interesting form of execution skew,
since at first every node sends all tuples of partition 1 to N1, then every node sends all
tuples of partition 2 to N2, and so on. Thus, while sending happens in parallel, receiving
tuples becomes sequential: First only N1 receives tuples, then only N2 receives tuples,
and so on. To avoid this problem, the sorted sequence of tuples Si,j from any node i
destined to any other node j is broken up into multiple blocks. Each node Ni sends
the first block of tuples from Si,j node Nj, for each j; it then sends the second block of
tuples to each node Nj, and so on, until all blocks have been sent. As a result, all nodes
receive data in parallel. (Note that tuples are sent in blocks, rather than individually,
to reduce network overheads.)

22.3 Parallel Join

Parallel join algorithms attempt to divide the tuples of the input relations over several
nodes. Each node then computes part of the join locally. Then, the system collects the
results from each node to produce the final result. How exactly to divide the tuples
depends on the join algorithm, as we see next.

22.3.1 Partitioned Join

For certain kinds of joins, it is possible to partition the two input relations across the
nodes and to compute the join locally at each node. The partitioned join technique
can be used for inner joins, where the join condition is an equi-join (e.g., r ⋈r.A=s.B s);
the relations r and s are partitioned by the same partitioning function on their join
attributes. The idea of partitioning is exactly the same as that behind the partitioning
step of hash join. Partitioned join can also be used for outer joins, as we shall see
shortly.

Suppose that we are using m nodes to perform the join, and that the relations to
be joined are r and s. Partitioned join then works this way: The system partitions the
relations r and s each into m partitions, denoted r1, r2,… , rm and s1, s2,… , sm. In a
partitioned join, however, there are two different ways of partitioning r and s:
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• Range partitioning on the join attributes.

• Hash partitioning on the join attributes.

In either case, the same partitioning function must be used for both relations. For
range partitioning, the same partition vector must be used for both relations. For hash
partitioning, the same hash function must be used on both relations. Figure 22.2 depicts
the partitioning in a partitioned parallel join.

The partitioned join algorithm first partitions one of the relations by scanning its
tuples and sending them to the appropriate node based on the partition function and
the join attribute values of each tuple. Specifically, each node Ni reads in the tuples of
one of the relations, say r, from local disk, computes for each tuple t the partition rj
to which t belongs, and sends the tuple t to node Nj. Each node also simultaneously
receives tuples that are sent to it and stores them on its local disk (this can be done by
having separate threads for sending and receiving data). The process is repeated for all
tuples from the other relation, s.

Once both relations are partitioned, we can use any join technique locally at each
node Ni to compute the join of ri and si. Thus, we can use partitioning to parallelize
any join technique.

Partitioned join can be used not only for inner joins, but also for all three forms
of outer join (left, right and full outer join). Each node computes the corresponding
outer join locally, after partitioning is done on the join attributes. Further, since natural
join can be expressed as an equijoin followed by a projection, natural joins can also be
computed using partitioned join.

If one or both of the relations r and s are already partitioned on the join attributes
(by either hash partitioning or range partitioning), the work needed for partitioning
is reduced greatly. If the relations are not partitioned or are partitioned on attributes
other than the join attributes, then the tuples need to be repartitioned.

Step 1: Partition r          Step 2: Partition s

Step 3: Each node Ni computes ri      sí΄

s

s 3 

s 2 

s 1 

 n rm ́ ΄sm 

s3 ́

s
2 ́

s1 ́

r3 ́

r2 ́

r1 ́r
1

r
2

r
3

rn

Figure 22.2 Partitioned parallel join.
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We now consider issues specific to the join technique used locally at each node Ni.
The local join operation can be optimized by performing some initial steps on tuples
as they arrive at a node, instead of first storing the tuples to disk and then reading
them back to perform these initial steps. These optimizations, which we describe be-
low, are also used in nonparallel query processing, when results of an earlier operation
are pipelined into a subsequent operation; thus, they are not specific to parallel query
processing.

• If we use hash join locally, the resultant parallel join technique is called partitioned
parallel hash join.

Recall that hash join first partitions both input relations into smaller pieces
such that each partition of the smaller relation (the build relation) fits into mem-
ory. Thus, to implement hash join, the partitions ri and si received by node Ni
must be repartitioned using a hash function, say h1(). If the partitioning of r and s
across the nodes was done by using a hash function h0(), the system must ensure
that h1() is different from h0(). Let the resultant partitions at node Ni be ri,j and
si,j for j = 1… ni, where ni denotes the number of local partitions at node Ni.

Note that the tuples can be repartitioned based on the hash function used for
the local hash join as they arrive and written out to the appropriate partitions,
avoiding the need to write the tuples to disk and read them back in.

Recall also that hash join then loads each partition of the build relation into
memory, builds an in-memory index on the join attributes, and finally probes the
in-memory index using each tuple of the other relation, called the probe relation.
Assume that relation s is chosen as the build relation. Then each partition si,j is
loaded in memory, with an index built on the join attributes, and the index is
probed with each tuple of ri,j.

Hybrid hash join (described in Section 15.5.5.5) can be used in case the parti-
tions of one of the relations are small enough that a significant part of the partition
fits in memory at each node. In this case, the smaller relation, say s, which is used
as the build relation, should be partitioned first, followed by the larger relation, say
r, which is used as the probe relation. Recall that with hybrid hash join, the tuples
in the partition s0 of the build relation s are retained in memory, and an in-memory
index is built on these tuples. When the probe relation tuples arrive at the node,
they are also repartitioned; tuples in the r0 partition are used directly to probe the
index on the s0 tuples, instead of being written out to disk and read back in.

• If we use merge join locally, the resultant technique is called partitioned parallel
merge join. Each of the partitions si and ri must be sorted, and merged locally, at
node Ni.

The first step of sorting, namely, run generation, can directly consume incom-
ing tuples to generate runs, avoiding a write to disk before run generation.

• If we use nested-loops or indexed nested-loops join locally, the resultant technique
is called partitioned parallel nested-loop join or partitioned parallel indexed nested-
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loops join. Each node Ni performs a nested-loops (or indexed nested-loops) join
on si and ri.

22.3.2 Fragment-and-Replicate Join

Partitioning is not applicable to all types of joins. For instance, if the join condition is
an inequality, such as r ⋈r.a<s.b s, it is possible that all tuples in r join with some tuple
in s (and vice versa). Thus, there may be no nontrivial way of partitioning r and s so
that tuples in partition ri join with only tuples in partition si.

We can parallelize such joins by using a technique called fragment-and-replicate.
We first consider a special case of fragment-and-replicate—asymmetric fragment-and-
replicate join—which works as follows:

1. The system partitions one of the relations—say, r. Any partitioning technique can
be used on r, including round-robin partitioning.

2. The system replicates the other relation, s, across all the nodes.

3. Node Ni then locally computes the join of ri with all of s, using any join technique.

The asymmetric fragment-and-replicate scheme appears in Figure 22.3a. If r is already
stored by partitioning, there is no need to partition it further in step 1. All that is
required is to replicate s across all nodes.

The asymmetric fragment-and-replicate join technique is also referred to as broad-
cast join. It is a very useful technique, even for equi-joins, if one of the relations, say
s, is small, and the other relation, say r, is large, since replicating the small relation s
across all nodes may be cheaper than repartitioning the large relation r.

The general case of fragment-and-replicate join (also called the symmetric fragment-
and-replicate join appears in Figure 22.3b; it works this way: The system partitions
relation r into n partitions, r1, r2,… , rn, and partitions s into m partitions, s1, s2,… , sm.
As before, any partitioning technique may be used on r and on s. The values of m and
n do not need to be equal, but they must be chosen so that there are at least m ∗ n
nodes. Asymmetric fragment-and-replicate is simply a special case of general fragment-
and-replicate, where m = 1. Fragment-and-replicate reduces the sizes of the relations
at each node, compared to asymmetric fragment-and-replicate.

Let the nodes be N1,1, N1,2,… , N1,m, N2,1,… , Nn,m. Node Ni,j computes the join of
ri with sj. To ensure that each node Ni,j gets all tuples of ri and sj, the system replicates
ri to nodes Ni,1, Ni,2,… , Ni,m (which form a row in Figure 22.3b), and replicates si to
nodes N1,i, N2,i,… , Nn,i (which form a column in Figure 22.3b). Any join technique
can be used at each node Ni,j.

Fragment-and-replicate works with any join condition, since every tuple in r can
be tested with every tuple in s. Thus, it can be used where partitioning cannot be used.
However, note that each tuple in r is replicated m times, and each tuple in s is replicated
n times.
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Figure 22.3 Fragment-and-replicate schemes.

Fragment-and-replicate join has a higher cost than partitioning, since it involves
replication of both relations, and is therefore used only if the join does not involve
equi-join conditions. Asymmetric fragment-and-replicate, on the other hand, is useful
even for equi-join conditions, if one of the relations is small, as discussed earlier.

Note that asymmetric fragment-and-replicate join can be used to compute the left
outer join operation r ⟕θ s if s is replicated, by simply computing the left outer join
locally at each node. There is no restriction on the join condition θ.

However, r ⟕θ s cannot be computed locally if s is fragmented and r is replicated,
since an r tuple may have no matching tuple in partition si, but may have a matching
tuple in partition sj, j ≠ i. Thus, a decision on whether or not to output the r tuple with
null values for s attributes cannot be made locally at node Ni. For the same reason,
asymmetric fragment-and-replicate cannot be used to compute the full outer join op-
eration, and symmetric fragment-and-replicate cannot be used to compute any of the
outer join operations.

22.3.3 Handling Skew in Parallel Joins

Skew presents a special problem for parallel join techniques. If one of the nodes has a
much heavier load than other nodes, the parallel join operation will take much longer
to finish, with many idle nodes waiting for the heavily loaded node to finish its task.
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When partitioning data for storage, to minimize skew in storage we use a balanced
partitioning vector that ensures all nodes get the same number of tuples. For parallel
joins, we need to instead balance the execution time of join operations across all nodes.
Hash partitioning using any good hash function usually works quite well at balancing
the load across nodes, unless some join attribute values occur very frequently. Range
partitioning, on the other hand, is more vulnerable to join skew, unless the ranges are
carefully chosen to balance the load.1

Virtual-node partitioning with, say, round-robin distribution of virtual nodes to real
nodes, can help in reducing skew at the level of real nodes even if there is skew at the
level of virtual nodes, since the skewed virtual nodes tend to get spread over multiple
real nodes.

The preceding techniques are examples of join skew avoidance. Virtual-node parti-
tioning, in particular, is very effective at skew avoidance in most cases.

However, there are cases with high skew, for example where some join attribute
values are very frequent in both input relations, leading to a large join result size. In
such cases, there could be significant join skew, even with virtual-node partitioning.

Dynamic handling of join skew is an alternative to skew avoidance. A dynamic ap-
proach can be used to detect and handle skew in such situations. Virtual node partition-
ing is used, and the system then monitors the join progress at each real node. Each real
node schedules one virtual node at a time. Suppose that some real node has completed
join processing for all virtual nodes assigned to it, and is thus idle, while some other
real node has multiple virtual nodes waiting to be processed. Then, the idle node can
get a copy of the data corresponding to one of the virtual nodes at the busy node and
process the join for that virtual node. This process can be repeated whenever there is
an idle real node, as long as some real node has virtual nodes waiting to be processed.

This technique is an example of work stealing, where a processor that is idle takes
work that is in the queue of another processor that is busy. Work stealing is inexpensive
in a shared-memory system, since all data can be accessed quickly from the shared
memory, as discussed further in Section 22.6. In a shared-nothing environment, data
movement may be required to move a task from one processor to another, but it is often
worth paying the overhead to reduce the completion time of a task.

22.4 Other Operations

In this section, we discuss parallel processing of other relational operations, as well as
parallel processing in the MapReduce framework.

1Cost estimation should be done using histograms on join attributes. A heuristic approximation is to estimate the join
cost at each node Ni as the sum of the sizes of ri and si, and choose range partitioning vectors to balance the sum of
the sizes.
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22.4.1 Other Relational Operations

The evaluation of other relational operations also can be parallelized:

• Selection. Let the selection be σθ(r). Consider first the case where θ is of the form
ai = v, where ai is an attribute and v is a value. If the relation r is partitioned on
ai, the selection proceeds at a single node. If θ is of the form l ≤ ai ≤ u—that is,
θ is a range selection—and the relation has been range-partitioned on ai, then the
selection proceeds at each node whose partition overlaps with the specified range
of values. In all other cases, the selection proceeds in parallel at all the nodes.

• Duplicate elimination. Duplicates can be eliminated by sorting; either of the paral-
lel sort techniques can be used, optimized to eliminate duplicates as soon as they
appear during sorting. We can also parallelize duplicate elimination by partition-
ing the tuples (by either range or hash partitioning) and eliminating duplicates
locally at each node.

• Projection. Projection without duplicate elimination can be performed as tuples
are read in from disk in parallel. If duplicates are to be eliminated, either of the
techniques just described can be used.

• Aggregation. Consider an aggregation operation. We can parallelize the operation
by partitioning the relation on the grouping attributes, and then computing the
aggregate values locally at each node. Either hash partitioning or range partitioning
can be used. If the relation is already partitioned on the grouping attributes, the
first step can be skipped.

We can reduce the cost of transferring tuples during partitioning by partly
computing aggregate values before partitioning, at least for the commonly used
aggregate functions. Consider an aggregation operation on a relation r, using the
sum aggregate function on attribute B, with grouping on attribute A. The system
can perform the sum aggregation at each node Ni on those r tuples stored at Ni.
This computation results in tuples with partial sums at each node; the result at
Ni has one tuple for each A value present in r tuples stored at Ni, with the sum
of the B values of those tuples. The system then partitions the result of the local
aggregation on the grouping attribute A and performs the aggregation again (on
tuples with the partial sums) at each node Ni to get the final result.
As a result of this optimization, which is called partial aggregation, fewer tuples
need to be sent to other nodes during partitioning. This idea can be extended easily
to the min and max aggregate functions. Extensions to the count and avg aggregate
functions are left for you to do in Exercise 22.2.

Skew handling for aggregation is easier than skew handling for joins, since the cost
of aggregation is directly proportional to the input size. Usually, all that needs to be
done is to use a good hash function to ensure the group-by attribute values are evenly
distributed amongst the participating nodes. However, in some extreme cases, a few
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values occur very frequently in the group-by attributes, and hashing can lead to uneven
distribution of values. When applicable, partial aggregation is very effective in avoiding
skew in such situations. However, when partial aggregation is not applicable, skew can
occur with aggregation.

Dynamic detection and handling of such skew can be done in some such cases: in
case a node is found to be overloaded, some of the key values that are not yet processed
by the node can be reassigned to another node, to balance the load. Such reassignment
is greatly simplified if virtual-node partitioning is used; in that case, if a real node is
found to be overloaded, some virtual nodes assigned to the overloaded real node, but
not yet processed, are identified, and reassigned to other real nodes.

More information on skew handling for join and other operators may be found in
the Further Reading section at the end of the chapter.

22.4.2 Map and Reduce Operations

Recall the MapReduce paradigm, described in Section 10.3, which is designed to ease
the writing of parallel data processing programs.

Recall that the map() function provided by the programmer is invoked on each
input record and emits zero or more output data items, which are then passed on to the
reduce() function. Each data item output by a map() function consists of a record (key,
value); we shall call the key as the intermediate key. In general, a map() function can
emit multiple such records and since there are many input records, there are potentially
many output records overall.

The MapReduce system takes all the records emitted by the map() functions, and
groups them such that all records with a particular intermediate key are gathered to-
gether. The reduce() function provided by the programmer is then invoked for each
intermediate key and iterates over a collection of all values associated with that key.

Note that the map function can be thought of as a generalization of the project op-
eration: both process a single record at a time, but for a given input record the project
operation generates a single output record, whereas the map function can output mul-
tiple records (including, as a special case, 0 records). Unlike the project operation, the
output of a map function is usually intended to become the input of a reduce func-
tion; hence, the output of a map function has an associated key that serves as a group
by attribute. Recall that the reduce function takes as input a collection of values and
outputs a result; with most of the reduce functions commonly in use, the result is an
aggregate computed on the input values, and the reduce function is then essentially a
user-defined aggregation function.

MapReduce systems are designed for parallel processing of data. A key require-
ment for parallel processing is the ability to parallelize file input and output across
multiple machines; otherwise, the single machine storing the data will become a bot-
tleneck. Parallelization of file input and output can be done by using a distributed file
system, such as the Hadoop File System (HDFS), discussed in Section 21.6, or by using
a parallel/distributed storage system, discussed in Section 21.7. Recall that in such sys-
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Figure 22.4 Parallel processing of MapReduce job.

tems, data are replicated (copied) across several (typically 3) machines, so that even if
a few of the machines fail, the data are available from other machines that have copies
of the data in the failed machine.

Conceptually, the map and reduce operations are parallelized in the same way
that the relational operations project and aggregation are parallelized. Each node in
the system has a number of concurrently executing workers, which are processes that
execute map and reduce functions. The number of workers on one machine is often set
to match the number of processor cores on the machine.

Parallel processing of MapReduce jobs is shown schematically in Figure 22.4. As
shown in the figure, MapReduce systems split the input data into multiple pieces; the
job of processing one such piece is called a task. Splitting can be done in units of files,
and large files can be split into multiple parts. Tasks correspond to virtual nodes in
our terminology, while workers correspond to real nodes. Note that with a multicore
processor (as is standard today), MapReduce systems typically allocate one worker per
core.

MapReduce systems also have a scheduler, which assigns tasks to workers.2 When-
ever a worker completes a task, it is assigned a new task, until all tasks have been
assigned.

A key step between the map and reduce operations is the repartitioning of records
output by the map step; these records are repartitioned based on their intermediate
(reduce) key, such that all records with a particular key are assigned to the same reducer
task. This could be done either by range-partitioning on the reduce key or by computing
a hash function on the reduce key. In either case, the records are divided into multiple

2The scheduler is run on a dedicated node called the master node; the nodes that perform map() and reduce() tasks
are called slave nodes in the Hadoop MapReduce terminology.
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partitions, each of which is called a reduce task. A scheduler assigns reduce tasks to
workers.

This step is identical to the repartitioning done for parallelizing the relational ag-
gregation operation, with records partitioned into a number of virtual nodes based on
their group-by key.

To process the records in a particular reduce task, the records are sorted (or
grouped) by the reduce key, so that all records with the same reduce-key value are
brought together, and then the reduce() is executed on each group of reduce-key val-
ues.

The reduce tasks are executed in parallel by the workers. When a worker completes
a reduce task, another task is assigned to it, until all reduce tasks have been completed.
A reduce task may have multiple different reduce key values, but a particular call to the
reduce() function is for a single reduce key; thus, the reduce() function is called for
each key in the reduce task.

Tasks correspond to virtual nodes in the virtual-node partitioning scheme. There
are far more tasks than there are nodes, and tasks are divided among the nodes. As
discussed in Section 22.3.3, virtual-node partitioning reduces skew. Also note that as
discussed in Section 22.4.1, skew can be reduced by partial aggregation, which corre-
sponds to combiners in the MapReduce framework.

Further, MapReduce implementations typically also carry out dynamic detection
and handling of skew, as discussed in Section 22.4.1.

Most MapReduce implementations include techniques to ensure that processing
can be continued even if some nodes fail during query execution. Details are discussed
further in Section 22.5.4.

22.5 Parallel Evaluation of Query Plans

As discussed in Section 22.1, there are two types of parallelism: intraoperation and in-
teroperation. Until now in this chapter, we have focused on intraoperation parallelism.
In this section, we consider execution plans for queries containing multiple operations.

We first consider how to exploit interoperator parallelism. We then consider a
model of parallel query execution which breaks parallel query processing into two types
of steps: partitioning of data using the exchange operator, and execution of operations
on purely local data, without any data exchange. This model is surprisingly powerful
and is widely used in parallel database implementations.

22.5.1 Interoperation Parallelism

There are two forms of interoperation parallelism: pipelined parallelism and indepen-
dent parallelism. We first describe these forms of parallelism, assuming each operator
runs on a single node without intraoperation parallelism.
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We then describe a model for parallel execution based on the exchange operator,
in Section 22.5.2. Finally, in Section 22.5.3, we describe how a complete plan can be
executed, combining all the forms of parallelism.

22.5.1.1 Pipelined Parallelism

Recall from Section 15.7.2 that in pipelining, the output tuples of one operation, A,
are consumed by a second operation, B, even before the first operation has produced
the entire set of tuples in its output. The major advantage of pipelined execution in a
sequential evaluation is that we can carry out a sequence of such operations without
writing any of the intermediate results to disk.

Parallel systems use pipelining primarily for the same reason that sequential sys-
tems do. However, pipelines are a source of parallelism as well, since it is possible to
run operations A and B simultaneously on different nodes (or different cores of a sin-
gle node), so that B consumes tuples in parallel with A producing them. This form of
parallelism is called pipelined parallelism.

Pipelined parallelism is useful with a small number of nodes, but it does not scale
up well. First, pipeline chains generally do not attain sufficient length to provide a high
degree of parallelism. Second, it is not possible to pipeline relational operators that
do not produce output until all inputs have been accessed, such as the set-difference
operation. Third, only marginal speedup is obtained for the frequent cases in which
one operator’s execution cost is much higher than are those of the others.

All things considered, when the degree of parallelism is high, pipelining is a less
important source of parallelism than partitioning. The real reason for using pipelining
with parallel query processing is the same reason that pipelining is used with sequen-
tial query processing: namely, that pipelined executions can avoid writing intermediate
results to disk.

Pipelining in centralized databases was discussed in Section 15.7.2; as mentioned
there, pipelining can be done using a demand-driven, or pull, model of computation,
or using a producer-driven, or push, model of computation. The pull model is widely
used in centralized database systems.

However, the push model is greatly preferred in parallel database systems, since,
unlike the pull model, the push model allows both the producer and consumer to exe-
cute in parallel.

Unlike the pull model, the push model requires a buffer that can hold multiple
tuples, between the producer and consumer; without such a buffer, the producer would
stall as soon as it generates one tuple. Figure 22.5 shows a producer and consumer with
a buffer in-between. If the producer and consumer are on the same node, as shown
in Figure 22.5a, the buffer can be in shared memory. However, if the producer and
consumer are in different nodes, as shown in Figure 22.5b, there will be two buffers:
one at the producer node to collect tuples as they are produced, and another at the
consumer node to collect them as they are sent across the network.
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When sending tuples across a network, it makes sense to collect multiple tuples
and send them as a single batch, rather than send tuples one at a time, since there is
usually a very significant overhead per message. Batching greatly reduces this overhead.

If the producer and consumer are on the same node and can communicate via a
shared memory buffer, mutual exclusion needs to be ensured when inserting tuples into,
or fetching tuples from, the buffer. Mutual exclusion protocols have some overhead,
which can be reduced by inserting/retrieving a batch of tuples at a time, instead of one
tuple at a time.

Note that with the pull model, either the producer or the consumer, but not both,
can be executing at a given time; while this avoids the contention on the shared buffer
that arises with the use of the push model, it also prevents the producer and consumer
from running concurrently.

22.5.1.2 Independent Parallelism

Operations in a query expression that do not depend on one another can be executed
in parallel. This form of parallelism is called independent parallelism.

Consider the join r1 ⋈ r2 ⋈ r3 ⋈ r4. One possible plan is to compute intermedi-
ate result t1 ← r1 ⋈ r2 in parallel with intermediate result t2 ← r3 ⋈ r4. Neither of
these computations depends on each other, and hence they can be parallelized by inde-
pendent parallelism. In other words, the execution of these two joins can be scheduled
in parallel.
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When these two computations complete, we can compute:

t1 ⋈ t2

Note that computation of the above join depends on the results of the first two joins,
hence it cannot be done using independent parallelism.

Like pipelined parallelism, independent parallelism does not provide a high degree
of parallelism and is less useful in a highly parallel system, although it is useful with a
lower degree of parallelism.

22.5.2 The Exchange Operator Model

The Volcano parallel database popularized a model of parallelization called the
exchange-operator model. The exchange operation repartitions data in a specified way;
data interchange between nodes is done only by the exchange operator. All other oper-
ations work on local data, just as they would in a centralized database system; the data
may be available locally either because it is already present, or because of the execution
of a preceding exchange operator.

The exchange operator has two components: a scheme for partitioning outgoing
data, applied at each source node, and a scheme for merging incoming data, applied at
each destination node. The operator is shown pictorially in Figure 22.6, with the parti-
tioning scheme denoted as “Partition,” and the merging scheme denoted as “Merge.”

The exchange operator can partition data in one of several ways:

1. By hash partitioning on a specified set of attributes.

2. By range partitioning on a specified set of attributes.

3. By replicating the input data at all nodes, referred to as broadcasting.

4. By sending all data to a single node.
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Figure 22.6 The exchange operator used for repartitioning.
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Broadcasting data to all nodes is required for operations such as the asymmetric
fragment-and-replicate join. Sending all data to a single node is usually done as a fi-
nal step of parallel query processing, to get partitioned results together at a single site.

Note also that the input to the exchange operator can be at a single site (referred to
as unpartitioned), or already partitioned across multiple sites. Repartitioning of already
partitioned data results in each destination node receiving data from multiple source
nodes, as shown in Figure 22.6.

Each destination node merges the data items received from the source nodes. This
merge step can store data in the order received (which may be nondeterministic, since
it depends on the speeds of the machines and unpredictable network delays); such
merging is called random merge.

On the other hand, if the input data from each source is sorted, the merge step can
exploit the sort order by performing an ordered merge. Suppose, for example, nodes
N1,… , Nm first sort a relation locally, and then repartition the sorted relation using
range partitioning. Each node performs an ordered merge operation on the tuples that
it receives, to generate a sorted output locally.

Thus, the exchange operator performs the partitioning of data at the source nodes,
as well the merging of data at the destination nodes.

All the parallel operator implementations we have seen so far can be modeled as a
sequence of exchange operations, and local operators, at each node, that are completely
unaware of parallelism.

• Range partitioning sort: can be implemented by an exchange operation that per-
forms range partitioning, with random merge at the destination nodes, followed
by a local sort operation at each destination node.

• Parallel external sort-merge: can be implemented by local sorting at the source
nodes, followed by an exchange operation that performs range partitioning, along
with ordered merging.

• Partitioned join: can be implemented by an exchange operation that performs the
desired partitioning, followed by local join at each node.

• Asymmetric fragment-and-replicate join: can be implemented by an exchange op-
eration that performs broadcast “partitioning” of the smaller relation, followed by
a local join at each node.

• Symmetric fragment-and-replicate join: can be implemented by an exchange oper-
ation that partitions, and partially broadcasts each partition, followed by a local
join at each node.

• Aggregation: can be implemented by an exchange operation that performs hash-
partitioning on the grouping attributes, followed by a local aggregation operation
at each node. The partial-aggregation optimization simply requires an extra local
aggregation operation at each node, before the exchange operation.
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Other relational operations can be implemented similarly, by a sequence of local oper-
ations running in parallel at each node, interspersed with exchange operations.

As noted earlier, parallel execution where data are partitioned, and operations are
executed locally at each node, is referred to as data parallelism. The use of the exchange
operator model to implement data parallel execution has the major benefit of allowing
existing database query engines to be used at each of the local nodes, without any
significant code changes. As a result, the exchange-operator model of parallel execution
is widely used in parallel database systems.

There are, however, some operator implementations that can benefit from being
aware of the parallel nature of the system they are running on. For example, an indexed
nested-loops join where the inner relation is indexed on a parallel data-store would
require remote access for each index lookup; the index lookup operation is thus aware
of the parallel nature of the underlying system. Similarly, in a shared-memory system it
may make sense to have a hash table or index in shared-memory, which is accessed by
multiple processors (this approach is discussed briefly in Section 22.6); the operations
running on each processor are then aware of the parallel nature of the system.

As we discussed in Section 22.5.1.1, while the demand-driven (or pull) iterator
model for pipelined execution of operators is widely used in centralized database en-
gines, the push model is preferred for parallel execution of operators in a pipeline.

The exchange operator can be used to implement the push model between nodes
in a parallel system, while allowing existing implementations of local operators to run
using the pull model. To do so, at each source node of an exchange operator, the op-
erator can pull multiple tuples from its input and create a batch of tuples destined for
each destination node. The input may be computed by a local operation, whose imple-
mentation can use the demand-driven iterator model.

The exchange operator then sends batches of tuples to the destination nodes, where
they are merged and kept in a buffer. The local operations can then consume the tuples
in a demand-driven manner.

22.5.3 Putting It All Together

Figure 22.7 shows a query, along with a sequential and two alternative parallel query
execution plans. The query, shown in Figure 22.7a, computes a join of two relations,
r and s, and then computes an aggregate on the join result. Assume for concreteness
that the query is r.C,s.Dγsum(s.E)(r ⋈r.A=s.B s).

The sequential plan, shown in Figure 22.7b, uses a hash join (denoted as “HJ” in
the figure), which executes in three separate stages. The first stage partitions the first
input (r) locally on r A; the second stage partitions the second input (s) locally on s.B;
and the third stage computes the join of each of the corresponding partitions of r and s.
The aggregate is computed using in-memory hash-aggregation, denoted by the operator
HA; we assume that the number of groups is small enough that the hash table fits in
memory.
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Figure 22.7 Parallel query execution plans.

The dashed boxes in the figure show which steps run in a pipelined fashion. In the
sequential plan, the read of the relation r is pipelined to the first partitioning stage of
the sequential hash join; similarly, the read of relations s is pipelined to the second
partitioning stage of the hash join. The third stage of the hash join pipelines its output
tuples to the hash aggregation operator.

The parallel query evaluation plan, shown in Figure 22.7c, starts with r and s al-
ready partitioned, but not on the required join attributes.3 The plan, therefore, uses the
exchange operation E1 to repartition r using attribute r.A; similarly, exchange operator
E2 repartitions s using s.B. Each node then uses hash join locally to compute the join

3Note the multiple boxes indicating a relation is stored in multiple nodes; similarly, multiple circles indicate that an
operation is executed in parallel on multiple nodes.
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of its partition of r and s. Note that these partitions are not assumed to fit in memory,
so they must be further partitioned by the first two stages of hash join; this local par-
titioning step is denoted as “Loc. Part.” in the figure. The dashed boxes indicate that
the output of the exchange operator can be pipelined to the local partitioning step. As
in the sequential plan, there are two pipelined stages, one each for r and s. Note that
exchange of tuples across nodes is done only by the exchange operator, and all other
edges denote tuple flows within each node.

Subsequently, the hash join algorithm is executed in parallel at all participating
nodes, and its output pipelined to the exchange operator E3. This exchange operator
repartitions its input on the pair of attributes (r.C, s.D), which are the grouping at-
tributes of the subsequent aggregation. At the receiving end of the exchange operator,
tuples are pipelined to the hash aggregation operator. Note that the above steps all run
together as a single pipelined stage, even though there is an exchange operator as part
of the stage. Note that the local operators computing hash join and hash aggregate
need not be aware of the parallel execution.

The results of the aggregates are then collected together at a central location by
the final exchange operator E4, to create the final result relation.

Figure 22.7d shows an alternative plan that performs partial aggregation on the
results of the hash join, before partitioning the results. The partial aggregation is com-
puted locally at each node by the operator HA1. Since no tuple is output by the partial
aggregation operator until all its input is consumed, the pipelined stage contains only
the local hash join and hash aggregation operators. The subsequent exchange operator
E3 which partitions its input on (r.C, s.D) is part of a subsequent pipelined stage along
with the hash aggregation operation HA2 which computes the final aggregate values.
As before, the exchange operator E4 collects the results at a centralized location.

The above example shows how pipelined execution can be performed across nodes,
as well as within nodes, and further how it can be done along with intra-operator parallel
execution. The example also shows that some pipelined stages depend on the output
of earlier pipelined stages; therefore their execution can start only after the previous
step finishes. On the other hand, the initial exchange and partitioning of r and s occur
in pipelined stages that are independent of each other; such independent stages can be
scheduled concurrently, that is, at the same time, if desired.

To execute a parallel plan such as the one in our example, the different pipelined
stages have to be scheduled for execution, in an order that ensures inter-stage depen-
dencies are met. When executing a particular stage, the system must decide how many
nodes an operation should be executed on. These decisions are usually made as part
of the scheduling phase, before query execution starts.

22.5.4 Fault Tolerance in Query Plans

Parallel processing of queries across a moderate number of nodes, for example, hun-
dreds of nodes, can be done without worrying about fault tolerance. If a fault occurs,
the query is rerun, after removing any failed nodes from the system (replication of data
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at the storage layer ensures that data continues to be available even in the event of a
failure). However, this simple solution does not work well when operating at the scale
of thousands or tens of thousands of nodes: if a query runs for several hours, there is a
significant chance that there will be a failure while the query is being executed. If the
query is restarted, there is a significant chance of another failure while it is executing,
which is obviously an undesirable situation.

To deal with this problem, the query processing system should ideally just be able
to redo the actions of a failed node, without redoing the rest of the computation.

Implementations of MapReduce that are designed to work at a massively parallel
scale can be made fault tolerant as follows:

1. Each map operation executed at each node writes its output to local files.

2. The next operation, which is a reduce operation, executes at each node; the op-
eration execution at a node reads data from the files stored at multiple nodes,
collects the data, and starts processing the data only after it has got all its re-
quired data.

3. The reduce operation writes its output to a distributed file system (or distributed
storage system) that replicates data, so that the data would be available even in
the event of a failure.

Let us now examine the reason why things are done as above. First, if a particular
map node fails, the work done at that node can be redone at a backup node; the work
done at other map nodes is not affected. Work is not carried out by reduce nodes
until all the required data has been fetched; the failure of a map node just means the
reduce nodes fetch data from the backup map nodes. There is certainly a delay while
the backup node does its work, but there is no need to repeat the entire computation.

Further, once a reduce node has finished its work, its output goes to replicated
storage to ensure it is not lost even if a data storage node fails. This means that if a
reduce node fails before it completes its work, it will have to be reexecuted at a backup
node; other reduce nodes are not affected. Once a reduce node has finished its work,
there is no need to reexecute it.

Note that it is possible to store the output of a map node in a replicated storage
system. However, this increases the execution cost significantly, and hence map output
is stored in local storage, even at the risk of having to reexecute the work done by a map
node in case it fails before all the reduce nodes have fetched the data that they require
from that map node.

It is also worth noting that sometimes nodes do not completely fail, but run very
slowly; such nodes are called straggler nodes. Even a single straggler node can delay all
the nodes in the next step (if there is a following step), or delay task completion (if it is in
the last step). Straggler nodes can be dealt with by treating them similar to failed nodes,
and reexecuting their tasks on other nodes (the original task on the straggler node can
also be allowed to continue, in case it finishes first). Such reexecution to deal with
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stragglers has been found to significantly improve time to completion of MapReduce
tasks.

While the above scheme for fault tolerance is quite effective, there is an overhead
that must be noted: a reduce stage cannot perform any work until the previous map
stage has finished;4 and if multiple map and reduce steps are executed, the next map
stage cannot perform any work until the preceding reduce stage has finished. In par-
ticular, this means that pipelining of data between stages cannot be supported; data
are always materialized before it is sent to the next stage. Materialization carries a
significant overhead, which can slow down computation.

Apache Spark uses an abstraction called Resilient Distributed Datasets (RDDs) to
implement fault tolerance. As we have seen in Section 10.4.2, RDDs can be viewed
as collections, and Spark supports algebraic operations that take RDDs as input, and
generate RDDs as output. Spark keeps track of the operations used to create an RDD.
In case of failures that result in loss of an RDD, the operations used to create the RDD
can be reexecuted to regenerate the RDD. However, this may be time-consuming, so
Spark also supports replication to reduce the chance of data loss, as well as storing of
local copies of data when a shuffle (exchange) step is executed, to allow reexecution to
be restricted to computation that was performed on failed nodes.

There has been a good deal of research on how to allow pipelining of data, while not
requiring query execution to restart from the beginning in case of a single failure. Such
schemes typically require nodes to track what data they have received from each source
node. In the event of a source node failure, the work of the source node is redone on a
backup node, which can result in some tuples that were received earlier being received
again. Tracking the data received earlier is important to ensure duplicate tuples are
detected and eliminated by the receiving node. The above ideas can also be used to
implement fault tolerance for other algebraic operations, such as joins. In particular, if
we use the exchange operator with data parallelism, fault tolerance can be implemented
as an extension of the exchange operator.

References to more information on fault tolerant pipelining based on extensions
of the exchange operator, as well as on fault tolerance schemes used in MapReduce
and in Apache Spark, may be found in the Further Reading section at the end of the
chapter.

22.6 Query Processing on Shared-Memory Architectures

Parallel algorithms designed for shared-nothing architectures can be used in shared-
memory architectures. Each processor can be treated as having its own partition of
memory, and we can ignore the fact that the processors have a common shared-

4Once a map node finishes its tasks, redistribution of results from that node to the reduce nodes can start even if
other map nodes are still active; but the actual computation at the reduce node cannot start until all map tasks have
completed and all map results redistributed.
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memory. However, execution can be optimized significantly by exploiting the fast access
to shared-memory from any of the processors.

Before we study optimizations that exploit shared-memory, we note that while
many large-scale systems can execute on a single shared-memory system, the largest-
scale systems today are typically implemented using a hierarchical architecture, with
a shared-nothing architecture at the outer level, but with each node having a shared-
memory architecture locally, as discussed in Section 20.4.8. The techniques we have
studied so far for storing, indexing, and querying data in shared-nothing architectures
are used to divide up storage, indexing, and query processing tasks among the different
nodes in the system. Each node is a shared-memory parallel system, which uses parallel
query processing techniques to execute the query processing tasks assigned to it. The
optimizations we describe in this section can thus be used locally, at each node.

Parallel processing in a shared memory system is typically done by using threads,
rather than separate processes. A thread is an execution stream that shares its entire
memory5 with other threads. Multiple threads can be started up, and the operating
system schedules threads on available processors.

We list below some optimizations that can be applied when parallel algorithms
that we saw earlier are executed in a shared memory system.

1. If we use asymmetric fragment-and-replicate join, the smaller relation need not
be replicated to each processor. Instead, only one copy needs to be stored in
shared memory, which can be accessed by all the processors. This optimization is
particularly useful if there are a large number of processors in the shared-memory
system.

2. Skew is a significant problem in parallel systems, and it becomes worse as the
number of processors grows. Handing off work from an overloaded node to an
underloaded node is expensive in a shared-nothing system since it involves net-
work traffic. In contrast, in a shared memory system, data assigned to a processor
can be easily accessed from another processor.

To address skew in a shared-memory system, a good option is to use virtual-
node partitioning, which allows work to be redistributed in order to balance load.
Such redistribution could be done when a processor is found to be overloaded.
Alternatively, whenever a processor finds that it has finished processing all the
virtual nodes assigned to it, it can find other processors that still have virtual
nodes left to be processed, and take over some of those tasks; as mentioned in
Section 22.3.3, this approach is called work stealing. Note that such an approach
to avoiding skew would be much more expensive in a shared-nothing environment
since a significant amount of data movement would be involved, unlike in the
shared-memory case.

5Technically, in operating-system terminology, its address space.
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3. Hash join can be executed in two distinct ways.

a. The first option is to partition both relations to each processor and then
compute the joins of the partitions, in a manner similar to shared-nothing
hash join. Each partition must be small enough that the hash index on a
build-relation partition fits in the part of shared memory allocated to each
processor.

b. The second option is to partition the relations into fewer pieces, such that
the hash index on a build-relation partition fits into common shared mem-
ory, rather than a fraction of the shared memory. The construction of the
in-memory index, as well as probing of the index, must now be done in
parallel by all the processors.

Parallelizing the probe phase is relatively easy, since each processor can
work on some partition of the probe relation. In fact it makes sense to use
the virtual node approach and partition the probe relation into many small
pieces (sometimes called “morsels”), and have processors process a morsel
at a time. When a processor is done with a morsel, it finds an unprocessed
morsel and works on it, until there are no morsels left to be processed.

Parallelizing the construction of the shared hash index is more com-
plicated, since multiple processors may attempt to update the same part
of the hash index. Using locks is an option, but there are overheads due
to locking. Techniques based on lock-free data structures can be used to
construct the hash index in parallel.

References to more details on how to parallelize join implementations in shared mem-
ory may be found in the Further Reading section at the end of the chapter.

Algorithms designed for shared-memory systems must take into account the fact
that in today’s processors, memory is divided into multiple memory banks, with each
bank directly linked to some processor. The cost of accessing memory from a given
processor is less if the memory is directly linked to the processor, and is more if it is
linked to a different processor. Such memory systems are said to have a Non-Uniform
Memory Access or NUMA architecture.

To get the best performance, algorithms must be NUMA-aware; that is, they must be
designed to ensure that data accessed by a thread running on a particular processor is,
as far as possible, stored in memory local to that processor. Operating systems support
this task in two ways:

1. Each thread is scheduled, as far as possible, on the same processor core, every
time it is executed.

2. When a thread requests memory from the operating system memory manager,
the operating system allocates memory that is local to that processor core.

Note that the techniques for making the best use of shared memory are comple-
mentary to techniques that make the best use of processor caches, including cache-
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conscious index structures (which we saw in Section 14.4.7) and cache-conscious algo-
rithms for processing relational operators.

But in addition, since each processor core has its own cache, it is possible for a
cache to have an old value that was subsequently updated on another processor core.
Thus, query processing algorithms that update shared data structures should be care-
ful to ensure that there are no bugs due to the use of outdated values, and due to race
conditions on updating the same memory location from two processor cores. Lock-
ing and fence instructions to ensure cache consistency (Section 20.4.5) are used in
combination to implement updates to shared data structures.

The form of parallelism we have studied so far allows each processor to execute its
own code independently of other processors. However, some parallel systems support
a different form of parallelism, called Single Instruction Multiple Data (SIMD). With
SIMD parallelism, the same instruction is executed on each of multiple data items,
which are typically elements of an array. SIMD architectures became widely used in
graphics processing units (GPUs), which were initially used for speeding up processing
of computer graphics tasks. However, more recently, GPU chips have been used for
parallelizing a variety of other tasks, one of which is parallel processing of relational
operations using the SIMD support provided by GPUs. Intel’s Xeon Phi coprocessor
supports not only multiple cores in a single chip, but also several SIMD instructions that
can operate in parallel on multiple words. There has been a good deal of research on
how to process relational operations in parallel on such SIMD architectures; references
to more information on this topic may be found in the bibliographic notes for this
chapter, available online.

22.7 Query Optimization for Parallel Execution

Query optimizers for parallel query evaluation are more complicated than query op-
timizers for sequential query evaluation. First, the space of plan alternatives can be
much larger than that for sequential plans. In particular, in a parallel setting, we need
to take into account the different possible ways of partitioning the inputs and interme-
diate results, since different partitioning schemes can lead to different query execution
costs, which is not an issue for a sequential plan.

Second, the cost models are more complicated, since the cost of partitioning must
be taken into account, and issues such as skew and resource contention must be ad-
dressed.

22.7.1 Parallel Query Plan Space

As we have seen in Section 15.1, a sequential query plan can be expressed as an alge-
braic expression tree, where each node is a physical operator, such as a sort operator,
a hash join operator, a merge-join operator, etc. Such a plan may be further annotated
with instructions on what operations are to be pipelined and what intermediate results
are to be materialized, as we saw in Section 15.7.
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In addition to the above, a parallel query plan must specify

• How to parallelize each operation, including deciding what algorithm to use, and
how to partition the inputs and intermediate results. Exchange operators can be
used to partition inputs as well as intermediate results and final results.

• How the plan is to be scheduled; specifically:

° How many nodes to use for each operation.

° What operations to pipeline within the same node, or across different nodes.

° What operations to execute sequentially, one after the other.

° What operations to execute independently in parallel.

As an example of the partitioning decision, a join r ⋈r A=s.A∧r.B=s.B s can be paral-
lelized by partitioning r and s on the attributes r.A and s.A alone, or on the attributes
r.B and s.B alone, or on (r.A, r.B) and (s.A, s.B). The last option is likely to be the best
if we consider only this join, since it minimizes the chances of skew which can arise if
the cardinalities of r.A, r.B, s A or s.B are low.

But consider now the query r.Aγsum(s.C)(r ⋈r.A=s.A∧r.B=s.B s). If we perform the join
by partitioning on (r A, r.B) (and (s.A, s.B)), we would then need to repartition the join
result by r.A to compute the aggregate. On the other hand, if we performed the join
by partitioning on r and s on r.A and s.A respectively, both the join and the aggregate
can be computed without any repartitioning, which could reduce the cost. This option
is particularly likely to be a good option if r.A and s.A have high cardinality and few
duplicates, since the chance of skew is less in this case.

Thus, the optimizer has to consider a larger space of alternatives, taking partition-
ing into account. References with more details about how to implement query optimiza-
tion for parallel query processing systems, taking partitioning alternatives into account,
may be found in the Further Reading section at the end of the chapter.

22.7.2 Cost of Parallel Query Evaluation

The cost of a sequential query plan is typically estimated based on the total resource
consumption of the plan, adding up the CPU and I/O costs of the operators in a query
plan. The resource consumption cost model can also be used in a parallel system, addi-
tionally taking into account the network cost, and adding it along with the other costs.
As discussed in Section 15.2, even in a sequential system, the resource consumption
cost model does not guarantee minimization of the execution time of an individual
query. There are other cost models that are better at modeling the time to complete a
query; however, the resource consumption cost model has the benefit of reducing the
cost of query optimization, and is thus widely used. We return to the issue of other cost
models later in the section.
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We now study how the cost of a parallel query plan can be estimated based on
the resource consumption model. If a query plan is data parallel, then each operation,
other than the exchange operation, runs locally; the cost of such operations can be esti-
mated using techniques we have seen earlier in Chapter 15, if we assume that the input
relations are uniformly partitioned across n nodes, with each node receiving 1∕nth of
the overall input.

The cost of the exchange operation can be estimated based on the network topol-
ogy, the amount of data transferred, and the network bandwidth; as before it is assumed
that each node is equally loaded during the exchange operation. The cost of a query
plan under the resource-consumption model can then be found by adding up the costs
of the individual operations.

However, in a parallel system, two plans with the same resource consumption may
have significantly different time to completion. A response-time cost model is a cost
model that attempts to better estimate the time to completion of a query. If a particular
operation is able to perform I/O operations in parallel with CPU execution, the response
time would be better modeled as max(CPU cost, I/O cost), rather than the resource
consumption cost model of (CPU cost + I/O cost). Similarly, if two operations o1 and
o2 are in a pipeline on a single node, and their CPU and I/O costs are c1, io1 and c2, io2
respectively, then their response time cost would be max(c1 + c2, io1 + io2). Similarly,
if operations o1 and o2 are executed sequentially, then their response time cost would
be max(c1, io1) + max(c2, io2).

When executing operations in parallel across multiple nodes, the response time
cost model would have to take into account:

• Start-up costs for initiating an operation at multiple nodes.

• Skew in the distribution of work among the nodes, with some nodes getting a larger
number of tuples than others, and thus taking longer to complete. It is the time
to completion of the slowest node that determines the time to completion of the
operation.

Thus, any skew in the distribution of the work across nodes greatly affects performance.
Estimating the time to completion of the slowest node due to skew is not an easy

task since it is highly data dependent. However, statistics such as number of distinct
values of partitioning attributes, histograms on the distribution of values of partitioning
attributes, and counts of most frequent values can be used to estimate the potential for
skew. Partitioning algorithms that can detect and minimize the effect of skew, such as
those discussed in Section 21.3, are important to minimize skew.

22.7.3 Choosing a Parallel Query Plan

The number of parallel evaluation plans from which to choose is much larger than the
number of sequential evaluation plans. Optimization of parallel queries by consider-
ing all alternatives is therefore much more expensive than optimization of sequential
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queries. Hence, we usually adopt heuristic approaches to reduce the number of parallel
execution plans that we have to consider. We describe two popular approaches here.

1. A simple approach is to choose the most efficient sequential evaluation plan, and
then to choose the optimal way to parallelize the operations in that evaluation
plan. When choosing a sequential plan, the optimizer may use a basic sequential
cost model; or it may use a simple cost model that takes some aspects of paral-
lel execution into account but does not consider issues such as partitioning or
scheduling. This option allows an existing sequential query optimizer to be used
with minimal changes for the first step.

Next, the optimizer decides how to create an optimal parallel plan correspond-
ing to the chosen sequential plan. At this point, choices of what partitioning
techniques to use and how to schedule operators can be made in a cost-based
manner.

The chosen sequential plan may not be optimal in the parallel context, since
the exact cost formulae for parallel execution were not used when choosing it;
nevertheless, the approach works reasonably well in many cases.

2. A more principled approach is to find the best plan, assuming that each operation
is executed in parallel across all the nodes (operations with very small inputs may
be executed on fewer nodes). Scheduling of independent operations in parallel
on different nodes is not considered at this stage.

Partitioning of inputs and intermediate results is taken into consideration
when estimating the cost of a query plan. Existing techniques for query optimiza-
tion have been extended by considering partitioning as a physical property, in
addition to physical properties such as sort orders that are already taken into ac-
count when choosing a sequential query plan. Just as sort operators are added
to a query plan to get a desired sort order, exchange operators are added to get
the desired partitioning property. The cost model used in practice is typically
a resource consumption model, which we saw earlier. Although response-time
cost models offer better estimates of query execution time, the cost of query opti-
mization is higher when using a response-time cost model compared to the cost
of optimization when using a resource-consumption cost model. References pro-
viding more information on the response-time cost model may be found in the
Further Reading section at the end of the chapter.

Yet another dimension of optimization is the design of physical-storage organiza-
tion to speed up queries. For example, a relation can be stored partitioned on any of
several different attributes, and it may even be replicated and replicas can be stored
partitioned on different attributes. For example, a relation r(A, B, C) could be stored
partitioned on A, and a replica could be partitioned on B. The query optimizer chooses
the replica that is best suited for the query. The optimal physical organization differs
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for different queries. The database administrator must choose a physical organization
that appears to be good for the expected mix of database queries.

22.7.4 Colocation of Data

Even with parallel data storage and parallel processing of operations, the execution
time of some queries can be too slow for the needs of some applications. In particular,
queries that access small amounts of data stored at multiple nodes may run quite slowly
when executed in parallel, as compared to the execution of the same query on a single
node, if all the data were available at that node. There are many applications that need
such queries to return answers with very low latency.

An important technique to speed up such queries is to colocate data that a query
accesses in a single node. For example, suppose an application needs to access student
information, along with information about courses taken by the student. Then, the
student relation may be partitioned on the ID, and the takes relation also partitioned in
exactly the same manner on ID. Tuples in the course relation, which is a small relation,
may be replicated to all nodes. With such a partitioning, any query involving these three
relations that retrieves data for a single ID can be answered locally at a single node. The
query processing engine just detects which node is responsible for that ID and sends
the query to that node, where it is executed locally.

Colocation of tuples from different relations is supported by many data storage
systems. If the data storage system does not natively support colocation, an alternative
is to create an object containing related tuples that share a key (e.g., student and takes
records corresponding to a particular ID), and store it in the data storage system with
the associated key (ID, in our example).

The colocation technique, however, does not work directly if different queries need
a relation partitioned in different ways. For example, if the goal is to find all students
who have taken a particular course section, the takes relation needs to be partitioned on
the section information (course id, year, semester, sec id) instead of being partitioned
on ID.

A simple technique to handle this situation is to allow multiple copies of a rela-
tion, partitioned on different attributes. These copies can be modeled as indices on the
relation, partitioned on different attributes; when tuples in the relation are updated,
so are the copies, to keep them consistent. In our example, one copy of takes can be
partitioned on ID to be colocated with the student partitions, while another copy is par-
titioned on (course id, year, semester, sec id) to be colocated with the section relation.

Colocation helps optimize queries that compute joins between two relations; it can
extend to three or more relations if either the remaining relations are replicated, or if all
relations share a common set of join attributes. In the latter case, all tuples that would
join together can be colocated by partitioning on the common join attributes. In either
case, the join can be computed locally at a single node, if the query only wants the
results for a specific value of the join attribute, as we saw earlier. However, not all join
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queries are amenable to evaluation at a single node by using colocation. Materialized
views, which we discuss next, offer a more general alternative.

22.7.5 Parallel Maintenance of Materialized Views

Materialized views, which we saw in Section 4.2.3 for speeding up queries in centralized
databases, can also be used to speed up queries in parallel databases. Materialized
views need to be maintained when the database is updated, as we saw in Section 16.5.
Materialized views in a parallel database can have a very large amount of data, and
must, therefore, be stored partitioned across multiple nodes.

As in the centralized case, materialized views in a parallel database speed up query
answering at the cost of the overhead of view maintenance at the time of processing
updates.

We consider first a very simple case of materialized views. It is often useful to store
an extra copy of a relation, partitioned on different attributes, to speed up answering of
some queries. Such a repartitioning can be considered a very simple case of a material-
ized view; view maintenance for such a view is straightforward, just requiring updates
to be sent to the appropriate partition.

Indices can be considered a form of materialized views. Recall from Section 21.5
how parallel indices are maintained. Consider the case of maintenance of a parallel
secondary index on an attribute B of a relation r(A, B, C), with primary key A. The sec-
ondary index would be sorted on attribute B and would include unique key A; assume it
also includes attribute C. Suppose now that attribute B of a tuple (a1, b1, c1) is updated
from b1 to b2. This update results in two updates to the secondary index: delete the
index entry with key (b1, a1, c1), and add an entry (b2, a1, c1). Since the secondary in-
dex is itself partitioned, these two updates need to be sent to the appropriate partition,
based on the unique key attributes (B, A).

In some cases, materialized view maintenance can be done by partitioning fol-
lowed by local view maintenance. Consider a view that groups takes tuples by (course
id, year, semester, sec id), and then counts the number of students who have taken that

course section. Such a materialized view would be stored partitioned on the grouping
attributes (course id, year, semester, sec id). It can be computed by maintaining a copy
of the takes relation partitioned on (course id, year, semester, sec id), and materializing
the aggregates locally at each node. When there is an update, say an insert or delete to
the takes relation, that update must be propagated to the appropriate node based on
the partitioning chosen above. The materialized aggregate can be maintained locally at
each node, as updates are received for the set of local tuples of the takes relation.

For more complex views, materialized view maintenance cannot be done by a single
step of partitioning and local view maintenance. We consider a more general approach
next.

First, consider an operator o, whose result is materialized, and an update (insert or
delete) to one of the input relations of o that requires maintenance of the materialized
result of o. Suppose the execution of operator o is parallelized using the exchange op-
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erator model (Section 22.5.2) where the inputs are partitioned, and then operators are
executed at each node on data made available locally by (re)partitioning. To support
materialized view maintenance of the result of o, we materialize the output of o at each
node and additionally materialize (store) the input partitions sent to the node when
the materialized view result is initially computed.

Now, when there is an update (insert or delete) to an input to o, we send the update
to the appropriate node using the same partition function used during the initial com-
putation of o. Consider a node that has received such an update. Now, the maintenance
of the locally materialized result at the node can be done using standard (nonparallel)
view maintenance techniques using only locally available data.

Note that as we saw in Section 22.5.2, a variety of operations can be parallelized
using the exchange operator model, and hence the preceding scheme provides a parallel
view maintenance technique for all such operators.

Next, consider a query with multiple operators. Such a query can be parallelized
using the exchange operator model. The exchange operators repartition data between
nodes, and each node computing (possibly multiple) operations using data made avail-
able locally by the exchange operators, as we saw in Section 22.5.2.

We can materialize the inputs and results at each node. Now, when there is a change
to an input at a node, we use standard view maintenance techniques locally to find the
change to the materialized result, say v, at that node. If that result v is the final output of
the query, we are done. Otherwise, there must be an exchange operator above it; we use
the exchange operator to route the updates (inserts or delete) to v to the next operator.
That operator in turn computes the change to its result, and propagates it further if
required, until we get to the root of the original materialized view.

The issue of consistency of materialized views in the face of concurrent updates to
the underlying relations is addressed in Section 23.6.3.

22.8 Parallel Processing of Streaming Data

We saw several applications of streaming data in Section 10.5. Many of the streaming
data applications that we saw in that section, such as network monitoring or stock
market applications, have very high rates of tuple arrival. Incoming tuples cannot be
processed by a single computer, and parallel processing is essential for such systems.
Streaming data systems apply a variety of operations on incoming data. We now see
how some of these operations can be executed in parallel.

Parallelism is essential at all stages of query processing, starting with the entry of
tuples from the sources. Thus, a parallel stream processing system needs to support a
large number of entry points for data.

For example, a system that is monitoring queries posed on a search engine such
as Google or Bing search has to keep up with a very high rate of queries. Search en-
gines have a large number of machines across which user queries are distributed and
executed. Each of these machines becomes a source for the query stream. The stream
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processing system must have multiple entry points for the data, which receive data from
the original sources and route them within the stream processing system.

Processing of data must be done by routing tuples from producers to consumers.
We discuss routing of tuples in Section 22.8.1. Parallel processing of stream operations
is discussed in Section 22.8.2, while fault tolerance is discussed in Section 22.8.3.

It is also worth noting that many applications that perform real-time analytics on
streaming data also need to store the data and analyze it in other ways subsequently.
Thus, many systems duplicate incoming data streams, sending one copy to a storage
system for subsequent analysis and sending the other copy to a streaming data system;
such an architecture is called the lambda architecture: the Greek symbol λ is used to
pictorially denote that incoming data are forked into two copies, sent to two different
systems.

While the lambda architecture allows streaming systems to be built quickly, it also
results in duplication of effort: programmers need to write code to store and query the
data in the format/language supported by a database, as well as to query the data in
the language supported by a streaming data system. More recently, there have been
efforts to perform stream processing as well as query processing on stored data within
the same system to avoid this duplication.

22.8.1 Routing of Tuples

Since processing of data typically involves multiple operators, routing of data to oper-
ators is an important task. We first consider the logical structure of such routing, and
address the physical structure, which takes parallel processing into account, later.

The logical routing of tuples is done by creating a directed acyclic graph (DAG) with
operators as nodes. Edges between nodes define the flow of tuples. Each tuple output by
an operator is sent along all the out-edges of the operator, to the consuming operators.
Each operator receives tuples from all its in-edges. Figure 22.8a depicts the logical
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routing of stream tuples through a DAG structure. Operation nodes are denoted as
“Op” nodes in the figure. The entry points to the stream processing system are the data
source nodes of the DAG; these nodes consume tuples from the stream sources and
inject them into the stream processing system. The exit points of the stream processing
system are data sink nodes; tuples exiting the system through a data sink may be stored
in a data store or file system or may be output in some other manner.

One way of implementing a stream processing system is by specifying the graph
as part of the system configuration, which is read when the system starts processing
tuples and is then used to route tuples. The Apache Storm stream processing system
is an example of a system that uses a configuration file to define the graph, which is
called a topology in the Storm system. (Data source nodes are called spouts in the Storm
system, while operator nodes are called bolts, and edges connect these nodes.)

An alternative way of creating such a routing graph is by using publish-subscribe
systems. A publish-subscribe system allows publication of documents or other forms
of data, with an associated topic. Subscribers correspondingly subscribe to specified
topics. Whenever a document is published to a particular topic, a copy of the document
is sent to all subscribers who have subscribed to that topic. Publish-subscribe systems
are also referred to as pub-sub systems for short.

When a publish-subscribe system is used for routing tuples in a stream processing
system, tuples are considered documents, and each tuple is tagged with a topic. The
entry points to the system conceptually “publish” tuples, each with an associated topic.
Operators subscribe to one or more topics; the system routes all tuples with a specific
topic to all subscribers of that topic. Operators can also publish their outputs back to
the publish-subscribe system, with an associated topic.

A major benefit of the publish-subscribe approach is that operators can be added
to the system, or removed from it, with relative ease. Figure 22.8b depicts the routing of
tuples using a publish-subscribe representation. Each data source is assigned a unique
topic name; the output of each operator is also assigned a unique topic name. Each
operator subscribes to the topics of its inputs and publishes to the topics corresponding
to its output. Data sources publish to their associated topic, while data sinks subscribe
to the topics of the operators whose output goes to the sink.

The Apache Kafka system uses the publish-subscribe model to manage routing
of tuples in streams. In the Kafka system, tuples published for a topic are retained
for a specified period of time (called the retention period), even if there is currently no
subscriber for the topic. Subscribers usually process tuples at the earliest possible time,
but in case processing is delayed or temporarily stopped due to failures, the tuples are
still available for processing until the retention time expires.

Many streaming data systems, such as Google’s Millwheel, and the Muppet stream
processing system, use the term stream in place of the term topic. In such systems,
streams are assigned names; operators can publish tuples to a stream, or subscribe to
a stream, based on the name.

We now consider the physical routing of tuples. Regardless of the model used above,
each logical operator must have multiple physical instances running in parallel on dif-
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ferent nodes. Incoming tuples for a logical operator must be routed to the appropriate
physical instance(s) of the operator. A partitioning function is used to determine which
tuple goes to which instance of the operator.

In the context of a publish-subscribe system, each topic can be thought of as a
separate logical operator that accepts tuples and passes them on to all subscribers of
the topic. Since there may be a very large number of tuples for a given topic, they must
be processed in parallel across multiple nodes in a parallel publish-subscribe system.
In the Kafka system, for example, a topic is divided into multiple partitions, called
a topic-partition; each tuple for that topic is sent to only one of the topic-partitions.
Kafka allows a partition key to be attached to each tuple, and ensures that tuples with
the same key are delivered to the same partition.

To allow processing by consumers, Kafka allows consumer operators register with
a specified “consumer group.” The consumer group corresponds to a logical operator,
while the individual consumers correspond to physical instances of the logical operator
that run in parallel. Each tuple of a topic is sent to only one consumer in the consumer
group. More precisely, all tuples in a particular topic-partition are sent to a single con-
sumer in a consumer group; however, tuples from multiple partitions may be sent to the
same consumer, leading to a many-to-one relationship from partitions to consumers.

Kafka is used in many streaming data processing implementations for routing
tuples. Kafka Streams provides a client library supporting algebraic operations on
streams, which can be used to build streaming applications on top of the Kafka publish-
subscribe system.

22.8.2 Parallel Processing of Stream Operations

For standard relational operations, the techniques that we have seen for parallel evalu-
ation of the operations can be used with streaming data.

Some of these, such as selection and projection operations, can be done in parallel
on different tuples. Others, such as grouping, have to bring all tuples of a group together
to one machine.6 When grouping is done with aggregation, optimizations such as pre-
aggregation can be used to reduce the data transferred, but information about the tuples
in a group must still be delivered to a single machine.

Windowing is an important operation in streaming data systems. Recall from Sec-
tion 10.5.2.1 that incoming data are divided into windows, typically based on times-
tamps (windows can also be defined based on the number of tuples). Windowing is
often combined with grouping/aggregation, with aggregates computed on groups of tu-
ples within a window. The use of windows ensures that once the system can determine
that new tuples will no longer belong to a particular window, aggregates for that win-
dow can be output. For example, suppose a window is based on time, say with each 5
minutes defining a window; once the system determines that future tuples will have a

6When grouping is combined with windowing (Section 10.5.2.1), a group contains all tuples in a window that have the
same values for their grouping attributes.
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timestamp larger than the end of a particular window, aggregates on that window can
be output. Unlike grouping, windows can overlap each other.

When windowing and grouping are used together to compute aggregates, if there
are overlapping windows, it is best to partition on just the grouping attributes. Oth-
erwise, tuples which belong to multiple windows would have to be sent to multiple
windows, an overhead that is avoided by partitioning on only the grouping attributes.

Many streaming systems allow users to create their own operators. It is important
to be able to parallelize user-defined operators by allowing multiple instances of the
operator to run concurrently. Such systems typically require each tuple to have an as-
sociated key, and all tuples with a particular key are sent to a particular instance of the
operator. Tuples with different keys can be sent to different operator instances, allowing
parallel processing.

Stream operations often need to store state. For example, a windowing operator
may need to retain all tuples that it has seen in a particular window, as long as the
window is active. Or, it may need to store aggregates computed at some resolution (say
per minute) to later compute coarser resolution aggregates (say per hour). There are
many other reasons for operators to store state. User-defined operators often define
state internal to the operator (local variables), which needs to be stored.

Such state may be stored locally, at each node where a copy of the operator is
executed. Alternatively, it may be stored centrally in a parallel data-storage system. The
store-locally alternative has a lower cost but a higher risk of losing state information
on failure, as compared to storing state in a parallel data-storage system. This aspect is
discussed further in Section 22.8.3.

22.8.3 Fault Tolerance with Streaming Data

Fault tolerance when querying stored data can be achieved by reexecuting the query, or
parts of the query, as we have seen in Section 22.5.4. However, such an approach to fault
tolerance does not work well in a streaming setting for multiple reasons. First, many
streaming data applications are latency sensitive, and delays in delivering results due
to restarts are not desirable. Second, streaming systems provide a continuous stream
of outputs. In the event of a failure, reexecuting the entire system or parts of it could
potentially lead to duplicate copies of output tuples, which is not acceptable for many
applications.

Thus, streaming data systems need to provide guarantees about delivery of output
tuples, which can be one of: at-least once, at-most once, and exactly-once. The at-least-
once semantics guarantees that each tuple is output at least once, but allows duplicate
delivery during recovery from failures. The at-most-once semantics guarantees that each
tuple is delivered at most once, without duplicates, but some tuples may be lost in
the event of a failure. The exactly-once semantics guarantees that each tuple will be
delivered exactly once, regardless of failures. This is the model that most applications
require, although some applications may not care about duplicates and may accept
at-least-once semantics.
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To ensure such semantics, streaming systems must track what tuples have been
processed at each operator and what tuples have been output. Duplicates can be de-
tected by comparing against tuples output earlier and removed. (This can be done only
if the system guarantees the absence of duplicates during normal processing, since
otherwise the semantics of the streaming query may be affected by removal of genuine
duplicates.)

One way to implement fault tolerance is to support it in the subsystem that routes
tuples between operators. For example, in Kafka, tuples are published to topics, and
each topic-partition can be stored in two or more nodes so that even if one of the nodes
fails, the other one is available. Further, the tuples are stored on disk in each of the
nodes so that they are not lost on power failure or system restart. Thus, the streaming
data system can use this underlying fault tolerance and high availability mechanism to
implement fault-tolerance and high availability at a higher level of the system.

In such a system, if an operator was executing on a failed node, it can be restarted
on another node. The system must also (at least periodically) record up to what point
each input stream had been consumed by the operator. The operator must be restarted
and each input stream replayed from a point such that the operator can correctly output
all tuples that it had not already output before the failure. This is relatively easy for
operators without any state; operators without any state need to do extra work to restore
the state that existed before failure. For example, a window operator needs to start from
a point in the stream corresponding to the start of a window and replay tuples from
that point.

If the window is very large, restarting from a very old point in the stream would
be very inefficient. Instead, the operator may checkpoint its state periodically, along
with points in the input stream up to which processing has been done. In the event of
a failure, the latest checkpoint may be restored, and only input stream tuples that were
processed since the last checkpoint need to be replayed.

The same approach can be for other operators that have state information; the
state can be checkpointed periodically, and replay starts from the last checkpoint. The
checkpointed state may be stored locally; however, this means that until the node re-
covers, stream processing cannot proceed. As an alternative, the state may be stored
in a distributed file system or in a parallel data-storage system. Such systems replicate
data to ensure high availability even in the event of failures. Thus, if a node has failed,
its functions can be restarted on a different node, starting with the last checkpoint, and
replaying the stream contents.

If the underlying system does not implement fault tolerance, operators can im-
plement their own fault-tolerance mechanisms to avoid tuple loss. For example, each
operator may store all tuples that it has output; a tuple can be discarded only after the
operator knows that no consumer will need the tuple, even in the event of a failure.

Further, streaming systems must often guarantee low latency, even in the event
of failures. To do so, some streaming systems have replicas of each operator, running
concurrently. If one replica fails, the output can be fetched from the other replica.
The system must make sure that duplicate tuples from the replicas are not output to
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consumers. In such systems, one copy of an operator is treated as a primary copy, and
the other copy as a hot-spare replica (recall that we discussed hot-spares in Section
19.7).

What we have described above is a high-level view of how streaming data systems
implement fault tolerance. References to more information on how to implement fault
tolerance in streaming systems may be found in the Further Reading section at the end
of the chapter.

22.9 Distributed Query Processing

The need for distributed query processing originally arose when organizations needed
to execute queries across multiple databases that were often geographically distributed.
However, today the same need arises because organizations have data stored in multiple
different databases and data storage systems, and they need to execute queries that
access multiples of these databases and data storage systems.

22.9.1 Data Integration from Multiple Data Sources

Different parts of an enterprise may use different databases, either because of a legacy
of how they were automated, or because of mergers of companies. Migrating an entire
organization to a common system may be an expensive and time-consuming operation.
An alternative is to keep data in individual databases, but to provide users with a logical
view of integrated data. The local database systems may employ different logical mod-
els, different data-definition and data-manipulation languages, and may differ in their
concurrency-control and transaction-management mechanisms. Some of the sources
of data may not be full-fledged database systems but may instead be data storage sys-
tems, or even just files in a file system. Yet another possibility is that the data source
may be on the cloud and accessed as a web service. Queries may need access to data
stored across multiple databases and data sources.

Manipulation of information located in multiple databases and other data sources
requires an additional software layer on top of existing database systems. This layer
creates the illusion of logical database integration without requiring physical database
integration and is sometimes called a federated database system.

Database integration can be done in several different ways:

• The federated database approach creates a common schema, called a global
schema, for data from all the databases/data sources; each database has its own
local schema. The task of creating a unified global schema from multiple local
schemas is referred to as schema integration.

Users can issue queries against the global schema. A query on a global schema
must be translated into queries on the local schemas at each of the sites where
the query has to be executed. The query results have to be translated back into the
global schema and combined to get the final result.
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In general, updates to the common schema also need to be mapped to updates
to the individual databases; systems that support a common schema and queries,
but not updates, against the schema are sometimes referred to as mediator systems.

• The data virtualization approach allows applications to access data from multiple
databases/data sources, but it does not try to enforce a common schema. Users
have to be aware of the different schemas used in different databases, but they do
not need to worry about which data are stored on which database system, or about
how to combine information from multiple databases.

• The external data approach allows database administrators to provide schema in-
formation about data that are stored in other databases, along with other informa-
tion, such as connection and authorization information needed to access the data.
Data stored in external sources that can be accessed from a database are referred
to as external data. Foreign tables are views defined in a database whose actual
data are stored in an external data source. Such tables can be read as well as up-
dated, depending on what operations the external data source supports. Updates
on foreign tables, if supported, must be translated into updates on the external
data source.

Unlike the earlier-mentioned approaches, the goal here is not to create a full-
fledged distributed database, but merely to facilitate access to data from other
data sources. The SQL Management of External Data (SQL MED) component
of the SQL standard defines standards for accessing external data sources from a
database.

If a data source is a database that supports SQL, its data can be easily accessed
using ODBC or JDBC connections. Data in parallel data storage systems that do not
support SQL, such as HBase, can be accessed using the API methods that they provide.

A wrapper provides a view of data stored at a data source, in a desired schema. For
example, if the system has a global schema, and the local database schema is different
from the global schema, a wrapper can provide a view of the data in the global schema.
Wrappers can even be used to provide a relational view of nonrelational data sources,
such as web services, flat files (e.g., web logs), and directory systems.

Wrappers can also translate queries on the global schema into queries on the lo-
cal schema, and translate results back into the global schema. Wrappers may be pro-
vided by individual sites, they may be written as part of the federated database system.
Many relational databases today support wrappers that provide a relational view of
data stored in file systems; such wrappers are specific to the type of data stored in the
files.

If the goal of data integration is solely to run decision support queries, data ware-
houses, which we saw in Section 11.2, are a widely used alternative to database inte-
gration. Data warehouses import data from multiple sources into a single (possibly
parallel) system, with a centralized schema. Data are typically imported periodically,
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for example, once in a day or once in a few hours, although continuous import is also
increasingly used. Raw data imported from the data sources are typically processed
and cleaned before being stored in the data warehouse.

However, with the scale at which data are generated by some applications, creating
and maintaining such a warehouse can be expensive. Furthermore, queries cannot ac-
cess the most recent data, since there is a delay between updates on the source database
and import of the updates to the data warehouse. On the other hand, query processing
can be done more efficiently in a data warehouse; further, queries at a data warehouse
do not affect the performance of other queries and transactions at the data source.
Whether to use a data warehouse architecture, or to directly access data from the data
sources in response to individual queries, is a decision that each enterprise has to make
based on its needs.

The term data lake is used to refer to an architecture where data are stored in
multiple data storage systems and in different formats, including in file systems, but
can be queried from a single system. Data lakes are viewed as an alternative to data
warehouses, since they do not require up-front effort to preprocess data, although they
do require more effort when creating queries.

22.9.2 Schema and Data Integration

The first task in providing a unified view of data lies in creating a unified conceptual
schema, a task that is referred to as schema integration. Each local system provides its
own conceptual schema. The database system must integrate these separate schemas
into one common schema. Schema integration is a complicated task, mainly because
of the semantic heterogeneity. The same attribute names may appear in different local
databases but with different meanings.

Schema integration requires the creation of a global schema, which provides a uni-
fied view of data in different databases. Schema integration also requires a way to define
how data are mapped from the local schema representation at each database, to the
global schema. This step can be done by defining views at each site which, transform
data from the local schema to the global schema. Data in the global schema is then
treated as the union of the global views at the individual site. This approach is called
the global-as-view (GAV) approach.

Consider an example with two sites which store student information in two differ-
ent ways:

• Site s1 which uses the relation student1(ID, name, dept name), and the relation
studentCreds(ID, tot cred).

• Site s2 which uses the relation student2(ID, name, tot cred), and the relation stu-
dentDept(ID, dept name).

Let the global schema chosen be student(ID, name, dept name, tot cred).
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Then, the global schema view at site s1 would be defined as the view:

create view student s1(ID, name, dept name, tot cred) as
select ID, name, dept name, tot cred
from student1, studentCreds
where student1.ID= studentCreds.ID;

While the global schema view at site s2 would be defined as the view:

create view student s2(ID, name, dept name, tot cred) as
select ID, name, dept name, tot cred
from student2, studentDept
where student2.ID= studentDept.ID;

Finally, the global schema student would be defined as the union of student s1 and
student s2.

Note that with the above view definition, a query on the global schema relation
student can be easily translated into queries on the local schema relations at the sites
s1 and s2. It is harder to translate updates on the global schema into updates on the
local schema, since there may not be a unique way to do so as discussed in Section 4.2.

There are more complex mapping schemes that are designed to deal with dupli-
cation of information across sites and to allow translation of updates on the global
schema into updates on the local schema. The local-as-view (LAV) approach, which
defines local data in each site as a view on a conceptual unified global relation, is one
such approach.

Consider for example a situation where the student relation is partitioned between
two sites based on the dept name attribute, with all students in the “Comp. Sci.” depart-
ment at site s3 and all students in other departments in site s4. This can be specified
using the local-as-view approach by defining the relations student s3 and student s4,
which are actually stored at the sites s3 and s4, as equivalent to views defined on the
global relation student.

create view student s3 as
select ∗
from student
where student.dept name = 'Comp. Sci.';

and

create view student s4 as
select ∗
from student
where student.dept name ! = 'Comp. Sci.';
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With this extra information, the query optimizer can figure out that a query that seeks
to retrieve students in the Comp. Sci. department need only be executed at site s3 and
need not be executed at site s4. More information on schema integration may be found
in the bibliographic notes for this chapter, available online.

The second task in providing a unified view of data from multiple sources lies in
dealing with differences in data types and values. For example, the data types used
in one system may not be supported by other systems, and translation between types
may not be simple. Even for identical data types, problems may arise from the phys-
ical representation of data: One system may use 8-bit ASCII, while another may use
16-bit Unicode; floating-point representations may differ; integers may be represented
in big-endian or little-endian form. At the semantic level, an integer value for length
may be inches in one system and millimeters in another; when integrating the data, a
single representation must be used, and values converted to the chosen representation.
Mapping between types can be done as part of the view definitions that translate data
between the local schemas and the global schema.

A deeper problem is that the same conceptual entity may have different names in
different systems. For example, a system based in the United States may refer to the
city “Cologne,” whereas one in Germany refers to it as “Köln.” One approach to deal
with this problem is to have a globally unique naming system, and map values to the
unique names as part of the view definitions used for schema mappings. For example,
the International Standards Organization has a unique code for country names, and for
states/provinces within the countries. The GeoNames database (www.geonames.org)
provides unique names for several million locations such as cities, geographical fea-
tures, roads, buildings, and so forth.

When such standard naming systems are not available, some systems allow the
specification of name equivalences; for example, such a system could allow a user to
say that “Cologne” is the same as “Köln”. This approach is used in the Linked Data
project, which supports the integration of a very large number of databases that use
the RDF representation of data (the RDF representation is described in Section 8.1.4).
However, querying is more complicated in such a scenario.

In our description of the view definitions above, we assumed that data are stored in
local databases, and the view definitions are used to provide a global view of the data,
without actually materializing the data in the global schema. However, such views can
also be used to materialize the data in the global schema, which can then be stored in
a data warehouse. In the latter case, updates on underlying data must be propagated to
the data warehouse.

22.9.3 Query Processing Across Multiple Data Sources

A naive way to execute a query that accesses data from multiple data sources is to
fetch all required data to one database, which then executes the query. But suppose, for
example, that the query has a selection condition that is satisfied by only one or a few
records out of a large relation. If the data source allows the selection to be performed at
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the data source, it makes no sense to retrieve the entire relation; instead, the selection
operation should be performed at the data source, while other operations, if any, may
be performed at the database where the query was issued.

In general, different data sources may support different query capabilities. For ex-
ample, if the source is a data storage system, it may support selections on key attributes
only. Web data sources may restrict which fields selections are allowed on and may ad-
ditionally require that selections be present on certain fields. On the other hand, if the
source is a database that supports SQL, operations such as join or aggregation could
be performed at the source and only the result brought over to the database that issues
the query. In general, queries may have to be broken up and performed partly at the
data source and partly at the site issuing the query.

The cost of processing a query that accesses multiple data sources depends on
the local execution costs, as well as on the data transfer cost. If the network is a low
bandwidth wide-area network, particular attention must be paid to minimizing data
transfer.

In this section, we study issues in distributed query processing and optimization.

22.9.3.1 Join Locations and Join Ordering

Consider the following relational-algebra expression:

r1 ⋈ r2 ⋈ r3

Assume that r1 is stored at site S1, r2 at S2, and r3 at S3. Let SI denote the site at which
the query was issued. The system needs to produce the result at site SI . Among the
possible strategies for processing this query are these:

• Ship copies of all three relations to site SI . Using the techniques of Chapter 16,
choose a strategy for processing the entire query locally at site SI .

• Ship a copy of the r1 relation to site S2, and compute temp1 = r1 ⋈ r2 at S2. Ship
temp1 from S2 to S3, and compute temp2 = temp1 ⋈ r3 at S3. Ship the result temp2
to SI .

• Devise strategies similar to the previous one, with the roles of S1, S2, S3 exchanged.

There are several other possible strategies.
No one strategy is always the best one. Among the factors that must be considered

are the volume of data being shipped, the cost of transmitting a block of data between a
pair of sites, and the relative speed of processing at each site. Consider the first strategy.
Suppose indices present at S2 and S3 are useful for computing the join. If we ship all
three relations to SI , we would need to either re-create these indices at SI or use a
different, possibly more expensive, join strategy. Re-creation of indices entails extra
processing overhead and extra disk accesses. There are many variants of the second
strategy, which process joins in different orders.
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The cost of each of the strategies depends on the sizes of the intermediate results,
the network transmission costs, and the costs of processing at each node. The query
optimizer needs to choose the best strategy, based on cost estimates.

22.9.3.2 Semijoin Strategy

Suppose that we wish to evaluate the expression r1 ⋈ r2, where r1 and r2 are stored at
sites S1 and S2, respectively. Let the schemas of r1 and r2 be R1 and R2. Suppose that
we wish to obtain the result at S1. If there are many tuples of r2 that do not join with
any tuple of r1, then shipping r2 to S1 entails shipping tuples that fail to contribute to
the result. We want to remove such tuples before shipping data to S1, particularly if
network costs are high.

A possible strategy to accomplish all this is:

1. Compute temp1 ← ΠR1 ∩R2
(r1) at S1.

2. Ship temp1 from S1 to S2.

3. Compute temp2 ← r2 ⋈ temp1 at S2.

4. Ship temp2 from S2 to S1.

5. Compute r1 ⋈ temp2 at S1. The resulting relation is the same as r1 ⋈ r2.

Before considering the efficiency of this strategy, let us verify that the strategy computes
the correct answer. In step 3, temp2 has the result of r2 ⋈ ΠR1 ∩R2

(r1). In step 5, we
compute:

r1 ⋈ r2 ⋈ ΠR1 ∩R2
(r1)

Since join is associative and commutative, we can rewrite this expression as:

(r1 ⋈ ΠR1 ∩R2
(r1)) ⋈ r2

Since r1 ⋈ Π(R1 ∩R2) (r1) = r1, the expression is, indeed, equal to r1 ⋈ r2, the
expression we are trying to evaluate.

This strategy is called a semijoin strategy, after the semijoin operator of the rela-
tional algebra, denoted ⋉, which we saw in Section 16.4.4. The natural semijoin of r1
with r2, denoted r1 ⋉ r2, is defined as:

r1 ⋉ r2 ≝ ΠR1
(r1 ⋈ r2)

Thus, r1 ⋉ r2 selects those tuples of relation r1 that contributed to r1 ⋈ r2. In step
3, temp2 = r2 ⋉ r1. The semijoin operation is easily extended to theta-joins. The theta
semijoin of r1 with r2, denoted r1 ⋉θ r2, is defined as:

r1 ⋉θ r2 ≝ ΠR1
(r1 ⋈θ r2)
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For joins of several relations, the semijoin strategy can be extended to a series of
semijoin steps. It is the job of the query optimizer to choose the best strategy based on
cost estimates.

This strategy is particularly advantageous when relatively few tuples of r2 contribute
to the join. This situation is likely to occur if r1 is the result of a relational-algebra ex-
pression involving selection. In such a case, temp2, that is, r2⋉r1, may have significantly
fewer tuples than r2. The cost savings of the strategy result from having to ship only
r2 ⋉ r1, rather than all of r2, to S1.

Some additional cost is incurred in shipping temp1, that is ΠR1 ∩R2
(r1) to S2. If a

sufficiently small fraction of tuples in r2 contribute to the join, the overhead of shipping
temp1 will be dominated by the savings of shipping only a fraction of the tuples in r2.
The overhead of sending temp1 tuples from s1 to s2 can be reduced as follows. For the
purpose of optimization of join processing, the semijoin operation can be implemented
in a manner that overapproximates the true semijoin result. That is, the result should
contain all the tuples in the actual semijoin result, but it may contain a few extra tuples.
The extra tuples will get eliminated later by the join operation.

An efficient overapproximation of the semijoin result can be computed by using a
probabilistic data structure called a Bloom filter, which uses bitmaps. Bloom filters are
described in more detail in Section 24.1. To implement r2 ⋉ r1, a Bloom filter with a
bitmap b of size m, initialized with all bits set to 0 is used. The join attributes of each
tuple of r1 are hashed to a value in the range 0… (m − 1), and the corresponding bit
of b is set to 1. The bitmap b, which is much smaller than the relation r1, can now be
sent to the site containing r2. There, the same hash function is computed on the join
attributes of each tuple of r2. If the corresponding bit is set to 1 in b, that r2 tuple is
accepted (added to the result relation), and otherwise it is rejected.

Note that it is possible for different join attribute values, say v1 and v2 to have the
same hash value; even if r1 has a tuple with value v1, but does not have any tuple with
value v2, the result of the above procedure may include r2 tuples whose join attribute
value is v2. Such a situation is referred to as a false positive. However, if v1 is present in
r1, the technique will never reject a tuple in r2 that has join attribute value v1, which is
important for correctness.

The result relation computed above, which is a superset of or equal to r2 ⋉ r1, is
sent to site s1. The join r1 ⋈ result is then computed at site s1 to get the required join
result. False positives may result in extra tuples in result that are not present in r2 ⋉ r1,
but such tuples would be eliminated by the join.

To keep the probability of false positives low, the number of bits in the Bloom
filter is usually set to a few times the estimated number of distinct join attribute values.
Further, it is possible to use k independent hash functions, for some k > 1, to identify
k bit positions for a given value, and set all of them to 1 when creating the bitmap.
When querying it with a given value, the same k hash functions are used to identify k
bit locations, and the value is determined to be absent if even one of the k bits has a 0
value. For example, if the bitmap has 10n bits, where n is the number of distinct join
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attribute values, and k = 7 hash functions are used, the false positive rate would be
about 1%.

22.9.3.3 Distributed Query Optimization

Several extensions need to be made to existing query optimization techniques in order
to optimize distributed query plans.

The first extension is to record the location of data as a physical property of the
data; recall that optimizers already deal with other physical properties such as the sort
order of results. Just as the sort operation is used to create different sort orders, an
exchange operation is used to transfer data between different sites.

The second extension is to track where an operator is executed; optimizers already
consider different algorithms, such as hash join or merge join, for a given logical oper-
ator, in this case, the join operator. The optimizer is extended to additionally consider
alternative sites for execution of each algorithm. Note that to execute an operator at a
given site, its inputs must satisfy the physical property of being located at that site.

The third extension is to consider semijoin operations to reduce data transfer costs.
Semijoin operations can be introduced as logical transformation rules; however, if done
naively, the search space increases greatly, making this approach infeasible. Optimiza-
tion cost can be reduced by restricting, as a heuristic, semijoins to be applied only on
database tables, and never on intermediate join results.

A fourth extension is to use schema information to restrict the set of nodes at
which a query needs to be executed. Recall from Section 22.9.2 that the local-as-view
approach can be used to specify that a relation is partitioned in a particular way. In the
example we saw there, site s3 contains all student tuples with dept name being Comp.
Sci., while s4 contains all the other student tuples. Suppose a query has a selection
“dept name='Comp. Sci.'” on student; then, the optimizer should recognize that there
is no need to involve site s4 when executing this query.

As another example, if the student data at site s5 is a replica of the data at site s3,
then the optimizer can choose to execute the query at either of the sites, depending on
which is cheaper; there is no need to execute the query at both sites.

22.9.4 Distributed Directory Systems

A directory is a listing of information about some class of objects such as persons.
Directories can be used to find information about a specific object, or in the reverse
direction to find objects that meet a certain requirement. Several directory access proto-
cols have been developed to provide a standardized way of accessing data in a directory.

A very widely used distributed directory system is the internet Domain Name Ser-
vice (DNS) system, which provides a standardized way to map domain names (such
as db-book.com or www.cs.yale.edu, to the IP addresses of the machines. (Although
users see only the domain names, the underlying network routes messages based on
IP addresses, and hence a way to convert domain names to IP addresses is critical for
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the functioning of the internet.) The Lightweight Directory Access Protocol (LDAP) is
another very widely used protocol designed for storing organizational data.

Data stored in directories can be represented in the relational model, stored in a
relational database, and accessed through standard protocols such as JDBC or ODBC.
The question then is, why come up with a specialized protocol for accessing directory
information? There are several reasons.

• First, directory access protocols are simplified protocols that cater to a limited
type of access to data. They evolved in parallel with the database access protocol
standards.

• Second, directory systems were designed to support a hierarchical naming system
for objects, similar to file system directory names. Such a naming system is im-
portant in many applications. For example, all computers whose names end in
yale.edu belong to Yale, while those whose names end in iitb.ac.in belong to IIT
Bombay. Within the yale.edu domain, there are subdomains such as cs.yale.edu,
which corresponds to the CS department in Yale, and math.yale.edu which cor-
responds to the Math department at Yale.

• Third, and most important from a distributed systems perspective, the data in a
distributed directory system are stored and controlled in a distributed, hierarchical,
manner.

For example, a DNS server at Yale would store information about names of
computers at Yale, along with associated information such as their IP addresses.
Similarly, DNS servers at Lehigh and IIT Bombay would store information about
computers in their respective domains. The DNS servers store information in a
hierarchical fashion; for example, the information provided by the Yale DNS server
may be stored in a distributed fashion across subdomains at Yale, such as the CS
and Math DNS servers.

Distributed directory systems automatically forward queries submitted at a site
to the site where the required information is actually stored, to give a unified view
of data to users and applications.

Further, distributed directory implementations typically support replication to
ensure the availability of data even if some nodes have failed.

Another example of usage of directory systems is for organization data. Such sys-
tems store information about employees, such as the employee identifier, name, email,
organization unit (such as department), room number, phone number, and (encrypted)
password of each employee. The schema of such organizational data are standardized
as part of the Lightweight Directory Access Protocol (LDAP). Directory systems based
on the LDAP protocol are widely used to authenticate users, using the encrypted pass-
words stored for each user. (More information about the LDAP data representation
may be found in Section 25.5.)
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Although distributed data storage across organizational units was important at one
time, such directory systems are often centralized these days. In fact, several direc-
tory implementations use relational databases to store data, instead of creating special-
purpose storage systems. However, the fact that the data representation and protocol to
access the data are standardized has meant that these protocols continue to be widely
used.

22.10 Summary

• Current generation parallel systems are typically based on a hybrid architecture,
where each computer has multiple cores with a shared memory, and there are
multiple computers organized in a shared-nothing fashion.

• Parallel processing in a database system can be exploited in two distinct ways.

° Interquery parallelism—the execution of multiple queries in parallel with each
other, across multiple nodes.

° Intraquery parallelism—the processing of different parts of the execution of a
single query, in parallel across multiple nodes.

• Interquery parallelism is essential for transaction-processing systems, while intra-
query parallelism is essential for speeding up long-running queries.

• Execution of a single query involves execution of multiple relational operations.
The key to exploiting large-scale parallelism is to process each operation in parallel,
across multiple nodes (referred to as intraoperation parallelism).

• The operations that are the most amenable to parallelism are: sort, selection, du-
plicate elimination, projection, and aggregation.

• Range-partitioning sort works in two steps: first range-partitioning the relation,
then sorting each partition separately.

• Parallel external sort-merge works in two steps: first, each node Ni sorts the data
available at node Ni, then the system merges the sorted runs on each node to get
the final sorted output.

• Parallel join algorithms divide the tuples of the input relations over several nodes.
Each node then computes part of the join locally. Then the system collects the
results from each node to produce the final result.

• Skew is a major problem, especially with increasing degrees of parallelism. Bal-
anced partitioning vectors, using histograms, and virtual node partitioning are
among the techniques used to reduce skew.
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• The MapReduce paradigm is designed to ease the writing of parallel data process-
ing programs using imperative programming languages that may not be express-
ible using SQL. Fault-tolerant implementations of the MapReduce paradigm are
important for a variety of very large scale data processing tasks. Extensions of the
MapReduce model based on algebraic operations is increasingly important. The
Hive SQL system uses a MapReduce system as its underlying execution engine,
compiling SQL queries to MapReduce code.

• There are two forms of interoperation parallelism: pipelined parallelism and in-
dependent parallelism. Pipelined parallelism is usually implemented using a push
model, with buffers between operations.

• The exchange operation repartitions data in a specified way. Parallel query plans
can be created in such a way that data interchange between nodes is done only by
the exchange operator, while all other operations work on local data, just as they
would in a centralized database system.

• In the event of failure, parallel query execution plans could be restarted. However,
in very large systems where there is a significant chance of failure during the exe-
cution of a query, fault tolerance techniques are important to ensure that queries
complete execution without restarting, despite failures.

• Parallel algorithms designed for shared-nothing architectures can be used in
shared-memory architectures. Each processor can be treated as having its own par-
tition of memory, and we can ignore the fact that the processors have a common
shared memory. However, execution can be optimized significantly by exploiting
the fast access to shared memory from any of the processors.

• Query optimization for parallel execution can be done using the traditional re-
source consumption cost model, or using the response time cost model. Partition-
ing of tables must be taken into account when choosing a plan, to minimize data
exchange which is often a significant factor in query execution cost. Materialized
views can be important in parallel environments since they can significantly reduce
query execution cost.

• There are many streaming data applications today that require high performance
processing, which can only be achieved by parallel processing of streaming data.
Incoming tuples and results of operations need to be routed to other operations.
The publish-subscribe model, implemented for example in Apache Kafka, has
proven quite useful for such routing. Fault-tolerant processing of streaming data
with exactly-once semantics for processing tuples is important in many applica-
tions. Persistence provided by publish-subscribe systems helps in this regard.

• Integration of schema and data from multiple databases is needed for many data
processing tasks. The external data approach allows external data to be queries in
a database as if it is locally resident. The global-as-view and local-as-view architec-
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tures allows rewriting of queries from a global schema to individual local schemas.
The semijoin strategy using Bloom filters can be useful to reduce data movement
for joins in a distributed database. Distributed directory systems are a type of dis-
tributed database designed for distributed storage and querying of directories.

Review Terms

• Interquery parallelism

• Intraquery parallelism

° Intraoperation parallelism

° Interoperation parallelism

• Range-partitioning sort

• Data parallelism

• Parallel external sort-merge

• Partitioned join

• Partitioned parallel hash join

• Partitioned parallel merge join

• Partitioned parallel nested-loop join

• Partitioned parallel indexed nested-
loops join

• Asymmetric fragment-and-replicate
join

• Broadcast join

• Fragment-and-replicate join

• Symmetric fragment-and-replicate
join

• Join skew avoidance

• Dynamic handling of join skew

• Work stealing

• Parallel selection

• Parallel duplicate elimination

• Parallel projection

• Parallel aggregation

• Partial aggregation

• Intermediate key

• Pipelined parallelism

• Independent parallelism

• Exchange operator

• Unpartitioned

• Random merge

• Ordered merge

• Parallel query execution plan

• Query processing in shared memory

• Thread

• Single Instruction Multiple Data
(SIMD)

• Response-time cost model

• Parallel view maintenance

• Streaming data

• Lambda architecture

• Routing of streams

• Publish-subscribe

• Topic-partition

• At-least-once semantics

• At-most-once semantics

• Exactly-once semantics

• Federated database system

• Global schema

• Local schema

• Schema integration

• Mediator

• Data virtualization

• External data

• Foreign tables
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• Data lake

• Global-as-view (GAV)

• Local-as-view (LAV)

• Linked Data

• Semijoin strategy

• Semijoin

• Theta semijoin

• Bloom filter

• False positive

• Directory access protocols

• Domain Name Service (DNS)

• Lightweight Directory Access Proto-
col (LDAP)

Practice Exercises

22.1 What form of parallelism (interquery, interoperation, or intraoperation) is
likely to be the most important for each of the following tasks?

a. Increasing the throughput of a system with many small queries

b. Increasing the throughput of a system with a few large queries when the
number of disks and processors is large

22.2 Describe how partial aggregation can be implemented for the count and avg
aggregate functions to reduce data transfer.

22.3 With pipelined parallelism, it is often a good idea to perform several operations
in a pipeline on a single processor, even when many processors are available.

a. Explain why.

b. Would the arguments you advanced in part a hold if the machine has a
shared-memory architecture? Explain why or why not.

c. Would the arguments in part a hold with independent parallelism? (That
is, are there cases where, even if the operations are not pipelined and
there are many processors available, it is still a good idea to perform
several operations on the same processor?)

22.4 Consider join processing using symmetric fragment and replicate with range
partitioning. How can you optimize the evaluation if the join condition is of
the form ∣ r.A − s.B ∣ ≤ k, where k is a small constant? Here, ∣ x ∣ denotes
the absolute value of x. A join with such a join condition is called a band join.

22.5 Suppose relation r is stored partitioned and indexed on A, and s is stored par-
titioned and indexed on B. Consider the query:

r.Cγcount(s.D)( (σA>5(r)) ⋈r.B=s.B s )

a. Give a parallel query plan using the exchange operator, for computing
the subtree of the query involving only the select and join operators.
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b. Now extend the above to compute the aggregate. Make sure to use pre-
aggregation to minimize the data transfer.

c. Skew during aggregation is a serious problem. Explain how pre-
aggregation as above can also significantly reduce the effect of skew dur-
ing aggregation.

22.6 Suppose relation r is stored partitioned and indexed on A, and s is stored parti-
tioned and indexed on B. Consider the join r ⋈r.B=s.B s. Suppose s is relatively
small, but not small enough to make asymmetric fragment-and-replicate join
the best choice, and r is large, with most r tuples not matching any s tuple. A
hash-join can be performed but with a semijoin filter used to reduce the data
transfer. Explain how semijoin filtering using Bloom filters would work in this
parallel join setting.

22.7 Suppose you want to compute r ⟕r.A=s.A s.

a. Suppose s is a small relation, while r is stored partitioned on r.B. Give
an efficient parallel algorithm for computing the left outer join.

b. Now suppose that r is a small relation, and s is a large relation, stored
partitioned on attribute s.B. Give an efficient parallel algorithm for com-
puting the above left outer join.

22.8 Suppose you want to compute A,Bγsum(C) on a relation s which is stored par-
titioned on s.B. Explain how you would do it efficiently, minimizing/avoiding
repartitioning, if the number of distinct s.B values is large, and the distribution
of number of tuples with each s.B value is relatively uniform.

22.9 MapReduce implementations provide fault tolerance, where you can reexecute
only failed mappers or reducers. By default, a partitioned parallel join execu-
tion would have to be rerun completely in case of even one node failure. It is
possible to modify a parallel partitioned join execution to add fault tolerance
in a manner similar to MapReduce, so failure of a node does not require full
reexecution of the query, but only actions related to that node. Explain what
needs to be done at the time of partitioning at the sending node and receiving
node to do this.

22.10 If a parallel data-store is used to store two relations r and s and we need to join
r and s, it may be useful to maintain the join as a materialized view. What are
the benefits and overheads in terms of overall throughput, use of space, and
response time to user queries?

22.11 Explain how each of the following join algorithms can be implemented using
the MapReduce framework:

a. Broadcast join (also known as asymmetric fragment-and-replicate join).
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b. Indexed nested loop join, where the inner relation is stored in a parallel
data-store.

c. Partitioned join.

Exercises

22.12 Can partitioned join be used for r ⋈r.A<s.A∧r.B=s.B s? Explain your answer.

22.13 Describe a good way to parallelize each of the following:

a. The difference operation

b. Aggregation by the count operation

c. Aggregation by the count distinct operation

d. Aggregation by the avg operation

e. Left outer join, if the join condition involves only equality

f. Left outer join, if the join condition involves comparisons other than
equality

g. Full outer join, if the join condition involves comparisons other than
equality

22.14 Suppose you wish to handle a workload consisting of a large number of small
transactions by using shared-nothing parallelism.

a. Is intraquery parallelism required in such a situation? If not, why, and
what form of parallelism is appropriate?

b. What form of skew would be of significance with such a workload?

c. Suppose most transactions accessed one account record, which includes
an account type attribute, and an associated account type master record,
which provides information about the account type. How would you par-
tition and/or replicate data to speed up transactions? You may assume
that the account type master relation is rarely updated.

22.15 What is the motivation for work-stealing with virtual nodes in a shared-memory
setting? Why might work-stealing not be as efficient in a shared-nothing set-
ting?

22.16 The attribute on which a relation is partitioned can have a significant impact
on the cost of a query.

a. Given a workload of SQL queries on a single relation, what attributes
would be candidates for partitioning?
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b. How would you choose between the alternative partitioning techniques,
based on the workload?

c. Is it possible to partition a relation on more than one attribute? Explain
your answer.

22.17 Consider system that is processing a stream of tuples for a relation r with
attributes (A, B, C, timestamp) Suppose the goal of a parallel stream processing
system is to compute the number of tuples for each A value in each 5 minute
window (based on the timestamp of the tuple). What would be the topic and
the topic partitions? Explain why.

Tools

A wide variety of open-source tools are available, in addition to some commercial tools,
for parallel query processing. A number of these tools are also available on hosted cloud
platforms.

Teradata was one of the first commercial parallel database systems, and it continues
to have a large market share. The Red Brick Warehouse was another early parallel
database system; Red Brick was acquired by Informix, which was itself acquired by
IBM. Other commercial parallel database systems include Teradata Aster Data, IBM
Netezza, and Pivotal Greenplum. IBM Netezza, Pivotal Greenplum, and Teradata Aster
Data all use PostgreSQL as the underlying database, running independently on each
node; each of these systems builds a layer on top, to partition data, and parallelize
query processing across the nodes.

The open source Hadoop platform (hadoop.apache.org) includes the HDFS dis-
tributed file system and the Hadoop MapReduce platform. Systems that support SQL
on a MapReduce platform include Apache Hive (hive.apache.org), which originated
at Facebook, Apache Impala (impala.apache.org), which originated at Cloudera,
and Apache HAWQ (hawq.apache.org), which originated at Pivotal. Apache Spark
(spark.apache.org), which originated at the Univ. of California, Berkeley, and Apache
Tez (tez.apache.org) are parallel execution frameworks that support a variety of op-
erators beyond the basic map and reduce operators; and Hive SQL queries can be exe-
cuted on both these platforms. Other parallel execution frameworks include Apache Pig
(pig.apache.org), which originated at Yahoo!, the Asterix system (asterix.ics.uci.edu),
which originated at the University of California, Irvine, the Apache Flink system
(flink.apache.org), which originated as the Stratosphere project at the Technical Uni-
versity, Berlin, Humboldt University and the Hasso-Plattner Institute). Apache Spark
and Apache Flink also support libraries for parallel machine learning.

These systems can access data stored in multiple different data formats, such as
files in different formats in HDFS, or objects in a storage system such as HBase. Hadoop
file formats were initially textual files, but today Hadoop implementations support sev-
eral optimized file formats such as Sequence files (which allow binary data), Avro



Further Reading 1093

(which supports semi-structured schemas) and Parquet (which supports columnar data
representation).

Apache Kafka (kafka.apache.org) is widely used for routing tu-
ples in streaming data systems. Systems designed for query process-
ing on streaming data include Apache Storm (storm.apache.org),
Kafka Streams (kafka.apache.org/documentation/streams/) and Heron
(apache.github.io/incubator-heron/), developed by Twitter. Apache Flink
(flink.apache.org), Spark Streaming (spark.apache.org/streaming/), the streaming
component of Apache Spark, and Apache Apex (apex.apache.org) support analytics
on streaming data along with analytics on stored data.

Many of the above systems are also offered as cloud-based services, as part of the
cloud services offered by Amazon AWS, Google Cloud, Microsoft Azure, and other
similar platforms.

Further Reading

Early work on parallel database systems include GAMMA ([DeWitt (1990)]), XPRS
([Stonebraker et al. (1989)]) and Volcano ([Graefe (1990)]). [Graefe (1993)] presents
an excellent survey of query processing, including parallel processing of queries. The
exchange-operator model was advocated by [Graefe (1990)] and [Graefe and McKenna
(1993)]. Skew handling in parallel joins is described by [DeWitt et al. (1992)].

[Ganguly et al. (1992)] describe query-optimization techniques based on the
response-time cost model for parallel query execution, while [Zhou et al. (2010)] de-
scribe how to extend a query optimizer to account for partitioning properties and par-
allel plans. View maintenance in parallel data storage systems is described by [Agrawal
et al. (2009)].

A fault-tolerant implementation of the MapReduce framework at Google, which
lead to the widespread use of the MapReduce paradigm, is described by [Dean and
Ghemawat (2010)]. [Kwon et al. (2013)] provide an overview of skew handling in the
Hadoop MapReduce framework. [Herodotou and Babu (2013)] describe how to opti-
mize a number of parameters for query execution in the MapReduce framework. An
overview of the Apache Spark system is provided by [Zaharia et al. (2016)], while [Za-
haria et al. (2012)] describe Resilient Distributed Datasets, a fault-tolerant abstraction
which formed a basis for the Spark implementation. Extensions of the exchange op-
erator to support fault-tolerance, are described by [Shah et al. (2004)], with a focus
on fault-tolerant continuous queries. Fault-tolerant stream processing in the Google
MillWheel system is described in [Akidau et al. (2013)].

The morsel-driven approach to parallel query evaluation in shared-memory sys-
tems with multi-core processors is described in [Leis et al. (2014)]. [Kersten et al.
(2018)] provides a comparison of vectorwise query processing using optimizations
such as SIMD instructions, with producer-driven pipelining.
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[Carbone et al. (2015)] describe stream and batch processing in Apache Flink.
[Ozsu and Valduriez (2010)] provides textbook coverage of distributed database sys-
tems.
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CHAP T E R 23
Parallel and Distributed
Transaction Processing

We studied transaction processing in centralized databases earlier, covering concur-
rency control in Chapter 18 and recovery in Chapter 19. In this chapter, we study how
to carry out transaction processing in parallel and distributed databases. In addition
to supporting concurrency control and recovery, transaction processing in parallel and
distributed databases must also deal with issues due to replication of data, and of fail-
ures of some nodes.

Both parallel and distributed databases have multiple nodes, which can fail in-
dependently. The main difference between parallel and distributed databases from the
view point of transaction processing is that the latency of remote access is much higher,
and bandwidth lower, in a distributed database than in a parallel database where all
nodes are in a single data center. Failures such as network partitioning and message
delays are much less likely within a data center than across geographically distributed
sites, but nevertheless they can occur; transaction processing must be done correctly
even if they do occur.

Thus, most techniques for transaction processing are common to both parallel and
distributed databases. In the few cases where there is a difference, we explicitly point
out the difference. And as a result, in this chapter, whenever we say that a technique
is applicable to distributed databases, it should be interpreted to mean that it is appli-
cable to distributed databases as well as to parallel databases, unless we explicitly say
otherwise.

In Section 23.1, we outline a model for transaction processing in a distributed
database. In Section 23.2, we describe how to implement atomic transactions in a dis-
tributed database by using special commit protocols.

In Section 23.3 we describe how to extend traditional concurrency control tech-
niques to distributed databases. Section 23.4 describes concurrency control techniques
for the case where data items are replicated, while Section 23.5 describes further ex-
tensions including how multiversion concurrency control techniques can be extended
to deal with distributed databases, and concurrency control can be implemented with

1097



1098 Chapter 23 Parallel and Distributed Transaction Processing

heterogeneous distributed databases. Replication with weak degrees of consistency is
discussed in Section 23.6.

Most techniques for dealing with distributed data require the use of coordinators to
ensure consistent and efficient transaction processing. In Section 23.7 we discuss how
coordinators can be chosen in a distributed fashion, robust to failures. Finally, Section
23.8 describes the distributed consensus problem, outlines solutions for the problem,
and then discusses how these solutions can be used to implement fault-tolerant services
by means of replication of a log.

23.1 Distributed Transactions

Access to the various data items in a distributed system is usually accomplished through
transactions, which must preserve the ACID properties (Section 17.1). There are two
types of transaction that we need to consider. The local transactions are those that
access and update data in only one local database; the global transactions are those that
access and update data in several local databases. Ensuring the ACID properties of the
local transactions can be done as described in Chapter 17, Chapter 18, and Chapter
19. However, for global transactions, this task is much more complicated, since several
nodes may be participating in the execution of the transaction. The failure of one of
these nodes, or the failure of a communication link connecting these nodes, may result
in erroneous computations.

In this section, we study the system structure of a distributed database and its
possible failure modes. In later sections, we discuss how to ensure ACID properties are
satisfied in a distributed database, despite failures. We reemphasize that these failure
modes occur with parallel databases as well, and the techniques we describe are equally
applicable to parallel databases.

23.1.1 System Structure

We now consider a system structure with multiple nodes, each of which can fail inde-
pendently of the others. We note that the nodes may be within a single data center,
corresponding to a parallel database system, or geographically distributed, in a dis-
tributed database system. The system structure is similar in either case; the problems
with respect to transaction isolation and atomicity are the same in both cases, as are
the solutions.

We note that the system structure we consider here is not applicable to a shared-
memory parallel database system whose components do not have independent modes
of failures. In such systems either the whole system is up, or the whole system is down.
Further, there is usually only one transaction log used for recovery. Concurrency con-
trol and recovery techniques that are designed for centralized database systems can be
used in such systems, and are preferable to techniques described in this chapter.

Each node has its own local transaction manager, whose function is to ensure the
ACID properties of those transactions that execute at that node. The various trans-
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Figure 23.1 System architecture.

action managers cooperate to execute global transactions. To understand how such a
manager can be implemented, consider an abstract model of a transaction system, in
which each node contains two subsystems:

• The transaction manager manages the execution of those transactions (or subtrans-
actions) that access data stored in the node. Note that each such transaction may
be either a local transaction (i.e., a transaction that executes at only that node) or
part of a global transaction (i.e., a transaction that executes at several nodes).

• The transaction coordinator coordinates the execution of the various transactions
(both local and global) initiated at that node.

The overall system architecture appears in Figure 23.1.
The structure of a transaction manager is similar in many respects to the structure

of a centralized system. Each transaction manager is responsible for:

• Maintaining a log for recovery purposes.

• Participating in an appropriate concurrency-control scheme to coordinate the con-
current execution of the transactions executing at that node.

As we shall see, we need to modify both the recovery and concurrency schemes to
accommodate the distributed execution of transactions.

The transaction coordinator subsystem is not needed in the centralized environ-
ment, since a transaction accesses data at only a single node. A transaction coordinator,
as its name implies, is responsible for coordinating the execution of all the transactions
initiated at that node. For each such transaction, the coordinator is responsible for:
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• Starting the execution of the transaction.

• Breaking the transaction into a number of subtransactions and distributing these
subtransactions to the appropriate nodes for execution.

• Coordinating the termination of the transaction, which may result in the transac-
tion being committed at all nodes or aborted at all nodes.

23.1.2 System Failure Modes

A distributed system may suffer from the same types of failure that a centralized sys-
tem does (e.g., software errors, hardware errors, or disk crashes). There are, however,
additional types of failure with which we need to deal in a distributed environment.
The basic failure types are:

• Failure of a node.

• Loss of messages.

• Failure of a communication link.

• Network partition.

The loss or corruption of messages is always a possibility in a distributed system.
The system uses transmission-control protocols, such as TCP/IP, to handle such errors.
Information about such protocols may be found in standard textbooks on networking.

However, if two nodes A and B are not directly connected, messages from one to the
other must be routed through a sequence of communication links. If a communication
link fails, messages that would have been transmitted across the link must be rerouted.
In some cases, it is possible to find another route through the network, so that the
messages are able to reach their destination. In other nodes, a failure may result in
there being no connection between some pairs of nodes. A system is partitioned if it
has been split into two (or more) subsystems, called partitions, that lack any connection
between them. Note that, under this definition, a partition may consist of a single node.

23.2 Commit Protocols

If we are to ensure atomicity, all the nodes in which a transaction T executed must
agree on the final outcome of the execution. T must either commit at all nodes, or it
must abort at all nodes. To ensure this property, the transaction coordinator of T must
execute a commit protocol.

Among the simplest and most widely used commit protocols is the two-phase com-
mit protocol (2PC), which is described in Section 23.2.1.
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23.2.1 Two-Phase Commit

We first describe how the two-phase commit protocol (2PC) operates during normal
operation, then describe how it handles failures and finally how it carries out recovery
and concurrency control.

Consider a transaction T initiated at node Ni, where the transaction coordinator
is Ci.

23.2.1.1 The Commit Protocol

When T completes its execution—that is, when all the nodes at which T has executed
inform Ci that T has completed—Ci starts the 2PC protocol.

• Phase 1. Ci adds the record <prepare T> to the log and forces the log onto stable
storage. It then sends a prepare T message to all nodes at which T executed.
On receiving such a message, the transaction manager at that node determines
whether it is willing to commit its portion of T . If the answer is no, it adds a
record <no T> to the log and then responds by sending an abort T message to
Ci. If the answer is yes, it adds a record <ready T> to the log and forces the log
(with all the log records corresponding to T ) onto stable storage. The transaction
manager then replies with a ready T message to Ci.

• Phase 2. When Ci receives ready responses to the prepare T message from all
the nodes, or when it receives an abort T message from at least one participant
node, Ci can determine whether the transaction T can be committed or aborted.
Transaction T can be committed if Ci received a ready T message from all the
participating nodes. Otherwise, transaction T must be aborted. Depending on the
verdict, either a record <commit T> or a record <abort T> is added to the log
and the log is forced onto stable storage. At this point, the fate of the transaction
has been sealed.

Following this point, the coordinator sends either a commit T or an abort T
message to all participating nodes. When a node receives that message, it records
the result (either <commit T> or <abort T>) in its log, and correspondingly
either commits or aborts the transaction.

Since nodes may fail, the coordinator cannot wait indefinitely for responses
from all the nodes. Instead, when a prespecified interval of time has elapsed since
the prepare T message was sent out, if any node has not responded to the coor-
dinator, the coordinator can decide to abort the transaction; the steps described
for aborting the transaction must be followed, just as if a node had sent an abort
message for the transaction.

Figure 23.2 shows an instance of successful execution of 2PC for a transaction T ,
with two nodes, N1 and N2, that are both willing to commit transaction T . If any of the
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Figure 23.2 Successful execution of 2PC.

nodes sends a no T message, the coordinator will send an abort T message to all the
nodes, which will then abort the transaction.

A node at which T executed can unconditionally abort T at any time before it sends
the message ready T to the coordinator. Once the <ready T> log record is written,
the transaction T is said to be in the ready state at the node. The ready T message
is, in effect, a promise by a node to follow the coordinator’s order to commit T or to
abort T . To make such a promise, the needed information must first be stored in stable
storage. Otherwise, if the node crashes after sending ready T , it may be unable to make
good on its promise. Further, locks acquired by the transaction must continue to be
held until the transaction completes, even if there is an intervening node failure, as we
shall see in Section 23.2.1.3.
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Since unanimity is required to commit a transaction, the fate of T is sealed as soon
as at least one node responds abort T . Since the coordinator node Ni is one of the
nodes at which T executed, the coordinator can decide unilaterally to abort T . The
final verdict regarding T is determined at the time that the coordinator writes that
verdict (commit or abort) to the log and forces that verdict to stable storage.

In some implementations of the 2PC protocol, a node sends an acknowledge T
message to the coordinator at the end of the second phase of the protocol. When the
coordinator receives the acknowledge T message from all the nodes, it adds the record
<complete T> to the log. Until this step, the coordinator cannot forget about the
commit or abort decision on T , since a node may ask for the decision. (A node that
has not received a commit or abort for transaction T , perhaps due to a network failure
or temporary node failure, may send such a request to the coordinator.) After this step,
the coordinator can discard information about transaction T .

23.2.1.2 Handling of Failures

The 2PC protocol responds in different ways to various types of failure:

• Failure of a participating node. If the coordinator Ci detects that a node has failed,
it takes these actions: If the node fails before responding with a ready T message
to Ci, the coordinator assumes that it responded with an abort T message. If the
node fails after the coordinator has received the ready T message from the node,
the coordinator executes the rest of the commit protocol in the normal fashion,
ignoring the failure of the node.

When a participating node Nk recovers from a failure, it must examine its log
to determine the fate of those transactions that were in the midst of execution
when the failure occurred. Let T be one such transaction. We consider each of the
possible cases:

° The log contains a <commit T> record. In this case, the node executes
redo(T ).

° The log contains an <abort T> record. In this case, the node executes
undo(T ).

° The log contains a <ready T> record. In this case, the node must consult Ci to
determine the fate of T . If Ci is up, it notifies Nk regarding whether T committed
or aborted. In the former case, it executes redo(T ); in the latter case, it executes
undo(T ). If Ci is down, Nk must try to find the fate of T from other nodes. It
does so by sending a querystatus T message to all the nodes in the system.
On receiving such a message, a node must consult its log to determine whether
T has executed there, and if T has, whether T committed or aborted. It then
notifies Nk about this outcome. If no node has the appropriate information
(i.e., whether T committed or aborted), then Nk can neither abort nor commit
T . The decision concerning T is postponed until Nk can obtain the needed
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information. Thus, Nk must periodically resend the querystatus message to
the other nodes. It continues to do so until a node that contains the needed
information has recovered. Note that the node at which Ci resides always has
the needed information.

° The log contains no control records (abort, commit, ready) concerning T .
Thus, we know that Nk failed before responding to the prepare T message
from Ci. Since the failure of Nk precludes the sending of such a response, by
our algorithm Ci must abort T . Hence, Nk must execute undo(T ).

• Failure of the coordinator. If the coordinator fails in the midst of the execution of
the commit protocol for transaction T , then the participating nodes must decide
the fate of T . We shall see that, in certain cases, the participating nodes cannot
decide whether to commit or abort T , and therefore these nodes must wait for the
recovery of the failed coordinator.

° If an active node contains a <commit T> record in its log, then T must be
committed.

° If an active node contains an <abort T> record in its log, then T must be
aborted.

° If some active node does not contain a <ready T> record in its log, then the
failed coordinator Ci cannot have decided to commit T , because a node that
does not have a <ready T> record in its log cannot have sent a ready T mes-
sage to Ci. However, the coordinator may have decided to abort T , but not to
commit T . Rather than wait for Ci to recover, it is preferable to abort T .

° If none of the preceding cases holds, then all active nodes must have a <ready
T> record in their logs, but no additional control records (such as <abort T>
or<commit T>). Since the coordinator has failed, it is impossible to determine
whether a decision has been made, and if one has, what that decision is, until
the coordinator recovers. Thus, the active nodes must wait for Ci to recover.

Since the fate of T remains in doubt, T may continue to hold system re-
sources. For example, if locking is used, T may hold locks on data at active
nodes. Such a situation is undesirable, because it may be hours or days before
Ci is again active. During this time, other transactions may be forced to wait
for T . As a result, data items may be unavailable not only on the failed node
(Ci), but on active nodes as well. This situation is called the blocking problem,
because T is blocked pending the recovery of node Ci.

• Network partition. When a network partition occurs, two possibilities exist:

1. The coordinator and all its participants remain in one partition. In this case,
the failure has no effect on the commit protocol.
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2. The coordinator and its participants belong to several partitions. From the
viewpoint of the nodes in one of the partitions, it appears that the nodes in
other partitions have failed. Nodes that are not in the partition containing
the coordinator simply execute the protocol to deal with the failure of the
coordinator. The coordinator and the nodes that are in the same partition as
the coordinator follow the usual commit protocol, assuming that the nodes
in the other partitions have failed.

Thus, the major disadvantage of the 2PC protocol is that coordinator failure may result
in blocking, where a decision either to commit or to abort T may have to be postponed
until Ci recovers. We discuss how to remove this limitation shortly, in Section 23.2.2.

23.2.1.3 Recovery and Concurrency Control

When a failed node restarts, we can perform recovery by using, for example, the recov-
ery algorithm described in Section 19.4. To deal with distributed commit protocols, the
recovery procedure must treat in-doubt transactions specially; in-doubt transactions are
transactions for which a <ready T> log record is found, but neither a <commit T>
log record nor an <abort T> log record is found. The recovering node must determine
the commit–abort status of such transactions by contacting other nodes, as described
in Section 23.2.1.2.

If recovery is done as just described, however, normal transaction processing at
the node cannot begin until all in-doubt transactions have been committed or rolled
back. Finding the status of in-doubt transactions can be slow, since multiple nodes
may have to be contacted. Further, if the coordinator has failed, and no other node
has information about the commit–abort status of an incomplete transaction, recovery
potentially could become blocked if 2PC is used. As a result, the node performing
restart recovery may remain unusable for a long period.

To circumvent this problem, recovery algorithms typically provide support for not-
ing lock information in the log. (We are assuming here that locking is used for con-
currency control.) Instead of writing a <ready T> log record, the algorithm writes a
<ready T , L > log record, where L is a list of all write locks held by the transaction
T when the log record is written. At recovery time, after performing local recovery ac-
tions, for every in-doubt transaction T , all the write locks noted in the <ready T , L >

log record (read from the log) are reacquired.
After lock reacquisition is complete for all in-doubt transactions, transaction pro-

cessing can start at the node, even before the commit–abort status of the in-doubt
transactions is determined. The commit or rollback of in-doubt transactions proceeds
concurrently with the execution of new transactions. Thus, node recovery is faster and
never gets blocked. Note that new transactions that have a lock conflict with any write
locks held by in-doubt transactions will be unable to make progress until the conflicting
in-doubt transactions have been committed or rolled back.
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23.2.2 Avoiding Blocking During Commit

The blocking problem of 2PC is a serious concern for system designers, since the failure
of a coordinator node could lead to blocking of a transaction that has acquired locks
on a frequently used data item, which in turn prevents other transactions that need to
acquire a conflicting lock from completing their execution.

By involving multiple nodes in the commit decision step of 2PC, it is possible to
avoid blocking as long as a majority of the nodes involved in the commit decision are
alive and can communicate with each other. This is done by using the idea of fault-
tolerant distributed consensus. Details of distributed consensus are discussed in detail
later, in Section 23.8, but we outline the problem and sketch a solution approach below.

The distributed consensus problem is as follows: A set of n nodes need to agree on
a decision; in this case, whether or not to commit a particular transaction. The inputs
to make the decision are provided to all the nodes, and then each node votes on the
decision; in the case of 2PC, the decision is on whether or not to commit a transaction.
The key goal of protocols for achieving distributed consensus is that the decision should
be made in such a way that all nodes will “learn” the same value for the decision (i.e.,
all nodes will learn that the transaction is to be committed, or all nodes will learn that
the transaction is to be aborted), even if some nodes fail during the execution of the
protocol, or there are network partitions. Further, the distributed consensus protocol
should not block, as long as a majority of the nodes participating remain alive and can
communicate with each other.

There are several protocols for distributed consensus, two of which are widely used
today (Paxos and Raft). We study distributed consensus in Section 23.8. A key idea
behind these protocols is the idea of a vote, which succeeds only if a majority of the
participating nodes agree on a particular decision.

Given an implementation of distributed consensus, the blocking problem due to
coordinator failure can be avoided as follows: Instead of the coordinator locally decid-
ing to commit or abort a transaction, it initiates the distributed consensus protocol,
requesting that the value “committed” or “aborted” be assigned to the transaction T .
The request is sent to all the nodes participating in the distributed consensus, and the
consensus protocol is then executed by those nodes. Since the protocol is fault tolerant,
it will succeed even if some nodes fail, as long as a majority of the nodes are up and
remain connected. The transaction can be declared committed by the coordinator only
after the consensus protocol completes successfully.

There are two possible failure scenarios:

• The coordinator fails at any stage before informing all participating nodes of the com-
mit or abort status of a transaction T .

In this case, a new coordinator is chosen (we will see how to do so in Section
23.7). The new coordinator checks with the nodes participating in the distributed
consensus to see if a decision was made, and if so informs the 2PC participants
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of the decision. A majority of the nodes participating in consensus must respond,
to check if a decision was made or not; the protocol will not block as long as the
failed/disconnected nodes are in a minority.

If no decision was made earlier for transaction T , the new coordinator again
checks with the 2PC participants to check if they are ready to commit or wish to
abort the transaction, and follows the usual coordinator protocol based on their
responses. As before, if no response is received from a participant, the new coor-
dinator may choose to abort T .

• The distributed consensus protocol fails to reach a decision.
Failure of the protocol can occur due to the failure of some participating nodes.

It could also occur because of conflicting requests, none of which gets a majority of
“votes” during the consensus protocol. For 2PC, the request normally comes from
a single coordinator, so such a conflict is unlikely. However, conflicting requests
can arise in rare cases if a coordinator fails after sending out a commit message, but
its commit message is delivered late; meanwhile, a new 2PC coordinator makes an
abort decision since it could not reach some participating nodes. Even with such a
conflict, the distributed consensus protocol guarantees that only one of the commit
or abort requests can succeed, even in the presence of failures. But if some nodes
are down, and neither the commit nor the abort request gets a majority vote from
nodes participating in the distributed consensus, it is possible for the protocol to
fail to reach a decision.

Regardless of the reason, if the distributed consensus protocol fails to reach a
decision, the new coordinator just re-initiates the protocol.

Note that in the event of a network partition, a node that gets disconnected from
the majority of the nodes participating in consensus may not learn about a decision,
even if a decision was successfully made. Thus, transactions running at such a node
may be blocked.

Failure of 2PC participants could make data unavailable, in the absence of repli-
cation. Distributed consensus can also be used to keep replicas of a data item in a
consistent state, as we explain later in Section 23.8.4.

The idea of distributed consensus to make 2PC nonblocking was proposed in the
1980s; it is used, for example, in the Google Spanner distributed database system.

The three-phase commit (3PC) protocol is an extension of the two-phase commit
protocol that avoids the blocking problem under certain assumptions. One variant of
the protocol avoids blocking as long as network partitions do not occur, but it may lead
to inconsistent decisions in the event of a network partition. Extensions of the protocol
that work safely under network partitioning were developed subsequently. The idea
behind these extensions is similar to the majority voting idea of distributed consensus,
but the protocols are specifically tailored for the task of atomic commit.
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23.2.3 Alternative Models of Transaction Processing

With two-phase commit, participating nodes agree to let the coordinator decide the
fate of a transaction, and are forced to wait for the decision of the coordinator, while
holding locks on updated data items. While such loss of autonomy may be acceptable
within an organization, no organization would be willing to force its computers to wait,
potentially for a long time, while a computer at another organization makes the deci-
sion.

In this section, we describe how to use persistent messaging to avoid the problem
of distributed commit. To understand persistent messaging, consider how one might
transfer funds between two different banks, each with its own computer. One approach
is to have a transaction span the two nodes and use two-phase commit to ensure atomic-
ity. However, the transaction may have to update the total bank balance, and blocking
could have a serious impact on all other transactions at each bank, since almost all
transactions at the bank would update the total bank balance.

In contrast, consider how funds transfer by a bank check occurs. The bank first
deducts the amount of the check from the available balance and prints out a check.
The check is then physically transferred to the other bank where it is deposited. After
verifying the check, the bank increases the local balance by the amount of the check.
The check constitutes a message sent between the two banks. So that funds are not
lost or incorrectly increased, the check must not be lost and must not be duplicated
and deposited more than once. When the bank computers are connected by a network,
persistent messages provide the same service as the check (but much faster).

Persistent messages are messages that are guaranteed to be delivered to the re-
cipient exactly once (neither less nor more), regardless of failures, if the transaction
sending the message commits, and are guaranteed to not be delivered if the transac-
tion aborts. Database recovery techniques are used to implement persistent messaging
on top of the normal network channels, as we shall see shortly. In contrast, regular
messages may be lost or may even be delivered multiple times in some situations.

Error handling is more complicated with persistent messaging than with two-phase
commit. For instance, if the account where the check is to be deposited has been closed,
the check must be sent back to the originating account and credited back there. Both
nodes must, therefore, be provided with error-handling code, along with code to han-
dle the persistent messages. In contrast, with two-phase commit, the error would be
detected by the transaction, which would then never deduct the amount in the first
place.

The types of exception conditions that may arise depend on the application, so it
is not possible for the database system to handle exceptions automatically. The applica-
tion programs that send and receive persistent messages must include code to handle
exception conditions and bring the system back to a consistent state. For instance, it
is not acceptable to just lose the money being transferred if the receiving account has
been closed; the money must be credited back to the originating account, and if that is
not possible for some reason, humans must be alerted to resolve the situation manually.
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Message Delivery Process

Monitor messages_to_send relation 
Send any new messages to recipient 
Also periodically resend old messages
When Acknowledgment received from recipient, 
for a message, delete message

Message Receiving Process

On receiving message, execute transaction to 
add message to received_messages relation,
if not already present
After transaction commits, send 
Acknowledgement

messages_to_send received _messages

Perform database updates
Write message to messages_to_send relation

Atomic Transaction at Sending Node Atomic Transaction at Receiving Node

Process any unprocessed message in
received_messages
Mark message as processed

Figure 23.3 Implementation of persistent messaging.

There are many applications where the benefit of eliminating blocking is well worth
the extra effort to implement systems that use persistent messages. In fact, few organi-
zations would agree to support two-phase commit for transactions originating outside
the organization, since failures could result in blocking of access to local data. Persis-
tent messaging therefore plays an important role in carrying out transactions that cross
organizational boundaries.

We now consider the implementation of persistent messaging. Persistent messag-
ing can be implemented on top of an unreliable messaging infrastructure, which may
lose messages or deliver them multiple times. Figure 23.3 shows a summary of the
implementation, which is described in detail next.

• Sending node protocol. When a transaction wishes to send a persistent message,
it writes a record containing the message in a special relation messages to send,
instead of directly sending out the message. The message is also given a unique
message identifier. Note that this relation acts as a message outbox.

A message delivery process monitors the relation, and when a new message is
found, it sends the message to its destination. The usual database concurrency-
control mechanisms ensure that the system process reads the message only after
the transaction that wrote the message commits; if the transaction aborts, the usual
recovery mechanism would delete the message from the relation.

The message delivery process deletes a message from the relation only after it
receives an acknowledgment from the destination node. If it receives no acknowl-
edgment from the destination node, after some time it sends the message again.
It repeats this until an acknowledgment is received. In case of permanent failures,
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the system will decide, after some period of time, that the message is undeliver-
able. Exception handling code provided by the application is then invoked to deal
with the failure.

Writing the message to a relation and processing it only after the transaction has
committed ensures that the message will be delivered if and only if the transaction
commits. Repeatedly sending it guarantees it will be delivered even if there are
(temporary) system or network failures.

• Receiving node protocol. When a node receives a persistent message, it runs a trans-
action that adds the message to a special received messages relation, provided it is
not already present in the relation (the unique message identifier allows duplicates
to be detected). The relation has an attribute to indicate if the message has been
processed, which is set to false when the message is inserted in the relation. Note
that this relation acts as a message inbox.

After the transaction commits, or if the message was already present in the
relation, the receiving node sends an acknowledgment back to the sending node.

Note that sending the acknowledgment before the transaction commits is not
safe, since a system failure may then result in loss of the message. Checking
whether the message has been received earlier is essential to avoid multiple de-
liveries of the message.

• Processing of message. Received messages must be processed to carry out the ac-
tions specified in the message. A process at the receiving node monitors the re-
ceived messages relation to check for messages that have not been processed. When
it finds such a message, the message is processed, and as part of the same transac-
tion that processes the message, the processed flag is set to true. This ensures that
a message is processed exactly once after it is received.

• Deletion of old messages. In many messaging systems, it is possible for messages to
get delayed arbitrarily, although such delays are very unlikely. Therefore, to be safe,
the message must never be deleted from the received messages relation. Deleting it
could result in a duplicate delivery not being detected. But as a result, the received
messages relation may grow indefinitely. To deal with this problem, each message

is given a timestamp, and if the timestamp of a received message is older than some
cutoff, the message is discarded. All messages recorded in the received messages
relation that are older than the cutoff can be deleted.

Workflows provide a general model of distributed transaction processing involving
multiple nodes and possibly human processing of certain steps, and they are supported
by application software used by enterprises. For instance, as we saw in Section 9.6.1,
when a bank receives a loan application, there are many steps it must take, including
contacting external credit-checking agencies, before approving or rejecting a loan appli-
cation. The steps, together, form a workflow. Persistent messaging forms the underlying
basis for supporting workflows in a distributed environment.
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23.3 Concurrency Control in Distributed Databases

We now consider how the concurrency-control schemes discussed in Chapter 18 can
be modified so that they can be used in a distributed environment. We assume that each
node participates in the execution of a commit protocol to ensure global transaction
atomicity.

In this section, we assume that data items are not replicated, and we do not consider
multiversion techniques. We discuss how to handle replicas later, in Section 23.4, and
we discuss distributed multiversion concurrency control techniques in Section 23.5.

23.3.1 Locking Protocols

The various locking protocols described in Chapter 18 can be used in a distributed
environment. We discuss implementation issues in this section.

23.3.1.1 Single Lock-Manager Approach

In the single lock-manager approach, the system maintains a single lock manager that
resides in a single chosen node—say Ni. All lock and unlock requests are made at node
Ni. When a transaction needs to lock a data item, it sends a lock request to Ni. The
lock manager determines whether the lock can be granted immediately. If the lock can
be granted, the lock manager sends a message to that effect to the node at which the
lock request was initiated. Otherwise, the request is delayed until it can be granted, at
which time a message is sent to the node at which the lock request was initiated. The
transaction can read the data item from any one of the nodes at which a replica of the
data item resides. In the case of a write, all the nodes where a replica of the data item
resides must be involved in the writing.

The scheme has these advantages:

• Simple implementation. This scheme requires two messages for handling lock re-
quests and one message for handling unlock requests.

• Simple deadlock handling. Since all lock and unlock requests are made at one node,
the deadlock-handling algorithms discussed in Chapter 18 can be applied directly.

The disadvantages of the scheme are:

• Bottleneck. The node Ni becomes a bottleneck, since all requests must be processed
there.

• Vulnerability. If the node Ni fails, the concurrency controller is lost. Either pro-
cessing must stop, or a recovery scheme must be used so that a backup node can
take over lock management from Ni, as described in Section 23.7.
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23.3.1.2 Distributed Lock Manager

A compromise between the advantages and disadvantages can be achieved through the
distributed-lock-manager approach, in which the lock-manager function is distributed
over several nodes.

Each node maintains a local lock manager whose function is to administer the
lock and unlock requests for those data items that are stored in that node. When a
transaction wishes to lock a data item Q that resides at node Ni, a message is sent to
the lock manager at node Ni requesting a lock (in a particular lock mode). If data item
Q is locked in an incompatible mode, then the request is delayed until it can be granted.
Once it has determined that the lock request can be granted, the lock manager sends
a message back to the initiator indicating that it has granted the lock request.

The distributed-lock-manager scheme has the advantage of simple implementation,
and it reduces the degree to which the coordinator is a bottleneck. It has a reasonably
low overhead, requiring two message transfers for handling lock requests, and one mes-
sage transfer for handling unlock requests. However, deadlock handling is more com-
plex, since the lock and unlock requests are no longer made at a single node: There
may be internode deadlocks even when there is no deadlock within a single node. The
deadlock-handling algorithms discussed in Chapter 18 must be modified, as we shall
discuss in Section 23.3.2, to detect global deadlocks.

23.3.2 Deadlock Handling

The deadlock-prevention and deadlock-detection algorithms in Chapter 18 can be used
in a distributed system, with some modifications.

Consider first the deadlock-prevention techniques, which we saw in Section 18.2.1.

• Techniques for deadlock prevention based on lock ordering can be used in a dis-
tributed system, with no changes at all. These techniques prevent cyclic lock waits;
the fact that locks may be obtained at different nodes has no effect on prevention
of cyclic lock waits.

• Techniques based on preemption and transaction rollback can also be used un-
changed in a distributed system. In particular, the wait-die technique is used in
several distributed systems. Recall that this technique allows older transactions to
wait for locks held by younger transactions, but if a younger transaction needs to
wait for a lock held by an older transaction, the younger transaction is rolled back.
The transaction that is rolled back may subsequently be executed again; recall that
it retains its original start time; if it is treated as a new transaction, it could be
rolled back repeatedly, and starve, even as other transactions make progress and
complete.

• Timeout-based schemes, too, work without any changes in a distributed system.
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Figure 23.4 Local wait-for graphs.

Deadlock-prevention techniques may result in unnecessary waiting and rollback
when used in a distributed system, just as in a centralized system,

We now consider deadlock-detection techniques that allow deadlocks to occur and
detect them if they do. The main problem in a distributed system is deciding how to
maintain the wait-for graph. Common techniques for dealing with this issue require
that each node keep a local wait-for graph. The nodes of the graph correspond to all the
transactions (local as well as nonlocal) that are currently either holding or requesting
any of the items local to that node. For example, Figure 23.4 depicts a system consisting
of two nodes, each maintaining its local wait-for graph. Note that transactions T2 and
T3 appear in both graphs, indicating that the transactions have requested items at both
nodes.

These local wait-for graphs are constructed in the usual manner for local transac-
tions and data items. When a transaction Ti on node N1 needs a resource in node N2,
it sends a request message to node N2. If the resource is held by transaction Tj, the
system inserts an edge Ti → Tj in the local wait-for graph of node N2.

If any local wait-for graph has a cycle, a deadlock has occurred. On the other hand,
the fact that there are no cycles in any of the local wait-for graphs does not mean
that there are no deadlocks. To illustrate this problem, we consider the local wait-for
graphs of Figure 23.4. Each wait-for graph is acyclic; nevertheless, a deadlock exists in
the system because the union of the local wait-for graphs contains a cycle. This graph
appears in Figure 23.5.

T1 T4

T5

T2

T3

Figure 23.5 Global wait-for graph for Figure 23.4.
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In the centralized deadlock detection approach, the system constructs and main-
tains a global wait-for graph (the union of all the local graphs) in a single node: the
deadlock-detection coordinator. Since there is communication delay in the system, we
must distinguish between two types of wait-for graphs. The real graph describes the real
but unknown state of the system at any instance in time, as would be seen by an omni-
scient observer. The constructed graph is an approximation generated by the controller
during the execution of the controller’s algorithm. Obviously, the controller must gen-
erate the constructed graph in such a way that, whenever the detection algorithm is
invoked, the reported results are correct. Correct means in this case that, if a deadlock
exists, it is reported promptly, and if the system reports a deadlock, it is indeed in a
deadlock state.

The global wait-for graph can be reconstructed or updated under these conditions:

• Whenever a new edge is inserted in or removed from one of the local wait-for
graphs.

• Periodically, when a number of changes have occurred in a local wait-for graph.

• Whenever the coordinator needs to invoke the cycle-detection algorithm.

When the coordinator invokes the deadlock-detection algorithm, it searches its
global graph. If it finds a cycle, it selects a victim to be rolled back. The coordinator
must notify all the nodes that a particular transaction has been selected as the victim.
The nodes, in turn, roll back the victim transaction.

This scheme may produce unnecessary rollbacks if:

• False cycles exist in the global wait-for graph. As an illustration, consider a snap-
shot of the system represented by the local wait-for graphs of Figure 23.6. Suppose
that T2 releases the resource that it is holding in node N1, resulting in the deletion
of the edge T1 → T2 in N1. Transaction T2 then requests a resource held by T3
at node N2, resulting in the addition of the edge T2 → T3 in N2. If the insert
T2 → T3 message from N2 arrives before the remove T1 → T2 message from N1,
the coordinator may discover the false cycle T1 → T2 → T3 after the insert (but
before the remove). Deadlock recovery may be initiated, although no deadlock
has occurred.

Note that the false-cycle situation could not occur under two-phase locking.
The likelihood of false cycles is usually sufficiently low that they do not cause a
serious performance problem.

• A deadlock has indeed occurred and a victim has been picked, while one of the
transactions was aborted for reasons unrelated to the deadlock. For example, sup-
pose that node N1 in Figure 23.4 decides to abort T2. At the same time, the coor-
dinator has discovered a cycle and has picked T3 as a victim. Both T2 and T3 are
now rolled back, although only T2 needed to be rolled back.
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Figure 23.6 False cycles in the global wait-for graph.

Deadlock detection can be done in a distributed manner, with several nodes taking
on parts of the task, instead of it being done at a single node. However, such algorithms
are more complicated and more expensive. See the bibliographical notes for references
to such algorithms.

23.3.3 Leases

One of the issues with using locking in a distributed system is that a node holding a lock
may fail, and not release the lock. The locked data item could thus become (logically)
inaccessible, until the failed node recovers and releases the lock, or the lock is released
by another node on behalf of the failed node.

If an exclusive lock has been obtained on a data item, and the transaction is in the
prepared state, the lock cannot be released until a commit/abort decision is made for
the transaction. However, in many other cases it is acceptable for a lock that has been
granted earlier to be revoked subsequently. In such cases, the concept of a lease can be
very useful.

A lease is a lock that is granted for a specific period of time. If the process that
acquires a lease needs to continue holding the lock beyond the specified period, it can
renew the lease. A lease renewal request is sent to the lock manager, which extends the
lease and responds with an acknowledgment as long as the renewal request comes in
time. However, if the time expires, and the process does not renew the lease, the lease
is said to expire, and the lock is released. Thus, any lease acquired by a node that either
fails, or gets disconnected from the lock manager, is automatically released when the
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lease expires. The node that holds a lease regularly compares the current lease expiry
time with its local clock to determine if it still has the lease or the lease has expired.

One of the uses of leases is to ensure that there is only one coordinator for a proto-
col in a distributed system. A node that wants to act as coordinator requests an exclusive
lease on a data item associated with the protocol. If it gets the lease, it can act as co-
ordinator until the lease expires; as long as it is active, it requests lease renewal before
the lease expires, and it continues to be the coordinator as long as the lock manager
permits the lease renewal.

If a node N1 acting as coordinator dies after the expiry of the lease period, the
lease automatically expires, and another node N2 that requests the lease can acquire
it and become the coordinator. In most protocols it is important that there should be
only one coordinator at a given time. The lease mechanism guarantees this, as long as
clocks are synchronized. However, if the coordinator’s clock runs slower than the lock
manager’s clock, a situation can arise where the coordinator thinks it still has the lease,
while the lock manager thinks the lease has expired. While clocks cannot be exactly
synchronized, in practice the inaccuracy is not very high. The lock manager waits for
some extra wait time after the lease expiry time to account for clock inaccuracies before
it actually treats the lease as expired.

A node that checks the local clock and decides it still has a lease may then take a
subsequent action as coordinator. It is possible that the lease may have expired between
when the clock was checked and when the subsequent action took place, which could
result in the action taking place after the node is no longer the coordinator. Further,
even if the action took place while the node had a valid lease, a message sent by the
node may be delivered after a delay, by which time the node may have lost its lease.
While it is possible for the network to deliver a message arbitrarily late, the system can
decide on a maximum message delay time, and any message that is older is ignored by
the recipient; messages have timestamps set by the sender, which are used to detect if
a message needs to be ignored.

The time gaps due to the above two issues can be taken into account by checking
that the lease expiry is at least some time t′ into the future before initiating an action,
where t′ is a bound on how long the action will take after the lease time check, including
the maximum message delay.

We have assumed here that while coordinators may fail, the lock manager that
issues leases is able to tolerate faults. We study in Section 23.8.4 how to build a fault-
tolerant lock manager; we note that the techniques described in that section are general
purpose and can be used to implement fault-tolerant versions of any deterministic pro-
cess, modeled as a “state machine.”

23.3.4 Distributed Timestamp-Based Protocols

The principal idea behind the timestamp-based concurrency control protocols in Sec-
tion 18.5 is that each transaction is given a unique timestamp that the system uses in
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Figure 23.7 Generation of unique timestamps.

deciding the serialization order. Our first task, then, in generalizing the centralized
scheme to a distributed scheme is to develop a scheme for generating unique times-
tamps. We then discuss how the timestamp-based protocols can be used in a distributed
setting.

23.3.5 Generation of Timestamps

There are two primary methods for generating unique timestamps, one centralized and
one distributed. In the centralized scheme, a single node distributes the timestamps.
The node can use a logical counter or its own local clock for this purpose. While this
scheme is easy to implement, failure of the node would potentially block all transaction
processing in the system.

In the distributed scheme, each node generates a unique local timestamp by using
either a logical counter or the local clock. We obtain the unique global timestamp by
concatenating the unique local timestamp with the node identifier, which also must be
unique (Figure 23.7). If a node has multiple threads running on it (as is almost always
the case today), a thread identifier is concatenated with the node identifier, to make the
timestamp unique. Further, we assume that consecutive calls to get the local timestamp
within a node/thread will return different timestamps; if this is not guaranteed by the
local clock, the returned local timestamp value may need to be incremented, to ensure
two calls do not get the same local timestamp.

The order of concatenation is important! We use the node identifier in the least
significant position to ensure that the global timestamps generated in one node are not
always greater than those generated in another node.

We may still have a problem if one node generates local timestamps at a rate faster
than that of the other nodes. In such a case, the fast node’s logical counter will be larger
than that of other nodes. Therefore, all timestamps generated by the fast node will be
larger than those generated by other nodes. What we need is a mechanism to ensure
that local timestamps are generated fairly across the system. There are two solution
approaches for this problem.

1. Keep the clocks synchronized by using a network time protocol, which is a stan-
dard feature in computers today. The protocol periodically communicates with a
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server to find the current time. If the local time is ahead of the time returned by
the server, the local clock is slowed down, whereas if the local time is behind the
time returned by the server it is speeded up, to bring it back in synchronization
with the time at the server. Since all nodes are approximately synchronized with
the server, they are also approximately synchronized with each other.

2. We define within each node Ni a logical clock (LCi), which generates the unique
local timestamp. The logical clock can be implemented as a counter that is in-
cremented after a new local timestamp is generated. To ensure that the various
logical clocks are synchronized, we require that a node Ni advance its logical
clock whenever a transaction Ti with timestamp < x, y > visits that node and x
is greater than the current value of LCi. In this case, node Ni advances its logical
clock to the value x + 1. As long as messages are exchanged regularly, the logical
clocks will be approximately synchronized.

23.3.6 Distributed Timestamp Ordering

The timestamp ordering protocol can be easily extended to a parallel or distributed
database setting. Each transaction is assigned a globally unique timestamp at the node
where it originates. Requests sent to other nodes include the transaction timestamp.
Each node keeps track of the read and write timestamps of the data items at that node.
Whenever an operation is received by a node, it does the timestamp checks that we saw
in Section 18.5.2, locally, without any need to communicate with other nodes.

Timestamps must be reasonably synchronized across nodes; otherwise, the follow-
ing problem can occur. Suppose one node has a time significantly lagging the others,
and a transaction T1 gets its timestamp at that node n1. Suppose the transaction T1
fails a timestamp test on a data item di because di has been updated by a transaction T2
with a higher timestamp; T1 would be restarted with a new timestamp, but if the time
at node n1 is not synchronized, the new timestamp may still be old enough to cause
the timestamp test to fail, and T1 would be restarted repeatedly until the time at n1
advances ahead of the timestamp of T2.

Note that as in the centralized case, if a transaction Ti reads an uncommitted value
written by another transaction Tj, Ti cannot commit until Tj commits. This can be en-
sured either by making reads wait for uncommitted writes to be committed, which can
be implemented using locking, or by introducing commit dependencies, as discussed
in Section 18.5. The waiting time can be exacerbated by the time required to perform
2PC, if the transaction performs updates at more than one node. While a transaction Ti
is in the prepared state, its writes are not committed, so any transaction with a higher
timestamp that reads an item written by Ti would be forced to wait.

We also note that the multiversion timestamp ordering protocol can be used locally
at each node, without any need to communicate with other nodes, similar to the case
of the timestamp ordering protocol.



23.3 Concurrency Control in Distributed Databases 1119

23.3.7 Distributed Validation

We now consider the validation-based protocol (also called the optimistic concurrency
control protocol) that we saw in Section 18.6. The protocol is based on three times-
tamps:

• The start timestamp StartTS(Ti).

• The validation timestamp, TS(Ti), which is used as the serialization order.

• The finish timestamp FinishTS(Ti) which identifies when the writes of a transac-
tion have completed.

While we saw a serial version of the validation protocol in Section 18.6, where only
one transaction can perform validation at a time, there are extensions to the protocol to
allow validations of multiple transactions to occur concurrently, within a single system.

We now consider how to adapt the protocol to a distributed setting.

1. Validation is done locally at each node, with timestamps assigned as described
below.

2. In a distributed setting, the validation timestamp TS(Ti) can be assigned at any
of the nodes, but the same timestamp TS(Ti) must be used at all nodes where
validation is to be performed. Transactions must be serializable based on their
timestamps TS(Ti).

3. The validation test for a transaction Ti looks at all transactions Tj with TS(Tj) <
TS(Ti), to check if Tj either finished before Ti started, or has no conflicts with
Ti. The assumption is that once a particular transaction enters the validation
phase, no transaction with a lower timestamp can enter the validation phase. The
assumption can be ensured in a centralized system by assigning the timestamps
in a critical section, but cannot be ensured in a distributed setting.

A key problem in the distributed setting is that a transaction Tj may enter the
validation phase after a transaction Ti, but with TS(Tj) < TS(Ti). It is too late for
Ti to be validated against Tj. However, this problem can be easily fixed by rolling
back any transaction if, when it starts validation at a node, a transaction with a
later timestamp had already started validation at that node.

4. The start and finish timestamps are used to identify transactions Tj whose writes
would definitely have been seen by a transaction Ti. These timestamps must
be assigned locally at each node, and must satisfy StartTS(Ti) ≤ TS(Ti) ≤

FinishTS(Ti). Each node uses these timestamps to perform validation locally.

5. When used in conjunction with 2PC, a transaction must first be validated and
then enter the prepared state. Writes cannot be committed at the database until
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the transaction enters the committed state in 2PC. Suppose a transaction Tj reads
an item updated by a transaction Ti that is in the prepared state and is allowed
to proceed using the old value of the data item (since the value generated by Ti
has not yet been written to the database). Then, when transaction Tj attempts to
validate, it will be serialized after Ti and will surely fail validation if Ti commits.
Thus, the read by Tj may as well be held until Ti commits and finishes its writes.
The above behavior is the same as what would happen with locking, with write
locks acquired at the time of validation.

Although full implementations of validation-based protocols are not widely used
in distributed settings, optimistic concurrency control without read validation, which
we saw in Section 18.9.3, is widely used in distributed settings. Recall that the scheme
depends on storing a version number with each data item, a feature that is supported
by many key-value stores.1 Version numbers are incremented each time the data item
is updated.

Validation is performed at the time of writing the data item, which can be done
using a test-and-set function based on version numbers, that is supported by some key-
value stores. This function allows an update to a data item to be conditional on the
current version of the data item being the same as a specified version number. If the
current version number of the data item is more recent than the specified version num-
ber, the update is not performed. For example, a transaction that read version 7 of a
data item can perform a write, conditional on the version still being at 7. If the item has
been updated meanwhile, the current version would not match, and the write would
fail; however, if the version number is still 7, the write would be performed successfully,
and the version number incremented to 8.

The test-and-set function can thus be used by applications to implement the lim-
ited form of validation-based concurrency control, discussed in Section 18.9.3, at the
level of individual data items. Thereby, a transaction could read a value from a data
item, perform computation locally, and update the data item at the end, as long as the
value it read has not changed subsequently. This approach does not guarantee overall
serializability, but it does prevent the lost-update anomaly.

HBase supports the test-and-set operation based on comparing values (similar to
the hardware test-and-set operation), which is called checkAndPut(). Instead of com-
paring to a system-generated version number, the checkAndPut() invocation can pass
in a column and a value; the update is performed only if the row has the specified
value for the specified column. The check and the update are performed atomically.
A variant, checkAndMutate(), allows multiple modifications to a row, such as adding
or updating a column, deleting a column, or incrementing a column, after checking a
condition, as a single atomic operation.

1Note that this is not the same as multiversioning, since only one version needs to be stored.
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23.4 Replication

One of the goals in using distributed databases is high availability; that is, the database
must function almost all the time. In particular, since failures are more likely in large
distributed systems, a distributed database must continue functioning even when there
are various types of failures. The ability to continue functioning even during failures is
referred to as robustness.

For a distributed system to be robust, data must be replicated, allowing the data to
be accessible even if a node containing a replica of the data fails.

The database system must keep track of the locations of the replicas of each data
item in the database catalog. Replication can be at the level of individual data items, in
which the catalog will have one entry for each data item, recording the nodes where it is
replicated. Alternatively, replication can be done at the level of partitions of a relation,
with an entire partition replicated at two or more nodes. The catalog would then have
one entry for each partition, resulting in considerably lower overhead than having one
entry for each data item.

In this section we first discuss (in Section 23.4.1) issues with consistency of values
between replicas. We then discuss (in Section 23.4.2) how to extend concurrency con-
trol techniques to deal with replicas, ignoring the issue of failures. Further extensions
of the techniques to handle failures but modifying how reads and writes are executed
are described in Section 23.4.3.

23.4.1 Consistency of Replicas

Given that a data item (or partition) is replicated, the system should ideally ensure that
the copies have the same value. Practically, given that some nodes may be disconnected
or may have failed, it is impossible to ensure that all copies have the same value. Instead,
the system must ensure that even if some replicas do not have the latest value, reads of
a data item get to see the latest value that was written.

More formally, the implementations of read and write operations on the replicas
of a data item must follow a protocol that ensures the following property, called lin-
earizability: Given a set of read and write operations on a data item,

1. there must be a linear ordering of the operations such that each read in the or-
dering should see the value written by the most recent write preceding the read
(or the initial value if there is no such write), and

2. if an operation o1 finishes before an operation o2 begins (based on external time),
then o1 must precede o2 in the linear order.

Note that linearizability only addresses what happens to a single data item, and it is
orthogonal to serializability.
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We first consider approaches that write all copies of a data item and discuss limi-
tations of this approach; in particular, to ensure availability during failure, failed nodes
need to be removed from the set of replicas, which can be quite tricky as we will see.

It is not possible, in general, to differentiate between node failure and network
partition. The system can usually detect that a failure has occurred, but it may not be
able to identify the type of failure. For example, suppose that node N1 is not able to
communicate with N2. It could be that N2 has failed. However, another possibility is
that the link between N1 and N2 has failed, resulting in network partition. The problem
is partly addressed by using multiple links between nodes, so that even if one link fails
the nodes will remain connected. However, multiple link failures can still occur, so there
are situations where we cannot be sure whether a node failure or network partition has
occurred.

There are protocols for data access that can continue working even if some nodes
have failed, without any explicit actions to deal with the failures, as we shall see in
Section 23.4.3.1. These protocols are based on ensuring a majority of nodes are writ-
ten/read. With such protocols, actions to detect failed nodes and remove them from
the system can be done in the background, and (re)integration of new or recovered
nodes into the system can also be done without disrupting processing.

Although traditional database systems place a premium on consistency, there are
many applications today that value availability more than consistency. The design of
replication protocols is different for such systems and is discussed in Section 23.6.

In particular, one such alternative that is widely used for maintaining replicated
data is to perform the update on a primary copy of the data item, and allow the trans-
action to commit without updating the other copies. However, the update is subse-
quently propagated to the other copies. Such propagation of updates, referred to as
asynchronous replication or lazy propagation of updates, is discussed in Section 23.6.2.

One drawback of asynchronous replication is that replicas may be out of date for
some time following each update. Another drawback is that if the primary copy fails
after a transaction commits, but before the updates were propagated to the replicas, the
updates of the committed transaction may not be visible to subsequent transactions,
leading to an inconsistency.

On the other hand, a major benefit of asynchronous replication is that exclusive
locks can be released as soon as the transaction commits on the primary copy. In
contrast, if other replicas have to be updated before the transaction commits, there
may be a significant delay in committing the transaction. In particular, if data is geo-
graphically replicated to ensure availability despite failure of an entire data center, the
network round-trip time to a remote data center could range from tens of milliseconds
to nearby locations, up to hundreds of milliseconds for data centers that are on the
other side of the world. If a transaction were to hold a lock on a data item for this
duration, the number of transactions that can update that data item would be limited
to approximately 10 to 100 transactions per second. For certain applications, for exam-
ple, user data in a web application, 10 to 100 transactions per second for a single data
item is quite sufficient. However, for applications where some data items are updated
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by a large number of transactions each second, holding locks for such a long time is
not acceptable. Asynchronous replication may be preferred in such cases.

23.4.2 Concurrency Control with Replicas

We discuss several alternative ways of dealing with locking in the presence of replica-
tion of data items, in Section 23.4.2.1 to Section 23.4.2.4.

In this section, we assume updates are done on all replicas of a data item. If any
node containing a replica of a data item has failed, or is disconnected from the other
nodes, that replica cannot be updated. We discuss how to perform reads and updates
in the presence of failures later, in Section 23.4.3.

23.4.2.1 Primary Copy

When a system uses data replication, we can choose one of the replicas of a data item as
the primary copy. For each data item Q, the primary copy of Q must reside in precisely
one node, which we call the primary node of Q.

When a transaction needs to lock a data item Q, it requests a lock at the primary
node of Q. As before, the response to the request is delayed until it can be granted. The
primary copy enables concurrency control for replicated data to be handled like that
for unreplicated data. This similarity allows for a simple implementation. However, if
the primary node of Q fails, lock information for Q would be lost, and Q would be
inaccessible, even though other nodes containing a replica may be accessible.

23.4.2.2 Majority Protocol

The majority protocol works this way: If data item Q is replicated in n different nodes,
then a lock-request message must be sent to more than one-half of the n nodes in which
Q is stored. Each lock manager determines whether the lock can be granted immedi-
ately (as far as it is concerned). As before, the response is delayed until the request can
be granted. The transaction does not operate on Q until it has successfully obtained a
lock on a majority of the replicas of Q.

We assume for now that writes are performed on all replicas, requiring all nodes
containing replicas to be available. However, the major benefit of the majority protocol
is that it can be extended to deal with node failures, as we shall see in Section 23.4.3.1.
The protocol also deals with replicated data in a decentralized manner, thus avoiding
the drawbacks of central control. However, it suffers from these disadvantages:

• Implementation. The majority protocol is more complicated to implement than are
the previous schemes. It requires at least 2(n∕2 + 1) messages for handling lock
requests and at least (n∕2 + 1) messages for handling unlock requests.

• Deadlock handling. In addition to the problem of global deadlocks due to the use
of a distributed-lock-manager approach, it is possible for a deadlock to occur even
if only one data item is being locked. As an illustration, consider a system with
four nodes and full replication. Suppose that transactions T1 and T2 wish to lock
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data item Q in exclusive mode. Transaction T1 may succeed in locking Q at nodes
N1 and N3, while transaction T2 may succeed in locking Q at nodes N2 and N4.
Each then must wait to acquire the third lock; hence, a deadlock has occurred.
Luckily, we can avoid such deadlocks with relative ease by requiring all nodes to
request locks on the replicas of a data item in the same predetermined order.

23.4.2.3 Biased Protocol

The biased protocol is another approach to handling replication. The difference from
the majority protocol is that requests for shared locks are given more favorable treat-
ment than requests for exclusive locks.

• Shared locks. When a transaction needs to lock data item Q, it simply requests a
lock on Q from the lock manager at one node that contains a replica of Q.

• Exclusive locks. When a transaction needs to lock data item Q, it requests a lock
on Q from the lock manager at all nodes that contain a replica of Q.

As before, the response to the request is delayed until it can be granted.
The biased scheme has the advantage of imposing less overhead on read operations

than does the majority protocol. This savings is especially significant in common cases
in which the frequency of read is much greater than the frequency of write. However,
the additional overhead on writes is a disadvantage. Furthermore, the biased protocol
shares the majority protocol’s disadvantage of complexity in handling deadlock.

23.4.2.4 Quorum Consensus Protocol

The quorum consensus protocol is a generalization of the majority protocol. The quo-
rum consensus protocol assigns each node a nonnegative weight. It assigns read and
write operations on an item x two integers, called read quorum Qr and write quorum
Qw, that must satisfy the following condition, where S is the total weight of all nodes
at which x resides:

Qr + Qw > S and 2 ∗ Qw > S

To execute a read operation, enough replicas must be locked that their total weight
is at least Qr. To execute a write operation, enough replicas must be locked so that their
total weight is at least Qw.

A benefit of the quorum consensus approach is that it can permit the cost of either
read or write locking to be selectively reduced by appropriately defining the read and
write quorums. For instance, with a small read quorum, reads need to obtain fewer
locks, but the write quorum will be higher, hence writes need to obtain more locks.
Also, if higher weights are given to some nodes (e.g., those less likely to fail), fewer
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nodes need to be accessed for acquiring locks. In fact, by setting weights and quorums
appropriately, the quorum consensus protocol can simulate the majority protocol and
the biased protocols.

Like the majority protocol, quorum consensus can be extended to work even in the
presence of node failures, as we shall see in Section 23.4.3.1.

23.4.3 Dealing with Failures

Consider the following protocol to deal with replicated data. Writes must be success-
fully performed at all replicas of a data item. Reads may read from any replica. When
coupled with two-phase locking, such a protocol will ensure that reads will see the value
written by the most recent write to the same data item. This protocol is also called the
read one, write all copies protocol since all replicas must be written, and any replica
can be read.

The problem with this protocol lies in what to do if some node is unavailable. To
allow work to proceed in the event of failures, it may appear that we can use a “read one,
write all available” protocol. In this approach, a read operation proceeds as in the read
one, write all scheme; any available replica can be read, and a read lock is obtained at
that replica. A write operation is shipped to all replicas, and write locks are acquired on
all the replicas. If a node is down, the transaction manager proceeds without waiting for
the node to recover. While this approach appears very attractive, it does not guarantee
consistency of writes and reads. For example, a temporary communication failure may
cause a node to appear to be unavailable, resulting in a write not being performed, but
when the link is restored, the node is not aware that it has to perform some reintegration
actions to catch up on writes it has lost. Further, if the network partitions, each partition
may proceed to update the same data item, believing that nodes in the other partitions
are all dead.

23.4.3.1 Robustness Using the Majority-Based Protocol

The majority-based approach to distributed concurrency control in Section 23.4.2.2
can be modified to work in spite of failures. In this approach, each data object stores
with it a version number to detect when it was last written. Whenever a transaction
writes an object it also updates the version number in this way:

• If data object a is replicated in n different nodes, then a lock-request message must
be sent to more than one-half of the n nodes at which a is stored. The transaction
does not operate on a until it has successfully obtained a lock on a majority of the
replicas of a.

Updates to the replicas can be committed atomically using 2PC. (We assume
for now that all replicas that were accessible stay accessible until commit, but we
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relax this requirement later in this section, where we also discuss alternatives to
2PC.)

• Read operations look at all replicas on which a lock has been obtained and read
the value from the replica that has the highest version number. (Optionally, they
may also write this value back to replicas with lower version numbers.) Writes read
all the replicas just like reads to find the highest version number (this step would
normally have been performed earlier in the transaction by a read, and the result
can be reused). The new version number is one more than the highest version
number. The write operation writes all the replicas on which it has obtained locks
and sets the version number at all the replicas to the new version number.

Failures (whether network partitions or node failures) can be tolerated as long as (1)
the nodes available at commit contain a majority of replicas of all the objects written
to and (2) during reads, a majority of replicas are read to find the version numbers.
If these requirements are violated, the transaction must be aborted. As long as the
requirements are satisfied, the two-phase commit protocol can be used, as usual, on
the nodes that are available.

In this scheme, reintegration is trivial; nothing needs to be done. This is because
writes would have updated a majority of the replicas, while reads will read a majority
of the replicas and find at least one replica that has the latest version.

However, the majority protocol using version numbers has some limitations, which
can be avoided by using extensions or by using alternative protocols.

1. The first problem is how to deal with the failure of participants during an execu-
tion of the two-phase commit protocol.

This problem can be dealt with by an extension of the two-phase commit
protocol that allows commit to happen even if some replicas are unavailable, as
long as a majority of replicas of a partition confirm that they are in prepared
state. When participants recover or get reconnected, or otherwise discover that
they do not have the latest updates, they need to query other nodes to catch up on
missing updates. References that provide details of such solutions may be found
in the bibliographic notes for this chapter, available online.

2. The second problem is how to deal with the failure of the coordinator during
an execution of two-phase commit protocol, which could lead to the blocking
problem. Consensus protocols, which we study in Section 23.8, provide a robust
way of implementing two-phase commit without the risk of blocking even if the
coordinator fails, as long as a majority of the nodes are up and connected, as we
will see in Section 23.8.5.

3. The third problem is that reads pay a higher price, having to contact a majority
of the copies. We study approaches to reducing the read overhead in Section
23.4.3.2.
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23.4.3.2 Reducing Read Cost

One approach to dealing with this problem is to use the idea of read and write quorums
from the quorum consensus protocol; reads can read from a smaller read quorum, while
writes have to successfully write to a larger write quorum. There is no change to the
version numbering technique described earlier. The drawback of this approach is that
a higher write quorum increases the chance of blocking of update transactions, due to
failure or disconnection of nodes. As a special case of quorum consensus, we give unit
weights to all nodes, set the read quorum to 1, and set the write quorum to n (all nodes).
This corresponds to the read-any-write-all protocol we saw earlier. There is no need to
use version numbers with this protocol. However, if even a single node containing a
data item fails, no write to the item can proceed, since the write quorum will not be
available.

A second approach is to use the primary copy technique for concurrency control
and force all updates to go through the primary copy. Reads can be satisfied by ac-
cessing only one node, in contrast to the majority or quorum protocols. However, an
issue with this approach is how to handle failures. If the primary copy node fails, and
another node is assigned to act as the primary copy, it must ensure that it has the latest
version of all data items. Subsequently, reads can be done at the primary copy, without
having to read data from other copies.

This approach requires that there be at most one node that can act as primary copy
at a time, even in the event of network partitions. This can be ensured using leases as
we saw earlier in Section 23.7. Furthermore, this approach requires an efficient way
for the new coordinator to ensure that it has the latest version of all data items. This
can be done by having a log at each node and ensuring the logs are consistent with
each other. This problem is by itself a nontrivial process, but it can be solved using
distributed consensus protocols which we study in Section 23.8. Distributed consensus
internally uses a majority scheme to ensure consistency of the logs. But it turns out that
if distributed consensus is used to keep logs synchronized, there is no need for version
numbering.

In fact, consensus protocols provide a way of implementing fault-tolerant replica-
tion of data, as we see later in Section 23.8.4. Many fault-tolerant storage system imple-
mentations today are built using fault-tolerant replication of data based on consensus
protocols.

There is a variant of the primary copy scheme, called the chain replication protocol,
where the replicas are ordered. Each update is sent to the first replica, which records
it locally and forwards it to the next replica, and so on. The update is completed when
the last (tail) replica receives the update. Reads must be executed at the tail replica, to
ensure that only updates that have been fully replicated are read. If a node in a replica
chain fails, reconfiguration is required to update the chain; further, the system must
ensure that any incomplete updates are completed before processing further updates.
Optimized versions of the chain replication scheme are used in several storage systems.
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References providing more details of the chain replication protocol may be found in
the Further Reading section at the end of the chapter.

23.4.4 Reconfiguration and Reintegration

While nodes do fail, in most cases nodes recover soon, and the protocols described
earlier can ensure that they will catch up with any updates that they missed.

However, in some cases a node may fail permanently. The system must then be
reconfigured to remove failed nodes, and to allow other nodes to take over the tasks
assigned to the failed node. Further, the database catalog must be updated to remove
the failed node from the list of replicas of all data items (or relation partitions) that
were replicated at that node.

As discussed earlier, a network failure may result in a node appearing to have failed,
even if it has not actually failed. It is safe to remove such a node from the list of replicas;
reads will no longer be routed to the node even though it may be accessible, but that
will not cause any consistency problems.

If a failed node that was removed from the system eventually recovers, it must
be reintegrated into the system. When a failed node recovers, if it had replicas of any
partition or data item, it must obtain the current values of these data items it stores.
The database recovery log at a live site can be used to find and perform all updates that
happened when the node was down,

Reintegration of a node is more complicated than it may seem to be at first glance,
since there may be updates to the data items processed during the time that the node
is recovering. The database recovery log at a live site is used for catching up with the
latest values for all data items at the node. Once it has caught up with the current value
of all data items, the node should be added back into the list of replicas for the relevant
partitions/data items, so it will receive all future updates. Locks are obtained on the
partitions/data items, updates up to that point are applied from the log, and the node is
added to the list of replicas for the partitions or data items, before releasing the locks.
Subsequent updates will be applied directly to the node, since it will be in the list of
replicas.

Reintegration is much easier with the majority-based protocols in Section 23.4.3.1,
since the protocol can tolerate nodes with out-of-date data. In this case, a node can be
reintegrated even before catching up on updates, and the node can catch up with missed
updates subsequently.

Reconfiguration depends on nodes having an up-to-date version of the catalog that
records what table partitions (or data items) are replicated at what nodes; thus infor-
mation must be consistent across all nodes in a system. The replication information
in the catalog could be stored centrally, and consulted on each access, but such a de-
sign would not be scalable since the central node would be consulted very frequently
and would get overloaded. To avoid such a bottleneck, the catalog itself needs to be
partitioned, and it may be replicated, for example, using the majority protocol.
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23.5 Extended Concurrency Control Protocols

In this section, we describe further extensions to distributed concurrency control proto-
cols. We first consider multiversion 2PL and how it can be extended to get globally con-
sistent timestamps, in Section 23.5.1. Extensions of snapshot isolation to distributed
settings are described in Section 23.5.2. Issues in concurrency control in heteroge-
neous distributed databases, where each node may have its own concurrency control
technique, are described in Section 23.5.3.

23.5.1 Multiversion 2PL and Globally Consistent Timestamps

The multiversion two-phase locking (MV2PL) protocol, described in Section 18.7.2,
combines the benefits of lock-free read-only transactions with the serializability guar-
antees of two-phase locking. Read-only transactions see a snapshot at a point in time,
while update transactions use two-phase locking but create new versions of each
data item that they update. Recall that with this protocol, each transaction Ti gets a
unique timestamp CommitTS(Ti) (which could be a counter, instead of actual time)
at the time of commit. The transaction sets the timestamp of all items that it up-
dates to CommitTS(Ti). Only one transaction performs commit at a point in time;
this guarantees that once Ti commits, a read-only transaction Tj whose StartTS(Tj)
is set to CommitTS(Ti) will see committed values of all versions with timestamp ≤

CommitTS(Ti).
MV2PL can be extended to work in a distributed setting by having a central coordi-

nator, that assigns start and commit timestamps and ensures that only one transaction
can perform commit at a point in time. However, the use of a central coordinator limits
scalability in a massively parallel data storage system.

The Google Spanner data storage system pioneered a version of the MV2PL system
that is scalable and uses timestamps based on real clock time. We study the Spanner
MV2PL implementation in the rest of this section.

Suppose every node has a perfectly accurate clock, and that commit processing can
happen instantly with no delay between initiation of commit and its completion. Then,
when a transaction wants to commit, it gets a commit timestamp by just reading the
clock at any one node at any time after getting all locks, but before releasing any lock.
All data item versions created by the transaction use this commit timestamp. Transac-
tions can be serialized by this commit timestamp. Read-only transactions simply read
the clock when they start and use it to get a snapshot of the database as of their start
time.

If the clocks are perfectly accurate, and commit processing is instantaneous, this
protocol can be used to implement MV2PL without any central coordination, making
it very scalable.

Unfortunately, in the real world, the above assumptions do not hold, which can
lead to the following problems:
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1. Clocks are never perfectly accurate, and the clock at each node may be a little
fast or a little slow compared to other clocks.

Thus, it is possible to have the following situation. Two update transactions
T1 and T2, both write a data item x, with T1 writing it first, followed by T2 but
T2 may end up with a lower commit timestamp because it got the timestamp at
a different node than T1. This situation is not consistent with the serialization
ordering of T1 and T2, and it cannot happen with MV2PL in a centralized setting.

2. Commit processing takes time, which can cause read-only transactions to miss
updates if the protocol is not carefully designed. Consider the following situation.
A read-only transaction T1 with start timestamp t1 reads data item x at node N1, it
is possible that soon after the read, another transaction T2 with CommitTS(T2) ≤
t1 (which got the commit timestamp at a different node N2) may still perform a
write on x. Then, T1 should have read the value written by T2, but did not see it.

To deal with the first problem, namely, the lack of clock synchronization, Spanner
uses the following techniques.

• Spanner has a few atomic clocks that are very accurate at each data center and uses
the time they provide, along with time information from the Global Positioning
system (GPS) satellites, which provides very accurate time information, to get a
very good estimate of time at each node. We use the term true time to refer to the
time that would have been given by an absolutely accurate clock.

Each node periodically communicates with time servers to synchronize its
clock; if the clock has gone faster it is (logically) slowed down, and if it is slower,
it is moved forward to the time from the server. In between synchronizations the
local clock continues to tick, advancing the local time. A clock that ticks slower
or faster than the correct rate results in local time at the node that is progressively
behind or ahead of the true time.

• The second key technique is to measure local clock drift each time the node syn-
chronizes with a time server and to use it to estimate the rate at which the lo-
cal clock loses or gains time. Using this information, the Spanner system main-
tains a value ϵ such that if the local clock time is t′, the true time t is bounded by
t′ − ϵ ≤ t ≤ t′ + ϵ. The Spanner system is able to keep the uncertainty value ϵ to
less than 10 msec typically. The TrueTime API used by Spanner allows the system
to get the current time value, along with an upper bound on the uncertainty in the
time value.

• The next piece of the solution is an idea called commit wait. The idea is as follows:
After all locks have been acquired at all nodes, the local time t′ is read at a coordi-
nator node. We would like to use the true time as timestamp, but we don’t have the
exact value. Instead, the highest possible value of true time, namely, t′ + ϵ, is used
as a commit timestamp tc. The transaction then waits, while holding locks, until it



23.5 Extended Concurrency Control Protocols 1131

is sure that the true time t is ≥ tc; this just requires waiting for a time interval 2ϵ,
calculated as described earlier.

What the commit wait guarantees is that if a transaction T1 has a commit
timestamp tc, at the true time tc all locks were held by T1.

• Given the above, if a version xt of a data item x has a timestamp t, we can say that
that was indeed the value of x at true time t. This allows us to define a snapshot of
the database at a time t, containing the latest versions of all data items as of time t.
A database system is said to provide external consistency if the serialization order
is consistent with the real-world time ordering in which the transactions commit.
Spanner guarantees external consistency by ensuring that the timestamps used to
define the transaction serialization order correspond to the true time when the
transactions commit.

• One remaining issue is that transaction commit processing takes time (particularly
so when 2PC is used). While a transaction with commit timestamp t is committing,
a read of x by a read-only transaction with timestamp t1 ≥ t may not see the version
xt, either because the timestamp has not yet been propagated to the node with the
data item x, or the transaction is in prepared state.

To deal with this problem, reads that ask for a snapshot as of time t1 are made
to wait until the system is sure that no transactions with timestamp ≤ t1 are still
in the process of committing. If a transaction with timestamp t ≤ t1 is currently in
the prepared phase of 2PC, and we are not sure whether it will commit or abort, a
read with timestamp t1 would have to wait until we know the final commit status
of the transaction.

Read-only transactions can be given a somewhat earlier timestamp, to guaran-
tee that they will not have to wait; the trade-off here is that to avoid waiting, the
transaction may not see the latest version of some data items.

23.5.2 Distributed Snapshot Isolation

Since snapshot isolation is widely used, extending it to work in a distributed setting is of
significant practical importance. Recall from Section 18.8 that while snapshot isolation
does not guarantee serializability, it avoids a number of concurrency anomalies.

If each node implements snapshot isolation independently, the resultant schedules
can have anomalies that cannot occur in a centralized system. For example, suppose
two transactions, T1 and T2 run concurrently on node N1, where T1 writes x and T2
reads x; thus T2 would not see updates made by T1 to x. Suppose also that T1 updates a
data item y at node N2, and commits, and subsequently T2 reads y at node N2. Then T2
would see the value of y updated by T1 at N2, but not see T1’s update to x at N1. Such a
situation could never occur when using snapshot isolation at a single node. Thus, just
depending on local enforcement of snapshot isolation at each node is not sufficient to
enforce snapshot isolation across nodes.
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Several alternative distributed snapshot isolation protocols have been proposed
in the literature. Since the protocols are somewhat complicated, we omit details, but
references with more details may be found in the bibliographic notes for this chap-
ter, available online. Some of these protocols allow local transactions at each node to
execute without any global coordination step; an extra cost is paid only by global trans-
actions, that is, transactions that execute at more than one node. These protocols have
been prototyped on several databases/data storage systems, such as SAP HANA and
HBase.

There has been some work on extending distributed snapshot isolation protocols to
make them serializable. Approaches explored include adding timestamp checks similar
to timestamp ordering, creating a transaction dependency graph at a central server, and
checking for cycles in the graph, among other approaches.

23.5.3 Concurrency Control in Federated Database Systems

Recall from Section 20.5 that in many cases a distributed database has to be con-
structed by linking together multiple already-existing database systems, each with its
own schema and possibly running different database-management software. Recall that
such systems are called federated database systems or heterogeneous distributed database
systems, and they consist of a layer of software on top of the existing database systems.

Transactions in a federated database may be classified as follows:

1. Local transactions. These transactions are executed by each local database system
outside of the federated database system’s control.

2. Global transactions. These transactions are executed under the control of the
federated database system.

The federated database system is aware of the fact that local transactions may run at
the local nodes, but it is not aware of what specific transactions are being executed, or
of what data they may access.

Ensuring the local autonomy of each database system requires that no changes be
made to its software. A database system at one node thus is not able to communicate
directly with one at any other node to synchronize the execution of a global transaction
active at several nodes.

Since the federated database system has no control over the execution of local
transactions, each local system must use a concurrency-control scheme (e.g., two-phase
locking or timestamping) to ensure that its schedule is serializable. In addition, in the
case of locking, the local system must be able to guard against the possibility of local
deadlocks.

The guarantee of local serializability is not sufficient to ensure global serializability.
As an illustration, consider two global transactions T1 and T2, each of which accesses
and updates two data items, A and B, located at nodes N1 and N2, respectively. Suppose
that the local schedules are serializable. It is still possible to have a situation where, at
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node N1, T2 follows T1, whereas, at N2, T1 follows T2, resulting in a nonserializable
global schedule. Indeed, even if there is no concurrency among global transactions
(i.e., a global transaction is submitted only after the previous one commits or aborts),
local serializability is not sufficient to ensure global serializability (see Practice Exercise
23.11).

Depending on the implementation of the local database systems, a global transac-
tion may not be able to control the precise locking behavior of its local subtransactions.
Thus, even if all local database systems follow two-phase locking, it may be possible
only to ensure that each local transaction follows the rules of the protocol. For exam-
ple, one local database system may commit its subtransaction and release locks, while
the subtransaction at another local system is still executing. If the local systems permit
control of locking behavior and all systems follow two-phase locking, then the feder-
ated database system can ensure that global transactions lock in a two-phase manner
and the lock points of conflicting transactions would then define their global serializa-
tion order. If different local systems follow different concurrency-control mechanisms,
however, this straightforward sort of global control does not work.

There are many protocols for ensuring consistency despite the concurrent execu-
tion of global and local transactions in federated database systems. Some are based
on imposing sufficient conditions to ensure global serializability. Others ensure only
a form of consistency weaker than serializability but achieve this consistency by less
restrictive means.

There are several schemes to ensure global serializability in an environment where
update transactions as well as read-only transactions can execute. Several of these
schemes are based on the idea of a ticket. A special data item called a ticket is cre-
ated in each local database system. Every global transaction that accesses data at a
node must write the ticket at that node. This requirement ensures that global trans-
actions conflict directly at every node they visit. Furthermore, the global transaction
manager can control the order in which global transactions are serialized, by control-
ling the order in which the tickets are accessed. References to such schemes appear in
the bibliographic notes for this chapter, available online.

23.6 Replication with Weak Degrees of Consistency

The replication protocols we have seen so far guarantee consistency, even if there are
node and network failures. However, these protocols have a nontrivial cost, and further
they may block if a significant number of nodes fail or get disconnected due to a network
partition. Further, in the case of a network partition, a node that is not in the majority
partition would not only be unable to perform writes, but it would also be unable to
perform even reads.
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Many applications wish to have higher availability, even at the cost of consistency.
We study the trade-offs between consistency and availability in this section.

23.6.1 Trading Off Consistency for Availability

The protocols we have seen so far require a (weighted) majority of nodes be in a par-
tition for updates to proceed. Nodes that are in a minority partition cannot process
updates; if a network failure results in more than two partitions, no partition may have
a majority of nodes. Under such a situation, the system would be completely unavail-
able for updates, and depending on the read-quorum, may even become unavailable for
reads. The write-all-available protocol which we saw earlier provides availability but not
consistency.

Ideally, we would like to have consistency and availability, even in the face of par-
titions. Unfortunately, this is not possible, a fact that is crystallized in the so-called
CAP theorem, which states that any distributed database can have at most two of the
following three properties:

• Consistency.

• Availability.

• Partition-tolerance.

The proof of the CAP theorem uses the following definition of consistency, with repli-
cated data: an execution of a set of operations (reads and writes) on replicated data
is said to be consistent if its result is the same as if the operations were executed on
a single node, in a sequential order that is consistent with the ordering of operations
issued by each process (transaction). The notion of consistency is similar to atomicity
of transactions, but with each operation treated as a transaction, and is weaker than
the atomicity property of transactions.

In any large-scale distributed system, partitions cannot be prevented, and as a re-
sult, either availability or consistency has to be sacrificed. The schemes we have seen
earlier sacrifice availability for consistency in the face of partitions.

Consider a web-based social-networking system that replicates its data on three
servers, and a network partition occurs that prevents the servers from communicating
with each other. Since none of the partitions has a majority, it would not be possible to
execute updates on any of the partitions. If one of these servers is in the same partition
as a user, the user actually has access to data, but would be unable to update the data,
since another user may be concurrently updating the same object in another partition,
which could potentially lead to inconsistency. Inconsistency is not as great a risk in a
social-networking system as in a banking database. A designer of such a system may
decide that a user who can access the system should be allowed to perform updates on
whatever replicas are accessible, even at the risk of inconsistency.
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In contrast to systems such as banking databases that require the ACID properties,
systems such as the social-networking system mentioned above are said to require the
BASE properties:

• Basically available.

• Soft state.

• Eventually consistent.

The primary requirement is availability, even at the cost of consistency. Updates should
be allowed, even in the event of partitioning, following, for example, the write-all-
available protocol (which is similar to multimaster replication described in Section
23.6). Soft state refers to the property that the state of the database may not be precisely
defined, with each replica possibly having a somewhat different state due to partition-
ing of the network. Eventually consistent is the requirement that once a partitioning is
resolved, eventually all replicas will become consistent with each other.

This last step requires that inconsistent copies of data items be identified; if one is
an earlier version of the other, the earlier version can be replaced by the later version.
It is possible, however, that the two copies were the result of independent updates to
a common base copy. A scheme for detecting such inconsistent updates, called the
version-vector scheme, is described in Section 23.6.4.

Restoring consistency in the face of inconsistent updates requires that the updates
be merged in some way that is meaningful to the application. We discuss possible so-
lutions for resolution of conflicting updates, in Section 23.6.5.

In general, no system designer wants to deal with the possibility of inconsistent
updates and the resultant problems of detection and resolution. Where possible, the
system should be kept consistent. Inconsistent updates are allowed only when a node
is disconnected from the network, in applications that can tolerate inconsistency.

Some key-value stores such as Apache Cassandra and MongoDB allow an applica-
tion to specify how many replicas need to be accessible to carry out a write operation
or a read operation. As long as a majority of replicas are accessible, there is no problem
with consistency for writes. However, if the application sets the required number at less
than a majority, and many replicas are inaccessible, updates are allowed to go ahead;
there is, however, a risk of inconsistent updates, which must be resolved later.

For applications where inconsistency can cause significant problems, or is harder
to resolve, system designers prefer to build fault-tolerant systems using replication and
distributed consensus that avoid inconsistencies, even at the cost of potential non-
availability.

23.6.2 Asynchronous Replication

Many relational database systems support replication with weak consistency, which
can take one of several forms.
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With asynchronous replication the database allows updates at a primary node (also
referred to as the master node) and propagates updates to replicas at other nodes sub-
sequently; the transaction that performs the update can commit once the update is
performed at the primary, even before replicas are updated. Propagation of updates
after commit is also referred to as lazy propagation. In contrast, the term synchronous
replication refers to the case where updates are propagated to other replicas as part of
a single transaction.

With asynchronous replication, the system must guarantee that once the trans-
action commits at the primary, the updates are eventually propagated to all replicas,
even if there are system failures in between. Later in this section, we shall see how this
property is guaranteed using persistent messaging.

Since propagation of updates is done asynchronously, a read at a replica may not
get the latest version of a data item. Asynchronous propagation of updates is commonly
used to allow update transactions to commit quickly, even at the cost of consistency.
A system designer may choose to use replicas only for fault tolerance. However, if the
replica is available on a local machine, or another machine that can be accessed with
low latency, it may be much cheaper to read the data item at the replica instead of
reading it from the primary, as long as the application is willing to accept potentially
stale data values.

Data storage systems based on asynchronous replication may allow data items to
have versions, with associated timestamps. A transaction may then request a version
with required freshness properties, for example not more than 10 minutes old. If a local
replica has a version of the data item satisfying the freshness criterion, it can be used;
otherwise, the read may have to be sent to the primary node.

Consider, for example, an airline reservation site that shows the prices of multiple
flight options. Prices may vary frequently, and the system does not guarantee that a
user will actually be able to book a ticket at the price shown initially. Thus, it is quite
acceptable to show a price that is a few minutes old. Asynchronous replication is a
good solution for this application: price data can be replicated to a large number of
servers, which share the load of user queries; and price data are updated at a primary
node and replicated asynchronously to all other replicas.

Multiversion concurrency control schemes can be used to give a transaction-
consistent snapshot of the database to read-only transactions that execute at a replica;
that is, the transaction should see all updates of all transactions up to some transaction
in the serialization order and should not see any updates of transactions later in the
serialization order. The multiversion 2PL scheme, described in Section 23.5.1, can be
extended to allow a read-only transaction to access a replica that may not have up-to-
date versions of some data items, but still get a transaction-consistent snapshot view
of the database. To do so, replicas must be aware of what is the latest timestamp tsafe
such that they have received all updates with commit timestamp before t. Any read of
a snapshot with timestamp t < tsafe can be processed by that replica. Such a scheme is
used in the Google Spanner database,
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Asynchronous replication is used in traditional (centralized) databases to create
one or more replicas of the database, on which large queries can be executed, without
interfering with transactions running on a primary node. Such replication is referred
to master-slave replication, since the replicas cannot perform any updates on their own
but must only perform updates that the master node asks them to perform.

In such systems, asynchronous propagation of updates is typically done in a con-
tinuous fashion to minimize delays until an update is seen at a replica. However, in
data warehouses, updates may be propagated periodically—every night, for example—
so that update propagation does not interfere with query processing.

Some database systems support multimaster replication (also called update-
anywhere replication); updates are permitted at any replica of a data item and are propa-
gated to all replicas either synchronously, using two-phase commit, or asynchronously.

Asynchronous replication is also used in some distributed storage systems. Such
systems partition data, as we have seen earlier, but replicate each partition. There is a
primary node for each partition, and updates are typically sent to the primary node,
which commits the updates locally, and propagates them asynchronously to the other
replicas of the partition. Some systems such as PNUTS even allow each data item in
a partition to specify which node should act as the primary node for that data item;
that node is responsible for committing updates to the data item, and propagating the
update to the other replicas. The motivation is to allow a node that is geographically
close to a user to act as the primary node for data items corresponding to that user.

In any system supporting asynchronous propagation of updates, it is important
that once an update is committed at the primary, it must definitely be delivered to the
other replicas. If there are multiple updates at a primary node, they must be delivered
in the same order to the replicas; out-of-order delivery can cause an earlier update to
arrive late and overwrite a later update.

Persistent messaging, which we saw in Section 23.2.3, provides guaranteed deliv-
ery of messages and is widely used for asynchronous replication. The implementation
techniques for persistent messages described in Section 23.2.3 can be easily modified to
ensure that messages are delivered in the order in which they were sent. With persistent
messaging, each primary node needs to be aware of the location of all the replicas.

Publish-subscribe systems, which we saw in Section 22.8.1, offer a more flexible
way of ensuring reliable message delivery. Recall that publish-subscribe systems allow
messages to be published with an associated topic, and subscribers can subscribe to any
desired topic. To implement asynchronous replication, a topic is created corresponding
to each partition. All replicas of a partition subscribe to the topic corresponding to the
partition. Any update (including inserts, deletes, and data item updates) to a partition
is published as a message with the topic corresponding to the partition. The publish-
subscribe system ensures that once such a message is published, it will be delivered to
all subscribers in the order in which it was published.

Publish-subscribe systems designed for parallel systems, such as the Apache Kafka
system, or the Yahoo Message Bus service used for asynchronous replication in the
PNUTS distributed data storage system, allow a large number of topics, and use mul-
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tiple servers to handle messages to different topics in parallel. Thus, asynchronous
replication can be made scalable.

Fault tolerance is an issue with asynchronous propagation of updates. If a primary
node fails, a new node must take over as primary; this can be done either using an
election algorithm, as we saw earlier or by having a master node (which is itself chosen
by election) decide which node takes over the job of a failed primary node.

Consider what happens if a primary copy records an update but fails before the
update is sent to the replicas. The new primary node has no way of finding out what
was the last update committed at the primary copy. It can either wait for the primary to
recover, which is unacceptable, or it can proceed without knowing what updates were
committed just before failure. In the latter case, there is a risk that a transaction on the
new primary may read an old value of a data item or perform an update that conflicts
with an earlier update on the old primary.

To reduce the chance of such problems, some systems replicate the log records
of the primary node to a backup node and allow the transaction to commit at the
primary only after the log record has been successfully replicated at the backup node;
if the primary node fails, the backup node takes over as the primary. Recall that this
is the two-safe protocol from Section 19.7. This protocol is resilient to failure of one
node, but not to the failure of two nodes.

If an application is built on top of a storage system using asynchronous replication,
applications may potentially see some anomalous behaviors such as a read not seeing
the effect of an earlier write done by the same application, or a later read seeing an
earlier version of a data item than an earlier read, if different reads and writes are sent
to different replicas. While such anomalies cannot be completely prevented in the event
of failures, they can be avoided during normal operation by taking some precautions.
For example, if read and write requests for a data item from a particular node are always
sent to the same replica, the application will see any writes it has performed, and if two
reads are performed on the same data item, the later read will see a version at least
as new as the earlier read. This property is guaranteed if a primary replica is used to
perform all actions on a data item.

23.6.3 Asynchronous View Maintenance

Indices and materialized views are forms of data derived from underlying data, and
can thus be viewed as forms of replicated data. Just like replicas, indices and materi-
alized views could be updated (maintained) as part of each transaction that updates
the underlying data; doing so would ensure consistency of the derived data with the
underlying data.

However, many systems prefer to perform index and view maintenance in an asyn-
chronous manner, to reduce the overhead on transactions that update the underlying
data. As a result, the indices and materialized views could be out of date. Any transac-
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tion that uses such indices or materialized views must be aware that these structures
may be out of date.

We now consider how to maintain indices and materialized views in the face of
concurrent updates.

• The first requirement for view maintenance is for the subsystem that performs
maintenance to receive information about updates to the underlying data in such
a way that each update is delivered exactly once, despite failures.

Publish-subscribe systems are a good match for the first requirement above.
All updates to any underlying relation are published to the pub-sub system with
the relation name as the topic; the view maintenance subsystem subscribes to the
topics corresponding to its underlying relations and received all relevant updates.
As we saw in Section 22.8.1, we can have topics corresponding to each tablet of
a stored relation. For a nonmaterialized intermediate relation that is partitioned,
we can have a topic corresponding to each partition.

• The second requirement is for the subsystem to update the derived data in such
a way that the derived data will be consistent with the underlying data, despite
concurrent updates to the underlying data.

Since the underlying data may receive further updates as an earlier update
is being processed, no asynchronous view maintenance technique can guarantee
that the view state is consistent with the state of the underlying data at all times.
However, the consistency requirement can be formalized as follows: if there are
no updates to the underlying data for a sufficient amount of time, asynchronous
maintenance must ensure that the derived data is consistent with the underlying
data; such a requirement is known as an eventual consistency requirement.

The technique for parallel maintenance of materialized views which we saw in
Section 22.7.5 uses the exchange operator model to send updates to nodes and
allows view maintenance to be done locally. Techniques designed for view main-
tenance in a centralized setting can be used at each node, on locally materialized
input data. Recall from Section 16.5.1 that view maintenance may be deferred,
that is, it may be done after the transaction commits. Techniques for deferred view
maintenance in a centralized setting already need to deal with concurrent updates;
such techniques can be used locally at each node.

• A third requirement is for reads to get a consistent view of data. In general, a query
that reads data from multiple nodes may not observe the updates of a transaction
T on node N1, but may see the updates that T performed on node N2, thus seeing
a transactionally inconsistent view of data. Systems that use asynchronous repli-
cation typically do not support transactionally consistent views of the database.

Further, scans of the database may not see an operation-consistent view of the
database. (Recall the notion of operation consistency from Section 18.9, which
requires that any operation should not see a database state that reflects only some
of the updates of another operation. In Section 18.9 we saw an example of a scan
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using an index that could see two versions, or neither version, of a record updated
by a concurrent transaction, if the relation scan does not follow two-phase locking.
A similar problem occurs with asynchronous propagation of updates, even if both
the relation scan and the update transaction follow two-phase locking.

For example, consider a relation r(A, B, C), with primary key A, which is parti-
tioned on attribute B. Now consider a query that is scanning the relation r. Suppose
there is a concurrent update to a tuple t1 ∈ r, which updates attribute t1.B from v1
to v2. Such an update requires deletion of the old tuple from the partition corre-
sponding to value v1, and insertion of the new tuple in the partition corresponding
to v2. These updates are propagated asynchronously.

Now, the scan of r could possibly scan the node corresponding to v1 after
the old tuple is deleted there but visit the node corresponding to v2 before the
asynchronous propagation inserts the updated tuple in that node. Then, the scan
would completely miss the tuple, even though it should have seen either the old
value or the new value of t1. Further, the scan could visit the node corresponding
to v1 before the delete is propagated to that node, and the node corresponding to
v2 after the insert is propagated to that node, and thereby see two versions of t1,
one from before the update and one from after the update. Neither case would
be possible with two-phase locking, if updates are propagated synchronously to all
copies.

If a multiversion concurrency control technique is used, where data items have
timestamps, snapshot reads are a good way to get a consistent scan of a relation;
the snapshot timestamp should be set a sufficiently old value that all updates as of
that timestamp have reached all replicas.

23.6.4 Detecting Inconsistent Updates

Many applications developed for such high availability are designed to continue func-
tioning locally even when the node running the application is disconnected from the
other nodes.

As an example, when data are replicated, and the network gets partitioned, if a sys-
tem chooses to trade off consistency to get availability, updates may be done concur-
rently at multiple replicas. Such conflicting updates need to be detected and resolved.
When a connection is re-established, the application needs to communicate with a stor-
age system to send any updates done locally and fetch updates performed elsewhere.
There is a potential for conflicting updates from different nodes. For example, node N1
may update a locally cached copy of a data item while it is disconnected; concurrently
another node may have updated the data item on the storage system, or may have up-
dated its own local copy of the data item. Such conflicting updates must be detected,
and resolved.

As another example, consider an application on a mobile device that supports
offline updates (i.e., permits updates even if the mobile device is not connected to the
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network). To give the user a seamless usage experience, such applications perform the
updates on a locally cached copy, and then apply the update to the data store when the
device goes back online. If the same data item may be updated from multiple devices,
the problem of conflicting updates arises here, too. The schemes described below can
be used in this context too, with nodes understood to also refer to mobile devices.

A mechanism for detecting conflicting updates is described in this section. How to
resolve conflicting updates once they are detected is application dependent, and there
is no general technique for doing so. However, some commonly used approaches are
discussed in Section 23.6.5.

For data items updated by only one node, it is a simple matter to propagate the
updates when the node gets reconnected to the storage system. If the node only caches
read-only copies of data that may be updated by other nodes, the cached data may be-
come inconsistent. When the node gets reconnected, it can be sent invalidation reports
that inform it of out-of-date cache entries.

However, if updates can occur at more than one node, detecting conflicting up-
dates is more difficult. Schemes based on version numbering allow updates of shared
data from multiple nodes. These schemes do not guarantee that the updates will be
consistent. Rather, they guarantee that, if two nodes independently update the same
version of a data item, the clash will be detected eventually, when the nodes exchange
information either directly or through a common node.

The version-vector scheme detects inconsistencies when replicas of a data item are
independently updated. This scheme allows copies of a data item to be stored at mul-
tiple nodes.

The basic idea is for each node i to store, with its copy of each data item d, a version
vector—that is, a set of version numbers {V [j]}, with one entry for each other node j
on which the data item could potentially be updated. When a node i updates a data
item d, it increments the version number V [i] by one.

For example, suppose a data item is replicated at nodes N1, N2 and N3. If the item
is initially created at N1, the version vector could be [1, 0, 0]. If it is then replicated
at N2, and then updated at node N2, the resultant version vector would be [1, 1, 0].
Suppose now that this version of the data item is replicated to N3, and then both N2
and N3 concurrently update the data item. Then, the version vector of the data item at
N2 would be [1, 2, 0], while the version vector at N3 would be [1, 1, 1].

Whenever two nodes i and j connect with each other, they exchange updated data
items, so that both obtain new versions of the data items. However, before exchanging
data items, the nodes have to discover whether the copies are consistent:

1. If the version vectors Vi and Vj of the copy of the data item at nodes i and j are
the same—that is, for each k, Vi[k] = Vj[k]—then the copies of data item d are
identical.

2. If, for each k, Vi[k] ≤ Vj[k] and the version vectors are not identical, then the
copy of data item d at node i is older than the one at node j. That is, the copy of
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data item d at node j was obtained by one or more modifications of the copy of
the data item at node i. Node i replaces its copy of d, as well as its copy of the
version vector for d, with the copies from node j.

In our example above, if N1 had the vector [1, 0, 0] for a data item, while N2
had the vector [1, 1, 0], then the version at N2 is newer than the version at N1.

3. If there are a pair of values k and m such that Vi[k] < Vj[k] and Vi[m] > Vj[m],
then the copies are inconsistent; that is, the copy of d at i contains updates per-
formed by node k that have not been propagated to node j, and, similarly, the
copy of d at j contains updates performed by node m that have not been propa-
gated to node i. Then, the copies of d are inconsistent, since two or more updates
have been performed on d independently.

In our example, after the concurrent updates at N2 and N3, the two version
vectors show the updates are inconsistent. Let V2 and V3 denote the version vec-
tors at N2 and N3. Then V2[2] = 2 while V3[2] = 1, whereas V2[3] = 0, while
V3[3] = 1.

Manual intervention may be required to merge the updates. After merging the
updates (perhaps manually), the version vectors are merged, by setting V [k] to
the maximum of Vi[k] and Vj[k] for each k. The node l that performs the write
then increments V [l] by 1 and then writes the data item and its version vector V .

The version-vector scheme was initially designed to deal with failures in distrib-
uted file systems. The scheme gained importance because mobile devices often store
copies of data that are also present on server systems. The scheme is also widely used
in distributed storage systems that allow updates to happen even if a node is not in a
majority partition.

The version-vector scheme cannot solve the problem of how to reconcile incon-
sistent copies of data detected by the scheme. We discuss reconciliation in Section
23.6.5.

The version-vector scheme works well for detecting inconsistent updates to a sin-
gle data item. However, if a storage system has a very large number of replicated items,
finding which items have been inconsistently updated can be quite expensive if done
naively. In Section 23.6.6 we study a data structure called a Merkle tree that can effi-
ciently detect differences between sets of data items.

23.6.5 Resolving Conflicting Updates

Detection of conflicting updates may happen when a read operation fetches copies of
a data item from multiple replicas or when the system executes a background process
that compares data item versions.

At that point, conflicting updates on the same data item need to be resolved, to
create a single common version. Resolution of conflicting updates is also referred to as
reconciliation.
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There is no technique for resolution so that can be used across all applications. We
discuss some techniques that have been used in several commonly used applications.

Many applications can perform reconciliation automatically by executing on each
node all update operations that had been performed on other nodes during a period
of disconnection. This solution requires that the system keep track of operations, for
example, adding an item to a shopping cart, or deleting an item from a shopping cart.
This solution works if operations commute—that is, they generate the same result, re-
gardless of the order in which they are executed. The addition of items to a shopping
cart clearly commutes. Deletions do not commute with additions in general, which
should be clear if you consider what happens if an addition of an item is exchanged
with a delete of the same item. However, as long as deletion always operates only on
items already present in the cart, this problem does not arise.

As another example, many banks allow customers to withdraw money from an
ATM even if it is temporarily disconnected from the bank network. When the ATM
gets reconnected, the withdrawal operation is applied to the account. Again, if there
are multiple withdrawals, they may get merged in an order different from the order in
which they happened in the real world, but the end result (balance) is the same. Note
that since the operation already took place in the physical world, it cannot be rejected
because of a negative balance; the fact that an account has a negative balance has to
be dealt with separately.

There are other application-specific solutions for resolving conflicting updates. In
the worst case, however, a system may need to alert humans to the conflicting updates,
and let the humans decide how to resolve the conflict.

Dealing with such inconsistency automatically, and assisting users in resolving in-
consistencies that cannot be handled automatically, remains an area of research.

23.6.6 Detecting Differences Between Collections Using Merkle Tree

The Merkle tree (also known as hash tree) is a data structure that allows efficient detec-
tion of differences between sets of data items that may be stored at different replicas.
(To avoid confusion between tree nodes and system nodes, we shall refer to the latter
as replicas in this section.)

Detecting items that have inconsistent values across replicas due to weak consis-
tency is merely one of motivations for Merkle trees. Another motivation is performing
sanity checks of replicas that are synchronously updated, and should be consistent, but
may be inconsistent due to bugs or other failures. We consider below a binary version
of the Merkle tree.

We assume that each data item has a key and a value; in case we are considering
collections that do not have an explicit key, the data item value itself can be used as a
key.

Each data item key ki is hashed by a function h1() to get a hash value with n bits,
where n is chosen such that 2n is within a small factor of the number of data items.
Each data item value vi is hashed by another function h2() to get a hash value (which
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is typically much longer than n bits). Finally, we assume a hash function h3() which
takes as input a collection of hash values and returns a hash value computed from the
collection (this hash function must be computed in a way that does not depend on the
input order of the hash values, which can be done, for example, by sorting the collection
before computing the hash function).

Each node of a Merkle tree has associated with it an identifier and stores a hash
value. Each leaf of the tree can be identified by an n-bit binary number. For a given
leaf identified by number k, consider the set of all data items i whose key ki is such
that h1(ki) = k. Then, the hash value vk stored at leaf k is computed by applying h2()
on each of the data item values vi, and then applying h3() on the resultant collection
of hash values. The system also maintains an index that can retrieve all the data items
with a given hash value computed by function h2().

Figure 23.8 shows an example of a Merkle tree on 8 data items. The hash value of
these data items on h1 are shown on the left. Note that if for an item ij, h1(ij) = k, then
the data item ij is associated with the leaf with identifier k.

Each internal node of the Merkle tree is identified by a hash value that is j bits long
if the node is at depth j; leaves are at depth n, and the root at depth 0. The internal
node identified by a number k has as children nodes identified by 2k and 2k + 1. The
hash value stored vk at node k is computed by applying h3() to the hash value stored at
nodes 2k and 2k + 1.

Now, suppose this Merkle tree is constructed on the data at two replicas (the repli-
cas may be whole database replicas, or replicas of a partition of the database). If all
items at the two replicas are identical, the stored hash values at the root nodes will also
be identical.

As long as h2() computes a long enough hash value, and is suitably chosen, it is
very unlikely that h2(v1) = h2(v2) if v1 ≠ v2, and similarly for h3(). The SHA1 hash
function with a 160-bit hash value is an example of a hash function that satisfies this
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requirement. Thus, we can assume that if two nodes have the same stored hash values,
all the data items under the two nodes are identical.

If, in fact, there is a difference in the value of any items at the two replicas, or if
an item is present at one replica but not at the other, the stored hash values at the root
will be different, with high probability.

Then, the stored hash values at each of the children are compared with the hash
values at the corresponding child in the other tree. Search traverses down each child
whose hash value differs, until a leaf is reached. The traversal is done in parallel on
both trees and requires communication to send tree node contents from one replica to
the other.

At the leaf, if the hash values differ, the list of data item keys associated with the
leaves, and the corresponding data item values are compared across the two trees, to
find data items whose values differ as well as data items that are present in one of the
trees but not in the other.

One such traversal takes time at most logarithmic in the number of leaf nodes of
the tree; since the number of leaf nodes is chosen to be close to the number of data
items, the traversal time is also logarithmic in the number of data items. This cost is
paid at most once for each data item that differs between the two replicas. Furthermore,
a path to a leaf is traversed only if there is, in fact, a difference at the leaf.

Thus, the overall cost for finding differences between two (potentially very large)
sets is O(m log2 N), where m is the number of data items that differ and N is the total
number of data items. Wider trees can be used to reduce the number of nodes encoun-
tered in a traversal, which would be logK N if each node has K children, at the cost of
more data being transferred for each node. Wider trees are preferred if network latency
is high compared to the network bandwidth.

Merkle trees have many applications; they can be used to find the difference in
contents of two databases that are almost identical without transferring large amounts
of data. Such inconsistencies can occur due to the use of protocols that only guarantee
weak consistency. They could also occur because of message or network failures that
result in differences in replicas, even if consensus or other protocols that guarantee
consistent reads are used.

The original use of Merkle trees was for verification of the contents of a collection
that may have potentially been corrupted by malicious users. Here, the Merkle tree leaf
nodes must store the hash values of all data items that map to it, or a tree variant that
only stores one data item at a leaf may be used. Further, the stored hash value at the
root is digitally signed, meaning its contents cannot be modified by a malicious user
who does not have the private key used for signing the value.

To check an entire relation, the hash values can be recomputed from the leaves
upwards, and the recomputed hash value at the root can be compared with the digitally
signed hash value stored at the root.

To check consistency of a single data item, its hash value is recomputed; and then
so is the hash value for its leaf node ni, using existing hash values for other data items
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that hash to the same leaf. Next consider the parent node nj of node ni in the tree. The
hash value of nj is computed using the recomputed hash value of ni and the already
stored hash values of other children of nj. This process is continued upward until the
root of the tree. If the recomputed hash value at the root matches the signed hash value
stored with the root, the contents of the data item can be determined to be uncorrupted.

The above technique works for detecting corruption since with suitably chosen
hash functions, it is very hard for a malicious user to create replacement values for
data items in a way that the recomputed hash value is identical to the signed hash
value stored at the root.

23.7 Coordinator Selection

Several of the algorithms that we have presented require the use of a coordinator. If
the coordinator fails because of a failure of the node at which it resides, the system
can continue execution by restarting a new coordinator on another node. One way
to continue execution is by maintaining a backup to the coordinator that is ready to
assume responsibility if the coordinator fails. Another way is to “elect” a coordinator
from among the nodes that are alive. We outline these options in this section. We
then briefly describe fault-tolerant distributed services that have been developed to help
developers of distributed applications perform these tasks.

23.7.1 Backup Coordinator

A backup coordinator is a node that, in addition to other tasks, maintains enough infor-
mation locally to allow it to assume the role of coordinator with minimal disruption to
the distributed system. All messages directed to the coordinator are received by both
the coordinator and its backup. The backup coordinator executes the same algorithms
and maintains the same internal state information (such as, for a concurrency coordi-
nator, the lock table) as does the actual coordinator. The only difference in function
between the coordinator and its backup is that the backup does not take any action
that affects other nodes. Such actions are left to the actual coordinator.

In the event that the backup coordinator detects the failure of the actual coordi-
nator, it assumes the role of coordinator. Since the backup has all the information
available to it that the failed coordinator had, processing can continue without inter-
ruption.

The prime advantage of the backup approach is the ability to continue processing
immediately. If a backup were not ready to assume the coordinator’s responsibility,
a newly appointed coordinator would have to seek information from all nodes in the
system so that it could execute the coordination tasks. Frequently, the only source
of some of the requisite information is the failed coordinator. In this case, it may be
necessary to abort several (or all) active transactions and to restart them under the
control of the new coordinator.
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Thus, the backup-coordinator approach avoids a substantial amount of delay while
the distributed system recovers from a coordinator failure. The disadvantage is the over-
head of duplicate execution of the coordinator’s tasks. Furthermore, a coordinator and
its backup need to communicate regularly to ensure that their activities are synchro-
nized.

In short, the backup-coordinator approach incurs overhead during normal process-
ing to allow fast recovery from a coordinator failure.

23.7.2 Election of Coordinator

In the absence of a designated backup coordinator, or in order to handle multiple fail-
ures, a new coordinator may be chosen dynamically by nodes that are live.

One possible approach is to have a designated node choose a new coordinator,
when the current coordinator has failed. However, this raises the question of what to
do if the node that chooses replacement coordinators itself fails.

If we have a fault-tolerant lock manager, a very effective way of choosing a new
coordinator for a task is to use lock leases. The current coordinator has a lock lease on
a data item associated with the task. If the coordinator fails, the lease will expire. If a
participant determines that the coordinator may have failed, it attempts to get a lock
lease for the task. Note that multiple participants may attempt to get a lease, but the
lock manager ensures that only one of them can get the lease. The participant that gets
the lease becomes the new coordinator. As discussed in Section 23.3.3, this ensures
that only one node that can be the coordinator at a given time. Lock leases are widely
used to ensure that a single node gets chosen as coordinator. However, observe that
there is an underlying assumption of a fault-tolerant lock manager.

A participant determines that the coordinator may have failed if it is unable to
communicate with the coordinator. Participants send periodic heart-beat messages to
the coordinator and wait for an acknowledgment; if the acknowledgment is not received
within a certain time, the coordinator is assumed to have failed.

Note that the participant cannot definitively distinguish a situation where the co-
ordinator is dead from a situation where the network link between the node and the
coordinator is cut. Thus, the system should be able to work correctly even if the current
coordinator is alive, but another participant determines that the coordinator is dead.
Lock leases ensure that at most one node can be the coordinator at any time; once a
coordinator dies, another node can become the coordinator. However, lock leases work
only if a fault-tolerant lock manager is available.

This raises the question of how to implement such a lock manager. We return later,
in Section 23.8.4, to the question of how to implement a fault-tolerant lock manager.
But it turns out that to do so efficiently, we need to have a coordinator. And, lock leases
cannot be used to choose the coordinator for the lock manager! The problem of how
to choose a coordinator without depending on a lock manager is solved by election
algorithms, which enable the participating nodes to choose a new coordinator in a
decentralized manner.
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Suppose the goal is to elect a coordinator just once. Then, each node that wishes
to become the coordinator proposes itself as a candidate to all the other nodes; such
nodes are called proposers. The participating nodes then vote on which node among the
candidates is to be chosen. If a majority of the participating nodes (called acceptors)
vote for a particular candidate, it is chosen. A subset of nodes called learners ask the
acceptor nodes for their vote and determine if a majority have voted for a particular
candidate.

The problem with the above idea is that if there are multiple candidates, none of
them may get a majority of votes. The question is what to do in such a situation. There
are at least two approaches that have been proposed:

• Nodes are given unique numbers; if more than one candidate proposes itself, ac-
ceptors choose the highest-numbered candidate. Even then votes may be split with
no majority decision, due to delayed or missing messages; in such a case, the elec-
tion is run again. But if a node N1 that was a candidate finds that a higher-numbered
node N2 has proposed itself as a candidate, then N1 withdraws from the next round
of the election. The highest-numbered candidate will win the election. The bully
algorithm for election is based on this idea.

There are some subtle details due to the possibility that the highest-numbered
candidate in one round may fail during a subsequent round, leading to there being
no candidates at all! If a proposer observes that no coordinator was selected in
a round where it withdrew itself as a candidate, it proposes itself as a candidate
again in the next round.

Note also that the election has multiple rounds; each round has a number,
and a candidate attaches a round number with the proposal. The round number is
chosen to be the maximum round that it has seen, plus 1. A node can give a vote
to only one candidate in a particular round, but it may change its vote in the next
round.

• The second approach is based on randomized retry, which works as follows: If there
is no majority decision in a particular round, all participants wait for a randomly
chosen amount of time; if by that time a coordinator has been chosen by a majority
of nodes, it is accepted as a coordinator. Otherwise, after the timeout, the node
proposes itself as a candidate. As long as the timeouts are chosen properly (large
enough compared to network latency) with high likelihood only one node proposes
itself at a particular time and will get votes from a majority of nodes in a particular
round.

If no candidate gets a majority vote in a round, the process is repeated. With
very high probability, after a few rounds, one of the candidates gets a majority and
is thus chosen as coordinator.

The randomized-retry approach was popularized by the Raft consensus algo-
rithm, and it is easier to reason about it and show not just correctness, but also
bounds on the expected time for an election round to succeed in choosing a coor-
dinator, as compared to the node- numbering-based approach.
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Note that the above description assumed that choosing a coordinator is a one-time
activity. However, the chosen coordinator may fail, requiring a fresh election algorithm.
The notion of a term is used to deal with this situation. As mentioned above, each time
a node proposes itself as a coordinator, it associates the proposal with a round number,
which is 1 more than the highest round number it has seen earlier, after ensuring that
in the previous round no coordinator was chosen, or the chosen coordinator has subse-
quently failed. The round number is henceforth referred to as a term. When the election
succeeds, the chosen coordinator is the coordinator for the corresponding term. If the
election fails, the corresponding term does not have any coordinator chosen, but the
election should succeed in a subsequent term.

Note also that there are subtle issues that arise since a node n may be disconnected
from the network for a while, and it may get reconnected without ever realizing that it
was disconnected. In the interim, the coordinator may have changed. In particular, if
the node n was the coordinator, it may continue to think it is the coordinator, and some
other node, say N1, which was also disconnected may think that n is still coordinator.
However, if a coordinator was successfully elected, the majority of the nodes agree that
some other node, say N2, is the coordinator.

In general, it is possible for more than one node to think that is the coordinator at
the same time, although at most one of them can have the majority vote at that point
in time.

To avoid this problem, each coordinator can be given a lease for a specified period.
The coordinator can extend the lease by requesting an extension from other nodes and
getting confirmation from a majority of the nodes. But if the coordinator is discon-
nected from a majority of the nodes, it cannot renew its lease, and the lease expires.
A node can vote for a new coordinator only if the last lease time that it confirmed to
the earlier coordinator has expired. Since a new coordinator needs a majority vote, it
cannot get the vote until the lease time of the previous coordinator has expired.

However, even if leases are used to ensure that two nodes cannot be coordinators
at the same time, delayed messages can result in a node getting a message from an old
coordinator after a new one has been elected.

To deal with this problem, the current term of the sender is included with each
message exchanged in the system. Note that when a node n is elected as coordinator,
it has an associated term t; participant nodes that learn that n is the coordinator are
aware of the current term t. A node may receive a message with an old term either
because an old coordinator did not realize it has been replaced or because of message
delivery delay; the latter problem can occur even if leases or other mechanisms ensure
that only one node can be the coordinator at a time. In either case, a node that receives
a stale message, that is, one with a term older than the current term of the node, it can
ignore the message. If a node receives a message with a higher number, it is behind
the rest of the system, and it needs to find out the current term and coordinator by
contacting other nodes.

Some protocols do not require the coordinator to store any state information; in
such cases, the new coordinator can take over without any further actions. However,
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other protocols require coordinators to retain state information. In such cases, the new
coordinator has to reconstruct the state information from persistent data and recovery
logs created by the previous coordinator. Such logs, in turn, need to be replicated to
multiple nodes so that the loss of a node does not result in the loss of access to the
recovery data. We shall see how to ensure availability by means of data replication in
subsequent sections.

23.7.2.1 Distributed Coordination Services

There are a very large number of distributed applications that are in daily use today.
Instead of each one having to implement its own mechanism for electing coordinators
(among other tasks), it makes sense to develop a fault-tolerant coordination service
that can be used by multiple distributed applications.

The ZooKeeper service is one such very widely used fault-tolerant distributed co-
ordination service. The Chubby service developed earlier at Google is another such
service, which is widely used for applications developed by Google. These services
internally use consensus protocols to implement fault tolerance; we study consensus
protocols in Section 23.8.

These services provide a file-system-like API, which supports the following features,
among others:

• Store (small amounts of) data in files, with a hierarchical namespace. A typical
use for such storage is to store configuration information that can be used to start
up a distributed application, or for new nodes to join a distributed application by
finding out which node is currently the coordinator.

• Create and delete files, which can be used to implement locking. For example, to
get a lock, a process can attempt to create a file with a name corresponding to the
lock. If another process has already created the file, the coordination service will
return an error, so the process knows it could not get the lock.

For example, a node that acts as a master for a tablet in a key-value store would
get a lock on a file whose name is the identifier of the tablet. This ensures that two
nodes cannot be masters for the tablet at the same time.

If an overall application master detects that a tablet master has died, it could re-
lease the lock. If the service supports lock leases, this could happen automatically,
if the tablet master does not renew its lease.

• Watch for changes on a file, which can be used by a process to check if a lock has
been released, or to be informed about other changes in the system that require
action by the process.

23.8 Consensus in Distributed Systems

In this section we first describe the consensus problem in a distributed system, that is,
how a set of nodes agree on a decision in a fault-tolerant way. Distributed consensus is
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a key building block for protocols that update replicated data in a fault-tolerant manner.
We outline two consensus protocols, Paxos and Raft. We then describe replicated state
machines, which can be used to make services, such as data storage systems and lock
managers, fault tolerant. We end the section by describing how consensus can be used
to make two-phase commit nonblocking.

23.8.1 Problem Overview

Software systems need to make decisions, such as the coordinator’s decision on
whether to commit or abort a transaction when using 2PC, or a decision on which
node is to act as coordinator, in case a current coordinator fails.

If the decision is made by a single node, such as the commit/abort decision made
by a coordinator node in 2PC, the system may block in case the node fails, since other
nodes have no way of determining what decision was made. Thus, to ensure fault tol-
erance, multiple nodes must participate in the decision protocol; even if some of these
nodes fail, the protocol must be able to reach a decision. A single node may make a
proposal for a decision, but it must involve the other nodes to reach a decision in a
fault-tolerant manner.

The most basic form of the distributed consensus problem is thus as follows: a set of
n nodes (referred to as participants) need to agree on a decision by executing a protocol
such that:

• All participants must “learn” the same value for the decision even if some nodes
fail during the execution of the protocol, or messages are lost, or there are network
partitions.

• The protocol should not block, and must terminate, as long as some majority of
the nodes participating remain alive and can communicate with each other.

Any real system cannot just make a single decision once, but needs to make a series
of decisions. A good abstract of the process of making multiple consensus decisions
is to treat each decision as adding a record to a log. Each node has a copy of the log,
and records are appended to the log at each node. There can potentially be conflicts
on what record is added at what point in a log. The multiple consensus protocol viewed
from this perspective needs to ensure that the log is uniquely defined.

Most consensus protocols allow temporary divergence of logs across nodes while
the protocol is being executed; that is, the same log position at different nodes may have
different records, and the end of the log may be different at different nodes. Shared-
log consensus protocols keep track of an index into the log such that any entry before
that index has definitely been agreed upon. Any entries after that index may be in the
process of being agreed upon, or may be entries from failed attempts at consensus.
However, the protocols subsequently bring the inconsistent parts of the log logs back
in synchronization. To do this, log records at some nodes may be deleted after being
inserted; such log records are viewed as not yet committed and cannot be used to make
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decisions. Only log records in the prefix of the log that are in the committed prefix may
be used to make decisions.

Several protocols have been proposed for distributed consensus. Of these, the
Paxos family of protocols is one of the most popular, and it has been implemented
in many systems. While the basic Paxos protocol is intuitively easy to understand at a
high level, there are a number of details in its implementation that are rather compli-
cated, and particularly so in the multiple consensus version. To address this issue, the
Raft consensus protocol was developed, with ease of understanding and implementa-
tion being key goals, and it has been adopted by many systems. We outline the intuition
behind these protocols in this section.

A key idea behind distributed consensus protocols is the idea of voting to make a
decision; a particular decision succeeds only if a majority of the participating nodes
vote for it. Note that if two or more different values are proposed for a particular deci-
sion, at most one of them can be voted for by a majority; thus, it is not possible for two
different values to be chosen. Even if some nodes fail, if a majority of the participants
vote for a value, it gets chosen, thus making the voting fault tolerant as long as a ma-
jority of the participants are up and connected to each other. There is, however, a risk
that votes may get split between the proposed values, and some nodes may not vote if
they fail; as a result, no value may be decided on. In such a case the voting procedure
has to be executed again.

While the above intuition is easy enough to understand, there are many details that
make the protocols nontrivial. We study some of these issues in the following sections.

We note that although we study some of the features of the Paxos and Raft con-
sensus protocols, we omit a number of details that are needed for correct operation to
keep our description concise.

We also note that a number of other consensus protocols have been proposed, and
some of them are widely used, such as the Zab protocol which is part of the ZooKeeper
distributed coordination service.

23.8.2 The Paxos Consensus Protocol

The basic Paxos protocol for making a single decision has the following participants.

1. One or more nodes that can propose a value for the decision; such nodes are
called proposers.

2. One or more nodes that act as acceptors. An acceptor may get proposals with
different values from different proposers and must choose (vote for) only one of
the values.

Note that failure of an acceptor does not cause a problem, as long as a majority
of the acceptors are live and reachable. Failure or disconnection of a majority
would block the consensus protocol.
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3. A set of nodes, called learners, query the acceptors to find what value each ac-
ceptor voted for in a particular round. (Acceptors could also send the value they
accepted to the learners, without waiting for a query from the learner.)

Note that the same node can play the roles of proposer, acceptor, and learner.
If a majority of the acceptors voted for a particular value, that value is the chosen

(consensus) value for that decision. But there are two problems:

1. It is possible for votes to be split among multiple proposals, and no proposal is
accepted by a majority of the acceptors.

If any proposed value is to get a majority, at least some acceptors must change
their decision. Thus, we must allow another round of decision making, where ac-
ceptors may choose a new value. This may need to be repeated as long as required
until one value wins a majority vote.

2. Even if a majority of nodes do accept a value, it is possible that some of these
nodes die or get disconnected after accepting a value, but before any learner
finds out about their acceptance, and the remaining acceptors of that value do
not constitute a majority.

If this is treated as the failure of a round, and a different value is chosen in a
subsequent round, we have a problem. In particular, a learner that learned about
the earlier majority would conclude that a particular value was chosen, while
another learner could conclude that a different value was chosen, which is not
acceptable.

Note also that acceptors must log their decision so when they recover they know what
decision they made earlier.

The first problem above, namely, split votes, does not affect correctness, but it
affects performance. To avoid this problem, Paxos makes use of a coordinator node.
Proposers send a proposal to the coordinator, which picks one of the proposed values
and follows the preceding steps to get a majority vote. If proposals come from only
one coordinator, there is no conflict, and the lone proposed value gets a majority vote
(modulo network and node failures).

Note that if the coordinator dies or is unreachable, a new coordinator can be
elected, using techniques we saw earlier in Section 23.7, and the new coordinator can
then do the same job as the earlier coordinator. Coordinators have no local state, so
the new one can take over without any recovery steps.

The second problem, namely, different values getting majorities in different rounds,
is a serious problem and must be avoided by the consensus protocol. To do so, Paxos
uses the following steps:

1. Each proposal in Paxos has a number; different proposals must have different
numbers.
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2. In phase 1a of the protocol, a proposer sends a prepare message to acceptors,
with its proposal number n.

3. In phase 1b of the protocol, an acceptor that receives a prepare message with
number n checks if it has already responded to a message with a number higher
than n. If so, it ignores the message. Otherwise, it remembers the number n and
responds with the highest proposal number m < n that it has already accepted,
along with the corresponding value v; if it has not accepted any value earlier, it
indicates so in its response. (Note that responding is different from accepting.)

4. In phase 2a, the proposer checks if it got a response from a majority of the ac-
ceptors. If it does, it chooses a value v as follows: If none of the acceptors has
already accepted any value, the proposer may use whatever value it intended to
propose. If at least one of the acceptors responded that it accepted a value v with
some number m, the proposer chooses the value v that has the highest associated
number m (note that m must be < n).

The proposer now sends an accept request with the chosen value v and number
n.

5. In phase 2b, when an acceptor gets an accept request with value v and number
n, it checks if it has responded to a prepare message with number n1 > n; if
so it ignores the accept request. Otherwise, it accepts the proposed value v with
number n.

The above protocol is quite clever, since it ensures the following: if a majority of
acceptors accepted a value v (with any number n), then even if there are further pro-
posals with number n1 > n, the value proposed will be value v. Intuitively, the reason
is that a value can be accepted with number n only if a majority of nodes respond to
a prepare message with number n; let us call this set of acceptors P. Suppose a value v
had been accepted earlier by a majority of nodes with number m; call this set of nodes
A. Then A and P must have a node in common, and the common node will respond
with value v and number m.

Note that some other proposal with a number p > n may have been made earlier,
but if it had been accepted by even one node, then a majority of nodes would have
responded to the proposal with number p, and thus will not respond to the proposal
with number n. Thus, if a proposal with value v is accepted by a majority of nodes, we
can be sure that any further proposal will be for the already chosen value v.

Note that if a learner finds that no proposal was accepted by a majority of nodes,
it can ask any proposer to issue a fresh proposal. If a value v had been accepted by a
majority of nodes, it would be found and accepted again, and the learner would now
learn about the value. If no value was accepted by a majority of nodes earlier, the new
proposal could be accepted.

The above algorithm is for a single decision. Paxos has been extended to allow a
series of decisions; the extended algorithm is called Multi-Paxos. Real implementations
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also need to deal with other issues, such as how to add a node to the set of acceptors,
or to remove a node from the set of acceptors if it is down for a long time, without
affecting the correctness of the protocol. References with more details about Paxos
and Multi-Paxos may be found in the bibliographic notes for this chapter, available
online.

23.8.3 The Raft Consensus Protocol

There are several consensus protocols whose goal is to maintain a log, to which records
can be appended in a fault-tolerant manner. Each node participating in such a protocol
has a replica of the log. Log-based protocols simplify the handling of multiple decisions.
The Raft consensus protocol is an example of such a protocol, and it was designed to
be (relatively) easy to understand.

A key goal of log-based protocols is to keep the log replicas in sync by presenting a
logical view of appending records atomically to all copies of the log. In fact, atomically
appending the same entry to all replicas is not possible, due to failures. Recall that
failure modes may include a node being temporarily disconnected and missing some
updates, without ever realizing it was disconnected. Further, a log append may be done
at just a few nodes, and the append process may fail subsequently, leaving other replicas
without the record. Thus, ensuring all copies of the log are identical at all times is
impossible. Such protocols must ensure the following:

• Even if a log replica is temporarily inconsistent with another, the protocol will
bring it back in sync eventually by deleting and replacing log records on some
copies.

• A log entry will not be treated as committed until the algorithm guarantees that it
will never be deleted.

Protocols such as Raft that are based on log replication can allow each node to
run a “state machine,” with log entries used as commands to the state machine; state
machines are described in Section 23.8.4.

The Raft algorithm is based on having a coordinator, which is called a leader in Raft
terminology. The other participating nodes are called followers. Since leaders may die
and need to be replaced, time is divided into terms, which are identified by integers.
Each term has a unique leader, although some terms may not have any associated
leader. Later terms have higher identifiers than earlier terms.

Leaders are elected in Raft using the randomized-retry algorithm outlined in Sec-
tion 23.7.2. Recall that the randomized-retry algorithm already incorporates the notion
of a term. A node that votes for a leader does so for a specific term. Nodes keep track
of the currentTerm based on messages from leaders or requests for votes.

Note that a leader N1 may get temporarily disconnected, but get reconnected after
other nodes find the leader cannot be reached, and elect a new leader N2. Node N1
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Figure 23.9 Example of Raft logs.

does not know that there is a new leader and may continue to execute the actions of a
leader. The protocol should be robust to such situations.

Figure 23.9 shows an example of Raft logs at a leader and four followers. Note that
the log index denotes the position of a particular record in a log. The number at the
top of each log record is the term in which the log record was created, while the part
below it shows the log entry, assumed here to record assignments to different variables.

Any node that wishes to append a record to the replicated log sends a log append
request to the current leader. The leader adds its term as a field of the log records and
appends the record to its log; it then sends an AppendEntries remote procedure call to
the other nodes; the call contains several parameters, including these:

• term: the term of the current leader.

• previousLogEntryPosition: the position in the log of the preceding log entry.

• previousLogEntryTerm: the term associated with the preceding log entry.

• logEntries: an array of log records, allowing the call to append multiple log records
at the same time.

• leaderCommitIndex: an index such that all log records at that index or earlier are
committed. Recall that a log entry is not considered committed until a leader has
confirmed that a majority of nodes have accepted that log entry. The leader keeps,
in leaderCommitIndex, a position in the log such that all log records at that index
and earlier are committed; this value is sent along with the AppendEntries call so
that the nodes learn which log records have been committed.
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If a majority of the nodes respond to the call with a return value true, the leader
can report successful log append (along with the position in the log) to the node that
initiated the log append. We will shortly see what happens if a majority do not respond
with true.

Each follower that receives an AppendEntries message does the following:

1. If the term in the message is less than currentTerm, then Return false.

2. If the log does not contain an entry at a previous log entry position, whose term
matches the term in the message, then Return false.

3. If there is an existing entry at the log position that is different from the first log
record in the AppendEntries message, the existing entry and all subsequent log
entries are deleted.

4. Any log records in the logEntries parameter that are not already in the log are
appended to the log.

5. The follower also keeps track of a local commitIndex to track which records
are committed. If the leaderCommitIndex > commitIndex, set commitIndex =
min(leaderCommitIndex, index of last entry in log).

6. Return true.

Note that the last step keeps track of the last committed log record. It is possible that
the leader’s log is ahead of the local log, so commitIndex cannot be blindly set to
leaderCommitIndex, and it may need to be set to the local end of log if the leaderCom-
mitIndex is ahead of the local end of log.

Figure 23.9 shows that different followers may have different log states, since some
AppendEntries messages may not have reached those nodes. The part of the log up to
entry 6 is present at a majority of nodes (namely, the leader, follower 2 and follower 4).
On receipt of a true response to the AppendEntries call for the log record at position
6 from these followers, the leader can set leaderCommitIndex to 6.

It is possible for a node N1 to be a leader in some term, and on temporary discon-
nection it may get replaced by a new leader N2 in the next term. N1 may not realize
that there is a new leader for some time and may send appendEntry messages to other
nodes. However, a majority of the other nodes will know about the new leader, and
would have a term higher than that of N1. Thus, these nodes would return false, and
include their current term in the response. Node N1 would then realize that there is a
leader with a new term; it then switches from the role of leader to that of follower.

The protocol must deal with the fact that some nodes may have outdated logs. Note
that in step 2 of the follower protocol, the follower returns false if its log is outdated. In
such a case, the leader will retry an AppendEntries, sending it all log records from an
even earlier point in the log. This may happen several times, until the leader sends log
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records from a point that is already in the follower log. At this point, the AppendEntries
command would succeed.

A key remaining problem is to ensure that if a leader dies, and another one takes
over, the log is brought to a consistent state. Note that the leader may have appended
some log entries locally and replicated some of them to some other nodes, but the
new leader may or may not have all these records. To deal with this situation, the Raft
protocol includes steps to ensure the following:

1. The protocol ensures that any node elected as leader has all the committed log
entries. To do so, any candidate must contact a majority of the nodes and send
information about its log state when seeking a vote. A node will vote for a can-
didate in the election only if it finds that the candidate’s log state is at least as
up-to-date as its own; note that the definition of “at least as up-to-date” is a little
complicated since it involves term identifiers in log records, and we omit details.

Since the above check is done by a majority of the nodes that voted for the new
leader, any committed entry would certainly be present in the log of the newly
elected leader.

2. The protocol then forces all other nodes to replicate the leader’s log.
Note that the first step above does not actually find up to what log record is

committed. Some of the log records at the new leader may not have been com-
mitted earlier, but may get committed when the new leader’s log is replicated in
this step.

There is also a subtle detail in that the new leader cannot count the number of
replicas with a particular record from an earlier term, and declare it committed if
it is at a majority of the nodes. Intuitively, the problem is because of the definition
of “at least as up-to-date” and the possibility that a leader may fail, recover, and
be elected as leader again. We omit details, but note that the way this problem
is solved is for the new leader to replicate a new log record in its current term;
when that log record is determined to be at a majority of the replicas, it and all
earlier log records can be declared to be committed.

It should be clear that although the protocol, like Paxos, seems simple at a high
level, there are many subtle details that need to be taken care of to ensure consistency
even in the face of multiple failures and restarts. There are further details to be taken
care of, including how to change the cluster membership, that is, the set of nodes that
form the system, while the system is running (doing so carelessly can result in incon-
sistencies). Details of the above steps, including proofs of correctness, may be found
in references in the bibliographic notes for this chapter, available online.

23.8.4 Fault-Tolerant Services Using Replicated State Machines

A key requirement in many systems is for a service to be made fault tolerant. A lock
manager is an example of such a service, as is a key-value storage system.
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Figure 23.10 Replicated state machine.

A very powerful approach to making services fault tolerant is to model them as
“state machines” and then use the idea of replicated state machines that we describe
next.

A state machine receives inputs and has a stored state; it makes state transitions
on each input and may output some results along with the state transition. A replicated
state machine is a state machine that is replicated on multiple nodes to make it fault
tolerant. Intuitively, even if one of the nodes fails, the state and output can be obtained
from any of the nodes that are alive, provided all the state machines are in a consistent
state. The key to ensuring that the state machine replicas are consistent is to (a) require
the state machines to be deterministic, and (b) ensure that all replicas get exactly the
same input in the same order.

To ensure that all replicas get exactly the same input in the same order, we just
append the inputs to a replicated log, using, for example, techniques we saw earlier in
Section 23.8.3. As soon as a log entry is determined to be committed, it can be given
as input to the state machine, which can then process it.

Figure 23.10 depicts a replicated state machine based on a replicated log. When a
client issues a command, such as y ← 7 in the figure, the command is sent to the leader,
where the command is appended to the log. The leader then replicates the command
to the logs at the followers. Once a majority have confirmed that the command has
been replicated in their logs, the leader declares the command committed and applies
the command to its state machine. It also informs the followers of the commit, and the
followers then apply the command to their state machine.

In the example in Figure 23.10, the state machine merely records the value of the
updated variable; but in general, the state machine may execute any other actions. The
actions are, however, required to be deterministic, so all state machines are in exactly
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the same state when they have executed the same set of commands; the order of exe-
cution of commands will be the same since commands are executed in the log order.

Commands such as lock request must return a status to the caller. The status can
be returned from any one of the replicas where the command is performed. Most im-
plementations return the status from the leader node, since the request is sent to the
leader, and the leader is also the first node to know when a log record has been com-
mitted (replicated to a majority of the nodes).

We now consider two applications that can be made fault-tolerant using the repli-
cated state machine concept.

We first consider how to implement a fault-tolerant lock manager. A lock manager
gets commands, namely, lock requests and releases, and maintains a state (lock table).
It also gives output (lock grants or rollback requests on deadlock) on processing inputs
(lock requests or releases). Lock managers can easily be coded to be deterministic,
that is, given the same input, the state and output will be the same even if the code is
executed again on a different node.

Thus, we can take a centralized implementation of a lock manager and run it on
each node. Lock requests and releases are appended to a replicated log using, for ex-
ample, the Raft protocol. Once a log entry is committed, the corresponding command
(lock request or release) can be processed, in order, by the lock manager code at each
replica. Even if some of the replicas fail, the other replicas can continue processing as
long as a majority are up and connected.

Now consider the issue of implementing a fault-tolerant key-value store. A single-
node storage system can be modeled as a state machine that supports put() and get()
operations. The storage system is treated as a state machine, and the state machine is
run on multiple nodes.

The put() operations are appended to the log using a consensus protocol and are
processed when the consensus protocol declares the corresponding log records to be
committed (i.e., replicated to a majority of the nodes).

If the consensus protocol uses leaders, get() operations need not be logged, and
need to be executed only on the leader. To ensure that a get() operation sees the most
recent put() on the same data item, all put() operations on the same data item that
precede the get() operation in the log must be committed before the get() operation
is processed. (If a consensus protocol does not use a leader, get() operations can also
be logged and executed by at least one of the replicas which returns the value to the
caller.)

Google’s Spanner is an example of a system that uses the replicated state machine
approach to creating a fault-tolerant implementation of a key-value storage system and
a lock manager.

To ensure scalability, Spanner breaks up data into partitions, each of which has a
subset of the data. Each partition has its data replicated across multiple nodes. Each
node runs two state machines: one for the key-value storage system, and one for the
lock manager. The set of replicas for a particular partition are called a Paxos group; one
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of the nodes in a Paxos group acts as the Paxos group leader. Lock manager operations,
as well as key-value store operations for a particular partition, are initiated at the Paxos
group leader for that partition. The operations are appended to a log, which is replicated
to the other nodes in the Paxos group using the Paxos consensus protocol.2 Requests
are applied in order at each member of the Paxos group, once they are committed.

As an optimization, get() operations are not logged, and executed only at the leader
as described earlier. As a further optimization, Spanner allows reads to run as of a
particular point in time, allowing reads to be executed at any replica of the partition (in
other words, any other member of the Paxos group) that is sufficiently up to date, based
on the multiversion two-phase locking protocol described earlier in Section 23.5.1.

23.8.5 Two-Phase Commit Using Consensus

Given a consensus protocol implementation, we can use it to create a non-blocking two-
phase commit implementation. The idea is simple: instead of a coordinator recording
its commit or abort decision locally, it uses a consensus protocol to record its decision
in a replicated log. Even if the coordinator subsequently fails, other participants in the
consensus protocol know about the decision, so the blocking problem is avoided.

In case the coordinator fails before making a decision for a transaction, a new
coordinator can first check the log to see if a decision was made earlier, and if not
it can make a commit/abort decision and use the consensus protocol to record the
decision.

For example, in the Spanner system developed by Google, a transaction may span
multiple partitions. Two-phase commit is initiated by a client and coordinated by the
Paxos group leader at one of the partitions where the transaction executed. All other
partitions where an update was performed acts as a participant in the two-phase commit
protocol. Prepare and commit messages are sent to the Paxos group leader node of each
of the partitions; recall that two-phase commit participants as well as coordinators
record decisions in their local logs. These decisions are recorded by each leader, using
consensus involving all the other nodes in its Paxos group.

If a Paxos group member other than the leader dies, the leader can continue pro-
cessing the two-phase commit steps, as long as a majority of the group nodes are up and
connected. If a Paxos group leader fails, one of the other group members takes over as
the group leader. Note that all the state information required to continue commit pro-
cessing is available to the new leader. Log records written during commit processing
are available since the log is replicated. Also, recall from Section 23.8.4 that Spanner
makes the lock manager fault tolerant by using the replicated state machine concept.
Thus, a consistent replica of the lock table is also available with the new leader. Thus,
the two-phase commit steps of both the coordinator and the participants can continue
to be executed even if some nodes fail.

2The Multi-Paxos version of Paxos is used, but we shall just refer to it as Paxos for simplicity.



1162 Chapter 23 Parallel and Distributed Transaction Processing

23.9 Summary

• A distributed database system consists of a collection of sites or nodes, each of
which maintains a local database system. Each node is able to process local trans-
actions: those transactions that access data in only that single node. In addition, a
node may participate in the execution of global transactions: those transactions
that access data in several nodes. Transaction managers at each node manage
access to local data, while the transaction coordinator coordinates execution of
global transactions across multiple nodes.

• A distributed system may suffer from the same types of failure that can afflict a
centralized system. There are, however, additional failures with which we need to
deal in a distributed environment, including the failure of a node, the failure of a
link, loss of a message, and network partition. Each of these problems needs to be
considered in the design of a distributed recovery scheme.

• To ensure atomicity, all the nodes in which a transaction T executed must agree
on the final outcome of the execution. T either commits at all nodes or aborts at
all nodes. To ensure this property, the transaction coordinator of T must execute a
commit protocol. The most widely used commit protocol is the two-phase commit
protocol.

• The two-phase commit protocol may lead to blocking, the situation in which the
fate of a transaction cannot be determined until a failed node (the coordinator)
recovers. We can use distributed consensus protocols, or the three-phase commit
protocol, to reduce the risk of blocking.

• Persistent messaging provides an alternative model for handling distributed trans-
actions. The model breaks a single transaction into parts that are executed at differ-
ent databases. Persistent messages (which are guaranteed to be delivered exactly
once, regardless of failures), are sent to remote nodes to request actions to be
taken there. While persistent messaging avoids the blocking problem, application
developers have to write code to handle various types of failures.

• The various concurrency-control schemes used in a centralized system can be mod-
ified for use in a distributed environment. In the case of locking protocols, the only
change that needs to be incorporated is in the way that the lock manager is imple-
mented. Centralized lock managers are vulnerable to overloading and to failures.
Deadlock detection in a distributed-lock-manager environment requires coopera-
tion between multiple nodes, since there may be global deadlocks even when there
are no local deadlocks.

• The timestamp ordering and validation based protocols can also be extended to
work in a distributed setting. Timestamps used to order transactions need to be
made globally unique.
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• Protocols for handling replicated data must ensure consistency of data. Lineariz-
ability is a key property that ensures that concurrent reads and writes to replicas
of a single data item can be serialized.

• Protocols for handling replicated data include the primary copy, majority, biased,
and quorum consensus protocols. These have different trade-offs in terms of cost
and ability to work in the presence of failures.

• The majority protocol can be extended by using version numbers to permit trans-
action processing to proceed even in the presence of failures. While the protocol
has a significant overhead, it works regardless of the type of failure. Less-expensive
protocols are available to deal with node failures, but they assume network parti-
tioning does not occur.

• To provide high availability, a distributed database must detect failures, reconfigure
itself so that computation may continue, and recover when a processor or a link
is repaired. The task is greatly complicated by the fact that it is hard to distinguish
between network partitions and node failures.

• Globally consistent and unique timestamps are key to extending multiversion two-
phase locking and snapshot isolation to a distributed setting.

• The CAP theorem indicates that one cannot have consistency and availability in the
face of network partitions. Many systems tradeoff consistency to get higher avail-
ability. The goal then becomes eventual consistency, rather than ensuring consis-
tency at all times. Detecting inconsistency of replicas can be done by using version
vector schemes and Merkle trees.

• Many database systems support asynchronous replication, where updates are prop-
agated to replicas outside the scope of the transaction that performed the update.
Such facilities must be used with great care, since they may result in nonserializ-
able executions.

• Some of the distributed algorithms require the use of a coordinator. To provide
high availability, the system must maintain a backup copy that is ready to assume
responsibility if the coordinator fails. Another approach is to choose the new coor-
dinator after the coordinator has failed. The algorithms that determine which node
should act as a coordinator are called election algorithms. Distributed coordina-
tion services such as ZooKeeper support coordinator selection in a fault-tolerant
manner.

• Distributed consensus algorithms allow consistent updates of replicas, even in the
presence of failures, without requiring the presence of a coordinator. Coordina-
tors may still be used for efficiency, but failure of a coordinator does not affect
correctness of the protocols. Paxos and Raft are widely used consensus protocols.
Replicated state machines, which are implemented using consensus algorithms,
can be used to build a variety of fault-tolerant services.
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Review Terms

• Distributed transactions

° Local transactions

° Global transactions

• Transaction manager

• Transaction coordinator

• System failure modes

• Network partition

• Commit protocols

• Two-phase commit protocol (2PC)

° Ready state

° In-doubt transactions

° Blocking problem

• Distributed consensus

• Three-phase commit protocol
(3PC)

• Persistent messaging

• Concurrency control

• Single lock manager

• Distributed lock manager

• Deadlock handling

° Local wait-for graph

° Global wait-for graph

° False cycles

• Lock leases

• Timestamping

• Replicated data

• Linearizability

• Protocols for replicas

° Primary copy

° Majority protocol

° Biased protocol

° Quorum consensus protocol

• Robustness

° Majority-based approach

° Read one, write all

° Read one, write all available

° Node/Site reintegration

• External consistency

• Commit wait

• CAP theorem

• BASE properties

• Asynchronous replication

• Lazy propagation

• Master–slave replication

• Multimaster (update-anywhere)
replication

• Asynchronous view maintenance

• Eventual consistency

• Version-vector scheme

• Merkle tree

• Coordinator selection

• Backup coordinator

• Election algorithms

• Bully algorithm

• Term

• Distributed consensus protocol

• Paxos

° Proposers

° Acceptors

° Learners

• Raft
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• Leaders

• Followers

• Replicated state machine

• Fault tolerant lock manager

• Non-blocking two-phase commit

Practice Exercises

23.1 What are the key differences between a local-area network and a wide-area
network, that affect the design of a distributed database?

23.2 To build a highly available distributed system, you must know what kinds of
failures can occur.

a. List possible types of failure in a distributed system.

b. Which items in your list from part a are also applicable to a centralized
system?

23.3 Consider a failure that occurs during 2PC for a transaction. For each possible
failure that you listed in Exercise 23.2a, explain how 2PC ensures transaction
atomicity despite the failure.

23.4 Consider a distributed system with two sites, A and B. Can site A distinguish
among the following?

• B goes down.

• The link between A and B goes down.

• B is extremely overloaded and response time is 100 times longer than nor-
mal.

What implications does your answer have for recovery in distributed systems?

23.5 The persistent messaging scheme described in this chapter depends on time-
stamps. A drawback is that they can discard received messages only if they are
too old, and may need to keep track of a large number of received messages.
Suggest an alternative scheme based on sequence numbers instead of time-
stamps, that can discard messages more rapidly.

23.6 Explain the difference between data replication in a distributed system and the
maintenance of a remote backup site.

23.7 Give an example where lazy replication can lead to an inconsistent database
state even when updates get an exclusive lock on the primary (master) copy if
data were read from a node other than the master.

23.8 Consider the following deadlock-detection algorithm. When transaction Ti, at
site S1, requests a resource from Tj, at site S3, a request message with time-
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stamp n is sent. The edge (Ti, Tj, n) is inserted in the local wait-for graph of
S1. The edge (Ti, Tj, n) is inserted in the local wait-for graph of S3 only if Tj
has received the request message and cannot immediately grant the requested
resource. A request from Ti to Tj in the same site is handled in the usual man-
ner; no timestamps are associated with the edge (Ti, Tj). A central coordinator
invokes the detection algorithm by sending an initiating message to each site
in the system.

On receiving this message, a site sends its local wait-for graph to the co-
ordinator. Note that such a graph contains all the local information that the
site has about the state of the real graph. The wait-for graph reflects an instan-
taneous state of the site, but it is not synchronized with respect to any other
site.

When the controller has received a reply from each site, it constructs a
graph as follows:

• The graph contains a vertex for every transaction in the system.

• The graph has an edge (Ti, Tj) if and only if:

° There is an edge (Ti, Tj) in one of the wait-for graphs.

° An edge (Ti, Tj, n) (for some n) appears in more than one wait-for
graph.

Show that, if there is a cycle in the constructed graph, then the system is in a
deadlock state, and that, if there is no cycle in the constructed graph, then the
system was not in a deadlock state when the execution of the algorithm began.

23.9 Consider the chain-replication protocol, described in Section 23.4.3.2, which
is a variant of the primary-copy protocol.

a. If locking is used for concurrency control, what is the earliest point when
a process can release an exclusive lock after updating a data item?

b. While each data item could have its own chain, give two reasons it would
be preferable to have a chain defined at a higher level, such as for each
partition or tablet.

c. How can consensus protocols be used to ensure that the chain is
uniquely determined at any point in time?

23.10 If the primary copy scheme is used for replication, and the primary gets dis-
connected from the rest of the system, a new node may get elected as primary.
But the old primary may not realize it has got disconnected, and may get re-
connected subsequently without realizing that there is a new primary.

a. What problems can arise if the old primary does not realize that a new
one has taken over?

b. How can leases be used to avoid these problems?
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c. Would such a situation, where a participant node gets disconnected and
then reconnected without realizing it was disconnected, cause any prob-
lem with the majority or quorum protocols?

23.11 Consider a federated database system in which it is guaranteed that at most
one global transaction is active at any time, and every local site ensures local
serializability.

a. Suggest ways in which the federated database system can ensure that
there is at most one active global transaction at any time.

b. Show by example that it is possible for a nonserializable global schedule
to result despite the assumptions.

23.12 Consider a federated database system in which every local site ensures local
serializability, and all global transactions are read only.

a. Show by example that nonserializable executions may result in such a
system.

b. Show how you could use a ticket scheme to ensure global serializability.

23.13 Suppose you have a large relation r(A, B, C) and a materialized view
v = Aγsum(B)(r). View maintenance can be performed as part of each trans-
action that updates r, on a parallel/distributed storage system that supports
transactions across multiple nodes. Suppose the system uses two-phase com-
mit along with a consensus protocol such as Paxos, across geographically dis-
tributed data centers.

a. Explain why it is not a good idea to perform view maintenance as part of
the update transaction, if some values of attribute A are “hot” at certain
points in time, that is, many updates pertain to those values of A.

b. Explain how operation locking (if supported) could solve this problem.

c. Explain the tradeoffs of using asynchronous view maintenance in this
context.

Exercises

23.14 What characteristics of an application make it easy to scale the application
by using a key-value store, and what characteristics rule out deployment on
key-value stores?

23.15 Give an example where the read one, write all available approach leads to an
erroneous state.
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23.16 In the majority protocol, what should the reader do if it finds different values
from different copies, to (a) decide what is the correct value, and (b) to bring
the copies back to consistency? If the reader does not bother to bring the
copies back to consistency, would it affect correctness of the protocol?

23.17 If we apply a distributed version of the multiple-granularity protocol of Chap-
ter 18 to a distributed database, the site responsible for the root of the DAG
may become a bottleneck. Suppose we modify that protocol as follows:

• Only intention-mode locks are allowed on the root.

• All transactions are given the strongest intention-mode lock (IX) on the
root automatically.

Show that these modifications alleviate this problem without allowing any non-
serializable schedules.

23.18 Discuss the advantages and disadvantages of the two methods that we pre-
sented in Section 23.3.4 for generating globally unique timestamps.

23.19 Spanner provides read-only transactions a snapshot view of data, using multi-
version two-phase locking.

a. In the centralized multi-version 2PL scheme, read-only transactions
never wait. But in Spanner, reads may have to wait. Explain why.

b. Using an older timestamp for the snapshot can reduce waits, but has
some drawbacks. Explain why, and what the drawbacks are.

23.20 Merkle trees can be made short and fat (like B+-trees) or thin and tall (like
binary search trees). Which option would be better if you are comparing data
across two sites that are geographically separated, and why?

23.21 Why is the notion of term important when an election is used to choose a co-
ordinator? What are the analogies between elections with terms and elections
used in a democracy?

23.22 For correct execution of a replicated state machine, the actions must be deter-
ministic. What could happen if an action is non-deterministic?

Further Reading

Textbook coverage of distributed transaction processing, including concurrency con-
trol and the two-phase and three-phase commit protocols, is provided by [Bernstein
and Goodman (1981)] and [Bernstein and Newcomer (2009)]. Textbook discussions
of distributed databases are offered by [Ozsu and Valduriez (2010)]. A collection of
papers on data management on cloud systems is in [Ooi and Parthasarathy (2009)].
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The implementation of the transaction concept in a distributed database is pre-
sented by [Gray (1981)] and [Traiger et al. (1982)]. The 2PC protocol was developed
by [Lampson and Sturgis (1976)]. The three-phase commit protocol is from [Skeen
(1981)]. Techniques for non-blocking two-phase commit based on consensus, called
Paxos Commit, are described in [Gray and Lamport (2004)].

Chain replication was initially proposed by [van Renesse and Schneider (2004)]
and an optimized version of was proposed by [Terrace and Freedman (2009)].

Distributed optimistic concurrency control is described in [Agrawal et al. (1987)],
while distributed snapshot isolation is described in [Binnig et al. (2014)] and [Schenkel
et al. (1999)]. The externally consistent distributed multi-version 2PL scheme used in
Spanner is described in [Corbett et al. (2013)].

The CAP theorem was conjectured by [Brewer (2000)], and was formalized and
proved by [Gilbert and Lynch (2002)]. [Cooper et al. (2008)] describe Yahoo!’s
PNUTS system, including its support for asynchronous maintenance of replicas us-
ing a publish-subscribe system. Parallel view maintenance is described in [Chen et al.
(2004)] and [Zhang et al. (2004)], while asynchronous view maintenance is described
in [Agrawal et al. (2009)]. Transaction processing in federated database systems is
discussed in [Mehrotra et al. (2001)].

Paxos is described in [Lamport (1998)]; Paxos is based on features from several
earlier protocols, reference in [Lamport (1998)]. Google’s Chubby lock service, which
is based on Paxos, is described by [Burrows (2006)]. The widely used ZooKeeper sys-
tem for distributed coordination is described in [Hunt et al. (2010)], and the consensus
protocol (also known as atomic broadcast protocol) used in ZooKeeper is described
in [Junqueira et al. (2011)]. The Raft consensus protocol is described in [Ongaro and
Ousterhout (2014)].
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PART 9

ADVANCED TOPICS
Chapter 24 provides further details about the index structures we covered in Chapter
14. In particular, this chapter provides detailed coverage of the LSM tree and its vari-
ants, bitmap indices, and spatial indexing, all of which were covered in brief in Chapter
14. The chapter also provides detailed coverage of dynamic hashing techniques.

Chapter 25 discusses a number of tasks involved in application development. Ap-
plications can be made to run significantly faster by performance tuning, which con-
sists of finding and eliminating bottlenecks and adding appropriate hardware such as
memory or disks. Application performance is evaluated using benchmarks, which are
standardized sets of tasks that help to characterize the performance of database sys-
tems. Another important aspect of application development is testing, which requires
the generation of database states and test inputs, followed by checking that the ac-
tual outputs of a query or a program on the test input match the expected outputs.
Lastly, standards are very important for application development. A variety of stan-
dards have been proposed that affect database-application development. We outline
several of these standards in this chapter.

Chapter 26 covers blockchain technology from a database perspective. This chap-
ter identifies the ways in which blockchain databases differ from the traditional
databases covered elsewhere in this text and shows how these distinguishing features
are implemented. Although blockchain systems are often associated with Bitcoin, this
chapter goes beyond Bitcoin-style algorithms and implementation to focus on alterna-
tives that are more suited to an enterprise database environment.
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CHAP T E R 24
Advanced Indexing Techniques

We studied the concept of indexing, as well as a number of different index structures in
Chapter 14. While some index structures, such as B+-trees, were covered in detail, oth-
ers such as hashing, write-optimized indices, bitmap indices, and spatial indices were
only briefly outlined in Chapter 14. In this chapter we provide further details of these
index structures. We provide detailed coverage of the LSM tree and its variants. We
then provide a detailed description of bitmap indices. Next, we provide more detailed
coverage of spatial indexing, covering quad trees and R-trees in more detail. Finally, we
cover hashing, with detailed coverage of dynamic hashing techniques.

24.1 Bloom Filter

A Bloom filter is a probabilistic data structure that can check for membership of a
value in a set using very little space, but at a small risk of overestimating the set of
elements that are in the set. A Bloom filter is basically a bitmap. If the set has n values,
the associated bitmap has a few times n (typically 10n) bits; the Bloom filter also has
associated with it several hash functions. We assume initially that there is only one
hash function h().

The bits in the bitmap are all initially set to 0; subsequently, each value in the set
is read, and the hash function h(v) is computed on the element v, with the range of the
function being 1 to 10n. The bit at position h(v) is then set to 1. This is repeated for
every element v. To check if a particular value v is present in the set, the hash function
h(v) is computed. If bit h(v) in the Bloom filter is equal to 0, we can infer that v cannot
possibly be in the set. However, if bit h(v) is equal to 1, v may be present in the set.
Note that with some probability, the bit h(v) may be 1 even if v is not present, if some
other value v′, present in the set has h(v′) = h(v). Thus, a lookup for v results in a false
positive.

To reduce the chance of false positives, Bloom filters use k independent hash func-
tions hi(), i = 1..k, for some k > 1; for each value v in the set, bits corresponding to
hi(v), i = 1..k are all set to 1 in the bitmap. When querying the Bloom filter with a
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given value v the same k hash functions are used to identify k bit locations; the value v
is determined to be absent if even one of these bits has a 0 value. Otherwise the value
is judged to be potentially present. For example, if the bitmap has 10n bits, where n is
the number of values in the set, and k = 7 hash functions are used, the false positive
rate would be about 1%.

24.2 Log-Structured Merge Tree and Variants

As we saw in Section 14.8, B+-tree indices are not efficient for workloads with a very
high number of writes, and alternative index structures have been proposed to han-
dle such workloads. We saw a brief description of two such index structures, the log-
structured merge tree or LSM tree and its variants, in Section 14.8.1, and the buffer tree,
in Section 14.8.2. In this section we provide further details of the LSM tree and its vari-
ants. To help with the discussions, we repeat some of the basic material we presented
in Section 14.8.1.

The key idea of the log-structured merge tree (LSM tree) is to replace random I/O
operations during tree inserts, updates, and deletes with a smaller number of sequen-
tial I/O operations. Our initial description focuses on index inserts and lookups; we
describe how to handle updates and deletes later in the section.

An LSM tree consists of several B+-trees, starting with an in-memory tree, called
L0, and on-disk trees L1, L2,… , Lk for some k, where k is called the level. Figure 24.1
depicts the structure of an LSM tree for k = 3.

An index lookup is performed by using separate lookup operations on each of the
trees L0,… , Lk, and merging the results of the lookups. (We assume here that there
are no updates or deletes; we will discuss how to perform lookups in the presence of
updates/deletes later.)

L0

L1

L2

L3

Memory

Disk

Figure 24.1 Log-structured merge tree with three levels.
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24.2.1 Insertion into LSM Trees

When a record is first inserted into an LSM tree, it is inserted into the in-memory B+-
tree structure L0. A fairly large amount of memory space is allocated for this tree. As the
tree grows to fill the memory allocated to it, we need to move data from the in-memory
structure to a B+-tree on disk.

If tree L1 is empty, the entire in-memory tree L0 is written to disk to create the
initial tree L1. However, if L1 is not empty, the leaf level of L0 is scanned in increasing
key order, and entries are merged with the leaf level entries of L1 (also scanned in
increasing key order). The merged entries are used to create a new B+-tree using the
bottom-up build process. The new tree with the merged entries then replaces the old L1.
In either case, after entries of L0 have been moved to L1, all entries in L0 are deleted.
Inserts can then be made to the now empty L0.

Note that all entries in the leaf level of the old L1 tree, including those in leaf nodes
that do not have any updates, are copied to the new tree instead of being inserted into
the existing L1 tree node. This gives the following benefits:

• The leaves of the new tree are sequentially located, avoiding random I/O during
subsequent merges.

• The leaves are full, avoiding the overhead of partially occupied leaves that can
occur with page splits.

There is, however, a cost to using the LSM structure: the entire contents of the tree are
copied each time a set of entries from L0 are copied into L1.

If the tree structure is implemented on top of a distributed file system (Section
21.6), copying data to a new tree is often unavoidable, since most distributed file sys-
tems do not support updates to an already created block.

To ensure we get a benefit for cases where the index size on disk is much bigger
than the in-memory index, the maximum size of L1 is chosen as k times the target size
of L0, for some k. Similarly, the maximum size of each Li+1 is set to k times the target
size of Li. Once a particular Li reaches its maximum size, its entries are merged into the
next component Li+1. When Li+1 reaches its target size, its entries are in turn merged
into Li+2, and so on.

Note that if each leaf of Li has m entries, m∕k entries would map to a single leaf
node of Li+1. The value of k is chosen to ensure that m∕k is some reasonable number,
say 10. Let M denote the size of L0. Then, the size of a tree at level Li is kiM . The
total number of levels r is thus roughly logk(I∕M) where I is the total size of the index
entries.

Let us now consider the number of I/O operations required with a multiple-level
LSM tree. At each Li, m∕k inserts are performed using only one I/O operation. On
the other hand, each entry gets inserted once at each level Li. Thus, the total number
of I/O operations for each insert is (k∕m)logk(I∕M). Thus, as long as the number of
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levels r = logk(I∕M) is less than m∕k, the overall number of I/O operations per insert
is reduced by using an LSM tree as compared to direct insertion into a B+-tree.

If, for example, r = 10 and k = 10, the in-memory index needs to be greater than
1% of the total index size to get a benefit in terms of the number of I/O operations
required for inserts. (As before, the benefit of reduced seeks is available even if the L0
is significantly smaller.)

If the number of levels is greater than m∕k, even if there is no benefit in terms
of number of I/O operations, there can still be savings since sequential I/O is used
instead of random I/O. In Section 24.2.4 we describe a variant of the LSM tree which
further reduces the overhead on write operations, at the cost of adding overhead on
read operations.

One way to avoid creating large LSM trees with many levels is to range partition the
relation and create separate LSM trees on each partition. Such partitioning is natural
in a parallel environment, as we saw earlier in Section 21.2. In particular, in such en-
vironments, a partition can be dynamically repartitioned into smaller pieces whenever
it becomes too large, as we saw in Section 21.3.3. With such repartitioning, the size of
each LSM tree can be kept small enough to avoid having a large number of levels. There
is a price for such partitioning: each partition requires its own L0 tree in memory. As a
result, although it can be used in a centralized setting, the partitioning approach best
fits a parallel environment where resources such as processing nodes can be added as
the load increases.

24.2.2 Rolling Merges

We assumed for simplicity that when a particular level is full, its entries are entirely
merged with the next level. This would result in more I/O load during merges with
an unused I/O capacity between merges. To avoid this problem, merging is done on a
continuous basis; this is called rolling merge.

With rolling merge, a few pages of Li are merged into corresponding pages of Li+1
at a time, and removed from Li. This is done whenever Li becomes close to its target
size, and it results in Li shrinking a bit to return to its target size. When Li grows again,
the rolling merge restarts from a point at the leaf level of Li just after where the earlier
rolling merge stopped, so the scan is sequential. When the end of the Li tree is reached,
the scan starts again at the beginning of the tree. Such a merge is called a rolling merge
since records are moved from one level to another on a continuous basis.

The number of leaves merged at a time is kept high enough to ensure that the seek
time is small compared to the time to transfer data from and to disk.

24.2.3 Handling Deletes and Updates

So far we have only described inserts and lookups. Deletes are handled in an interesting
manner. Instead of directly finding an index entry and deleting it, deletion results in
insertion of a new deletion entry that indicates which index entry is to be deleted. The
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process of inserting a deletion entry is identical to the process of inserting a normal
index entry.

However, lookups have to carry out an extra step. As mentioned earlier, lookups
retrieve entries from all the trees and merge them in sorted order of key value. If there
is a deletion entry for some entry, both of them would have the same key value. Thus,
a lookup would find both the deletion entry and the original entry for that key, which
is to be deleted. If a deletion entry is found, the to-be-deleted entry should be filtered
out and not returned as part of the lookup result.

When trees are merged, if one of the trees contains an entry, and the other had
a matching deletion entry, the entries get matched up during the merge (both would
have the same key), and are both discarded.

Updates are handled in a manner similar to deletes, by inserting an update entry.
Lookups need to match update entries with the original entries and return the latest
value. The update is actually applied during a merge, when one tree has an entry and
another has its matching update entry; the update is applied during the merge, and the
update entry is discarded.

24.2.4 The Stepped-Merge Index

We now consider a variant of the LSM tree, which has multiple trees at each level
instead of one tree per level and performs inserts in a slightly different manner. This
structure is shown in Figure 24.2. We call the structure a stepped-merge index, following
the terminology in an early paper that introduced it. In the developer community, the
basic LSM tree, the stepped-merge index, and several other variants are all referred to as
LSM trees. We use the terms stepped-merge index and basic LSM tree to clearly identify
which variant we are referring to.
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24.2.4.1 Insertion Algorithm

In the stepped-merge index, incoming data are initially stored in memory, in an L0 tree,
in a manner similar to the LSM tree. However, when the tree reaches its maximum size,
instead of merging it into an L1 tree, the in-memory L0 tree is written to disk. When
the in-memory tree again reaches its maximum size, it is again written to disk. Thus,
we may have multiple L0 trees on disk, which we shall refer to as L1

0, L2
0 and so forth.

Each of the Li
0 trees is a B+-tree and can be written to disk using only sequential I/O

operations.
If this process is repeated, after a while we would have a large number of trees,

each as large as memory, stored on disk. Lookups would then have to pay a high price,
since they would have to search through each of the tree structures, incurring separate
I/O costs on each search.

To limit the overhead on lookups, once the number of on-disk trees at a level Li
reaches some limit k, all the trees at a level are merged together into one combined
new tree structure at the next level Li+1. The leaves of the trees at level Li are read
sequentially, and the keys merged in sorted order, and the level Li+1 tree is constructed
using standard techniques for bottom-up construction of B+-trees. As before, the merge
operation avoids random I/O operations, since it reads the individual tree structures
sequentially and writes the resultant merged tree also sequentially.

Once a set of trees are merged into a single new tree, future queries can search the
merged tree; the original trees can then be deleted (after ensuring any ongoing searches
have completed).

The benefit of the stepped-merge index scheme as compared to the basic LSM tree
is that index entries are written out only once per level. With the basic LSM tree, each
time a tree at level Li is merged into a tree at level Li+1, the entire contents of the Li+1
tree is read and written back to disk. Thus, on average, each record is read and written
back k∕2 times at each level of an LSM tree for a total of klogk(I∕M) I/O operations. In
contrast, with stepped-merge index, each record is written to disk once per layer, and
read again when merging into the next layer, for a total of approximately 2logk(I∕M)
I/O operations. Thus, the stepped-merge index incurs significantly less cost for updates.

The total number of bytes written (across all levels) on account of inserting an
entry, divided by the size of entry, is called the write amplification. To calculate the
write amplification of the LSM trees and the stepped-merge index, we can modify the
above formulae for I/O operations by ignoring the reads. For a B+-tree where each leaf
gets on average only one update before it is written back, the write amplification would
be the size of the page divided by the size of the index entry.

For a B+-tree, if a page has 100 entries, the write amplification would be 100. With
k = 5, and I = 100M , we would have log5(100) = 3 levels. The write amplification of
an LSM tree would then be 5∕2×3 = 7.5. The write amplification of the stepped-merge
index would be 3. With k = 10, the tree would have log10(100) = 2 levels, leading to a
write amplification of 2 for stepped-merge index, and 10 for an LSM tree.
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Note that like the basic LSM tree, the stepped-merge index also requires no ran-
dom I/O operations during insertion, in contrast to a B+-tree insertion. Thus, the per-
formance of B+-trees would be worse than what the write amplification number above
indicates.

Merging can be optimized as follows: While merging k trees at a particular level
Li, into a level Li+1 tree, trees at levels Lj, j < i can also be merged in at the same time.
Entries in these trees can thus entirely skip one or more levels of the stepped-merge
index. Further, if the system has idle capacity, trees at a level Li can be merged even
if there are fewer than k trees at that level. In a situation where there is a long period
of time with very few inserts, and the system load is light, trees across all levels could
potentially get merged into a single tree at some level r.

24.2.4.2 Lookup Operations Using Bloom Filters

Lookup operations in stepped-merge index have to separately search each of the trees.
Thus, compared to the basic LSM scheme, the stepped-merge index increases the bur-
den on lookups, since in the worst case lookups need to access k trees at each level,
leading to a total of k ∗ logk(I∕M) tree lookups, instead of logk(I∕M) tree lookups in
the worst case with a basic LSM tree.

For workloads with a significant fraction of reads, this overhead can be unaccept-
able. For example, with the stepped-merge index with I = 100M and k = 5, a single
lookup requires 15 tree traversals, while the LSM tree would require 3 tree traversals.
Note that for the common case where each key value occurs in only one tree, only one
of the traversals would find a given search key, while all the other traversals would fail
to find the key.

To reduce the cost of point lookups (i.e., lookups of a given key value), most sys-
tems use a Bloom filter to check if a tree can possibly contain the given key value. One
Bloom filter is associated with each tree, and it is built on the set of key values in the
tree. To check if a particular tree may contain a search key v, the key v is looked up in
the Bloom filter. If the Bloom filter indicates that the key value is absent, it is definitely
not present in the tree, and lookup can skip that tree. Otherwise, the key value may be
present in the tree, which must be looked up.

A Bloom filter with 10n bits, where the tree has n elements, and using 7 hash
functions would give a false positive rate of 1 percent. Thus, for a lookup on a key that
is present in the index, on average just slightly more than one tree would be accessed.
Thus, lookup performance would be only slightly worse than on a regular B+-tree.

The Bloom filter check thus works very well for point lookups, allowing a significant
fraction of the trees to be skipped, as long as sufficient memory is available to store all
the Bloom filters in memory. With I key values in the index, approximately 10I bits of
memory will be required. To reduce the main memory overhead, some of the Bloom
filters may be stored on flash storage.

Note that for range lookups, the Bloom filter optimization cannot be used, since
there is no unique hash value. Instead, all trees must be accessed separately.
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24.2.5 LSM Trees For Flash Storage

LSM trees were initially designed to reduce the write and seek overheads of hard disks.
Flash disks have a relatively low overhead for random I/O operations since they do
not require seek, and thus the benefit of avoiding random I/O that LSM tree variants
provide is not particularly important with flash disks.

However, recall that flash memory does not allow in-place update, and writing even
a single byte to a page requires the whole page to be rewritten to a new physical location;
the original location of the page needs to be erased eventually, which is a relatively
expensive operation. The reduction in write amplification using LSM tree variants, as
compared to traditional B+-trees, can provide substantial performance benefits when
LSM trees are used with flash storage.

24.3 Bitmap Indices

As we saw in Section 14.9, a bitmap index is a specialized type of index designed for
easy querying on multiple keys. Bitmaps work best for attributes that take only a small
number of distinct values.

For bitmap indices to be used, records in a relation must be numbered sequentially,
starting from, say, 0. Given a number n, it must be easy to retrieve the record numbered
n. This is particularly easy to achieve if records are fixed in size and allocated on con-
secutive blocks of a file. The record number can then be translated easily into a block
number and a number that identifies the record within the block.

Recall that column-oriented storage, described in Section 13.6, stores attributes in
arrays, allowing efficient access of the attribute of the ith record, for any given i. Bitmap
indices are thus particularly useful with columnar storage.

We use as a running example a relation instructor info, which has an attribute gen-
der, which can take only values m (male) or f (female), and an attribute income level,
where income has been broken up into 5 levels: L1: 0-9999, L2: 10, 000-19, 999, L3:
20, 000-39, 999, L4: 40, 000-74, 999, and L5: 75, 000 −∞.

24.3.1 Bitmap Index Structure

As we saw in Section 14.9, a bitmap is simply an array of bits. In its simplest form, a
bitmap index on the attribute A of relation r consists of one bitmap for each value that
A can take. Each bitmap has as many bits as the number of records in the relation. The
ith bit of the bitmap for value vj is set to 1 if the record numbered i has the value vj for
attribute A. All other bits of the bitmap are set to 0.

In our example, there is one bitmap for the value m and one for f. The ith bit of
the bitmap for m is set to 1 if the gender value of the record numbered i is m. All other
bits of the bitmap for m are set to 0. Similarly, the bitmap for f has the value 1 for bits
corresponding to records with the value f for the gender attribute; all other bits have



24.3 Bitmap Indices 1183

ID income_levelgender

76766

22222

12121

15151

58583

m

m

f

f

f

L1

L1

L2

L4

L3

record
number

1

0

2

3

4

m

f

Bitmaps for gender

10010

01101

Bitmaps for
income_level

L1

L2

L3

L4

L5

10100

01000

00001

00010

00000

Figure 24.3 Bitmap indices on relation instructor info.

the value 0. Figure 24.3 shows an example of bitmap indices on a relation instructor
info

We now consider when bitmaps are useful. The simplest way of retrieving all
records with value m (or value f) would be to simply read all records of the relation and
select those records with value m (or f, respectively). The bitmap index doesn’t really
help to speed up such a selection. While it would allow us to read only those records
for a specific gender, it is likely that every disk block for the file would have to be read
anyway.

In fact, bitmap indices are useful for selections mainly when there are selections
on multiple keys. Suppose we create a bitmap index on attribute income level, which
we described earlier, in addition to the bitmap index on gender.

Consider now a query that selects women with income in the range $10,000 to
$19, 999. This query can be expressed as

select *
from instructor info
where gender = 'f' and income level = 'L2';

To evaluate this selection, we fetch the bitmaps for gender value f and the bitmap for
income level value L2 and perform an intersection (logical-and) of the two bitmaps. In
other words, we compute a new bitmap where bit i has value 1 if the ith bit of the two
bitmaps are both 1 and has a value 0 otherwise. In the example in Figure 24.3, the
intersection of the bitmap for gender = 𝖿 (01101) and the bitmap for income level = L2
(01000) gives the bitmap 01000.

Since the first attribute can take two values, and the second can take five values, we
would expect only about 1 in 10 records, on an average, to satisfy a combined condition
on the two attributes. If there are further conditions, the fraction of records satisfying
all the conditions is likely to be quite small. The system can then compute the query
result by finding all bits with value 1 in the intersection bitmap and retrieving the cor-
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responding records. If the fraction is large, scanning the entire relation would remain
the cheaper alternative.

Another important use of bitmaps is to count the number of tuples satisfying a
given selection. Such queries are important for data analysis. For instance, if we wish
to find out how many women have an income level L2, we compute the intersection of
the two bitmaps and then count the number of bits that are 1 in the intersection bitmap.
We can thus get the desired result from the bitmap index, without even accessing the
relation.

Bitmap indices are generally quite small compared to the actual relation size. Rec-
ords are typically at least tens of bytes to hundreds of bytes long, whereas a single bit
represents the record in a bitmap. Thus, the space occupied by a single bitmap is usually
less than 1 percent of the space occupied by the relation. For instance, if the record
size for a given relation is 100 bytes, then the space occupied by a single bitmap will
be 1

8
of 1 percent of the space occupied by the relation. If an attribute A of the relation

can take on only one of eight values, a bitmap index on attribute A would consist of
eight bitmaps, which together occupy only 1 percent of the size of the relation.

Deletion of records creates gaps in the sequence of records, since shifting records
(or record numbers) to fill gaps would be extremely expensive. To recognize deleted
records, we can store an existence bitmap, in which bit i is 0 if record i does not exist and
1 otherwise. We shall see the need for existence bitmaps in Section 24.3.2. Insertion of
records should not affect the sequence numbering of other records. Therefore, we can
do insertion either by appending records to the end of the file or by replacing deleted
records.

24.3.2 Efficient Implementation of Bitmap Operations

We can compute the intersection of two bitmaps easily by using a for loop: the ith
iteration of the loop computes the and of the ith bits of the two bitmaps. We can speed
up computation of the intersection greatly by using bit-wise and instructions supported
by most computer instruction sets. A word usually consists of 32 or 64 bits, depending
on the architecture of the computer. A bit-wise and instruction takes two words as
input and outputs a word where each bit is the logical and of the bits in corresponding
positions of the input words. What is important to note is that a single bit-wise and
instruction can compute the intersection of 32 or 64 bits at once.

If a relation had 1 million records, each bitmap would contain 1 million bits, or
equivalently 128 kilobytes. Only 31,250 instructions are needed to compute the inter-
section of two bitmaps for our relation, assuming a 32-bit word length. Thus, computing
bitmap intersections is an extremely fast operation.

Just as bitmap intersection is useful for computing the and of two conditions,
bitmap union is useful for computing the or of two conditions. The procedure for
bitmap union is exactly the same as for intersection, except we use bit-wise or instruc-
tions instead of bit-wise and instructions.
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The complement operation can be used to compute a predicate involving the nega-
tion of a condition, such as not (income-level = L1). The complement of a bitmap is
generated by complementing every bit of the bitmap (the complement of 1 is 0 and the
complement of 0 is 1). It may appear that not (income level = L1) can be implemented
by just computing the complement of the bitmap for income level L1. If some records
have been deleted, however, just computing the complement of a bitmap is not suffi-
cient. Bits corresponding to such records would be 0 in the original bitmap but would
become 1 in the complement, although the records don’t exist. A similar problem also
arises when the value of an attribute is null. For instance, if the value of income level
is null, the bit would be 0 in the original bitmap for value L1 and 1 in the complement
bitmap.

To make sure that the bits corresponding to deleted records are set to 0 in the
result, the complement bitmap must be intersected with the existence bitmap to turn
off the bits for deleted records. Similarly, to handle null values, the complement bitmap
must also be intersected with the complement of the bitmap for the value null.1

Counting the number of bits that are 1 in a bitmap can be done quickly by a clever
technique. We can maintain an array with 256 entries, where the ith entry stores the
number of bits that are 1 in the binary representation of i. Set the total count initially
to 0. We take each byte of the bitmap, use it to index into this array, and add the
stored count to the total count. The number of addition operations is 1

8
of the number

of tuples, and thus the counting process is very efficient. A large array (using 216 =
65,536 entries), indexed by pairs of bytes, would give even higher speedup, but at a
higher storage cost.

24.3.3 Bitmaps and B+-Trees

Bitmaps can be combined with regular B+-tree indices for relations where a few at-
tribute values are extremely common, and other values also occur, but much less fre-
quently. In a B+-tree index leaf, for each value we would normally maintain a list of all
records with that value for the indexed attribute. Each element of the list would be a
record identifier, consisting of at least 32 bits, and usually more. For a value that occurs
in many records, we store a bitmap instead of a list of records.

Suppose a particular value vi occurs in 1
16

of the records of a relation. Let N be
the number of records in the relation, and assume that a record has a 64-bit number
identifying it. The bitmap needs only 1 bit per record, or N bits in total. In contrast, the
list representation requires 64 bits per record where the value occurs, or 64 ∗ N∕16 =
4N bits. Thus, a bitmap is preferable for representing the list of records for value vi.
In our example (with a 64-bit record identifier), if fewer than 1 in 64 records have a
particular value, the list representation is preferable for identifying records with that

1Handling predicates such as is unknown would cause further complications, which would in general require use of an
extra bitmap to track which operation results are unknown.
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value, since it uses fewer bits than the bitmap representation. If more than 1 in 64
records have that value, the bitmap representation is preferable.

Thus, bitmaps can be used as a compressed storage mechanism at the leaf nodes
of B+-trees for those values that occur very frequently.

24.4 Indexing of Spatial Data

As we saw in Section 14.10.1, indices are required for efficient access to spatial data,
and such indices must efficiently support queries such as range and nearest neighbor
queries. We also gave a brief overview of k-d trees, quadtrees, and R-trees; we also briefly
described how to answer range queries using k-d trees. In this section we provide further
details of quadtrees and R-trees.

As mentioned in Section 14.10.1, in addition to indexing of points, spatial indices
must also support indexing of regions of space such as line segments, rectangles, and
other polygons. There are extensions of k-d trees and quadtrees for this task. However,
a line segment or polygon may cross a partitioning line. If it does, it has to be split and
represented in each of the subtrees in which its pieces occur. Multiple occurrences of a
line segment or polygon caused by such splits can result in inefficiencies in storage, as
well as inefficiencies in querying. R-trees were developed to support efficient indexing
of such structures.

24.4.1 Quadtrees

An alternative representation for two-dimensional data are a quadtree. An example of
the division of space by a quadtree appears in Figure 24.4. Each node of a quadtree is

Figure 24.4 Division of space by a quadtree.
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associated with a rectangular region of space. The top node is associated with the entire
target space. Each nonleaf node in a quadtree divides its region into four equal-sized
quadrants, and correspondingly each such node has four child nodes corresponding to
the four quadrants. Leaf nodes have between zero and some fixed maximum number
of points. Correspondingly, if the region corresponding to a node has more than the
maximum number of points, child nodes are created for that node. In the example in
Figure 24.4, the maximum number of points in a leaf node is set to 1.

This type of quadtree is called a PR quadtree, to indicate it stores points, and that
the division of space is divided based on regions, rather than on the actual set of points
stored. We can use region quadtrees to store array (raster) information. A node in a
region quadtree is a leaf node if all the array values in the region that it covers are the
same. Otherwise, it is subdivided further into four children of equal area and is therefore
an internal node. Each node in the region quadtree corresponds to a subarray of values.
The subarrays corresponding to leaves either contain just a single array element or have
multiple array elements, all of which have the same value.

24.4.2 R-Trees

A storage structure called an R-tree is useful for indexing of objects such as points,
line segments, rectangles, and other polygons. An R-tree is a balanced tree structure
with the indexed objects stored in leaf nodes, much like a B+-tree. However, instead of
a range of values, a rectangular bounding box is associated with each tree node. The
bounding box of a leaf node is the smallest rectangle parallel to the axes that contains
all objects stored in the leaf node. The bounding box of internal nodes is, similarly,
the smallest rectangle parallel to the axes that contains the bounding boxes of its child
nodes. The bounding box of an object (such as a polygon) is defined, similarly, as the
smallest rectangle parallel to the axes that contains the object.

Each internal node stores the bounding boxes of the child nodes along with the
pointers to the child nodes. Each leaf node stores the indexed objects and may option-
ally store the bounding boxes of the objects; the bounding boxes help speed up checks
for overlaps of the rectangle with the indexed objects—if a query rectangle does not
overlap with the bounding box of an object, it cannot overlap with the object, either.
(If the indexed objects are rectangles, there is no need to store bounding boxes, since
they are identical to the rectangles.)

Figure 24.5 shows an example of a set of rectangles (drawn with a solid line) and
the bounding boxes (drawn with a dashed line) of the nodes of an R-tree for the set of
rectangles. Note that the bounding boxes are shown with extra space inside them, to
make them stand out pictorially. In reality, the boxes would be smaller and fit tightly
on the objects that they contain; that is, each side of a bounding box B would touch at
least one of the objects or bounding boxes that are contained in B.

The R-tree itself is at the right side of Figure 24.5. The figure refers to the coordi-
nates of bounding box i as BBi in the figure.
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Figure 24.5 An R-tree.

We shall now see how to implement search, insert, and delete operations on an
R-tree.
• Search. As the figure shows, the bounding boxes associated with sibling nodes

may overlap; in B+-trees, k-d trees, and quadtrees, in contrast, the ranges do not
overlap. A search for objects containing a point therefore has to follow all child
nodes whose associated bounding boxes contain the point; as a result, multiple
paths may have to be searched. Similarly, a query to find all objects that intersect a
given object has to go down every node where the associated rectangle intersects
the given object.

• Insert. When we insert an object into an R-tree, we select a leaf node to hold the
object. Ideally we should pick a leaf node that has space to hold a new entry, and
whose bounding box contains the bounding box of the object. However, such a
node may not exist; even if it did, finding the node may be very expensive, since it
is not possible to find it by a single traversal down from the root. At each internal
node we may find multiple children whose bounding boxes contain the bounding
box of the object, and each of these children needs to be explored. Therefore, as
a heuristic, in a traversal from the root, if any of the child nodes has a bounding
box containing the bounding box of the object, the R-tree algorithm chooses one
of them arbitrarily. If none of the children satisfy this condition, the algorithm
chooses a child node whose bounding box has the maximum overlap with the
bounding box of the object for continuing the traversal.

Once the leaf node has been reached, if the node is already full, the algorithm
performs node splitting (and propagates splitting upward if required) in a manner
very similar to B+-tree insertion. Just as with B+-tree insertion, the R-tree insertion
algorithm ensures that the tree remains balanced. Additionally, it ensures that the
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bounding boxes of leaf nodes, as well as internal nodes, remain consistent; that
is, bounding boxes of leaves contain all the bounding boxes of the objects stored
at the leaf, while the bounding boxes for internal nodes contain all the bounding
boxes of the children nodes.

The main difference of the insertion procedure from the B+-tree insertion
procedure lies in how the node is split. In a B+-tree, it is possible to find a value
such that half the entries are less than the midpoint and half are greater than the
value. This property does not generalize beyond one dimension; that is, for more
than one dimension, it is not always possible to split the entries into two sets so
that their bounding boxes do not overlap. Instead, as a heuristic, the set of entries
S can be split into two disjoint sets S1 and S2 so that the bounding boxes of S1 and
S2 have the minimum total area; another heuristic would be to split the entries into
two sets S1 and S2 in such a way that S1 and S2 have minimum overlap. The two
nodes resulting from the split would contain the entries in S1 and S2, respectively.
The cost of finding splits with minimum total area or overlap can itself be large,
so cheaper heuristics, such as the quadratic split heuristic, are used. (The heuristic
gets its name from the fact that it takes time quadratic in the number of entries.)

The quadratic split heuristic works this way: First, it picks a pair of entries a
and b from S such that putting them in the same node would result in a bounding
box with the maximum wasted space; that is, the area of the minimum bounding
box of a and b minus the sum of the areas of a and b is the largest. The heuristic
places the entries a and b in sets S1 and S2, respectively.

It then iteratively adds the remaining entries, one entry per iteration, to one of
the two sets S1 or S2. At each iteration, for each remaining entry e, let ie,1 denote
the increase in the size of the bounding box of S1 if e is added to S1 and let ie,2
denote the corresponding increase for S2. In each iteration, the heuristic chooses
one of the entries with the maximum difference of ie,1 and ie,2 and adds it to S1 if
ie,1 is less than ie,2, and to S2 otherwise. That is, an entry with “maximum prefer-
ence” for S1 or S2 is chosen at each iteration. The iteration stops when all entries
have been assigned, or when one of the sets S1 or S2 has enough entries that all
remaining entries have to be added to the other set so the nodes constructed from
S1 and S2 both have the required minimum occupancy. The heuristic then adds all
unassigned entries to the set with fewer entries.

• Deletion. Deletion can be performed like a B+-tree deletion, borrowing entries from
sibling nodes, or merging sibling nodes if a node becomes underfull. An alternative
approach redistributes all the entries of underfull nodes to sibling nodes, with the
aim of improving the clustering of entries in the R-tree.

See the bibliographical references for more details on insertion and deletion operations
on R-trees, as well as on variants of R-trees, called R∗-trees or R+-trees.

The storage efficiency of R-trees is better than that of k-d trees or quadtrees, since
an object is stored only once, and we can ensure easily that each node is at least half
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full. However, querying may be slower, since multiple paths have to be searched. Spatial
joins are simpler with quadtrees than with R-trees, since all quadtrees on a region are
partitioned in the same manner. However, because of their better storage efficiency and
their similarity to B-trees, R-trees and their variants have proved popular in database
systems that support spatial data.

24.5 Hash Indices

We described the concepts of hashing and hash indices in Section 14.5. We provide
further details in this section.

24.5.1 Static Hashing

As in Section 14.5, let K denote the set of all search-key values, and let B denote the
set of all bucket addresses. A hash function h is a function from K to B. Let h denote a
hash function. Recall that in a hash index, buckets contain index entries, with pointers
to records, while in a hash file organization, actual records are stored in the buckets. All
the other details remain the same, so we do not explicitly differentiate between these
two versions henceforth. We use the term hash index to denote hash file organizations
as well as secondary hash indices.

Figure 24.6 shows a secondary hash index on the instructor file, for the search key
ID. The hash function in the figure computes the sum of the digits of the ID modulo
8. The hash index has eight buckets, each of size 2 (realistic indices would have much
larger bucket sizes). One of the buckets has three keys mapped to it, so it has an overflow
bucket. In this example, ID is a primary key for instructor, so each search key has only
one associated pointer. In general, multiple pointers can be associated with each key.

Hash indices can efficiently answer point queries, which retrieve records with a
specified value for a search key. However, they cannot efficiently answer range queries,
which retrieve all records whose search key value lies in a range (lb, ub). The difficulty
arises because a good hash function assigns values randomly to buckets. Thus, there is
no simple notion of “next bucket in sorted order.” The reason we cannot chain buckets
together in sorted order on Ai is that each bucket is assigned many search-key values.
Since values are scattered randomly by the hash function, the values in the specified
range are likely to be scattered across many or all of the buckets. Therefore, we have to
read all the buckets to find the required search keys.

Recall that deletion is done as follows: If the search-key value of the record to be
deleted is Ki, we compute h(Ki), then search the corresponding bucket for that record,
and delete the record from the bucket. Deletion of a record is efficient if there are not
many records with a given key value. However, in the case of a hash index on a key
with many duplicates, a large number of entries with the same key value may have to
be scanned to find the entry for the record that is to be deleted. The complexity can in
the worst case be linear in the number of records.
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Figure 24.6 Hash index on search key ID of instructor file.

Recall also that with static hashing, the set of buckets is fixed at the time the index
is created. If the relation grows far beyond the expected size, hash indices would be
quite inefficient due to long overflow chains. We could rebuild the hash index using a
larger number of buckets. Such rebuilding can be triggered when the number of records
exceeds the estimated number by some margin, and the index is rebuilt with a number
of buckets that is a multiple of the original number of buckets (say by a factor of 1.5 to
2). Such rebuilding is in fact done in many systems with in-memory hash indices.

However, doing so can cause significant disruption to normal processing with large
relations, since a large number of records have to be reindexed; the disruption is par-
ticularly marked with disk-resident data. In this section we discuss dynamic hashing
techniques that allow hash indices to grow gradually, without causing disruption.
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24.5.1.1 Hash Functions

The worst possible hash function maps all search-key values to the same bucket. Such
a function is undesirable because all the records have to be kept in the same bucket. A
lookup has to examine every such record to find the one desired. An ideal hash function
distributes the stored keys uniformly across all the buckets, so that every bucket has the
same number of records.

Since we do not know at design time precisely which search-key values will be
stored in the file, we want to choose a hash function that assigns search-key values to
buckets in such a way that the distribution has these qualities:

• The distribution is uniform. That is, the hash function assigns each bucket the same
number of search-key values from the set of all possible search-key values.

• The distribution is random. That is, in the average case, each bucket will have nearly
the same number of values assigned to it, regardless of the actual distribution of
search-key values. More precisely, the hash value will not be correlated to any
externally visible ordering on the search-key values, such as alphabetic ordering
or ordering by the length of the search keys; the hash function will appear to be
random.

As an illustration of these principles, let us choose a hash function for the instructor
file using the search key dept name. The hash function that we choose must have the
desirable properties not only on the example instructor file that we have been using, but
also on an instructor file of realistic size for a large university with many departments.

Assume that we decide to have 26 buckets, and we define a hash function that
maps names beginning with the ith letter of the alphabet to the ith bucket. This hash
function has the virtue of simplicity, but it fails to provide a uniform distribution, since
we expect more names to begin with such letters as B and R than Q and X, for example.

Now suppose that we want a hash function on the search key salary. Suppose that
the minimum salary is $30,000 and the maximum salary is $130,000, and we use a hash
function that divides the values into 10 ranges, $30,000–$40,000, $40,001–$50,000,
and so on. The distribution of search-key values is uniform (since each bucket has
the same number of different salary values) but is not random. Records with salaries
between $60,001 and $70,000 are far more common than are records with salaries
between $30,001 and $40,000. As a result, the distribution of records is not uniform
—some buckets receive more records than others do. If the function has a random
distribution, even if there are such correlations in the search keys, the randomness
of the distribution will make it very likely that all buckets will have roughly the same
number of records, as long as each search key occurs in only a small fraction of the
records. (If a single search key occurs in a large fraction of the records, the bucket
containing it is likely to have more records than other buckets, regardless of the hash
function used.)
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Figure 24.7 Hash organization of instructor file, with dept name as the key.

Typical hash functions perform computation on the internal binary machine rep-
resentation of characters in the search key. A simple hash function of this type first
computes the sum of the binary representations of the characters of a key, then returns
the sum modulo the number of buckets.

Figure 24.7 shows the application of such a scheme, with eight buckets, to the
instructor file, under the assumption that the ith letter in the alphabet is represented by
the integer i.

The following hash function is a better alternative for hashing strings. Let s be a
string of length n, and let s[i] denote the ith byte of the string. The hash function is
defined as:

s[0] ∗ 31(n−1) + s[1] ∗ 31(n−2) +⋯ + s[n − 1]

The function can be implemented efficiently by setting the hash result initially to 0 and
iterating from the first to the last character of the string, at each step multiplying the
hash value by 31 and then adding the next character (treated as an integer). The above
expression would appear to result in a very large number, but it is actually computed
with fixed-size positive integers; the result of each multiplication and addition is thus
automatically computed modulo the largest possible integer value plus 1. The result of
the above function modulo the number of buckets can then be used for indexing.
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Hash functions require careful design. A bad hash function may result in lookup
taking time proportional to the number of search keys in the file. A well-designed func-
tion gives an average-case lookup time that is a (small) constant, independent of the
number of search keys in the file.

24.5.1.2 Handling of Bucket Overflows

So far, we have assumed that, when a record is inserted, the bucket to which it is mapped
has space to store the record. If the bucket does not have enough space, a bucket over-
flow is said to occur. Bucket overflow can occur for several reasons, as we outlined in
Section 14.5.

• Insufficient buckets. The number of buckets, which we denote nB, must be chosen
such that nB > nr∕fr, where nr denotes the total number of records that will be
stored and fr denotes the number of records that will fit in a bucket. This designa-
tion assumes that the total number of records is known when the hash function is
chosen.

• Skew. Some buckets are assigned more records than are others, so a bucket may
overflow even when other buckets still have space. This situation is called bucket
skew. Skew can occur for two reasons:

1. Multiple records may have the same search key.

2. The chosen hash function may result in nonuniform distribution of search
keys.

So that the probability of bucket overflow is reduced, the number of buckets is
chosen to be (nr∕fr) ∗ (1 + d), where d is a fudge factor, typically around 0.2. Some
space is wasted: About 20 percent of the space in the buckets will be empty. But the
benefit is that the probability of overflow is reduced.

Despite allocation of a few more buckets than required, bucket overflow can still
occur. As we saw in Section 14.5, we handle bucket overflow by using overflow buckets.
We must also change the lookup algorithm slightly to handle overflow chaining, to look
at the overflow buckets in addition to the main bucket.

The form of hash structure that we have just described is called closed address-
ing (or, less commonly, closed hashing). Under an alternative approach called open
addressing (or, less commonly, open hashing), the set of buckets is fixed, and there
are no overflow chains. Instead, if a bucket is full, the system inserts records in some
other bucket in the initial set of buckets B. One policy is to use the next bucket (in
cyclic order) that has space; this policy is called linear probing. Other policies, such as
computing further hash functions, are also used. Open addressing has been used to con-
struct symbol tables for compilers and assemblers, but closed addressing is preferable
for database systems. The reason is that deletion under open addressing is troublesome.
Usually, compilers and assemblers perform only lookup and insertion operations on
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their symbol tables. However, in a database system, it is important to be able to handle
deletion as well as insertion. Thus, open addressing is of only minor importance in
database implementation.

An important drawback to the form of hashing that we have described is that
we must choose the hash function when we implement the system, and it cannot be
changed easily thereafter if the file being indexed grows or shrinks. Since the function h
maps search-key values to a fixed set B of bucket addresses, we waste space if B is made
large to handle future growth of the file. If B is too small, the buckets contain records
of many different search-key values, and bucket overflows can occur. As the file grows,
performance suffers. We study in Section 24.5.2 how the number of buckets and the
hash function can be changed dynamically.

24.5.2 Dynamic Hashing

As we have seen, the need to fix the set B of bucket addresses presents a serious problem
with the static hashing technique of the previous section. Most databases grow larger
over time. If we are to use static hashing for such a database, we have three classes of
options:

1. Choose a hash function based on the current file size. This option will result in
performance degradation as the database grows.

2. Choose a hash function based on the anticipated size of the file at some point in
the future. Although performance degradation is avoided, a significant amount
of space may be wasted initially.

3. Periodically reorganize the hash structure in response to file growth. Such a reor-
ganization involves choosing a new hash function, recomputing the hash function
on every record in the file, and generating new bucket assignments. This reorga-
nization is a massive, time-consuming operation. Furthermore, it is necessary to
forbid access to the file during reorganization.

Several dynamic hashing techniques allow the hash function to be modified dy-
namically to accommodate the growth or shrinkage of the database. In this section we
describe one form of dynamic hashing, called extendable hashing. The bibliographical
notes provide references to other forms of dynamic hashing.

24.5.2.1 Data Structure

Extendable hashing copes with changes in database size by splitting and coalescing
buckets as the database grows and shrinks. As a result, space efficiency is retained.
Moreover, since the reorganization is performed on only one bucket at a time, the
resulting performance overhead is acceptably low.
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Figure 24.8 General extendable hash structure.

With extendable hashing, we choose a hash function h with the desirable properties
of uniformity and randomness. However, this hash function generates values over a
relatively large range—namely, b-bit binary integers. A typical value for b is 32.

We do not create a bucket for each hash value. Indeed, 232 is over 4 billion, and
that many buckets is unreasonable for all but the largest databases. Instead, we create
buckets on demand, as records are inserted into the file. We do not use the entire b bits
of the hash value initially. At any point, we use i bits, where 0 ≤ i ≤ b. These i bits
are used as an offset into an additional table of bucket addresses. The value of i grows
and shrinks with the size of the database.

Figure 24.8 shows a general extendable hash structure. The i appearing above the
bucket address table in the figure indicates that i bits of the hash value h(K) are required
to determine the correct bucket for K . This number will change as the file grows. Al-
though i bits are required to find the correct entry in the bucket address table, several
consecutive table entries may point to the same bucket. All such entries will have a com-
mon hash prefix, but the length of this prefix may be less than i. Therefore, we associate
with each bucket an integer giving the length of the common hash prefix. In Figure 24.8
the integer associated with bucket j is shown as ij. The number of bucket-address-table
entries that point to bucket j is

2(i− ij)
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24.5.2.2 Queries and Updates

We now see how to perform lookup, insertion, and deletion on an extendable hash
structure.

To locate the bucket containing search-key value Kl, the system takes the first i
high-order bits of h(Kl), looks at the corresponding table entry for this bit string, and
follows the bucket pointer in the table entry.

To insert a record with search-key value Kl, the system follows the same procedure
for lookup as before, ending up in some bucket—say, j. If there is room in the bucket,
the system inserts the record in the bucket. If, on the other hand, the bucket is full, it
must split the bucket and redistribute the current records, plus the new one. To split
the bucket, the system must first determine from the hash value whether it needs to
increase the number of bits that it uses.

• If i = ij, only one entry in the bucket address table points to bucket j. Therefore,
the system needs to increase the size of the bucket address table so that it can
include pointers to the two buckets that result from splitting bucket j. It does so
by considering an additional bit of the hash value. It increments the value of i by
1, thus doubling the size of the bucket address table. It replaces each entry with
two entries, both of which contain the same pointer as the original entry. Now two
entries in the bucket address table point to bucket j. The system allocates a new
bucket (bucket z) and sets the second entry to point to the new bucket. It sets ij
and iz to i. Next, it rehashes each record in bucket j and, depending on the first i
bits (remember the system has added 1 to i), either keeps it in bucket j or allocates
it to the newly created bucket.

The system now reattempts the insertion of the new record. Usually, the attempt
will succeed. However, if all the records in bucket j, as well as the new record, have
the same hash-value prefix, it will be necessary to split a bucket again, since all the
records in bucket j and the new record are assigned to the same bucket. If the hash
function has been chosen carefully, it is unlikely that a single insertion will require
that a bucket be split more than once, unless there are a large number of records
with the same search key. If all the records in bucket j have the same search-key
value, no amount of splitting will help. In such cases, overflow buckets are used to
store the records, as in static hashing.

• If i > ij, then more than one entry in the bucket address table points to bucket j.
Thus, the system can split bucket j without increasing the size of the bucket address
table. Observe that all the entries that point to bucket j correspond to hash prefixes
that have the same value on the leftmost ij bits. The system allocates a new bucket
(bucket z), and sets ij and iz to the value that results from adding 1 to the original
ij value. Next, the system needs to adjust the entries in the bucket address table
that previously pointed to bucket j. (Note that with the new value for ij, not all
the entries correspond to hash prefixes that have the same value on the leftmost ij
bits.) The system leaves the first half of the entries as they were (pointing to bucket
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dept_name h(dept_name)

Biology
Comp. Sci.
Elec. Eng.
Finance
History
Music
Physics

0010 1101 1111 1011 0010 1100 0011 0000
1111 0001 0010 0100 1001 0011 0110 1101
0100 0011 1010 1100 1100 0110 1101 1111
1010 0011 1010 0000 1100 0110 1001 1111
1100 0111 1110 1101 1011 1111 0011 1010
0011 0101 1010 0110 1100 1001 1110 1011
1001 1000 0011 1111 1001 1100 0000 0001

Figure 24.9 Hash function for dept name.

j), and sets all the remaining entries to point to the newly created bucket (bucket
z). Next, as in the previous case, the system rehashes each record in bucket j, and
allocates it either to bucket j or to the newly created bucket z.

The system then reattempts the insert. In the unlikely case that it again fails, it
applies one of the two cases, i = ij or i > ij, as appropriate.

Note that, in both cases, the system needs to recompute the hash function on only the
records in bucket j.

To delete a record with search-key value Kl , the system follows the same procedure
for lookup as before, ending up in some bucket—say, j. It removes both the search key
from the bucket and the record from the file. The bucket, too, is removed if it becomes
empty. Note that, at this point, several buckets can be coalesced, and the size of the
bucket address table can be cut in half. The procedure for deciding on which buckets
can be coalesced and how to coalesce buckets is left to you to do as an exercise. The
conditions under which the bucket address table can be reduced in size are also left to
you as an exercise. Unlike coalescing of buckets, changing the size of the bucket address
table is a rather expensive operation if the table is large. Therefore it may be worthwhile
to reduce the bucket-address-table size only if the number of buckets reduces greatly.

To illustrate the operation of insertion, we use the instructor file and assume that
the search key is dept name with the 32-bit hash values as appear in Figure 24.9. Assume
that, initially, the file is empty, as in Figure 24.10. We insert the records one by one. To

0 0

bucket 1bucket address table

hash prefix

Figure 24.10 Initial extendable hash structure.
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Figure 24.11 Hash structure after three insertions.

illustrate all the features of extendable hashing in a small structure, we shall make the
unrealistic assumption that a bucket can hold only two records.

We insert the record (10101, Srinivasan, Comp. Sci., 65000). The bucket address
table contains a pointer to the one bucket, and the system inserts the record. Next, we
insert the record (12121, Wu, Finance, 90000). The system also places this record in
the one bucket of our structure.

When we attempt to insert the next record (15151, Mozart, Music, 40000), we find
that the bucket is full. Since i = i0, we need to increase the number of bits that we
use from the hash value. We now use 1 bit, allowing us 21 = 2 buckets. This increase
in the number of bits necessitates doubling the size of the bucket address table to two
entries. The system splits the bucket, placing in the new bucket those records whose
search key has a hash value beginning with 1, and leaving in the original bucket the
other records. Figure 24.11 shows the state of our structure after the split.

2

2

1

2

bucket address table

hash prefix

15151 Music 40000Mozart

12121 Finance 90000Wu

10101 Comp. Sci. 65000Srinivasan

22222 Einstein Physics 95000

Figure 24.12 Hash structure after four insertions.
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Figure 24.13 Hash structure after six insertions.
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Figure 24.14 Hash structure after seven insertions.
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Next, we insert (22222, Einstein, Physics, 95000). Since the first bit of h(Physics)
is 1, we must insert this record into the bucket pointed to by the “1” entry in the bucket
address table. Once again, we find the bucket full and i = i1. We increase the number
of bits that we use from the hash to 2. This increase in the number of bits necessitates
doubling the size of the bucket address table to four entries, as in Figure 24.12. Since
the bucket of Figure 24.11 for hash prefix 0 was not split, the two entries of the bucket
address table of 00 and 01 both point to this bucket.

For each record in the bucket of Figure 24.11 for hash prefix 1 (the bucket being
split), the system examines the first two bits of the hash value to determine which
bucket of the new structure should hold it.

Next, we insert (32343, El Said, History, 60000), which goes in the same bucket
as Comp. Sci. The following insertion of (33456, Gold, Physics, 87000) results in a
bucket overflow, leading to an increase in the number of bits and a doubling of the size
of the bucket address table (see Figure 24.13).

The insertion of (45565, Katz, Comp. Sci., 75000) leads to another bucket over-
flow; this overflow, however, can be handled without increasing the number of bits,
since the bucket in question has two pointers pointing to it (see Figure 24.14).

Next, we insert the records of “Califieri”, “Singh”, and “Crick” without any bucket
overflow. The insertion of the third Comp. Sci. record (83821, Brandt, Comp. Sci.,
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Figure 24.15 Hash structure after 11 insertions.
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Figure 24.16 Extendable hash structure for the instructor file.

92000), however, leads to another overflow. This overflow cannot be handled by in-
creasing the number of bits, since there are three records with exactly the same hash
value. Hence the system uses an overflow bucket, as in Figure 24.15. We continue in this
manner until we have inserted all the instructor records of Figure 14.1. The resulting
structure appears in Figure 24.16.

24.5.2.3 Static Hashing versus Dynamic Hashing

We now examine the advantages and disadvantages of extendable hashing, compared
with static hashing. The main advantage of extendable hashing is that performance
does not degrade as the file grows. Furthermore, there is minimal space overhead.
Although the bucket address table incurs additional overhead, it contains one pointer
for each hash value for the current prefix length. This table is thus small. The main
space saving of extendable hashing over other forms of hashing is that no buckets need
to be reserved for future growth; rather, buckets can be allocated dynamically.

A disadvantage of extendable hashing is that lookup involves an additional level of
indirection, since the system must access the bucket address table before accessing the
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bucket itself. This extra reference has only a minor effect on performance. Although
the hash structures that we discussed in Section 24.5.1 do not have this extra level of
indirection, they lose their minor performance advantage as they become full. A fur-
ther disadvantage of extendable hashing is the cost of periodic doubling of the bucket
address table.

The bibliographical notes also provide references to another form of dynamic hash-
ing called linear hashing, which avoids the extra level of indirection associated with
extendable hashing, at the possible cost of more overflow buckets.

24.5.3 Comparison of Ordered Indexing and Hashing

We have seen several ordered-indexing schemes and several hashing schemes. We can
organize files of records as ordered files by using index-sequential organization or B+-
tree organizations. Alternatively, we can organize the files by using hashing. Finally, we
can organize them as heap files, where the records are not ordered in any particular
way.

Each scheme has advantages in certain situations. A database-system implementor
could provide many schemes, leaving the final decision of which schemes to use to the
database designer. However, such an approach requires the implementor to write more
code, adding both to the cost of the system and to the space that the system occupies.

Most database systems support B+-trees for indexing disk-based data, and many
databases also support B+-tree file organization. However, most databases do not sup-
port hash file organizations or hash indices for disk-based data. One of the important
reasons is the fact that many applications benefit from support for range queries. A
second reason is the fact that B+-tree indices handle relation size increases gracefully,
via a series of node splits, each of which is of low cost, in contrast to the relatively
high cost of doubling of the bucket address table, which extendable hashing requires.
Another reason for preferring B+-trees is the fact that B+-trees give good worst-case
bounds for deletion operations with duplicate keys, unlike hash indices.

However, hash indices are used for in-memory indexing, if range queries are not
common. In particular, they are widely used for creating temporary in-memory indices
while processing join operations using the hash-join technique, as we see in Section
15.5.5.

24.6 Summary

• The key idea of the log structured merge tree is to replace random I/O operations
during tree inserts, updates, and deletes with a smaller number of sequential I/O
operations.

• Bitmap indices are specialized indices designed for easy querying on multiple keys.
Bitmaps work best for attributes that take only a small number of distinct values.
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• A bitmap is an array of bits. In its simplest form, a bitmap index on the attribute
A of relation r consists of one bitmap for each value that A can take. Each bitmap
has as many bits as the number of records in the relation.

• Bitmap indices are useful for selections mainly when there are selections on mul-
tiple keys.

• An important use of bitmaps is to count the number of tuples satisfying a given
selection. Such queries are important for data analysis.

• Indices are required for efficient access to spatial data and must efficiently support
queries such as range and nearest neighbor queries.

• A quadtree is an alternative representation for two-dimensional data where the
space is divided by a quadtree. Each node of a quadtree is associated with a rect-
angular region of space.

• An R-tree is a storage structure that is useful for indexing of objects such as points,
line segments, rectangles, and other polygons. An R-tree is a balanced tree struc-
ture with the indexed objects stored in leaf nodes, much like a B+-tree. However,
instead of a range of values, a rectangular bounding box is associated with each
tree node.

• Static hashing uses hash functions in which the set of bucket addresses is fixed.
Such hash functions cannot easily accommodate databases that grow significantly
larger over time.

• Dynamic hashing techniques allow the hash function to be modified. One example
is extendable hashing, which copes with changes in database size by splitting and
coalescing buckets as the database grows and shrinks.

Review Terms

• Log-structured merge tree (LSM tree)

• Rolling merge

• Deletion entry

• Stepped-merge index

• Write amplification

• Bloom filter

• Bitmap

• Bitmap index

• Existence bitmap

• Quadtree

• Region quadtrees

• R-tree

• Bounding box

• Quadratic split

• Bucket overflow

• Skew

• Closed addressing

• Closed hashing

• Open addressing

• Open hashing
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• Dynamic hashing

• Extendable hashing

• Linear hashing

Practice Exercises

24.1 Both LSM trees and buffer trees (described in Section 14.8.2) offer benefits to
write-intensive workloads, compared to normal B+-trees, and buffer trees offer
potentially better lookup performance. Yet LSM trees are more frequently used
in Big Data settings. What is the most important reason for this preference?

24.2 Consider the optimized technique for counting the number of bits that are set
in a bitmap. What are the tradeoffs in choosing a smaller versus a larger array
size, keeping cache size in mind?

24.3 Suppose you want to store line segments in an R-tree. If a line segment is not
parallel to the axes, the bounding box for it can be large, containing a large
empty area.

• Describe the effect on performance of having large bounding boxes on
queries that ask for line segments intersecting a given region.

• Briefly describe a technique to improve performance for such queries and
give an example of its benefit. Hint: You can divide segments into smaller
pieces.

24.4 Give a search algorithm on an R-tree for efficiently finding the nearest neighbor
to a given query point.

24.5 Give a recursive procedure to efficiently compute the spatial join of two rela-
tions with R-tree indices. (Hint: Use bounding boxes to check if leaf entries
under a pair of internal nodes may intersect.)

24.6 Suppose that we are using extendable hashing on a file that contains records
with the following search-key values:

2, 3, 5, 7, 11, 17, 19, 23, 29, 31

Show the extendable hash structure for this file if the hash function is h(x) = x
mod 8 and buckets can hold three records.

24.7 Show how the extendable hash structure of Exercise 24.6 changes as the result
of each of the following steps:

a. Delete 11.

b. Delete 31.

c. Insert 1.
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d. Insert 15.

24.8 Give pseudocode for deletion of entries fromAVi an extendable hash structure,
including details of when and how to coalesce buckets. Do not bother about
reducing the size of the bucket address table.

24.9 Suggest an efficient way to test if the bucket address table in extendable hashing
can be reduced in size by storing an extra count with the bucket address table.
Give details of how the count should be maintained when buckets are split,
coalesced, or deleted. (Note: Reducing the size of the bucket address table is
an expensive operation, and subsequent inserts may cause the table to grow
again. Therefore, it is best not to reduce the size as soon as it is possible to
do so, but instead do it only if the number of index entries becomes small
compared to the bucket-address-table size.)

Exercises

24.10 The stepped merge variant of the LSM tree allows multiple trees per level. What
are the tradeoffs in having more trees per level?

24.11 Suppose you want to use the idea of a quadtree for data in three dimensions.
How would the resultant data structure (called an octtree) divide up space?

24.12 Explain the distinction between closed and open hashing. Discuss the relative
merits of each technique in database applications.

24.13 What are the causes of bucket overflow in a hash file organization? What can
be done to reduce the occurrence of bucket overflows?

24.14 Why is a hash structure not the best choice for a search key on which range
queries are likely?

24.15 Our description of static hashing assumes that a large contiguous stretch of
disk blocks can be allocated to a static hash table. Suppose you can allocate
only C contiguous blocks. Suggest how to implement the hash table, if it can
be much larger than C blocks. Access to a block should still be efficient.

Further Reading

The log-structured merge (LSM) tree is presented in [O’Neil et al. (1996)], while the
stepped merge tree is presented in [Jagadish et al. (1997)]. [Vitter (2001)] provides an
extensive survey of external-memory data structures and algorithms.

Bitmap indices are described in [O’Neil and Quass (1997)]. They were first intro-
duced in the IBM Model 204 file manager on the AS 400 platform. They provide very



Further Reading 1207

large speedups on certain types of queries and are today implemented in most database
systems.

[Samet (2006)] provides a textbook coverage of spatial data structures. [Bentley
(1975)] describes the k-d tree, and [Robinson (1981)] describes the k-d-B tree. The
R-tree was originally presented in [Guttman (1984)].

Discussions of the basic data structures in hashing can be found in [Cormen et al.
(2009)]. Extendable hashing was introduced by [Fagin et al. (1979)]. Linear hashing
was introduced by [Litwin (1978)] and [Litwin (1980)].
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CHAP T E R 25
Advanced Application
Development

There are a number of tasks in application development. We saw in Chapter 6 to Chap-
ter 9 how to design and build an application. One of the aspects of application design
is the performance one expects out of the application. In fact, it is common to find
that once an application has been built, it runs slower than the designers wanted or
handles fewer transactions per second than they required. An application that takes an
excessive amount of time to perform requested actions can cause user dissatisfaction
at best and be completely unusable at worst.

Applications can be made to run significantly faster by performance tuning, which
consists of finding and eliminating bottlenecks and adding appropriate hardware such
as memory or disks. There are many things an application developer can do to tune the
application, and there are things that a database-system administrator can do to speed
up processing for an application.

Benchmarks are standardized sets of tasks that help to characterize the perfor-
mance of database systems. They are useful to get a rough idea of the hardware and
software requirements of an application, even before the application is built.

Applications must be tested as they are being developed. Testing requires gener-
ation of database states and test inputs, and verifying that the outputs match the ex-
pected outputs. We discuss issues in application testing. Legacy systems are application
systems that are outdated and usually based on older-generation technology. However,
they are often at the core of organizations and run mission-critical applications. We
outline issues in interfacing with and issues in migrating away from legacy systems,
replacing them with more modern systems.

Standards are very important for application development, especially in the age of
the internet, since applications need to communicate with each other to perform use-
ful tasks. A variety of standards have been proposed that affect database-application
development, which we outline in this chapter. Organizations often store information
about users in directory systems. Applications often use such directory systems to au-
thenticate users and to get basic information about users, such as user categories (e.g.,

1209
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student, instructor, and so on). We briefly describe the architecture of directory sys-
tems.

25.1 Performance Tuning

Tuning the performance of a system involves adjusting various parameters and design
choices to improve its performance for a specific application. Various aspects of a
database-system design—ranging from high-level aspects such as the schema and trans-
action design to database parameters such as buffer sizes, down to hardware issues such
as number of disks—affect the performance of an application. Each of these aspects
can be adjusted so that performance is improved.

25.1.1 Motivation for Tuning

Applications sometimes exhibit poor performance, with queries taking a long time to
complete, leading to users being unable to carry out tasks that they need to do. We
describe a few real-world examples that we have seen, including their causes and how
tuning fixed the problems.

In one of the applications, we found that users were experiencing long delays and
time-outs in the web applications. On monitoring the database, we found that the CPU
usage was very high, with negligible disk and network usage. Further analysis of queries
running on the database showed that a simple lookup query on a large relation was us-
ing a full relation scan, which was quite expensive. Adding an index to the attribute
used in the lookup drastically reduced the execution time of the query and a key per-
formance problem vanished immediately.

In a second application, we found that a query had very poor performance. Examin-
ing the query, we found that the programmer had written an unnecessarily complicated
query, with several nested subqueries, and the optimizer produced a bad plan for the
query, as we realized after observing the query plan. To fix the problem, we rewrote the
query using joins instead of nested subqueries, that is, we decorrelated the query; this
change greatly reduced the execution time.

In a third application, we found that the application fetched a large number of
rows from a query, and issued another database query for each row that it fetched.
This resulted in a large number of separate queries being sent to the database, resulting
in poor performance. It is possible to replace such a large number of queries with a
single query that fetches all required data, as we see later in this section. Such a change
improved the performance of the application by an order of magnitude.

In a fourth application, we found that while the application performed fine un-
der light load during testing, it completely stopped working when subjected to heavy
load when it was used by actual users. In this case, we found that in some of the in-
terfaces, programmers had forgotten to close JDBC connections. Databases typically
support only a limited number of JDBC connections, and once that limit was reached,
the application was unable to connect to the database, and thus it stopped working.
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Ensuring that connections were closed fixed this problem. While this was technically
a bug fix, not a tuning action, we thought it is a good idea to highlight this problem
since we have found many applications have this problem. Connection pooling, which
keeps database connections open for use by subsequent transactions, is a related appli-
cation tuning optimization, since it avoids the cost of repeated opening and closing of
database connections.

It is also worth pointing out that in several cases above the performance problems
did not show up during testing, either because the test database was much smaller
than the actual database size or because the testing was done with a much lighter load
(number of concurrent users) than the load on the live system. It is important that
performance testing be done on realistic database sizes, with realistic load, so problems
show up during testing, rather than on a live system.

25.1.2 Location of Bottlenecks

The performance of most systems (at least before they are tuned) is usually limited
primarily by the performance of one or a few components, called bottlenecks. For in-
stance, a program may spend 80 percent of its time in a small loop deep in the code,
and the remaining 20 percent of the time on the rest of the code; the small loop then is
a bottleneck. Improving the performance of a component that is not a bottleneck does
little to improve the overall speed of the system; in the example, improving the speed
of the rest of the code cannot lead to more than a 20 percent improvement overall,
whereas improving the speed of the bottleneck loop could result in an improvement of
nearly 80 percent overall, in the best case.

Hence, when tuning a system, we must first try to discover what the bottlenecks
are and then eliminate them by improving the performance of system components
causing the bottlenecks. When one bottleneck is removed, it may turn out that another
component becomes the bottleneck. In a well-balanced system, no single component
is the bottleneck. If the system contains bottlenecks, components that are not part of
the bottleneck are underutilized, and could perhaps have been replaced by cheaper
components with lower performance.

For simple programs, the time spent in each region of the code determines the
overall execution time. However, database systems are much more complex, and query
execution involves not only CPU time, but also disk I/O and network communication. A
first step in diagnosing problems to use monitoring tools provided by operating systems
to find the usage level of the CPU, disks, and network links.

It is also important to monitor the database itself, to find out what is happening
in the database system. For example, most databases provide ways to find out which
queries (or query templates, where the same query is executed repeatedly with different
constants) are taking up the maximum resources, such as CPU, disk I/O, or network
capacity. In addition to hardware resource bottlenecks, poor performance in a database
system may potentially be due to contention on locks, where transactions wait in lock
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Note 25.1 DATABASE PERFORMANCE MONITORING TOOLS

Most database systems provide view relations that can be queried to monitor
database system performance. For example, PostgreSQL provides view relations
pg stat statements and pgpgrowlocks to monitor resource usage of SQL state-
ments and lock contention respectively. MySQL supports a command show pro-
cessinfo that can be used to monitor what transactions are currently executing and
their resource usage. Microsoft SQL Server provides stored procedures sp monitor,
sp who, and sp lock to monitor system resource usage. The Oracle Database SQL
Tuning Guide, available online, provides details of similar views in Oracle.

queues for a long time. Again, most databases provide mechanisms to monitor lock
contention.

Monitoring tools can help detect where the bottleneck lies (such as CPU, I/O, or
locks), and to locate the queries that are causing the maximum performance prob-
lems. In this chapter, we discuss a number of techniques that can be used to fix per-
formance problems, such as adding required indices or materialized views, rewriting
queries, rewriting applications, or adding hardware to improve performance.

To understand the performance of database systems better, it is very useful to
model database systems as queueing systems. A transaction requests various services
from the database system, starting from entry into a server process, disk reads during
execution, CPU cycles, and locks for concurrency control. Each of these services has
a queue associated with it, and small transactions may spend most of their time wait-
ing in queues—especially in disk I/O queues—instead of executing code. Figure 25.1
illustrates some of the queues in a database system. Note that each lockable item has a
separate queue in the concurrency control manager. The database system may have a
single queue at the disk manager or may have separate queues for different disks in case
the disks are directly controlled by the database. The transaction queue is used by the
database system to control the admission of new queries when the number of requests
exceeds the number of concurrent query execution tasks that the database allows.

As a result of the numerous queues in the database, bottlenecks in a database sys-
tem typically show up in the form of long queues for a particular service, or, equiva-
lently, in high utilizations for a particular service. If requests are spaced exactly uni-
formly, and the time to service a request is less than or equal to the time before the
next request arrives, then each request will find the resource idle and can therefore
start execution immediately without waiting. Unfortunately, the arrival of requests in a
database system is never so uniform and is often random.

If a resource, such as a disk, has a low utilization, then when a request is made,
the resource is likely to be idle, in which case the waiting time for the request will
be 0. Assuming uniformly randomly distributed arrivals, the length of the queue (and
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Figure 25.1 Queues in a database system.

correspondingly the waiting time) goes up exponentially with utilization; as utilization
approaches 100 percent, the queue length increases sharply, resulting in excessively
long waiting times. The utilization of a resource should be kept low enough that queue
length is short. As a rule of the thumb, utilizations of around 70 percent are consid-
ered to be good, and utilizations above 90 percent are considered excessive, since they
will result in significant delays. To learn more about the theory of queueing systems,
generally referred to as queueing theory, you can consult the references cited in the
bibliographical notes.

25.1.3 Tuning Levels

Tuning is typically done in the context of applications, and can be done at the database
system layer, or outside the database system.

Tuning at layers above the database is application dependent, and is not our focus,
but we mention a few such techniques. Profiling application code to find code blocks
that have a heavy CPU consumption, and rewriting them to reduce CPU load is an
option for CPU intensive applications. Application servers often have numerous pa-
rameters that can be tuned to improve performance, or to ensure that the application
does not run out of memory. Multiple application servers that work in parallel are often
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used to handle higher workloads. A load balancer is used to route requests to one of the
application servers; to ensure session continuity, requests from a particular source are
always routed to the same application server. Connection pooling (described in Section
9.7.1) is another widely technique to reduce the overhead of database connection cre-
ation. Web application interfaces may be tuned to improve responsiveness, for example
by replacing legacy web interfaces by ones based on JavaScript and Ajax (described in
Section 9.5.1.3).

Returning to database tuning, database administrators and application developers
can tune a database system at three levels.

The highest level of database tuning, which is under the control of application
developers, includes the schema and queries. The developer can tune the design of the
schema, the indices that are created, and the transactions that are executed to improve
performance. Tuning at this level is comparatively system independent.

The second level consists of the database-system parameters, such as buffer size
and checkpointing intervals. The exact set of database-system parameters that can be
tuned depends on the specific database system. Most database-system manuals provide
information on what database-system parameters can be adjusted, and how you should
choose values for the parameters. Well-designed database systems perform as much
tuning as possible automatically, freeing the user or database administrator from the
burden. For instance, in many database systems the buffer size is fixed but tunable. If
the system automatically adjusts the buffer size by observing indicators such as page-
fault rates, then the database administrator will not have to worry about tuning the
buffer size.

The lowest level is at the hardware level. Options for tuning systems at this level
include replacing hard disks with solid-state drives (which use flash storage), adding
more disks or using a RAID system if disk I/O is a bottleneck, adding more memory if
the disk buffer size is a bottleneck, or moving to a system with more processors if CPU
usage is a bottleneck.

The three levels of tuning interact with one another; we must consider them to-
gether when tuning a system. For example, tuning at a higher level may result in the
hardware bottleneck changing from the disk system to the CPU, or vice versa. Tuning
of queries and the physical schema is usually the first step to improving performance.
Tuning of database system parameters, in case the database system does automate this
task, can also be done in parallel. If performance is still poor, tuning of logical schema
and tuning of hardware are the next logical steps.

25.1.4 Tuning of Physical Schema

Tuning of the physical schema, such as indices and materialized views, is the least
disruptive mode of tuning, since it does not affect application code in any way. We now
study different aspects of tuning of the physical schema.
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25.1.4.1 Tuning of Indices

We can tune the indices in a database system to improve performance. If queries are the
bottleneck, we can often speed them up by creating appropriate indices on relations. If
updates are the bottleneck, there may be too many indices, which have to be updated
when the relations are updated. Removing indices may speed up certain updates.

The choice of the type of index also is important. Some database systems support
different kinds of indices, such as hash indices, B+-tree indices, and write-optimized
indices such as LSM trees (Section 24.2). If range queries are common, B+-tree indices
are preferable to hash indices. If the system has a very high write load, but a relatively
low read load, write-optimized LSM tree indices may be preferable to B+-tree indices.

Whether to make an index a clustered index is another tunable parameter. Only
one index on a relation can be made clustered, by storing the relation sorted on the
index attributes. Generally, the index that benefits the greatest number of queries and
updates should be made clustered.

To help identify what indices to create, and which index (if any) on each relation
should be clustered, most commercial database systems provide tuning wizards; these
are described in more detail in Section 25.1.4.4. These tools use the past history of
queries and updates (called the workload) to estimate the effects of various indices on
the execution time of the queries and updates in the workload. Recommendations on
what indices to create are based on these estimates.

25.1.4.2 Using Materialized Views

Maintaining materialized views can greatly speed up certain types of queries, in par-
ticular aggregate queries. Recall the example from Section 16.5 where the total salary
for each department (obtained by summing the salary of each instructor in the depart-
ment) is required frequently. As we saw in that section, creating a materialized view
storing the total salary for each department can greatly speed up such queries.

Materialized views should be used with care, however, since there is not only space
overhead for storing them but, more important, there is also time overhead for main-
taining materialized views. In the case of immediate view maintenance, if the updates
of a transaction affect the materialized view, the materialized view must be updated as
part of the same transaction. The transaction may therefore run slower. In the case of
deferred view maintenance, the materialized view is updated later; until it is updated,
the materialized view may be inconsistent with the database relations. For instance, the
materialized view may be brought up to date when a query uses the view, or periodically.
Using deferred maintenance reduces the burden on update transactions.

The database administrator is responsible for the selection of materialized views
and for view-maintenance policies. The database administrator can make the selection
manually by examining the types of queries in the workload and finding out which
queries need to run faster and which updates/queries may be executed more slowly.
From the examination, the database administrator may choose an appropriate set of
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materialized views. For instance, the administrator may find that a certain aggregate
is used frequently, and choose to materialize it, or may find that a particular join is
computed frequently, and choose to materialize it.

However, manual choice is tedious for even moderately large sets of query types,
and making a good choice may be difficult, since it requires understanding the costs
of different alternatives; only the query optimizer can estimate the costs with reason-
able accuracy without actually executing the query. Thus, a good set of views may be
found only by trial and error—that is, by materializing one or more views, running
the workload, and measuring the time taken to run the queries in the workload. The
administrator repeats the process until a set of views is found that gives acceptable
performance.

A better alternative is to provide support for selecting materialized views within the
database system itself, integrated with the query optimizer. This approach is described
in more detail in Section 25.1.4.4.

25.1.4.3 Horizontal Partitioning of Relation Schema

Horizontal partitioning of relations is widely used for parallel and distributed storage
and query processing. However, it can also be used in a centralized system to improve
queries and updates by breaking up the tuples of a relation into partitions.

For example, suppose that a database stores a large relation that has a date attribute,
and most operations work on data inserted within the past few months. Suppose now
that the relation is partitioned on the date attribute, with one partition for each (year,
month) combination. Then, queries that contain a selection on date, such as date='2018-
06-01', need access only partitions that could possibly contain such tuples, skipping all
other partitions.

More importantly, indices could be created independently on each partition. Sup-
pose an index is created on an attribute ID, with a separate index on each partition. A
query that specifies selection on ID, along with a date or a date range, need look up the
index on only those partitions that match the specified date or date range. Since each
partition is smaller than the whole relation, the indices too are smaller, speeding up
index lookup. Index insertion is also much faster, since the index size is much smaller
than an index on the entire relation. And most importantly, even as the total data size
grows, the partition size never grows beyond some limit, ensuring that the performance
of such queries does not degrade with time.

There is a cost to such partitioning: queries that do not contain a selection on
the partitioning attribute need to individually access each of the partitions, potentially
slowing down such queries significantly. If such queries are rare, the benefits of parti-
tioning outweigh the costs, making them an attractive technique for optimization.

Even if the database does not support partitioning internally, it is possible to re-
place a relation r by multiple physical relations r1, r2,… , rn, and the original relation r
is defined by the view r = r1 ∪ r2 ∪…∪ rn. Suppose that the database optimizer knows
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the predicate defining each ri (in our example, the date range corresponding to each
ri). Then the optimizer can replace a query on r that includes a selection on the parti-
tioning attribute (date, in our example), with a query on the only relevant ris. Indices
would have to be created separately on each of the ris.

25.1.4.4 Automated Tuning of Physical Design

Most commercial database systems today provide tools to help the database adminis-
trator with index and materialized view selection and other tasks related to physical
database design such as how to partition data in a parallel database system.

These tools examine the workload (the history of queries and updates) and sug-
gest indices and views to be materialized. The database administrator may specify the
importance of speeding up different queries, which the tool takes into account when
selecting views to materialize. Often tuning must be done before the application is fully
developed, and the actual database contents may be small on the development database
but are expected to be much larger on a production database. Thus, some tuning tools
also allow the database administrator to specify information about the expected size of
the database and related statistics.

Microsoft’s Database Tuning Assistant, for example, allows the user to ask “what
if” questions, whereby the user can pick a view, and the optimizer then estimates the
effect of materializing the view on the total cost of the workload and on the individual
costs of different types of queries and updates in the workload.

The automatic selection of indices and materialized views is usually implemented
by enumerating different alternatives and using the query optimizer to estimate the
costs and benefits of selecting each alternative by using the workload. Since the number
of design alternatives and the potential workload may be extremely large, the selection
techniques must be designed carefully.

The first step is to generate a workload. This is usually done by recording all the
queries and updates that are executed during some time period. Next, the selection
tools perform workload compression, that is, create a representation of the workload
using a small number of updates and queries. For example, updates of the same form
can be represented by a single update with a weight corresponding to how many times
the update occurred. Queries of the same form can be similarly replaced by a repre-
sentative with appropriate weight. After this, queries that are very infrequent and do
not have a high cost may be discarded from consideration. The most expensive queries
may be chosen to be addressed first. Such workload compression is essential for large
workloads.

With the help of the optimizer, the tool would come up with a set of indices and
materialized views that could help the queries and updates in the compressed workload.
Different combinations of these indices and materialized views can be tried out to find
the best combination. However, an exhaustive approach would be totally impractical,
since the number of potential indices and materialized views is already large, and each
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Note 25.2 TUNING TOOLS

Tuning tools, such as the Database Engine Tuning Advisor provided by SQL Server
and the SQL Tuning Advisor of Oracle, provide recommendations such as what
indices or materialized views to add, or how to partition a relation, to improve
performance. These recommendations can then be accepted and implemented by
a database administrator.

Auto Tuning in Microsoft Azure SQL can automatically create and drop in-
dices to improve query performance. A risk with automatically changing the phys-
ical schema is that some queries may perform poorly. For example, an optimizer
may choose a plan using a newly created index, assuming, based on wrong esti-
mates of cost, that the new plan is cheaper than the plan used before the index was
created. In reality, the query may run slower using the new plan, which may affect
users. The “force last good plan” feature can monitor query performance after any
change such as addition of an index, and if performance is worse, it can force the
database to use the old plan before the change (as long as it is still valid).

Oracle also provides auto tuning support, for example recommending if an
index should be added, or monitoring the use of a query to decide if it should be
optimized for fetching only a few rows or for fetching all rows (the best plan may
be very different if only the first few rows are fetched or if all rows are fetched).

subset of these is a potential design alternative, leading to an exponential number of
alternatives. Heuristics are used to reduce the space of alternatives, that is, to reduce
the number of combinations considered.

Greedy heuristics for index and materialized view selection operate as follows:
They estimate the benefits of materializing different indices or views (using the op-
timizer’s cost estimation functionality as a subroutine). They then choose the index or
view that gives either the maximum benefit or the maximum benefit per unit space (i.e.,
benefit divided by the space required to store the index or view). The cost of maintain-
ing the index or view must be taken into account when computing the benefit. Once the
heuristic has selected an index or view, the benefits of other indices or views may have
changed, so the heuristic recomputes these and chooses the next best index or view for
materialization. The process continues until either the available disk space for storing
indices or materialized views is exhausted or the cost of maintaining the remaining
candidates is more than the benefit to queries that could use the indices or views.

Real-world index and materialized-view selection tools usually incorporate some
elements of greedy selection but use other techniques to get better results. They also
support other aspects of physical database design, such as deciding how to partition a
relation in a parallel database, or what physical storage mechanism to use for a relation.
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25.1.5 Tuning of Queries

The performance of an application can often be significantly improved by rewriting
queries or by changing how the application issues queries to the database.

25.1.5.1 Tuning of Query Plans

In the past, optimizers on many database systems were not particularly good, so how
a query was written would have a big influence on how it was executed, and therefore
on the performance. Today’s advanced optimizers can transform even badly written
queries and execute them efficiently, so the need for tuning individual queries is less
important than it used to be. However, sometimes query optimizers choose bad plans
for one of several reasons, which we describe next.

Before checking if something needs to be tuned in the plan for a query, it is useful
to find out what plan is being used for the query. Most databases support an explain
command, which allows you to see what plan is being used for a query. The explain
command also shows the statistics that the optimizer used or computed for different
parts of the query plan, and estimates of the costs of each part of a query plan. Vari-
ants of the explain command also execute the query and get actual tuple counts and
execution time for different parts of the query plan.

Incorrect statistics are often the reason for the choice of a bad plan. For example,
if the optimizer thinks that the relations involved in a join have very few tuples, it may
choose nested loops join, which would be very inefficient if the relations actually have
a large number of tuples.

Ideally, database statistics should be updated whenever relations are updated. How-
ever, doing so adds unacceptable overhead to update queries. Instead, databases either
periodically update statistics or leave it to the system administrator to issue a com-
mand to update statistics. Some databases, such as PostgreSQL and MySQL support
a command called analyze,1 which can be used to recompute statistics. For example,
analyze instructor would recompute statistics for the instructor relation, while ana-
lyze with no arguments would recompute statistics for all relations in PostgreSQL. It
is highly recommended to run this command after loading data into the database, or
after making a significant number of inserts or deletes on a relation.

Some databases such as Oracle and Microsoft SQL Server keep track of inserts
and deletes to relations, and they update statistics whenever the relation size changes
by a significant fraction, making execution of the analyze command unnecessary.

Another reason for poor performance of queries is the lack of required indices. As
we saw earlier, the choice of indices can be done as part of the tuning of the physical
schema, but examining a query helps us understand what indices may be useful to speed
up that query.

Indices are particularly important for queries that fetch only a few rows from a large
relation, based on a predicate. For example, a query that finds students in a department

1The command is called analyze table in the case of MySQL.
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may benefit from an index on the student relation on the attribute dept name. Indices
on join attributes are often very useful. For example, if the above query also included
a join of student with takes on the attribute takes.ID, an index on takes.ID could be
useful.

Note that databases typically create indices on primary-key attributes, which can be
used for selections as well as joins. For example, in our university schema, the primary-
key index on takes has ID as its first attribute and may thus be useful for the above
join.

Complex queries containing nested subqueries are not optimized very well by many
optimizers. We saw techniques for nested subquery decorrelation in Section 16.4.4. If a
subquery is not decorrelated, it gets executed repeatedly, potentially resulting in a great
deal of random I/O. In contrast, decorrelation allows efficient set-oriented operations
such as joins to be used, minimizing random I/O. Most database query optimizers
incorporate some forms of decorrelation, but some can handle only very simple nested
subqueries. The execution plan chosen by the optimizer can be found as described in
Chapter 16. If the optimizer has not succeeded in decorrelating a nested subquery, the
query can be decorrelated by rewriting it manually.

25.1.5.2 Improving Set Orientation

When SQL queries are executed from an application program, it is often the case that
a query is executed frequently, but with different values for a parameter. Each call has
an overhead of communication with the server, in addition to processing overheads at
the server.

For example, consider a program that steps through each department, invoking an
embedded SQL query to find the total salary of all instructors in the department:

select sum(salary)
from instructor
where dept name= ?

If the instructor relation does not have a clustered index on dept name, each such
query will result in a scan of the relation. Even if there is such an index, a random I/O
operation will be required for each dept name value.

Instead, we can use a single SQL query to find total salary expenses of each depart-
ment:

select dept name, sum(salary)
from instructor
group by dept name;

This query can be evaluated with a single scan of the instructor relation, avoiding ran-
dom I/O for each department. The results can be fetched to the client side using a single
round of communication, and the client program can then step through the results to
find the aggregate for each department. Combining multiple SQL queries into a single
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PreparedStatement pStmt = conn.prepareStatement(
"insert into instructor values(?,?,?,?)");

pStmt.setString(1, "88877");
pStmt.setString(2, "Perry");
pStmt.setInt(3, "Finance");
pStmt.setInt(4, 125000);
pStmt.addBatch( );
pStmt.setString(1, "88878");
pStmt.setString(2, "Thierry");
pStmt.setInt(3, "Physics");
pStmt.setInt(4, 100000);
pStmt.addBatch( );
pStmt.executeBatch( );

Figure 25.2 Batch update in JDBC.

SQL query as above can reduce execution costs greatly in many cases—for example, if
the instructor relation is very large and has a large number of departments.

The JDBC API also provides a feature called batch update that allows a number of
inserts to be performed using a single communication with the database. Figure 25.2
illustrates the use of this feature. The code shown in the figure requires only one round
of communication with the database, when the executeBatch() method is executed, in
contrast to similar code without the batch update feature that we saw in Figure 5.2. In
the absence of batch update, as many rounds of communication with the database are
required as there are instructors to be inserted. The batch update feature also enables
the database to process a batch of inserts at once, which can potentially be done much
more efficiently than a series of single record inserts.

Another technique used widely in client-server systems to reduce the cost of com-
munication and SQL compilation is to use stored procedures, where queries are stored
at the server in the form of procedures, which may be precompiled. Clients can invoke
these stored procedures rather than communicate a series of queries.

25.1.5.3 Tuning of Bulk Loads and Updates

When loading a large volume of data into a database (called a bulk load operation),
performance is usually very poor if the inserts are carried out as separate SQL insert
statements. One reason is the overhead of parsing each SQL query; a more important
reason is that performing integrity constraint checks and index updates separately for
each inserted tuple results in a large number of random I/O operations. If the inserts
were done as a large batch, integrity-constraint checking and index update can be done
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in a much more set-oriented fashion, reducing overheads greatly; performance improve-
ments of an order of magnitude or more are not uncommon.

To support bulk load operations, most database systems provide a bulk import util-
ity and a corresponding bulk export utility. The bulk-import utility reads data from a
file and performs integrity constraint checking as well as index maintenance in a very
efficient manner. Common input and output file formats supported by such bulk im-
port/export utilities include text files with characters such as commas or tabs separating
attribute values, with each record in a line of its own (such file formats are referred to
as comma-separated values or tab-separated values formats). Database-specific binary
formats as well as XML formats are also supported by bulk import/export utilities. The
names of the bulk import/export utilities differ by database. In PostgreSQL, the utilities
are called pg dump and pg restore (PostgreSQL also provides an SQL command copy,
which provides similar functionality). The bulk import/export utility in Oracle is called
SQL*Loader, the utility in DB2 is called load, and the utility in SQL Server is called bcp
(SQL Server also provides an SQL command called bulk insert).

We now consider the case of tuning of bulk updates. Suppose we have a relation
funds received(dept name, amount) that stores funds received (say, by electronic funds
transfer) for each of a set of departments. Suppose now that we want to add the amounts
to the balances of the corresponding department budgets. In order to use the SQL
update statement to carry out this task, we have to perform a look up on the funds
received relation for each tuple in the department relation. We can use subqueries in

the update clause to carry out this task, as follows: We assume for simplicity that the
relation funds received contains at most one tuple for each department.

update department set budget = budget +
(select amount

from funds received
where funds received.dept name = department.dept name)

where exists(
select *

from funds received
where funds received.dept name = department.dept name);

Note that the condition in the where clause of the update ensures that only accounts
with corresponding tuples in funds received are updated, while the subquery within the
set clause computes the amount to be added to each such department.

There are many applications that require updates such as that illustrated above.
Typically, there is a table, which we shall call the master table, and updates to the master
table are received as a batch. Now the master table has to be correspondingly updated.
SQL:2003 introduced a special construct, called the merge construct, to simplify the
task of performing such merging of information. For example, the preceding update
can be expressed using merge as follows:
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merge into department as A
using (select *

from funds received) as F
on (A.dept name = F .dept name)

when matched then
update set budget = budget + F.amount;

When a record from the subquery in the using clause matches a record in the depart-
ment relation, the when matched clause is executed, which can execute an update on
the relation; in this case, the matching record in the department relation is updated as
shown.

The merge statement can also have a when not matched then clause, which permits
insertion of new records into the relation. In the preceding example, when there is no
matching department for a funds received tuple, the insertion action could create a new
department record (with a null building) using the following clause:

when not matched then
insert values (F.dept name, null, F.budget)

Although not very meaningful in this example,2 the when not matched then clause can
be quite useful in other cases. For example, suppose the local relation is a copy of
a master relation, and we receive updated as well as newly inserted records from the
master relation. The merge statement can update matched records (these would be
updated old records) and insert records that are not matched (these would be new
records).

Not all SQL implementations support the merge statement currently; see the re-
spective system manuals for further details.

25.1.6 Tuning of the Logical Schema

Performance of queries can sometimes be improved by tuning of the logical schema.
For example, within the constraints of the chosen normal form, it is possible to parti-
tion relations vertically. Consider the course relation, with the schema:

course (course id, title, dept name, credits)

for which course id is a key. Within the constraints of the normal forms (BCNF and
3NF), we can partition the course relation into two relations:

course credit (course id, credits)
course title dept (course id, title, dept name)

2A better action here would have been to insert these records into an error relation, but that cannot be done with the
merge statement.
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The two representations are logically equivalent, since course id is a key, but they have
different performance characteristics.

If most accesses to course information look at only the course id and credits, then
they can be run against the course credit relation, and access is likely to be somewhat
faster, since the title and dept name attributes are not fetched. For the same reason,
more tuples of course credit will fit in the buffer than corresponding tuples of course,
again leading to faster performance. This effect would be particularly marked if the title
and dept name attributes were large. Hence, a schema consisting of course credit and
course title dept would be preferable to a schema consisting of the course relation in this
case.

On the other hand, if most accesses to course information require both dept name
and credits, using the course relation would be preferable, since the cost of the join of
course credit and course title dept would be avoided. Also, the storage overhead would
be lower, since there would be only one relation, and the attribute course id would not
be replicated.

The column store approach to storing data are based on vertical partitioning but
takes it to the limit by storing each attribute (column) of the relation in a separate
file, as we saw in Section 13.6. Note that in a column store it is not necessary to re-
peat the primary-key attribute since the ith row can be reconstructed by taking the ith

entry for each desired column. Column stores have been shown to perform well for
several data-warehouse applications by reducing I/O, improving cache performance,
enabling greater gains from data compression, and allowing effective use of CPU vector-
processing capabilities.

Another trick to improve performance is to store a denormalized relation, such as
a join of instructor and department, where the information about dept name, building,
and budget is repeated for every instructor. More effort has to be expended to make
sure the relation is consistent whenever an update is carried out. However, a query
that fetches the names of the instructors and the associated buildings will be speeded
up, since the join of instructor and department will have been precomputed. If such a
query is executed frequently, and has to be performed as efficiently as possible, the
denormalized relation could be beneficial.

Materialized views can provide the benefits that denormalized relations provide,
at the cost of some extra storage. A major advantage to materialized views over denor-
malized relations is that maintaining consistency of redundant data becomes the job
of the database system, not the programmer. Thus, materialized views are preferable,
whenever they are supported by the database system.

Another approach to speed up the computation of the join without materializing
it is to cluster records that would match in the join on the same disk page. We saw such
clustered file organizations in Section 13.3.3.

25.1.7 Tuning of Concurrent Transactions

Concurrent execution of different types of transactions can sometimes lead to poor
performance because of contention on locks. We first consider the case of read-write
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contention, which is more common, and then consider the case of write-write con-
tention.

As an example of read-write contention, consider the following situation on a bank-
ing database. During the day, numerous small update transactions are executed almost
continuously. Suppose that a large query that computes statistics on branches is run at
the same time. If the query performs a scan on a relation, it may block out all updates
on the relation while it runs, and that can have a disastrous effect on the performance
of the system.

Several database systems—Oracle, PostgreSQL, and Microsoft SQL Server, for ex-
ample— support snapshot isolation, whereby queries are executed on a snapshot of the
data, and updates can go on concurrently. (Snapshot isolation is described in detail in
Section 18.8.) Snapshot isolation should be used, if available, for large queries, to avoid
lock contention in the above situation. In SQL Server, executing the statement

set transaction isolation level snapshot

at the beginning of a transaction results in snapshot isolation being used for that trans-
action. In Oracle and PostgreSQL, using the keyword serializable in place of the key-
word snapshot in the above command has the same effect, since these systems actually
use snapshot isolation (serializable snapshot isolation, in the case of PostgreSQL ver-
sion 9.1 onwards) when the isolation level is set to serializable.

If snapshot isolation is not available, an alternative option is to execute large queries
at times when updates are few or nonexistent. However, for databases supporting web
sites, there may be no such quiet period for updates.

Another alternative is to use weaker levels of consistency, such as the read commit-
ted isolation level, whereby evaluation of the query has a minimal impact on concurrent
updates, but the query results are not guaranteed to be consistent. The application se-
mantics determine whether approximate (inconsistent) answers are acceptable.

We now consider the case of write-write contention. Data items that are updated
very frequently can result in poor performance with locking, with many transactions
waiting for locks on those data items. Such data items are called update hot spots.
Update hot spots can cause problems even with snapshot isolation, causing frequent
transaction aborts due to write-validation failures. A commonly occurring situation that
results in an update hot spot is as follows: transactions need to assign unique identifiers
to data items being inserted into the database, and to do so they read and increment
a sequence counter stored in a tuple in the database. If inserts are frequent, and the
sequence counter is locked in a two-phase manner, the tuple containing the sequence
counter becomes a hot spot.

One way to improve concurrency is to release the lock on the sequence counter
immediately after it is read and incremented; however, after doing so, even if the trans-
action aborts, the update to the sequence counter should not be rolled back. To under-
stand why, suppose T1 increments the sequence counter, and then T2 increments the
sequence counter before T1 commits; if T1 then aborts, rolling back its update, either
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by restoring the counter to the original value or by decrementing the counter, will result
in the sequence value used by T2 getting reused by a subsequent transaction.

Most databases provide a special construct for creating sequence counters that im-
plement early, non-two-phase lock release, coupled with special-case treatment of undo
logging so that updates to the counter are not rolled back if the transaction aborts. The
SQL standard allows a sequence counter to be created using the command:

create sequence counter1;

In the above command, counter1 is the name of the sequence; multiple sequences can
be created with different names. The syntax to get a value from the sequence is not
standardized; in Oracle, counter1.nextval would return the next value of the sequence,
after incrementing it, while the function call nextval (’counter1’) would have the same
effect in PostgreSQL, and DB2 uses the syntax nextval for counter1.

The SQL standard provides an alternative to using an explicit sequence counter,
which is useful when the goal is to give unique identifiers to tuples inserted into a re-
lation. To do so, the keyword identity can be added to the declaration of an integer
attribute of a relation (usually this attribute would also be declared as the primary
key). If the value for that attribute is left unspecified in an insert statement for that
relation, a unique new value is created automatically for each newly inserted tuple. A
non-two-phase locked sequence counter is used internally to implement the identity dec-
laration, with the counter incremented each time a tuple is inserted. Several databases,
including DB2 and SQL Server support the identity declaration, although the syntax
varies. PostgreSQL supports a data type called serial, which provides the same effect;
the PostgreSQL type serial is implemented by transparently creating a non-two-phase
locked sequence.

It is worth noting that since the acquisition of a sequence number by a transaction
cannot be rolled back if the transaction aborts (for reasons discussed earlier), transac-
tion aborts may result in gaps in the sequence numbers in tuples inserted in the database.
For example, there may be tuples with identifier value 1001 and 1003, but no tuple with
value 1002, if the transaction that acquired the sequence number 1002 did not com-
mit. Such gaps are not acceptable in some applications; for example, some financial
applications require that there be no gaps in bill or receipt numbers. Database pro-
vided sequences and automatically incremented attributes should not be used for such
applications, since they can result in gaps. A sequence counter stored in normal tuples,
which is locked in a two-phase manner, would not be susceptible to such gaps since a
transaction abort would restore the sequence counter value, and the next transaction
would get the same sequence number, avoiding a gap.

Long update transactions can cause performance problems with system logs and
can increase the time taken to recover from system crashes. If a transaction performs
many updates, the system log may become full even before the transaction completes,
in which case the transaction will have to be rolled back. If an update transaction runs
for a long time (even with few updates), it may block deletion of old parts of the log,
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if the logging system is not well designed. Again, this blocking could lead to the log
getting filled up.

To avoid such problems, many database systems impose strict limits on the num-
ber of updates that a single transaction can carry out. Even if the system does not
impose such limits, it is often helpful to break up a large update transaction into a set
of smaller update transactions where possible. For example, a transaction that gives a
raise to every employee in a large corporation could be split up into a series of small
transactions, each of which updates a small range of employee-ids. Such transactions
are called minibatch transactions. However, minibatch transactions must be used with
care. First, if there are concurrent updates on the set of employees, the result of the
set of smaller transactions may not be equivalent to that of the single large transaction.
Second, if there is a failure, the salaries of some of the employees would have been
increased by committed transactions, but salaries of other employees would not. To
avoid this problem, as soon as the system recovers from failure, we must execute the
transactions remaining in the batch.

Long transactions, whether read-only or update, can also result in the lock table
becoming full. If a single query scans a large relation, the query optimizer would ensure
that a relation lock is obtained instead of acquiring a large number of tuple locks.
However, if a transaction executes a large number of small queries or updates, it may
acquire a large number of locks, resulting in the lock table becoming full.

To avoid this problem, some databases provide for automatic lock escalation; with
this technique, if a transaction has acquired a large number of tuple locks, tuple locks
are upgraded to page locks, or even full relation locks. Recall that with multiple-
granularity locking (Section 18.3), once a coarser-level lock is obtained, there is no
need to record finer-level locks, so tuple lock entries can be removed from the lock
table, freeing up space. On databases that do not support lock escalation, it is possible
for the transaction to explicitly acquire a relation lock, thereby avoiding the acquisition
of tuple locks.

25.1.8 Tuning of Hardware

Hardware bottlenecks could include memory, I/O, CPU and network capacity. We focus
on memory and I/O tuning in this section. The availability of processors with a large
number of CPU cores, and support for multiple CPUs on a single machine allows system
designers to choose the CPU model and number of CPUs to meet the CPU requirements
of the application at an acceptable cost. How to tune or choose between CPU and
network interconnect options is a topic outside the domain of database tuning.

Even in a well-designed transaction processing system, each transaction usually has
to do at least a few I/O operations, if the data required by the transaction are on disk.
An important factor in tuning a transaction processing system is to make sure that the
disk subsystem can handle the rate at which I/O operations are required. For instance,
consider a hard disk that supports an access time of about 10 milliseconds, and average
transfer rate of 25 to 100 megabytes per second (a fairly typical disk today). Such a disk
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would support a little under 100 random-access I/O operations of 4 kilobytes each per
second. If each transaction requires just two I/O operations, a single disk would support
at most 50 transactions per second.

An obvious way to improve performance is to replace a hard disk with a solid-state
drive (SSD), since a single SSD can support tens of thousands of random I/O operations
per second. A drawback of using SSDs is that they cost a lot more than hard disks for
a given storage capacity. Another way to support more transactions per second is to
increase the number of disks. If the system needs to support n transactions per second,
each performing two I/O operations, data must be striped (or otherwise partitioned)
across at least n∕50 hard disks (ignoring skew), or n∕5000 SSDs, if the SSD supports
10,000 random I/O operations per second.

Notice here that the limiting factor is not the capacity of the disk, but the speed at
which random data can be accessed (limited in a hard disk by the speed at which the
disk arm can move). The number of I/O operations per transaction can be reduced by
storing more data in memory. If all data are in memory, there will be no disk I/O except
for writes. Keeping frequently used data in memory reduces the number of disk I/Os
and is worth the extra cost of memory. Keeping very infrequently used data in memory
would be a waste, since memory is much more expensive than disk.

The question is, for a given amount of money available for spending on disks or
memory, what is the best way to spend the money to achieve the maximum number of
transactions per second? A reduction of one I/O per second saves:

(price per disk drive)∕(access per second per disk)

Thus, if a particular page is accessed once in m seconds, the saving due to keeping
it in memory is 1

m
times the above value. Storing a page in memory costs:

(price per megabyte of memory)∕(pages per megabyte of memory)

Thus, the break-even point is:

1
m

∗ price per disk drive
access per second per disk

= price per megabyte of memory
pages per megabyte of memory

We can rearrange the equation and substitute current values for each of the above
parameters to get a value for m; if a page is accessed more frequently than once in m
seconds, it is worth buying enough memory to store it.

As of 2018, hard-disk technology and memory and disk prices (which we assume
to be about $50 for a 1-terabyte disk and $80 for 16-gigabytes of memory) give a value
of m around 4 hours for 4-kilobytes pages that are randomly accessed; that is, if a page
on hard disk is accessed at least once in 4 hours, it makes sense to purchase enough
memory to cache it in memory. Note that if we use larger pages, the time decreases;
for example, a page size of 16-kilobytes will lead to a value of m of 1 hour instead of 4
hours.
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With disk and memory cost and speeds as of the 1980/1990s, the corresponding
value was 5 minutes with 4-kilobytes pages. Thus, a widely used rule of thumb, called
the five minute rule, which said that data should be cached in memory if it is accessed
more frequently than once in 5 minutes.

With SSD technology and prices as of 2018 (which we assume to be around $500
for a 800 gigabytes SSD, which supports 67,000 random reads and 20,000 random
writes per second), if we make the same comparison between keeping a page in memory
versus fetching it from SSD, the time comes to around 7 minutes with 4-kilobyte pages.
That is, if a page on SSD is accessed more frequently than once in 7 minutes, it is worth
purchasing enough memory to cache it in memory.

For data that are sequentially accessed, significantly more pages can be read per
second. Assuming 1 megabyte of data are read at a time, the breakeven point for hard
disk currently is about 2.5 minutes. Thus, sequentially accessed data on hard disk
should be cached in memory if they are used at least once in 2.5 minutes. For SSDs, the
breakeven point is much smaller, at 1.6 seconds. In other words, there is little benefit
in caching sequentially accessed data in memory unless it is very frequently accessed.

The above rules of thumb take only the number of I/O operations per second into
account and do not consider factors such as response time. Some applications need
to keep even infrequently used data in memory to support response times that are less
than or comparable to disk-access time.

Since SSD storage is more expensive than disk, one way to get faster random I/O
for frequently used data, while paying less for storing less frequently used data, is to
use the flash-as-buffer approach. In this approach, flash storage is used as a persistent
buffer, with each block having a permanent location on disk, but stored in flash instead
of being written to disk as long as it is frequently used. When flash storage is full, a
block that is not frequently used is evicted and flushed back to disk if it was updated
after being read from disk. Disk subsystems that provide hard disks along with SSDs
that act as buffers are commercially available. A rule of thumb for deciding how much
SSD storage to purchase is that a 4-kilobyte page should be kept on SSD, instead of hard
disk, if it is accessed more frequently than once in a day (the computation is similar
to the case of caching in main memory versus fetching from disk/SSD). Note that in
such a setup, the database system cannot control what data reside in which part of the
storage.

If the storage system allows direct access to SSDs as well as hard disks, the database
administrator can control the mapping of relations or indices to disks and allocate
frequently used relations/indices to flash storage. The tablespace feature, supported by
most database systems, can be used to control the mapping by creating a tablespace on
flash storage and assigning desired relations and indices to that tablespace. Controlling
the mapping at a finer level of granularity than a relation, however, requires changes to
the database-system code.

Another aspect of tuning is whether to use RAID 1 or RAID 5. The answer depends
on how frequently the data are updated, since RAID 5 is much slower than RAID 1 on
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random writes: RAID 5 requires 2 reads and 2 writes to execute a single random write
request. If an application performs r random reads and w random writes per second to
support a particular throughput rate, a RAID 5 implementation would require r + 4w
I/O operations per second, whereas a RAID 1 implementation would require r+2w I/O
operations per second. We can then calculate the number of disks required to support
the required I/O operations per second by dividing the result of the calculation by 100
I/O operations per second (for current-generation disks). For many applications, r and
w are large enough that the (r + w)∕100 disks can easily hold two copies of all the
data. For such applications, if RAID 1 is used, the required number of disks is actually
less than the required number of disks if RAID 5 is used! Thus, RAID 5 is useful only
when the data storage requirements are very large, but the update rates, and particularly
random update rates, are small.

25.1.9 Performance Simulation

To test the performance of a database system even before it is installed, we can create
a performance-simulation model of the database system. Each service shown in Figure
25.1, such as the CPU, each disk, the buffer, and the concurrency control, is modeled
in the simulation. Instead of modeling details of a service, the simulation model may
capture only some aspects of each service, such as the service time—that is, the time
taken to finish processing a request once processing has begun. Thus, the simulation
can model a disk access from just the average disk-access time.

Since requests for a service generally have to wait their turn, each service has an
associated queue in the simulation model. A transaction consists of a series of requests.
The requests are queued up as they arrive and are serviced according to the policy for
that service, such as first come, first served. The models for services such as CPU and
the disks conceptually operate in parallel, to account for the fact that these subsystems
operate in parallel in a real system.

Once the simulation model for transaction processing is built, the system adminis-
trator can run a number of experiments on it. The administrator can use experiments
with simulated transactions arriving at different rates to find how the system would
behave under various load conditions. The administrator could run other experiments
that vary the service times for each service to find out how sensitive the performance
is to each of them. System parameters, too, can be varied, so that performance tuning
can be done on the simulation model.

25.2 Performance Benchmarks

As database servers become more standardized, the differentiating factor among the
products of different vendors is those products’ performance. Performance benchmarks
are suites of tasks that are used to quantify the performance of software systems.
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25.2.1 Suites of Tasks

Since most software systems, such as databases, are complex, there is a good deal of
variation in their implementation by different vendors. As a result, there is a significant
amount of variation in their performance on different tasks. One system may be the
most efficient on a particular task; another may be the most efficient on a different task.
Hence, a single task is usually insufficient to quantify the performance of the system.
Instead, the performance of a system is measured by suites of standardized tasks, called
performance benchmarks.

Combining the performance numbers from multiple tasks must be done with care.
Suppose that we have two tasks, T1 and T2, and that we measure the throughput of a
system as the number of transactions of each type that run in a given amount of time—
say, 1 second. Suppose that system A runs T1 at 99 transactions per second and T2 at
1 transaction per second. Similarly, let system B run both T1 and T2 at 50 transactions
per second. Suppose also that a workload has an equal mixture of the two types of
transactions.

If we took the average of the two pairs of numbers (i.e., 99 and 1, versus 50 and 50),
it might appear that the two systems have equal performance. However, it is wrong to
take the averages in this fashion—if we ran 50 transactions of each type, system A would
take about 50.5 seconds to finish, whereas system B would finish in just 2 seconds!

The example shows that a simple measure of performance is misleading if there is
more than one type of transaction. The right way to average out the numbers is to take
the time to completion for the workload, rather than the average throughput for each
transaction type. We can then compute system performance accurately in transactions
per second for a specified workload. Thus, system A takes 50.5∕100, which is 0.505
seconds per transaction, whereas system B takes 0.02 seconds per transaction, on av-
erage. In terms of throughput, system A runs at an average of 1.98 transactions per
second, whereas system B runs at 50 transactions per second. Assuming that transac-
tions of all the types are equally likely, the correct way to average out the throughputs
on different transaction types is to take the harmonic mean of the throughputs. The
harmonic mean of n throughputs t1, t2,… , tn is defined as:

n
1
t1
+ 1

t2
+⋯ + 1

tn

For our example, the harmonic mean for the throughputs in system A is 1.98. For
system B, it is 50. Thus, system B is approximately 25 times faster than system A on a
workload consisting of an equal mixture of the two example types of transactions.

25.2.2 Database-Application Classes

Online transaction processing (OLTP) and decision support, including online analytical
processing (OLAP), are two broad classes of applications handled by database systems.
These two classes of tasks have different requirements. High concurrency and clever
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techniques to speed up commit processing are required for supporting a high rate of
update transactions. On the other hand, good query-evaluation algorithms and query
optimization are required for decision support. The architecture of some database sys-
tems has been tuned to transaction processing; that of others, such as the Teradata
series of parallel database systems, has been tuned to decision support. Other vendors
try to strike a balance between the two tasks.

Applications usually have a mixture of transaction-processing and decision-support
requirements. Hence, which database system is best for an application depends on what
mix of the two requirements the application has.

Suppose that we have throughput numbers for the two classes of applications sepa-
rately, and the application at hand has a mix of transactions in the two classes. We must
be careful even about taking the harmonic mean of the throughput numbers because
of interference between the transactions. For example, a long-running decision-support
transaction may acquire a number of locks, which may prevent all progress of update
transactions. The harmonic mean of throughputs should be used only if the transac-
tions do not interfere with one another.

25.2.3 The TPC Benchmarks

The Transaction Processing Performance Council (TPC) has defined a series of bench-
mark standards for database systems.

The TPC benchmarks are defined in great detail. They define the set of relations
and the sizes of the tuples. They define the number of tuples in the relations not as
a fixed number, but rather as a multiple of the number of claimed transactions per
second, to reflect that a larger rate of transaction execution is likely to be correlated
with a larger number of accounts. The performance metric is throughput, expressed
as transactions per second (TPS). When its performance is measured, the system must
provide a response time within certain bounds, so that a high throughput cannot be
obtained at the cost of very long response times. Further, for business applications,
cost is of great importance. Hence, the TPC benchmark also measures performance
in terms of price per TPS. A large system may have a high number of transactions per
second, but it may be expensive (i.e., have a high price per TPS). Moreover, a company
cannot claim TPC benchmark numbers for its systems without an external audit that
ensures that the system faithfully follows the definition of the benchmark, including
full support for the ACID properties of transactions.

The first in the series was the TPC-A benchmark, which was defined in 1989. This
benchmark simulates a typical bank application by a single type of transaction that
models cash withdrawal and deposit at a bank teller. The transaction updates several
relations—such as the bank balance, the teller’s balance, and the customer’s balance—
and adds a record to an audit-trail relation. The benchmark also incorporates communi-
cation with terminals, to model the end-to-end performance of the system realistically.
The TPC-B benchmark was designed to test the core performance of the database sys-
tem, along with the operating system on which the system runs. It removes the parts
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of the TPC-A benchmark that deal with users, communication, and terminals, to focus
on the backend database server. Neither TPC-A nor TPC-B is in use today.

The TPC-C benchmark was designed to model a more complex system than the
TPC-A benchmark. The TPC-C benchmark concentrates on the main activities in an
order-entry environment, such as entering and delivering orders, recording payments,
checking status of orders, and monitoring levels of stock. The TPC-C benchmark is still
widely used for benchmarking online transaction processing (OLTP) systems.

The more recent TPC-E benchmark is also aimed at OLTP systems but is based on
a model of a brokerage firm, with customers who interact with the firm and generate
transactions. The firm in turn interacts with financial markets to execute transactions.

The TPC-D benchmark was designed to test the performance of database systems
on decision-support queries. Decision-support systems are becoming increasingly im-
portant today. The TPC-A, TPC-B, and TPC-C benchmarks measure performance on
transaction-processing workloads and should not be used as a measure of performance
on decision-support queries. The D in TPC-D stands for decision support. The TPC-D
benchmark schema models a sales/distribution application, with parts, suppliers, cus-
tomers, and orders, along with some auxiliary information. The sizes of the relations are
defined as a ratio, and database size is the total size of all the relations, expressed in giga-
bytes. TPC-D at scale factor 1 represents the TPC-D benchmark on a 1-gigabyte database,
while scale factor 10 represents a 10-gigabyte database. The benchmark workload con-
sists of a set of 17 SQL queries modeling common tasks executed on decision-support
systems. Some of the queries make use of complex SQL features, such as aggregation
and nested queries.

The benchmark’s users soon realized that the various TPC-D queries could be sig-
nificantly speeded up by using materialized views and other redundant information.
There are applications, such as periodic reporting tasks, where the queries are known
in advance, and materialized views can be selected carefully to speed up the queries. It
is necessary, however, to account for the overhead of maintaining materialized views.

The TPC-H benchmark (where ˝ represents ad hoc) is a refinement of the TPC-D
benchmark. The schema is the same, but there are 22 queries, of which 16 are from
TPC-D. In addition, there are two updates, a set of inserts, and a set of deletes. TPC-
H prohibits materialized views and other redundant information and permits indices
only on primary and foreign keys. This benchmark models ad hoc querying where the
queries are not known beforehand, so it is not possible to create appropriate material-
ized views ahead of time. A variant, TPC-R (where R stands for “reporting”), which is no
longer in use, allowed the use of materialized views and other redundant information.

The TPC-DS benchmark is a follow-up to the TPC-H benchmark and models the
decision-support functions of a retail product supplier, including information about
customers, orders, and products, and with multiple sales channels such as retail stores
and online sales. It has two subparts of the schema, corresponding to ad hoc querying
and reporting, similar to TPC-H and TPC-R. There is a query workload, as well as a data
maintenance workload.
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TPC-H and TPC-DS measure performance in this way: The power test runs the
queries and updates one at a time sequentially, and 3600 seconds divided by the geomet-
ric mean of the execution times of the queries (in seconds) gives a measure of queries
per hour. The throughput test runs multiple streams in parallel, with each stream exe-
cuting all 22 queries. There is also a parallel update stream. Here the total time for the
entire run is used to compute the number of queries per hour.

The composite query per hour metric, which is the overall metric, is then obtained
as the square root of the product of the power and throughput metrics. A composite
price/performance metric is defined by dividing the system price by the composite met-
ric.

There are several other TPC benchmarks, such as a data integration benchmark
(TPC-DI), benchmarks for big data systems based on Hadoop/Spark (TPCx-HS), and
for back-end processing of internet-of-things data (TPCx-IoT).

25.3 Other Issues in Application Development

In this section, we discuss two issues in application development: testing of applications
and migration of applications.

25.3.1 Testing Applications

Testing of programs involves designing a test suite, that is, a collection of test cases.
Testing is not a one-time process, since programs evolve continuously, and bugs may
appear as an unintended consequence of a change in the program; such a bug is referred
to as program regression. Thus, after every change to a program, the program must be
tested again. It is usually infeasible to have a human perform tests after every change to
a program. Instead, expected test outputs are stored with each test case in a test suite.
Regression testing involves running the program on each test case in a test suite and
checking that the program generates the expected test output.

In the context of database applications, a test case consists of two parts: a database
state and an input to a specific interface of the application.

SQL queries can have subtle bugs that can be difficult to catch. For example, a query
may execute a join when it should have performed an outer join (i.e., r ⋈ s, when it
should have actually performed r ⟕ s). The difference between these two queries would
be found only if the test database had an r tuple with no matching s tuple. Thus, it is
important to create test databases that can catch commonly occurring errors. Such
errors are referred to as mutations, since they are usually small changes to a query
(or program). A test case that produces different outputs on an intended query and a
mutant of the query is said to kill the mutant. A test suite should have test cases that
kill (most) commonly occurring mutants.

If a test case performs an update on the database, to check that it executed properly
one must verify that the contents of the database match the expected contents. Thus,
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the expected output consists not only of data displayed on the user’s screen, but also
(updates to) the database state.

Since the database state can be rather large, multiple test cases would share a com-
mon database state. Testing is complicated by the fact that if a test case performs an
update on the database, the results of other test cases run subsequently on the same
database may not match the expected results. The other test cases would then be erro-
neously reported as having failed. To avoid this problem, whenever a test case performs
an update, the database state must be restored to its original state after running the test.

Testing can also be used to ensure that an application meets performance require-
ments. To carry out such performance testing, the test database must be of the same
size as the real database would be. In some cases, there is already existing data on
which performance testing can be carried out. In other cases, a test database of the
required size must be generated; there are several tools available for generating such
test databases. These tools ensure that the generated data satisfy constraints such as
primary- and foreign-key constraints. They may additionally generate data that look
meaningful, for example, by populating a name attribute using meaningful names in-
stead of random strings. Some tools also allow data distributions to be specified; for
example, a university database may require a distribution with most students in the
range of 18 to 25 years and most faculty in the range of 25 to 65 years.

Even if there is an existing database, organizations usually do not want to reveal
sensitive data to an external organization that may be carrying out the performance
tests. In such a situation, a copy of the real database may be made, and the values
in the copy may be modified in such a way that any sensitive data, such as credit-card
numbers, social security numbers, or dates of birth, are obfuscated. Obfuscation is done
in most cases by replacing a real value with a randomly generated value (taking care to
also update all references to that value, in case the value is a primary key). On the other
hand, if the application execution depends on the value, such as the date of birth in an
application that performs different actions based on the date of birth, obfuscation may
make small random changes in the value instead of replacing it completely.

25.3.2 Application Migration

Legacy systems are older-generation application systems that are still in use despite
being obsolete. They continue in use due to the cost and risk in replacing them. For
example, many organizations developed applications in-house, but they may decide to
replace them with a commercial product. In some cases, a legacy system may use old
technology that is incompatible with current-generation standards and systems. Some
legacy systems in operation today are several decades old and are based on technologies
such as databases that use the network or hierarchical data models, or use Cobol and
file systems without a database. Such systems may still contain valuable data and may
support critical applications.

Replacing legacy applications with new applications is often costly in terms of both
time and money, since they are often very large, consisting of millions of lines of code
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developed by teams of programmers, often over several decades. They contain large
amounts of data that must be ported to the new application, which may use a com-
pletely different schema. Switchover from an old to a new application involves retrain-
ing large numbers of staff. Switchover must usually be done without any disruption,
with data entered in the old system available through the new system as well.

Many organizations attempt to avoid replacing legacy systems and instead try to
interoperate them with newer systems. One approach used to interoperate between
relational databases and legacy databases is to build a layer, called a wrapper, on top of
the legacy systems that can make the legacy system appear to be a relational database.
The wrapper may provide support for ODBC or other interconnection standards such
as OLE-DB, which can be used to query and update the legacy system. The wrapper is
responsible for converting relational queries and updates into queries and updates on
the legacy system.

When an organization decides to replace a legacy system with a new system, it may
follow a process called reverse engineering, which consists of going over the code of the
legacy system to come up with schema designs in the required data model (such as an
E-R model or an object-oriented data model). Reverse engineering also examines the
code to find out what procedures and processes were implemented, in order to get a
high-level model of the system. Reverse engineering is needed because legacy systems
usually do not have high-level documentation of their schema and overall system design.
When coming up with a new system, developers review the design so that it can be
improved rather than just reimplemented as is. Extensive coding is required to support
all the functionality (such as user interface and reporting systems) that was provided
by the legacy system. The overall process is called re-engineering.

When a new system has been built and tested, the system must be populated with
data from the legacy system, and all further activities must be carried out on the new
system. However, abruptly transitioning to a new system, which is called the big-bang
approach, carries several risks. First, users may not be familiar with the interfaces of the
new system. Second, there may be bugs or performance problems in the new system
that were not discovered when it was tested. Such problems may lead to great losses
for companies, since their ability to carry out critical transactions such as sales and
purchases may be severely affected. In some extreme cases the new system has even
been abandoned, and the legacy system reused, after an attempted switchover failed.

An alternative approach, called the chicken-little approach, incrementally re-
places the functionality of the legacy system. For example, the new user inter-
faces may be used with the old system in the back end, or vice versa. Another
option is to use the new system only for some functionality that can be decou-
pled from the legacy system. In either case, the legacy and new systems coex-
ist for some time. There is therefore a need for developing and using wrappers
on the legacy system to provide required functionality to interoperate with the new
system. This approach therefore has a higher development cost.
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25.4 Standardization

Standards define the interface of a software system. For example, standards define the
syntax and semantics of a programming language, or the functions in an application-
program interface, or even a data model (such as the object-oriented database stan-
dards). Today, database systems are complex, and they are often made up of multiple
independently created parts that need to interact. For example, client programs may
be created independently of backend systems, but the two must be able to interact with
each other. A company that has multiple heterogeneous database systems may need to
exchange data between the databases. Given such a scenario, standards play an impor-
tant role.

Formal standards are those developed by a standards organization or by industry
groups through a public process. Dominant products sometimes become de facto stan-
dards, in that they become generally accepted as standards without any formal process
of recognition. Some formal standards, like many aspects of the SQL-92 and SQL:1999
standards, are anticipatory standards that lead the marketplace; they define features
that vendors then implement in products. In other cases, the standards, or parts of
the standards, are reactionary standards, in that they attempt to standardize features
that some vendors have already implemented, and that may even have become de facto
standards. SQL-89 was in many ways reactionary, since it standardized features, such
as integrity checking, that were already present in the IBM SAA SQL standard and in
other databases.

Formal standards committees are typically composed of representatives of the ven-
dors and of members from user groups and standards organizations such as the Inter-
national Organization for Standardization (ISO) or the American National Standards
Institute (ANSI), or professional bodies, such as the Institute of Electrical and Electron-
ics Engineers (IEEE). Formal standards committees meet periodically, and members
present proposals for features to be added to or modified in the standard. After a (usu-
ally extended) period of discussion, modifications to the proposal, and public review,
members vote on whether to accept or reject a feature. Some time after a standard has
been defined and implemented, its shortcomings become clear and new requirements
become apparent. The process of updating the standard then begins, and a new version
of the standard is usually released after a few years. This cycle usually repeats every few
years, until eventually (perhaps many years later) the standard becomes technologically
irrelevant or loses its user base.

This section gives a very high-level overview of different standards, concentrating
on the goals of the standard. Detailed descriptions of the standards mentioned in this
section appear in the bibliographic notes for this chapter, available online.

25.4.1 SQL Standards

Since SQL is the most widely used query language, much work has been done on stan-
dardizing it. ANSI and ISO, with the various database vendors, have played a leading
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role in this work. The SQL-86 standard was the initial version. The IBM Systems Appli-
cation Architecture (SAA) standard for SQL was released in 1987. As people identified
the need for more features, updated versions of the formal SQL standard were devel-
oped, called SQL-89 and SQL-92.

The SQL:1999 version of the SQL standard added a variety of features to SQL. We
have seen many of these features in earlier chapters.

Subsequent versions of the SQL standard include the following:

• SQL:2003, which is a minor extension of the SQL:1999 standard. Some features
such as the SQL:1999 OLAP features (Section 11.3.3) were specified as an amend-
ment to the earlier version of the SQL:1999 standard, instead of waiting for the
release of SQL:2003.

• SQL:2006, which added several features related to XML.

• SQL:2008, which introduced only minor extensions to the SQL language such as
extensions to the merge clause.

• SQL:2011, which added a number of temporal extensions to SQL, including the
ability to associate time periods with tuples, optionally using existing columns as
start and end times, and primary key definitions based on the time periods. The
extensions support deletes and updates with associated periods; such deletes and
updates may result in modification of the time period of existing tuples, along with
deletes or inserts of new tuples. A number of operators related to time periods,
such as overlaps and contains, were also introduced in SQL:2011.
In addition, the standard provided a number of other features, such as further
extensions to the merge construct, extensions to the window constructs that were
introduced in earlier versions of SQL, and extensions to limit the number of results
fetched by a query, using a fetch clause.

• SQL:2016, which added a number of features related to JSON support, and support
for the aggregate operation listagg, which concatenates attributes from a group of
tuples into a string.

It is worth mentioning that most of the new features are supported by only a few
database systems, and conversely most database systems support a number of features
that are not part of the standard.

25.4.2 Database Connectivity Standards

The ODBC standard is a widely used standard for communication between client appli-
cations and database systems and defines APIs in several languages. The JDBC standard
for communication between Java applications and databases was modeled on ODBC
and provides similar functionality.

ODBC is based on the SQL Call Level Interface (CLI) standards developed by the
X/Open industry consortium and the SQL Access Group, but it has several extensions.
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The ODBC API defines a CLI, an SQL syntax definition, and rules about permissible
sequences of CLI calls. The standard also defines conformance levels for the CLI and
the SQL syntax. For example, the core level of the CLI has commands to connect to a
database, to prepare and execute SQL statements, to get back results or status values,
and to manage transactions. The next level of conformance (level 1) requires support
for catalog information retrieval and some other features over and above the core-level
CLI; level 2 requires further features, such as the ability to send and retrieve arrays of
parameter values and to retrieve more detailed catalog information.

ODBC allows a client to connect simultaneously to multiple data sources and to
switch among them, but transactions on each are independent; ODBC does not support
two-phase commit.

A distributed system provides a more general environment than a client–
server system. The X/Open consortium has also developed the X/Open XA standards
for interoperation of databases. These standards define transaction-management primi-
tives (such as transaction begin, commit, abort, and prepare-to-commit) that compliant
databases should provide; a transaction manager can invoke these primitives to imple-
ment distributed transactions by two-phase commit. The XA standards are independent
of the data model and of the specific interfaces between clients and databases to ex-
change data. Thus, we can use the XA protocols to implement a distributed transaction
system in which a single transaction can access relational as well as object-oriented
databases, yet the transaction manager ensures global consistency via two-phase com-
mit.

There are many data sources that are not relational databases, and in fact may
not be databases at all. Examples are flat files and email stores. Microsoft’s OLE-DB
is a C++ API with goals similar to ODBC, but for nondatabase data sources that may
provide only limited querying and update facilities. Just like ODBC, OLE-DB provides
constructs for connecting to a data source, starting a session, executing commands,
and getting back results in the form of a rowset, which is a set of result rows.

The ActiveX Data Objects (ADO) and ADO.NET APIs, created by Microsoft, provide
an interface to access data from not only relational databases, but also some other types
of data sources, such as OLE-DB data sources.

25.4.3 Object Database Standards

Standards in the area of object-oriented databases (OODB) have so far been driven
primarily by OODB vendors. The Object Database Management Group (ODMG) was a
group formed by OODB vendors to standardize the data model and language interfaces
to OODBs. ODMG is no longer active. JDO is a standard for adding persistence to Java.

There were several other attempts to standardize object databases and related
object-based technologies such as services. However, most were not widely adopted,
and they are rarely used anymore.

Object-relational mapping technologies, which store data in relational databases at
the back end but provide programmers with an object-based API to access and manip-
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ulate data, have proven quite popular. Systems that support object-relational mapping
include Hibernate, which supports Java, and the data layer of the popular Django Web
framework, which is based on the Python programming language. However, there are
no widely accepted formal standards in this area.

25.5 Distributed Directory Systems

Consider an organization that wishes to make data about its employees available to
a variety of people in the organization; examples of the kinds of data include name,
designation, employee-id, address, email address, phone number, fax number, and so
on. Such data are often shared via directories, which allow users to browse and search
for desired information.

In general, a directory is a listing of information about some class of objects such
as persons. Directories can be used to find information about a specific object, or in
the reverse direction to find objects that meet a certain requirement.

A major application of directories today is to authenticate users: applications can
collect authentication information such as passwords from users and authenticate them
using the directory. Details about the user category (e.g., is the user a student or an
instructor), as well as authorizations that a user has been given, may also be shared
through a directory. Multiple applications in an organization can then authenticate
users using a common directory service and user category and authorization informa-
tion from the directory to provide users only with data that they are authorized to see.

Directories can be used for storing other types of information, much like file sys-
tem directories. For instance, web browsers can store personal bookmarks and other
browser settings in a directory system. A user can thus access the same settings from
multiple locations, such as at home and at work, without having to share a file system.

25.5.1 Directory Access Protocols

Directory information can be made available through web interfaces, as many organi-
zations, and phone companies in particular, do. Such interfaces are good for humans.
However, programs too need to access directory information.

Several directory access protocols have been developed to provide a standardized
way of accessing data in a directory. The most widely used among them today is the
Lightweight Directory Access Protocol (LDAP).

All the types of data in our examples can be stored without much trouble in a
database system and accessed through protocols such as JDBC or ODBC. The question
then is, why come up with a specialized protocol for accessing directory information?
There are at least two answers to the question.

• First, directory access protocols are simplified protocols that cater to a limited
type of access to data. They evolved in parallel with the database access protocols.
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• Second, and more important, directory systems provide a simple mechanism to
name objects in a hierarchical fashion, similar to file system directory names,
which can be used in a distributed directory system to specify what information is
stored in each of the directory servers. For example, a particular directory server
may store information for Bell Laboratories employees in Murray Hill, while an-
other may store information for Bell Laboratories employees in Bangalore, giving
both sites autonomy in controlling their local data. The directory access protocol
can be used to obtain data from both directories across a network. More impor-
tant, the directory system can be set up to automatically forward queries made at
one site to the other site, without user intervention.

For these reasons, several organizations have directory systems to make organiza-
tional information available online through a directory access protocol. Information
in an organizational directory can be used for a variety of purposes, such as to find
addresses, phone numbers, or email addresses of people, to find which departments
people are in, and to track department hierarchies.

As may be expected, several directory implementations find it beneficial to use
relational databases to store data instead of creating special-purpose storage systems.

25.5.2 LDAP: Lightweight Directory Access Protocol

In general a directory system is implemented as one or more servers, which service mul-
tiple clients. Clients use the API defined by the directory system to communicate with
the directory servers. Directory access protocols also define a data model and access
control. The X.500 directory access protocol, defined by the International Organization
for Standardization (ISO), is a standard for accessing directory information. However,
the protocol is rather complex and is not widely used. The Lightweight Directory Access
Protocol (LDAP) provides many of the X.500 features, but with less complexity, and is
widely used. In addition to several open-source implementations, the Microsoft Active
Directory system, which is based on LDAP, is used in a large number of organizations.

In the rest of this section, we shall outline the data model and access protocol
details of LDAP.

25.5.2.1 LDAP Data Model

In LDAP, directories store entries, which are similar to objects. Each entry must have a
distinguished name (DN), which uniquely identifies the entry. A DN is in turn made up
of a sequence of relative distinguished names (RDNs). For example, an entry may have
the following distinguished name:

cn=Silberschatz, ou=Computer Science, o=Yale University, c=USA

As you can see, the distinguished name in this example is a combination of a name and
(organizational) address, starting with a person’s name, then giving the organizational
unit (ou), the organization (o), and country (c). The order of the components of a
distinguished name reflects the normal postal address order, rather than the reverse
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order used in specifying path names for files. The set of RDNs for a DN is defined by
the schema of the directory system.

Entries can also have attributes. LDAP provides binary, string, and time types,
and additionally the types tel for telephone numbers, and PostalAddress for addresses
(lines separated by a “$” character). Unlike those in the relational model, attributes
are multivalued by default, so it is possible to store multiple telephone numbers or
addresses for an entry.

LDAP allows the definition of object classes with attribute names and types. Inher-
itance can be used in defining object classes. Moreover, entries can be specified to be
of one or more object classes. It is not necessary that there be a single most-specific
object class to which an entry belongs.

Entries are organized into a directory information tree (DIT), according to their dis-
tinguished names. Entries at the leaf level of the tree usually represent specific objects.
Entries that are internal nodes represent objects such as organizational units, organi-
zations, or countries. The children of a node have a DN containing all the RDNs of the
parent, and one or more additional RDNs. For instance, an internal node may have a
DN c=USA, and all entries below it have the value USA for the RDN c.

The entire distinguished name need not be stored in an entry. The system can
generate the distinguished name of an entry by traversing up the DIT from the entry,
collecting the RDN=value components to create the full distinguished name.

Entries may have more than one distinguished name—for example, an entry for a
person in more than one organization. To deal with such cases, the leaf level of a DIT
can be an alias that points to an entry in another branch of the tree.

25.5.2.2 Data Manipulation

Unlike SQL, LDAP does not define either a data-definition language or a data-
manipulation language. However, LDAP defines a network protocol for carrying out
data definition and manipulation. Users of LDAP can either use an application-
programming interface or use tools provided by various vendors to perform data defini-
tion and manipulation. LDAP also defines a file format called LDAP Data Interchange
Format (LDIF) that can be used for storing and exchanging information.

The querying mechanism in LDAP is very simple, consisting of just selections and
projections, without any join. A query must specify the following:

• A base—that is, a node within a DIT—by giving its distinguished name (the path
from the root to the node).

• A search condition, which can be a Boolean combination of conditions on in-
dividual attributes. Equality, matching by wild-card characters, and approximate
equality (the exact definition of approximate equality is system dependent) are
supported.

• A scope, which can be just the base, the base and its children, or the entire subtree
beneath the base.
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• Attributes to return.

• Limits on number of results and resource consumption.

The query can also specify whether to automatically dereference aliases; if alias deref-
erences are turned off, alias entries can be returned as answers.

We omit further details of query support in LDAP but note that LDAP implemen-
tations support an API for querying/updating LDAP data and may additionally support
web services for querying LDAP data.

25.5.2.3 Distributed Directory Trees

Information about an organization may be split into multiple DITs, each of which stores
information about some entries. The suffix of a DIT is a sequence of RDN=value pairs
that identify what information the DIT stores; the pairs are concatenated to the rest of
the distinguished name generated by traversing from the entry to the root. For instance,
the suffix of a DIT may be o=Nokia, c=USA, while another may have the suffix o=Nokia,
c=India. The DITs may be organizationally and geographically separated.

A node in a DIT may contain a referral to another node in another DIT; for instance,
the organizational unit Bell Labs under o=Nokia, c=USA may have its own DIT, in which
case the DIT for o=Nokia, c=USA would have a node ou=Bell Labs representing a referral
to the DIT for Bell Labs.

Referrals are the key component that help organize a distributed collection of di-
rectories into an integrated system. When a server gets a query on a DIT, it may return
a referral to the client, which then issues a query on the referenced DIT. Access to the
referenced DIT is transparent, proceeding without the user’s knowledge. Alternatively,
the server itself may issue the query to the referred DIT and return the results along
with locally computed results.

The hierarchical naming mechanism used by LDAP helps break up control of in-
formation across parts of an organization. The referral facility then helps integrate all
the directories in an organization into a single virtual directory.

Although it is not an LDAP requirement, organizations often choose to break up in-
formation either by geography (for instance, an organization may maintain a directory
for each site where the organization has a large presence) or by organizational structure
(for instance, each organizational unit, such as department, maintains its own direc-
tory). Many LDAP implementations support master–slave and multimaster replication
of DITs.

25.6 Summary

• Tuning of the database-system parameters, as well as the higher-level database de-
sign—such as the schema, indices, and transactions—is important for good perfor-
mance. Tuning is best done by identifying bottlenecks and eliminating them.
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• Database tuning can be done at the level of schema and queries, at the level of
database system parameters, and at the level of hardware. Database systems usually
have a variety of tunable parameters, such as buffer sizes.

• The right choice of indices and materialized views, and the use of horizontal par-
titioning can provide significant performance benefits. Tools for automated tuning
based on workload history can help significantly in such tuning. The set of indices
and materialized views can be appropriately chosen to minimize overall cost. Ver-
tical partitioning, and columnar storage can lead to significant benefits in online
analytical processing systems.

• Transactions can be tuned to minimize lock contention; snapshot isolation and
sequence numbering facilities supporting early lock release are useful tools for
reducing read-write and write-write contention.

• Hardware tuning includes choice of memory size, the use of SSDs versus magnetic
hard disks, and increasingly, the number of CPU cores.

• Performance benchmarks play an important role in comparisons of database sys-
tems, especially as systems become more standards compliant. The TPC bench-
mark suites are widely used, and the different TPC benchmarks are useful for com-
paring the performance of databases under different workloads.

• Applications need to be tested extensively as they are developed and before they
are deployed. Testing is used to catch errors as well as to ensure that performance
goals are met.

• Legacy systems are systems based on older-generation technologies such as nonre-
lational databases or even directly on file systems. Interfacing legacy systems with
new-generation systems is often important when they run mission-critical systems.
Migrating from legacy systems to new-generation systems must be done carefully
to avoid disruptions, which can be very expensive.

• Standards are important because of the complexity of database systems and their
need for interoperation. Formal standards exist for SQL. De facto standards, such
as ODBC and JDBC, and standards adopted by industry groups have played an
important role in the growth of client–server database systems.

• Distributed directory systems have played an important role in many applications,
and can be viewed as distributed databases. LDAP is widely used for authentication
and for tracking employee information in organizations.

Review Terms

• Performance tuning

• Bottlenecks

• Queueing systems

• Tuning of physical schema
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• Tuning of indices

• Materialized views

• Immediate view maintenance

• Deferred view maintenance

• Tuning of physical design

• Workload

• Tuning of queries

• Set orientation

• Batch update (JDBC)

• Bulk load

• Bulk update

• Merge statement

• Tuning of logical schema

• Tunable parameters

• Tuning of concurrent transactions

• Sequences

• Minibatch transactions

• Tuning of hardware

• Five minute rule

• Performance simulation

• Performance benchmarks

• Service time

• Throughput

• Database-application classes

• OLTP

• Decision support

• The TPC benchmarks

° TPC-C

° TPC-D

° TPC-E

° TPC-H

° TPC-DS

• Regression testing

• Killing mutants

• Application migration

• Legacy systems

• Reverse engineering

• Re-engineering

• Standardization

° Formal standards

° De facto standards

° Anticipatory standards

° Reactionary standards

• Database connectivity standards

• X/Open XA standards

• Object database standards

• XML-based standards

• LDAP

• Directory information tree

• Distributed directory trees

Practice Exercises

25.1 Find out all performance information your favorite database system provides.
Look for at least the following: what queries are currently executing or exe-
cuted recently, what resources each of them consumed (CPU and I/O), what
fraction of page requests resulted in buffer misses (for each query, if available),
and what locks have a high degree of contention. Also get information about
CPU, I/O and network utilization, including the number of open network con-
nections using your operating system utilities.
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25.2 Many applications need to generate sequence numbers for each transaction.

a. If a sequence counter is locked in two-phase manner, it can become a
concurrency bottleneck. Explain why this may be the case.

b. Many database systems support built-in sequence counters that are not
locked in two-phase manner; when a transaction requests a sequence
number, the counter is locked, incremented and unlocked.

i. Explain how such counters can improve concurrency.

ii. Explain why there may be gaps in the sequence numbers belonging
to the final set of committed transactions.

25.3 Suppose you are given a relation r(a, b, c).

a. Give an example of a situation under which the performance of equal-
ity selection queries on attribute a can be greatly affected by how r is
clustered.

b. Suppose you also had range selection queries on attribute b. Can you
cluster r in such a way that the equality selection queries on r.a and the
range selection queries on r.b can both be answered efficiently? Explain
your answer.

c. If clustering as above is not possible, suggest how both types of queries
can be executed efficiently by choosing appropriate indices.

25.4 When a large number of records are inserted into a relation in a short period
of time, it is often recommended that all indices be dropped, and recreated
after the inserts have been completed.

a. What is the motivation for this recommendation?

b. Dropping and recreation of indices can be avoided by bulk-updating of
the indices. Suggest how this could be done efficiently for B+-tree indices.

c. If the indices were write-optimized indices such as LSM trees, would this
advice be meaningful?

25.5 Suppose that a database application does not appear to have a single bottle-
neck; that is, CPU and disk utilization are both high, and all database queues
are roughly balanced. Does that mean the application cannot be tuned further?
Explain your answer.

25.6 Suppose a system runs three types of transactions. Transactions of type A run
at the rate of 50 per second, transactions of type B run at 100 per second, and
transactions of type C run at 200 per second. Suppose the mix of transactions
has 25 percent of type A, 25 percent of type B, and 50 percent of type C.



Exercises 1247

a. What is the average transaction throughput of the system, assuming
there is no interference between the transactions?

b. What factors may result in interference between the transactions of dif-
ferent types, leading to the calculated throughput being incorrect?

25.7 Suppose an application programmer was supposed to write a query

select *
from r natural left outer join s;

on relations r(A, B) and s(B, C), but instead wrote the query

select *
from r natural join s;

a. Give sample data for r and s on which both queries would give the same
result.

b. Give sample data for r and s where the two queries would give different
results, thereby exposing the error in the query,

25.8 List some benefits and drawbacks of an anticipatory standard compared to a
reactionary standard.

25.9 Describe how LDAP can be used to provide multiple hierarchical views of data,
without replicating the base-level data.

Exercises

25.10 Database tunning:

a. What are the three broad levels at which a database system can be tuned
to improve performance?

b. Give two examples of how tuning can be done for each of the levels.

25.11 When carrying out performance tuning, should you try to tune your hardware
(by adding disks or memory) first, or should you try to tune your transactions
(by adding indices or materialized views) first. Explain your answer.

25.12 Suppose that your application has transactions that each access and update
a single tuple in a very large relation stored in a B+-tree file organization. As-
sume that all internal nodes of the B+-tree are in memory, but only a very small
fraction of the leaf pages can fit in memory. Explain how to calculate the min-
imum number of disks required to support a workload of 1000 transactions
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per second. Also calculate the required number of disks, using values for disk
parameters given in Section 12.3.

25.13 What is the motivation for splitting a long transaction into a series of small
ones? What problems could arise as a result, and how can these problems be
averted?

25.14 Suppose the price of memory falls by half, and the speed of disk access (num-
ber of accesses per second) doubles, while all other factors remain the same.
What would be the effect of this change on the 5-minute and 1-minute rule?

25.15 List at least four features of the TPC benchmarks that help make them realistic
and dependable measures.

25.16 Why was the TPC-D benchmark replaced by the TPC-H and TPC-R bench-
marks?

25.17 Explain what application characteristics would help you decide which of TPC-
C, TPC-H, or TPC-R best models the application.

25.18 Given that the LDAP functionality can be implemented on top of a database
system, what is the need for the LDAP standard?

Further Reading

[Harchol-Balte (2013)] provides textbook coverage of queuing theory from a computer
science perspective.

Information about tuning support in IBM DB2, Oracle and Microsoft SQL Server
may be found in their respective manuals online, as well as in numerous books. [Shasha
and Bonnet (2002)] provides detailed coverage of database tuning principles. [O’Neil
and O’Neil (2000)] provides a very good textbook coverage of performance measure-
ment and tuning. The 5-minute and 1-minute rules are described in [Gray and Graefe
(1997)], [Graefe (2008)], and [Appuswamy et al. (2017)].

An early proposal for a database-system benchmark (the Wisconsin benchmark)
was made by [Bitton et al. (1983)]. The TPC-A, TPC-B, and TPC-C benchmarks are
described in [Gray (1991)]. An online version of all the TPC benchmark descrip-
tions, as well as benchmark results, is available on the World Wide Web at the URL
www.tpc.org; the site also contains up-to-date information about new benchmark pro-
posals.

The XData system (www.cse.iitb.ac.in/infolab/xdata) provides tools for generat-
ing test data to catch errors in SQL queries, as well as for grading student SQL queries.

A number of standards documents, including several parts
of the SQL standard, can be found on the ISO/IEC website
(standards.iso.org/ittf/PubliclyAvailableStandards/index.html). Information
about ODBC, OLE-DB, ADO, and ADO.NET can be found on the web site
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www.microsoft.com/data. A wealth of information on XML-based standards
and tools is available online on the web site www.w3c.org.
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CHAP T E R 26
Blockchain Databases

At the most basic level, a blockchain provides an alternative data format for storing a
database, and its paradigm for transaction processing enables a high level of decentral-
ization.

A major application of blockchain technology is in the creation of digital ledgers.
A ledger in the financial world is a book of financial accounts, that keeps track of trans-
actions. For example, each time you deposit or withdraw money from your account, an
entry is added to a ledger maintained by the bank. Since the ledger is maintained by
the bank, a customer of the bank implicitly trusts the bank to not cheat by adding unau-
thorized transactions to the ledger, such as an unauthorized withdrawal, or modifying
the ledger by deleting transactions such as a deposit.

Blockchain-based distributed ledgers maintain a ledger cooperatively among sev-
eral parties, in such a way that each transaction is digitally signed as proof of authen-
ticity, and further, the ledger is maintained in such a way that once entries are added,
they cannot be deleted or modified by one party, without detection by others.

Blockchains form a key foundation of Bitcoin and other cryptocurrencies. Al-
though much of the technology underlying blockchains was initially developed in the
1980s and 1990s, blockchain technology gained widespread popular attention in the
2010s as a result of boom (and subsequent bust) in Bitcoin and other cryptocurrencies.

However, beyond the many cryptocurrency schemes, blockchains can provide a
secure data-storage and data-processing foundation for business applications, without
requiring complete trust in any one party. For example, consider a large corporation
and its suppliers, all of whom maintain data about where products and components
are located at any time as part of the manufacturing process. Even if the organiza-
tions are presumed trustworthy, there may a situation where one of them has a strong
incentive to cheat and rewrite the record. A blockchain can help protect from such
fraudulent updates. Ownership documents, such as real-estate deeds, are another ex-
ample of the potential for blockchain use. Criminals may commit real-estate fraud by
creating fake ownership deeds, which could allow them to sell a property that they
do not own, or could allow the same property to be sold multiple times by an actual
owner. Blockchains can help verify the authenticity of digitally represented ownership
documents; blockchains can also ensure that once an owner has sold a property, the
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owner cannot sell it again to another person without getting detected. The security
provided by the blockchain data structure makes it possible to allow the public to view
these real-estate records without putting them at risk. We describe other applications
for blockchains later in the chapter.

In this chapter, we shall look at blockchain from a database perspective. We shall
identify the ways in which blockchain databases differ from the traditional databases
we have studied elsewhere in this book and show how these distinguishing features are
implemented. We shall consider alternatives to Bitcoin-style algorithms and implemen-
tation that are more suited to an enterprise database environment. With this database-
oriented focus, we shall not consider the financial implications of cryptocurrencies, nor
the issues of managing one’s holding of such currencies via a cryptocurrency wallet or
exchange.

26.1 Overview

Before we study blockchains in detail, we first give an overview of cryptocurrencies,
which have driven the development and usage of blockchains. We note, however, that
blockchains have many uses beyond cryptocurrencies.

Traditional currencies, also known as “fiat currencies” are typically issued by a cen-
tral bank of a country, and guaranteed by the government of that country. Currency
notes are at one level just a piece of paper; the only reason they are of value is that the
government that issues the currency guarantees the value of the currency, and users
trust the government. Today, although financial holdings continue to be denominated
in terms of a currency, most of the financial holdings are not physically present as cur-
rency notes; they are merely entries in the ledger of a bank or other financial institution.
Users of the currency are forced to trust the organization that maintains the ledger.

A cryptocurrency is a currency created purely online, and recorded in a way that
does not require any one organization (or country) to be totally trusted. This term arises
from the fact that any such scheme has to based on encryption technologies. Since any
digital information can be copied easily, unlike currency notes, any cryptocurrency
scheme must be able to prevent “double spending” of money. To solve this problem,
cryptocurrencies use ledgers to record transactions. Further, the ledgers are stored a
secure, distributed infrastructure, with no requirement to trust any one party. These two
key concepts, decentralization and trustlessness, are fundamental to cryptocurrencies.
Cryptocurrenies typically aim, like regular currency, and unlike credit card or debit
card transactions, to provide transaction anonymity, to preserve the privacy of users
of the currency. However, since cryptocurrency blockchains are public data analytics
may be used to compromise or limit anonymity.

Bitcoin, which was the first successful cryptocurrency, emerged with the publi-
cation of a paper by Satoshi Nakamoto1 in 2008 and the subsequent publication of
the open-source Bitcoin code in 2009. The ideas in the original bitcoin paper solved

1Satoshi Nokamoto is a pseudonym for a person or group that anonymously created Bitcoin.
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a number of problems, and thereby allowed cryptocurrencies, which had earlier been
considered impractical, to become a reality.

However, the underlying concepts and algorithms in many cases go back decades
in their development. The brilliance of Nakamoto’s work was a combination of innova-
tion and well-architected use of prior research. The successes of Bitcoin prove the value
of this contribution, but the target—an anonymous, trustless, fully distributed concur-
rency—drove many technical decisions in directions that work less well in a database
setting. The Further Reading section at the end of the chapter cites key historical pa-
pers in the development of these ideas.

At its most basic level, a blockchain is a linked list of blocks of data that can be
thought of as constituting a log of updates to data. What makes blockchain technology
interesting is that blockchains can be managed in a distributed manner in such a way
that they are highly tamper resistant, and cannot be easily modified or manipulated by
any one participant, except by appending digitally signed records to the blockchain.

In a business setting, trustless distributed control is valuable, but absolute
anonymity runs counter to both principles of accounting and regulatory requirements.
This leads to two main scenarios for the use of blockchains. Bitcoin’s blockchain is
referred to as a public blockchain, since it allows any site to join and participate in the
tasks of maintaining the blockchain. In contrast, most enterprise blockchains are more
restricted and referred to as permissioned blockchains. In a permissioned blockchain,
participation is not open to the public. Access is granted by a permissioning authority,
which may be an enterprise, a consortium of enterprises, or a government agency.

Bitcoin introduced a number of ideas that made public blockchains practical, but
these have a significant cost in terms of CPU power (and thereby, electrical power)
needed to run the blockchain, as well as latencies in processing transactions. By re-
laxing Bitcoin’s strong assumptions about trustlessness and anonymity, it is possible to
overcome many of the inefficiencies and high latencies of the Bitcoin model and design
blockchains that further the goals of enterprise data management.

In this chapter, we begin by looking at the classic blockchain structure as used in
Bitcoin and use that to introduce the key distinguishing properties of a blockchain.
Achieving many of these properties relies upon one-way cryptographic hash functions.
These hash functions are quite different from those used in Chapter 24 as a means of
indexing databases. Cryptographic hash functions need to have some specific mathe-
matical properties such as the following: given a data value x and a hash function h, it
must be relatively easy to compute h(x) but virtually impossible to find x given h(x).

When a blockchain is stored distributed across multiple systems, an important
issue is to ensure that the participating systems agree on what are the contents of the
blockchain, and what gets added to it at each step. When participants trust each other,
but may be vulnerable to failure, consensus techniques that we studied earlier in Section
23.8 can be used to ensure that all participants agree on the contents of a log (and a
blockchain is, at its core, a log). However, reaching agreement on what data get added
to a blockchain is much more challenging when participants in the blockchain do not
trust each other and have no centralized control. The basic consensus algorithms are
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not applicable in such a setting. For example, an attacker could create a large number of
systems, each of which joins the blockchain as a participant; the attacker could thereby
control a majority of the participating systems. Any decision based on a majority can
then be controlled by the attacker, who can force decisions that can tamper with the
contents of the blockchain. The tamper resistance property of the blockchain would
then be compromised.

We begin by describing the energy-intensive approach of Bitcoin, but we then con-
sider a variety of alternative, more efficient approaches used in other cryptocurrencies.
Finally, we consider approaches based on Byzantine-consensus algorithms, which are
consensus algorithms that are resistant to some fraction of the participating nodes not
just failing, but also lying and attempting to disrupt consensus. Byzantine consensus is
well-suited to an enterprise blockchain environment, and can be used if the blockchain
is permissioned, that is, some organization controls who can have permission to ac-
cess the blockchain. Byzantine consensus is an old problem and solutions have been
around for many years. However, the special constraints of blockchain databases have
led to some newer approaches to this problem. References to more details on Byzan-
tine consensus techniques may be found in the Further Reading section at the end of
the chapter.

Blockchain databases store more than just currency-based debit-credit transac-
tions. Like any database, they may store a variety of types of data about the enterprise.
A traditional blockchain data organization makes it difficult to retrieve such data effi-
ciently, but pairing a blockchain with a traditional database or building the blockchain
on top of a database can enable faster query processing. We shall explore a variety of
means of speeding up not only queries but also update transactions, both within the
blockchain itself and by performing certain operations “off chain” and adding them in
bulk to the blockchain at a later time.

After covering blockchain algorithms, we shall explore (in Section 26.8) some of
the most promising applications of blockchain databases.

26.2 Blockchain Properties

At its most basic level, a blockchain is a linked list of blocks of data. A distinguishing
feature of the blockchain data structure is that the pointers in the linked list include
not only the identifier of the next older block, but also a hash of that older block. This
structure is shown in Figure 26.1. The initial block, or genesis block, is shown as block
0 in the figure. It is set up by the creator of the blockchain. Each time a block is added
to the chain, it includes the pair of values (pointer-to-previous-block, hash-of-previous-
block). As a result, any change made to block is easily detected by comparing a hash
of that block to the hash value contained in the next block in the chain. The hash value
in the next block could be changed, but then the block after that would also have to be
changed, and so on.
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Figure 26.1 Blockchain data structure.

This hash-validated pointer format in a blockchain makes tampering with a
blockchain hard. To make tampering virtually impossible, it is necessary to ensure that
any tampering with the blockchain is easily detected and that the correct version of the
blockchain is easily determined. To achieve this, the hash function must have certain
mathematical properties that we shall discuss shortly. Further, the chain itself must be
replicated and distributed among many independent nodes so that no single node or
small group of nodes can tamper with the blockchain. Since the blockchain is repli-
cated across multiple nodes, a distributed consensus algorithm needs to be used to
maintain agreement regarding the correct current state of the blockchain. In this way,
even if some nodes try to tamper with the blockchain contents, as long as a majority
are honest, making decisions based on a majority vote can ensure the integrity of the
blockchain.

The above approach works if the set of nodes that participates in the blockchain is
controlled in some fashion that makes it difficult for an adversary to control a major-
ity of the nodes. However, such control goes against the goal of not have any central
control, and is viewed as unacceptable in public blockchains such as Bitcoin, which are
based on public blockchains in which the number of participating nodes may change
continuously. Any computer may download the blockchain and attempt to add blocks
(the code for implementing blockchains is available in open source). As a result, a
majority-based approach can be overwhelmed by an adversary who sets up a large num-
ber of low-cost computers as nodes. Such an attack is called a Sybil attack.

The way in which consensus is achieved among independent nodes varies among
blockchains. The variations address trade-offs between performance (latency and
throughput) and robustness to adversarial attacks on the consensus mechanism, in-
cluding Sybil attacks. When we addressed distributed consensus in Chapter 23, we
assumed that a single organization controlled the entire distributed system, and so the
consensus algorithm had to tolerate only possible failures of nodes or the network that
were fail-stop, where participants do not behave in an adversarial manner.

In a typical blockchain application, the chain is shared among multiple indepen-
dent organizations. In the extreme case, for example Bitcoin, anyone can set up a node
and participate, possibly for nefarious purposes. This implies that the types of failure
that may occur are not just cases where a device or system stops working, but also cases
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where a system remains operational but behaves in an adversarial manner. In most en-
terprise settings, the blockchain is permissioned, providing some control over the set of
participants, but still without direct controls to prevent malicious behavior.

A node participating in a blockchain fully needs to participate in the consensus
mechanism and maintain its own replica of the blockchain. Such a node is called a full
node. In some applications, there is a need for low-cost nodes that submit updates to
the blockchain, but do not have the storage or computational power to participate in
the consensus process. Such a node is called a light node.

We discuss blockchain consensus algorithms in detail in Section 26.4. Blockchain
consensus algorithms can be placed into one of several broad categories:

• Proof of work: Proof of work, which is described in detail in Section 26.4.1, pro-
vides a solution to Sybil attacks by making it very expensive for an attacker to
control a majority of the nodes. Specifically, the nodes agree that the next block
on the blockchain will be added by the first node to solve a certain hard mathemat-
ical problem. This is referred to as mining a block. Proof-of-work algorithms are
robust to adversarial behavior as long as the adversary does not control more than
half the computing power in the entire network. To ensure this requirement, the
problems are made intentionally hard, and require a lot of computational effort.
Thus, robustness comes at the price of a huge amount of otherwise useless com-
putation along with the price of electricity needed to carry out the computation.

• Proof of stake: Proof of stake, which is described in Section 26.4.2, provides an-
other solution to Sybil attacks. Here, the nodes agree to select the next node to
add a block to the blockchain based on an amount of the blockchain’s currency
owned or held in reserve by a node.

• Byzantine consensus: Byzantine consensus does not solve the problem of Sybil at-
tacks, but can be used in non-public blockchains, where entry of nodes to the sys-
tem can be controlled. While some nodes may behave maliciously, it is assumed
that a substantial majority are honest. In Byzantine consensus, described in Sec-
tion 26.4.3, the next node to add a block to the blockchain is decided by an algo-
rithm from the class of algorithms referred to as Byzantine-consensus algorithms.
Like the basic consensus algorithms we described earlier in Section 23.8, these
algorithms achieve agreement by message passing, but unlike those algorithms,
these algorithms can tolerate some number of nodes being malicious by either dis-
rupting consensus or trying to cause an incorrect consensus to be reached. This
approach requires significantly more messages to be exchanged than in the case of
the basic consensus algorithms of Section 26.4.3, but this is a worthwhile trade-off
for the ability for a system to work correctly in the presence of a certain number
of malicious nodes.

• Other approaches: There are several other less widely used consensus mechanisms,
some of which are variants of the preceding mechanisms. These include proof of
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activity, proof of burn, proof of capacity, and proof of elapsed time. See the Further
Reading section at the end of the chapter for details.

Another way to damage a blockchain besides attempting to alter blocks is to add
a new block to a block other than the most recent one. This is called a fork. Forking
may occur due to malicious activity, but there are two sources of nonmalicious forks:

1. Two distinct nodes may add a new block after the most recent block, but they do
it so close together in time that both are added successfully, thus creating a forked
chain. These accidental forks are resolved by a protocol rule that nodes always
attempt to add blocks to the end of the longest chain. This probabilistically limits
these accidental forks to a short length. The blocks on the shorter forks are said
to be orphaned, and the contents of those blocks will get inserted on the real
chain later if those contents are not already there.

2. A majority of blockchain users may agree to fork the blockchain in order to
change some aspect of the blockchain protocol or data structure. This is a rare
event and one that, when it has occurred in major blockchains, has caused major
controversy. Such a fork is said to be a soft fork if prior blocks are not invalidated
by the fork. That is, the old version of the blockchain software will recognize
blocks from the new version as valid. This permits a gradual transition from the
old version of the blockchain software to the new version. In a hard fork, the old
version of the blockchain software will deem blocks from the new version to be
invalid. After a hard fork, if the old version of the blockchain software remains
in use, it will lead to a separate blockchain with different contents.

Because of the possibility of orphaned blocks, it may be necessary to wait for several
additional blocks to be added before it is safe to assume s block will not be orphaned.

Note 26.1 on page 1258 presents a few examples of notable blockchain forks.
So far, we have not said much about the actual data in the blocks. The contents

of blocks vary by application domain. In a cryptocurrency application, the most com-
mon data found in blocks are basic currency-transfer transactions. Since any node can
add a block, there needs to be a way to ensure that transactions entered are in fact
genuine. This is achieved via a technique called a digital signature that allows a user to
“sign” a transaction and allows every node to verify that signature. This prevents fake
transactions from being added to the chain and prevents participants in the transaction
from subsequently denying their involvement in the transaction. This latter property is
referred to as irrefutability.

Transactions are broadcast to all nodes participating in the blockchain; when a
node adds a block to the chain, the block contains all transactions received by the
node that have not already been added to the chain.

The users who submit transactions may be known to the blockchain administrator
in a permissioned blockchain, but in a public blockchain like Bitcoin, there is no direct
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Note 26.1 Blockchain Fork Examples

There have been several notable forks of major blockchains. We list a few here.

• Hard fork: Bitcoin/Bitcoin Cash: Bitcoin’s built-in block-size limit was an ac-
knowledged problem in the Bitcoin community but agreeing on a solution
proved controversial. A hard fork in August 2017 created a new cryptocur-
rency, Bitcoin Cash, with a larger block-size limit. Holders of Bitcoin at the
time of the fork received an equal amount of Bitcoin Cash, and thus could
spend both.

• Soft fork: Bitcoin SegWit: SegWit (short for segregated witness) moves certain
transaction-signature data (referred to as witness data) outside the block. This
allows more transactions per block while retaining the existing block size limit.
The relocated witness data are needed only for transaction validation. SegWit
was introduced in August 2017 via a soft fork. This was a soft fork because the
old blocks were recognized as valid and nodes not yet upgraded were able to
retain a high degree of compatibility.

• Hard fork: Ethereum/Ethereum Classic: This fork arose from the failure of
a crowd-funded venture-capital operation running as a smart contract in the
Ethereum blockchain. Its code contained a design flaw that enabled a hack in
2016 that stole ether valued in the tens of millions of U.S. dollars. A controver-
sial hard fork refunded the stolen funds, but opponents of the fork, believing
in the inviolabilty of blockchain immutability, retained the original blockchain
and created Ethereum Classic.

connection between a user ID and any real-world entity. This anonymity property is a
key feature of Bitcoin, but its value is diminished because of the possibility to tie a user
ID to some off-chain activity, thereby de-anonymizing the user. De-anonymization can
occur if the user enters into a transaction with a user whose user ID has already been
de-anonymized. De-anonymization can occur also via data mining on the blockchain
data and correlating on-chain activity by a specific user ID with the “real-world” activity
of a specific individual.

Finally, a feature of blockchains is the ability to store executable code, referred
to as a smart contract. A smart contract can implement complex transactions, take
action at some point in the future based on specified conditions, and, more generally,
encode a complex agreement among a set of users. Blockchains differ not only in the
language used for smart contracts but also in the power of the language used. Many
are Turing complete, but some (notably, Bitcoin) have more limited power. We discuss
smart contracts, including how and when their code is executed, in Section 26.6.
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We summarize this discussion by listing a set of properties of blockchains:2

• Decentralization: In a public blockchain, control of the blockchain is by majority
consensus with no central controlling authority. In a permissioned blockchain,
the degree of central control is limited, typically only to access authorization and
identity management. All other actions happen in a decentralized manner.

• Tamper Resistance: Without gaining control over a majority of the blockchain net-
work, it is infeasible to change the contents of blocks.

• Irrefutability: Activity by a user on a blockchain is signed cryptographically by the
user. These signatures can be validated easily by anyone and thus prove that the
user indeed is responsible for the transaction.

• Anonymity: Users of a blockchain have user IDs that are not tied directly to any
personally identifying information, though anonymity may be compromised indi-
rectly. Permissioned blockchains may offer only limited anonymity or none at all.

26.3 Achieving Blockchain Properties via Cryptographic Hash
Functions

In this section, we focus on the use of cryptographic hash functions to ensure some
of the properties of blockchains. We begin with a discussion of special types of hash
function for which it is infeasible to compute the inverse function or find hash colli-
sions. We show how these concepts extend to public-key encryption, which we first
saw in Section 9.9. We then show how cryptographic hash functions can be used to
ensure the anonymity, irrefutability, and tamper-resistance properties. We show how
hash functions are used in mining algorithms later in Section 26.4.1.

26.3.1 Properties of Cryptographic Hash Functions

In Section 14.5, hash functions were used as a means of accessing data. Here, we use
hash functions for a very different set of purposes, and as a result, we shall need hash
functions with additional properties beyond those discussed earlier.

A hash function h takes input from some (large) domain of values and generates
as its output a fixed-length bit string. Typically, the cardinality of the domain is much
larger than the cardinality of the range. Furthermore, the hash function must have a
uniform distribution, that is, each range value must be equally probable given random
input. A hash function h is collision resistant if it is infeasible to find two distinct values
x and y such that h(x) = h(y). By infeasible, we mean that there is strong mathematical

2These properties pertain to blockchains, but not to most cryptocurrency exchanges. Most exchanges hold not only
customers’ data but also their keys, which means that a hack against the exchange’s database can result in theft of
users’ private keys.
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evidence, if not an actual proof, that there is no way to find two distinct values x and y
such that h(x) = h(y) that is any better than random guessing.

The current standard choice of a cryptographic hash function is called SHA-256,
a function that generates output 256 bits in length. This means that given a value x,
the chance that a randomly chosen y will hash to the same value to which x hashes is
1∕2256. This means that even using the fastest computers, the probability of a successful
guess is effectively zero.3

The collision-resistance property contributes to the tamper resistance of a
blockchain in a very important way. Suppose an adversary wishes to modify a block
B. Since the next-newer block after B contains not only a pointer to B but also the hash
of B, any modification to B must be such that the hash of B remains unchanged after
the modification in order to avoid having to modify also that next-newer block. Finding
such a modification is infeasible if the hash function has the collision-resistance prop-
erty, and, therefore, any attempt to tamper with a block requires changing all newer
blocks in the chain.

A second important property that we require of a cryptographic hash function is
irreversibility, which means that given only h(x), it is infeasible to find x. The term
irreversible comes from the property that, given x, it is easy to compute h(x), but given
only h(x), it is infeasible to find h−1(h(x)). The next section shows how this concept is
applied to blockchains.4

26.3.2 Public-Key Encryption, Digital Signatures, and Irrefutability

Section 9.9 described two categories of encryption methods: private-key encryption,
where users share a secret key, and public-key encryption, where each user has two
keys, a public key and a private key. The main problem with private-key encryption
is that users must find a way at the outset to share the secret private key. Public-key
encryption allows users who have never met to communicate securely. This property
of public-key encryption is essential to blockchain applications that serve arbitrarily
large communities of users worldwide.

Each user Ui has a public key Ei and a private key Di. A message encrypted using Ei
can be decrypted only with the key Di, and, symmetrically, a message encrypted using
Di can be decrypted only with the key Ei, If user u1 wishes to send a secure message x to
U2, U1 encrypts x using the public key E2 of user U2. Only U2 has the key D2 to decrypt
the result. For this to work, the specific function used must have the irreversibility
property so that given a public key Ei it is infeasible to compute the inverse function,

32256 is larger than 1077. If a computer could make one guess per cycle it would take more than 1067 seconds to have
a 50 percent chance of guessing correctly. That translates to more than 1059 years. To put that in context, astronomers
predict that the sun will have grown in size to envelop Earth within 1010 years.
4This property has long been used for storing passwords. Rather than storing user passwords in clear text, leaving them
susceptible to being stolen, hashes are kept instead. Then, when a user logs in and enters a password, the hash of that
password is computed and compared to the stored value. Were an attacker to steal the hashes, that attacker would still
lack the actual passwords, and, if the hash function in use has the irreversibility property, then it is infeasible for the
hacker to reverse-engineer the user passwords.



26.3 Achieving Blockchain Properties via Cryptographic Hash Functions 1261

that is, to find Di. This creates a mechanism for users who have never met to share
secret messages.

Suppose now that instead of seeking to send a secret message, user U1 wishes to
“sign” a document x. User U1 can encrypt x using the private key D1. Since this key is
private, no one besides U1 could have computed that value, but anyone can verify the
signature by decrypting using the public key of U1, that is, E1. This provides a public
proof that user U1 has signed document x.

In blockchain applications, the concept of a digital signature is used to validate
transactions. Observe that the linkage of blocks in the blockchain, using a pointer and
the hash of block to which the pointer points, means that a user can sign an entire
chain simply by signing the hash of the newest block in the chain. See the Further
Reading section at the end of the chapter for references to the mathematics of public-
key encryption.

26.3.3 Simple Blockchain Transactions

In our discussion of database transactions in Chapter 17, we described a transaction as
a sequence of steps that read and/or write data values from the database. That concept
of a transaction is based on a data model where there is a single store of data values
that are accessed by transactions. A blockchain, in its simplest form, is more closely an
analog of a database log in that it records the actual transactions and not just final data
values. That analogy breaks down, however, in most blockchains, because transactions
are either fully independent or depend explicitly on each other. The model we describe
here corresponds to simple Bitcoin transactions.

As an example, consider two users, A and B, and assume A wishes to pay B 10 units
of some currency. If this were a traditional banking application with a fiat currency such
as the U.S. dollar, the transaction implementing this transfer would read A’s account
balance, decrement it by 10, and write that value to the database, and then read B’s
balance, add 10, and write that value to the database. In a blockchain-based system,
this transaction is specified in a different manner.

Rather than referencing data items, a Bitcoin-style blockchain transaction refer-
ences users and other transactions. Users are referenced by their user ID. User A would
locate a transaction or set of transactions from past history T1, T2,… , Tn that paid A a
total of at least 10 units of the currency. A would then create a transaction T that takes
the output (i.e., the amount paid to A) by those transactions as input, and as its output
pays 10 units of the currency to B and the remainder back to A as the “change.” The
original transactions T1, T2,… , Tn are then treated as having been spent.

Thus, each transaction indicates how much money has been paid to whom; the
currency balance of a user A is defined by a set of unspent transactions that have
paid money to A. Assuming A is honest, those transactions’ outputs (i.e., the output
of T1, T2,… , Tn) would not have been spent already by A in a previous transaction. If
A were indeed dishonest and T attempted to spend the output of some T1 a second
time, T would be a double-spend transaction. Double-spend transactions and other in-
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valid transactions are detected in the mining process that we discuss in Section 26.4,
by keeping track of all unspent transactions and verifying that each transaction Ti that
is input to T is unspent when T is executed. After T is executed, each such Ti is treated
as spent.

Ethereum uses a different and more powerful model, where the blockchain main-
tains state (including current balance) for each account in the system. Transactions
update the state, and can transfer funds from one account to another. The model used
in Ethereum is discussed in Section 26.5.

A Bitcoin-style transaction T specifies:

• The input transactions T1, T2,… , Tn.

• The set of users being paid and the amount to be paid to each, which in our example
is 10 units to B and the remainder to A.5

• A’s signature of the transaction, to prove that A in fact authorized this transaction.

• A more complex transaction might include executable code as part of its specifi-
cation, but we shall defer that to Section 26.6.

• Data to be stored in the blockchain; the data must be under some size, which is
blockchain dependent.

The transaction model described here is quite distinct from that of a traditional
database system in a variety of ways, including:

• Existing data items are not modified. Instead, transactions add new information.
As a result, not only the current state but also the history leading to the current
state are fully visible.

• Conflicts in transaction ordering are prevented. If conflicts occur, the transaction
causing a conflict is detected and deemed invalid as part of the process of adding
a block to the chain, described in Section 26.4.

• Although the blockchain is a distributed system, a transaction is created locally.
It becomes part of the permanent, shared blockchain only through the mining
process. This is, in effect, a form of deferred transaction commit.

• Dependencies of one transaction upon another are stated explicitly in a transaction
since a transaction lists those transactions whose outputs it uses as input. If we
view this in terms of the precedence graph introduced in Chapter 17, our example
would include precedence-graph edges T1 → T , T2 → T ,… , Tn → T .

• There is no explicit concurrency control. Much of the need for concurrency control
is eliminated by the maintenance of a complete history and the direct sequencing

5In a real system, there may also be a payout to the miner of the transaction, that is, the node that adds the block to
the blockchain, as we discuss in Section 26.4.
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of transactions. Thus, there is no contention for the current value of any database
data item.

This Bitcoin-based example is not the only way blockchain systems manage transaction
ordering. We shall see another example when we consider smart contracts in Section
26.6.

The fact that data may be stored in the blockchain makes the blockchain more
than just a tamper-resistant transaction log. It allows for the representation of any sort
of information that might be stored in a traditional database. In Section 26.5.2, we
shall see how this capability, particularly in blockchains with a concept of blockchain
state, makes the blockchain a true database.

26.4 Consensus

Because the blockchain is replicated at all participating nodes, each time a new block
is added, all nodes must eventually agree first on which node may propose a new block
and then agree on the actual block itself.

In a traditional distributed database system, the consensus process is simplified
by the fact that all participants are part of one controlling organization. Therefore,
the distributed system can implement global concurrency control and enforce two-
phase commit to decide on transaction commit or abort. In a blockchain, there may
be no controlling organization, as is the case for a public blockchain like Bitcoin. In
the case of a permissioned blockchain, there may be a desire to have a high degree
of decentralized control in all matters except the actual permissioning of participants,
which is managed by the organization controlling the permissioned blockchain.

When transactions are created, they are broadcast to the blockchain network.
Nodes may collect a set of transactions to place in a new block to be added to the chain.
The consensus mechanisms used in blockchains fall roughly into two categories:

1. Those where the nodes reach agreement on one node to add the next block. These
typically use Byzantine consensus (Section 26.4.3).

2. Those where the blockchain is allowed temporarily to fork by allowing multiple
nodes to create a block following the last block in the chain. In this approach,
nodes attempt to add blocks to the longest linear subchain. Those blocks not on
that longest chain are orphaned and not considered part of the blockchain. To
avoid a massive number of forks being created, this approach limits the rate at
which blocks may be added so that the expected length of orphaned branches is
short. These typically use proof-of-work (Section 26.4.1) or proof-of-stake (Sec-
tion 26.4.2).

A node that adds a block to the chain must first check that block of transactions. This
entails checking that:
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• Each transaction is well-formed.

• The transaction is not double-spending by using as input (i.e., spending) currency
units that have been used already by a prior transaction. To do so, each node must
track the set of all unspent currency units (transactions), and look up this set for
each transaction T to ensure that all the currency units that are inputs to T are
unspent.

• The transaction is correctly signed by the submitting user.

When a node is selected to add a block to the chain, that block is propagated to all
nodes, and each checks the block for validity before adding it to its local copy of the
chain.

We next need to consider the question of why any node would want to use its
resources for mining, that is to carry out the work needed to append blocks to the
chain. Mining is a service to the blockchain network as a whole, and so miners are
paid (in the currency of the blockchain) for their efforts. There are two sources of
payment to miners:

1. A fee paid by the system in new coins in the currency of the blockchain.

2. A fee included by the submitter of the transaction. In this case the output of the
transaction includes an additional output representing a payment to the miner
of the block containing the transaction. Users are incented to include fees since
such fees incent miners to include their transactions preferentially in new blocks.

The exact means of paying miners varies among blockchains.
In this section, we look at various ways to achieve consensus. We begin by assuming

a public blockchain and describe consensus based on two approaches: proof-of-work and
proof-of-stake. We then consider permissioned blockchains that in many cases choose
to use a consensus mechanism based on Byzantine consensus.

26.4.1 Proof of Work

Proof-of-work consensus is designed for public blockchains in which the number of par-
ticipating nodes is changing continuously. Any computer may download the blockchain
and attempt to add blocks. As a result, a majority-based approach can be overwhelmed
by an adversary who sets up a large number of low-cost computers as nodes. As men-
tioned earlier, such an attack is called a Sybil attack. Instead, proof-of-work requires a
node to solve a computationally hard, but not infeasible, mathematical problem. An
attacker cannot overwhelm a blockchain network simply by adding inexpensive nodes.
Rather, the attacker would need to have access to computation capacity that forms a
majority of the network’s total computation capacity, a task that is much more difficult
and costly than launching a Sybil attack.
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The computationally hard problem is based on the concept of cryptographic hash-
ing. A node that wishes to mine a block B as the next block needs to find a value, called
a nonce, that, when concatenated to B and the hash of the previous block, hashes to a
value less than a preset target value specified for the blockchain. The nonce is typically a
32-bit value. If the target is set very low, say to 4, and assuming the usual 256-bit hash, a
miner would have only a 1∕2254 chance of succeeding for a single choice for the nonce.
If the target were set very high, say to 2255, the miner would have a 50 percent chance
of success. Blockchain implementations are designed to vary the target so as to control
the rate of mining of blocks across the whole system. This variability allows the system
to adjust as computation power increases whether due to hardware advances or due to
additional nodes joining the network. The target times vary for different blockchains.
Bitcoin targets having some node in the system successfully mine a block every 10
minutes. Ethereum targeted a mining time of 10 to 15 seconds with its proof-of-work
mechanism. As of late 2018, Ethereum is moving to a proof-of-stake mechanism and
is expected to target a slightly faster rate. While faster may appear to be better, note
that if mining occurs at a faster rate than the time it takes to propagate a new block
throughout the network, the probability of forks and orphaned blocks increases.

Now that we have seen how proof-of-work mining works, let us recall the properties
we stated about cryptographic hash functions. If there were an efficient algorithm for
finding a nonce that results in a hash less than the target, miners might find nonces too
quickly. Therefore, the hash function must ensure that there is no better way to find a
nonce than simply trying each possible nonce value in turn. This leads us to require one
additional property for cryptographic hash functions, the puzzle-friendliness property.
This property requires that given a value k, for any n-bit value y it is infeasible to find
a value x such that h(x‖k) = y in time significantly less that 2n, where ‖ denotes
concatenation of bit strings.

Proof-of-work mining is controversial. On the positive side, for a large network,
it would be highly costly for an adversary to obtain enough computational power to
dominate mining. However, on the negative side, the amount of energy used in mining
is huge. Estimates as this chapter is being written suggest that Bitcoin mining worldwide
consumes about 1 percent of the power consumed by the United States, or more than
the entire consumption of several nations, for example Ireland. The large amount of
computation needed has created incentives to design special-purpose computing chips
for mining and incentives to locate large mining installations near sources of cheap
power sources.

These concerns are causing a movement to alternatives, such as proof-of-stake,
which we discuss next. These concerns have led also to interest in alternative forms
of proof-of-work that, for example, require having a large amount of main memory in
order quickly to find a nonce. Memory-intensive schemes retain the cost barrier of
proof-of-work while reducing the energy waste. They are a subject of current research.
Furthermore, we shall see that for enterprise permissioned-blockchain applications,
much less costly means of consensus are possible.
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In practice, a group of users may unite to form a mining pool, which is a consortium
that works together to mine blocks and then shares the proceeds among its members.

26.4.2 Proof of Stake

The concept of proof-of-stake is to allow nodes holding a large stake in the currency of
the blockchain to be chosen preferentially to add blocks. This rule cannot be applied
absolutely, since then a single largest stakeholder would control the chain. Instead,
the probability of mining success, using proof-of-work, is made higher for nodes in
proportion to their stake. By adjusting both the stake requirements and the mining
difficulty, it remains possible to control the rate at which blocks are mined.

There are a wide variety of proof-of-stake schemes. They may include measurement
not only of overall stake, but also the total time a stake has been held. They may require
that the stake or some fraction of it be held inactive for some period of time in the
future.

Properly tuning a proof-of-stake mechanism is difficult. Not only are there more
parameters to consider than in proof-of-work, but also one must guard against a situa-
tion where there is too little cost penalty for an adversary to add blocks to a fork other
than the longest one.

26.4.3 Byzantine Consensus

An important alternative to work- or stake-based consensus is message-based consen-
sus. Message-based consensus is widely used in distributed database systems. As we
noted earlier, the basic consensus protocols do not work for blockchain consensus be-
cause it cannot be assumed that there are no malicious nodes.

Message-based systems aim to achieve consensus via a majority vote. Such systems
are vulnerable to a Sybil attack. In an enterprise permissioned blockchain, in which
users have to be granted permission to participate, Sybil attacks are not possible since
the permissioning authority can easily deny permission when a malicious user attempts
to add an excessive number of nodes. However, even in this setting, one cannot assume
every user is totally honest.

For example, consider a supply-chain blockchain in which all suppliers enter data
on the chain pertaining to each item being supplied either to another supplier or the
ultimate manufacturer of an end-user product. Some supplier might choose to falsify
data for its own advantage, but, when a fraud investigation begins, that supplier may
then seek to fork the blockchain to cover-up its fraud. Thus, even absent the possibility
of Sybil attacks, there remains the possibility of adversarial behavior. It is difficult to
anticipate every possible form of adversarial behavior.

For this reason, we model this situation using the concept of Byzantine failure in
which it is assumed that a “failed” node can behave in an arbitrary manner, and the net-
work of non-failed nodes must be robust to all such misbehavior, including misbehavior
that takes exactly the needed set of steps to sabotage the network. The assumption of
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Byzantine failure is quite different from the assumption made by consensus protocols,
where the only type of failure considered is the absence of function, that is, the only
way a node or network link fails to stop working and thus do nothing. This is referred
to as a fail-stop model and precludes any malicious behavior.

In Section 23.8, we discussed distributed consensus protocols, notably Paxos and
Raft. These protocols depend on the fail-stop assumption, but allow agreement using
majority rule (in contrast, 2PC requires unanimity of agreement). For Byzantine con-
sensus, we must seek a form of majority rule that overcomes not only the failure of a
minority of nodes, but also the possible malicious behavior of that minority. For exam-
ple, a malicious node n1 may tell node n2 that it desires to commit a transaction, but
tell n3 that it desires to abort the transaction. As one might expect, achieving consensus
in the face of such malicious nodes requires a higher cost in the number of messages
sent to achieve agreement, but in a blockchain, that higher cost is acceptable since it
can be much lower than the cost of proof-of-work or proof-of-stake mining.

The development of Byzantine consensus algorithms began in the early 1980s; see
the Further Reading section at the end of the chapter for references. There has been
much theoretical work relating the number of rounds of messaging, the total number of
messages sent, and the fraction of the nodes that can be malicious without causing the
protocol to fail. Early work made assumptions about network behavior, such as the time
it takes to deliver a message or that the network behaves in a highly synchronous man-
ner. Modern Byzantine consensus algorithms are based on real-world assumptions and
incorporate cryptographic signatures to guard against forged messages. The degree of
synchronization is reduced, but truly asychronous fault-tolerant consensus is provably
impossible. One widely used approach, called Practical Byzantine Fault Tolerance, tol-
erates malicious failure of up to ⌊

n−1
3
⌋ nodes and is viewed as providing an acceptable

level of performance. Other protocols are referenced in the Further Reading section at
the end of the chapter.

26.5 Data Management in a Blockchain

Until now we have not been concerned about the efficiency of looking up information
in a blockchain. While individual users can track their unspent transactions, that is not
sufficient to validate a block. Each node needs to be able to check each transaction in
a block to see if it was already spent. In principle, that could be done by searching the
entire blockchain, but that is far too costly since it could involve searching backwards
to the very first block in the chain. In this section, we shall consider data structures to
make such lookups efficient.

Furthermore, not every blockchain uses a transaction model in which transac-
tion inputs are restricted to be the direct output of other transactions. Some, notably
Ethereum, allow for the maintenance of a state for each user (account, in Ethereum
parlance) that holds the account balance (in the Ethereum currency, Ether) and some
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associated storage. This transaction and data model comes closer to that of a database
system. Simply storing this information in a database, however, would not preserve the
blockchain properties we listed in Section 26.2. In this section, we consider this richer
model and how it can be represented physically either via specialized data structures
or with the help of database system concepts.

26.5.1 Efficient Lookup in a Blockchain

As we noted earlier, in order to validate a Bitcoin-style transaction, a node needs to
check three items:

1. The transaction is syntactically well formed (proper data format, sum of inputs
equals sum of outputs, and so on). This is relatively straightforward.

2. The transaction is signed by the user submitting it. This is a matter of ensuring
that the signature, which should have been produced by the user submitting the
transaction using her or his private key, can be decrypted with that user’s public
key to obtain the transaction itself. This is not a highly costly step.

3. The transaction’s inputs have not been spent already. This entails looking up
each individual input transaction in the blockchain. These transactions could be
anywhere in the blockchain since they can be arbitrarily old. Without a good
means of performing this lookup, this step would be prohibitively costly.

To test for an input transaction having been used already, it is necessary to be able to
check that transaction did not appear earlier as input to another transaction. Thus, it
suffices for each node to maintain an index on all unspent transactions. Entries in this
index point to the location of the corresponding transaction in the blockchain, allowing
the details of the input transaction to be validated.

Bitcoin, like many other blockchains, facilitates lookup and validation by storing
transactions within a block in a Merkle tree, which we discussed in Section 23.6.6. In
that section, we noted that a Merkle tree enables the efficient verification of a collection
(transactions, in the case of a blockchain) that may have been corrupted by a malicious
user. In a blockchain, there are optimizations to the Merkle tree possible, such as trun-
cating the tree to remove subtrees consisting solely of spent transactions. This reduces
significantly the space requirements for nodes to store the full blockchain. Space is a
major consideration since major blockchains grow faster that one gigabyte per month,
a rate likely to increase as blockchain applications grow.

The Merkle-tree structure is particularly useful for light nodes (i.e., nodes that do
not store the entire blockchain) since they need to retain only the root hash of the
tree for verification. A full node can then provide any needed data to the light node
by providing those data plus the hashes needed for the light node to verify that the
provided data are consistent with its stored hash value (see Section 23.6.6).
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26.5.2 Maintaining Blockchain State

The simple blockchain transaction model of Section 26.3.3 showed how a basic Bitcoin
transaction works. There are more complex transactions possible in Bitcoin, but they
follow the same pattern of a set of input transactions and a set of payments to users.

In this section, we look at the model used by certain other blockchains, notably
Ethereum, that maintain a state that holds the balance in each account. Transactions
move currency units (ether in Ethereum) among accounts. Since transactions are se-
rialized into blocks by miners, there is no need for concurrency-control protocols like
those of Chapter 18. Each block contains a sequence of transactions but also contains
the state as it existed after execution of transactions in the block. It would be wasteful
to replicate the entire state in each block since the modest number of transactions in
one block are likely to change a relatively small fraction of the overall state. This creates
a need for a data structure allowing better use of storage.

Recall that transactions within a block are stored in a Merkle tree. State is stored
similarly. This would appear to offer the possibility of saving space by allowing pointers
(plus the associated hash) back to earlier blocks for those parts of the state that are
unchanged. The only challenge here is that it must be possible not only to change tree
nodes, but also to insert and delete them. A variant of the Merkle-tree data structure,
called a Merkle-Patricia tree, is used for this purpose in some blockchains, including
Ethereum. This data structure allows for efficient key-based search in the tree. Instead
of actually deleting and inserting tree nodes, a new tree root is created and the tree
itself structured so as to reference (and thus reuse) subtrees of prior trees. Those prior
trees are immutable, so rather than making new parent pointer (which we can’t do),
a leaf-to-root path is generated by reversing a root-to-leaf path that is easily obtained
in the Merkle-Patricia tree structure. Details of this data structure can be found in the
references in the Further Reading section at the end of the chapter.

Corda, Hyperledger Fabric, and BigchainDB are examples of blockchains that use
a database to store state and allow querying of that state. Fabric and BigchainDB use
NoSQL databases. Corda uses an embedded-SQL database. In contrast, Ethereum state
is stored in a key-value store.

26.6 Smart Contracts

So far, we have focused on simple funds-transfer transactions. Actual blockchain trans-
actions can be more complex because they may include executable code. Blockchains
differ not only in the supported language(s) for such code, but also, and more im-
portantly, in the power of those languages. Some blockchains offer Turing-complete
languages, that is, languages that can express all possible computations. Others offer
more limited languages.

26.6.1 Languages and Transactions

Bitcoin uses a language of limited power that is suitable for defining many standard
types of conditional funds-transfer transactions. Key to this capability is its multisig
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instruction, which requires m of n specified users to approve the transfer. This enables
escrow transactions in which a trusted third party resolves any dispute between the two
parties to the actual transfer. It also enables grouping several transactions between two
users into one larger transaction without having to submit each component transaction
separately to the blockchain. Because adding transactions to the blockchain has a time
delay and a cost in transaction fees, this feature is quite important. This concept has
been extended in off-chain processing systems, which we discuss in Section 26.7.

Ethereum as well as most blockchains targeting enterprise applications include a
language that is Turing complete. Many use familiar programming languages or vari-
ants based heavily on such languages. This would seem like an obvious advantage over
less-powerful languages, but it comes at some risk. Whereas it is impossible to write
an infinite loop in Bitcoin’s language, it is possible to do so in any Turing-complete
language. A malicious user could submit a transaction that encodes an infinite loop,
thereby consuming an arbitrarily large amount of resources for any node attempting
to include that transaction in a newly mined block. Testing code for termination, the
halting problem, is a provably unsolvable problem in the general case. Even if the ma-
licious user avoids an infinite loop, that user could submit code that runs for an excep-
tionally long time, again consuming miner resources. The solution to this problem is
that users submitting a transaction agree to pay the miner for code execution, with an
upper bound placed on the payment. This limits the amount of total execution to some
bounded amount of time.

The decentralized nature of a blockchain leads to an incentive system for users to
convince miners to include their transaction and thus execute their code. Ethereum’s
solution is based on the concept of gas, so named as to provide an analogy to auto-
mobile fuel. Each instruction consumes a fixed amount of gas. Gas consumption in a
transaction is governed by three parameters:

1. Gas price: the amount of ether the user is offering to pay the miner for one unit
of gas.

2. Transaction gas limit: the upper bound on transaction gas consumption. Trans-
actions that exceed their gas limit are aborted. The miner keeps the payment, but
the transaction actions are never committed to the blockchain.

3. Block gas limit: a limit in the blockchain system itself on the sum over all trans-
actions in a block of their transaction gas limits.

A user who sets a gas price too low may face a long wait to find a miner willing to
include the transaction. Setting the gas price too high results in the user overpaying.

Another hard choice is that of the gas limit. It is hard to set the limit to the pre-
cise amount of gas that the contract will use. A user who sets the limit too low risks
transaction failure, while a user who, fearing “running out of gas,” sets the transaction
gas limit excessively high may find that miners are unwilling to include the transaction
because it consumes too large a fraction of the block gas limit. The result of this is an
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interesting problem for transaction designers in optimizing for both cost and speed of
mining.

In a Bitcoin-style transaction, transaction ordering is explicit. In a state-based
blockchain like Ethereum, there is no explicit concept of input transactions. However,
there may be important reasons why a smart contract may wish to enforce a transaction
order. For transactions coming from the same account, Ethereum forces those trans-
actions to be mined in the order in which the account created them by means of an
account nonce associated with the transaction. An account nonce is merely a sequence
number associated with each transaction from an account, and the set of transactions
from an account must have consecutive sequence numbers. Two transactions from an
account cannot have the same sequence number, and a transaction is accepted only
after the transaction with the previous sequence number has been accepted, thus pre-
venting any cheating in transaction ordering. If the transactions to be ordered are from
different accounts, they need to be designed such that the second transaction in the
ordering would fail to validate until after the first transaction is processed.

The fact that miners must run the smart-contract code of transactions they wish
to include in a block, and that all full nodes must run the code of all transactions in
mined blocks, regardless of which node mined the block, leads to a concern about
security. Code is run in a safe manner, usually on a virtual machine designed in the
style of the Java virtual machine. Ethereum has its own virtual machine, called the
EVM. Hyperledger executes code in Docker containers.

26.6.2 External Input

A smart contract may be defined in terms of external events. As a simple example,
consider a crop-insurance smart contract for a farmer that pays the farmer an amount
of money dependent on the amount of rainfall in the growing season. Since the amount
of rainfall in any future season is not known when the smart contract is written, that
value cannot be hard-coded. Instead, input must be taken from an external source that
is trusted by all parties to the smart contract. Such an external source is called an
oracle.6

Oracles are essential to smart contracts in many business applications. The fact that
the oracle must be trusted is a compromise on the general trustlessness of a blockchain
environment. However, this is not a serious compromise in the sense that only the
parties to a contract need to agree on any oracles used and, once that agreement is
made, the agreement is coded into the smart contract and is immutable from that
point forward.

Corruption of an oracle after it is coded into an operating smart contract is a real
problem. This issue could be left as an externality for the legal system but ideally, a
process for settlement of future disputes would be coded into the contract in a variety
of ways. For example, parties to the contract could be required to send the contract

6This term is rooted in ancient Greek culture and bears no relationship to the company by the same name.
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certification messages periodically, and code could be written defining actions to be
taken in case a party fails to recertify its approval of the oracle.

Direct external output from a smart contract is problematic since such output
would have to occur during its execution and thus before the corresponding transaction
is added to the blockchain. Ethereum, for example, deals with this by allowing a smart
contract to emit events that are then logged in the blockchain. The public visibility of
the blockchain then allows the actions of the smart contract to trigger activity external
to the blockchain.

26.6.3 Autonomous Smart Contracts

In many blockchains, including Ethereum, smart contracts can be deployed as indepen-
dent entities. Such smart contracts have their own account, balance, and storage. This
allows users (or other smart contracts) to use services provided by a smart contract
and to send or receive currency from a smart contract.

Depending on how a specific smart contract is coded, a user may be able, by design,
to control the smart contract by sending it messages (transactions). A smart contract
may be coded so that it operates indefinitely and autonomously. Such a contract is
referred to as a distributed autonomous organization (DAO).7 DAOs, once established,
are difficult to control and manage. There is no way to install bug fixes. In addition, there
are many unanswered questions about legal and regulatory matters. However, the ability
to create these entities that communicate, store data, and do business independent of
any user is one of the most powerful features of the blockchain concept. In an enterprise
setting, smart contracts operate under some form of control by an organization or a
consortium.

A smart contract may be used to create a currency on top of another currency.
Ethereum often serves as the base blockchain as this allows the rich existing ecosystem
for Ethereum to be leveraged to provide underlying infrastructure. Such higher-level
currency units are called tokens, and the process of creating such currencies is referred
to as an initial coin offering (ICO). An important added benefit of using an existing
blockchain as the basis for a token is that it is then possible to reuse key elements of the
user infrastructure, most importantly the wallet software users need to store tokens. The
ERC-20 Ethereum standard for tokens is widely used. More recent standards, including
ERC-223, ERC-621, ERC-721, ERC-777, and ERC-827, are discussed in the references in
the Further Reading section at the end of the chapter.

The relative ease of creating an ICO has made it an important method of funding
new ventures, but this has also led to several scams, resulting in attempts by govern-
ments to regulate this fundraising methodology.

Beyond fundraising, an important application of smart contracts is to create inde-
pendent, autonomous service providers whose operation is controlled not by humans

7The general use of DAO is distinct from a specific distributed autonomous organization called “The DAO”. The DAO
was a crowdfunded venture-capital operation that failed due to a bug that enabled a major theft of funds (see Note 26.1
on page 1258).
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but by source code, often open-source. In this way, trustless services that do not require
their users to trust any person or organization can be created. As we noted earlier, a
fully autonomous contract cannot be stopped or modified. Thus, bugs last forever, and
the contract can continue as long as it can raise enough currency to support its oper-
ation (i.e., for Ethereum, earn enough ether to pay for gas). These risks suggest that
some compromise on the concept of trustlessness may make sense in smart-contract
design, such as giving the contract creator the ability to send a self-destruct message to
the contract.

26.6.4 Cross-Chain Transactions

Up to this point, we have assumed implicitly that a blockchain transaction is limited
to one specific blockchain. If one wished to transfer currency from an account on one
blockchain to another account that is on a different blockchain, not only is there the
issue that the currencies are not the same, but also there is the problem that the two
blockchains have to agree on the state of this cross-chain transaction at each point in
time.

We have seen a related problem for distributed databases. If a single organization
controls the entire distributed system, then two-phase commit can be used. However, if
the system is controlled by multiple organizations as in the federated systems discussed
in Section 23.5.3, coordination is more difficult. In the blockchain setting, the high level
of autonomy of each system and the requirement of immutability set an even higher
barrier.

The simplest solution is to use a trusted intermediary organization that operates
much like one that exchanges traditional fiat currencies.

If both users have accounts on both blockchains, a trustless transaction can be
defined by creating transactions on each chain for the required funds transfer that are
designed such that if one transaction is added to its blockchain its smart-contract code
reveals a secret that ensures that other transactions cannot be canceled. Techniques
used include the following, among others:

• Time-lock transactions that reverse after a certain period of time unless specific
events occur.

• Cross-chain exchange of Merkle-tree headers for validation purposes.

A risk in these techniques is the possibility that a successfully mined transaction winds
up on an orphaned fork, though there are ways to mitigate these risks. The details are
system specific. See the Further Reading section at the end of the chapter.

A more general solution is to create a smart contract that implements a market sim-
ilar conceptually to a stock exchange in which willing buyers and sellers are matched.
Such a contract operates in the role of trusted intermediary rather than a human-run
bank or brokerage as would be used for fiat currencies. The technical issues in cross-
chain transactions remain an area of active research.
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26.7 Performance Enhancement

At a high level, a blockchain system may be viewed as having three major components:

1. Consensus management: Proof-of-work, proof-of-stake, Byzantine consensus, or
some hybrid approach. Transaction processing performance is dominated by the
performance of consensus management.

2. State-access management: Access methods to retrieve current blockchain state,
ranging from a simple index to locate transactions from a specific account-id or
user ID, to key-value store systems, to a full SQL interface.

3. Smart contract execution: The environment that runs the (possibly compiled)
smart-contract code, typically in a virtualized environment for security and safety.

The rate of transaction processing, referred to as throughput, in blockchain systems
is significantly lower than in traditional database systems. Traditional database systems
are able to process simple funds-transfer transactions at peak rates on the order of tens
of thousands of transactions per second. Blockchain systems’ rates are less; Bitcoin
processes less than 10 per second, and Ethereum, at present, only slightly more than
10 per second.8 The reason is that techniques such as proof-of-work limit the number
of blocks that can be added to the chain per unit time, with Bitcoin targeting one
block every 10 minutes. A block may contain multiple transactions, so the transaction
processing rate is significantly more than 1 in 10 minutes, but is nevertheless limited.

In most applications, transaction throughput is not the only performance metric. A
second and often more important metric is transaction latency, or response time. Here,
the distributed consensus required by blockchain systems presents a serious problem.
As an example, we consider Bitcoin’s design in which the mining rate is maintained
close to 1 block every 10 minutes. That alone creates significant latency, but added
to that is the need to wait for several subsequent blocks to be mined so as to reduce
the probability that a fork will cause the transaction’s block to be orphaned. Using the
usual recommendation of waiting for 6 blocks, we get a true latency of 1 hour. Such
response times are unacceptable for interactive, real-time transaction processing. In
contrast, traditional database systems commit individual transactions and can easily
achieve millisecond response time.

These transaction processing performance issues are primarily issues due to con-
sensus overhead with public blockchains. Permissioned blockchains are able to use
faster message-based Byzantine consensus algorithms, but other performance issues
still remain, and are continuing to be addressed.

8At the time of publication, Ethereum’s architects are contemplating advocating a fork to allow faster, lower-overhead
mining.
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26.7.1 Enhancing Consensus Performance

There are two primary approaches to improve the performance of blockchain consen-
sus:

1. Sharding: distributing the task of mining new blocks to enable parallelism among
nodes.

2. Off-chain transaction processing: Trusted systems that process transactions inter-
nally without putting them on the blockchain. These transactions are grouped
into a single transaction that is then placed on the blockchain. This grouping
may occur with some agreed-upon periodicity or occur only at the termination
of the agreement.

Sharding is the partitioning of the accounts in a blockchain into shards that are
mined separately in parallel. In the case where a transaction spans shards, a separate
transaction is run on each shard with a special system-internal cross-shard transaction
recorded to ensure that both parts of the given transaction are committed. The over-
head of the cross-shard transaction is low. There are some risks resulting from the fact
that splitting the mining nodes up by shard results in smaller sets of miners that are
then more vulnerable to attack since the cost to attack a smaller set of miners is less.
However, there are ways to mitigate this risk.

Off-chain transactions require deployment of a separate system to manage those
transactions. The best known of these is the Lightning network, which not only
speeds blockchain transactions via off-chain processing but also can process certain
cross-chain transactions. Lightning promises transaction throughput and latency at
traditional database-system rates, but provides this at the cost of some degree of
anonymity and immutability (i.e., transactions that commit off-chain, but are rejected
at the blockchain). By increasing the frequency of transaction confirmations to the
blockchain, one can decrease the loss of immutability at the price of reduced perfor-
mance improvement.

26.7.2 Enhancing Query Performance

Some blockchain systems offer little more than an index on user or account identifiers
to facilitate looking up unspent transactions. This suffices for a simple funds-transfer
transaction. Complex smart contracts, however, may need to execute general-purpose
queries against the stored current state of the blockchain. Such queries may perform
the equivalent of join queries, whose optimization we studied at length in Chapter
16. However, the structure of blockchain systems, in which state-access management
may be separate from the execution engine may limit the use of database-style query
optimization. Furthermore, the data structures used for state representation, such as
the Merkle-Patricia tree structure we saw in Section 26.5.2, may limit the choice of
algorithms to implement join-style queries.
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Blockchain systems built on a traditional or a NoSQL database keep state informa-
tion within that database and allow smart contracts to run higher-level database-style
queries against that state. Those advantages come at the cost of using a database-storage
format that may lack the rigorous cryptographic protection of a true blockchain. A
good compromise is for the database to be hosted by a trusted provider with updates
going not only to the database but also to the blockchain, thus enabling any user who
so wishes to validate the database against the secure blockchain.

26.7.3 Fault-Tolerance and Scalability

Performance in the presence of failures is a critical aspect of a blockchain system.
In traditional database systems, this is measured by the performance of the recovery
manager and, as we saw in Section 19.9, the ARIES recovery algorithm is designed to
optimize recovery time. A blockchain system, in contrast, uses a consensus mechanism
and a replication strategy designed for continuous operation during failures and mali-
cious attacks, though perhaps with lower performance during such periods. Therefore,
besides measuring throughput and latency, one must also measure how these perfor-
mance statistics change in times of failure or attack.

Scalability is a performance concern in any distributed system as we saw in Chap-
ter 20. The architectural differences between blockchain systems and parallel or dis-
tributed database systems introduce challenges in both the measure of scaleup and its
optimization. We illustrate the differences by considering the relative scalability of 2PC
and Byzantine consensus. In 2PC, a transaction accessing a fixed number of nodes, say
five, needs only the agreement of these five nodes, regardless of the number of nodes
in the system. If we scale the system up to more nodes, that transaction still needs only
those five nodes to agree (unless the scaling added a replica site). Under Byzantine con-
sensus, every transaction needs the agreement of a majority of the non-failed nodes,
and so, the number of nodes that must agree not only starts much larger but also grows
faster as the network scales.

The Further Reading section at the end of the chapter provides references that deal
with the emerging issue of blockchain performance measurement and optimization.

26.8 Emerging Applications

Having seen how blockchains work and the benefits they offer, we can look at areas
where blockchain technology is currently in use or may be used in the near future.

Applications most likely to benefit from the use of a blockchain are those that
have high-value data, including possibly historical data, that need to be kept safe from
malicious modification. Updates would consist mostly of appends in such applications.
Another class of applications that are likely to benefit area those that involve multiple
cooperating parties, who trust each other to some extent, but not fully, and desire to
have a shared record of transactions that are digitally signed, and are kept safe from
tampering. In this latter case, the cooperating parties could include the general public.
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Below, we provide a list of several application domains along with a short explana-
tion of the value provided by a blockchain implementation of the application. In some
cases, the value added by a blockchain is a novel capability; in others, the value added
is the ability to do something that could have been done previously only at prohibitive
cost.

• Academic certificates and transcripts: Universities can put student certificates and
transcripts on a public blockchain secured by the student’s public key and signed
digitally by the university. Only the student can read the records, but the student
can then authorize access to those records. As a result, students can obtain cer-
tificates and transcripts for future study or for prospective employers in a secure
manner from a public source. This approach was prototyped by MIT in 2017.

• Accounting and audit: Double-entry bookkeeping is a fundamental principle of
accounting that helps ensure accurate and auditable records. A similar benefit can
be gained from cryptographically signed blockchain entries in a digital distributed
ledger. In particular, the use of a blockchain ensures that the ledger is tamperproof,
even against insider attacks and hackers who may gain control of the database.
Also, if the enterprise’s auditor is a participant, then ledger entries can become
visible immediately to auditors, enabling a continuous rather than periodic audit.

• Asset management: Tracking ownership records on a blockchain enables verifiable
access to ownership records and secure, signed updates. As an example, real-estate
ownership records, a matter of public record, could be made accessible to the
public on a blockchain, while updates to those records could be made only by
transactions signed by the parties to the transaction. A similar approach can be
applied to ownership of financial assets such as stocks and bonds. While stock
exchanges manage trading of stocks and bonds, long term records are kept by
depositories that users must trust. Blockchain can help track such assets without
having to trust a depository.

• E-government: A single government blockchain would eliminate agency dupli-
cation of records and create a common, authoritative information source. A
highly notable user of this approach is the government of Estonia, which uses its
blockchain for taxation, voting, health, and an innovative “e-Residency” program.

• Foreign-currency exchange: International financial transactions are often slow
and costly. Use of an intermediary cryptocurrency can enable blockchain-based
foreign-currency exchange at a relative rapid pace with full, irrefutable traceabil-
ity. Ripple is offering such capability using the XRP currency.

• Health care: Health records are notorious for their nonavailability across health-
care providers, their inconsistency, and their inaccuracy even with the increased
use of electronic health records. Data are added from a large number of sources
and the provenance of materials used may not be well documented (see discussion
of supply chains below). A unified blockchain is suitable for distributed update,
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and cryptographic data protection, unlockable by the patient’s private key, would
enable access to a patient’s full health record anytime, anywhere in an emergency.
The actual records may be kept offchain, but the blockchain acts as the trusted
mechanism for accessing the data.

• Insurance claims: The processing of insurance claims is a complex workflow of data
from the scene of the claim, various contractors involved in repairs, statements
from witnesses, etc. A blockchain’s ability to capture data from many sources
and distribute it rapidly, accurately, and securely, promises efficiency and accu-
racy gains in the insurance industry.

• Internet of things: The Internet of Things (IoT) is a term that refers to systems
of many interacting devices (“things”), including within smart buildings, smart
cities, self-monitoring civil infrastructure, and so on. These devices could act as
nodes that can pass blockchain transactions into the network without having to
ensure the transmission of data reaches a central server. In the late 2010s, research
is underway to see if this data-collection approach can be effective in lowering
costs and increasing performance. Adding so many entries to a blockchain in a
short period of time may suggest a replacement of the chain data structure with
a directed, acyclic graph. The Iota blockchain is an example of one such system,
where the graph structure is called a tangle.

• Loyalty programs and aggregation of transactions: There are a variety of situa-
tions where a customer or user makes multiple purchases from the same vendor,
such as within a theme park, inside a video game, or from a large online retailer.
These vendors could create internal cryptocurrencies in a proprietary, permis-
sioned blockchain, with currency value pegged to a fiat currency like the dollar.
The vendor gains by replacing credit-card transactions with vendor-internal trans-
actions. This saves credit-card fees and allows the vendor to capture more of the
valuable customer data coming from these transactions. The same concept can
apply to retail loyalty points, exemplified by airline frequent-flyer miles. It is costly
for vendors to maintain these systems and coordinate with partner vendors in the
program. A blockchain-based system allows the hosting vendor to distribute the
workload among the partners and allows transactions to be posted in a decentral-
ized manner, releaving the vendor from have to run its own online transaction
processing system. In the late 2010s, business strategies were being tested around
these concepts.

• Supply chain: Blockchain enables every participant in a supply chain to log every
action. This facilitates tracking the movement of every item in the chain rather
than only aggregates like crates, shipments, etc. In the event of a recall, the set
of affected products can be pinpointed to a smaller set of products and done so
quickly. When a quality issue suggests a recall, some supply-chain members may
be tempted to cover up their role, but the immutability of the blockchain prevents
record falsification after the fact.
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• Tickets for events: Suppose a person A has bought tickets for an event, but now
wishes to sell them, and B buys the ticket from A. Given that tickets are all sold
online, B would need to trust that the ticket given by A is genuine, and A has not
already sold the ticket, that is, the ticket has not been double-spent. If ticket trans-
actions are carried out on a blockchain, double-spending can be detected easily.
Tickets can be verified if they are signed digitally by the event organizer (whether
or not they are on a blockchain).

• Trade finance: Companies often depend on loans from banks, issued through let-
ters of credits, to finance purchases. Such letters of credit are issued against goods
based on bills of lading indicating that the goods are ready for shipment. The
ownership of the goods (title) is then transferred to the buyer. These transactions
involve multiple parties including the seller, buyer, the buyer’s bank, the seller’s
bank, a shipping company and so forth, which trust each other to some extent, but
not fully. Traditionally, these processes were based on physical documents that
have to be signed and shipped between parties that may be anywhere on the globe,
resulting in significant delays in these processes. Blockchain technology can be
used to keep these documents in a digital form, and automate these processes in a
way that is highly secure yet very fast (at least compared to processing of physical
documents).

Other applications beyond those we have listed continue to emerge.

26.9 Summary

• Blockchains provide a degree of privacy, anonymity, and decentralization that is
hard to achieve with a traditional database.

• Public blockchains are accessibly openly on the internet. Permissioned
blockchains are managed by an organization and usually serve a specific enter-
prise or group of enterprises.

• The main consensus mechanisms for public blockchains are proof-of-work and
proof-of-stake. Miners compete to add the next block to the blockchain in exchange
for a reward of blockchain currency.

• Many permissioned blockchains use a Byzantine consensus algorithm to choose
the node to add the next block to the chain.

• Nodes adding a block to the chain first validate the block. Then all full nodes
maintaining a replica of the chain validate the new block.

• Key blockchain properties include irrefutability and tamper resistance.

• Cryptographic hash functions must exhibit collision resistance, irreversibility, and
puzzle friendliness.
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• Public-key encryption is based on a user having both a public and private key to
enable both the encryption of data and the digital signature of documents.

• Proof-of-work requires a large amount of computation to guess a successful nonce
that allows the hash target to be met. Proof-of-stake is based on ownership of
blockchain currency. Hybrid schemes are possible.

• Smart contracts are executable pieces of code in a blockchain. In some chains,
they may operate as independent entities with their own data and account. Smart
contracts may encode complex business agreements and they may provide ongoing
services to nodes participating in the blockchain.

• Smart contracts get input from the outside world via trusted oracles that serve as
a real-time data source.

• Blockchains that retain state can serve in a manner similar to a database system
and may benefit from the use of database indexing methods and access optimiza-
tion, but the blockchain structure may place limits on this.

Review Terms

• Public and permissioned blockchain

• Cryptographic hash

• Mining

• Light and full nodes

• Proof-of-work

• Proof-of-stake

• Byzantine consensus

• Tamper resistance

• Collision resistance

• Irreversibility

• Public-key encryption

• Digital signature

• Irrefutability

• Forks: hard and soft

• Double spend

• Orphaned block

• Nonce

• Block validation

• Merkle tree

• Patricia tree

• Bitcoin

• Ethereum

• Gas

• Smart contract

• Oracles

• Cross-chain transaction

• Sharding

• Off-chain processing

Practice Exercises

26.1 What is a blockchain fork? List the two types of fork and explain their differ-
ences.
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26.2 Consider a hash function h(x) = x mod 2256, that is, the hash function returns
the last 256 bits of x.
Does this function have

a. collision resistance

b. irreversibility

c. puzzle friendliness

Why or why not?

26.3 If you were designing a new public blockchain, why might you choose proof-
of-stake rather than proof-of-work?

26.4 If you were designing a new public blockchain, why might you choose proof-
of-work rather than proof-of-stake?

26.5 Explain the distinction between a public and a permissioned blockchain and
when each would be more desirable.

26.6 Data stored in a blockchain are protected by the tamper-resistance property
of a blockchain. In what way is this tamper resistance more secure in practice
than the security provided by a traditional enterprise database system?

26.7 In a public blockchain, how might someone determine the real-world identity
that corresponds to a given user ID?

26.8 What is the purpose of gas in Ethereum?

26.9 Suppose we are in an environment where users can be assumed not to be ma-
licious. In that case, what advantages, if any, does Byzantine consensus have
over 2PC?

26.10 Explain the benefits and potential risks of sharding.

26.11 Why do enterprise blockchains often incorporate database-style access?

Exercises

26.12 In what order are blockchain transactions serialized?

26.13 Since blockchains are immutable, how is a transaction abort implemented so
as not to violate immutability?

26.14 Since pointers in a blockchain include a cryptographic hash of the previous
block, why is there the additional need for replication of the blockchain to
ensure immutability?

26.15 Suppose a user forgets or loses her or his private key? How is the user affected?



1282 Chapter 26 Blockchain Databases

26.16 How is the difficulty of proof-of-work mining adjusted as more nodes join the
network, thus increasing the total computational power of the network? De-
scribe the process in detail.

26.17 Why is Byzantine consensus a poor consensus mechanism in a public
blockchain?

26.18 Explain how off-chain transaction processing can enhance throughput. What
are the trade-offs for this benefit?

26.19 Choose an enterprise of personal interest to you and explain how blockchain
technology could be employed usefully in that business.

Tools

One can download blockchain software to create a full node for public blockchains
such as Bitcoin (bitcoin.org) and Ethereum (www.ethereum.org) and begin mining,
though the economic return for the investment of power may be questionable. Tools
exist also to join mining pools. Browsing tools exist to view the contents of public
blockchains. For some blockchains, notably Ethereum, it is possible to install a private
copy of the blockchain software managing a private blockchain as an educational tool.
Ethereum also offers a public test network where smart contracts can be debugged
without the expense of gas on the real network.

Hyperledger (www.hyperledger.org) which is supported by a large consortium
of companies, provides a wide variety of open source blockchain platforms and
tools. Corda (www.corda.net) and BigchainDB (www.bigchaindb.com) are two
other blockchain platforms, with BigchainDB having a specific focus on blockchain
databases.

Blockchain based systems for supporting academic certificates and medical
records, such as Blockcert and Medrec (both from MIT), and several other applica-
tions are available online. The set of tools for blockchain are evolving rapidly. Due to
the rapid rate of change and development, as of late 2018 we are unable to identify a
best set of tools, beyond the few mentioned above, that we can recommend. We recom-
mend you perform a web search for the latest tools.

Further Reading

The newness of blockchain technology and applications means that, unlike the more
established technical topics elsewhere in this text, there are fewer references in the
academic literature and fewer textbooks. Many of the key papers are published only
on the website of a particular blockchain. The URLs for those references are likely
to change often. Thus, web searches for key topics are a highly important source for
further reading. Here, we cite some classic references as well as URLs current as of the
publication date.
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The original Bitcoin paper [Nakamoto (2008)] is authored under a pseudonym,
with the identity of the author or authors still the subject of speculation. The original
Ethereum paper [Buterin (2013)] has been superseded by newer Ethereum white pa-
pers (see ethereum.org), but the original work by Ethereum’s creator, Vitalik Buterin,
remains interesting reading. Solidity, the primary programming language for Ethereum
smart contracts, is discussed in solidity.readthedocs.io. The ERC-20 standard is de-
scribed in [Vogelsteller and Buterin (2013)] and the proposed (as of the publication
date of this text) Casper upgrade to the performance of Ethereum’s consensus mech-
anism appears in [Buterin and Griffith (2017)]. Another approach to using proof-of-
stake is used by the Cardano blockchain (www.cardano.org).

Many of the theoretical results that make blockchain possible were first developed
in the 20th century. The concepts behind cryptographic hash functions and public-key
encryption were introduced in [Diffie and Hellman (1976)] and [Rivest et al. (1978)].
A good reference for cryptography is [Katz and Lindell (2014)]. [Narayanan et al.
(2016)] is a good reference for the basics of cryptocurrency, though its focus is mainly
on Bitcoin. There is a large body of literature on Byzantine consensus. Early papers
that laid the foundation for this work include [Pease et al. (1980)] and [Lamport et al.
(1982)]. Practical Byzantine fault tolerance ([Castro and Liskov (1999)]) serves as the
basis for much of the current blockchain Byzantine consensus algorithms. [Mazières
(2016)] describes in detail a consensus protocol specifically designed to allow for open,
rather than permissioned, membership in the consensus group. References pertaining
to Merkle trees appears in Chapter 23. Patricia trees were introduced in [Morrison
(1968)].

A benchmarking framework for permissioned blockchains appears in [Dinh et al.
(2017)]. A detailed comparison of blockchain systems appears in [Dinh et al. (2018)].
ForkBase, a storage system designed for improved blockchain performance, is dis-
cussed in [Wang et al. (2018)].

The Lightning network(lightning.network) aims to accelerate Bitcoin transactions
and provide some degree of cross-chain transactions. Ripple (ripple.com) provides
a network for international fiat currency exchange using the XRP token. Loopring
(loopring.org) is a cryptocurrency exchange platform that allows users to retain con-
trol of their currency without having to surrender control to the exchange.

Many of the blockchains discussed in the chapter have their best descriptions
on their respective web sites. These include Corda (docs.corda.net), Iota (iota.org),
and Hyperledger (www.hyperledger.org). Many financial firms are creating their own
blockchains, and some of those are publicly available, including J.P. Morgan’s Quorum
(www.jpmorgan.com/global/Quorum).
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[Mazìeres (2016)] D. Mazières, “The Stellar Consensus Protocol”, Technical report (2016).

[Morrison (1968)] D. Morrison, “Practical Algorithm To Retrieve Information Coded in Al-
phanumeric”, Journal of the ACM, Volume 15, Number 4 (1968), pages 514–534.

[Nakamoto (2008)] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System”, Tech-
nical report, Bitcoin.org (2008).

[Narayanan et al. (2016)] A. Narayanan, J. Bonneau, E. Felten, A. Miller, and S. Goldfeder,
Bitcoin and Cryptocurrency Technologies, Princeton University Press (2016).

[Pease et al. (1980)] M. Pease, R. Shostak, and L. Lamport, “Reaching Agreement in the
Presence of Faults”, Journal of the ACM, Volume 27, Number 2 (1980), pages 228–234.

[Rivest et al. (1978)] R. L. Rivest, A. Shamir, and L. Adleman, “A Method for Obtaining
Digital Signatures and Public-Key Cryptosystems”, Communications of the ACM, Volume 21,
Number 2 (1978), pages 120–126.

[Vogelsteller and Buterin (2013)] F. Vogelsteller and V. Buterin, “ERC-20 Token Standard”,
Technical report (2013).

[Wang et al. (2018)] S. Wang, T. T. A. Dihn, Q. Lin, Z. Xie, M. Zhang, Q. Cai, G. Chen,
B. C. Ooi, and P. Ruan, “ForkBase: An Efficient Storage Engine for Blockchain and Forkable
Applications”, In Proc. of the International Conf. on Very Large Databases (2018), pages 1085–
1100.

Credits

The photo of the sailboats in the beginning of the chapter is due to ©Pavel Nes-
vadba/Shutterstock.



PART 10

APPENDIX A
Appendix A presents the full details of the university database that we have used as our
running example, including an E-R diagram, SQL DDL, and sample data that we have
used throughout the book. (The DDL and sample data are also available on the web
site of the book, db-book.com, for use in laboratory exercises.)
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AP P END I X A
Detailed University Schema

In this appendix, we present the full details of our running-example university database.
In Section A.1 we present the full schema as used in the text and the E-R diagram that
corresponds to that schema. In Section A.2 we present a relatively complete SQL data
definition for our running university example. Besides listing a datatype for each at-
tribute, we include a substantial number of constraints. Finally, in Section A.3, we
present sample data that correspond to our schema. SQL scripts to create all the rela-
tions in the schema, and to populate them with sample data, are available on the web
site of the book, db-book.com.

A.1 Full Schema

The full schema of the university database that is used in the text follows. The corre-
sponding schema diagram, and the one used throughout the text, is shown in Figure
A.1.

classroom(building, room number, capacity)
department(dept name, building, budget)
course(course id, title, dept name, credits)
instructor(ID, name, dept name, salary)
section(course id, sec id, semester, year, building, room number, time slot id)
teaches(ID, course id, sec id, semester, year)
student(ID, name, dept name, tot cred)
takes(ID, course id, sec id, semester, year, grade)
advisor(s ID, i ID)
time slot(time slot id, day, start time, end time)
prereq(course id, prereq id)

1287
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ID
course id
sec id
semester
year
grade

ID
name
dept_name
tot_cred

building
room_number
capacity

s id
i_id

ID
course_id
sec_id
semester
year

takes

section

classroom

teaches

prereq
course id
prereq id

course id
title
dept_name
credits

course

student

dept name
building
budget

department

instructor
ID
name
dept_name
salary

advisor

time_slot
time slot id
day
start time
end_time

course id
sec id
semester
year
building
room_number
time_slot_id

Figure A.1 Schema diagram for the university database.

A.2 DDL

In this section, we present a relatively complete SQL data definition for our example.
Besides listing a datatype for each attribute, we include a substantial number of con-
straints.

create table classroom
(building varchar (15),
room number varchar (7),
capacity numeric (4,0),
primary key (building, room number));

create table department
(dept name varchar (20),
building varchar (15),
budget numeric (12,2) check (budget > 0),
primary key (dept name));
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create table course
(course id varchar (7),
title varchar (50),
dept name varchar (20),
credits numeric (2,0) check (credits > 0),
primary key (course id),
foreign key (dept name) references department

on delete set null);

create table instructor
(ID varchar (5),
name varchar (20) not null,
dept name varchar (20),
salary numeric (8,2) check (salary > 29000),
primary key (ID),
foreign key (dept name) references department

on delete set null);

create table section
(course id varchar (8),
sec id varchar (8),
semester varchar (6) check (semester in

(’Fall’, ’Winter’, ’Spring’, ’Summer’)),
year numeric (4,0) check (year > 1701 and year < 2100),
building varchar (15),
room number varchar (7),
time slot id varchar (4),
primary key (course id, sec id, semester, year),
foreign key (course id) references course

on delete cascade,
foreign key (building, room number) references classroom

on delete set null);

In the preceding DDL, we add the on delete cascade specification to a foreign key
constraint if the existence of the tuple depends on the referenced tuple. For example,
we add the on delete cascade specification to the foreign key constraint from section
(which was generated from weak entity section), to course (which was its identifying re-
lationship). In other foreign key constraints we either specify on delete set null, which
allows deletion of a referenced tuple by setting the referencing value to null, or we do
not add any specification, which prevents the deletion of any referenced tuple. For ex-
ample, if a department is deleted, we would not wish to delete associated instructors;
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the foreign key constraint from instructor to department instead sets the dept name at-
tribute to null. On the other hand, the foreign key constraint for the prereq relation,
shown later, prevents the deletion of a course that is required as a prerequisite for an-
other course. For the advisor relation, shown later, we allow i ID to be set to null if an
instructor is deleted but delete an advisor tuple if the referenced student is deleted.

create table teaches
(ID varchar (5),
course id varchar (8),
sec id varchar (8),
semester varchar (6),
year numeric (4,0),
primary key (ID, course id, sec id, semester, year),
foreign key (course id, sec id, semester, year) references section

on delete cascade,
foreign key (ID) references instructor

on delete cascade);

create table student
(ID varchar (5),
name varchar (20) not null,
dept name varchar (20),
tot cred numeric (3,0) check (tot cred >= 0),
primary key (ID),
foreign key (dept name) references department

on delete set null);

create table takes
(ID varchar (5),
course id varchar (8),
sec id varchar (8),
semester varchar (6),
year numeric (4,0),
grade varchar (2),
primary key (ID, course id, sec id, semester, year),
foreign key (course id, sec id, semester, year) references section

on delete cascade,
foreign key (ID) references student

on delete cascade);
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create table advisor
(s ID varchar (5),
i ID varchar (5),
primary key (s ID),
foreign key (i ID) references instructor (ID)

on delete set null,
foreign key (s ID) references student (ID)

on delete cascade);

create table prereq
(course id varchar(8),
prereq id varchar(8),
primary key (course id, prereq id),
foreign key (course id) references course

on delete cascade,
foreign key (prereq id) references course);

The following create table statement for the table time slot can be run on most
database systems, but it does not work on Oracle (at least as of Oracle version 11),
since Oracle does not support the SQL standard type time.

create table timeslot
(time slot id varchar (4),
day varchar (1) check (day in (’M’, ’T’, ’W’, ’R’, ’F’, ’S’, ’U’)),
start time time,
end time time,
primary key (time slot id, day, start time));

The syntax for specifying time in SQL is illustrated by these examples: ’08:30’,
’13:55’, and ’5:30 PM’. Since Oracle does not support the time type, for Oracle we use
the following schema instead:

create table timeslot
(time slot id varchar (4),
day varchar (1),
start hr numeric (2) check (start hr >= 0 and end hr < 24),
start min numeric (2) check (start min >= 0 and start min < 60),
end hr numeric (2) check (end hr >= 0 and end hr < 24),
end min numeric (2) check (end min >= 0 and end min < 60),
primary key (time slot id, day, start hr, start min));

The difference is that start time has been replaced by two attributes start hr and
start min, and similarly end time has been replaced by attributes end hr and end min.
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These attributes also have constraints that ensure that only numbers representing valid
time values appear in those attributes. This version of the schema for time slot works
on all databases, including Oracle. Note that although Oracle supports the datetime
datatype, datetime includes a specific day, month, and year as well as a time, and is
not appropriate here since we want only a time. There are two alternatives to splitting
the time attributes into an hour and a minute component, but neither is desirable. The
first alternative is to use a varchar type, but that makes it hard to enforce validity con-
straints on the string as well as to perform comparison on time. The second alternative
is to encode time as an integer representing a number of minutes (or seconds) from
midnight, but this alternative requires extra code with each query to convert values be-
tween the standard time representation and the integer encoding. We therefore choose
the two-part solution.

A.3 Sample Data

In this section we provide sample data for each of the relations defined in the previous
section.

building room number capacity

Packard 101 500
Painter 514 10
Taylor 3128 70
Watson 100 30
Watson 120 50

Figure A.2 The classroom relation.

dept name building budget

Biology Watson 90000
Comp. Sci. Taylor 100000
Elec. Eng. Taylor 85000
Finance Painter 120000
History Painter 50000
Music Packard 80000
Physics Watson 70000

Figure A.3 The department relation.
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Credits

The photo of the sailboats in the beginning of the chapter is due to ©Pavel Nes-
vadba/Shutterstock.

course id title dept name credits

BIO-101 Intro. to Biology Biology 4
BIO-301 Genetics Biology 4
BIO-399 Computational Biology Biology 3
CS-101 Intro. to Computer Science Comp. Sci. 4
CS-190 Game Design Comp. Sci. 4
CS-315 Robotics Comp. Sci. 3
CS-319 Image Processing Comp. Sci. 3
CS-347 Database System Concepts Comp. Sci. 3
EE-181 Intro. to Digital Systems Elec. Eng. 3
FIN-201 Investment Banking Finance 3
HIS-351 World History History 3
MU-199 Music Video Production Music 3
PHY-101 Physical Principles Physics 4

Figure A.4 The course relation.

ID name dept name salary

10101 Srinivasan Comp. Sci. 65000
12121 Wu Finance 90000
15151 Mozart Music 40000
22222 Einstein Physics 95000
32343 El Said History 60000
33456 Gold Physics 87000
45565 Katz Comp. Sci. 75000
58583 Califieri History 62000
76543 Singh Finance 80000
76766 Crick Biology 72000
83821 Brandt Comp. Sci. 92000
98345 Kim Elec. Eng. 80000

Figure A.5 The instructor relation.
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course id sec id semester year building room number time slot id

BIO-101 1 Summer 2017 Painter 514 B
BIO-301 1 Summer 2018 Painter 514 A
CS-101 1 Fall 2017 Packard 101 H
CS-101 1 Spring 2018 Packard 101 F
CS-190 1 Spring 2017 Taylor 3128 E
CS-190 2 Spring 2017 Taylor 3128 A
CS-315 1 Spring 2018 Watson 120 D
CS-319 1 Spring 2018 Watson 100 B
CS-319 2 Spring 2018 Taylor 3128 C
CS-347 1 Fall 2017 Taylor 3128 A
EE-181 1 Spring 2017 Taylor 3128 C
FIN-201 1 Spring 2018 Packard 101 B
HIS-351 1 Spring 2018 Painter 514 C
MU-199 1 Spring 2018 Packard 101 D
PHY-101 1 Fall 2017 Watson 100 A

Figure A.6 The section relation.

ID course id sec id semester year

10101 CS-101 1 Fall 2017
10101 CS-315 1 Spring 2018
10101 CS-347 1 Fall 2017
12121 FIN-201 1 Spring 2018
15151 MU-199 1 Spring 2018
22222 PHY-101 1 Fall 2017
32343 HIS-351 1 Spring 2018
45565 CS-101 1 Spring 2018
45565 CS-319 1 Spring 2018
76766 BIO-101 1 Summer 2017
76766 BIO-301 1 Summer 2018
83821 CS-190 1 Spring 2017
83821 CS-190 2 Spring 2017
83821 CS-319 2 Spring 2018
98345 EE-181 1 Spring 2017

Figure A.7 The teaches relation.
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ID name dept name tot cred

00128 Zhang Comp. Sci. 102
12345 Shankar Comp. Sci. 32
19991 Brandt History 80
23121 Chavez Finance 110
44553 Peltier Physics 56
45678 Levy Physics 46
54321 Williams Comp. Sci. 54
55739 Sanchez Music 38
70557 Snow Physics 0
76543 Brown Comp. Sci. 58
76653 Aoi Elec. Eng. 60
98765 Bourikas Elec. Eng. 98
98988 Tanaka Biology 120

Figure A.8 The student relation.
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ID course id sec id semester year grade

00128 CS-101 1 Fall 2017 A
00128 CS-347 1 Fall 2017 A-
12345 CS-101 1 Fall 2017 C
12345 CS-190 2 Spring 2017 A
12345 CS-315 1 Spring 2018 A
12345 CS-347 1 Fall 2017 A
19991 HIS-351 1 Spring 2018 B
23121 FIN-201 1 Spring 2018 C+
44553 PHY-101 1 Fall 2017 B-
45678 CS-101 1 Fall 2017 F
45678 CS-101 1 Spring 2018 B+
45678 CS-319 1 Spring 2018 B
54321 CS-101 1 Fall 2017 A-
54321 CS-190 2 Spring 2017 B+
55739 MU-199 1 Spring 2018 A-
76543 CS-101 1 Fall 2017 A
76543 CS-319 2 Spring 2018 A
76653 EE-181 1 Spring 2017 C
98765 CS-101 1 Fall 2017 C-
98765 CS-315 1 Spring 2018 B
98988 BIO-101 1 Summer 2017 A
98988 BIO-301 1 Summer 2018 null

Figure A.9 The takes relation.

s id i id

00128 45565
12345 10101
23121 76543
44553 22222
45678 22222
76543 45565
76653 98345
98765 98345
98988 76766

Figure A.10 The advisor relation.
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time slot id day start time end time

A M 8:00 8:50
A W 8:00 8:50
A F 8:00 8:50
B M 9:00 9:50
B W 9:00 9:50
B F 9:00 9:50
C M 11:00 11:50
C W 11:00 11:50
C F 11:00 11:50
D M 13:00 13:50
D W 13:00 13:50
D F 13:00 13:50
E T 10:30 11:45
E R 10:30 11:45
F T 14:30 15:45
F R 14:30 15:45
G M 16:00 16:50
G W 16:00 16:50
G F 16:00 16:50
H W 10:00 12:30

Figure A.11 The time slot relation.

course id prereq id

BIO-301 BIO-101
BIO-399 BIO-101
CS-190 CS-101
CS-315 CS-101
CS-319 CS-101
CS-347 CS-101
EE-181 PHY-101

Figure A.12 The prereq relation.
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time slot id day start hr start min end hr end min

A M 8 0 8 50
A W 8 0 8 50
A F 8 0 8 50
B M 9 0 9 50
B W 9 0 9 50
B F 9 0 9 50
C M 11 0 11 50
C W 11 0 11 50
C F 11 0 11 50
D M 13 0 13 50
D W 13 0 13 50
D F 13 0 13 50
E T 10 30 11 45
E R 10 30 11 45
F T 14 30 15 45
F R 14 30 15 45
G M 16 0 16 50
G W 16 0 16 50
G F 16 0 16 50
H W 10 0 12 30

Figure A.13 The time slot relation with start and end times separated into hour and
minute.
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authentication and, 441–443
business logic and, 23, 404,

411–412, 430, 431, 445
client-server architecture and,

404
client-side code and web

services, 421–429
common gateway interface

standard and, 409
cookies and, 410–415, 411n2
data access layer and,

430–434
disconnected operation and,

427–428
encryption and, 447–453
HTML and, 404, 406–408,

426
HTTP and, 405–413
JavaScript and, 404–405,

421–426
Java Server Pages and, 405,

417–418
mobile application platforms,

428–429
performance and, 434–437
security and, 437–446
servlets and, 411–421

standardization and,
1237–1240

testing, 1234–1235
tuning and (see performance

tuning)
URLs and, 405–406
user interfaces and, 403–405
web and, 405–411

application migration,
1035–1036

application program interfaces
(APIs)

ADO, 1239
ADO.NET, 184, 1239
application design and, 411,

413, 416
C++, 1239
database access from, 16–17
Java (see Java)
LDAP, 1243
map displays and, 393
MongoDB, 477–479, 482,

489, 668, 1024, 1028
Open Database Connectivity

(see ODBC)
Python (see Python)
Spark, 495–500, 508, 511,

1061
standards for, 1238–1240
system architectures and, 962
Tez, 495
web services and, 427

application programmers, 24
application servers, 23, 416
architectures, 961–995

business logic and, 23
centralized databases,

962–963
client-server systems, 23, 971
cloud-based, 990–995, 1026,

1027
database storage, 587–588
data-server systems, 963–964,

968–970
data warehousing, 522–523
destination-driven, 522
distributed databases, 22,

986–989, 1098–1100
hierarchical, 979, 980, 986
hypercube, 976–977

lambda, 504, 1071
mesh, 976
microservices, 994
multiuser systems, 962
Non-Uniform Memory

Access, 981, 1063
overview, 961–962
parallel databases, 22,

970–986
platform-as-a-service model,

992–993
recovery systems, 932
server system, 962–970,

977–978
shared disk, 979, 980,

984–985
shared memory, 21–22,

979–984, 1061–1064
shared nothing, 979, 980,

985–986, 1040–1041,
1061–1063

single-user systems, 962
software-as-a-service model,

993
source-driven, 522
storage area network, 562
three-tier, 23
transaction-server systems,

963–968
two-phase commit protocol,

989, 1276
two-tier, 23
wide-area networks, 989

archival data, 561
archival dump, 931
ARIES

analysis pass and, 944
compensation log records

and, 942, 945
data structures and, 942–944
dirty page table and, 941–947
fine-grained locking and, 947
fuzzy checkpoints and, 941
log sequence number and,

941–946
nested top actions and, 946
optimization and, 947
physiological redo and, 941
recovery algorithm, 944–946,

1276
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redo pass and, 944–945
rollback and, 945–946
savepoints and, 947
undo pass and, 944–946

arity, 54
Armstrong’s axioms, 321
array databases, 367
array types, 366, 367, 378
asc expression, 84
as clause, 79, 81
as of period for, 157
ASP (Active Server Page), 405
ASP.NET, 417
assertions, 152–153
asset management, 1277
assignment operation, 55–56,

201
associations

data mining and, 541
entity sets (see entity sets)
relation schema for, 42
relationship sets (see

relationship sets)
rules for, 546–547

associative property, 749–750
AsterixDB, 668
asymmetric

fragment-and-replicate
joins, 1046, 1062

asymmetric-key encryption, 448
asynchronous replication, 1122,

1135–1138
asynchronous view maintenance,

1138–1140
at-least-once semantics, 1074
at-most-once semantics, 1074
atomic commit, 1029
atomic domains, 40, 342–343
atomic instructions, 966–967
atomicity

cascadeless schedules and,
820–821

commit protocols and,
1100–1110

defined, 20, 800
in file-processing systems, 6–7
isolation and, 819–821
log records and, 913–919
recoverable schedules and,

819–820

recovery systems and, 803,
912–922

storage structure and,
804–805

of transactions, 20–21, 144,
481, 800–807, 819–821

attribute inheritance, 274–275
attributes

atomic domains and, 342–343
bitmap indices and, 670–672
classifiers and, 541–543, 545
closure of attribute sets,

322–324
complex, 249–252, 265–267
composite, 250, 252
decomposition and, 305–313,

330–335, 339–340
derived, 251, 252
descriptive, 248
design issues and, 281–282
discriminator, 259
domain of, 39–40, 249
entity-relationship diagrams

and, 265–267
entity-relationship (E-R)

model and, 245, 248–252,
274–275, 281–282,

342–343
entity sets and, 245, 265–267,

281–282
extraneous, 325
histograms and, 758–760
multiple-key access and,

661–663
multivalued, 251, 252, 342
naming of, 345–346
null values and, 251–252
partitioning, 479
primary keys and, 310n4
prime, 356
in relational model, 39
relationship sets and, 248
search key and, 624
simple, 250, 265
single-valued, 251
Unified Modeling Language

and, 289
uniquifiers, 649–650
value set of, 249

attribute-value skew, 1008

audit trails, 445–446
augmentation rule, 321
authentication

application-level, 441–443
challenge-response system

and, 451
digital certificates and,

451–453
digital signatures and, 451
encryption and, 450–453
single sign-on system and,

442–443
smart cards and, 451, 451n9
two-factor, 441–442
web sessions and, 410

authorization
administrators and, 166
application-level, 443–445
database design and, 291
end-user information and, 443
granting privileges, 25,

166–167, 170–171
lack of fine-grained, 443–445
permissioned blockchains

and, 1253
revoking privileges, 166–167,

171–173
roles and, 167–169
row-level, 173
on schema, 170
Security Assertion Markup

Language and, 442–443
SQL DDL and, 66
sql security invoker, 170
storage manager and, 19
transfer of privileges, 170–171
types of, 14, 165
updates and, 14, 170, 171
on views, 169–170

authorization graph, 171
automatic commit, 144, 144n6,

822
autonomous smart contracts,

1272–1273
autonomy, 988
availability

CAP theorem and, 1134
distributed databases and,

987
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high availability, 907,
931–933, 987, 1121

network partitions and, 481,
989

robustness and, 1121
trading off consistency for,

1134–1135
average latency time, 566
average response time, 809
average seek time, 566
avg expression, 91–96, 723,

781–782
Avro, 490, 499
axioms, 321
Azure Stream Analytics, 505

backpropagation algorithm, 545
backup. See also recovery systems

application design and, 450
remote systems for, 909,

931–935
replica systems, 212–213
transactions and, 805

backup coordinators, 1146–1147
balanced range-partitioning

vector, 1008–1009
balanced trees, 634
banking

analytics for, 520–521
database applications for, 3,

4, 7, 144
BASE properties, 1135
base query, 217
batch scaleup, 973
batch update, 1221
Bayesian classifiers, 543–544
Bayes’ theorem, 543
BCNF. See Boyce–Codd normal

form
BCNF decomposition algorithm,

331–333, 336
before triggers, 210
begin atomic...end, 145, 201,

208, 209, 211
begin transaction operation, 799
benchmarks. See performance

benchmarks
bestplan array, 768–770
biased protocol, 1124
BI (business intelligence), 521

big-bang approach, 1236
BigchainDB, 1269
Big Data, 467–511

algebraic operations and,
494–500

comparison with traditional
databases, 468

defined, 467
distributed file systems for,

472–475, 489
graph databases and, 508–511
key-value systems and, 471,

473, 476–480
MapReduce paradigm and,

481, 483–494
motivations for, 467–472
parallel and distributed

databases for, 473,
480–481

query processing and,
470–472

replication and consistency
in, 481–482

sharding and, 473, 475–476
sources and uses of, 468–470
storage systems, 472–482, 668
streaming data, 468, 500–508

Bigtable, 477, 479–480, 668,
1024–1025, 1028–1030

binary operations, 48
binary relationship sets, 249,

283–285
Bing Maps, 393
Bitcoin

anonymity and, 1253, 1258
data mining and, 1265
forking and, 1258
growth and development of,

1251–1253
language and, 1269–1270
processing speed, 1274
as public blockchain, 1253,

1255, 1263
transactions and, 1261–1263,

1268–1271
bit-level striping, 571–572
bitmap indices

attributes and, 670–672
B+-trees and, 1185–1186

efficient implementation of,
1184–1185

existence, 1184
intersection and, 671, 1183
processing speed and, 662,

663
scans of, 698–699
sequential records and, 1182
structure of, 1182–1184
usefulness of, 671–672

bit rot, 575
blind writes, 868
B-link trees, 886
blobs, 156, 193, 594, 652
blockchain databases,

1251–1279
anonymity and, 1252, 1253,

1258, 1259
applications for use,

1251–1252, 1276–1279
concurrency control and,

1262–1263
consensus mechanisms for,

1254, 1256–1257,
1263–1267

cryptocurrencies and,
1251–1253, 1257

cryptographic hash functions
and, 1253, 1259–1263,
1265

data mining and, 1256, 1258,
1264–1266

decentralization and, 1251,
1252, 1259, 1270

digital ledgers and, 1251, 1252
digital signatures and, 1257,

1261
encryption and, 1260–1261
external input and, 1271–1272
fault-tolerance of, 1276
forking and, 1257, 1258, 1263
genesis blocks and,

1254–1255
irrefutability and, 1257, 1259
languages and, 1258,

1269–1271
lookup in, 1268
management of data in,

1267–1269



Index 1303

orphaned blocks and, 1257,
1263

performance enhancement of,
1274–1276

permissioned, 1253–1254,
1256–1257, 1263, 1266,
1274

properties and components
of, 1254–1259, 1274

public, 1253, 1255,
1257–1259, 1263, 1264

query processing and, 1254,
1275–1276

scalability of, 1276
smart contracts and, 1258,

1269–1273
state-based, 1269, 1271
tamper resistant nature of,

1253–1255, 1259, 1260
transactions and, 1261–1263,

1268–1271, 1273
block identifiers, 474–475, 1020
blocking edges, 728
blocking factor, 725
blocking operations, 728, 728n7
blocking problem, 1104–1106
block-interleaved parity

organization, 573
block-level striping, 572
block nested-loop join, 705–707
block-oriented interface, 560
blocks

buffer, 910–912
dirty, 928–929
disk, 566–567, 577–580
evicted, 605
file organization and, 588
genesis, 1254–1255
orphaned, 1257, 1263
overflow, 598
physical, 910
pinned, 605

Bloom filters, 667, 1083,
1175–1176, 1181

Boolean operations, 89, 96, 103,
188, 201, 1242. See

also specific operations
bottlenecks

application design and, 437
I/O parallelism and, 1007

performance tuning and,
1211–1213, 1215, 1227

single lock-manager and, 1111
system architectures and, 981,

985
bottom-up B+-tree construction,

654–655
bottom-up design, 273
bounding boxes, 674–675, 1187
Boyce–Codd normal form

(BCNF)
comparison with third normal

form, 318–319
decomposition algorithm and,

331–333, 336
defined, 313–315
dependency preservation and,

315–316
relational database design

and, 313–316
testing for, 330–331

broadcasting, 1055–1056
broadcast join, 1046
BSP (bulk synchronous

processing), 510–511
B-trees, comparison with

B+-trees, 655–656
B+-trees, 634–658

balanced, 634
bitmap indices and,

1185–1186
bottom-up construction of,

654–655
bulk loading of, 653–655
comparison with B-trees,

655–656
deletion and, 641, 645–649
extensions and variations of,

650–658
fanout and, 635
on flash storage, 656–657
indexing strings and, 653
insertion and, 641–645, 647,

649
internal nodes and, 635
leaf nodes of, 635–656,

665–669, 673, 674
in main memory, 657–658
nonleaf nodes of, 635–636,

642, 645–656, 663

nonunique search keys and,
649–650

organization of, 595,
650–652, 697, 697n4

parallel key-value stores and,
1028

performance and, 634,
665–666

queries on, 637–641, 690
record relocation and,

652–653
secondary indices and,

652–653
spatial data and, 672–673
structure of, 634–637
temporal data and, 676
tuning of, 1215
updates on, 641–649

buckets, 659–661, 1194–1195
buffer blocks, 910–912
buffer manager, 19, 604–607
buffers

database buffering, 927–929
defined, 604
disk blocks and, 578, 910
double buffering, 725
force/no-force policy and, 927
force output and, 912
log-record, 926–927
management of, 926–930
operating system role in,

929–930
output of blocks and,

606–607
recovery systems and,

926–930
reordering of writes and

recovery, 609–610
replacement strategies, 605,

607–609
shared and exclusive locks on,

605–606
steal/no-steal policy and, 927
storage and, 604–610
transaction servers and, 965
write-ahead logging rule and,

926–929
buffer trees, 668–670
bugs
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application design and, 440,
1234, 1236

debugging, 199n4
failure classification and, 908

build input, 713
bulk export utility, 1222
bulk insert utility, 1222
bulk loads, 653–655, 1221–1223
bulk synchronous processing

(BSP), 510–511
bully algorithm, 1148
business intelligence (BI), 521
business logic, 23, 198, 404,

411–412, 430–431, 445
business-logic layer, 430, 431
business rules, 431
bus system, 975–976
Byzantine consensus, 1254,

1256, 1266–1267, 1276
Byzantine failure, 1266–1267

C
advanced SQL and, 183, 197,

199, 205
application design and, 16
ODBC and, 195–196
struct declarations used by,

11n1
Unified Modeling Language

and, 289
C++

advanced SQL and, 197, 199,
205, 206

application design and, 16,
417

object-oriented programming
and, 377

standards for, 1239
struct declarations used by,

11n1
Unified Modeling Language

and, 289
cache-conscious algorithms,

732–733
cache line, 732, 983
cache memory, 559
cache misses, 982
caching

application design and,
435–437

coherency and, 969, 983–984
column-oriented storage and,

612
data servers and, 968–970
locks and, 969
query plans and, 774, 965
replication and, 1014n4
shared-memory architecture

and, 982–984
CAD (computer-aided design),

390–391, 968
callable statements, 190–191
call back, 969
Call Level Interface (CLI)

standards, 197, 1238–1239
call statement, 201
candidate keys, 44
canonical cover, 324–328
CAP theorem, 1134
Cartesian-product operation,

50–52
Cartesian products

equivalence and, 748, 749,
755

join expressions and, 135
query optimization and, 748,

749, 755, 763–764, 775
SQL and, 76–79, 81, 127n1,

230
cascadeless schedules, 820–821
cascades, 150, 172, 210
cascading rollback, 820–821,

841–842
cascading stylesheet (CSS)

standard, 408
case construct, 112–113
Cassandra, 477, 489, 668, 1024,

1028
cast, 155, 159
catalogs

application design and, 1239
indices and (see indices)
query optimization and,

758–760, 762, 764
SQL and, 162–163, 192,

196–197
system, 602–604, 1009

centralized databases, 962–963
centralized deadlock detection,

1114

centroid, 548, 548n3
CEP (complex event processing)

systems, 504
CGI (common gateway interface)

standard, 409
chain replication protocol,

1127–1128
challenge-response system, 451
change isolation level, 822
change relation, 211
char, 67
check clause

assertions and, 152–153
integrity constraints and,

147–149, 152–153
user-defined types and, 159

check constraints, 151, 170, 315,
800

checkpoint log records, 943
checkpoint process, 965
checkpoints

fuzzy, 922, 930, 941
recovery systems and,

920–922, 930
transaction servers and, 965

checksums, 565
chicken-little approach, 1236
Chubby, 1150
circular arcs, 388
classifiers

attributes and, 541–543, 545
Bayesian, 543–544
data mining and, 541–546
decision-tree, 542
neural-net, 545–546
prediction and, 541–543,

545–546
Support Vector Machine,

544–545
training instances and, 541

CLI (Call Level Interface)
standards, 197, 1238–1239

click-through, 469
client-server systems

application design and, 404,
1221, 1239

recovery systems and, 931
system architecture and, 23,

971
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client-side scripting languages,
421–429

clobs, 156, 193, 594, 652
closed addressing, 659, 1194
closed hashing, 659, 1194
closed polygons, 388n3
closed time intervals, 675
closure of a set, 312, 320–324
cloud-based data storage, 28,

563, 992–993
cloud computing

architecture for, 990–995,
1026, 1027

benefits and limitations of,
995

service models, 991–995
storage systems and, 28, 563

CLR (Common Language
Runtime), 206

CLRs (compensation log
records), 922, 942, 945

clustering indices, 625,
632–633, 695, 697–698

cluster key, 600–601
cluster membership, 1158
clusters

data mining and, 541,
548–549

hierarchical, 548
key-value storage systems and,

477
multitable, 595, 598–601
system architecture and, 978

coalesce function, 114, 155,
230–231

coalescing nodes, 641, 886
coarse-grained parallelism, 963,

970
Codd, Edgar, 26
code breaking. See encryption
collision resistant hash functions,

1259–1260
colocation of data, 1068–1069
column family, 1025
column-oriented storage,

525–526, 588, 611–617,
734, 1182

column stores, 612, 615, 1025,
1224

combinatorics, 811

combine function, 490
comma-separated values, 1222
commit dependency, 847
commit protocols, 1100–1110
committed transactions

defined, 806
durability and, 933–934
log records and, 917
observable external writes

and, 807
partially committed, 806
scheduling and, 810, 819–820
updates and, 874

commit time, 933–934
commit wait, 1130–1131
commit work, 143–145
common gateway interface (CGI)

standard, 409
Common Language Runtime

(CLR), 206
common subexpression

elimination, 785
commutative property, 747–750
commute, 1143
compare-and-swap, 966
compatibility function, 836
compatible relations, 54
compensating operation, 892
compensating transactions, 805
compensation log records

(CLRs), 922, 942, 945
complete axioms, 321
completeness constraint, 275
complex attributes, 249–252,

265–267
complex data types, 365–394

object orientation, 376–382
semi-structured, 365–376
spatial, 387–394
textual, 382–387
user-defined, 158

complex event processing (CEP)
systems, 504

composite attributes, 250, 252
composite indices, 700
composite price/performance

metric, 1234
composite query per hour metric,

1234
compression

column-oriented storage and,
611, 612

data warehousing and, 526
of disk block data, 615n8
prefix, 653
workload compression, 1217

computer-aided design (CAD),
390–391, 968

conceptual-design phase, 17–18,
242

concurrency control, 835–894
access anomalies and, 7
blind writes and, 868
blockchain databases and,

1262–1263
commit protocols and, 1105
consistency and, 880–885
deadlock handling and,

849–853
deletion and, 857–858
distributed databases and,

990, 1105, 1111–1120
extended protocols,

1129–1133
false cycles and, 1114–1115
in federated databases,

1132–1133
indices and, 884–887
insertion and, 857, 858
isolation and, 803–804,

807–812, 823
leases and, 1115–1116
locking protocols and,

835–848 (see also locks)
logical undo operations and,

940–941
long-duration transactions

and, 890–891
in main-memory databases,

887–890
multiple granularity and,

853–857
multiversion schemes and,

869–872, 1129–1131
with operations, 891–894
optimistic, 869
parallel databases and, 990
parallel key-value stores and,

1028–1029
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phantom phenomenon and,
827, 858–861, 877–879,
877n5, 885, 887

predicate reads and, 858–861
real-time transaction systems

and, 894
recovery systems and, 916
replication and, 1123–1125
rollback and, 841–844,

849–850, 853, 868–871
serializability and, 836,

840–843, 846–848, 856,
861–871, 875–887

snapshot isolation and,
872–879, 882, 916,
1131–1132

timestamp-based protocols
and, 861–866, 882

trends in, 808
user interactions and,

881–883
validation and, 866–869, 882,

916
concurrency-control manager, 21
concurrency-control schemes,

809
concurrent transactions,

1224–1227
confidence, 540, 547
conflict equivalence, 815, 815n2
conflict serializability, 813–816
conformance levels, 196–197
conjunctive selection, 699–700,

747, 762
connection pooling, 436
consensus protocols

blockchain databases and,
1254, 1256–1257,
1263–1267

Byzantine, 1254, 1256,
1266–1267, 1276

distributed databases and,
1106–1107, 1150–1161,
1266, 1267

message-based, 1266
multiple consensus protocol,

1151
Paxos, 1152–1155, 1160–1161,

1267
proof-of-stake, 1256, 1266

proof-of-work, 1256,
1264–1266

Raft, 1148, 1155–1158, 1267
replication and, 1016
Zab, 1152

consistency
Big Data and, 481–482
CAP theorem and, 1134
concurrency control and,

880–885
cursor stability and, 881
deadlock and, 838–839
defined, 20
degree-two, 880–881
eventual, 1016, 1139
external, 1131
file system consistency check,

610
hashing and, 1013
logical operations and,

936–937
replication and, 1015–1016,

1121–1123, 1133–1146
requirement of, 802
trading off for availability,

1134–1135
of transactions, 20, 800, 802,

807–808, 821–823
user interactions and,

881–883
weak levels of, 880–883

constraints
check, 151, 170, 315
completeness, 275
consistency, 13–14
deadlines, 894
decomposition and, 336
dependency preservation and,

315–316
entity-relationship (E-R)

model and, 253–256,
275–276

foreign key, 45–46
integrity (see integrity

constraints)
keys and, 258
mapping cardinalities and,

253–256
not null, 69
primary key, 44

on specialization, 275–276
transactions and, 800
Unified Modeling Language

and, 289
containers, 992–994
contains operation, 101
continuous queries, 503, 731
continuous-stream data, 731
conversations, 883
conversions, 155–156, 469, 843
cookies, 410–415, 411n2,

439–440
coordinators, 1099, 1104,

1106–1107, 1146–1150
Corda, 1269
cores, 962–963, 970, 976,

980–983
core switch, 977
correlated evaluation, 775
correlated subqueries, 101
correlation name, 81, 101
correlation variables, 81, 775
cost-based optimizers, 766
Couchbase, 1024
count function, 91–92, 94, 96,

723, 766, 781
count values, 220n11
covering indices, 663
crabbing protocol, 885–886
crashes. See also recovery

systems
actions following, 923–925
algorithms for, 922–925
ARIES and, 941–947
checkpoints and, 920–922
failure classification and, 908
magnetic disks and, 565
storage and, 607, 609–610
transactions and, 800

crawling the web, 383
create assertion, 153
create cluster, 601
create distinct type, 160
create domain, 159–160
create function, 200, 203, 204,

215
create index, 164–165, 664
create or replace, 199n4
create procedure, 200, 205
create recursive view, 218
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create role, 168
create schema, 163
create sequence construct, 161
create table

with data clause, 162
default values and, 156
extensions for, 162
integrity constraints and,

146–149
multitable clustering and, 601
object-based databases and,

378–380
shipping SQL statements to

database and, 187
SQL schema definition and,

68–71
create table...as, 162
create table...like, 162
create temporary table, 214
create type, 158–160, 378–380
create unique index, 165, 664
create view, 138–143, 162, 169
credit bureaus, 521, 521n1
cross-chain transactions, 1273
cross join, 127n1
cross-site request forgery

(XSRF), 439–440
cross-site scripting (XSS),

439–440
cross-tabulation, 226–227,

528–533
CRUD web interfaces, 419
cryptocurrencies, 1251–1253,

1257. See also Bitcoin
cryptographic hash functions,

1253, 1259–1263, 1265
CSS (cascading stylesheet)

standard, 408
C-Store, 615
cube construct, 227–231,

536–538
current date, 154
cursor stability, 881
curve fitting, 546
cylinders, 565
Cypher query language, 509

DAGs (directed acyclic graphs),
499, 506–507, 1071–1072

DAOs (distributed autonomous
organizations), 1272,
1272n7

Dart language, 428–429
data abstraction, 2, 9–12, 15
data access layer, 430–434
data analytics, 519–549. See also

data mining
decision-support systems and,

519–522
defined, 4, 519
OLAP systems, 520, 527–540
overview, 519–521
predictive models in, 4–5
statistical analysis, 520, 527
warehousing and, 519–527

data-at-rest, 502
database administrators (DBAs),

24–25
database-as-a-service platform,

993
database design

alternatives in, 243–244,
285–291

applications and (see
application design)

architecture of (see
architectures)

authorization requirements
and, 291

bottom-up, 273
buffers and, 604–610
client-server (see client-server

systems)
complexity of, 241
computer-aided, 390–391
conceptual-design phase of,

17–18, 242
direct design process, 241
encryption and, 447–453
engines, 18–21
E-R model and (see

entity-relationship model)
functional requirements of,

291
incompleteness in, 243–244
logical-design phase of, 18,

242
normalization in, 17
overview of process, 241–244

phases of, 17–18, 241–243
physical-design phase of, 18,

242–243
redundancy in, 243
relational (see relational

database design)
schema evolution and, 292
specification of functional

requirements in, 17–18
top-down, 273
user requirements in, 17–18,

241–242, 274
workflow and, 291–292

database graph, 846–848
database instance, 41
database-management systems

(DBMSs)
defined, 1
objectives of, 1, 24
organizational data

processing prior to, 472
product-specific calls needed

by, 186
databases

abstraction and, 2, 9–12, 15
administrators of, 24–25
applications for, 1–5
architecture (see

architectures)
array, 367
blockchain (see blockchain

databases)
buffering and, 927–929
centralized, 962–963
concurrency control and (see

concurrency control)
defined, 1
design of (see database

design)
document, 3
dumping and, 930–931
efficiency of, 1, 2, 5, 9
embedded, 198, 962
as file-processing systems, 5–8
force output and, 912
graph, 508–511
history of, 25–28
indexing and (see indices)
languages for, 13–17
locks and (see locks)
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main memory (see
main-memory databases)

maintenance for, 25
modification of, 108–114,

915–916
object-based (see object-based

databases)
object-oriented, 9, 26, 377,

431, 1239–1240
object-relational, 377–381
parallel (see parallel

databases)
purpose of, 5–8
query processor components

of, 18, 20
recovery of (see recovery

systems)
storage for (see storage)
transaction manager in, 18–21
university (see university

databases)
user interaction with, 4–5, 24

databases administrator (DBA),
171

database schema. See schemas
database writer process, 965
data center fabric, 978
data centers, 970, 1014–1015
data cleansing, 523
data cubes, 529–530
data-definition language (DDL)

application programs and, 17
authorization and, 66
basic types supported by,

67–68
in consistency constraint

specification, 13–14
defined, 13, 65
dumping and, 931
granting and revoking

privileges and, 166
indices and, 67
integrity and, 66
interpreter, 20
output of, 14
schema definition and, 24, 66,

68–71
security and, 67
set of relations in, 66–67
SQL and, 14–15, 65–71

storage and, 67
data dictionary, 14, 19, 602–604
data distribution skew, 1008
Data Encryption Standard

(DES), 448
data files, 19
data inconsistency, 6
data isolation. See isolation
data-item identifiers, 913
data items, 968
data lakes, 527, 1078
data-manipulation language

(DML)
application programs and, 17
compiler, 20
declarative, 15
defined, 13, 15, 66
procedural, 15
SQL and, 16
storage manager and, 19

data mining, 540–549
association rules and,

546–547
blockchain databases and,

1256, 1258, 1264–1266
classifiers and, 541–546
clustering and, 541, 548–549
defined, 5, 540
descriptive patterns and, 541
growth of, 27
models for, 540
overview, 521
prediction and, 541
regression and, 546
rules for, 540
task types in, 541
text mining, 549

data models, 8–9. See also
specific models

datanodes, 475, 1020
data parallelism, 1042, 1057
data partitioning, 989n5
data-server systems, 963–964,

968–970
DataSet type, 499
data storage and definition

language, 13
data storage systems. See storage
data streams, 731
data striping, 571–572

data-transfer failures, 909
data-transfer rate, 566, 569
data types. See types
data virtualization, 1077
data visualization, 538–540
data warehousing, 519–527

architecture for, 522–523
column-oriented storage and,

525–526
components of, 522–524
database support for,

525–526
data integration vs.,

1077–1078
data lakes and, 527, 1078
deduplication and, 523
defined, 519, 522
ETL tasks and, 520, 524
fact tables and, 524
householding and, 523
merger-purge operation and,

523
multidimensional data and,

524
overview, 519–520
schemas used for, 523–525
transformation and cleansing,

523
updates and, 523

datetime data type, 154, 531
DBAs (database administrators),

24–25
DBMSs. See

database-management
systems

DDL. See data-definition
language

DDL interpreter, 20
deadlines, 894
deadlocks

consistency and, 838–839
detection of, 849, 851–852
distributed databases and,

1111–1115
handling of, 849–853
prevention of, 849–851
recovery and, 849, 851, 853
rollback and, 853
starvation and, 853
victim selection and, 853
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wait-for graphs and, 851–852,
1113–1114

debugging, 199n4
decentralization, 1251, 1252,

1259, 1270
decision support, 521,

1231–1233
decision-support queries, 521,

971
decision-support systems,

519–522
decision-support tasks, 521
decision-tree classifiers, 542
declarative DMLs, 15
declarative queries, 47,

1030–1031
declare statement, 201–203
decode, 155–156
decomposition

algorithms for, 330–335
attributes and, 305–313,

330–335, 339–340
Boyce–Codd normal form

and, 313–316, 330–333
dependency preservation and,

315–316, 329
fourth normal form and,

339–341
functional dependencies and,

308–313, 330–341
higher normal forms and, 319
keys and, 309–312
lossless, 307–308, 307n1,

312–313
lossy, 307
multivalued dependencies

and, 336–341
normalization theory and,

308
notational conventions and,

309
relational database design

and, 305–313, 330–341
third normal form and,

317–319, 333–335
decomposition rule, 321
decompression, 613, 615n8
decorrelation, 777–778
DEC Rdb, 26
deduplication, 523

deep learning, 546
deep neural networks, 546
de facto standards, 1237
default values

classifiers and, 545
privileges and, 167
setting reference field to, 150
user-defined types and, 159

deferred integrity constraints,
151

deferred-modification technique,
915

deferred view maintenance, 779,
1215–1216

degree of relationship sets, 249
degree-two consistency, 880–881
delete authorization, 14
deletion

B+-trees and, 641, 645–649
concurrency control and,

857–858
database modification and,

108–110
hashing and, 1190,

1194–1195, 1198
integrity constraints and, 150
LSM trees and, 1178–1179
of messages, 1110
ordered indices and, 624,

631–632
privileges and, 166–167
R-trees and, 1189
shipping SQL statements to

database and, 187
SQL schema definition and,

69, 71
transactions and, 801, 826
triggers and, 208–209
tuples and, 108–110, 613
views and, 142

deletion entries, 668, 1178–1179
delta relation, 211
demand-driven pipeline, 726–728
denial-of-service attacks, 502
denormalization, 346
dense indices, 626–628, 630–631
dependency of transactions, 819
dependency preservation,

315–316, 328–330
derived attributes, 251, 252

desc expression, 84
descriptive attributes, 248
descriptive patterns, 541
DES (Data Encryption

Standard), 448
design. See database design
destination-driven architecture,

522
dicing, 530
dictionary attacks, 449
differentials, 780
digital certificates, 451–453
digital ledgers, 1251, 1252
digital signatures, 451, 1257,

1261
digital video disks (DVDs),

560–561
dimension attributes, 524
dimension tables, 524
direct-access storage, 561
directed acyclic graphs (DAGs),

499, 506–507, 1071–1072
directory access protocols, 1084,

1240–1243
directory information trees

(DITs), 1242, 1243
directory systems, 1020,

1084–1086, 1240–1243
dirty blocks, 928–929
dirty page table, 941–947
dirty writes, 822
disable trigger, 210
disambiguation, 549
disconnected operation, 427–428
discretized streams, 508
discriminator attributes, 259
disjoint generalization, 279, 290
disjoint specialization, 272, 275
disjoint subtrees, 847
disjunctive selection, 699, 700,

762
disk arms, 565
disk-arm–scheduling, 578–579
disk blocks, 566–567, 577–580
disk buffer, 578, 910
disk controllers, 565
disk failure, 908
distinct types, 90, 92, 98–100,

158–160
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distinguished name (DN),
1241–1242

distributed autonomous
organizations (DAOs),
1272, 1272n7

distributed consensus problem,
1106–1107, 1151

distributed databases
architecture of, 22, 986–989,

1098–1100
autonomy and, 988
Big Data and, 473, 480–481
commit protocols and,

1100–1110
concurrency control and,

990, 1105, 1111–1120
consensus in, 1106–1107,

1150–1161, 1266, 1267
directory systems and, 1020,

1084–1086, 1240–1243
failure and, 1104
federated, 988, 1076–1077,

1132–1133
file systems in, 472–475, 489,

1003, 1019–1022
global transactions and, 988,

1098, 1132
heterogeneous, 988, 1132
homogeneous, 988
leases and, 1115–1116
local transactions and, 988,

1098, 1132
locks and, 1111–1116
nodes and, 987
partitions and, 1104–1105
persistent messaging and,

1108–1110, 1137
query optimization and, 1084
query processing and,

1076–1086
recovery and, 1105
replication and, 987,

1121–1128
sharing data and, 988
sites and, 986
snapshot isolation and,

1131–1132
timestamps and, 1116–1118
transaction processing in,

989–990, 1098–1100

validation and, 1119–1120
distributed file systems, 472–475,

489, 1003, 1019–1022
distributed hash tables, 1013
distributed-lock manager, 1112
distributed query processing,

1076–1086
data integration from multiple

sources, 1076–1078
directory systems and,

1084–1086
join location and join

ordering in, 1081–1082
across multiple sources,

1080–1084
optimization and, 1084
schema and data integration

in, 1078–1080
semijoin strategy and,

1082–1084
DITs (directory information

trees), 1242, 1243
Django framework, 382,

419–421, 433–435, 1240
DKNF (domain-key normal

form), 341
DML. See data-manipulation

language
DML compiler, 20
DN (distinguished name),

1241–1242
DNS (Domain Name Service)

system, 1084, 1085
Docker, 995
document databases, 3
Document Object Model

(DOM), 423
document stores, 477, 1023
domain constraints, 13–14, 146
domain-key normal form

(DKNF), 341
Domain Name Service (DNS)

system, 1084, 1085
domain of attributes, 39–40, 249
double buffering, 725
double-pipelined hash-join, 731
double-pipelined join technique,

730–731
double-spend transactions,

1261–1262, 1264

downgrade, 843
drill down, 531, 540
DriverManager class, 186
drop index, 165, 664
drop schema, 163
drop table, 69, 71, 190
drop trigger, 210
drop type, 159
dumping, 930–931
duplicate elimination, 719–720,

1049
durability

defined, 800
one-safe, 933
remote backup systems and,

933–934
storage structure and,

804–805
of transactions, 20–21,

800–807
two-safe, 934
two-very-safe, 933

DVDs (digital video disks),
560–561

dynamic handling of join skew,
1048

dynamic hashing, 661,
1195–1203

dynamic-programming algorithm,
767

dynamic repartitioning,
1010–1013

dynamic SQL, 66, 184, 201
Dynamo, 477, 489, 1024

Eclipse, 416
e-commerce, streaming data and,

501
edge switches, 977
efficiency of databases, 1, 2, 5, 9
e-government, 1277
elasticity, 992, 1010, 1024
election algorithms, 1147
elevator algorithm, 578
embedded databases, 198, 962
embedded multivalued

dependencies, 341
embedded SQL, 66, 184,

197–198, 965, 1269
empty relations test, 101–102
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encryption
Advanced Encryption

Standard, 448, 449
applications of, 447–453
asymmetric-key, 448
authentication and, 450–453
blockchain databases and,

1260–1261
challenge-response system

and, 451
database support and,

449–450
dictionary attacks and, 449
digital certificates and,

451–453
digital signatures and, 451
nonrepudiation and, 451
prime numbers and, 449
private-key, 1260–1261
public-key, 448–449,

1260–1261
Rijndael algorithm and, 448
symmetric-key, 448
techniques of, 447–449

end transaction operation, 799
end-user information, 443
enterprise information, database

applications for, 2–4
entities, 243, 244, 247–248
entity group, 1031
entity recognition, 549
entity-relationship (E-R)

diagrams
aggregation and, 279
alternative notations for

modeling data, 285–291
common mistakes in,

280–281
complex attributes and,

265–267
defined, 244
entity sets and, 245–246,

265–268
generalization and, 278–279
participation illustrated by,

255
reduction to relational

schema, 264–271, 277–279
relationship sets and,

247–250, 268–271

Unified Modeling Language
and, 289–291

for university enterprise,
263–264

with weak entity set, 260
entity-relationship (E-R) model,

244–291
aggregation and, 276–277
alternative notations for

modeling data, 285–291
atomic domains and, 342–343
attributes and, 245, 248–252,

274–275, 281–282,
342–343

constraints and, 253–256,
275–276

database design and (see
database design)

design issues and, 279–285
development of, 244
diagrams (see

entity-relationship
diagrams)

entity sets and, 244–246,
261–264, 281–283

extended features, 271–279
generalization and, 273–274
mapping cardinalities and,

252–256
normalization and, 344–345
overview, 8
primary keys and, 256–260
redundancy and, 261–264
relationship sets and,

246–249, 282–285
schemas and, 244, 246,

269–270, 277–279
specialization and, 271–273
Unified Modeling Language

and, 288–291
entity sets

alternative notations for,
285–291

attributes and, 245, 265–267,
281–282

defined, 245
design issues and, 281–283
entity-relationship diagrams

and, 245–246, 265–268

entity-relationship (E-R)
model and, 244–246,
261–264, 281–283

extension of, 245
hierarchies of, 273, 275
identifying, 259
primary keys and, 257
properties of, 244–246
relationship sets and,

246–249, 282–283
removing redundancy in,

261–264
representation of, 265–268
strong, 259, 265–267
subclass, 274
superclass, 274
Unified Modeling Language

and, 288–291
value and, 245
weak, 259–260, 267–268

entries, 1241
equality-generating dependencies,

337
equi-depth histograms, 759
equi-joins, 704, 707–713, 718,

722, 730, 1043
equivalence

conflict, 815, 815n2
cost analysis and, 771
enumeration of expressions,

755–757
join ordering and, 754–755
relational algebra and, 58,

747–757
transformation examples for,

752–754
view, 818, 818n4

equivalence rules, 747–752, 754,
771

equivalent queries, 58
equi-width histograms, 759
erase block, 568
E-R diagrams. See

entity-relationship diagrams
E-R model. See entity-relationship

(E-R) model
escape, 83
Ethereum, 1258, 1262, 1265,

1267–1272, 1274
Ethernet, 978
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ETL (extract, transform and
load) tasks, 520, 524

evaluation primitive, 691
eventual consistency, 1016, 1139
every function, 96
evicted blocks, 605
exactly-once semantics, 1074
except all, 89, 97
except clause, 216
except construct, 102
exception conditions, 202
exceptions, 187
except operation, 88–89
exchange-operator model,

1055–1057
exclusive locks

biased protocol and, 1124
concurrency control and,

835–843, 888, 892, 893
degree-two consistency and,

880
graph-based protocols and,

846–847
multiple granularity and,

854–855
multiversion, 871
recovery systems and, 916
transactions and, 825, 928

exclusive-mode locks, 835, 842
EXEC SQL, 197
execute privilege, 169–170
execution skew, 1007, 1008,

1043
existence bitmaps, 1184
existence dependence, 259
exists construct, 101, 102, 108
expiration of leases, 1115
explain command, 746
explicit locks, 854
extendable hashing, 661, 1195,

1196
Extensible Markup Language.

See XML
extension of entity sets, 245
extent (blocks), 579
external consistency, 1131
external data, 1077
external language routines,

203–206
external sorting, 701

external sort-merge algorithm,
701–704

extract, transform and load
(ETL) tasks, 520, 524

extraneous attributes, 325
extraneous functional

dependencies, 324

factorials, 811
fact tables, 524
failed transactions, 806, 907,

909
fail-stop assumption, 908, 1267
failure recovery, 21
false cycles, 1114–1115
false positives, 1083
false values, 96
fanout, 635
fat-tree topology, 977
fault tolerance

blockchain databases and,
1276

geographic distribution and,
1027

interconnection networks
and, 978

MapReduce paradigm and,
1060–1061

in query-evaluation plans,
1059–1061

replicated state machines and,
1158–1161

shared-disk architecture and,
984

with streaming data,
1074–1076

updates and, 1138
fault-tolerant key-value store,

1160
fault-tolerant lock manager, 1160
federated distributed databases,

988, 1076–1077,
1132–1133

fetching. See also information
retrieval

advanced SQL and, 187–188,
193, 195–197, 202, 205,
222

application design and,
421–427, 431, 437, 1218,
1229

by buffer manager, 19
data warehousing and, 526
large-object types and, 156,

158
prefetching, 969
storage and, 567, 572, 587

fiat currencies, 1252, 1273
Fiber Channel FC interface, 563
Fiber Channel Protocol, 978
fifth normal form, 341
file headers, 590–591
file manager, 19
file organization, 588–602

blobs, 156, 193, 594, 652
blocks and, 579, 588
B+-tree, 595, 650–652, 697,

697n4
clobs, 156, 193, 594, 652
distributed, 472–475, 489,

1003, 1019–1022
fixed-length records and,

589–592
hash, 595, 659
heap file organization,

595–597
indexing and (see indices)
journaling systems, 610
large objects and, 594–595
multitable clustering, 595,

598–601
null values and, 593
partitioning and, 601–602
pointers and, 588, 591,

594–598, 601
reorganization, 598
sequential, 595, 597–598
variable-length records and,

592–594
file-processing systems, 5–8
file scans, 695–697, 704–707,

727
file system consistency check, 610
financial sector, database

applications for, 3, 1279
fine-grained locking, 947
fine-grained parallelism, 963, 970
firm deadlines, 894
first committer wins, 874
first normal form (1NF),

342–343
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first updater wins, 874–875
five minute rule, 1229
fixed-length records, 589–592
fixed point of recursive view

definition, 217
flash-as-buffer approach, 1229
flash memory, 567–570

cost of, 560
erase block and, 568
hybrid, 569–570
indexing on, 656–657
LSM trees and, 1182
NAND, 567–568
NOR, 567
wear leveling and, 568

flash translation layer, 568
flatMap function, 496–498
flexible schema, 366
FlinkCEP, 504
float, 67
Flutter framework, 428
followers, 1155
forced output, 607, 912
force policy, 927
for clause, 534
for each row clause, 207–210,

212
for each statement clause, 76,

209–210
foreign-currency exchange, 1277
foreign keys, 45–46, 69–70,

148–150, 267–268, 268n5
foreign tables, 1077
forking, 1257, 1258, 1263
formal standards, 1237
fourth normal form (4NF), 336,

339–341
fragment-and-replicate joins,

1046–1047, 1062
fragmentation, 579
free lists, 591
free-space maps, 596–597
from clause

aggregate functions and,
91–96

basic SQL queries and, 71–79
on multiple relations, 74–79
in multiset relational algebra,

97
null values and, 90

query optimization and,
775–777

rename operation and, 79,
81–82

set operations and, 85–89
on single relation, 71–74
string operations and, 82–83
subqueries and, 104–105

full nodes, 1256, 1268
full outer joins, 132–136, 722
functional dependencies

algorithms for decomposition
using, 330–335

attribute set closure and,
322–324

augmentation rule and, 321
axioms and, 321
Boyce–Codd normal form

and, 313–316, 330–333
canonical cover and, 324–328
closure of a set, 320–324
decomposition rule and, 321
dependency preservation and,

315–316, 328–330
extraneous, 324
higher normal forms and, 319
keys and, 309–312
lossless decomposition and,

312–313
multivalued, 336–341
notational conventions and,

309
pseudotransitivity rule and,

321
reflexivity rule and, 321
in schema design, 145
theory of, 320–330
third normal form and,

317–319, 333–335
transitivity rule and, 321
trivial, 311
union rule and, 321

functionally determined
attributes, 322–324

functional query language, 47
functions. See also specific

functions
declaring, 199–201
external language routines

and, 203–206

hash (see hash functions)
language constructs for,

201–203
syntax and, 199, 201–205
writing in SQL, 198–206

fuzzy checkpoints, 922, 930, 941
fuzzy dump, 931
fuzzy lookup, 523

gas concept for transactions,
1270–1271

GAV (global-as-view) approach,
1078–1079

generalization
attribute inheritance and,

274–275
bottom-up design and, 273
disjoint, 279, 290
entity-relationship (E-R)

model and, 273–274
overlapping, 279, 290
partial, 275
representation of, 278–279
subclass set and, 274
superclass set and, 274
top-down design and, 273
total, 275

Generalized Search Tree (GiST),
670

genesis blocks, 1254–1255
geographically distributed

storage, 1026–1027
geographic data

applications of, 391–392
examples of, 387
overlays and, 393
raster data, 392
representation of, 392–393
subtypes of, 390
topographical, 393
vector data, 392–393

geographic information systems,
387

geometric data, 388–390
getColumnCount method,

191–192
getConnection method, 186,

186n1
getFloat method, 188
get function, 477–479
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GET method, 440
getString method, 188
GFS. See Google File System
GiST (Generalized Search Tree),

670
Glassfish, 416
global-as-view (GAV) approach,

1078–1079
global indices, 1017–1019
Global Positioning System

(GPS), 1130
global schema, 1076, 1078–1079
global transactions, 988, 1098,

1132
global wait-for graphs,

1113–1114
Google

application design and,
406–408, 410, 428–429

Bigtable, 477, 479–480, 668,
1024

PageRank from, 385–386,
493, 510

Pregel system developed by,
511

Spanner, 1160–1161
Google File System (GFS), 473,

474, 1020, 1022
Google Maps, 393
GPS (Global Positioning

System), 1130
GPUs (graphics processing

units), 1064
grant command, 170
granted by current role, 172–173
grant privileges, 166–167,

170–171
graph-based protocols, 846–848
graph databases, 508–511
graphics processing units

(GPUs), 1064
GraphX, 511
group by clause, 92–96, 105,

142, 221, 227–230
group by construct, 534,

536–537
group by cube, 536
group by rollup, 537
group-commit technique, 925
grouping function, 536–537

grouping sets construct, 230, 538
growing phase, 841, 843
Gustafson’s law, 974

hackers. See security
Hadoop File System (HDFS),

473–475, 489–493, 971,
1020–1022

Halloween problem, 785
handlers, 202
hard deadlines, 894
hard disk drives (HDDs). See

magnetic disks
hard disks, 26
hard forks, 1257, 1258
hardware RAID, 574–576
hardware threads, 982
hardware tuning, 1227–1230
harmonic mean, 1231
hash file organization, 595, 659
hash functions

Bloom filters and, 1175–1176
closed, 659, 1194
collision resistant, 1259–1260
consistent, 1013
cryptographic, 1253,

1259–1263, 1265
defined, 624, 659
deletion, 1190, 1194–1195,

1198
dynamic, 661, 1195–1203
extendable, 661, 1195, 1196
insertion, 1194–1195,

1197–1202
irreversibility of, 1260
joins and, 1045
linear, 661, 1203
lookup, 1197, 1198,

1202–1203
open, 1194
partitioning and, 1045
passwords and, 1260n4
queries and, 624, 1197–1202
static, 661, 1190–1195,

1202–1203
updates and, 624, 1197–1202

hash indices
bucket overflow and,

659–660, 1194–1195
comparison with ordered

indices, 1203

data structure and, 1195–1196
defined, 624
dynamic hashing and, 661,

1195–1203
extendable hashing and, 661
file organization and, 595,

659
insufficient buckets and, 1194
linear hashing and, 661, 1203
in main memory, 658–659
overflow chaining and,

659–660
skew and, 660, 1194
static hashing and, 661,

1190–1195, 1202–1203
tuning of, 1215

hash join
basics of, 712–714
build input and, 713
cost of, 715–717
hybrid, 717–718
overflows and, 715
pipelining and, 728–731
probe input and, 713
query optimization and, 769,

771
query processing and,

712–718, 786, 1063
recursive partitioning and,

714–715
skewed partitioning and, 715

hash partitioning, 476,
1005–1007

hash-table overflow, 715
hash trees. See Merkle trees
having clause, 95–96, 104–105,

142
HBase, 477, 480, 489, 668, 971,

1024, 1028–1031
HDDs (hard disk drives). See

magnetic disks
HDFS. See Hadoop File System
head-disk assemblies, 565
health care, blockchain

applications for, 1277–1278
heap files, 595–597, 1203
heart-beat messages, 1147
heterogeneous distributed

databases, 988, 1132
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heuristics, 766, 771–774, 786,
1189

Hibernate system, 382,
431–433, 1240

hierarchical architecture, 979,
980, 986

hierarchical clustering, 548
hierarchical data models, 26
hierarchies

cross-tabulation and, 532
on dimensions, 531
of entity sets, 273, 275
relational representation of,

533
transitive closures on, 214

high availability, 907, 931–933,
987, 1121

high availability proxy, 932–933
higher-level locks, 935–936
higher normal forms, 319
histograms

attributes and, 758–760
distribution approximated by,

543
equi-depth, 759
equi-width, 759
examples of, 758–759, 1009
join size estimation and,

763–764
percentile-based, 223
random samples and, 761
range-partitioning vectors

and, 1009
selection size estimation and,

760
Hive, 494, 495, 500
HOLAP (hybrid OLAP), 535
Hollerith, Herman, 25
homogeneous distributed

databases, 988
hopping window, 505
horizontal partitioning, 1004,

1216–1217
host language, 16, 197
hot-spare configuration, 933
hot swapping, 575
householding, 523
HTML. See HyperText Markup

Language

HTTP. See HyperText Transfer
Protocol

hybrid disk drives, 569–570
hybrid hash join, 717–718
hybrid merge-join algorithm, 712
hybrid OLAP (HOLAP), 535
hybrid row/column stores, 615
hypercubes, 976–977
Hyperledger Fabric, 1269, 1271
hyperlinks, 385–386
HyperText Markup Language

(HTML)
application design and, 404,

406–408, 426
client-side scripting and, 421
Java Server Pages and,

417–418
security and, 439, 440
server-side scripting and,

416–418
stylesheets and, 408
web sessions and, 408–411

HyperText Transfer Protocol
(HTTP)

application design and,
405–413

connectionless nature of,
409–410

man-in-the-middle attacks
and, 442

Representation State Transfer
and, 426

security and, 440, 452
hyper-threading, 982
hypervisor, 994

IBM DB2
advanced SQL and, 206
history of, 26
limit clause in, 222
query optimization and, 774,

783
Spatial Extender, 388
statistical analysis and, 761
trigger syntax and, 212
types and domains supported

by, 160
ICOs (initial coin offerings),

1272
IDEF1X standard, 288

IDE (integrated development
environment), 416

idempotent operations, 937
identifiers

block, 474–475, 1020
data-item, 913
indices and, 700
log records and, 913
query processing and, 700
selection and, 700
transaction, 913

identifying entity sets, 259
identifying relationship, 259–260
identity declaration, 1226
identity specification, 161
identity theft, 447
IDF (inverse document

frequency), 384
IEEE (Institute of Electrical and

Electronics Engineers),
1237

if clauses, 212
if-then-else statements, 202
immediate-modification

technique, 915
immediate view maintenance,

779, 1215–1216
imperative query language, 47
implicit locks, 854–855
incompleteness in database

design, 243–244
inconsistent data, 6
inconsistent state, 802, 803, 812
in construct, 99
incremental view maintenance,

779–782
increment lock, 892–893
increment operation, 892
independent parallelism,

1054–1055
indexed nested-loop join,

707–708, 728
index entries, 626
indexing strings, 653
index-locking protocol, 860
index-locking technique, 860
index records, 626
index scans, 696, 698–699, 769,

769n2
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index-sequential files, 625,
634–635

indices, 623–676, 1175–1203
access time and, 624,

627–628
access types and, 624
basic concepts related to,

623–624
bitmap (see bitmap indices)
Bloom filters and, 667,

1175–1176, 1181
B+-tree (see B+-trees)
buffer trees and, 668–670
bulk loading of, 653–655
clustering, 625, 632–633,

695, 697–698
comparisons and, 698–699
composite, 700
concurrency control and,

884–887
covering, 663
creation of, 664–665,

884–885
defined, 19
definition in SQL, 164–165,

664–665
deletion time and, 624,

631–632, 641, 645–649
dense, 626–628, 630–631
on flash storage, 656–657
Generalized Search Tree, 670
global, 1017–1019
hash (see hash indices)
identifiers and, 700
insertion time and, 624,

630–631, 641–645, 647,
649

inverted, 721
key-value stores and, 1028
linear search and, 695
local, 1017
LSM trees and, 666–668,

1176–1182, 1215
in main memory, 657–658
materialized views and, 783
multilevel, 628–630
multiple-key access and,

633–634, 661–663
nonclustering, 625, 695
ordered (see ordered indices)

parallel, 1017–1019
performance tuning and, 1215
pointers and, 700
primary, 625, 695, 1017–1018
query processing and,

695–697
record relocation and,

652–653
search keys and, 624–634
secondary, 625, 632–633,

652–653, 695–698,
1017–1019

selection operation and,
695–697, 783

sequential, 625, 634–635
sorting and, 701–704
space overhead and, 624,

627–628, 634, 1202
sparse, 626–632
spatial data and, 672–675,

1186–1190
SQL DDL and, 67
stepped-merge, 667,

1179–1181
of temporal data, 675–676
updates and, 630–632
write-optimized structures,

665–670
in-doubt transactions, 1105
infeasibility, 1259–1260
Infiniband standard, 978
information extraction, 549
information retrieval. See also

queries
defined, 382
keywords and, 383
measuring effectiveness of,

386
PageRank and, 385–386
precision and, 386
recall and, 386
relevance ranking and,

383–386
stop words and, 385
structured data queries and,

386–387
TF-IDF approach and,

384–385
infrastructure-as-a-service model,

991

Ingres system, 26
inheritance

attribute, 274–275
multiple, 275
single, 275
tables and, 379–380
types and, 378–379

initial coin offerings (ICOs),
1272

initialization vector, 449
initially deferred integrity

constraints, 151
inner joins, 132–136, 771
inner relation, 704
insert authorization, 14
insertion

algorithm for, 1180–1181
B+-trees and, 641–645, 647,

649
concurrency control and, 857,

858
database modification and,

110–111
default values and, 156
hashing and, 1194–1195,

1197–1202
LSM trees and, 1177–1178,

1180–1181
ordered indices and, 624,

630–631
prepared statements and,

188–190
privileges and, 166–167
R-trees and, 1188–1189
shipping SQL statements to

database and, 187
SQL schema definition and,

69
transactions and, 801, 826
views and, 141–143

instances, 12, 309, 547. See also
training instances

instead of feature, 143
Institute of Electrical and

Electronics Engineers
(IEEE), 1237

insurance claims, 1278
integrated development

environment (IDE), 416
integrity constraints
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add, 146
alter table and, 146
assertions and, 152–153
assigning names to, 151
authorization, 14
check clause and, 147–149,

152–153
create table and, 146–149
deferred, 151
domain, 13–14
examples of, 145
in file-processing systems, 6
foreign keys and, 148–150
functional dependencies (see

functional dependencies)
not null, 146, 150
primary keys and, 147, 148
referential, 14, 46, 149–153,

207–208, 800
schema diagrams of, 46–47
on single relation, 146
spatial, 391
SQL and, 14–15, 66, 145–153
unique, 147
user-defined types and,

159–160
violation during transactions,

151–152
integrity manager, 19
Intel, 569, 1064
intention-exclusive (IX) mode,

855
intention lock modes, 855
intention-shard (IS) mode, 855
interconnection networks,

975–979
interesting sort order, 770
interference, 974, 1232
intermediate keys, 1050
intermediate SQL, 125–173

authorization and, 165–173
create table extensions and,

162
data/time types in, 154
default values and, 156
generating unique key values

and, 160–161
index definition in, 164–165
integrity constraints and,

145–153

join expressions and, 125–136
large-object types and, 156,

158
roles and, 167–169
schemas, catalogs, and

environments, 162–163
transactions and, 143–145
type conversion and

formatting functions,
155–156

user-defined types and,
158–160

views and, 137–143
internal nodes, 635
International Organization for

Standardization (ISO), 65,
1237,

1241
Internet. See World Wide Web
Internet of Things (IoT), 470,

1278
interoperation parallelism, 1040,

1052–1055
interquery parallelism, 1039
intersect all, 88, 97
intersection of bitmaps, 671,

1183
intersection operation, 750, 782
intersect operation, 54–55,

87–88
interval data type, 154
intra-node partitioning, 1004
intraoperation parallelism

aggregation and, 1049
defined, 1040
duplicate elimination and,

1049
map and reduce operations

and, 1050–1052
parallel external sort-merge

and, 1042–1043
parallel join and, 1043–1048
parallel sort and, 1041–1043
projection and, 1049
range-partitioning sort and,

1041–1042
selection and, 1049

intraquery parallelism, 1039
invalidation reports, 1141
invalidation timestamps, 873n3

inverse document frequency
(IDF), 384

inverted indices, 721
I/O operations per second

(IOPS), 567, 577, 578,
693n3

I/O parallelism
hashing and, 1005–1007
partitioning techniques and,

1004–1007
range scheme and, 1005, 1007
round-robin scheme and,

1005, 1006
IoT (Internet of Things), 470,

1278
irrefutability, 1257, 1259
irreversibility, 1260
IS (intention-shard) mode, 855
is not null, 89, 90
is not unknown, 90
is null, 89
ISO (International Organization

for Standardization), 65,
1237,

1241
isolation

atomicity and, 819–821
cascadeless schedules and,

820–821
concurrency control and,

803–804, 807–812, 823
of data, 6
defined, 800
factorials and, 811
improved throughput and,

808
inconsistent state and, 803
levels of, 821–826
locking and, 823–825
multiple versions and,

825–826
read committed, 1225
recoverable schedules and,

819–820
resource allocation and, 808
serializability and, 821–826
snapshot (see snapshot

isolation)
timestamps and, 825
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of transactions, 800–804,
807–812, 819–826

utilization and, 808
wait time and, 808–809

is unknown, 90
iteration, 201–202, 214–216
iterators, 727
IX (intention-exclusive) mode,

855

Jakarta Project, 416
Java. See also JDBC (Java

Database Connectivity)
advanced SQL and, 183, 197,

199, 205
application design and, 16,

417
metadata and, 191–193
object-oriented programming

and, 377
object-relational mapping

system for, 382
Resilient Distributed Dataset

and, 496–498
Unified Modeling Language

and, 289
Java Database Connectivity. See

JDBC
Java 2 Enterprise Edition

(J2EE), 416
JavaScript

application design and,
404–405, 421–426

input validation and, 422–423
interfacing with web services,

423–426
Representation State Transfer

and, 426, 427
responsive user interfaces

and, 423
security and, 439

JavaScript Object Notation
(JSON)

applications for use, 368–369
defined, 368
emergence of, 27
encoding results with, 426
example of, 368, 369
flexibility of, 367–368
key-value stores and, 1024

mapping to data models, 480
as semi-structured data

model, 8, 27
SQL in support of, 369–370
for transferring data, 423

Java Server Pages (JSP)
application design and, 405,

417–418
security and, 440
server-side scripting and,

417–418
servlets and, 417–418

Java Servlets, 411–416, 419, 424
JBoss, 416
JDBC (Java Database

Connectivity), 184–193
blob column and, 193
caching and, 435–436
callable statements and,

190–191
clob column and, 193
connecting to database,

185–186
corresponding interface

defined by, 17
exception and resource

management, 187
metadata features and,

191–193
prepared statements and,

188–190
protocol information, 186
retrieving query results,

187–188
shipping SQL statements to,

186–187
updatable result sets and, 193
web sessions and, 409

join conditions, 130–131
join dependencies, 341
join operation, 52–53
joins

ant-ijoin operation, 108, 776
anti-semijoin operation,

776–777
broadcast, 1046
complex, 718
cost analysis and, 710–712,

767–770

equi-joins, 704, 707–713, 718,
722, 730, 1043

fragment-and-replicate,
1046–1047, 1062

full outer, 132–136, 722
hash (see hash join)
hybrid merge, 712
inner, 132–136, 771
inner relation of, 704
left outer, 131–136, 722
merge-join, 708–712, 1045
minimization and, 784
natural (see natural joins)
nested loop (see nested-loop

join)
ordering, 754–755
outer, 57, 131–136, 722–723,

765, 782
outer relation of, 704
parallel, 1043–1048
partitioned, 714–715,

1043–1046
query processing and,

704–719, 722–723,
1081–1082

right outer, 132–136, 722
semijoin operation, 108, 776,

1082–1084
size estimation and, 762–764
skew in, 1047–1048
sort-merge-join, 708–712
spatial, 394
spatial data and, 719
streaming data and, 506
theta, 748–749
types and conditions,

130–131, 136
view maintenance and, 780

join skew avoidance, 1048
join using operation, 129–130
journaling file systems, 610
JSON. See JavaScript Object

Notation
JSP. See Java Server Pages
J2EE (Java 2 Enterprise

Edition), 416
jukebox systems, 561

Kafka system, 506, 507,
1072–1073, 1075, 1137
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k-d B trees, 674
KDD (knowledge discovery in

databases), 540
k-d trees, 673–674
kernel functions, 545
keys

candidate, 44
cluster key, 600–601
constraints and, 258
encryption and, 448–449,

451–453
equality on, 697
foreign, 45–46, 69–70,

148–150, 267–268, 268n5
functional dependencies and,

309–312
intermediate, 1050
multiple access, 633–634,

661–663
partitioning, 475–476
primary (see primary keys)
reduce, 485
in relational model, 43–46
search (see search keys)
smart cards and, 451
superkeys, 43–44, 257–258,

309–310, 312
unique values, 160–161

key-value locking, 887
key-value maps, 366–367
key-value storage systems

Big Data and, 471, 473,
476–480

clusters and, 477
document, 477, 1023
fault tolerant, 1160
parallel, 1003, 1023–1031
replication and, 476
social-networking sites and,

471
wide-column, 1023

keyword queries, 383, 385–387,
721

killing the mutant, 1234
knowledge discovery in databases

(KDD), 540
knowledge graphs, 374–375,

386–387, 549
knowledge representation, 368
Kubernetes, 995

lambda architecture, 504, 1071
language constructs, 201–203
Language Integrated Query

(LINQ), 198
LANs. See local-area networks
large object storage, 594–595
large-object types, 156, 158
LastLSN, 943, 946
latches, 886, 928
latch-free data structure,

888–890
latency, 989
latent failure, 575
lateral clause, 105
LAV (local-as-view) approach,

1079
lazy generation of tuples, 727
lazy propagation of updates,

1122, 1136
LDAP Data Interchange Format

(LDIF), 1242
LDAP (Lightweight Directory

Access Protocol), 442,
1085,

1240–1243
leaders, 1155
leaf nodes, 635–656, 665–669,

673, 674
learners, 1148, 1153
leases, 1115–1116, 1147
least recently used (LRU)

strategy, 605, 607
ledgers, digital, 1251, 1252
left-deep join orders, 773
left outer join, 131–136, 722
legacy systems, 1035–1036
legal instance, 309
LevelDB, 668
Lightning network, 1275
light nodes, 1256, 1268
Lightweight Directory Access

Protocol (LDAP), 442,
1085,

1240–1243
like operator, 82–83
limit clause, 222
linear hashing, 661, 1203
linearizability, 1121
linear probing, 1194
linear regression, 546

linear scaleup, 972–973
linear search, 695
linear speedup, 972
line segments, 388–390
linestrings, 388, 390
Linked Data project, 376, 1080
LINQ (Language Integrated

Query), 198
load balancers, 934–935, 1214
load barrier, 983
local-area networks (LANs), 977,

978, 985, 989
local-as-view (LAV) approach,

1079
local autonomy, 988
local indices, 1017
local schema, 1076
localtimestamp, 154
local transactions, 988, 1098,

1132
local wait-for graphs, 1113
lock conversions, 843
lock-free data structure, 890
locking protocols

B-link tree, 886
concurrency control and,

835–848
defined, 839
distributed lock-manager,

1112
graph-based, 846–848
implementation of, 844–846
index, 860
key-value, 887
multiple granularity, 856–857
next-key, 887
single lock-manager, 1111
transactions and, 823–825
two-phase, 841–844, 871–872,

1129–1131
lock managers, 844–845, 965,

1160
lock point, 841
locks

adaptive granularity and,
969–970

caching and, 969
call back and, 969
compatibility function and,

836
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deadlocks (see deadlocks)
de-escalation and, 970
distributed databases and,

1111–1116
escalation and, 857, 1227
exclusive (see exclusive locks)
explicit, 854
false cycles and, 1114–1115
fine-grained, 947
granting of, 836, 840–841
growing phase and, 841, 843
higher-level, 935–936
implicit, 854–855
increment, 892–893
intention modes and, 855
leases, 1115–1116, 1147
logical undo operations and,

935–941
lower-level, 935–936
multiple granularity and,

853–857
multiversion schemes and,

871–872, 1129–1131
predicate, 828, 861, 861n1
recovery systems and,

935–941
request operation and,

835–841, 844–846,
849–853, 886

shared, 825, 835, 854, 880,
1124

shrinking phase and, 841, 843
starvation and, 853
timeouts and, 850–851
timestamps and, 861–866
transaction servers and,

965–968
true matrix value and, 836
wait-for graph and, 851–852,

1113–1114
lock table, 844, 845, 967
log disks, 610
log force, 927
logical clock, 1118
logical counter, 862
logical-design phase, 18, 242
logical error, 907
logical level of abstraction, 9–12
logical logging, 936
logically implied schema, 320

logical operations
concurrency control and,

940–941
consistency and, 936–937
defined, 935
early lock release and,

935–941
idempotent, 937
log records and, 936–940
rollback and, 937–939

logical routing of tuples,
506–507, 1071–1073

logical schema, 12–13,
1223–1224

logical undo operations, 935–941
log of transactions, 805
log processing, 486–488
log records

ARIES and, 941–946
buffering and, 926–927
checkpoint, 943
compensation, 922, 942, 945
database modification and,

915–916
force/no-force policy and, 927
identifiers and, 913
logical undo operations and,

936–940
old/new values and, 913
physical, 936
recovery systems and,

913–919, 926–927
redo operation and, 915–919
steal/no-steal policy and, 927
undo operation and, 915–919
write-ahead logging rule and,

926–929
log sequence number (LSN),

941–946
log-structured merge (LSM)

trees, 1176–1182
basic, 1179
Bloom filters and, 1181
deletion and, 1178–1179
for flash storage, 1182
insertion into, 1177–1178,

1180–1181
levels of, 1176
lookup and, 1181

parallel key-value stores and,
1028

performance tuning and, 1215
rolling merges and, 1178
stepped-merge indices and,

1179–1181
updates and, 1178–1179
write-optimized structure of,

666–668
log writer process, 965
long-duration transactions,

890–891
lookup

in blockchain databases, 1268
Bloom filters and, 667, 1181
concurrency control and,

884–887
data-storage systems and, 480
fuzzy, 523
hashing and, 1197, 1198,

1202–1203
indices and, 630, 637,

640–641, 645–651,
656–661, 666–669, 676

LSM trees and, 1181
query optimization and, 769
query processing and, 698,

707
lossless decomposition, 307–308,

307n1, 312–313
lossy decompositions, 307
lost update problem, 1016
lost updates, 874
lower-level locks, 935–936
loyalty programs, 1278
LRU (least recently used)

strategy, 605, 607
LSM trees. See log-structured

merge trees
LSN (log sequence number),

941–946

machine-learning algorithms, 495
magnetic disks, 563–567

access time and, 561, 566, 567
blocks and, 566–567
capacity of, 560
checksums and, 565
crashes and, 565
data-transfer rate and, 566
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disk controller and, 565
failure classification and, 908
hybrid, 569–570
mean time to failure and, 567
performance measures of,

565–567
physical characteristics of,

563–565
read-write heads and,

564–565
recording density and, 565
sectors and, 564–566
seek time and, 566, 566n2,

567
sizes of, 563

main memory, 559–560,
657–658

main-memory databases
accessing data in, 910
concurrency control in,

887–890
recovery in, 947–948
storage in, 588, 615–617

majority protocol, 1123–1126
management of data. See

database-management
systems

(DBMSs)
man-in-the-middle attacks, 442
manufacturing, database

applications for, 3, 5
many-to-many mapping, 253–255
many-to-one mapping, 252–255
map function, 483–494, 510. See

also MapReduce paradigm
mapping cardinalities, 252–256
MapReduce paradigm, 483–494

development of, 27, 481
fault tolerance and,

1060–1061
in Hadoop, 489–493
intraoperation parallelism

and, 1050–1052
log processing and, 486–488
parallel processing of tasks,

488–489
SQL on, 493–494
word count program and,

483–486, 484n2, 490–492

markup languages. See specific
languages

massively parallel systems, 970
master nodes, 1012, 1136
master replica, 1016
master sites, 1026
master-slave replication, 1137
master table, 1222
match clause, 509
materialization, 724–725
materialized edges, 728
materialized views

aggregation and, 781–782
defined, 140, 778
index selection and, 783
join operation and, 780
parallel maintenance of,

1069–1070
performance tuning and,

1215–1216
projection and, 780–781
query optimization and,

778–783
selection and, 780–781
view maintenance and, 140,

779–782
max function, 91–92, 105, 723,

766, 782
maximum margin line, 544
mean time between failures

(MTBF), 567n3
mean time to data loss, 571
mean time to failure (MTTF),

567, 567n3
mean time to repair, 571
measure attributes, 524
mediators, 1077
memcached system, 436–437,

482
memoization, 771
memory. See also storage

bulk loading of indices and,
653–655

cache, 559 (see also caching)
data access and, 910–912
flash, 560, 567–570, 656–657
force output and, 912
magnetic-disk, 560, 563–567
main, 559–560, 657–658

non-volatile random-access,
579–580

optical, 560–561
overflows and, 715
query costs and, 697
query processing in, 731–734
recovery systems and,

910–912
storage class, 569, 588, 948

memory barrier, 983–984
merge-join, 708–712, 1045
merge-purge operation, 523
merging

duplicate elimination and,
719–720

exchange-operator model and,
1055–1057

ordered, 1056
parallel external sort-merge,

1042–1043
performance tuning and,

1222–1223
query processing and,

701–704, 708–712
random, 1056
rolling merge, 1178

Merkle-Patricia trees, 1269,
1275

Merkle trees, 1143–1146, 1268,
1269

mesh system, 976
MESI protocol, 984
message-based consensus, 1266
message delivery process,

1109–1110
metadata, 14, 191–193, 470,

602–604, 1020–1022
microservices architecture, 994
Microsoft

application design and, 417,
442

Database Tuning Assistant,
1217

query languages developed by,
538

query optimization and, 783
StreamInsight, 504

Microsoft SQL Server
advanced SQL and, 206
implements, 160
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limit clause in, 222
performance monitoring

tools, 1212
performance tuning tools,

1218
procedural languages

supported by, 199
snapshot isolation and, 1225
spatial data and, 388, 390
string operations and, 82

min function, 91–92, 723, 766,
782

minibatch transactions, 1227
minimal equivalence rules, 754
mining pools, 1266. See also data

mining
minus, 88n7
mirroring, 571–573, 576, 577
mobile application platforms,

428–429
mobile phone applications, 469
models for data mining, 540
model-view-controller (MVC)

architecture, 429–430
MOLAP (multidimensional

OLAP), 535
MonetDB, 367, 615
MongoDB, 477–479, 482, 489,

668, 1024, 1028
monotonic queries, 218
Moore’s law, 980n4
most recently used (MRU)

strategy, 608–609
MRU (most recently used)

strategy, 608–609
MTBF (mean time between

failures), 567n3
MTTF (mean time to failure),

567, 567n3
multidimensional data, 524,

527–532
multidimensional OLAP

(MOLAP), 535
multilevel indices, 628–630
multimaster replication, 1137
multiple consensus protocol, 1151
multiple granularity

concurrency control and,
853–857

hierarchy of, 854

intention-exclusive mode and,
855

intention-shared mode and,
855

locking protocol and,
856–857

request operation and, 854,
855

shared and intention-exclusive
mode and, 855

tree architecture and,
853–857

multiple inheritance, 275
multiple-key access, 633–634,

661–663
multiprogramming, 809
multiquery optimization,

785–786
multiset except, 88n7
multiset relational algebra, 80,

97, 108, 136, 747
multiset types, 366
multisig instruction, 1269–1270
multitable clustering file

organization, 595,
598–601

multitasking, 961, 963
multiuser systems, 962
multivalued attributes, 251, 252,

342
multivalued data types, 366–367
multivalued dependencies,

336–341
multiversion concurrency control

(MVCC), 869–872
multiversion timestamp-ordering

scheme, 870–871, 1118
multiversion two-phase locking

(MV2PL) protocol,
871–872,

1129–1131
mutations, 1234
mutual exclusion, 965, 967
MVCC (multiversion concurrency

control), 869–872
MVC (model-view-controller)

architecture, 429–430
MV2PL (multiversion two-phase

locking) protocol, 871–872,
1129–1131

MySQL
attributes and, 149n8
growth of, 27
joins and, 133n4
LSM trees and, 668
performance monitoring

tools, 1212
string operations and, 82
unique key values in, 161

naÃ¯ve Bayesian classifiers, 543
naÃ¯ve users, 24
namenode, 475, 1020
NAND flash memory, 567–568
NAS (network attached storage),

563, 934
natural join operation, 57
natural joins, 126–136

on condition and, 130–131
conditions and, 130–131
full outer, 132–136, 722
inner, 132–136, 771
left outer, 131–136, 722
outer, 57, 131–136
right outer, 132–136, 722

navigation systems, database
applications for, 3

nearest-neighbor queries, 394,
672, 674

nearness queries, 394
negation, 762
Neo4j graph database, 509, 510
nested data types, 367–368
nested-loop join

block, 705–707
indexed, 707–708, 728
parallel, 1045–1046
query optimization and, 768,

769, 771, 773
query processing and,

704–708, 713–719, 722,
786

nested subqueries, 98–107
from clause and, 104–105
with clause and, 105–106
duplicate tuples and, 103
empty relations test and,

101–102
optimization of, 774–778,

1220
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scalar, 106–107
set operations and, 98–101

nesting, 854, 946
NetBeans, 416
network attached storage (NAS),

563, 934
network latency, 969
network partition, 481, 989,

989n5, 1104–1105
network round-trip time, 969
networks

deep neural, 546
interconnection, 975–979
local area, 977, 978, 985, 989
spatial, 390
wide-area, 989

neural-net classifiers, 545–546
new value, 913
next-key locking protocols, 887
next method, 188
nextval for, 1226
NFNF (non first-normal-form),

367
nodes

in blockchain databases,
1255–1257, 1263–1268

coalescing, 641, 886
datanodes, 475, 1020
defined, 468
distributed databases and,

987
failure of, 1103–1104
full, 1256, 1268
in Hadoop File System, 474,

475
internal, 635
leaf, 635–656, 665–669, 673,

674
leases and, 1115–1116
light, 1256, 1268
master, 1012, 1136
mesh architecture and, 976
multiple granularity and,

853–857
namenode, 475, 1020
nonleaf, 635–636, 642,

645–656, 663
operation, 506–507
in parallel databases, 970
primary, 1123

ring architecture and, 976
splitting of, 641–645, 886
straggler, 1060–1061
updates and, 641–647
virtual, 1009–1010

no-force policy, 927
nonbinary relationship sets,

283–285
non-blocking two-phase commit,

1161
nonces, 1265, 1271
nonclustering indices, 625, 695
nondeclarative actions, 183
non first-normal-form (NFNF),

367
nonleaf nodes, 635–636, 642,

645–656, 663
nonprocedural DMLs, 15
nonprocedural languages, 15, 16,

18, 26
nonrepudiation, 451
Non-Uniform Memory Access

(NUMA), 981, 1063
nonunique search keys, 632, 637,

640, 649–650
Non-Volatile Memory Express

(NVMe) interface, 562
non-volatile random-access

memory (NVRAM),
579–580, 948

non-volatile storage, 560, 562,
587–588, 804, 908–910,

930–931
non-volatile write buffers,

579–580
NOR flash memory, 567
normal forms

atomic domains and, 342–343
Boyce–Codd, 313–316,

330–333, 336
domain-key, 341
fifth, 341
first, 342–343
fourth, 336, 339–341
higher, 319
join dependencies and, 341
project-join, 341
second, 316n8, 341–342, 356
third, 317–319, 333–335

normalization

in conceptual-design process,
17

denormalization, 346
entity-relationship (E-R)

model and, 344–345
performance and, 346
relational database design

and, 308
NoSQL systems, 28, 473, 477,

1269, 1276
no-steal policy, 927
not connective, 74
not exists construct, 101–102,

108, 218
notifications, 436
not in construct, 99, 100
not null, 69, 89–90, 142, 146,

150, 159
not operation, 89–90
not unique construct, 103
null bitmap, 593
null rejecting property, 751
null values

aggregation with, 96
attributes and, 251–252
defined, 40, 67
file organization and, 593
integrity constraints and,

145–147, 150
SQL and, 89–90
temporal data and, 347
triggers and, 209
user-defined types and, 159

NUMA (Non-Uniform Memory
Access), 981, 1063

numeric, 67, 70
nvarchar, 68
NVMe (Non-Volatile Memory

Express) interface, 562
NVRAM (non-volatile

random-access memory),
579–580, 948

N-way merge, 702

OAuth protocol, 443
obfuscation, 1235
object-based databases

array types and, 378
complex data types and,

376–382
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inheritance and, 378–380
mapping and, 377, 381–382
overview, 9
reference types and, 380–381

object classes, 1242
Object Database Management

Group (ODMG),
1239–1240

Object Management Group
(OMG), 288

object of triples, 372
object-oriented databases

(OODB), 9, 26, 377, 431,
1239–1240

object-relational databases,
377–381

defined, 377
reference types and, 380–381
table inheritance and,

379–380
type inheritance and,

378–379
user-defined types, 378

object-relational data models, 27,
376–382

object-relational mapping
(ORM), 377, 381–382,
431–434,

1239–1240
observable external writes, 807
ODBC (Open Database

Connectivity)
advanced SQL and, 194–197
API defined by, 194–195
application interfaces defined

by, 17
caching and, 436
conformance levels and,

196–197
standards for, 1238–1239
type definition and, 196
web sessions and, 409

ODMG (Object Database
Management Group),
1239–1240

off-chain transactions, 1275
offline storage, 561
OGC (Open Geospatial

Consortium), 388

OLAP. See online analytical
processing

old value, 913
OLE-DB, 1239
OLTP (online transaction

processing), 4, 521,
1231–1232

OMG (Object Management
Group), 288

on condition, 130–131
on delete cascade, 150, 210,

268n5
1NF (first normal form),

342–343
one-to-many mapping, 252–255
one-to-one mapping, 252–254
online analytical processing

(OLAP), 527–540
aggregation on

multidimensional data,
527–532

cross-tabulation and, 528–533
data cubes and, 529–530
defined, 520, 530
dicing and, 530
drill down and, 531, 540
hybrid, 535
implementation of, 535
multidimensional, 535
performance benchmarks

and, 1231–1232
relational, 535
reporting and visualization

tools, 538–540
rollup and, 530–531, 536–538
slicing and, 530
in SQL, 533–534, 536–538

online index creation, 884–885
online storage, 561
online transaction processing

(OLTP), 4, 521,
1231–1232

on update cascade, 150
OODB. See object-oriented

databases
open addressing, 1194
Open Database Connectivity. See

ODBC
Open Geospatial Consortium

(OGC), 388

open hashing, 1194
OpenID protocol, 443
open polygons, 388n3
open time intervals, 675
operation consistent state,

936–937
operation nodes, 506–507
operation serializability, 885
operator trees, 724, 1040
optical storage, 560–561
optimistic concurrency control,

869
optimistic concurrency control

without read validation,
883,

891
optimization cost budget, 774
Oracle

advanced SQL and, 206
application server, 416
database design and, 443n6,

444–445
decode function in, 155
Event Processing, 504
GeoRaster extension, 367
history of, 26
JDBC interface and, 185, 186
keywords in, 81n3, 88n7
limit clause in, 222
nested subqueries and, 104
performance monitoring

tools, 1212
performance tuning tools,

1218
procedural languages

supported by, 199
query-evaluation plans and,

746
query optimization and, 773,

774, 783
reference types and, 380
set and array types supported

by, 367
snapshot isolation and, 1225
Spatial and Graph, 388
statistical analysis and, 761
syntax supported by, 204,

212, 218, 218n9
transactions and, 822, 826,

872–873, 879
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types and domains supported
by, 160

Virtual Private Database, 173,
444–445

oracles, 1271–1272
ORC, 490, 499, 613–614
or connective, 74
order by clause, 83–84,

219–222, 534
ordered indices, 624–634

comparison with hash
indices, 1203

defined, 624
dense, 626–628, 630–631
multilevel, 628–630
secondary, 625, 632–633
sequential, 625, 634–635
sparse, 626–632
techniques for, 624
updates and, 630–632

ordered merge, 1056
ORM. See object-relational

mapping
or operation, 89–90
orphaned blocks, 1257, 1263
outer-join operation, 57,

131–136, 722–723, 765,
782

outer relation, 704
outer union operations, 229n16
outsourcing, 28
overflow avoidance, 715
overflow blocks, 598
overflow buckets, 659–660,

1194–1195
overflow chaining, 659–660
overflow resolution, 715
overlapping generalization, 279,

290
overlapping specialization, 272,

275
overlays, 393

page (blocks), 567
PageLSN, 942–945
PageRank, 385–386
page shipping, 968
parallel databases

architecture of, 22, 970–986
Big Data and, 473, 480–481

coarse-grain, 963, 970
concurrency control and, 990
defined, 480
exchange-operator model and,

1055–1057
fine-grain, 963, 970
hierarchical, 979, 980, 986
indices in, 1017–1019
interconnection networks

and, 975–979
interference and, 974
interoperation parallelism

and, 1040, 1052–1055
interquery parallelism and,

1039
intraoperation parallelism

and, 1040–1052
intraquery parallelism and,

1039
I/O parallelism and,

1004–1007
key-value stores and,

1023–1031
massively parallel, 970
motivation for, 970–971
operator trees and, 1040
partitioning techniques and,

1004–1007
performance measures for,

971–974
pipelines and, 1053–1054
query optimization and,

1064–1070
replication and, 1013–1016
response time and, 971–972
scaleup and, 972–974
shared disk, 979, 980,

984–985
shared memory, 979–984,

1061–1064
shared nothing, 979, 980,

985–986, 1040–1041,
1061–1063

skew and, 974, 1007–1013,
1043, 1062

speedup and, 972–974
start-up costs and, 974, 1066
throughput and, 971
transaction processing in,

989–990

parallel external sort-merge,
1042–1043

parallel indices, 1017–1019
parallelism

coarse-grained, 963
data, 1042, 1057
fine-grained, 963
improvement of performance

via, 571–572
independent, 1054–1055
interoperation, 1040,

1052–1055
interquery, 1039
intraoperation, 1040–1052
intraquery, 1039
I/O (see I/O parallelism)
Single Instruction Multiple

Data, 1064
parallel joins, 1043–1048

fragment-and-replicate,
1046–1047, 1062

hash, 1045
nested-loop, 1045–1046
partitioned, 1043–1046
skew in, 1047–1048

parallel key-value stores,
1023–1031

atomic commit and, 1029
concurrency control and,

1028–1029
data representation and,

1024–1025
defined, 1003
elasticity and, 1024
failures and, 1029–1030
geographically distributed,

1026–1027
index structure and, 1028
managing without declarative

queries, 1030–1031
overview, 1023–1024
performance optimizations

and, 1031
storing and retrieving data,

1025–1028
support for transactions,

1028–1030
parallel processing, 437,

488–489
parallel query plans
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choosing, 1066–1068
colocation of data and,

1068–1069
cost of, 1065–1066
evaluation of, 1052–1061
materialized views and,

1069–1070
space for, 1064–1065

parallel sort, 1041–1043
parameterized views, 200
parameter style general, 205
parametric query optimization,

786
parity bits, 572, 574, 577
Parquet, 490, 499
parsing

application design and, 418
bulk loads and, 1221–1223
query processing and,

689–690
partial aggregation, 1049
partial dependency, 356
partial failure, 909
partial generalization, 275
partially committed transactions,

806
partial participation, 255
partial rollback, 853
partial schedules, 819
partial specialization, 275
participation in relationship sets,

247
partitioning attribute, 479
partitioning keys, 475–476
partitioning vector, 1005
partitions

balanced range, 1008–1009
data, 989n5
defined, 1100
distributed databases and,

1104–1105
distributed file systems and,

473
dynamic repartitioning,

1010–1013
exchange-operator model and,

1055–1057
file organization and,

601–602
hash, 476, 1005–1007, 1045

horizontal, 1004, 1216–1217
intra-node, 1004
joins and, 714–715,

1043–1046
network, 481, 989, 989n5,

1104–1105
parallel databases and,

1004–1007
point queries and, 1006
query optimization and, 1065
range, 476, 1005, 1007, 1178
recursive, 714–715
of relation schema, 1216–1217
round-robin, 1005, 1006
scanning a relation and, 1006
sharding and, 473, 475–476,

1275
skew and, 715, 1007–1013
topic-partition, 1073
vertical, 1004
virtual node, 1009–1010

partition tables, 1011–1014
passwords

application design and, 403,
411, 414, 432, 450–451

dictionary attacks and, 449
distributed databases and,

1240
hash functions and, 1260n4
leakage of, 440–441
man-in-the-middle attacks

and, 442
one-time, 441
single sign-on system and,

442–443
SQL and, 163, 186, 196
storage and, 602, 603
unencrypted, 414n4

path expressions, 372, 381
pattern matching, 504
Paxos protocol, 1152–1155,

1160–1161, 1267
PCIe interface, 562
pen drives, 560
performance

access time and, 561,
566–567, 578, 624,
627–628, 692

application design and,
434–437

benchmarks (see performance
benchmarks)

of blockchain databases,
1274–1276

B+-trees and, 634, 665–666
caching and, 435–437
data-transfer rate and, 566
denormalization for, 346
improvement via parallelism,

571–572
magnetic disk storage and,

565–567
mean time to failure and, 567,

567n3
monitoring tools, 1212
parallel databases and,

971–974
parallel key-value stores and,

1031
parallel processing and, 437
response time (see response

time)
seek time and, 566, 566n2,

567, 692, 710
sequential indices and,

634–635
testing, 1235
throughput (see throughput)
tuning (see performance

tuning)
web applications and,

405–411
performance benchmarks,

1230–1234
database-application classes

and, 1231–1232
defined, 1230
suites of tasks and, 1231
of Transaction Processing

Performance Council,
1232–1234

performance tuning, 1210–1230
automated, 1217–1218
bottleneck locations and,

1211–1213, 1215, 1227
bulk loads and, 1221–1223
of concurrent transactions,

1224–1227
of hardware, 1227–1230
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horizontal partitioning of
relation schema,
1216–1217

indices and, 1215
levels of, 1213–1214
materialized views and,

1215–1216
motivation for, 1210–1211
parameter adjustment and,

1210, 1213–1215, 1220,
1228, 1230

physical design and,
1217–1218

of queries, 1219–1223
RAID and, 1214, 1229–1230
of schema, 1214–1218,

1223–1224
set orientation and,

1220–1221
simulation and, 1230
tools for, 1218
updates and, 1221–1223,

1225–1227
period declaration, 157
Perl, 206
permissioned blockchains,

1253–1254, 1256–1257,
1263, 1266,

1274
persistent messaging, 990, 1016,

1108–1110, 1137
Persistent Storage Module

(PSM), 201
phantom phenomenon, 827,

858–861, 877–879, 877n5,
885, 887

PHP, 405, 417, 418
physical blocks, 910
physical data independence,

9–10, 13
physical-design phase, 18,

242–243
physical equivalence rules, 771
physical level of abstraction, 9,

11, 12, 15
physical logging, 936
physical schema, 12, 13
physical storage systems,

559–580
cache memory, 559

cost per byte, 560, 561,
566n2, 569, 576

disk-block access and,
577–580

flash memory, 560, 567–570,
656–657

hierarchy of, 561, 562
indices and, 630n2
interfaces for, 562–563
magnetic disks, 560, 563–567
main memory, 559–560
optical storage, 560–561
RAID, 562, 570–577
solid-state drives, 18, 560
tape storage, 561
volatility of, 560, 562

physiological redo operations,
941

Pig Latin, 494
pin count, 605
pinned blocks, 605
pin operations, 605
pipelined edges, 728
pipeline stage, 728
pipelining, 724–731

benefits of, 726
for continuous-stream data,

731
demand-driven, 726–728
evaluation algorithms for,

728–731
implementation of, 726–728
parallelism and, 1053–1054
producer-driven, 726–728
uses for, 691–692, 724, 725

pivot attribute, 227
pivot clause, 227, 534
pivoting, 226–227, 530
pivot-table, 226–227, 528–529
PJNF (project-join normal form),

341
plan caching, 774
platform-as-a-service model,

992–993
platters, 563, 565
PL/SQL, 199, 204
pointers. See also indices

blockchain databases and,
1254–1255, 1261, 1269

B+-tree (see B+-trees)

concurrency control and,
886, 888, 889

query processing and, 697,
698, 700, 708

recovery systems and, 914,
945

redistribution of, 646
SQL basics and, 193, 205
storage and, 588, 591,

594–598, 601
point queries, 1006, 1190
polygons, 388–390, 388n3, 393
polylines, 388–389, 388n3
population, 547
PostgreSQL

advanced SQL and, 206
array types on, 378
concurrency control and, 873,

879
Generalized Search Tree and,

670
growth of, 27
heap file organization and,

596
JDBC interface and, 185
JSON and, 370
performance monitoring

tools, 1212
PostGIS extension, 367, 388,

390
procedural languages

supported by, 199
query-evaluation plans and,

746
query processing and, 692,

694, 698–699
set and array types supported

by, 367
snapshot isolation and, 1225
statistical analysis and, 761
transaction management in,

822, 826
types and domains supported

by, 160
unique key values in, 161

P + Q redundancy schema, 573,
574

Practical Byzantine Fault
Tolerance, 1267

precedence graph, 816–817
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precision, 386
precision locking, 861n1
predicate locking, 828, 861,

861n1
predicate of triples, 372
predicate reads, 858–861
prediction, 541–543, 545–546
predictive models, 4–5
preemption, 850
prefetching, 969
prefix compression, 653
Pregel system, 511
prepared statements, 188–190
presentation layer, 429
price per TPS, 1232
primary copy, 1123
primary indices, 625, 695,

1017–1018
primary keys

attributes and, 310n4
defined, 44
entity-relationship (E-R)

model and, 256–260
functional dependencies and,

313
integrity constraints and, 147,

148
in relational model, 44–46
SQL schema definition and,

68–70
primary nodes, 1123
primary site, 931
primary storage, 561
prime attributes, 356
privacy, 438, 446, 1252
private-key encryption,

1260–1261
privileges

all, 166
defined, 165
execute, 169–170
granting, 166–167, 170–171
public, 167
references, 170
revoking, 166–167, 171–173
select, 171, 172
transfer of, 170–171
update, 170

probe input, 713
procedural DMLs, 15

procedural languages, 47n3, 184,
199, 204

procedures
declaring, 199–201
external language routines

and, 203–206
language constructs for,

201–203
syntax and, 199, 201–205
writing in SQL, 198–206

process monitor process, 965
producer-driven pipeline,

726–728
programming languages. See also

specific
languages
accessing SQL from, 183–198
mismatch and, 184
object-oriented, 377
variable operation of, 184

Progressive Web Apps (PWA),
429

projection
intraoperation parallelism

and, 1049
query optimization and, 764
query processing and, 720
view maintenance and,

780–781
project-join normal form (PJNF),

341
project operation, 49–50
proof-of-stake consensus, 1256,

1266
proof-of-work consensus, 1256,

1264–1266
proposers, 1148, 1152
proximity of terms, 385
PR quadtrees, 1187
pseudotransitivity rule, 321
PSM (Persistent Storage

Module), 201
public blockchains, 1253, 1255,

1257–1259, 1263, 1264
public-key encryption, 448–449,

1260–1261
publish-subscribe (pub-sub)

systems, 507, 1072,
1137–1139

pulling data, 727

punctuations, 503–504
pushing data, 727
put function, 477, 478
puzzle friendliness, 1265
PWA (Progressive Web Apps),

429
Python

advanced SQL and, 183,
193–194, 206

application design and, 16,
405, 416, 419

object-oriented programming
and, 377

object-relational mapping
system for, 382

web services and, 424

quadratic split heuristic, 1189
quads, 376
quadtrees, 392, 674, 1186–1187
queries. See also information

retrieval
ADO.NET and, 184
basic structure of SQL

queries, 71–79
on B+-trees, 637–641, 690
caching and, 435–437
Cartesian product and,

76–79, 81, 230
compilation of, 733
continuous, 503, 731
correlated subqueries and,

101
cost of (see query cost)
decision-support, 521, 971
declarative, 1030–1031
defined, 15
deletion and, 108–110
equivalent, 58
evaluation of (see

query-evaluation plans)
hash functions and, 624,

1197–1202
indices and, 623, 695–697,

707–708
insertion and, 110–111
intermediate SQL and (see

intermediate SQL)
JDBC and, 184–193
join expressions and, 125–136
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keyword, 383, 385–387, 721
languages (see query

languages)
metadata and, 191–193
monotonic, 218
multiple-key access and,

661–663
on multiple relations, 74–79
nearest-neighbor, 394, 672,

674
nested subqueries, 98–107
null values and, 89–90
ODBC and, 194–197
optimization of (see query

optimization)
PageRank and, 385–386
performance tuning of,

1219–1223
point, 1006, 1190
processing (see query

processing)
programming language access

and, 183–198
Python and, 193–194
range, 638, 672, 674, 1006,

1190
read only, 1039
recursive, 213–218
region, 393–394
rename operation and, 79,

81–82
ResultSet object and, 185,

187–188, 191–193,
638–639

retrieving results, 187–188
scalar subqueries, 106–107
security and, 437–446
servlets and, 411–421
set operations and, 85–89,

98–101
on single relation, 71–74
spatial, 393–394
spatial graph, 394
streaming data and, 502–506,

1070–1071
string operations and, 82–83
transaction servers and, 965
universal Turing machines

and, 16
views and, 137–143

query cost
optimization and, 745–746,

757–766
processing and, 692–695,

697, 702–704, 710–712,
715–717

query-evaluation engine, 20
query-evaluation plans

choice of, 766–778
cost of, 1065–1066
defined, 691
expressions and, 724–731
fault tolerance in, 1059–1061
materialization and, 724–725
optimization and (see query

optimization)
parallel (see parallel query

plans)
performance tuning of,

1219–1220
pipelining and, 691–692,

724–731
relational algebra and,

690–691
resource consumption and,

694–695, 1065–1066
response time and, 694–695
role in query processing, 689,

690
viewing, 746

query-execution engine, 691
query-execution plans, 691
query languages. See also specific

languages
accessing from programming

languages, 183–198
categorization of, 47
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set difference, 55
union, 53–54, 86–87, 750

set orientation, 1220–1221
set role, 172
set statement, 201, 209
set transaction isolation level

serializable, 822
set types, 366, 367
shadow-copy scheme, 914
shadowing, 571
shadow paging, 914
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blobs and, 156, 193, 594, 652
bulk loads and, 1221–1223
clobs and, 156, 193, 594, 652
create table and, 68–71
database modification and,

108–114
data definition for university

databases, 69–71,
1288–1292

DDL and, 14–15, 65–71
decision-support systems and,

521
deletion and, 108–110
DML and, 16, 66
dumping and, 931
dynamic, 66, 184, 201
embedded, 66, 184, 197–198,

965, 1269
index creation and, 164–165,

664–665
injection and, 189, 438–439
inputs and outputs in, 747
insertion and, 110–111
integrity constraints and,

14–15, 66, 145–153
intermediate (see

intermediate SQL)
isolation levels and, 821–826
JSON and, 369–370
limitations of, 468, 472
on MapReduce, 493–494
MySQL (see MySQL)
nested subqueries and,

98–107
nonstandard syntax and, 204



Index 1337

NoSQL systems, 28, 473, 477,
1269, 1276

null values and, 89–90
OLAP in, 533–534, 536–538
ordering display of tuples

and, 83–84
overview, 65–66
PostgreSQL (see

PostgreSQL)
prepared statements and,

188–190
prevalence of use, 13
query processing and,

689–690, 701, 720
query structure, 71–79
relational algebra and, 80
rename operation and, 79,

81–82
ResultSet object and, 185,

187–188, 191–193,
638–639

schemas and, 24, 66, 68–71
security and, 438–439
set operations and, 85–89
standards for, 65, 1237–1238
stream extensions to,

504–506
string operations and, 82–83
System R and, 26
System R project and, 65
theoretical basis of, 48
transactions and, 66,

143–145, 965
updates and, 111–114
views and, 66, 137–143,

169–170
where-clause predicates and,

84–85
XML and, 372

SSDs. See solid-state drives
SSI (serializable snapshot

isolation) protocol, 878
stable storage, 804–805,

908–910
stale messages, 1149
stalls in processing, 733
standards

ANSI, 65, 1237
anticipatory, 1237
CLI, 197, 1238–1239

database connectivity,
1238–1239

de facto, 1237
defined, 1237
formal, 1237
ISO, 65, 1237, 1241
object-oriented, 1239–1240
ODBC, 1238–1239
reactionary, 1237
SQL, 65, 1237–1238
X/Open XA, 1239

star schema, 524–525
start-up costs, 974, 1066
start with/connect by prior

syntax, 218
starved transactions, 841, 853
state-based blockchains, 1269,

1271
state machines, 1158–1161
Statement object, 186–187, 189
state of execution, 727
static hashing, 661, 1190–1195,

1202–1203
statistical analysis, 520, 527
statistics, 757–766

catalog information and,
758–760

computing, 761
join size estimation and,

762–764
maintaining, 761
number of distinct values and,

765–766
selection size estimation and,

760, 762
steal policy, 927
stepped-merge indices, 667,

1179–1181
stock market, streaming data

and, 501
stop words, 385
storage, 587–617

access time and, 561, 566,
567, 578

architecture for, 587–588
archival, 561
atomicity and, 804–805
authorization and, 19
backup (see backup)
Big Data and, 472–482, 668

bit-level striping and, 571–572
blockchain (see blockchain

databases)
block-level striping and, 572
buffers and, 19, 604–610
byte amounts of, 18
checkpoints and, 920–922,

930
cloud-based, 28, 563,

992–993
column-oriented, 525–526,

588, 611–617, 734, 1182
crashes and, 607, 609–610
data access and, 910–912
data-dictionary, 602–604
data mining and, 27, 540–549
data-transfer rate and, 566,

569
in decision-support systems,

519–520
direct-access, 561
distributed (see distributed

databases)
distributed file systems for,

472–475, 489, 1003,
1019–1022

dumping and, 930–931
durability and, 804–805
elasticity of, 1010
file manager for, 19
file organization and,

588–602
force output and, 912
geographically distributed,

1026–1027
hard disks for, 26
integrity manager and, 19
key-value, 471, 473, 476–480,

1003, 1023–1031
of large objects, 594–595
log disks, 610
in main-memory databases,

588, 615–617
mirroring and, 571–573, 576,

577
non-volatile, 560, 562,

587–588, 804, 908–910,
930–931

offline, 561
online, 561
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outsourcing, 28
parallel (see parallel

databases)
physical (see physical storage

systems)
pointers and, 588, 591,

594–598, 601
primary, 561
punched cards for, 25
random access, 567, 578
recovery systems and,

908–912, 920–922,
930–931

redundant arrays of
independent disks, 562

response time and, 572
row-oriented, 611, 615
R-trees and, 1189–1190
scrubbing and, 575
secondary, 561
seek time and, 566, 566n2,

567, 692, 710
sequential access, 561, 567,

578
sharding and, 473, 475–476
SQL DDL and, 67
stable, 804–805, 908–910
striping data and, 571–572
structure and access-method

definition, 24
tertiary, 561
transaction manager for, 19
volatile, 560, 562, 804, 908
wallets and, 450
warehousing (see data

warehousing)
storage area network (SAN),

562, 563, 570, 934, 985
storage class memory (SCM),

569, 588, 948
storage manager, 18–20
store barrier, 983
stored functions/procedures,

1031
straggler nodes, 1060–1061
streaming data, 500–508

algebraic operations and, 504,
506–508

applications of, 500–502
continuous, 731

defined, 500
fault tolerance with,

1074–1076
processing, 468, 1070–1076
querying, 502–506,

1070–1071
routing of tuples and,

1071–1073
stream query languages,

503–506
strict two-phase locking protocol,

842, 843
string operations

aggregate, 91
escape, 83
JDBC and, 184–193
like, 82–83
lower function, 82
query result retrieval and, 188
similar to, 83
trim, 82
upper function, 82

stripe, 613–614
striping data, 571–572
strong entity sets, 259, 265–267
Structured Query Language. See

SQL
structured types, 158–160
stylesheets, 408
subject of triples, 372
sublinear scaleup, 973
sublinear speedup, 972
subschemas, 12
suffix, 1243
sum function, 91, 139, 228, 536,

723, 766, 781
superclass-subclass relationship,

272, 274
superkeys, 43–44, 257–258,

309–310, 312
supersteps, 510
superusers, 166
supply chains, 1266, 1278
support, 547
Support Vector Machine (SVM),

544–545
swap space, 929
Sybase IQ, 615
Sybil attacks, 1255, 1256, 1264,

1266

symmetric fragment-and-replicate
joins, 1046

symmetric-key encryption, 448
synchronous replication,

522–523, 1136
syntax, 199, 201–205, 689
sys context function, 173
system architecture. See

architecture
system catalogs, 602–604, 1009
system clock, 862
system error, 907
System R, 26, 65, 772–773,

772n3

table alias, 81
table functions, 200
table inheritance, 379–380
table partitioning, 601–602
tables

defined, 1011
dimension, 524
dirty page, 941–947
distributed hash, 1013
fact, 524
foreign, 1077
partition, 1011–1014
pivot-table, 226–227,

528–529
in relational model, 9, 10,

37–40
in SQL DDL, 14–15
transition, 210

tablets, 1011, 1025
tablet server, 1025
tab-separated values, 1222
tag library, 418
tags, 370–372, 406–407, 418,

440
tamper resistance, 1253–1255,

1259, 1260
tangles, 1278
tape storage, 561
Tapestry, 419
tasks, 1051–1052. See also

workflow
Tcl, 206
telecommunications, database

applications for, 3
temporal data, 347–351, 347n10
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temporal data indices, 675–676
temporal validity, 157
term frequency (TF), 384
termination of transactions, 806
terms, 384, 1149
ternary relationship sets, 249,

250, 284
tertiary storage, 561
test-and-set, 966
test suites, 1234–1235
text mining, 549
textual data, 382–387. See also

information retrieval
keyword queries, 383,

386–387
overview, 382
relevance ranking and,

383–386
Tez, 495
TF-IDF approach, 384–385
TF (term frequency), 384
then clause, 212
theta-join operations, 748–749
third normal form (3NF),

317–319, 333–335
Thomas’ write rule, 864–866
threads, 965, 982, 1062
3D-XPoint memory technology,

569
3NF decomposition algorithm,

334–335
3NF synthesis algorithm, 335
3NF (third normal form),

317–319, 333–335
three-phase commit (3PC)

protocol, 1107
three-tier architecture, 23
throughput

application design and,
1230–1232, 1234

in blockchain databases, 1274
harmonic mean of, 1231
improved, 808
parallel databases and, 971
range partitioning and, 1007
storage and, 572
system architectures and, 963,

971
transactions and, 808

throughput test, 1234

tickets and ticketing, 1133, 1279
tiles, 392
time intervals, 675–676
time-lock transactions, 1273
timestamps

concurrency control and,
861–866, 882

for data-storage systems, 480
defined, 154
distributed databases and,

1116–1118
generation of, 1117–1118
invalidation, 873n3
logical clock, 1118
logical counter and, 862
multiversion schemes and,

870–871
nondeterministic, 508n3
ordering scheme and,

862–864, 870–871, 1118
rollback and, 862–865
snapshot isolation and, 873,

873n2
system clock and, 862
Thomas’ write rule and,

864–866
transactions and, 825
tuples and, 502, 503, 505

time to completion, 1231
timezone, 154
TIN (triangulated irregular

network), 393
tokens, 1272
Tomcat Server, 416
top-down design, 273
topic-partition system, 1073
top-K optimization, 784
topographical information, 393
topological sorting, 817–818
toss-immediate strategy, 608
total failure, 909
total generalization, 275
total rollback, 853
total specialization, 275
TPC (Transaction Processing

Performance Council),
1232–1234

TPS (transactions per second),
1232

tracks, 564

training instances, 541, 543, 546
transaction control, 66
transaction coordinators, 1099,

1104, 1106–1107
transaction identifiers, 913
transaction managers, 18–21,

1098–1099
Transaction Processing

Performance Council
(TPC), 1232–1234

transactions, 799–828
aborted, 805–807, 819–820
actions following crashes,

923–925
active, 806
aggregation of, 1278
alternative models of

processing, 1108–1110
association rules and,

546–547
atomicity of, 20–21, 144, 481,

800–807, 819–821
begin/end operations and,

799
blockchain, 1261–1263,

1268–1271, 1273
cascadeless schedules and,

820–821
check constraints and, 800
commit protocols and,

1100–1110
committed (see committed

transactions)
commit work and, 143–145
compensating, 805
concept of, 799–801
concurrency control and (see

concurrency control)
concurrent, 1224–1227
consistency of, 20, 800, 802,

807–808, 821–823
crashes and, 800
cross-chain, 1273
data mining, 540–549
defined, 20, 799
distributed, 989–990,

1098–1100
double-spend, 1261–1262,

1264
durability of, 20–21, 800–807
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failure of, 806, 907, 909, 1100
force/no-force policy and, 927
gas concept for, 1270–1271
global, 988, 1098, 1132
in-doubt, 1105
integrity constraint violation

and, 151–152
isolation of, 800–804,

807–812, 819–826
killing, 807
local, 988, 1098, 1132
locks and (see locks)
log of (see log records)
long-duration, 890–891
minibatch, 1227
multiversion schemes and,

869–872, 1129–1131
observable external writes

and, 807
off-chain, 1275
online, 4, 521
performance tuning of,

1224–1227
persistent messaging and,

990, 1016, 1108–1110, 1137
read-only, 871
real-time systems, 894
recoverable schedules and,

819–820
recovery systems and, 21,

803, 805
remote backup systems and,

931–935
restarting, 807
rollback and, 143–145, 193,

196, 805–806, 922,
937–939, 945–946

scalability and, 471
serializability and, 812–819,

821–826
shadow-copy scheme and, 914
simple model for, 801–804
as SQL statements, 826–828
starved, 841, 853
states of, 805–807
steal/no-steal policy and, 927
storage structure and,

804–805
support for, 1028–1030
terminated, 806

time-lock, 1273
timestamps and, 861–866
two-phase commit protocol

and, 989, 1016, 1276
as unit of program execution,

799
update, 871
validation and, 866–869
wait-for graph and, 851–852,

1113–1114
write-ahead logging rule and,

926–929
write operations and, 826

transaction scaleup, 973
transactions-consistent snapshot,

1136
transaction-server systems,

963–968
transactions per second (TPS),

1232
transaction time, 347n10
TransactSQL, 199
transfer of control, 932–933
transformations

data warehousing and, 523
equivalence rules and,

747–752
examples of, 752–754
join ordering and, 754–755
query optimization and,

747–757
relational algebra and,

747–757
transition tables, 210
transition variables, 207
transitive closure, 214–216
transitive dependencies, 317n9,

356
transitivity rule, 321
translation, query processing

and, 689–690
translation table, 568
tree-like server systems, 977–978
tree-like topology, 977
tree protocol, 846–848
trees

B (see B-trees)
B+ (see B+-trees)
B-link, 886
decision-tree classifiers, 542

directory information, 1242,
1243

disjoint subtrees, 847
Generalized Search Tree, 670
k-d, 673–674
k-d B, 674
left-deep join, 773
LSM, 666–668, 1028,

1176–1182, 1215
Merkle, 1143–1146, 1268,

1269
Merkle-Patricia, 1269, 1275
multiple granularity and,

853–857
operator, 724, 1040
quadratic split heuristic and,

1189
quadtrees, 392, 674,

1186–1187
R, 663, 670, 674–676,

1187–1190
tree topology, 977
triangulated irregular network

(TIN), 393
triangulation, 388, 393
triggers

alter, 210
defined, 206
disable, 210
drop, 210
need for, 206–207
nonstandard syntax and, 212
recovery and, 212–213
in SQL, 207–210
transition tables and, 210
when not to use, 210–213

trim, 82
triple representation, 372–374
trivial functional dependencies,

311
true predicate, 76
true values, 96, 101
try-with-resources construct, 187,

187n3
tumbling window, 505
tuning. See performance tuning
tuning wizards, 1215
tuple-generating dependencies,

337
tuples
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aggregate functions and,
91–96

in Cartesian-product
operation, 51, 52

defined, 39
deletion and, 108–110, 613
duplicate, 103
eager generation of, 726, 727
insertion and, 110–111
join operation for, 52–53 (see

also joins)
lazy generation of, 727
logical routing of, 506–507,

1071–1073
ordering display of, 83–84
physical routing of,

1072–1073
pipelining and, 691–692,

724–731
query optimization and (see

query optimization)
query processing and (see

query processing)
ranking and, 219–223
reconstruction costs, 612–613
relational algebra and,

747–757
in relational model, 39, 41,

43–46
select operation for, 49
set operations and, 54–55,

85–89
streaming data and, 501–503,

505–507, 1071–1073
timestamps and, 502, 503,

505
updates and, 111–114, 613
views and, 137–143
windowing and, 223–226

tuple variables, 81
Turing-complete languages,

1258, 1269, 1270
two-factor authentication,

441–442
2NF (second normal form),

316n8, 341–342, 356
two-phase commit (2PC)

protocol, 989, 1016,
1101–1107, 1161,

1276

two-phase locking protocol,
841–844, 871–872,
1129–1131

two-tier architecture, 23
type inheritance, 378–379
types

blobs, 156, 193, 594, 652
clobs, 156, 193, 594, 652
complex (see complex data

types)
large-object, 156, 158
performance tuning and, 1226
reference, 380–381
user-defined, 158–160, 378

UML (Unified Modeling
Language), 288–291

unary operations, 48
undo operation

concurrency control and,
940–941

logical, 936–941
recovery systems and,

915–919, 922–925
rollback and, 916–919,

937–939
undo pass, 944–946
undo phase, 923–925
Unified Modeling Language

(UML), 288–291
uniform resource locators

(URLs), 405–406
union all, 86, 97, 217n8
union of sets, 54, 750
union operation, 53–54, 86–87,

228
union rule, 321
unique construct, 103, 147
unique key values, 160–161
unique-role assumption, 345
uniquifiers, 649–650
United States

address format used in, 250n1
identification numbers in, 447
primary keys in, 44–45
privacy laws in, 995

universal front end, 404
Universal Serial Bus (USB) slots,

560
universal Turing machines, 16

university databases
abstraction levels for, 11–12
application design and, 2–3,

5–7, 403–404, 431,
442–444

atomic domains and, 343
Big Data and, 499–500
blockchain, 1277
buffer-replacement strategies

and, 607–609
Cartesian product and, 76–79
combination of schemas and,

270–271
complex attributes and,

249–252
concurrency control and, 879
consistency constraints for, 6,

13–15
decomposition and, 305–307,

310–312
deletion requests and,

109–110
design issues for, 346–347
distributed, 988
entities in, 243–246,

265–268, 281–283
entity-relationship diagram

for, 263–264
full schema for, 1287–1288
functions and procedures for,

198–199
generalization and, 273–274
hash functions and,

1190–1193
incompleteness of, 243–244
indices and, 625–628, 664,

1017–1018
insertion requests and,

110–111
integrity constraints for,

145–153
mapping cardinalities and,

253–256
multivalued dependencies

and, 336
query optimization and,

751–755, 775–778
query processing and,

690–691, 704, 723–724
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recursive queries and,
213–214, 217–218

redundancy in, 243, 261–264,
269–270

relational algebra for, 49–58
relational model for, 9, 10,

37–47
relational schema for, 41–43,

303–305
relationship sets and,

246–249, 268–269,
282–283

roles and authorizations for,
167–169

sample data for, 1292–1298
specialization and, 271–273
SQL data definition for,

69–71, 1288–1292
SQL queries for, 16
storage and, 589–591,

597–601
transactions and, 144,

826–827
triggers and, 211–213
triple representation of,

373–374
unique key values for, 160–161
user interfaces for, 24
views and, 141–143

University of California,
Berkeley, 26

Unix, 83, 914
unknown values, 89–90, 96
unpartitioned site, 1056
unpin operations, 605
updatable result sets, 193
update-anywhere replication,

1137
update hot spots, 1225
updates

authorization and, 14, 170,
171

batch, 1221
on B+-trees, 641–649
complexity of, 647–649
database modification and,

111–114
data warehousing and, 523
deletion time and, 641,

645–649

EXEC SQL and, 197
hashing and, 624, 1197–1202
inconsistent, 1140–1142
indices and, 630–632
insertion time and, 641–645,

647, 649
lazy propagation of, 1122,

1136
log records and, 913–914,

917–918
lost, 874
LSM trees and, 1178–1179
performance tuning and,

1221–1223, 1225–1227
privileges and, 166–167
query optimization and,

784–785
reconciliation of, 1142–1143
replication and, 1015–1016
shipping SQL statements to

database and, 187
snapshot isolation and,

873–879
triggers and, 208, 212
tuples and, 111–114, 613
of views, 140–143

update transactions, 871
upgrade, 843
URLs (uniform resource

locators), 405–406
U.S. National Institute for

Standards and Technology,
288

USB (Universal Serial Bus) slots,
560

user-defined types, 158–160, 378
user-interface layer, 429
user interfaces

application architectures and,
429–434

application programs and,
403–405

back-end component of, 404
business-logic layer and, 430,

431
client-server architecture and,

404
client-side scripting and,

421–429

common gateway interface
standard and, 409

cookies and, 410–415, 411n2,
439–440

CRUD, 419
data access layer and,

430–434
disconnected operation and,

427–428
front-end component of, 404
HTTP (see HyperText

Transfer Protocol)
mobile application platforms

and, 428–429
for naÃ¯ve users, 24
presentation layer and, 429
responsive, 423
security and, 437–446
for sophisticated users, 24
storage and, 562–563
Web services (see World

Wide Web)
web services and, 426–429

user requirements in database
design, 17–18, 241–242,
274

utilization of resources, 808

validation
concurrency control and,

866–869, 882
distributed, 1119–1120
first committer wins and, 874
first updater wins and,

874–875
phases of, 866
recovery systems and, 916
snapshot isolation and,

874–875
test for, 868
view serializability and,

867–868
validation phase, 866
valid interval, 870
valid time, 157, 347–350,

347n10
value for entity set attributes, 245
value set of attributes, 249
varchar, 67–68, 70
variable-length records, 592–594
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variety of data, 468
VBScript, 417
vector data, 392–393
vector processing, 612
Vectorwise, 615
velocity of data, 468
verification of contents, 1145
version numbering, 1141
versions period for, 157
version-vector scheme,

1141–1142
Vertica, 615
vertical partitioning, 1004
view definition, 66
view equivalence, 818, 818n4
view level of abstraction, 10–12
view maintenance, 140, 779–782,

1138–1140, 1215–1216
views

authorization on, 169–170
with check option, 143
create view, 138–143, 162,

169
deferred maintenance and,

779, 1215–1216
defined, 137–138
deletion and, 142
immediate maintenance and,

779, 1215–1216
insertion and, 141–143
materialized (see materialized

views)
performance tuning and,

1215–1216
SQL queries and, 138–139
update of, 140–143

view serializability, 818–819,
867–868

virtual machines (VMs), 970,
991–994

virtual nodes, 1009–1010
Virtual Private Database (VPD),

173, 444–445
virtual processor approach,

1010n3
Visual Basic, 184, 206
visualization tools, 538–540
VMs (virtual machines), 970,

991–994

volatile storage, 560, 562, 804,
908

volume of data, 468
VPD (Virtual Private Database),

173, 444–445

wait-die scheme, 850, 1112
wait-for graphs, 851–852,

1113–1114
WAL (write-ahead logging),

926–929, 934
WANs (wide-area networks), 989
weak entity sets, 259–260,

267–268
wear leveling, 568
web application frameworks,

418–419
web-based services, database

applications for, 3
web crawlers, 383
Weblogic Application Server, 416
WebObjects, 419
web servers, 408–411
web services, 423–429

defined, 426
disconnected operation and,

427–428
interfacing with, 423–426
mobile application platforms,

428–429
web sessions, 408–411
WebSphere Application Server,

416
when clause, 212
when statement, 208
where clause

aggregate functions and,
91–96

basic SQL queries and, 71–79
between comparison, 84
on multiple relations, 74–79
in multiset relational algebra,

97
not between comparison, 84
null values and, 89–90
predicates, 84–85
query optimization and,

774–777
ranking and, 222
rename operation and, 79,

81–82

security and, 445
set operations and, 85–89
on single relation, 71–74
string operations and, 82–83
transactions and, 824,

826–827
while loop, 196
while statements, 201
wide-area networks (WANs), 989
wide column data representation,

366
wide-column stores, 1023
windows and windowing,

223–226, 502–506
WiredTiger, 1028
wireframe models, 390
with check option, 143
with clause, 105–106, 217
with data clause, 162
with grant option, 170–171
with recursive clause, 217
with timezone specification, 154
witness data, 1258
word count program, 483–486,

484n2, 490–492
workers, 1051
workflow

business-logic layer and, 431
database design and, 291–292
distributed transaction

processing and, 1110
management systems for, 990

workload, 783, 1215, 1217
workload compression, 1217
work stealing, 1048, 1062
World Wide Web

application design and,
405–411

cookies and, 410–415, 411n2,
439–440

encryption and, 447–453
growth of, 467
HTML and (see HyperText

Markup Language)
HTTP and (see HyperText

Transfer Protocol)
impact on database systems,

27
security and, 437–446
servers and sessions, 408–411
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URLs and, 405–406
WORM (write once, read-many)

disks, 561, 1022
wound-wait scheme, 850
wrappers, 1077, 1236
write-ahead logging (WAL),

926–929, 934
write amplification, 1180
write once, read-many (WORM)

disks, 561, 1022
write operations, 826
write-optimized index structures,

665–670
write phase, 866

write quorum, 1124
write skew, 876–877
write-write contention, 1225
W-timestamp, 862, 865, 870
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