
CHAP T E R

1

Introdu
tion

Pra
ti
e Exer
ises

1.1 This
hapter has des
ribed several major advantages of a database system. What

are two disadvantages?

Answer:

Two disadvantages asso
iated with database systems are listed below.

a. Setup of the database system requires more knowledge, money, skills, and

time.

b. The
omplexity of the database may result in poor performan
e.

1.2 List �ve ways in whi
h the type de
laration system of a language su
h as Java

or C++ di�ers from the data de�nition language used in a database.

Answer:

a. Exe
uting an a
tion in the DDL results in the
reation of an obje
t in the

database; in
ontrast, a programming language type de
laration is simply

an abstra
tion used in the program.

b. Database DDLs allow
onsisten
y
onstraints to be spe
i�ed, whi
h pro-

gramming language type systems generally do not allow. These in
lude

domain
onstraints and referential integrity
onstraints.

. Database DDLs support authorization, giving di�erent a

ess rights to

di�erent users. Programming language type systems do not provide su
h

prote
tion (at best, they prote
t attributes in a
lass from being a

essed

by methods in another
lass).

d. Programming language type systems are usually mu
h ri
her than the SQL

type system. Most databases support only basi
 types su
h as di�erent

types of numbers and strings, although some databases do support some

omplex types su
h as arrays and obje
ts.

1

2 Chapter 1 Introdu
tion

e. A database DDL is fo
used on spe
ifying types of attributes of relations;

in
ontrast, a programming language allows obje
ts and
olle
tions of ob-

je
ts to be
reated.

1.3 List six major steps that you would take in setting up a database for a parti
ular

enterprise.

Answer:

Six major steps in setting up a database for a parti
ular enterprise are:

�

De�ne the high-level requirements of the enterprise (this step generates a

do
ument known as the system requirements spe
i�
ation.)

�

De�ne a model
ontaining all appropriate types of data and data relation-

ships.

�

De�ne the integrity
onstraints on the data.

�

De�ne the physi
al level.

�

For ea
h known problem to be solved on a regular basis (e.g., tasks to be

arried out by
lerks or web users), de�ne a user interfa
e to
arry out the

task, and write the ne
essary appli
ation programs to implement the user

interfa
e.

�

Create/initialize the database.

1.4 Suppose you want to build a video site similar to YouTube. Consider ea
h of the

points listed in Se
tion 1.2 as disadvantages of keeping data in a �le-pro
essing

system. Dis
uss the relevan
e of ea
h of these points to the storage of a
tual

video data, and to metadata about the video, su
h as title, the user who uploaded

it, tags, and whi
h users viewed it.

Answer:

�

Data redundan
y and in
onsisten
y. This would be relevant to metadata to

some extent, although not to the a
tual video data, whi
h are not updated.

There are very few relationships here, and none of them
an lead to redun-

dan
y.

�

Di	
ulty in a

essing data. If video data are only a

essed through a few

prede�ned interfa
es, as is done in video sharing sites today, this will not

be a problem. However, if an organization needs to �nd video data based

on spe
i�
 sear
h
onditions (beyond simple keyword queries), if metadata

were stored in �les it would be hard to �nd relevant data without writing

appli
ation programs. Using a database would be important for the task of

�nding data.

�

Data isolation. Sin
e data are not usually updated, but instead newly
re-

ated, data isolation is not a major issue. Even the task of keeping tra
k of

Pra
ti
e Exer
ises 3

who has viewed what videos is (
on
eptually) append only, again making

isolation not a major issue. However, if authorization is added, there may

be some issues of
on
urrent updates to authorization information.

�

Integrity problems. It seems unlikely there are signi�
ant integrity
on-

straints in this appli
ation, ex
ept for primary keys. If the data are dis-

tributed, there may be issues in enfor
ing primary key
onstraints. Integrity

problems are probably not a major issue.

�

Atomi
ity problems. When a video is uploaded, metadata about the video

and the video should be added atomi
ally, otherwise there would be an

in
onsisten
y in the data. An underlying re
overy me
hanism would be

required to ensure atomi
ity in the event of failures.

�

Con
urrent-a

ess anomalies. Sin
e data are not updated,
on
urrent a

ess

anomalies would be unlikely to o

ur.

�

Se
urity problems. These would be an issue if the system supported autho-

rization.

1.5 Keyword queries used in web sear
h are quite di�erent from database queries.

List key di�eren
es between the two, in terms of the way the queries are spe
i�ed

and in terms of what is the result of a query.

Answer:

Queries used in the web are spe
i�ed by providing a list of keywords with no spe-

i�
 syntax. The result is typi
ally an ordered list of URLs, along with snippets

of information about the
ontent of the URLs. In
ontrast, database queries

have a spe
i�
 syntax allowing
omplex queries to be spe
i�ed. And in the rela-

tional world the result of a query is always a table.

CHAP T E R

2

Introdu
tion to the Relational

Model

Pra
ti
e Exer
ises

2.1 Consider the employee database of Figure 2.17. What are the appropriate pri-

mary keys?

Answer:

The appropriate primary keys are shown below:

employee (person name, street,
ity)

works (person name,
ompany name, salary)

ompany (
ompany name,
ity)

2.2 Consider the foreign-key
onstraint from the dept name attribute of instru
tor to

the department relation. Give examples of inserts and deletes to these relations

that
an
ause a violation of the foreign-key
onstraint.

Answer:

�

Inserting a tuple:

(10111, Ostrom, E
onomi
s, 110000)

employee (ID, person name, street,
ity)

works (ID,
ompany name, salary)

ompany (
ompany name,
ity)

Figure 2.17 Employee database.

5

6 Chapter 2 Introdu
tion to the Relational Model

into the instru
tor table, where the department table does not have the de-

partment E
onomi
s, would violate the foreign-key
onstraint.

�

Deleting the tuple:

(Biology, Watson, 90000)

from the department table, where at least one student or instru
tor tuple

has dept name as Biology, would violate the foreign-key
onstraint.

2.3 Consider the time slot relation. Given that a parti
ular time slot
an meet more

than on
e in a week, explain why day and start time are part of the primary key

of this relation, while end time is not.

Answer:

The attributes day and start time are part of the primary key sin
e a parti
ular

lass will most likely meet on several di�erent days and may even meet more

than on
e in a day. However, end time is not part of the primary key sin
e a

parti
ular
lass that starts at a parti
ular time on a parti
ular day
annot end at

more than one time.

2.4 In the instan
e of instru
tor shown in Figure 2.1, no two instru
tors have the

same name. From this,
an we
on
lude that name
an be used as a superkey

(or primary key) of instru
tor?

Answer:

No. For this possible instan
e of the instru
tor table the names are unique, but

in general this may not always be the
ase (unless the university has a rule that

two instru
tors
annot have the same name, whi
h is a rather unlikey s
enario).

2.5 What is the result of �rst performing the Cartesian produ
t of student and advi-

sor, and then performing a sele
tion operation on the result with the predi
ate

s id = ID? (Using the symboli
 notation of relational algebra, this query
an be

written as �

s id=ID

(student � advisor).)

Answer:

The result attributes in
lude all attribute values of student followed by all at-

tributes of advisor. The tuples in the result are as follows: For ea
h student who

has an advisor, the result has a row
ontaining that student's attributes, followed

by an s id attribute identi
al to the student's ID attribute, followed by the i id

attribute
ontaining the ID of the students advisor.

Students who do not have an advisor will not appear in the result. A student

who has more than one advisor will appear a
orresponding number of times

in the result.

2.6 Consider the employee database of Figure 2.17. Give an expression in the rela-

tional algebra to express ea
h of the following queries:

a. Find the name of ea
h employee who lives in
ity �Miami�.

Pra
ti
e Exer
ises 7

bran
h(bran
h name, bran
h
ity, assets)

ustomer (ID,
ustomer name,
ustomer street,
ustomer
ity)

loan (loan number, bran
h name, amount)

borrower (ID, loan number)

a

ount (a

ount number, bran
h name, balan
e)

depositor (ID, a

ount number)

Figure 2.18 Bank database.

b. Find the name of ea
h employee whose salary is greater than $100000.

. Find the name of ea
h employee who lives in �Miami� and whose salary

is greater than $100000.

Answer:

a. �

person name

(�

ity= �Miami�

(employee))

b. �

person name

(�

salary> 100000

(employee Æ works))

. �

person name

(�

ity= �Miami�á salary>100000

(employee Æ works))

2.7 Consider the bank database of Figure 2.18. Give an expression in the relational

algebra for ea
h of the following queries:

a. Find the name of ea
h bran
h lo
ated in �Chi
ago�.

b. Find the ID of ea
h borrower who has a loan in bran
h �Downtown�.

Answer:

a. �

bran
h name

(�

bran
h
ity= �Chi
ago�

(bran
h))

b. �

ID

(�

bran
h name= �Downtown�

(borrower Æ

borrower:loan number=loan:loan number

loan)).

2.8 Consider the employee database of Figure 2.17. Give an expression in the rela-

tional algebra to express ea
h of the following queries:

a. Find the ID and name of ea
h employee who does not work for �BigBank�.

b. Find the ID and name of ea
h employee who earns at least as mu
h as

every employee in the database.

Answer:

a. To �nd employees who do not work for BigBank, we �rst �nd all those

who do work for BigBank. Those are exa
tly the employees not part of the

8 Chapter 2 Introdu
tion to the Relational Model

desired result. We then use set di�eren
e to �nd the set of all employees

minus those employees that should not be in the result.

�

ID,person name

(employee)*

�

ID,person name

(employee Æ

employee:ID=works:ID

(�

ompany name=``BigBank

¨¨

(works)))

b. We use the same approa
h as in part a by �rst �nding those employess

who do not earn the highest salary, or, said di�erently, for whom some

other employee earns more. Sin
e this involves
omparing two employee

salary values, we need to referen
e the employee relation twi
e and there-

fore use renaming.

�

ID,person name

(employee)*

�

A:ID,A:person name

(�

A

(employee) Æ

A:salary<B:salary

�

B

(employee))

2.9 The division operator of relational algebra, ���, is de�ned as follows. Let r(R)

and s(S) be relations, and let S Ó R; that is, every attribute of s
hema S is

also in s
hema R. Given a tuple t, let t[S℄ denote the proje
tion of tuple t on

the attributes in S. Then r � s is a relation on s
hema R * S (that is, on the

s
hema
ontaining all attributes of s
hema R that are not in s
hema S). A tuple

t is in r � s if and only if both of two
onditions hold:

�

t is in �

R*S

(r)

�

For every tuple t

s

in s, there is a tuple t

r

in r satisfying both of the following:

a. t

r

[S℄ = t

s

[S℄

b. t

r

[R * S℄ = t

Given the above de�nition:

a. Write a relational algebra expression using the division operator to �nd

the IDs of all students who have taken all Comp. S
i.
ourses. (Hint:

proje
t takes to just ID and
ourse id, and generate the set of all Comp.

S
i.
ourse ids using a sele
t expression, before doing the division.)

b. Show how to write the above query in relational algebra, without using

division. (By doing so, you would have shown how to de�ne the division

operation using the other relational algebra operations.)

Answer:

a. �

ID

(�

ID,
ourse id

(takes) � �

ourse id

(�

dept name='Comp. S
i'

(
ourse))

b. The required expression is as follows:

Pra
ti
e Exer
ises 9

r } �

ID,
ourse id

(takes)

s } �

ourse id

(�

dept name='Comp. S
i'

(
ourse))

�

ID

(takes) * �

ID

((�

ID

(takes) � s) * r)

In general, let r(R) and s(S) be given, with S Ó R. Then we
an express

the division operation using basi
 relational algebra operations as follows:

r � s = �

R*S

(r) * �

R*S

((�

R*S

(r) � s) * �

R*S,S

(r))

To see that this expression is true, we observe that �

R*S

(r) gives us all

tuples t that satisfy the �rst
ondition of the de�nition of division. The

expression on the right side of the set di�eren
e operator

�

R*S

((�

R*S

(r) � s) * �

R*S,S

(r))

serves to eliminate those tuples that fail to satisfy the se
ond
ondition of

the de�nition of division. Let us see how it does so. Consider�

R*S

(r) � s.

This relation is on s
hema R, and pairs every tuple in �

R*S

(r) with every

tuple in s. The expression �

R*S,S

(r) merely reorders the attributes of r.

Thus, (�

R*S

(r) � s) * �

R*S,S

(r) gives us those pairs of tuples from

�

R*S

(r) and s that do not appear in r. If a tuple t

j

is in

�

R*S

((�

R*S

(r) � s) * �

R*S,S

(r))

then there is some tuple t

s

in s that does not
ombine with tuple t

j

to form

a tuple in r. Thus, t

j

holds a value for attributes R * S that does not appear

in r � s. It is these values that we eliminate from �

R*S

(r).

CHAP T E R

3

Introdu
tion to SQL

Pra
ti
e Exer
ises

3.1 Write the following queries in SQL, using the university s
hema. (We suggest

you a
tually run these queries on a database, using the sample data that we

provide on the web site of the book, db-book.
om. Instru
tions for setting up

a database, and loading sample data, are provided on the above web site.)

a. Find the titles of
ourses in the Comp. S
i. department that have 3
redits.

b. Find the IDs of all students who were taught by an instru
tor named Ein-

stein; make sure there are no dupli
ates in the result.

. Find the highest salary of any instru
tor.

d. Find all instru
tors earning the highest salary (there may be more than

one with the same salary).

e. Find the enrollment of ea
h se
tion that was o�ered in Fall 2017.

f. Find the maximum enrollment, a
ross all se
tions, in Fall 2017.

g. Find the se
tions that had the maximum enrollment in Fall 2017.

Answer:

a. Find the titles of
ourses in the Comp. S
i. department that have 3
redits.

sele
t title

from
ourse

where dept name = 'Comp. S
i.' and
redits = 3

b. Find the IDs of all students who were taught by an instru
tor named Ein-

stein; make sure there are no dupli
ates in the result.

This query
an be answered in several di�erent ways. One way is as fol-

lows.

11

db-book.com

12 Chapter 3 Introdu
tion to SQL

sele
t distin
t takes.ID

from takes, instru
tor, tea
hes

where takes.
ourse id = tea
hes.
ourse id and

takes.se
 id = tea
hes.se
 id and

takes.semester = tea
hes.semester and

takes.year = tea
hes.year and

tea
hes.id = instru
tor.id and

instru
tor.name = 'Einstein'

. Find the highest salary of any instru
tor.

sele
t max(salary)

from instru
tor

d. Find all instru
tors earning the highest salary (there may be more than

one with the same salary).

sele
t ID, name

from instru
tor

where salary = (sele
t max(salary) from instru
tor)

e. Find the enrollment of ea
h se
tion that was o�ered in Fall 2017.

sele
t
ourse id, se
 id,

(sele
t
ount(ID)

from takes

where takes.year = se
tion.year

and takes.semester = se
tion.semester

and takes.
ourse id = se
tion.
ourse id

and takes.se
 id = se
tion.se
 id)

as enrollment

from se
tion

where semester = 'Fall'

and year = 2017

Note that if the result of the subquery is empty, the aggregate fun
tion

ount returns a value of 0.

One way of writing the query might appear to be:

Pra
ti
e Exer
ises 13

sele
t takes.
ourse id, takes.se
 id,
ount(ID)

from se
tion, takes

where takes.
ourse id = se
tion.
ourse id

and takes.se
 id = se
tion.se
 id

and takes.semester = se
tion.semester

and takes.year = se
tion.year

and takes.semester = 'Fall'

and takes.year = 2017

group by takes.
ourse id, takes.se
 id

But note that if a se
tion does not have any students taking it, it would

not appear in the result. One way of ensuring su
h a se
tion appears with

a
ount of 0 is to use the outer join operation,
overed in Chapter 4.

f. Find the maximum enrollment, a
ross all se
tions, in Fall 2017.

One way of writing this query is as follows:

sele
t max(enrollment)

from (sele
t
ount(ID) as enrollment

from se
tion, takes

where takes.year = se
tion.year

and takes.semester = se
tion.semester

and takes.
ourse id = se
tion.
ourse id

and takes.se
 id = se
tion.se
 id

and takes.semester = 'Fall'

and takes.year = 2017

group by takes.
ourse id, takes.se
 id)

As an alternative to using a nested subquery in the from
lause, it is pos-

sible to use a with
lause, as illustrated in the answer to the next part of

this question.

A subtle issue in the above query is that if no se
tion had any enroll-

ment, the answer would be empty, not 0. We
an use the alternative using

a subquery, from the previous part of this question, to ensure the
ount is

0 in this
ase.

g. Find the se
tions that had the maximum enrollment in Fall 2017.

The following answer uses a with
lause, simplifying the query.

14 Chapter 3 Introdu
tion to SQL

with se
 enrollment as (

sele
t takes.
ourse id, takes.se
 id,
ount(ID) as enrollment

from se
tion, takes

where takes.year = se
tion.year

and takes.semester = se
tion.semester

and takes.
ourse id = se
tion.
ourse id

and takes.se
 id = se
tion.se
 id

and takes.semester = 'Fall'

and takes.year = 2017

group by takes.
ourse id, takes.se
 id)

sele
t
ourse id, se
 id

from se
 enrollment

where enrollment = (sele
t max(enrollment) from se
 enrollment)

It is also possible to write the query without the with
lause, but the sub-

query to �nd enrollment would get repeated twi
e in the query.

While not in
orre
t to add distin
t in the
ount, it is not ne
essary in light

of the primary key
onstraint on takes.

3.2 Suppose you are given a relation grade points(grade, points) that provides a
on-

version from letter grades in the takes relation to numeri
 s
ores; for example,

an �A� grade
ould be spe
i�ed to
orrespond to 4 points, an �A*� to 3.7 points,

a �B+� to 3.3 points, a �B� to 3 points, and so on. The grade points earned by a

student for a
ourse o�ering (se
tion) is de�ned as the number of
redits for the

ourse multiplied by the numeri
 points for the grade that the student re
eived.

Given the pre
eding relation, and our university s
hema, write ea
h of the

following queries in SQL. You may assume for simpli
ity that no takes tuple has

the null value for grade.

a. Find the total grade points earned by the student with ID �12345�, a
ross

all
ourses taken by the student.

b. Find the grade point average (GPA) for the above student, that is, the total

grade points divided by the total
redits for the asso
iated
ourses.

. Find the ID and the grade-point average of ea
h student.

d. Now re
onsider your answers to the earlier parts of this exer
ise under

the assumption that some grades might be null. Explain whether your

solutions still work and, if not, provide versions that handle nulls properly.

Answer:

a. Find the total grade-points earned by the student with ID �12345�, a
ross

all
ourses taken by the student.

Pra
ti
e Exer
ises 15

sele
t sum(
redits * points)

from takes,
ourse, grade points

where takes.grade = grade points.grade

and takes.
ourse id =
ourse.
ourse id

and ID = �12345�

In the above query, a student who has not taken any
ourse would not

have any tuples, whereas we would expe
t to get 0 as the answer. One way

of �xing this problem is to use the outer join operation, whi
h we study

later in Chapter 4. Another way to ensure that we get 0 as the answer is

via the following query:

(sele
t sum(
redits * points)

from takes,
ourse, grade points

where takes.grade = grade points.grade

and takes.
ourse id =
ourse.
ourse id

and ID= �12345�)

union

(sele
t 0

from student

where ID = �12345� and

not exists (sele
t * from takes where ID = �12345�))

b. Find the grade point average (GPA) for the above student, that is, the total

grade-points divided by the total
redits for the asso
iated
ourses.

sele
t sum(
redits * points)/sum(
redits) as GPA

from takes,
ourse, grade points

where takes.grade = grade points.grade

and takes.
ourse id =
ourse.
ourse id

and ID= �12345�

As before, a student who has not taken any
ourse would not appear in

the above result; we
an ensure that su
h a student appears in the result by

using themodi�ed query from the previous part of this question. However,

an additional issue in this
ase is that the sum of
redits would also be 0,

resulting in a divide-by-zero
ondition. In fa
t, the only meaningful way

of de�ning the GPA in this
ase is to de�ne it as null. We
an ensure that

su
h a student appears in the result with a nullGPA by adding the following

union
lause to the above query.

union

(sele
t null as GPA

from student

where ID = �12345� and

not exists (sele
t * from takes where ID = �12345�))

16 Chapter 3 Introdu
tion to SQL

. Find the ID and the grade-point average of ea
h student.

sele
t ID, sum(
redits * points)/sum(
redits) as GPA

from takes,
ourse, grade points

where takes.grade = grade points.grade

and takes.
ourse id =
ourse.
ourse id

group by ID

Again, to handle students who have not taken any
ourse, we would have

to add the following union
lause:

union

(sele
t ID, null as GPA

from student

where not exists (sele
t * from takes where takes.ID = student.ID))

d. Now re
onsider your answers to the earlier parts of this exer
ise under

the assumption that some grades might be null. Explain whether your

solutions still work and, if not, provide versions that handle nulls properly.

The queries listed above all in
lude a test of equality on grade between

grade points and takes. Thus, for any takes tuple with a null grade, that

student's
ourse would be eliminated from the rest of the
omputation

of the result. As a result, the
redits of su
h
ourses would be eliminated

also, and thus the queries would return the
orre
t answer even if some

grades are null.

3.3 Write the following inserts, deletes, or updates in SQL, using the university

s
hema.

a. In
rease the salary of ea
h instru
tor in the Comp. S
i. department by

10%.

b. Delete all
ourses that have never been o�ered (i.e., do not o

ur in the

se
tion relation).

. Insert every student whose tot
red attribute is greater than 100 as an in-

stru
tor in the same department, with a salary of $10,000.

Answer:

a. In
rease the salary of ea
h instru
tor in the Comp. S
i. department by

10%.

update instru
tor

set salary = salary * 1.10

where dept name = �Comp. S
i.�

b. Delete all
ourses that have never been o�ered (that is, do not o

ur in

the se
tion relation).

Pra
ti
e Exer
ises 17

person (driver id, name, address)

ar (li
ense plate, model, year)

a

ident (report number, year, lo
ation)

owns (driver id, li
ense plate)

parti
ipated (report number, li
ense plate, driver id, damage amount)

Figure 3.17 Insuran
e database

delete from
ourse

where
ourse id not in

(sele
t
ourse id from se
tion)

. Insert every student whose tot
red attribute is greater than 100 as an in-

stru
tor in the same department, with a salary of $10,000.

insert into instru
tor

sele
t ID, name, dept name, 10000

from student

where tot
red > 100

3.4 Consider the insuran
e database of Figure 3.17, where the primary keys are

underlined. Constru
t the following SQL queries for this relational database.

a. Find the total number of people who owned
ars that were involved in

a

idents in 2017.

b. Delete all year-2010
ars belonging to the person whose ID is �12345�.

Answer:

a. Find the total number of people who owned
ars that were involved in

a

idents in 2017.

Note: This is not the same as the total number of a

idents in 2017. We

must
ount people with several a

idents only on
e. Furthermore, note

that the question asks for owners, and it might be that the owner of the

ar was not the driver a
tually involved in the a

ident.

sele
t
ount (distin
t person.driver id)

from a

ident, parti
ipated, person, owns

where a

ident.report number = parti
ipated.report number

and owns.driver id = person.driver id

and owns.li
ense plate = parti
ipated.li
ense plate

and year = 2017

18 Chapter 3 Introdu
tion to SQL

b. Delete all year-2010
ars belonging to the person whose ID is �12345�.

delete
ar

where year = 2010 and li
ense plate in

(sele
t li
ense plate

from owns o

where o.driver id = �12345�)

Note: The owns, a

ident and parti
ipated re
ords asso
iated with the

deleted
ars still exist.

3.5 Suppose that we have a relation marks(ID, s
ore) and we wish to assign grades

to students based on the s
ore as follows: grade F if s
ore < 40, grade C if 40

f s
ore < 60, grade B if 60 f s
ore < 80, and grade A if 80 f s
ore. Write SQL

queries to do the following:

a. Display the grade for ea
h student, based on the marks relation.

b. Find the number of students with ea
h grade.

Answer:

a. Display the grade for ea
h student, based on the marks relation.

sele
t ID,

ase

when s
ore < 40 then 'F'

when s
ore < 60 then 'C'

when s
ore < 80 then 'B'

else 'A'

end

from marks

b. Find the number of students with ea
h grade.

Pra
ti
e Exer
ises 19

with grades as

(

sele
t ID,

ase

when s
ore < 40 then 'F'

when s
ore < 60 then 'C'

when s
ore < 80 then 'B'

else 'A'

end as grade

from marks

)

sele
t grade,
ount(ID)

from grades

group by grade

As an alternative, the with
lause
an be removed, and instead the de�ni-

tion of grades
an be made a subquery of the main query.

3.6 The SQL like operator is
ase sensitive (in most systems), but the lower() fun
-

tion on strings
an be used to perform
ase-insensitive mat
hing. To show how,

write a query that �nds departments whose names
ontain the string �s
i� as a

substring, regardless of the
ase.

Answer:

sele
t dept name

from department

where lower(dept name) like '%s
i%'

3.7 Consider the SQL query

sele
t p.a1

from p, r1, r2

where p.a1 = r1.a1 or p.a1 = r2.a1

Under what
onditions does the pre
eding query sele
t values of p:a1 that are

either in r1 or in r2? Examine
arefully the
ases where either r1 or r2 may be

empty.

Answer:

The query sele
ts those values of p.a1 that are equal to some value of r1.a1 or

r2.a1 if and only if both r1 and r2 are non-empty. If one or both of r1 and r2 are

empty, the Cartesian produ
t of p, r1 and r2 is empty, hen
e the result of the

query is empty. If p itself is empty, the result is empty.

3.8 Consider the bank database of Figure 3.18, where the primary keys are under-

lined. Constru
t the following SQL queries for this relational database.

20 Chapter 3 Introdu
tion to SQL

bran
h(bran
h name, bran
h
ity, assets)

ustomer (ID,
ustomer name,
ustomer street,
ustomer
ity)

loan (loan number, bran
h name, amount)

borrower (ID, loan number)

a

ount (a

ount number, bran
h name, balan
e)

depositor (ID, a

ount number)

Figure 3.18 Banking database.

a. Find the ID of ea
h
ustomer of the bank who has an a

ount but not a

loan.

b. Find the ID of ea
h
ustomer who lives on the same street and in the same

ity as
ustomer �12345�.

. Find the name of ea
h bran
h that has at least one
ustomer who has an

a

ount in the bank and who lives in �Harrison�.

Answer:

a. Find the ID of ea
h
ustomer of the bank who has an a

ount but not a

loan.

(sele
t ID

from depositor)

ex
ept

(sele
t ID

from borrower)

b. Find the ID of ea
h
ustomer who lives on the same street and in the same

ity as
ustomer �12345�.

sele
t F.ID

from
ustomer as F,
ustomer as S

where F.
ustomer street = S.
ustomer street

and F.
ustomer
ity = S.
ustomer
ity

and S.
ustomer id = �12345�

. Find the name of ea
h bran
h that has at least one
ustomer who has an

a

ount in the bank and who lives in �Harrison�.

Pra
ti
e Exer
ises 21

sele
t distin
t bran
h name

from a

ount, depositor,
ustomer

where
ustomer.id = depositor.id

and depositor.a

ount number = a

ount.a

ount number

and
ustomer
ity = 'Harrison'

3.9 Consider the relational database of Figure 3.19, where the primary keys are

underlined. Give an expression in SQL for ea
h of the following queries.

a. Find the ID, name, and
ity of residen
e of ea
h employee who works for

�First Bank Corporation�.

b. Find the ID, name, and
ity of residen
e of ea
h employee who works for

�First Bank Corporation� and earns more than $10000.

. Find the ID of ea
h employee who does not work for �First Bank Corpo-

ration�.

d. Find the ID of ea
h employee who earns more than every employee of

�Small Bank Corporation�.

e. Assume that
ompanies may be lo
ated in several
ities. Find the name

of ea
h
ompany that is lo
ated in every
ity in whi
h �Small Bank Cor-

poration� is lo
ated.

f. Find the name of the
ompany that has the most employees (or
ompa-

nies, in the
ase where there is a tie for the most).

g. Find the name of ea
h
ompany whose employees earn a higher salary,

on average, than the average salary at �First Bank Corporation�.

Answer:

a. Find the ID, name, and
ity of residen
e of ea
h employee who works for

�First Bank Corporation�.

employee (ID, person name, street,
ity)

works (ID,
ompany name, salary)

ompany (
ompany name,
ity)

manages (ID, manager id)

Figure 3.19 Employee database.

22 Chapter 3 Introdu
tion to SQL

sele
t e.ID, e.person name,
ity

from employee as e, works as w

where w.
ompany name = �First Bank Corporation� and

w.ID = e.ID

b. Find the ID, name, and
ity of residen
e of ea
h employee who works for

�First Bank Corporation� and earns more than $10000.

sele
t *

from employee

where ID in

(sele
t ID

from works

where
ompany name = �First Bank Corporation� and salary > 10000)

This
ould be written also in the style of the answer to part a.

. Find the ID of ea
h employee who does not work for �First Bank Corpo-

ration�.

sele
t ID

from works

where
ompany name <> �First Bank Corporation�

If one allows people to appear in employee without appearing also in

works, the solution is slightly more
ompli
ated. An outer join as dis-

ussed in Chapter 4
ould be used as well.

sele
t ID

from employee

where ID not in

(sele
t ID

from works

where
ompany name = �First Bank Corporation�)

d. Find the ID of ea
h employee who earns more than every employee of

�Small Bank Corporation�.

sele
t ID

from works

where salary > all

(sele
t salary

from works

where
ompany name = �Small Bank Corporation�)

If peoplemay work for several
ompanies and wewish to
onsider the total

earnings of ea
h person, the problem is more
omplex. But note that the

Pra
ti
e Exer
ises 23

fa
t that ID is the primary key for works implies that this
annot be the

ase.

e. Assume that
ompanies may be lo
ated in several
ities. Find the name

of ea
h
ompany that is lo
ated in every
ity in whi
h �Small Bank Cor-

poration� is lo
ated.

sele
t S.
ompany name

from
ompany as S

where not exists ((sele
t
ity

from
ompany

where
ompany name = �Small Bank Corporation�)

ex
ept

(sele
t
ity

from
ompany as T

where S.
ompany name = T.
ompany name))

f. Find the name of the
ompany that has the most employees (or
ompa-

nies, in the
ase where there is a tie for the most).

sele
t
ompany name

from works

group by
ompany name

having
ount (distin
t ID) >= all

(sele
t
ount (distin
t ID)

from works

group by
ompany name)

g. Find the name of ea
h
ompany whose employees earn a higher salary,

on average, than the average salary at �First Bank Corporation�.

sele
t
ompany name

from works

group by
ompany name

having avg (salary) > (sele
t avg (salary)

from works

where
ompany name = �First Bank Corporation�)

3.10 Consider the relational database of Figure 3.19. Give an expression in SQL for

ea
h of the following:

a. Modify the database so that the employee whose ID is �12345� now lives

in �Newtown�.

b. Give ea
h manager of �First Bank Corporation� a 10 per
ent raise unless

the salary be
omes greater than $100000; in su
h
ases, give only a 3

per
ent raise.

24 Chapter 3 Introdu
tion to SQL

Answer:

a. Modify the database so that the employee whose ID is �12345� now lives

in �Newtown�.

update employee

set
ity = �Newtown�

where ID = �12345�

b. Give ea
h manager of �First Bank Corporation� a 10 per
ent raise unless

the salary be
omes greater than $100000; in su
h
ases, give only a 3

per
ent raise.

update works T

set T.salary = T.salary * 1.03

where T .ID in (sele
t manager id

from manages)

and T.salary * 1.1 > 100000

and T.
ompany name = �First Bank Corporation�

update works T

set T.salary = T.salary * 1.1

where T .ID in (sele
t manager id

from manages)

and T.salary * 1.1 <= 100000

and T.
ompany name = �First Bank Corporation�

The above updates would give di�erent results if exe
uted in the opposite

order. We give below a safer solution using the
ase statement.

update works T

set T.salary = T.salary <

(
ase

when (T.salary < 1:1 > 100000) then 1.03

else 1.1

end)

where T.ID in (sele
t manager id

from manages) and

T.
ompany name = �First Bank Corporation�

CHAP T E R

4

Intermediate SQL

Pra
ti
e Exer
ises

4.1 Consider the following SQL query that seeks to �nd a list of titles of all
ourses

taught in Spring 2017 along with the name of the instru
tor.

sele
t name, title

from instru
tor natural join tea
hes natural join se
tion natural join
ourse

where semester = �Spring� and year = 2017

What is wrong with this query?

Answer:

Although the query is synta
ti
ally
orre
t, it does not
ompute the expe
ted

answer be
ause dept name is an attribute of both
ourse and instru
tor. As a

result of the natural join, results are shown only when an instru
tor tea
hes a

ourse in her or his own department.

4.2 Write the following queries in SQL:

a. Display a list of all instru
tors, showing ea
h instru
tor's ID and the num-

ber of se
tions taught. Make sure to show the number of se
tions as 0 for

instru
tors who have not taught any se
tion. Your query should use an

outer join, and should not use subqueries.

b. Write the same query as in part a, but using a s
alar subquery and not

using outer join.

. Display the list of all
ourse se
tions o�ered in Spring 2018, along with

the ID and name of ea
h instru
tor tea
hing the se
tion. If a se
tion has

more than one instru
tor, that se
tion should appear as many times in

the result as it has instru
tors. If a se
tion does not have any instru
tor,

it should still appear in the result with the instru
tor name set to ���.

25

26 Chapter 4 Intermediate SQL

d. Display the list of all departments, with the total number of instru
tors

in ea
h department, without using subqueries. Make sure to show depart-

ments that have no instru
tors, and list those departments with an instru
-

tor
ount of zero.

Answer:

a. Display a list of all instru
tors, showing ea
h instru
tor's ID and the num-

ber of se
tions taught. Make sure to show the number of se
tions as 0 for

instru
tors who have not taught any se
tion. Your query should use an

outer join, and should not use subqueries.

sele
t ID,
ount(se
 id) as Number of se
tions

from instru
tor natural left outer join tea
hes

group by ID

The above query should not be written using
ount(*) sin
e that would

ount null values also. It
ould be written using any attribute from tea
hes

whi
h does not o

ur in instru
tor, whi
h would be
orre
t although it

may be
onfusing to the reader. (Attributes that o

ur in instru
tor would

not be null even if the instru
tor has not taught any se
tion.)

b. Write the same query as above, but using a s
alar subquery, and not using

outerjoin.

sele
t ID,

(sele
t
ount(*) as Number of se
tions

from tea
hes T where T.id = I.id)

from instru
tor I

. Display the list of all
ourse se
tions o�ered in Spring 2018, along with

the ID and name of ea
h instru
tor tea
hing the se
tion. If a se
tion has

more than one instru
tor, that se
tion should appear as many times in

the result as it has instru
tors. If a se
tion does not have any instru
tor,

it should still appear in the result with the instru
tor name set to ���.

sele
t
ourse id, se
 id, ID,

de
ode(name, null, '*', name) as name

from (se
tion natural left outer join tea
hes)

natural left outer join instru
tor

where semester='Spring' and year= 2018

The query may also be written using the
oales
e operator, by repla
ing

de
ode(..) with
oales
e(name, '*'). A more
omplex version of the query

an be written using union of join result with another query that uses a

subquery to �nd
ourses that do not mat
h; refer to Exer
ise 4.3.

Exer
ises 27

d. Display the list of all departments, with the total number of instru
tors

in ea
h department, without using subqueries. Make sure to show depart-

ments that have no instru
tors, and list those departments with an instru
-

tor
ount of zero.

sele
t dept name,
ount(ID)

from department natural left outer join instru
tor

group by dept name

4.3 Outer join expressions
an be
omputed in SQL without using the SQL outer

join operation. To illustrate this fa
t, show how to rewrite ea
h of the following

SQL queries without using the outer join expression.

a. sele
t * from student natural left outer join takes

b. sele
t * from student natural full outer join takes

Answer:

a. sele
t * from student natural left outer join takes

an be rewritten as:

sele
t * from student natural join takes

union

sele
t ID, name, dept name, tot
red, null, null, null, null, null

from student S1 where not exists

(sele
t ID from takes T1 where T1.id = S1.id)

b. sele
t * from student natural full outer join takes

an be rewritten as:

(sele
t * from student natural join takes)

union

(sele
t ID, name, dept name, tot
red, null, null, null, null, null

from student S1

where not exists

(sele
t ID from takes T1 where T1.id = S1.id))

union

(sele
t ID, null, null, null,
ourse id, se
 id, semester, year, grade

from takes T1

where not exists

(sele
t ID from student S1 whereT1.id = S1.id))

4.4 Suppose we have three relations r(A, B), s(B, C), and t(B, D), with all attributes

de
lared as not null.

a. Give instan
es of relations r, s, and t su
h that in the result of

(r natural left outer join s) natural left outer join t

attribute C has a null value but attribute D has a non-null value.

28 Chapter 4 Intermediate SQL

b. Are there instan
es of r, s, and t su
h that the result of

r natural left outer join (s natural left outer join t)

has a null value for C but a non-null value for D? Explain why or why not.

Answer:

a. Consider r = (a, b), s = (b1,
1), t = (b, d). The se
ond expression would

give (a, b, null, d).

b. Sin
e s natural left outer join t is
omputed �rst, the absen
e of nulls is

both s and t implies that ea
h tuple of the result
an have D null, but C

an never be null.

4.5 Testing SQL queries: To test if a query spe
i�ed in English has been
orre
tly

written in SQL, the SQL query is typi
ally exe
uted on multiple test databases,

and a human
he
ks if the SQL query result on ea
h test database mat
hes the

intention of the spe
i�
ation in English.

a. In Se
tion 4.1.1 we saw an example of an erroneous SQL query whi
h was

intended to �nd whi
h
ourses had been taught by ea
h instru
tor; the

query
omputed the natural join of instru
tor, tea
hes, and
ourse, and as

a result it unintentionally equated the dept name attribute of instru
tor and

ourse. Give an example of a dataset that would help
at
h this parti
ular

error.

b. When
reating test databases, it is important to
reate tuples in referen
ed

relations that do not have any mat
hing tuple in the referen
ing relation

for ea
h foreign key. Explain why, using an example query on the univer-

sity database.

. When
reating test databases, it is important to
reate tuples with null

values for foreign-key attributes, provided the attribute is nullable (SQL

allows foreign-key attributes to take on null values, as long as they are not

part of the primary key and have not been de
lared as not null). Explain

why, using an example query on the university database.

Hint: Use the queries from Exer
ise 4.2.

Answer:

a. Consider the
ase where a professor in the Physi
s department tea
hes

an Ele
. Eng.
ourse. Even though there is a valid
orresponding entry in

tea
hes, it is lost in the natural join of instru
tor, tea
hes and
ourse, sin
e

the instru
tor's department name does not mat
h the department name

of the
ourse. A dataset
orresponding to the same is:

Exer
ises 29

instru
tor = {(�12345�,'Gauss', 'Physi
s', 10000)}

tea
hes = {(�12345�, 'EE321', 1, 'Spring', 2017)}

ourse = {('EE321', 'Magnetism', 'Ele
. Eng.', 6)}

b. The query in question 4.2(a) is a good example for this. Instru
tors who

have not taught a single
ourse should have number of se
tions as 0 in

the query result. (Many other similar examples are possible.)

. Consider the query

sele
t * from tea
hes natural join instru
tor;

In this query, we would lose some se
tions if tea
hes.ID is allowed to be

null and su
h tuples exist. If, just be
ause tea
hes.ID is a foreign key to

instru
tor, we did not
reate su
h a tuple, the error in the above query

would not be dete
ted.

4.6 Show how to de�ne the view student grades (ID, GPA) giving the grade-point

average of ea
h student, based on the query in Exer
ise 3.2; re
all that we used

a relation grade points(grade, points) to get the numeri
 points asso
iated with

a letter grade. Make sure your view de�nition
orre
tly handles the
ase of null

values for the grade attribute of the takes relation.

Answer:

We should not add
redits for
ourses with a null grade; further, to
orre
tly

handle the
ase where a student has not
ompleted any
ourse, we should make

sure we don't divide by zero, and should instead return a null value.

We break the query into a subquery that �nds sum of
redits and sum of

redit-grade-points, taking null grades into a

ount The outer query divides the

above to get the average, taking
are of divide by zero.

reate view student grades(ID, GPA) as

sele
t ID,
redit points / de
ode(
redit sum, 0, null,
redit sum)

from ((sele
t ID, sum(de
ode(grade, null, 0,
redits)) as
redit sum,

sum(de
ode(grade, null, 0,
redits*points)) as
redit points

from(takes natural join
ourse) natural left outer join grade points

group by ID)

union

sele
t ID, null, null

from student

where ID not in (sele
t ID from takes))

The view de�ned above takes
are of null grades by
onsidering the
redit points

to be 0 and not adding the
orresponding
redits in
redit sum.

30 Chapter 4 Intermediate SQL

employee (ID, person name, street,
ity)

works (ID,
ompany name, salary)

ompany (
ompany name,
ity)

manages (ID, manager id)

Figure 4.12 Employee database.

The query above ensures that a student who has not taken any
ourse with

non-null
redits, and has
redit sum = 0 gets a GPA of null. This avoids the

division by zero, whi
h would otherwise have resulted.

In systems that do note support de
ode, an alternative is the
ase
onstru
t.

Using
ase, the solution would be written as follows:

reate view student grades(ID, GPA) as

sele
t ID,
redit points / (
ase when
redit sum = 0 then null

else
redit sum end)

from ((sele
t ID, sum (
ase when grade is null then 0

else
redits end) as
redit sum,

sum (
ase when grade is null then 0

else
redits*points end) as
redit points

from(takes natural join
ourse) natural left outer join grade points

group by ID)

union

sele
t ID, null, null

from student

where ID not in (sele
t ID from takes))

An alternative way of writing the above query would be to use student natural

left outer join gpa, in order to
onsider students who have not taken any
ourse.

4.7 Consider the employee database of Figure 4.12. Give an SQL DDL de�nition

of this database. Identify referential-integrity
onstraints that should hold, and

in
lude them in the DDL de�nition.

Answer:

Plese see ??.

Note that alternative data types are possible. Other
hoi
es for not null at-

tributes may be a

eptable.

4.8 As dis
ussed in Se
tion 4.4.8, we expe
t the
onstraint �an instru
tor
annot

tea
h se
tions in two di�erent
lassrooms in a semester in the same time slot�

to hold.

Exer
ises 31

reate table employee

(ID numeri
(6,0),

person name
har(20),

street
har(30),

ity
har(30),

primary key (ID))

reate table works

(ID numeri
(6,0),

ompany name
har(15),

salary integer,

primary key (ID),

foreign key (ID) referen
es employee,

foreign key (
ompany name) referen
es
ompany)

reate table
ompany

(
ompany name
har(15),

ity
har(30),

primary key (
ompany name))

reate table manages

(ID numeri
(6,0),

manager iid numeri
(6,0),

primary key (ID),

foreign key (ID) referen
es employee,

foreign key (manager iid) referen
es employee(ID))

Figure 4.101 Figure for Exer
ise 4.7.

a. Write an SQL query that returns all (instru
tor, se
tion)
ombinations that

violate this
onstraint.

b. Write an SQL assertion to enfor
e this
onstraint (as dis
ussed in Se
-

tion 4.4.8,
urrent generation database systems do not support su
h as-

sertions, although they are part of the SQL standard).

Answer:

32 Chapter 4 Intermediate SQL

a. Query:

sele
t ID, name, se
 id, semester, year, time slot id,

ount(distin
t building, room number)

from instru
tor natural join tea
hes natural join se
tion

group by (ID, name, se
 id, semester, year, time slot id)

having
ount(building, room number) > 1

Note that the distin
t keyword is required above. This is to allow two dif-

ferent se
tions to run
on
urrently in the same time slot and are taught

by the same instru
tor without being reported as a
onstraint violation.

b. Query:

reate assertion
he
k not exists

(sele
t ID, name, se
 id, semester, year, time slot id,

ount(distin
t building, room number)

from instru
tor natural join tea
hes natural join se
tion

group by (ID, name, se
 id, semester, year, time slot id)

having
ount(building, room number) > 1)

4.9 SQL allows a foreign-key dependen
y to refer to the same relation, as in the

following example:

reate table manager

(employee ID
har(20),

manager ID
har(20),

primary key employee ID,

foreign key (manager ID) referen
es manager(employee ID)

on delete
as
ade)

Here, employee ID is a key to the table manager, meaning that ea
h employee

has at most one manager. The foreign-key
lause requires that every manager

also be an employee. Explain exa
tly what happens when a tuple in the relation

manager is deleted.

Answer:

The tuples of all employees of the manager, at all levels, get deleted as well! This

happens in a series of steps. The initial deletion will trigger deletion of all the

tuples
orresponding to dire
t employees of the manager. These deletions will

in turn
ause deletions of se
ond-level employee tuples, and so on, till all dire
t

and indire
t employee tuples are deleted.

4.10 Given the relations a(name, address, title) and b(name, address, salary), show

how to express a natural full outer join b using the full outer-join operation with

an on
ondition rather than using the natural join syntax. This
an be done using

the
oales
e operation. Make sure that the result relation does not
ontain two

Exer
ises 33

opies of the attributes name and address and that the solution is
orre
t even

if some tuples in a and b have null values for attributes name or address.

Answer:

sele
t
oales
e(a.name, b.name) as name,

oales
e(a.address, b.address) as address,

a.title,

b.salary

from a full outer join b on a.name = b.name and

a.address = b.address

4.11 Operating systems usually o�er only two types of authorization
ontrol for data

�les: read a

ess and write a

ess.Why do database systems o�er somany kinds

of authorization?

Answer: There are many reasons�we list a few here. One might wish to allow

a user only to append new information without altering old information. One

might wish to allow a user to a

ess a relation but not
hange its s
hema. One

might wish to limit a

ess to aspe
ts of the database that are not te
hni
ally

data a

ess but instead impa
t resour
e utilization, su
h as
reating an index.

4.12 Suppose a user wants to grant sele
t a

ess on a relation to another user. Why

should the user in
lude (or not in
lude) the
lause granted by
urrent role in the

grant statement?

Answer: Both
ases give the same authorization at the time the statement

is exe
uted, but the long-term e�e
ts di�er. If the grant is done based on the

role, then the grant remains in e�e
t even if the user who performed the grant

leaves and that user's a

ount is terminated. Whether that is a good or bad idea

depends on the spe
i�
 situation, but usually granting through a role is more

onsistent with a well-run enterprise.

4.13 Consider a view v whose de�nition referen
es only relation r.

�

If a user is granted sele
t authorization on v, does that user need to have

sele
t authorization on r as well? Why or why not?

�

If a user is granted update authorization on v, does that user need to have

update authorization on r as well? Why or why not?

�

Give an example of an insert operation on a view v to add a tuple t that is

not visible in the result of sele
t * from v. Explain your answer.

Answer:

�

No. This allows a user to be granted a

ess to only part of relation r.

34 Chapter 4 Intermediate SQL

�

Yes. A valid update issued using view v must update r for the update to be

stored in the database.

�

Any tuple t
ompatible with the s
hema for v but not satisfying the where

lause in the de�nition of view v is a valid example. One su
h example

appears in Se
tion 4.2.4.

CHAP T E R

5

Advan
ed SQL

Pra
ti
e Exer
ises

5.1 Consider the following relations for a
ompany database:

�

emp (ename, dname, salary)

�

mgr (ename, mname)

and the Java
ode in Figure 5.20, whi
h uses the JDBC API. Assume that the

userid, password, ma
hine name, et
. are all okay. Des
ribe in
on
ise English

what the Java program does. (That is, produ
e an English senten
e like �It �nds

the manager of the toy department,� not a line-by-line des
ription of what ea
h

Java statement does.)

Answer:

It prints out the manager of �dog,� that manager's manager, et
., until we rea
h

a manager who has no manager (presumably, the CEO, who most
ertainly is a

at). Note: If you try to run this, use your own Ora
le ID and password.

5.2 Write a Java method using JDBC metadata features that takes a ResultSet as

an input parameter and prints out the result in tabular form, with appropriate

names as
olumn headings.

Answer:

Please see ??

5.3 Suppose that we wish to �nd all
ourses that must be taken before some given

ourse. That means �nding not only the prerequisites of that
ourse, but prereq-

uisites of prerequisites, and so on. Write a
omplete Java program using JDBC

that:

�

Takes a
ourse id value from the keyboard.

�

Finds prerequisites of that
ourse using an SQL query submitted via JDBC.

35

36 Chapter 5 Advan
ed SQL

import java.sql.*;

publi

lass Mystery {

publi
 stati
 void main(String[℄ args) {

try (

Conne
tion
on=DriverManager.getConne
tion(

"jdb
:ora
le:thin:star/X�//edgar.
se.lehigh.edu:1521/XE");

q = "sele
t mname from mgr where ename = ?";

PreparedStatement stmt=
on.prepareStatement();

)

{

String q;

String empName = "dog";

boolean more;

ResultSet result;

do {

stmt.setString(1, empName);

result = stmt.exe
uteQuery(q);

more = result.next();

if (more) {

empName = result.getString("mname");

System.out.println (empName);

}

} while (more);

s.
lose();

on.
lose();

}

at
h(Ex
eption e){

e.printSta
kTra
e();

}

}

}

Figure 5.20 Java
ode for Exer
ise 5.1 (using Ora
le JDBC).

�

For ea
h
ourse returned, �nds its prerequisites and
ontinues this pro
ess

iteratively until no new prerequisite
ourses are found.

�

Prints out the result.

For this exer
ise, do not use a re
ursive SQL query, but rather use the iterative

approa
h des
ribed previously. A well-developed solution will be robust to the

error
ase where a university has a

identally
reated a
y
le of prerequisites

(that is, for example,
ourse A is a prerequisite for
ourse B,
ourse B is a pre-

requisite for
ourse C, and
ourse C is a prerequisite for
ourse A).

Pra
ti
e Exer
ises 37

printTable(ResultSet result) throws SQLException {

metadata = result.getMetaData();

num cols = metadata.getColumnCount();

for(int i = 1; i <= num cols; i++) {

System.out.print(metadata.getColumnName(i) + ’\t’);

}

System.out.println();

while(result.next()) {

for(int i = 1; i <= num cols; i++) {

System.out.print(result.getString(i) + ’\t’

}

System.out.println();

} }

Figure 5.101 Java method using JDBC for Exer
ise 5.2.

Answer:

Please see ??

5.4 Des
ribe the
ir
umstan
es in whi
h you would
hoose to use embedded SQL

rather than SQL alone or only a general-purpose programming language.

Answer:

Writing queries in SQL is typi
ally mu
h easier than
oding the same queries

in a general-purpose programming language. However, not all kinds of queries

an be written in SQL. Also, nonde
larative a
tions su
h as printing a report,

intera
ting with a user, or sending the results of a query to a graphi
al user inter-

fa
e
annot be done from within SQL. Under
ir
umstan
es in whi
h we want

the best of both worlds, we
an
hoose embedded SQL or dynami
 SQL, rather

than using SQL alone or using only a general-purpose programming language.

5.5 Show how to enfor
e the
onstraint �an instru
tor
annot tea
h two di�erent

se
tions in a semester in the same time slot.� using a trigger (remember that the

onstraint
an be violated by
hanges to the tea
hes relation as well as to the

se
tion relation).

Answer:

Please see ??

5.6 Consider the bank database of Figure 5.21. Let us de�ne a view bran
h
ust as

follows:

38 Chapter 5 Advan
ed SQL

import java.sql.*;

import java.util.Scanner;

import java.util.Arrays;

public class AllCoursePrereqs {

public static void main(String[] args) {

try (

Connection con=DriverManager.getConnection

("jdbc:oracle:thin:@edgar0.cse.lehigh.edu:1521:cse241","star","pw");

Statement s=con.createStatement();

){

String q;

String c;

ResultSet result;

int maxCourse = 0;

q = "select count(*) as C from course";

result = s.executeQuery(q);

if (!result.next()) System.out.println ("Unexpected empty result.");

else maxCourse = Integer.parseInt(result.getString("C"));

int numCourse = 0, oldNumCourse = -1;

String[] prereqs = new String [maxCourse];

Scanner krb = new Scanner(System.in);

System.out.print("Input a course id (number): ");

String course = krb.next();

String courseString = "" + ’\’’ + course + ’\’’;

while (numCourse != oldNumCourse) {

for (int i = oldNumCourse + 1; i < numCourse; i++) {

courseString += ", " + ’\’’ + prereqs[i] + ’\’’ ;

}

oldNumCourse = numCourse;

q = "select prereq_id from prereq where course_id in ("

+ courseString + ")";

result = s.executeQuery(q);

while (result.next()) {

c = result.getString("prereq_id");

boolean found = false;

for (int i = 0; i < numCourse; i++)

found |= prereqs[i].equals(c);

if (!found) prereqs[numCourse++] = c;

}

courseString = "" + ’\’’ + prereqs[oldNumCourse] + ’\’’;

}

Arrays.sort(prereqs,0,numCourse);

System.out.print("The courses that must be taken prior to "

+ course + " are: ");

for (int i = 0; i < numCourse; i++)

System.out.print ((i==0?" ":", ") + prereqs[i]);

System.out.println();

} catch(Exception e){e.printStackTrace();

} }

Figure 5.102 Complete Java program using JDBC for Exer
ise 5.3.

Pra
ti
e Exer
ises 39

reate trigger onese
 before insert on se
tion

referen
ing new row as nrow

for ea
h row

when (nrow.time slot id in (

sele
t time slot id

from tea
hes natural join se
tion

where ID in (

sele
t ID

from tea
hes natural join se
tion

where se
 id = nrow.se
 id and
ourse id = nrow.
ourse id and

semester = nrow.semester and year = nrow.year

)))

begin

rollba
k

end;

reate trigger onetea
h before insert on tea
hes

referen
ing new row as nrow

for ea
h row

when (exists (

sele
t time slot id

from tea
hes natural join se
tion

where ID = nrow.ID

interse
t

sele
t time slot id

from se
tion

where se
 id = nrow.se
 id and
ourse id = nrow.
ourse id and

semester = nrow.semester and year = nrow.year

))

begin

rollba
k

end;

Figure 5.103 Trigger
ode for Exer
ise 5.5.

reate view bran
h
ust as

sele
t bran
h name,
ustomer name

from depositor, a

ount

where depositor.a

ount number = a

ount.a

ount number

40 Chapter 5 Advan
ed SQL

bran
h (bran
h name, bran
h
ity, assets)

ustomer (
ustomer name,
ustomer street,
ust omer
ity)

loan (loan number, bran
h name, amount)

borrower (
ustomer name, loan number)

a

ount (a

ount number, bran
h name, balan
e)

depositor (
ustomer name, a

ount number)

Figure 5.21 Banking database for Exer
ise 5.6.

Suppose that the view is materialized; that is, the view is
omputed and stored.

Write triggers to maintain the view, that is, to keep it up-to-date on insertions

to depositor or a

ount. It is not ne
essary to handle deletions or updates. Note

that, for simpli
ity, we have not required the elimination of dupli
ates.

Answer:

Please see ??

5.7 Consider the bank database of Figure 5.21. Write an SQL trigger to
arry out

the following a
tion: On delete of an a

ount, for ea
h
ustomer-owner of the

reate trigger insert into bran
h
ust via depositor

after insert on depositor

referen
ing new row as inserted

for ea
h row

insert into bran
h
ust

sele
t bran
h name, inserted.
ustomer name

from a

ount

where inserted.a

ount number = a

ount.a

ount number

reate trigger insert into bran
h
ust via a

ount

after insert on a

ount

referen
ing new row as inserted

for ea
h statement

insert into bran
h
ust

sele
t inserted.bran
h name,
ustomer name

from depositor

where depositor.a

ount number = inserted.a

ount number

Figure 5.22 Trigger
ode for Exer
ise 5.6.

Pra
ti
e Exer
ises 41

a

ount,
he
k if the owner has any remaining a

ounts, and if she does not,

delete her from the depositor relation.

Answer:

reate trigger
he
k-delete-trigger after delete on a

ount

referen
ing old row as orow

for ea
h row

delete from depositor

where depositor.
ustomer name not in

(sele
t
ustomer name from depositor

where a

ount number <> orow.a

ount number)

end

5.8 Given a relation S(student, subje
t,marks), write a query to �nd the top 10 stu-

dents by total marks, by using SQL ranking. In
lude all students tied for the �nal

spot in the ranking, even if that results in more than 10 total students.

Answer:

sele
t *

from (

sele
t student, total, rank() over (order by (total) des
) as t rank

from (

sele
t student, sum(marks) as total

from S group by student

)

)

where t rank <= 10

5.9 Given a relation nyse(year, month, day, shares traded, dollar volume) with trad-

ing data from the New York Sto
k Ex
hange, list ea
h trading day in order of

number of shares traded, and show ea
h day's rank.

Answer:

sele
t year, month, day, shares traded,

rank() over (order by shares traded des
) as mostshares

from nyse

5.10 Using the relation from Exer
ise 5.9, write an SQL query to generate a report

showing the number of shares traded, number of trades, and total dollar volume

broken down by year, ea
h month of ea
h year, and ea
h trading day.

Answer:

42 Chapter 5 Advan
ed SQL

sele
t year, month, day, sum(shares traded) as shares,

sum(num trades) as trades, sum(dollar volume) as total volume

from nyse

group by rollup (year, month, day)

5.11 Show how to express group by
ube(a, b,
, d) using rollup; your answer should

have only one group by
lause.

Answer:

groupby rollup(a), rollup(b), rollup(
), rollup(d)

CHAP T E R

6

Database Design using the E-R

Model

Pra
ti
e Exer
ises

6.1 Constru
t an E-R diagram for a
ar insuran
e
ompany whose
ustomers own

one or more
ars ea
h. Ea
h
ar has asso
iated with it zero to any number of

re
orded a

idents. Ea
h insuran
e poli
y
overs one or more
ars and has one

or more premium payments asso
iated with it. Ea
h payment is for a parti
ular

period of time, and has an asso
iated due date, and the date when the payment

was re
eived.

Answer:

One possible E-R diagram is shown in Figure 6.101. Payments are modeled as

weak entities sin
e they are related to a spe
i�
 poli
y.

Note that the parti
ipation of a

ident in the relationship parti
ipated is not

total, sin
e it is possible that there is an a

ident report where the parti
ipating

ar is unknown.

6.2 Consider a database that in
ludes the entity sets student,
ourse, and se
tion

from the university s
hema and that additionally re
ords themarks that students

re
eive in di�erent exams of di�erent se
tions.

a. Constru
t an E-R diagram that models exams as entities and uses a ternary

relationship as part of the design.

b. Constru
t an alternative E-R diagram that uses only a binary relationship

between student and se
tion. Make sure that only one relationship exists

between a parti
ular student and se
tion pair, yet you
an represent the

marks that a student gets in di�erent exams.

Answer:

43

44 Chapter 6 Database Design using the E-R Model

customer

customer_id

name

address

owns

participated

 car

license_no

model

accident

report_id

date

place

payment

policy

policy_idcovers
1 . . 11 . . *

premium_ payment

payment_no

due_date

amount

received_on

Figure 6.101 E-R diagram for a
ar insuran
e
ompany.

a. The E-R diagram is shown in Figure 6.102. Note that an alternative is to

model examinations as weak entities related to a se
tion, rather than as

strong entities. The marks relationship would then be a binary relation-

ship between student and exam, without dire
tly involving se
tion.

b. The E-R diagram is shown in Figure 6.103. Note that here we have not

modeled the name, pla
e, and time of the exam as part of the relationship

attributes. Doing so would result in dupli
ation of the information, on
e

per student, and we would not be able to re
ord this information without

an asso
iated student. If we wish to represent this information, we need

to retain a separate entity
orresponding to ea
h exam.

6.3 Design an E-R diagram for keeping tra
k of the s
oring statisti
s of your favorite

sports team. You should store the mat
hes played, the s
ores in ea
h mat
h, the

players in ea
h mat
h, and individual player s
oring statisti
s for ea
h mat
h.

student

student_id

name

dept_name

tot_cred

course

course_id

title

credits

section

sec_id

semester

year

exam_marks sec_course

exam

exam_id

name

place

time

marks

Figure 6.102 E-R diagram for marks database.

Pra
ti
e Exer
ise 45

student

student_id

name

dept_name

tot_cred

course

course_id

title

credits

section

sec_id

semester

year

exam_marks sec_course

{exam_marks

 exam_id

 marks

}

Figure 6.103 Another E-R diagram for marks database.

Summary statisti
s should be modeled as derived attributes with an explanation

as to how they are
omputed.

Answer:

The diagram is shown in Figure 6.104. The derived attribute season s
ore is

omputed by summing the s
ore values asso
iated with the player entity set via

the played relationship set.

6.4 Consider an E-R diagram in whi
h the same entity set appears several times,

with its attributes repeated in more than one o

urren
e. Why is allowing this

redundan
y a bad pra
ti
e that one should avoid?

Answer:

The reason an entity set would appear more than on
e is if one is drawing a

diagram that spans multiple pages.

The di�erent o

urren
es of an entity set may have di�erent sets of at-

tributes, leading to an in
onsistent diagram. Instead, the attributes of an entity

set should be spe
i�ed only on
e. All other o

urren
es of the entity should

omit attributes. Sin
e it is not possible to have an entity set without any at-

tributes, an o

urren
e of an entity set without attributes
learly indi
ates that

the attributes are spe
i�ed elsewhere.

played

player

player_id

name
age

season_score()

score

match

match_id

date

stadium

opponent

own_score

opp_score

Figure 6.104 E-R diagram for favorite team statisti
s.

46 Chapter 6 Database Design using the E-R Model

B C

A

CB E

A

RA

RB
RC

(a) (b)

(c)

A

B C

R

RBC

RAB
RAC

Figure 6.29 Representation of a ternary relationship using binary relationships.

6.5 An E-R diagram
an be viewed as a graph. What do the following mean in terms

of the stru
ture of an enterprise s
hema?

a. The graph is dis
onne
ted.

b. The graph has a
y
le.

Answer:

a. If a pair of entity sets are
onne
ted by a path in an E-R diagram, the

entity sets are related, though perhaps indire
tly. A dis
onne
ted graph

implies that there are pairs of entity sets that are unrelated to ea
h other.

In an enterprise, we
an say that the two parts of the enterprise are
om-

pletely independent of ea
h other. If we split the graph into
onne
ted

omponents, we have, in e�e
t, a separate database
orresponding to ea
h

independent part of the enterprise.

b. As indi
ated in the answer to the previous part, a path in the graph be-

tween a pair of entity sets indi
ates a (possibly indire
t) relationship be-

tween the two entity sets. If there is a
y
le in the graph, then every pair

of entity sets on the
y
le are related to ea
h other in at least two distin
t

ways. If the E-R diagram is a
y
li
, then there is a unique path between

every pair of entity sets and thus a unique relationship between every pair

of entity sets.

Pra
ti
e Exer
ise 47

A

EB C
R

B
R

A
R

C

Figure 6.105 E-R diagram for Exer
ise Exer
ise 6.6b.

6.6 Consider the representation of the ternary relationship of Figure 6.29a using

the binary relationships illustrated in Figure 6.29b (attributes not shown).

a. Show a simple instan
e of E,A,B,C, R

A

,R

B

, and R

C

that
annot
orre-

spond to any instan
e of A,B,C, and R.

b. Modify the E-R diagram of Figure 6.29b to introdu
e
onstraints that will

guarantee that any instan
e of E,A,B,C, R

A

,R

B

, and R

C

that satis�es the

onstraints will
orrespond to an instan
e of A,B,C, and R.

. Modify the pre
eding translation to handle total parti
ipation
onstraints

on the ternary relationship.

Answer:

a. Let E = ^e

1

, e

2

`, A = ^a

1

, a

2

`, B = ^b

1

`, C = ^

1

`, R

A

=

^(e

1

, a

1

), (e

2

, a

2

)`, R

B

= ^(e

1

, b

1

)`, and R

C

= ^(e

1

,

1

)`. We see that

be
ause of the tuple (e

2

, a

2

), no instan
e of A,B,C, and R exists that
or-

responds to E, R

A

, R

B

and R

C

.

b. See Figure 6.105. The idea is to introdu
e total parti
ipation
onstraints

between E and the relationships R

A

, R

B

, R

C

so that every tuple in E has a

relationship with A, B, and C.

. Suppose A totally parti
ipates in the relationhip R, then introdu
e a total

parti
ipation
onstraint between A and R

A

, and similarly for B and C.

6.7 A weak entity set
an always be made into a strong entity set by adding to its

attributes the primary-key attributes of its identifying entity set. Outline what

sort of redundan
y will result if we do so.

Answer:

The primary key of a weak entity set
an be inferred from its relationship with

the strong entity set. If we add primary-key attributes to the weak entity set, they

will be present in both the entity set, and the relationship set and they have to

be the same. Hen
e there will be redundan
y.

48 Chapter 6 Database Design using the E-R Model

6.8 Consider a relation su
h as se

ourse, generated from a many-to-one relation-

ship set se

ourse. Do the primary and foreign key
onstraints
reated on the

relation enfor
e the many-to-one
ardinality
onstraint? Explain why.

Answer:

In this example, the primary key of se
tion
onsists of the attributes (
ourse id,

se
 id, semester, year), whi
h would also be the primary key of se

ourse, while

ourse id is a foreign key from se

ourse referen
ing
ourse. These
onstraints

ensure that a parti
ular se
tion
an only
orrespond to one
ourse, and thus the

many-to-one
ardinality
onstraint is enfor
ed.

However, these
onstraints
annot enfor
e a total parti
ipation
onstraint, sin
e

a
ourse or a se
tion may not parti
ipate in the se

ourse relationship.

6.9 Suppose the advisor relationship set were one-to-one. What extra
onstraints

are required on the relation advisor to ensure that the one-to-one
ardinality

onstraint is enfor
ed?

Answer:

In addition to de
laring s ID as primary key for advisor, we de
lare i ID as a

superkey for advisor (this
an be done in SQL using the unique
onstraint on

i ID).

6.10 Consider a many-to-one relationship R between entity sets A and B. Suppose

the relation
reated from R is
ombined with the relation
reated from A. In

SQL, attributes parti
ipating in a foreign key
onstraint
an be null. Explain

how a
onstraint on total parti
ipation of A in R
an be enfor
ed using not null

onstraints in SQL.

Answer:

The foreign-key attribute in R
orresponding to the primary key of B should be

made not null. This ensures that no tuple of A whi
h is not related to any entry

in B under R
an
ome in R. For example, say a is a tuple in A whi
h has no

orresponding entry in R. This means when R is
ombined with A, it would have

a foreign-key attribute
orresponding to B as null, whi
h is not allowed.

6.11 In SQL, foreign key
onstraints
an referen
e only the primary key attributes of

the referen
ed relation or other attributes de
lared to be a superkey using the

unique
onstraint. As a result, total parti
ipation
onstraints on a many-to-many

relationship set (or on the �one� side of a one-to-many relationship set)
annot

be enfor
ed on the relations
reated from the relationship set, using primary

key, foreign key, and not null
onstraints on the relations.

a. Explain why.

b. Explain how to enfor
e total parti
ipation
onstraints using
omplex

he
k
onstraints or assertions (see Se
tion 4.4.8). (Unfortunately, these

features are not supported on any widely used database
urrently.)

Pra
ti
e Exer
ise 49

Answer:

a. For the many-to-many
ase, the relationship set must be represented as a

separate relation that
annot be
ombined with either parti
ipating entity.

Now, there is no way in SQL to ensure that a primary-key value o

urring

in an entity E1 also o

urs in a many-to-many relationship R, sin
e the

orresponding attribute in R is not unique; SQL foreign keys
an only

refer to the primary key or some other unique key.

Similarly, for the one-to-many
ase, there is no way to ensure that an at-

tribute on the one side appears in the relation
orresponding to the many

side, for the same reason.

b. Let the relation R be many-to-one from entity A to entity B with a and b as

their respe
tive primary keys. We
an put the following
he
k
onstraints

on the "one" side relation B:

onstraint total part
he
k (b in (sele
t b from A));

set
onstraints total part deferred;

Note that the
onstraint should be set to deferred so that it is only
he
ked

at the end of the transa
tion; otherwise if we insert a b value in B before

it is inserted in A, the
onstraint would be violated, and if we insert it in

A before we insert it in B, a foreign-key violation would o

ur.

6.12 Consider the following latti
e stru
ture of generalization and spe
ialization (at-

tributes not shown).

X Y

A B C

For entity sets A, B, and C, explain how attributes are inherited from the higher-

level entity sets X and Y . Dis
uss how to handle a
ase where an attribute of X

has the same name as some attribute of Y .

Answer:

A inherits all the attributes of X, plus it may de�ne its own attributes. Similarly,

C inherits all the attributes of Y plus its own attributes. B inherits the attributes

of both X and Y. If there is some attribute name whi
h belongs to both X and Y,

it may be referred to in B by the quali�ed name X.name or Y.name.

6.13 An E-R diagram usually models the state of an enterprise at a point in time.

Suppose we wish to tra
k temporal
hanges, that is,
hanges to data over time.

For example, Zhang may have been a student between September 2015 and

50 Chapter 6 Database Design using the E-R Model

May 2019, while Shankar may have had instru
tor Einstein as advisor fromMay

2018 to De
ember 2018, and again from June 2019 to January 2020. Similarly,

attribute values of an entity or relationship, su
h as title and
redits of
ourse,

salary, or even name of instru
tor, and tot
red of student,
an
hange over time.

One way to model temporal
hanges is as follows: We de�ne a new data type

alled valid time, whi
h is a time interval, or a set of time intervals. We then

asso
iate a valid time attribute with ea
h entity and relationship, re
ording the

time periods during whi
h the entity or relationship is valid. The end time of an

interval
an be in�nity; for example, if Shankar be
ame a student in September

2018, and is still a student, we
an represent the end time of the valid time in-

terval as in�nity for the Shankar entity. Similarly, we model attributes that
an

hange over time as a set of values, ea
h with its own valid time.

a. Draw an E-R diagram with the student and instru
tor entities, and the ad-

visor relationship, with the above extensions to tra
k temporal
hanges.

b. Convert the E-R diagram dis
ussed above into a set of relations.

It should be
lear that the set of relations generated is rather
omplex, leading

to di	
ulties in tasks su
h as writing queries in SQL. An alternative approa
h,

whi
h is used more widely, is to ignore temporal
hanges when designing the

E-R model (in parti
ular, temporal
hanges to attribute values), and to modify

the relations generated from the E-R model to tra
k temporal
hanges.

Answer:

.

a. The E-R diagram is shown in Figure 6.106.

The primary key attributes student id and instru
tor id are assumed to be

immutable, that is, they are not allowed to
hange with time. All other

attributes are assumed to potentially
hange with time.

Note that the diagram uses multivalued
omposite attributes su
h as

valid times or name, with subattributes su
h as start time or value. The

value attribute is a subattribute of several attributes su
h as name, tot
red

and salary, and refers to the name, total
redits or salary during a parti
-

ular interval of time.

b. The generated relations are as shown below. Ea
h multivalued attribute

has turned into a relation, with the relation name
onsisting of the orig-

inal relation name
on
atenated with the name of the multivalued at-

tribute. The relation
orresponding to the entity has only the primary-key

attribute, and this is needed to ensure uniqueness.

Pra
ti
e Exer
ise 51

student(student id)

student valid times(student id, start time, end time)

student name(student id, value, start time, end time

student dept name(student id, value, start time, end time

student tot
red(student id, value, start time, end time

instru
tor(instru
tor id)

instru
tor valid times(instru
tor id, start time, end time)

instru
tor name(instru
tor id, value, start time, end time

instru
tor dept name(instru
tor id, value, start time, end time

instru
tor salary(instru
tor id, value, start time, end time

advisor(student id, instru
tor id, start time, end time)

The primary keys shown are derived dire
tly from the E-R diagram. If we

add the additional
onstraint that time intervals
annot overlap (or even

the weaker
ondition that one start time
annot have two end times), we

an remove the end time from all the above primary keys.

student

student_id

{valid_times

 start_time

 end_time

}

{name

 value

 start_time

 end_time

}

{dept_name

 value

 start_time

 end_time

}

{tot_cred

 value

 start_time

 end_time

}

instructor

instructor_id

{valid_times

 start_time

 end_time

}

{name

 value

 start_time

 end_time

}

{dept_name

 value

 start_time

 end_time

}

{salary

 value

 start_time

 end_time

}

advisor

{valid_time

 start_time

 end_time

}

Figure 6.106 E-R diagram for Exer
ise 6.13

CHAP T E R

7

Relational Database Design

Pra
ti
e Exer
ises

7.1 Suppose that we de
ompose the s
hema R = (A, B, C, D, E) into

(A, B, C)

(A, D, E).

Show that this de
omposition is a lossless de
omposition if the following set F

of fun
tional dependen
ies holds:

A� BC

CD� E

B � D

E � A

Answer:

A de
omposition ^R

1

, R

2

` is a lossless de
omposition if R

1

ã R

2

� R

1

or

R

1

ã R

2

� R

2

. Let R

1

= (A, B, C), R

2

= (A, D, E), and R

1

ã R

2

= A.

Sin
e A is a
andidate key (see Pra
ti
e Exer
ise 7.6), R

1

ã R

2

� R

1

.

7.2 List all nontrivial fun
tional dependen
ies satis�ed by the relation of Figure

7.18.

A B C

a

1

b

1

1

a

1

b

1

2

a

2

b

1

1

a

2

b

1

3

Figure 7.17 Relation of Exer
ise 7.2.

53

54 Chapter 7 Relational Database Design

Answer:

The nontrivial fun
tional dependen
ies are: A � B and C � B, and a

dependen
y they logi
ally imply: AC � B. C does not fun
tionally determine

A be
ause the �rst and third tuples have the same C but di�erent A values. The

same tuples also show B does not fun
tionally determine A. Likewise, A does not

fun
tionally determine C be
ause the �rst two tuples have the same A value and

di�erent C values. The same tuples also show B does not fun
tionally determine

C. There are 19 trivial fun
tional dependen
ies of the form � � �, where

� Ó �.

7.3 Explain how fun
tional dependen
ies
an be used to indi
ate the following:

�

A one-to-one relationship set exists between entity sets student and instru
-

tor.

�

Amany-to-one relationship set exists between entity sets student and instru
-

tor.

Answer:

Let Pk(r) denote the primary key attribute of relation r.

�

The fun
tional dependen
ies Pk(student) � Pk (instru
tor) and

Pk(instru
tor) � Pk(student) indi
ate a one-to-one relationship be-

ause any two tuples with the same value for student must have the same

value for instru
tor, and any two tuples agreeing on instru
tor must have

the same value for student.

�

The fun
tional dependen
y Pk(student)� Pk(instru
tor) indi
ates a many-

to-one relationship sin
e any student value whi
h is repeated will have the

same instru
tor value, but many student values may have the same instru
-

tor value.

7.4 UseArmstrong's axioms to prove the soundness of the union rule. (Hint: Use the

augmentation rule to show that, if �� �, then �� ��. Apply the augmentation

rule again, using ��
, and then apply the transitivity rule.)

Answer:

To prove that:

if � � � and � �
 then � � �

Following the hint, we derive:

Pra
ti
e Exer
ises 55

� � � given

�� � �� augmentation rule

� � �� union of identi
al sets

� �
 given

�� �
 � augmentation rule

� � �
 transitivity rule and set union
ommutativity

7.5 Use Armstrong's axioms to prove the soundness of the pseudotransitivity rule.

Answer:

Proof using Armstrong's axioms of the pseudotransitivity rule:

if � � � and
 � � Æ, then �
 � Æ.

� � � given

�
 �
 � augmentation rule and set union
ommutativity

 � � Æ given

�
 � Æ transitivity rule

7.6 Compute the
losure of the following set F of fun
tional dependen
ies for rela-

tion s
hema R = (A, B, C, D, E).

A� BC

CD� E

B� D

E � A

List the
andidate keys for R.

Answer:

Note: It is not reasonable to expe
t students to enumerate all of F

+

. Some short-

hand representation of the result should be a

eptable as long as the nontrivial

members of F

+

are found.

Starting with A � BC, we
an
on
lude: A � B and A � C.

Sin
e A � B and B � D, A � D (de
omposition,

transitive)

Sin
e A � CD and CD � E, A � E (union, de
om-

position, transi-

tive)

Sin
e A � A, we have (re�exive)

A � ABCDE from the above steps (union)

Sin
e E � A, E � ABCDE (transitive)

Sin
e CD � E, CD � ABCDE (transitive)

Sin
e B � D and BC � CD, BC �

ABCDE

(augmentative,

transitive)

Also, C � C, D � D, BD � D, et
.

56 Chapter 7 Relational Database Design

Therefore, any fun
tional dependen
y with A, E, BC, or CD on the left-hand

side of the arrow is in F

+

, no matter whi
h other attributes appear in the FD.

Allow * to represent any set of attributes in R, then F

+

is BD � B, BD � D,

C � C, D � D, BD � BD, B � D, B � B, B � BD, and all FDs of the

form A <� �, BC <� �, CD <� �, E <� � where � is any subset of

^A, B, C, D, E`. The
andidate keys are A, BC, CD, and E.

7.7 Using the fun
tional dependen
ies of Exer
ise 7.6,
ompute the
anoni
al

over F

.

Answer:

The given set of FDs F is:-

A� BC

CD� E

B� D

E� A

The left side of ea
h FD in F is unique. Also, none of the attributes in the left

side or right side of any of the FDs is extraneous. Therefore the
anoni
al
over

F

is equal to F .

7.8 Consider the algorithm in Figure 7.19 to
ompute �

+

. Show that this algorithm

is more e	
ient than the one presented in Figure 7.8 (Se
tion 7.4.2) and that it

omputes �

+

orre
tly.

Answer:

The algorithm is
orre
t be
ause:

�

If A is added to result then there is a proof that � � A. To see this, observe

that � � � trivially, so � is
orre
tly part of result. If A Ì � is added to

result, there must be some FD � �
 su
h that A Ë
 and � is already a

subset of result. (Otherwise fd
ount would be nonzero and the if
ondition

would be false.) A full proof
an be given by indu
tion on the depth of

re
ursion for an exe
ution of addin, but su
h a proof
an be expe
ted only

from students with a good mathemati
al ba
kground.

�

If A Ë �

+

, then A is eventually added to result. We prove this by indu
tion

on the length of the proof of � � A using Armstrong's axioms. First observe

that if pro
edure addin is
alled with some argument �, all the attributes in

� will be added to result. Also if a parti
ular FD's fd
ount be
omes 0, all

the attributes in its tail will de�nitely be added to result. The base
ase of

the proof, A Ë � Ù A Ë �

+

, is obviously true be
ause the �rst
all to

addin has the argument �. The indu
tive hypothesis is that if � � A
an

be proved in n steps or less, then A Ë result: If there is a proof in n + 1

Pra
ti
e Exer
ises 57

result := ç;

/* fd
ount is an array whose ith element
ontains the number

of attributes on the left side of the ith FD that are

not yet known to be in �

+

*/

for i := 1 to ðF ð do

begin

let � �
 denote the ith FD;

fd
ount [i℄ := ð�ð;

end

/* appears is an array with one entry for ea
h attribute. The

entry for attribute A is a list of integers. Ea
h integer

i on the list indi
ates that A appears on the left side

of the ith FD */

for ea
h attribute A do

begin

appears [A℄ := NIL;

for i := 1 to ðF ð do

begin

let � �
 denote the ith FD;

if A Ë � then add i to appears [A℄;

end

end

addin (�);

return (result);

pro
edure addin (�);

for ea
h attribute A in � do

begin

if A Ì result then

begin

result := result ä ^A`;

for ea
h element i of appears[A℄ do

begin

fd
ount [i℄ := fd
ount [i℄ * 1;

if fd
ount [i℄ := 0 then

begin

let � �
 denote the ith FD;

addin (
);

end

end

end

end

Figure 7.18 An algorithm to
ompute �

+

.

58 Chapter 7 Relational Database Design

steps that � � A, then the last step was an appli
ation of either re�exivity,

augmentation, or transitivity on a fa
t � � � proved in n or fewer steps.

If re�exivity or augmentation was used in the (n + 1)

st

step, A must have

been in result by the end of the n

th

step itself. Otherwise, by the indu
tive

hypothesis, � Ó result. Therefore, the dependen
y used in proving � �
,

A Ë
, will have fd
ount set to 0 by the end of the n

th

step. Hen
e A will

be added to result.

To see that this algorithm is more e	
ient than the one presented in the
hap-

ter, note that we s
an ea
h FD on
e in the main program. The resulting array

appears has size proportional to the size of the given FDs. The re
ursive
alls

to addin result in pro
essing linear in the size of appears. Hen
e the algorithm

has time
omplexity whi
h is linear in the size of the given FDs. On the other

hand, the algorithm given in the text has quadrati
 time
omplexity, as it may

perform the loop as many times as the number of FDs, in ea
h loop s
anning

all of them on
e.

7.9 Given the database s
hema R(A,B,C), and a relation r on the s
hema R, write

an SQL query to test whether the fun
tional dependen
y B � C holds on re-

lation r. Also write an SQL assertion that enfor
es the fun
tional dependen
y.

Assume that no null values are present. (Although part of the SQL standard,

su
h assertions are not supported by any database implementation
urrently.)

Answer:

a. The query is given below. Its result is non-empty if and only if B � C

does not hold on r.

sele
t B

from r

group by B

having
ount(distin
t C) > 1

b.

reate assertion b to

he
k

(not exists

(sele
t B

from r

group by B

having
ount(distin
t C) > 1

)

)

Pra
ti
e Exer
ises 59

7.10 Our dis
ussion of lossless de
omposition impli
itly assumed that attributes on

the left-hand side of a fun
tional dependen
y
annot take on null values. What

ould go wrong on de
omposition, if this property is violated?

Answer:

The natural join operator is de�ned in terms of the Cartesian produ
t and the

sele
tion operator. The sele
tion operator gives unknown for any query on a null

value. Thus, the natural join ex
ludes all tuples with null values on the
ommon

attributes from the �nal result. Thus, the de
omposition would be lossy (in a

manner di�erent from the usual
ase of lossy de
omposition), if null values

o

ur in the left-hand side of the fun
tional dependen
y used to de
ompose the

relation. (Null values in attributes that o

ur only in the right-hand side of the

fun
tional dependen
y do not
ause any problems.)

7.11 In the BCNF de
omposition algorithm, suppose you use a fun
tional depen-

den
y � � � to de
ompose a relation s
hema r(�, �,
) into r

1

(�, �) and r

2

(�,
).

a. What primary and foreign-key
onstraint do you expe
t to hold on the

de
omposed relations?

b. Give an example of an in
onsisten
y that
an arise due to an erroneous

update, if the foreign-key
onstraint were not enfor
ed on the de
omposed

relations above.

. When a relation s
hema is de
omposed into 3NF using the algorithm in

Se
tion 7.5.2, what primary and foreign-key dependen
ies would you ex-

pe
t to hold on the de
omposed s
hema?

Answer:

a. � should be a primary key for r

1

, and � should be the foreign key from r

2

,

referen
ing r

1

.

b. If the foreign key
onstraint is not enfor
ed, then a deletion of a tuple from

r

1

would not have a
orresponding deletion from the referen
ing tuples in

r

2

. Instead of deleting a tuple from r, this would amount to simply setting

the value of � to null in some tuples.

. For every s
hema r

i

(��) added to the de
omposition be
ause of a fun
-

tional dependen
y � � �, � should be made the primary key. Also, a

andidate key
 for the original relation is lo
ated in some newly
reated

relation r

k

and is a primary key for that relation.

Foreign-key
onstraints are
reated as follows: for ea
h relation r

i

reated

above, if the primary key attributes of r

i

also o

ur in any other relation

r

j

, then a foreign-key
onstraint is
reated from those attributes in r

j

, ref-

eren
ing (the primary key of) r

i

.

60 Chapter 7 Relational Database Design

7.12 Let R

1

, R

2

,§ ,R

n

be a de
omposition of s
hema U. Let u(U) be a relation, and

let r

i

= �

R

I

(u). Show that

u Ó r

1

Æ r

2

Æ 5 Æ r

n

Answer:

Consider some tuple t in u.

Note that r

i

= �

R

i

(u) implies that t[R

i

℄ Ë r

i

, 1 f i f n. Thus,

t[R

1

℄ Æ t[R

2

℄ Æ § Æ t[R

n

℄ Ë r

1

Æ r

2

Æ § Æ r

n

By the de�nition of natural join,

t[R

1

℄ Æ t[R

2

℄ Æ § Æ t[R

n

℄ = �

�

(�

�

(t[R

1

℄ � t[R

2

℄ � § � t[R

n

℄))

where the
ondition � is satis�ed if values of attributes with the same name

in a tuple are equal and where � = U . The Cartesian produ
t of single tuples

generates one tuple. The sele
tion pro
ess is satis�ed be
ause all attributes with

the same name must have the same value sin
e they are proje
tions from the

same tuple. Finally, the proje
tion
lause removes dupli
ate attribute names.

By the de�nition of de
omposition, U = R

1

ä R

2

ä § ä R

n

, whi
h means

that all attributes of t are in t[R

1

℄ Æ t[R

2

℄ Æ § Æ t[R

n

℄. That is, t is equal to

the result of this join.

Sin
e t is any arbitrary tuple in u,

u Ó r

1

Æ r

2

Æ § Æ r

n

7.13 Show that the de
omposition in Exer
ise 7.1 is not a dependen
y-preserving

de
omposition.

Answer:

Therer are several fun
tional dependen
ies that are not preserved. We dis
uss

one example here. The dependen
y B � D is not preserved. F

1

, the restri
tion

of F to (A, B, C) is A � ABC, A � AB, A � AC, A � BC, A � B,

A � C, A � A, B � B, C � C, AB � AC, AB � ABC, AB � BC,

AB � AB, AB � A, AB � B, AB � C, AC (same as AB), BC (same as AB),

ABC (same as AB). F

2

, the restri
tion of F to (C, D, E) is A � ADE, A � AD,

A � AE, A � DE, A � A, A � D, A � E, D � D, E (same as A), AD,

AE, DE, ADE (same as A). (F

1

ä F

2

)

+

is easily seen not to
ontain B � D

sin
e the only FD in F

1

ä F

2

with B as the left side is B � B, a trivial FD.

Thus B � D is not preserved.

A simpler argument is as follows: F

1

ontains no dependen
ies with D on

the right side of the arrow. F

2

ontains no dependen
ies with B on the left side

of the arrow. Therefore for B � D to be preserved there must be a fun
tional

dependen
y B � � in F

+

1

and � � D in F

+

2

(so B � D would follow by

Pra
ti
e Exer
ises 61

transitivity). Sin
e the interse
tion of the two s
hemes is A, � = A. Observe that

B � A is not in F

+

1

sin
e B

+

= BD.

7.14 Show that there
an be more than one
anoni
al
over for a given set of fun
-

tional dependen
ies, using the following set of dependen
ies:

X � YZ, Y � XZ, and Z � XY .

Answer: Consider the �rst fun
tional dependen
y. We
an verify that Z is

extraneous in X � YZ and delete it. Subsequently, we
an similarly
he
k that

X is extraneous in Y � XZ and delete it, and that Y is extraneous in Z � XY

and delete it, resulting in a
anoni
al
over X � Y , Y � Z,Z � X .

However, we
an also verify that Y is extraneous in X � YZ and delete it.

Subsequently, we
an similarly
he
k that Z is extraneous in Y � XZ and delete

it, and that X is extraneous in Z � XY and delete it, resulting in a
anoni
al

over X � Z, Y � X ,Z � Y .

7.15 The algorithm to generate a
anoni
al
over only removes one extraneous at-

tribute at a time. Use the fun
tional dependen
ies from Exer
ise 7.14 to show

what
an go wrong if two attributes inferred to be extraneous are deleted at

on
e.

Answer: In X � YZ, one
an infer that Y is extraneous, and so is Z. But

deleting both will result in a set of dependen
ies from whi
h X � YZ
an no

longer be inferred. Deleting Y results in Z no longer being extraneous, and delet-

ing Z results in Y no longer being extraneous. The
anoni
al
over algorithm

only deletes one attribute at a time, avoiding the problem that
ould o

ur if

two attributes are deleted at the same time.

7.16 Show that it is possible to ensure that a dependen
y-preserving de
omposition

into 3NF is a lossless de
omposition by guaranteeing that at least one s
hema

ontains a
andidate key for the s
hema being de
omposed. (Hint: Show that

the join of all the proje
tions onto the s
hemas of the de
omposition
annot

have more tuples than the original relation.)

Answer:

Let F be a set of fun
tional dependen
ies that hold on a s
hema R. Let � =

^R

1

,R

2

,§ ,R

n

` be a dependen
y-preserving 3NF de
omposition of R. Let X be

a
andidate key for R.

Consider a legal instan
e r ofR. Let j = �

X

(r) Æ �

R

1

(r) Æ �

R

2

(r)§ Æ �

R

n

(r).

We want to prove that r = j.

We
laim that if t

1

and t

2

are two tuples in j su
h that t

1

[X ℄ = t

2

[X ℄, then

t

1

= t

2

. To prove this
laim, we use the following indu
tive argument:

Let F

¨

= F

1

ä F

2

ä§ ä F

n

, where ea
h F

i

is the restri
tion of F to the s
hema

R

i

in �. Consider the use of the algorithm given in Figure 7.8 to
ompute the

62 Chapter 7 Relational Database Design

losure of X under F

¨

. We use indu
tion on the number of times that the for

loop in this algorithm is exe
uted.

�

Basis: In the �rst step of the algorithm, result is assigned to X , and hen
e

given that t

1

[X ℄ = t

2

[X ℄, we know that t

1

[result℄ = t

2

[result℄ is true.

�

Indu
tion Step: Let t

1

[result℄ = t

2

[result℄ be true at the end of the k th

exe
ution of the for loop.

Suppose the fun
tional dependen
y
onsidered in the k+1 th exe
ution

of the for loop is � �
, and that � Ó result. � Ó result implies that

t

1

[�℄ = t

2

[�℄ is true. The fa
ts that � �
 holds for some attribute set

R

i

in � and that t

1

[R

i

℄ and t

2

[R

i

℄ are in �

R

i

(r) imply that t

1

[
℄ = t

2

[
℄ is

also true. Sin
e
 is now added to result by the algorithm, we know that

t

1

[result℄ = t

2

[result℄ is true at the end of the k + 1 th exe
ution of the for

loop.

Sin
e � is dependen
y-preserving and X is a key for R, all attributes in R are in

result when the algorithm terminates. Thus, t

1

[R℄ = t

2

[R℄ is true, that is, t

1

= t

2

� as
laimed earlier.

Our
laim implies that the size of �

X

(j) is equal to the size of j. Note also

that �

X

(j) = �

X

(r) = r (sin
e X is a key for R). Thus we have proved that the

size of j equals that of r. Using the result of Exer
ise 7.12, we know that r Ó j.

Hen
e we
on
lude that r = j.

Note that sin
e X is trivially in 3NF, � ä ^X` is a dependen
y-preserving

lossless de
omposition into 3NF.

7.17 Give an example of a relation s
hema R

¨

and set F

¨

of fun
tional dependen-

ies su
h that there are at least three distin
t lossless de
ompositions of R

¨

into

BCNF.

Answer:

Given the relation R

¨

= (A, B, C, D) the set of fun
tional dependen
ies F

¨

=

A � B, C � D, B � C allows three distin
t BCNF de
ompositions.

R

1

= ^(A, B), (C, D), (B, C)`

is in BCNF as is

R

2

= ^(A, B), (C, D), (A, C)`

R

3

= ^(B, C), (A, D), (A, B)`

7.18 Let a prime attribute be one that appears in at least one
andidate key. Let � and

� be sets of attributes su
h that � � � holds, but �� � does not hold. Let A be

Pra
ti
e Exer
ises 63

an attribute that is not in �, is not in �, and for whi
h � � A holds. We say that

A is transitively dependent on �. We
an restate the de�nition of 3NF as follows:

A relation s
hema R is in 3NF with respe
t to a set F of fun
tional dependen
ies

if there are no nonprime attributes A in R for whi
h A is transitively dependent

on a key for R. Show that this new de�nition is equivalent to the original one.

Answer:

Suppose R is in 3NF a

ording to the textbook de�nition. We show that it is in

3NF a

ording to the de�nition in the exer
ise. Let A be a nonprime attribute

in R that is transitively dependent on a key � for R. Then there exists � Ó R

su
h that � � A, � � �, A Ì �, A Ì �, and � � � does not hold. But

then � � A violates the textbook de�nition of 3NF sin
e

�

A Ì � implies � � A is nontrivial

�

Sin
e � � � does not hold, � is not a superkey

�

A is not any
andidate key, sin
e A is nonprime

Now we show that if R is in 3NF a

ording to the exer
ise de�nition, it is in

3NF a

ording to the textbook de�nition. Suppose R is not in 3NF a

ording

to the the textbook de�nition. Then there is an FD � � � that fails all three

onditions. Thus

�

� � � is nontrivial.

�

� is not a superkey for R.

�

Some A in � * � is not in any
andidate key.

This implies that A is nonprime and � � A. Let
 be a
andidate key for R.

Then
 � �, � �
 does not hold (sin
e � is not a superkey), A Ì �, and

A Ì
 (sin
e A is nonprime). Thus A is transitively dependent on
, violating

the exer
ise de�nition.

7.19 A fun
tional dependen
y � � � is
alled a partial dependen
y if there is a

proper subset
 of � su
h that
� �; we say that � is partially dependent on �. A

relation s
hema R is in se
ond normal form (2NF) if ea
h attribute A in Rmeets

one of the following
riteria:

�

It appears in a
andidate key.

�

It is not partially dependent on a
andidate key.

Show that every 3NF s
hema is in 2NF. (Hint: Show that every partial depen-

den
y is a transitive dependen
y.)

Answer:

Referring to the de�nitions in Exer
ise 7.18, a relation s
hema R is said to be in

3NF if there is no nonprime attribute A in R for whi
h A is transitively dependent

on a key for R.

64 Chapter 7 Relational Database Design

We
an also rewrite the de�nition of 2NF given here as:

�A relation s
hema R is in 2NF if no nonprime attribute A is partially dependent

on any
andidate key for R.�

To prove that every 3NF s
hema is in 2NF, it su	
es to show that if a non-

prime attribute A is partially dependent on a
andidate key �, then A is also

transitively dependent on the key �.

Let A be a nonprime attribute in R. Let � be a
andidate key for R. Suppose

A is partially dependent on �.

�

From the de�nition of a partial dependen
y, we know that for some proper

subset � of �, �� A.

�

Sin
e � Ï �, � � �. Also, �� � does not hold, sin
e � is a
andidate key.

�

Finally, sin
e A is nonprime, it
annot be in either � or �.

Thus we
on
lude that � � A is a transitive dependen
y. Hen
e we have proved

that every 3NF s
hema is also in 2NF.

7.20 Give an example of a relation s
hema R and a set of dependen
ies su
h that R

is in BCNF but is not in 4NF.

Answer:

There are, of
ourse, an in�nite number of su
h examples. We show the simplest

one here.

Let R be the s
hema (A, B, C) with the only nontrivial dependen
y being A��

B

CHAP T E R

8

Complex Data Types

Pra
ti
e Exer
ises

8.1 Provide information about the student named Shankar in our sample univer-

sity database, in
luding information from the student tuple
orresponding to

Shankar, the takes tuples
orresponding to Shankar and the
ourse tuples
or-

responding to these takes tuples, in ea
h of the following representations:

a. Using JSON, with an appropriate nested representation.

b. Using XML, with the same nested representation.

. Using RDF triples.

d. As an RDF graph.

Answer:

a. FILL IN

b. FILL IN

. FILL IN

d. FILL IN

8.2 Consider the RDF representation of information from the university s
hema as

shown in Figure 8.3. Write the following queries in SPARQL.

a. Find the titles of all
ourses taken by any student named Zhang.

b. Find titles of all
ourses su
h that a student named Zhang takes a se
tion

of the
ourse that is taught by an instru
tor named Srinivasan.

. Find the attribute names and values of all attributes of the instru
-

tor named Srinivasan, without enumerating the attribute names in your

query.

65

66 Chapter 8 Complex Data Types

Answer:

FILL IN

8.3 A
ar-rental
ompany maintains a database for all vehi
les in its
urrent �eet.

For all vehi
les, it in
ludes the vehi
le identi�
ation number, li
ense number,

manufa
turer, model, date of pur
hase, and
olor. Spe
ial data are in
luded for

ertain types of vehi
les:

�

Tru
ks:
argo
apa
ity.

�

Sports
ars: horsepower, renter age requirement.

�

Vans: number of passengers.

�

O�-road vehi
les: ground
learan
e, drivetrain (four- or two-wheel drive).

Constru
t an SQL s
hema de�nition for this database. Use inheritan
e where

appropriate.

Answer:

For this problem, we use table inheritan
e. We assume thatMyDate, Color and

DriveTrainType are pre-de�ned types.

reate type Vehi
le

(vehi
le id integer,

li
ense number
har(15),

manufa
turer
har(30),

model
har(30),

pur
hase date MyDate,

olor Color)

reate table vehi
le of type Vehi
le

reate table tru
k

(
argo
apa
ity integer)

under vehi
le

reate table sportsCar

(horsepower integer

renter age requirement integer)

under vehi
le

reate table van

(num passengers integer)

under vehi
le

Pra
ti
e Exer
ises 67

reate table o�RoadVehi
le

(ground
learan
e real

driveTrain DriveTrainType)

under vehi
le

8.4 Consider a database s
hema with a relation Emp whose attributes are as shown

below, with types spe
i�ed for multivalued attributes.

Emp = (ename, ChildrenSet multiset(Children), SkillSet multiset(Skills))

Children = (name, birthday)

Skills = (type, ExamSet setof(Exams))

Exams = (year,
ity)

De�ne the above s
hema in SQL, using the SQL Server table type syntax from

Se
tion 8.2.1.1 to de
lare multiset attributes.

Answer:

a. No answer.

b. Queries in SQL.

i. Program:

sele
t ename

from emp as e, e.ChildrenSet as

where 'Mar
h' in

(sele
t birthday.month

from

)

ii. Program:

sele
t e.ename

from emp as e, e.SkillSet as s, s.ExamSet as x

where s.type = 'typing' and x.
ity = 'Dayton'

iii. Program:

sele
t distin
t s.type

from emp as e, e.SkillSet as s

8.5 Consider the E-R diagram in Figure 8.7 showing entity set instru
tor.

Give an SQL s
hema de�nition
orresponding to the E-R diagram, treating

phone number as an array of 10 elements, using Ora
le or PostgreSQL syntax.

Answer:

The
orresponding SQL:1999 s
hema de�nition is given below. Note that the

derived attribute age has been translated into a method.

68 Chapter 8 Complex Data Types

instructor

ID

name

first_name

middle_inital

last_name

address

street

street_number

street_name

apt_number

city

state

zip

{phone_number}

date_of_birth

age ()

Figure 8.7 E-R diagram with
omposite, multivalued, and derived attributes.

reate type Name

(�rst name var
har(15),

middle initial
har,

last name var
har(15))

reate type Street

(street name var
har(15),

street number var
har(4),

apartment number var
har(7))

reate type Address

(street Street,

ity var
har(15),

state var
har(15),

zip
ode
har(6))

reate table
ustomer

(name Name,

ustomer id var
har(10),

address Adress,

phones varray(10) of
har(7) ,

dob date)

method integer age()

Pra
ti
e Exer
ises 69

employee (person name, street,
ity)

works (person name,
ompany name, salary)

ompany (
ompany name,
ity)

manages (person name, manager name)

Figure 8.8 Relational database for Exer
ise 8.6.

The above array syntax is based on Ora
le, in PostgreSQL phones would be

de
lared to have type
har(7)[℄.

8.6 Consider the relational s
hema shown in Figure 8.8.

a. Give a s
hema de�nition in SQL
orresponding to the relational s
hema

but using referen
es to express foreign-key relationships.

b. Write ea
h of the following queries on the s
hema, using SQL.

i. Find the
ompany with the most employees.

ii. Find the
ompany with the smallest payroll.

iii. Find those
ompanies whose employees earn a higher salary, on aver-

age, than the average salary at First Bank Corporation.

Answer:

a. The s
hema de�nition is given below.

reate type Employee

(person name var
har(30),

street var
har(15),

ity var
har(15))

reate type Company

(
ompany name var
har(15),

(
ity var
har(15))

reate table employee of Employee

reate table
ompany of Company

reate type Works

(person ref(Employee) s
ope employee,

omp ref(Company) s
ope
ompany,

salary int)

reate table works of Works

reate type Manages

(person ref(Employee) s
ope employee,

(manager ref(Employee) s
ope employee)

reate table manages of Manages

70 Chapter 8 Complex Data Types

b. i. sele
t
omp* >name

from works

group by
omp

having
ount(person) g all(sele
t
ount(person)

from works

group by
omp)

ii. sele
t
omp* >name

from works

group by
omp

having sum(salary) f all(sele
t sum(salary)

from works

group by
omp)

iii. sele
t
omp* >name

from works

group by
omp

having avg(salary) > (sele
t avg(salary)

from works

where
omp* >
ompany name="First Bank Corporation")

8.7 Compute the relevan
e (using appropriate de�nitions of term frequen
y and

inverse do
ument frequen
y) of ea
h of the Pra
ti
e Exer
ises in this
hapter

to the query �SQL relation�.

Answer:

We do not
onsider the questions
ontaining neither of the keywords be
ause

their relevan
e to the keywords is zero. The number of words in a question

in
lude stop words. We use the equations given in Se
tion 31.2 to
ompute rel-

evan
e; the log term in the equation is assumed to be to the base 2.

Q# #wo- # #“rela- “SQL” “relation” “SQL” “relation”

-rds “SQL” -tion” term freq. term freq. relv. relv. relv.

Tota

1 84 1 1 0.0170 0.0170 0.0002 0.0002 0.0004

4 22 0 1 0.0000 0.0641 0.0000 0.0029 0.0029

5 46 1 1 0.0310 0.0310 0.0006 0.0006 0.0013

6 22 1 0 0.0641 0.0000 0.0029 0.0000 0.0029

7 33 1 1 0.0430 0.0430 0.0013 0.0013 0.0026

8 32 1 3 0.0443 0.1292 0.0013 0.0040 0.0054

9 77 0 1 0.0000 0.0186 0.0000 0.0002 0.0002

14 30 1 0 0.0473 0.0000 0.0015 0.0000 0.0015

15 26 1 1 0.0544 0.0544 0.0020 0.0020 0.0041

Pra
ti
e Exer
ises 71

8.8 Show how to represent the matri
es used for
omputing PageRank as relations.

Then write an SQL query that implements one iterative step of the iterative

te
hnique for �nding PageRank; the entire algorithm
an then be implemented

as a loop
ontaining the query.

Answer:

FILL

8.9 Suppose the student relation has an attribute named lo
ation of type point, and

the
lassroom relation has an attribute lo
ation of type polygon. Write the fol-

lowing queries in SQL using the PostGIS spatial fun
tions and predi
ates that

we saw earlier:

a. Find the names of all students whose lo
ation is within the
lassroom

Pa
kard 101.

b. Find all
lassrooms that are within 100 meters or Pa
kard 101; assume all

distan
es are represented in units of meters.

. Find the ID and name of student who is geographi
ally nearest to the

student with ID 12345.

d. Find the ID and names of all pairs of students whose lo
ations are less

than 200 meters apart.

Answer:

FILL

CHAP T E R

9

Appli
ation Development

Pra
ti
e Exer
ises

9.1 What is the main reason why servlets give better performan
e than programs

that use the
ommon gateway interfa
e (CGI), even though Java programs gen-

erally run slower than C or C++ programs?

Answer:

The CGI interfa
e starts a new pro
ess to servi
e ea
h request, whi
h has a

signi�
ant operating system overhead. On the other hand, servlets are run as

threads of an existing pro
ess, avoiding this overhead. Further, the pro
ess run-

ning threads
ould be the web server pro
ess itself, avoiding interpro
ess
om-

muni
ation, whi
h
an be expensive. Thus, for small to moderate-sized tasks,

the overhead of Java is less than the overhead saved by avoiding pro
ess
re-

ation and
ommuni
ation.

For tasks involving a lot of CPU a
tivity, this may not be the
ase, and using

CGI with a C or C++ program may give better performan
e.

9.2 List some bene�ts and drawba
ks of
onne
tionless proto
ols over proto
ols

that maintain
onne
tions.

Answer:

Most
omputers have limits on the number of simultaneous
onne
tions they

an a

ept. With
onne
tionless proto
ols,
onne
tions are broken as soon as

the request is satis�ed, and therefore other
lients
an open
onne
tions. Thus

more
lients
an be served at the same time. A request
an be routed to any one

of a number of di�erent servers to balan
e load, and if a server
rashes, another

an take over without the
lient noti
ing any problem.

The drawba
k of
onne
tionless proto
ols is that a
onne
tion has to be

reestablished every time a request is sent. Also, session information has to be

sent ea
h time in the form of
ookies or hidden �elds. This makes them slower

than the proto
ols whi
h maintain
onne
tions in
ase state information is re-

quired.

73

74 Chapter 9 Appli
ation Development

9.3 Consider a
arelessly written web appli
ation for an online-shopping site, whi
h

stores the pri
e of ea
h item as a hidden form variable in the web page sent to

the
ustomer; when the
ustomer submits the form, the information from the

hidden form variable is used to
ompute the bill for the
ustomer. What is the

loophole in this s
heme? (There was a real instan
e where the loophole was

exploited by some
ustomers of an online-shopping site before the problem was

dete
ted and �xed.)

Answer:

A ha
ker
an edit the HTML sour
e
ode of the web page and repla
e the value

of the hidden variable pri
e with another value, use the modi�ed web page to

pla
e an order. The web appli
ation would then use the user-modi�ed value as

the pri
e of the produ
t.

9.4 Consider another
arelessly written web appli
ation whi
h uses a servlet that

he
ks if there was an a
tive session but does not
he
k if the user is autho-

rized to a

ess that page, instead depending on the fa
t that a link to the page is

shown only to authorized users. What is the risk with this s
heme? (There was

a real instan
e where appli
ants to a
ollege admissions site
ould, after logging

into the web site, exploit this loophole and view information they were not au-

thorized to see; the unauthorized a

ess was, however, dete
ted, and those who

a

essed the information were punished by being denied admission.)

Answer:

Although the link to the page is shown only to authorized users, an unauthorized

user may somehow
ome to know of the existen
e of the link (for example, from

an unauthorized user, or via web proxy logs). The user may then log in to the

system and a

ess the unauthorized page by entering its URL in the browser. If

the
he
k for user authorization was inadvertently left out from that page, the

user will be able to see the result of the page.

The HTTP referer attribute
an be used to blo
k a naive attempt to exploit su
h

loopholes by ensuring the referer value is from a valid page of the web site.

However, the referer attribute is set by the browser and
an be spoofed, so a

mali
ious user
an easily work around the referer
he
k.

9.5 Why is it important to open JDBC
onne
tions using the try-with-resour
es (try

(§){ § }) syntax?

Answer:

This ensures
onne
tions are
losed properly, and you will not run out of

database
onne
tions.

9.6 List three ways in whi
h
a
hing
an be used to speed up web server perfor-

man
e.

Answer:

Pra
ti
e Exer
ises 75

Ca
hing
an be used to improve performan
e by exploiting the
ommonalities

between transa
tions.

a. If the appli
ation
ode for servi
ing ea
h request needs to open a
on-

ne
tion to the database, whi
h is time
onsuming, then a pool of open

onne
tions may be
reated beforehand, and ea
h request uses one from

those.

b. The results of a query generated by a request
an be
a
hed. If the same

request
omes again, or generates the same query, then the
a
hed result

an be used instead of
onne
ting to the database again.

. The �nal web page generated in response to a request
an be
a
hed. If

the same request
omes again, then the
a
hed page
an be outputed.

9.7 The netstat
ommand (available on Linux and on Windows) shows the a
tive

network
onne
tions on a
omputer. Explain how this
ommand
an be used to

�nd out if a parti
ular web page is not
losing
onne
tions that it opened, or if

onne
tion pooling is used, not returning
onne
tions to the
onne
tion pool.

You should a

ount for the fa
t that with
onne
tion pooling, the
onne
tion

may not get
losed immediately.

Answer:

The tester should run netstat to �nd all
onne
tions open to the ma
hine/so
ket

used by the database. (If the appli
ation server is separate from the database

server, the
ommand may be exe
uted at either of the ma
hines). Then the web

page being tested should be a

essed repeatedly (this
an be automated by using

tools su
h as JMeter to generate page a

esses). The number of
onne
tions to

the database would go from 0 to some value (depending on the number of
on-

ne
tions retained in the pool), but after some time the number of
onne
tions

should stop in
reasing. If the number keeps in
reasing, the
ode underlying the

web page is
learly not
losing
onne
tions or returning the
onne
tion to the

pool.

9.8 Testing for SQL-inje
tion vulnerability:

a. Suggest an approa
h for testing an appli
ation to �nd if it is vulnerable to

SQL inje
tion atta
ks on text input.

b. Can SQL inje
tion o

ur with forms ofHTML input other than text boxes?

If so, how would you test for vulnerability?

Answer:

a. One approa
h is to enter a string
ontaining a single quote in ea
h of the

input text boxes of ea
h of the forms provided by the appli
ation to see

76 Chapter 9 Appli
ation Development

if the appli
ation
orre
tly saves the value. If it does not save the value

orre
tly and/or gives an error message, it is vulnerable to SQL inje
tion.

b. Yes, SQL inje
tion
an even o

ur with sele
tion inputs su
h as drop-

down menus, by modifying the value sent ba
k to the server when the

input value is
hosen�for example by editing the page dire
tly, or in the

browser's DOM tree. Most modern browsers provide a way for users to

edit the DOM tree. This feature
an be able to modify the values sent to

the appli
ation, inserting a single quote into the value.

9.9 A database relation may have the values of
ertain attributes en
rypted for se-

urity. Why do database systems not support indexing on en
rypted attributes?

Using your answer to this question, explain why database systems do not allow

en
ryption of primary-key attributes.

Answer:

It is not possible in general to index on an en
rypted value, unless all o

ur-

ren
es of the value en
rypt to the same value (and even in this
ase, only equality

predi
ates would be supported). However, mapping all o

urren
es of a value to

the same en
rypted value is risky, sin
e statisti
al analysis
an be used to reveal

ommon values, even without de
ryption; te
hniques based on adding random

�salt� bits are used to prevent su
h analysis, but they make indexing impossible.

One possible workaround is to store the index unen
rypted, but then the index

an be used to leak values. Another option is to keep the index en
rypted, but

then the database system should know the de
ryption key, to de
rypt required

parts of the index on the �y. Sin
e this requires modifying large parts of the

database system
ode, databases typi
ally do not support this option.

The primary-key
onstraint has to be
he
ked by the database when tuples are

inserted, and if the values are en
rypted as above, the database systemwill not be

able to dete
t primary-key violations. Therefore, database systems that support

en
ryption of spe
i�ed attributes do not allow primary-key attributes, or for that

matter foreign-key attributes, to be en
rypted.

9.10 Exer
ise 9.9 addresses the problem of en
ryption of
ertain attributes. However,

some database systems support en
ryption of entire databases. Explain how the

problems raised in Exer
ise 9.9 are avoided if the entire database is en
rypted.

Answer:

When the entire database is en
rypted, it is easy for the database to perform

de
ryption as data are fet
hed from disk into memory, so in-memory storage is

unen
rypted. With this option, everything in the database, in
luding indi
es, is

en
rypted when on disk, but unen
rypted in memory. As a result, only the data

a

ess layer of the database system
ode needs to be modi�ed to perform en-

ryption, leaving other layers untou
hed. Thus, indi
es
an be used un
hanged,

and primary-key and foreign-key
onstraints enfor
ed without any
hange to the

orresponding layers of the database system
ode.

Pra
ti
e Exer
ises 77

9.11 Suppose someone impersonates a
ompany and gets a
erti�
ate from a

erti�
ate-issuing authority. What is the e�e
t on things (su
h as pur
hase or-

ders or programs)
erti�ed by the impersonated
ompany, and on things
erti-

�ed by other
ompanies?

Answer:

The key problem with digital
erti�
ates (when used o
ine, without
onta
ting

the
erti�
ate issuer) is that there is no way to withdraw them.

For instan
e (this a
tually happened, but names of the parties have been

hanged) person C
laims to be an employee of
ompany X and gets a new

publi
 key
erti�ed by the
ertifying authority A. Suppose the authority A in-

orre
tly believed that C was a
ting on behalf of
ompany X , and it gave C a

erti�
ate
ert. Now C
an
ommuni
ate with person Y , who
he
ks the
er-

ti�
ate
ert presented by C and believes the publi
 key
ontained in
ert really

belongs to X . C
an
ommuni
ate with Y using the publi
 key, and Y trusts the

ommuni
ation is from
ompany X .

Person Y may now reveal
on�dential information to C or a

ept a pur-

hase order from C or exe
ute programs
erti�ed by C, based on the publi
 key,

thinking he is a
tually
ommuni
ating with
ompany X . In ea
h
ase there is

potential for harm to Y .

Even if A dete
ts the impersonation, as long as Y does not
he
k with A (the

proto
ol does not require this
he
k), there is no way for Y to �nd out that the

erti�
ate is forged.

If X was a
erti�
ation authority itself, further levels of fake
erti�
ates
ould

be
reated. But
erti�
ates that are not part of this
hain would not be a�e
ted.

9.12 Perhaps themost important data items in any database system are the passwords

that
ontrol a

ess to the database. Suggest a s
heme for the se
ure storage

of passwords. Be sure that your s
heme allows the system to test passwords

supplied by users who are attempting to log into the system.

Answer:

A s
heme for storing passwords would be to en
rypt ea
h password (after

adding randomly generated �salt� bits to prevent di
tionary atta
ks), and then

use a hash index on the user-id to store/a

ess the en
rypted password. The

password being used in a login attempt is then en
rypted (if randomly gener-

ated �salt� bits were used initially, these bits should be stored with the user-id

and used when en
rypting the user-supplied password). The en
rypted value

is then
ompared with the stored en
rypted value of the
orre
t password. An

advantage of this s
heme is that passwords are not stored in
lear text, and the

ode for de
ryption need not even exist. Thus, �one-way� en
ryption fun
tions,

su
h as se
ure hashing fun
tions, whi
h do not support de
ryption
an be used

for this task. The se
ure hashing algorithm SHA-1 is widely used for su
h one-

way en
ryption.

CHAP T E R

10

Big Data

Pra
ti
e Exer
ises

10.1 Suppose you need to store a very large number of small �les, ea
h of size say 2

kilobytes. If your
hoi
e is between a distributed �le system and a distributed

key-value store, whi
h would you prefer, and explain why.

Answer:

The key-value store, sin
e the distributed �le system is designed to store a mod-

erate number of large �les. With ea
h �le blo
k being multiple megabytes,

kilobyte-sized �les would result in a lot of wasted spa
e in ea
h blo
k and poor

storage performan
e.

10.2 Suppose you need to store data for a very large number of students in a dis-

tributed do
ument store su
h as MongoDB. Suppose also that the data for

ea
h student
orrespond to the data in the student and the takes relations.

How would you represent the above data about students, ensuring that all the

data for a parti
ular student
an be a

essed e	
iently? Give an example of

the data representation for one student.

Answer:

We would store the student data as a JSON obje
t, with the takes tuples for

the student stored as a JSON array of obje
ts, ea
h obje
t
orresponding to a

single takes tuple. Give example ...

10.3 Suppose you wish to store utility bills for a large number of users, where ea
h

bill is identi�ed by a
ustomer ID and a date. How would you store the bills in

a key-value store that supports range queries, if queries request the bills of a

spe
i�ed
ustomer for a spe
i�ed date range.

Answer:

Create a key by
on
atenating the
ustomer ID and date (with date represented

in the form year/month/date, e.g., 2018/02/28) and store the re
ords indexed

on this key. Now the required re
ords
an be retrieved by a range query.

79

80 Chapter 10 Big Data

10.4 Give pseudo
ode for
omputing a join r Æ

r:A=s:A

s using a single MapRedu
e

step, assuming that the map() fun
tion is invoked on ea
h tuple of r and s.

Assume that the map() fun
tion
an �nd the name of the relation using
on-

text.relname().

Answer:

With themap fun
tion, output re
ords from both the input relations, using the

join attribute value as the redu
e key. The redu
e fun
tion gets re
ords from

both relations with mat
hing join attribute values and outputs all mat
hing

pairs.

10.5 What is the
on
eptual problem with the following snippet of Apa
he Spark

ode meant to work on very large data. Note that the
olle
t() fun
tion returns

a Java
olle
tion, and Java
olle
tions (from Java 8 onwards) support map and

redu
e fun
tions.

JavaRDD<String< lines = s
.textFile("logDire
tory");

int totalLength = lines.
olle
t().map(s *> s.length())

.redu
e(0,(a,b) *> a+b);

Answer:

The problem with the
ode is that the
olle
t() fun
tion gathers the RDD data

at a single node, and the map and redu
e fun
tions are then exe
uted on that

single node, not in parallel as intended.

10.6 Apa
he Spark:

a. How does Apa
he Spark perform
omputations in parallel?

b. Explain the statement: �Apa
he Spark performs transformations on

RDDs in a lazy manner.�

. What are some of the bene�ts of lazy evaluation of operations in Apa
he

Spark?

Answer:

a. RDDs are stored partitioned a
ross multiple nodes. Ea
h of the trans-

formation operations on an RDD are exe
uted in parallel on multiple

nodes.

b. Transformations are not exe
uted immediately but postponed until the

result is required for fun
tions su
h as
olle
t() or saveAsTextFile().

. The operations are organized into a tree, and query optimization
an

be applied to the tree to speed up
omputation. Also, answers
an be

pipelined from one operation to another, without being written to disk,

to redu
e time overheads of disk storage.

Pra
ti
e Exer
ises 81

10.7 Given a
olle
tion of do
uments, for ea
h word w

i

, let n

i

denote the number of

times the word o

urs in the
olle
tion. Let N be the total number of word o
-

urren
es a
ross all do
uments. Next,
onsider all pairs of
onse
utive words

(w

i

,w

j

) in the do
ument; let n

i,j

denote the number of o

urren
es of the word

pair (w

i

,w

j

) a
ross all do
uments.

Write an Apa
he Spark program that, given a
olle
tion of do
uments in a

dire
tory,
omputesN , all pairs (w

i

, n

i

), and all pairs ((w

i

,w

j

), n

i,j

). Then output

all word pairs su
h that n

i,j

_N g 10 < (n

i

_N) < (n

j

_N). These are word pairs

that o

ur 10 times or more as frequently as they would be expe
ted to o

ur

if the two words o

urred independently of ea
h other.

You will �nd the join operation on RDDs useful for the last step, to bring

related
ounts together. For simpli
ity, do not bother about word pairs that

ross lines. Also assume for simpli
ity that words only o

ur in lower
ase and

that there are no pun
tuation marks.

Answer:

FILL IN ANSWER (available with SS)

10.8 Consider the following query using the tumbling window operator:

sele
t item, System.Timestamp as window end, sum(amount)

from order timestamp by datetime

group by itemid, tumblingwindow(hour, 1)

Give an equivalent query using normal SQL
onstru
ts, without using the tum-

bling window operator. You
an assume that the timestamp
an be
onverted

to an integer value that represents the number of se
onds elapsed sin
e (say)

midnight, January 1, 1970, using the fun
tion to se
onds(timestamp). You
an

also assume that the usual arithmeti
 fun
tions are available, along with the

fun
tion �oor(a) whi
h returns the largest integer f a.

Answer:

Divide by 3600, and take �oor, group by that. To output the timestamp of the

window end, add 1 to hour and multiply by 3600

10.9 Suppose you wish to model the university s
hema as a graph. For ea
h of the

following relations, explain whether the relation would be modeled as a node

or as an edge:

(i) student, (ii) instru
tor, (iii)
ourse, (iv) se
tion, (v) takes, (vi) tea
hes.

Does the model
apture
onne
tions between se
tions and
ourses?

Answer:

Ea
h relation
orresponding to an entity (student, instru
tor,
ourse, and se
-

tion) would be modeled as a node. Takes and tea
hes would be modeled as

edges. There is a further edge between
ourse and se
tion, whi
h has been

82 Chapter 10 Big Data

merged into the se
tion relation and
annot be
aptured with the above s
hema.

It
an be modeled if we
reate a separate relation that links se
tions to
ourses.

CHAP T E R

11

Data Analyti
s

Pra
ti
e Exer
ises

11.1 Des
ribe bene�ts and drawba
ks of a sour
e-driven ar
hite
ture for gathering

of data at a data warehouse, as
ompared to a destination-driven ar
hite
ture.

Answer:

In a destination-driven ar
hite
ture for gathering data, data transfers from the

data sour
es to the data warehouse are based on demand from the warehouse,

whereas in a sour
e-driven ar
hite
ture, the transfers are initiated by ea
h

sour
e.

The bene�ts of a sour
e-driven ar
hite
ture are

�

Data
an be propagated to the destination as soon as they be
ome avail-

able. For a destination-driven ar
hite
ture to
olle
t data as soon as they

are available, the warehouse would have to probe the sour
es frequently,

leading to a high overhead.

�

The sour
e does not have to keep histori
al information. As soon as data

are updated, the sour
e
an send an update message to the destination

and forget the history of the updates. In
ontrast, in a destination-driven

ar
hite
ture, ea
h sour
e has to maintain a history of data whi
h have not

yet been
olle
ted by the data warehouse. Thus storage requirements at

the sour
e are lower for a sour
e-driven ar
hite
ture.

On the other hand, a destination-driven ar
hite
ture has the following advan-

tages.

�

In a sour
e-driven ar
hite
ture, the sour
e has to be a
tive and must han-

dle error
onditions su
h as not being able to
onta
t the warehouse for

some time. It is easier to implement passive sour
es, and a single a
tive

warehouse. In a destination-driven ar
hite
ture, ea
h sour
e is required to

provide only a basi
 fun
tionality of exe
uting queries.

83

84 Chapter 11 Data Analyti
s

�

The warehouse has more
ontrol on when to
arry out data gathering

a
tivities and when to pro
ess user queries; it is not a good idea to perform

both simultaneously, sin
e they may
on�i
t on lo
ks.

11.2 Draw a diagram that shows how the
lassroom relation of our university exam-

ple as shown in Appendix A would be stored under a
olumn-oriented storage

stru
ture.

Answer:

The relation would be stored in three �les, one per attribute, as shown below.

We assume that the row number
an be inferred impli
itly from position, by

using �xed-size spa
e for ea
h attribute. Otherwise, the row number would also

have to be stored expli
itly.

building

Pa
kard

Painter

Taylor

Watson

Watson

room number

101

514

3128

100

120

apa
ity

500

10

70

30

50

11.3 Consider the takes relation. Write an SQL query that
omputes a
ross-tab

that has a
olumn for ea
h of the years 2017 and 2018, and a
olumn for all,

and one row for ea
h
ourse, as well as a row for all. Ea
h
ell in the table

should
ontain the number of students who took the
orresponding
ourse in

the
orresponding year, with
olumn all
ontaining the aggregate a
ross all

years, and row all
ontaining the aggregate a
ross all
ourses.

Answer:

Pra
ti
e Exer
ises 85

11.4 Consider the data warehouse s
hema depi
ted in Figure 11.2. Give an SQL

query to summarize sales numbers and pri
e by store and date, along with the

hierar
hies on store and date.

Answer:

query:

sele
t store-id,
ity, state,
ountry,

date, month, quarter, year,

sum(number), sum(pri
e)

from sales, store, date

where sales.store-id = store.store-id and

sales.date = date.date

groupby rollup(
ountry, state,
ity, store-id),

rollup(year, quarter, month, date)

11.5 Classi�
ation
an be done using
lassi�
ation rules, whi
h have a
ondition, a

lass, and a
on�den
e; the
on�den
e is the per
entage of the inputs satisfying

the
ondition that fall in the spe
i�ed
lass.

For example, a
lassi�
ation rule for
redit ratings may have a
ondition

that salary is between $30,000 and $50,000, and edu
ation level is graduate,

with the
redit rating
lass of good, and a
on�den
e of 80%. A se
ond rulemay

have a
ondition that salary is between $30,000 and $50,000, and edu
ation

level is high-s
hool, with the
redit rating
lass of satisfa
tory, and a
on�den
e

of 80%. A third rule may have a
ondition that salary is above $50,001, with

the
redit rating
lass of ex
ellent, and
on�den
e of 90%. Show a de
ision tree

lassi�er
orresponding to the above rules.

Show how the de
ision tree
lassi�er
an be extended to re
ord the
on�-

den
e values.

Answer:

FILL IN

11.6 Consider a
lassi�
ation problem where the
lassi�er predi
ts whether a per-

son has a parti
ular disease. Suppose that 95% of the people tested do not

su�er from the disease. Let pos denote the fra
tion of true positives, whi
h is

5% of the test
ases, and let neg denote the fra
tion of true negatives, whi
h is

95% of the test
ases. Consider the following
lassi�ers:

�

Classi�er C

1

, whi
h always predi
ts negative (a rather useless
lassi�er, of

ourse).

�

Classi�er C

2

, whi
h predi
ts positive in 80% of the
ases where the person

a
tually has the disease but also predi
ts positive in 5% of the
ases where

the person does not have the disease.

86 Chapter 11 Data Analyti
s

�

Classi�er C

3

, whi
h predi
ts positive in 95% of the
ases where the person

a
tually has the disease but also predi
ts positive in 20% of the
ases where

the person does not have the disease.

For ea
h
lassi�er, let t pos denote the true positive fra
tion, that is the fra
tion

of
ases where the
lassi�er predi
tion was positive, and the person a
tually

had the disease. Let f pos denote the false positive fra
tion, that is the fra
tion

of
ases where the predi
tion was positive, but the person did not have the

disease. Let t neg denote true negative and f neg denote false negative fra
tions,

whi
h are de�ned similarly, but for the
ases where the
lassi�er predi
tion

was negative.

a. Compute the following metri
s for ea
h
lassi�er:

i. A

ura
y, de�ned as (t pos + t neg)_(pos+neg), that is, the fra
tion of

the time when the
lassi�er gives the
orre
t
lassi�
ation.

ii. Re
all (also known as sensitivity) de�ned as t pos_pos, that is, how

many of the a
tual positive
ases are
lassi�ed as positive.

iii. Pre
ision, de�ned as t pos/(t pos+f pos), that is, how often the positive

predi
tion is
orre
t.

iv. Spe
i�
ity, de�ned as t neg/neg.

b. If you intend to use the results of
lassi�
ation to perform further s
reen-

ing for the disease, how would you
hoose between the
lassi�ers?

. On the other hand, if you intend to use the result of
lassi�
ation to start

medi
ation, where the medi
ation
ould have harmful e�e
ts if given to

someone who does not have the disease, how would you
hoose between

the
lassi�ers?

Answer:

FILL

CHAP T E R

12

Physi
al Storage Systems

Pra
ti
e Exer
ises

12.1 SSDs
an be used as a storage layer between memory and magneti
 disks, with

some parts of the database (e.g., some relations) stored on SSDs and the rest

on magneti
 disks. Alternatively, SSDs
an be used as a bu�er or
a
he for

magneti
 disks; frequently used blo
ks would reside on the SSD layer, while

infrequently used blo
ks would reside on magneti
 disk.

a. Whi
h of the two alternatives would you
hoose if you need to support

real-time queries that must be answered within a guaranteed short period

of time? Explain why.

b. Whi
h of the two alternatives would you
hoose if you had a very large

ustomer relation, where only some disk blo
ks of the relation are a
-

essed frequently, with other blo
ks rarely a

essed.

Answer:

In the �rst
ase, SSD as storage layer is better sin
e performan
e is guaran-

teed. With SSD as
a
he, some requests may have to read from magneti
 disk,

ausing delays.

In the se
ond
ase, sin
e we don't know exa
tly whi
h blo
ks are frequently

a

essed at a higher level, it is not possible to assign part of the relation to SSD.

Sin
e the relation is very large, it is not possible to assign all of the relation to

SSD. The SSD as
a
he option will work better in this
ase.

12.2 Some databases usemagneti
 disks in a way that only se
tors in outer tra
ks are

used, while se
tors in inner tra
ks are left unused. What might be the bene�ts

of doing so?

Answer:

The disk's data-transfer rate will be greater on the outer tra
ks than the inner

tra
ks. This is be
ause the disk spins at a
onstant rate, so more se
tors pass

underneath the drive head in a given amount of time when the arm is posi-

87

88 Chapter 12 Physi
al Storage Systems

tioned on an outer tra
k than when on an inner tra
k. Even more importantly,

by using only outer tra
ks, the disk arm movement is minimized, redu
ing the

disk a

ess laten
y. This aspe
t is important for transa
tion-pro
essing sys-

tems, where laten
y a�e
ts the transa
tion-pro
essing rate.

12.3 Flash storage:

a. How is the �ash translation table, whi
h is used to map logi
al page

numbers to physi
al page numbers,
reated in memory?

b. Suppose you have a 64-gigabyte �ash storage system, with a 4096-byte

page size. How big would the �ash translation table be, assuming ea
h

page has a 32-bit address, and the table is stored as an array?

. Suggest how to redu
e the size of the translation table if very often long

ranges of
onse
utive logi
al page numbers are mapped to
onse
utive

physi
al page numbers.

Answer:

a. It is stored as an array
ontaining physi
al page numbers, indexed by

logi
al page numbers. This representation gives an overhead equal to

the size of the page address for ea
h page.

b. It takes 32 bits for every page or every 4096 bytes of storage. Hen
e, it

takes 64 megabytes for the 64 gigabytes of �ash storage.

. If the mapping is su
h that every p
onse
utive logi
al page numbers are

mapped to p
onse
utive physi
al pages, we
an store the mapping of

the �rst page for every p pages. This redu
es the in-memory stru
ture by

a fa
tor of p. Further, if p is an exponent of 2, we
an avoid some of the

least signi�
ant digits of the addresses stored.

12.4 Consider the following data and parity-blo
k arrangement on four disks:

Disk 1 Disk 2 Disk 3 Disk 4

B1

P1

B8

…

B2

B5

P2

…

B3

B6

B9

…

B4

B7

B10

…

The B

i

s represent data blo
ks; the P

i

s represent parity blo
ks. Parity blo
k P

i

is the parity blo
k for data blo
ks B

4i*3

to B

4i

. What, if any, problemmight this

arrangement present?

Answer:

Pra
ti
e Exer
ises 89

This arrangement has the problem that P

i

and B

4i*3

are on the same disk. So

if that disk fails, re
onstru
tion of B

4i*3

is not possible, sin
e data and parity

are both lost.

12.5 A database administrator
an
hoose how many disks are organized into a

single RAID 5 array. What are the trade-o�s between having fewer disks ver-

sus more disks, in terms of
ost, reliability, performan
e during failure, and

performan
e during rebuild?

Answer:

Fewer disks has higher
ost, but with more disks, the
han
e of two disk fail-

ures, whi
h would lead to data loss, is higher. Further, performan
e during

failure would be poor sin
e a blo
k read from a failed disk would result a large

number of blo
k reads from the other disks. Similarly, the overhead for rebuild-

ing the failed disk would also be higher, sin
e more disks need to be read to

re
onstru
t the data in the failed disk.

12.6 A power failure that o

urs while a disk blo
k is being written
ould result in

the blo
k being only partially written. Assume that partially written blo
ks
an

be dete
ted. An atomi
 blo
k write is one where either the disk blo
k is fully

written or nothing is written (i.e., there are no partial writes). Suggest s
hemes

for getting the e�e
t of atomi
 blo
k writes with the following RAID s
hemes.

Your s
hemes should involve work on re
overy from failure.

a. RAID level 1 (mirroring)

b. RAID level 5 (blo
k interleaved, distributed parity)

Answer:

a. To ensure atomi
ity, a blo
k write operation is
arried out as follows:

i. Write the information onto the �rst physi
al blo
k.

ii. When the �rst write
ompletes su

essfully, write the same informa-

tion onto the se
ond physi
al blo
k.

iii. The output is de
lared
ompleted only after the se
ond write
om-

pletes su

essfully.

During re
overy, ea
h pair of physi
al blo
ks is examined. If both are

identi
al and there is no dete
table partial-write, then no further a
tions

are ne
essary. If one blo
k has been partially rewritten, then we repla
e

its
ontents with the
ontents of the other blo
k. If there has been no

partial-write, but they di�er in
ontent, then we repla
e the
ontents

of the �rst blo
k with the
ontents of the se
ond, or vi
e versa. This

re
overy pro
edure ensures that a write to stable storage either su

eeds

ompletely (that is, updates both
opies) or results in no
hange.

The requirement of
omparing every
orresponding pair of blo
ks

during re
overy is expensive to meet. We
an redu
e the
ost greatly by

90 Chapter 12 Physi
al Storage Systems

keeping tra
k of blo
k writes that are in progress, using a small amount

of nonvolatile RAM. On re
overy, only blo
ks for whi
h writes were in

progress need to be
ompared.

b. The idea is similar here. For any blo
k write, the information blo
k is

written �rst, followed by the
orresponding parity blo
k. At the time of

re
overy, ea
h set
onsisting of the n

th

blo
k of ea
h of the disks is
on-

sidered. If none of the blo
ks in the set have been partially written, and

the parity blo
k
ontents are
onsistent with the
ontents of the informa-

tion blo
ks, then no further a
tion need be taken. If any blo
k has been

partially written, its
ontents are re
onstru
ted using the other blo
ks. If

no blo
k has been partially written, but the parity blo
k
ontents do not

agree with the information blo
k
ontents, the parity blo
k's
ontents

are re
onstru
ted.

12.7 Storing all blo
ks of a large �le on
onse
utive disk blo
ks would minimize

seeks during sequential �le reads. Why is it impra
ti
al to do so? What do op-

erating systems do instead, to minimize the number of seeks during sequential

reads?

Answer:

Reading data sequentially from a large �le
ould be done with only one seek

if the entire �le were stored on
onse
utive disk blo
ks. Ensuring availability

of large numbers of
onse
utive free blo
ks is not easy, sin
e �les are
reated

and deleted, resulting in fragmentation of the free blo
ks on disks. Operating

systems allo
ate blo
ks on large but �xed-sized sequential extents instead, and

only one seek is required per extent.

CHAP T E R

13

Data Storage Stru
tures

Pra
ti
e Exer
ises

13.1 Consider the deletion of re
ord 5 from the �le of Figure 13.3. Compare the

relative merits of the following te
hniques for implementing the deletion:

a. Move re
ord 6 to the spa
e o

upied by re
ord 5, and move re
ord 7 to

the spa
e o

upied by re
ord 6.

b. Move re
ord 7 to the spa
e o

upied by re
ord 5.

. Mark re
ord 5 as deleted, and move no re
ords.

Answer:

a. Although moving re
ord 6 to the spa
e for 5 and moving re
ord 7 to the

spa
e for 6 is the most straightforward approa
h, it requires moving the

most re
ords and involves the most a

esses.

b. Moving re
ord 7 to the spa
e for 5 moves fewer re
ords but destroys any

ordering in the �le.

. Marking the spa
e for 5 as deleted preserves ordering and moves no

re
ords, but it requires additional overhead to keep tra
k of all of the

free spa
e in the �le. This method may lead to too many �holes� in the

�le, whi
h if not
ompa
ted from time to time, will a�e
t performan
e

be
ause of the redu
ed availability of
ontiguous free re
ords.

13.2 Show the stru
ture of the �le of Figure 13.4 after ea
h of the following steps:

a. Insert (24556, Turnamian, Finan
e, 98000).

b. Delete re
ord 2.

. Insert (34556, Thompson, Musi
, 67000).

Answer:

91

92 Chapter 13 Data Storage Stru
tures

header ~ 4

re
ord 0 10101 Srinivasan Comp. S
i. 65000

re
ord 1 24556 Turnamian Finan
e 98000

re
ord 2 15151 Mozart Musi
 40000

re
ord 3 22222 Einstein Physi
s 95000

re
ord 4 ~ 6

re
ord 5 33456 Gold Physi
s 87000

re
ord 6

re
ord 7 58583 Cali�eri History 62000

re
ord 8 76543 Singh Finan
e 80000

re
ord 9 76766 Cri
k Biology 72000

re
ord 10 83821 Brandt Comp. S
i. 92000

re
ord 11 98345 Kim Ele
. Eng. 80000

Figure 13.101 The file after insert (24556, Turnamian, Finan
e, 98000).

header ~ 2

re
ord 0 10101 Srinivasan Comp. S
i. 65000

re
ord 1 24556 Turnamian Finan
e 98000

re
ord 2 ~ 4

re
ord 3 22222 Einstein Physi
s 95000

re
ord 4 ~ 6

re
ord 5 33456 Gold Physi
s 87000

re
ord 6

re
ord 7 58583 Cali�eri History 62000

re
ord 8 76543 Singh Finan
e 80000

re
ord 9 76766 Cri
k Biology 72000

re
ord 10 83821 Brandt Comp. S
i. 92000

re
ord 11 98345 Kim Ele
. Eng. 80000

Figure 13.102 The file after delete re
ord 2.

We use �~ i� to denote a pointer to re
ord �i�.

a. See ??.

b. See ??. Note that the free re
ord
hain
ould have alternatively been

from the header to 4, from 4 to 2, and �nally from 2 to 6.

. See ??.

Pra
ti
e Exer
ises 93

header ~ 4

re
ord 0 10101 Srinivasan Comp. S
i. 65000

re
ord 1 24556 Turnamian Finan
e 98000

re
ord 2 34556 Thompson Musi
 67000

re
ord 3 22222 Einstein Physi
s 95000

re
ord 4 ~ 6

re
ord 5 33456 Gold Physi
s 87000

re
ord 6

re
ord 7 58583 Cali�eri History 62000

re
ord 8 76543 Singh Finan
e 80000

re
ord 9 76766 Cri
k Biology 72000

re
ord 10 83821 Brandt Comp. S
i. 92000

re
ord 11 98345 Kim Ele
. Eng. 80000

Figure 13.103 The file after insert (34556, Thompson, Musi
, 67000).

13.3 Consider the relations se
tion and takes. Give an example instan
e of these

two relations, with three se
tions, ea
h of whi
h has �ve students. Give a �le

stru
ture of these relations that uses multitable
lustering.

Answer:

The relation se
tion with three tuples is as follows:

ourse id se
 id semester year building room number time slot id

BIO-301 1 Summer 2010 Painter 514 A

CS-101 1 Fall 2009 Pa
kard 101 H

CS-347 1 Fall 2009 Taylor 3128 C

The relation takes with �ve students for ea
h se
tion is as follows:

See ??.

See ??.

The multitable
lustering for the above two instan
es
an be taken as:

13.4 Consider the bitmap representation of the free-spa
e map, where for ea
h

blo
k in the �le, two bits are maintained in the bitmap. If the blo
k is between

0 and 30 per
ent full the bits are 00, between 30 and 60 per
ent the bits are

01, between 60 and 90 per
ent the bits are 10, and above 90 per
ent the bits

are 11. Su
h bitmaps
an be kept in memory even for quite large �les.

a. Outline two bene�ts and one drawba
k to using two bits for a blo
k,

instead of one byte as des
ribed earlier in this
hapter.

94 Chapter 13 Data Storage Stru
tures

ID
ourse id se
 id semester year grade

00128 CS-101 1 Fall 2009 A

00128 CS-347 1 Fall 2009 A-

12345 CS-347 1 Fall 2009 A

12345 CS-101 1 Fall 2009 C

17968 BIO-301 1 Summer 2010 null

23856 CS-347 1 Fall 2009 A

45678 CS-101 1 Fall 2009 F

54321 CS-101 1 Fall 2009 A-

54321 CS-347 1 Fall 2009 A

59762 BIO-301 1 Summer 2010 null

76543 CS-101 1 Fall 2009 A

76543 CS-347 1 Fall 2009 A

78546 BIO-301 1 Summer 2010 null

89729 BIO-301 1 Summer 2010 null

98988 BIO-301 1 Summer 2010 null

Figure 13.104 The relation takes with five students for ea
h se
tion.

b. Des
ribe how to keep the bitmap up to date on re
ord insertions and

deletions.

. Outline the bene�t of the bitmap te
hnique over free lists in sear
hing

for free spa
e and in updating free spa
e information.

Answer:

a. The spa
e used is less with 2 bits, and the number of times the free-

spa
e map needs to be updated de
reases signi�
antly, sin
e many in-

serts/deletes do not result in any
hange in the free-spa
e map. However,

we have only an approximate idea of the free spa
e available, whi
h
ould

lead both to wasted spa
e and/or to in
reased sear
h
ost for �nding free

spa
e for a re
ord.

b. Every time a re
ord is inserted/deleted,
he
k if the usage of the blo
k

has
hanged levels. In that
ase, update the
orresponding bits. Note

that we don't need to a

ess the bitmaps at all unless the usage
rosses

a boundary, so in most of the
ases there is no overhead.

. When free spa
e for a large re
ord or a set of re
ords is sought, then

multiple free list entries may have to be s
anned before a proper-sized

one is found, so overheads are mu
h higher. With bitmaps, one page of

bitmap
an store free info for many pages, so I/O spent for �nding free

spa
e is minimal. Similarly, when a whole blo
k or a large part of it is

Pra
ti
e Exer
ises 95

BIO-301 1 Summer 2010 Painter 514 A

17968 BIO-301 1 Summer 2010 null

59762 BIO-301 1 Summer 2010 null

78546 BIO-301 1 Summer 2010 null

89729 BIO-301 1 Summer 2010 null

98988 BIO-301 1 Summer 2010 null

CS-101 1 Fall 2009 Pa
kard 101 H

00128 CS-101 1 Fall 2009 A

12345 CS-101 1 Fall 2009 C

45678 CS-101 1 Fall 2009 F

54321 CS-101 1 Fall 2009 A-

76543 CS-101 1 Fall 2009 A

CS-347 1 Fall 2009 Taylor 3128 C

00128 CS-347 1 Fall 2009 A-

12345 CS-347 1 Fall 2009 A

23856 CS-347 1 Fall 2009 A

54321 CS-347 1 Fall 2009 A

76543 CS-347 1 Fall 2009 A

Figure 13.105 The multitable
lustering for the above two instan
es
an be taken as:

deleted, bitmap te
hnique is more
onvenient for updating free spa
e

information.

13.5 It is important to be able to qui
kly �nd out if a blo
k is present in the bu�er,

and if so where in the bu�er it resides. Given that database bu�er sizes are

very large, what (in-memory) data stru
ture would you use for this task?

Answer:

Hash table is the
ommon option for large database bu�ers. The hash fun
tion

helps in lo
ating the appropriate bu
ket on whi
h linear sear
h is performed.

13.6 Suppose your university has a very large number of takes re
ords, a

umulated

over many years. Explain how table partitioning
an be done on the takes rela-

tion, and what bene�ts it
ould o�er. Explain also one potential drawba
k of

the te
hnique.

Answer:

The table
an be partitioned on (year, semester). Old takes re
ords that are

no longer a

essed frequently
an be stored on magneti
 disk, while newer

re
ords
an be stored on SSD. Queries that spe
ify a year
an be answered

without reading re
ords for other years.

96 Chapter 13 Data Storage Stru
tures

A drawba
k is that queries that fet
h re
ords
orresponding to multiple years

will have a higher overhead, sin
e the re
ords may be partitioned a
ross di�er-

ent relations and disk blo
ks.

13.7 Give an example of a relational-algebra expression and a query-pro
essing strat-

egy in ea
h of the following situations:

a. MRU is preferable to LRU.

b. LRU is preferable to MRU.

Answer:

a. MRU is preferable to LRUwhereR

1

Æ R

2

is
omputed by using a nested-

loop pro
essing strategy where ea
h tuple in R

2

must be
ompared to

ea
h blo
k in R

1

. After the �rst tuple of R

2

is pro
essed, the next needed

blo
k is the �rst one in R

1

. However, sin
e it is the least re
ently used,

the LRU bu�er management strategy would repla
e that blo
k if a new

blo
k was needed by the system.

b. LRU is preferable to MRU where R

1

Æ R

2

is
omputed by sorting the

relations by join values and then
omparing the values by pro
eeding

through the relations. Due to dupli
ate join values, it may be ne
essary

to �ba
k up� in one of the relations. This �ba
king up�
ould
ross a

blo
k boundary into the most re
ently used blo
k, whi
h would have

been repla
ed by a system usingMRU bu�er management, if a new blo
k

was needed.

Under MRU, some unused blo
ks may remain in memory forever. In

pra
ti
e, MRU
an be used only in spe
ial situations like that of the

nested-loop strategy dis
ussed in Exer
ise Se
tion 13.8a.

13.8 PostgreSQL normally uses a small bu�er, leaving it to the operating system

bu�er manager to manage the rest of main memory available for �le system

bu�ering. Explain (a) what is the bene�t of this approa
h, and (b) one key

limitation of this approa
h.

Answer:

The database system does not know what are the memory demands from other

pro
esses. By using a small bu�er, PostgreSQL ensures that it does not grab

too mu
h of main memory. But at the same time, even if a blo
k is evi
ted

from bu�er, if the �le system bu�er manager has enough memory allo
ated to

it, the evi
ted page is likely to still be
a
hed in the �le system bu�er. Thus, a

database bu�er miss is often not very expensive sin
e the blo
k is still in the

�le system bu�er.

Pra
ti
e Exer
ises 97

The drawba
k of this approa
h is that the database system may not be able to

ontrol the �le system bu�er repla
ement poli
y. Thus, the operating system

may make suboptimal de
isions on what to evi
t from the �le system bu�er.

CHAP T E R

14

Indexing

Pra
ti
e Exer
ises

14.1 Indi
es speed query pro
essing, but it is usually a bad idea to
reate indi
es on

every attribute, and every
ombination of attributes, that are potential sear
h

keys. Explain why.

Answer:

Reasons for not keeping indi
es on every attribute in
lude:

�

Every index requires additional CPU time and disk I/O overhead during

inserts and deletions.

�

Indi
es on non-primary keys might have to be
hanged on updates, al-

though an index on the primary key might not (this is be
ause updates

typi
ally do not modify the primary-key attributes).

�

Ea
h extra index requires additional storage spa
e.

�

For queries whi
h involve
onditions on several sear
h keys, e	
ien
y

might not be bad even if only some of the keys have indi
es on them.

Therefore, database performan
e is improved less by adding indi
es when

many indi
es already exist.

14.2 Is it possible in general to have two
lustering indi
es on the same relation for

di�erent sear
h keys? Explain your answer.

Answer:

In general, it is not possible to have two primary indi
es on the same relation

for di�erent keys be
ause the tuples in a relation would have to be stored in

di�erent order to have the same values stored together. We
ould a

omplish

this by storing the relation twi
e and dupli
ating all values, but for a
entralized

system, this is not e	
ient.

14.3 Constru
t a B

+

-tree for the following set of key values:

99

100 Chapter 14 Indexing

(2, 3, 5, 7, 11, 17, 19, 23, 29, 31)

Assume that the tree is initially empty and values are added in as
ending order.

Constru
t B

+

-trees for the
ases where the number of pointers that will �t in

one node is as follows:

a. Four

b. Six

. Eight

Answer:

The following were generated by inserting values into the B

+

-tree in as
ending

order. A node (other than the root) was never allowed to have fewer than än_2å

values/pointers.

a.

5 7 11 17 19 23 29 3132

29

19

115

b.

7 19

2 3 5 7 11 17 19 23 29 31

.

11

11 17 19 23 29 312 3 5 7

14.4 For ea
h B

+

-tree of Exer
ise 14.3, show the form of the tree after ea
h of the

following series of operations:

a. Insert 9.

Pra
ti
e Exer
ises 101

b. Insert 10.

. Insert 8.

d. Delete 23.

e. Delete 19.

Answer:

�

With stru
ture Exer
ise 14.3.a:

Insert 9:

19

5 119 29

2 3 5 7 11 17 19 23 29 31

Insert 10:

19

5 9 11 29

2 3 5 7 10 11 17 19 23 29 31

Insert 8:

19

5 9 11 29

2 3 5 7 10 11 17 19 23 29 31

Delete 23:

11

195 9

2 3 5 7 8 9 10 11 17 19 29 31

102 Chapter 14 Indexing

Delete 19:

11

5 9 29

2 3 5 7 8 9 10 11 17 29 31

�

With stru
ture Exer
ise 14.3.b:

Insert 9:

2 3 5

7

7 9 11 17 19 23 29 31

19

Insert 10:

2 3 5

7 19

97 10 11 17 19 23 29 31

Insert 8:

7 10 19

2 3 5 7 8 9 10 11 17 9 23 29 31

Delete 23:

7 10 19

2 3 5 7 8 9 10 1711 19 29 31

Delete 19:

10

10 11 17 3129

7

7 8 92 3 5

Pra
ti
e Exer
ises 103

�

With stru
ture Exer
ise 14.3.
:

Insert 9:

11

2 3 5 7 9 11 17 19 23 29 31

Insert 10:

11

2 3 5 7 9 10 11 17 19 23 29 31

Insert 8:

11

2 3 5 7 8 9 10 11 17 19 23 29 31

Delete 23:

11

2 3 5 7 8 9 10 11 17 19 29 31

Delete 19:

11

2 3 5 7 8 9 10 11 17 29 31

14.5 Consider the modi�ed redistribution s
heme for B

+

-trees des
ribed on page

651. What is the expe
ted height of the tree as a fun
tion of n?

Answer:

If there are K sear
h-key values and m * 1 siblings are involved in the redistri-

bution, the expe
ted height of the tree is: log

â(m*1)n_mã

(K)

14.6 Give pseudo
ode for a B

+

-tree fun
tion findRangeIterator(), whi
h is like the

fun
tion findRange(), ex
ept that it returns an iterator obje
t, as des
ribed

in Se
tion 14.3.2. Also give pseudo
ode for the iterator
lass, in
luding the

variables in the iterator obje
t, and the next() method.

Answer:

104 Chapter 14 Indexing

FILL IN

14.7 What would the o

upan
y of ea
h leaf node of a B

+

-tree be if index entries

were inserted in sorted order? Explain why.

Answer:

If the index entries are inserted in as
ending order, the new entries get dire
ted

to the last leaf node. When this leaf node gets �lled, it is split into two. Of

the two nodes generated by the split, the left node is left untou
hed and the

insertions take pla
e on the right node. This makes the o

upan
y of the leaf

nodes about 50 per
ent ex
ept for the last leaf.

If keys that are inserted are sorted in des
ending order, the above situation

would still o

ur, but symmetri
ally, with the right node of a split never getting

tou
hed again, and o

upan
y would again be 50 per
ent for all nodes other

than the �rst leaf.

14.8 Suppose you have a relation r with n

r

tuples on whi
h a se
ondary B

+

-tree is

to be
onstru
ted.

a. Give a formula for the
ost of building the B

+

-tree index by inserting one

re
ord at a time. Assume ea
h blo
k will hold an average of f entries and

that all levels of the tree above the leaf are in memory.

b. Assuming a random disk a

ess takes 10 millise
onds, what is the
ost

of index
onstru
tion on a relation with 10 million re
ords?

. Write pseudo
ode for bottom-up
onstru
tion of a B

+

-tree, whi
h was

outlined in Se
tion 14.4.4. You
an assume that a fun
tion to e	
iently

sort a large �le is available.

Answer:

a. The
ost to lo
ate the page number of the required leaf page for an in-

sertion is negligible sin
e the non-leaf nodes are in memory. On the leaf

level it takes one random disk a

ess to read and one random disk a
-

ess to update it along with the
ost to write one page. Insertions whi
h

lead to splitting of leaf nodes require an additional page write. Hen
e to

build a B

+

-tree with n

r

entries it takes a maximum of 2 < n

r

random disk

a

esses and n

r

+ 2 < (n

r

_f) page writes. The se
ond part of the
ost

omes from the fa
t that in the worst
ase ea
h leaf is half �lled, so the

number of splits that o

ur is twi
e n

r

_f .

The above formula ignores the
ost of writing non-leaf nodes, sin
e

we assume they are in memory, but in reality they would also be written

eventually. This
ost is
losely approximated by 2 < (n

r

_f)_f , whi
h

is the number of internal nodes just above the leaf; we
an add further

terms to a

ount for higher levels of nodes, but these are mu
h smaller

than the number of leaves and
an be ignored.

Pra
ti
e Exer
ises 105

b. Substituting the values in the above formula and negle
ting the
ost for

page writes, it takes about 10, 000, 000 < 20 millise
onds, or 56 hours,

sin
e ea
h insertion
osts 20 millise
onds.

.

fun
tion insert in leaf(value K , pointer P)

if(tree is empty)
reate an empty leaf node L, whi
h is also the root

else Find the last leaf node in the leaf nodes
hain L

if (L has less than n * 1 key values)

then insert (K ,P) at the �rst available lo
ation in L

else begin

Create leaf node L1

Set L:P

n

= L1;

Set K1 = last value from page L

insert in parent(1, L, K1, L1)

insert (K ,P) at the �rst lo
ation in L1

end

fun
tion insert in parent(level l, pointer P, value K , pointer P1)

if (level l is empty) then begin

Create an empty non-leaf node N , whi
h is also the root

insert(P, K , P1) at the starting of the node N

return

else begin

Find the right most node N at level l

if (N has less than n pointers)

then insert(K , P1) at the �rst available lo
ation in N

else begin

Create a new non-leaf page N1

insert (P1) at the starting of the node N

insert in parent(l + 1, pointer N , value K , pointer N1)

end

end

The insert in leaf fun
tion is
alled for ea
h of the value, pointer pairs in

as
ending order. Similar fun
tion
an also be built for des
ending order.

The sear
h for the last leaf or non-leaf node at any level
an be avoided

by storing the
urrent last page details in an array.

The last node in ea
h level might be less than half �lled. To make this

index stru
ture meet the requirements of a B

+

-tree, we
an redistribute

the keys of the last two pages at ea
h level. Sin
e the last but one node is

always full, redistribution makes sure that both of them are at least half

�lled.

106 Chapter 14 Indexing

14.9 The leaf nodes of a B

+

-tree �le organization may lose sequentiality after a se-

quen
e of inserts.

a. Explain why sequentiality may be lost.

b. To minimize the number of seeks in a sequential s
an, many databases

allo
ate leaf pages in extents of n blo
ks, for some reasonably large n.

When the �rst leaf of a B

+

-tree is allo
ated, only one blo
k of an n-blo
k

unit is used, and the remaining pages are free. If a page splits, and its

n-blo
k unit has a free page, that spa
e is used for the new page. If the

n-blo
k unit is full, another n-blo
k unit is allo
ated, and the �rst n_2 leaf

pages are pla
ed in one n-blo
k unit and the remaining one in the se
ond

n-blo
k unit. For simpli
ity, assume that there are no delete operations.

i. What is the worst-
ase o

upan
y of allo
ated spa
e, assuming no

delete operations, after the �rst n-blo
k unit is full?

ii. Is it possible that leaf nodes allo
ated to an n-node blo
k unit are not

onse
utive, that is, is it possible that two leaf nodes are allo
ated

to one n-node blo
k, but another leaf node in between the two is

allo
ated to a di�erent n-node blo
k?

iii. Under the reasonable assumption that bu�er spa
e is su	
ient to

store an n-page blo
k, how many seeks would be required for a leaf-

level s
an of the B

+

-tree, in the worst
ase? Compare this number

with the worst
ase if leaf pages are allo
ated a blo
k at a time.

iv. The te
hnique of redistributing values to siblings to improve spa
e

utilization is likely to be more e	
ient when used with the pre
eding

allo
ation s
heme for leaf blo
ks. Explain why.

Answer:

a. In a B

+

-tree index or �le organization, leaf nodes that are adja
ent to

ea
h other in the tree may be lo
ated at di�erent pla
es on disk. When

a �le organization is newly
reated on a set of re
ords, it is possible to

allo
ate blo
ks that are mostly
ontiguous on disk to leafs nodes that

are
ontiguous in the tree. As insertions and deletions o

ur on the tree,

sequentiality is in
reasingly lost, and sequential a

ess has to wait for

disk seeks in
reasingly often.

b. i. In the worst
ase, ea
h n-blo
k unit and ea
h node of the B

+

-tree is

half �lled. This gives the worst-
ase o

upan
y as 25 per
ent.

ii. No.While splitting the n-blo
k unit, the �rst n_2 leaf pages are pla
ed

in one n-blo
k unit and the remaining pages in the se
ond n-blo
k

unit. That is, every n-blo
k split maintains the order. Hen
e, the

nodes in the n-blo
k units are
onse
utive.

Pra
ti
e Exer
ises 107

iii. In the regular B

+

-tree
onstru
tion, the leaf pages might not be se-

quential and hen
e in the worst-
ase, it takes one seek per leaf page.

Using the blo
k at a time method, for ea
h n-node blo
k, we will have

at least n_2 leaf nodes in it. Ea
h n-node blo
k
an be read using one

seek. Hen
e the worst-
ase seeks
ome down by a fa
tor of n_2.

iv. Allowing redistribution among the nodes of the same blo
k does not

require additional seeks, whereas in regular B

+

-trees we require as

many seeks as the number of leaf pages involved in the redistribution.

This makes redistribution for leaf blo
ks e	
ient with this s
heme.

Also, the worst-
ase o

upan
y
omes ba
k to nearly 50 per
ent.

(Splitting of leaf nodes is preferred when the parti
ipating leaf nodes

are nearly full. Hen
e nearly 50 per
ent instead of exa
t 50 per
ent)

14.10 Suppose you are given a database s
hema and some queries that are exe
uted

frequently. How would you use the above information to de
ide what indi
es

to
reate?

Answer:

Indi
es on any attributes on whi
h there are sele
tion
onditions; if there are

only a few distin
t values for that attribute, a bitmap index may be
reated,

otherwise a normal B

+

-tree index.

B

+

-tree indi
es on primary-key and foreign-key attributes.

Also indi
es on attributes that are involved in join
onditions in the queries.

14.11 In write-optimized trees su
h as the LSM tree or the stepped-merge index, en-

tries in one level are merged into the next level only when the level is full.

Suggest how this poli
y
an be
hanged to improve read performan
e during

periods when there are many reads but no updates.

Answer:

If there have been no updates in a while, but there are a lot of index look ups

on an index, then entries at one level, say i,
an be merged into the next level,

even if the level is not full. The bene�t is that reads would then not have to

look up indi
es at level i, redu
ing the
ost of reads.

14.12 What trade o�s do bu�er trees pose as
ompared to LSM trees?

Answer:

The idea of bu�er trees
an be used with any tree-stru
tured index to redu
e the

ost of inserts and updates, in
luding spatial indi
es. In
ontrast, LSM trees
an

only be used with linearly ordered data that are amenable to merging. On the

other hand, bu�er trees require more random I/O to perform insert operations

as
ompared to (all variants of) LSM trees.

Write-optimized indi
es
an signi�
antly redu
e the
ost of inserts, and to

a lesser extent, of updates, as
ompared to B

+

-trees. On the other hand, the

108 Chapter 14 Indexing

index lookup
ost
an be signi�
antly higher for write-optimized indi
es as

ompared to B

+

-trees.

14.13 Consider the instru
tor relation shown in Figure 14.1.

a. Constru
t a bitmap index on the attribute salary, dividing salary values

into four ranges: below 50,000, 50,000 to below 60,000, 60,000 to below

70,000, and 70,000 and above.

b. Consider a query that requests all instru
tors in the Finan
e department

with salary of 80,000 or more. Outline the steps in answering the query,

and show the �nal and intermediate bitmaps
onstru
ted to answer the

query.

Answer:

We reprodu
e the instru
tor relation below.

ID name dept name salary

10101 Srinivasan Comp. S
i. 65000

12121 Wu Finan
e 90000

15151 Mozart Musi
 40000

22222 Einstein Physi
s 95000

32343 El Said History 60000

33456 Gold Physi
s 87000

45565 Katz Comp. S
i. 75000

58583 Cali�eri History 62000

76543 Singh Finan
e 80000

76766 Cri
k Biology 72000

83821 Brandt Comp. S
i. 92000

98345 Kim Ele
. Eng. 80000

a. Bitmap for salary, with S

1

, S

2

, S

3

and S

4

representing the given intervals

in the same order

S

1

0 0 1 0 0 0 0 0 0 0 0 0

S

2

0 0 0 0 0 0 0 0 0 0 0 0

S

3

1 0 0 0 1 0 0 1 0 0 0 0

S

4

0 1 0 1 0 1 1 0 1 1 1 1

b. The question is a bit trivial if there is no bitmap on the dept name at-

tribute. The bitmap for the dept name attribute is:

Pra
ti
e Exer
ises 109

Comp. S
i 1 0 0 0 0 0 1 0 0 0 1 0

Finan
e 0 1 0 0 0 0 0 0 1 0 0 0

Musi
 0 0 1 0 0 0 0 0 0 0 0 0

Physi
s 0 0 0 1 0 1 0 0 0 0 0 0

History 0 0 0 0 1 0 0 1 0 0 0 0

Biology 0 0 0 0 0 0 0 0 0 1 0 0

Ele
. Eng. 0 0 0 0 0 0 0 0 0 0 0 1

To �nd all instru
tors in the Finan
e department with salary of 80000

or more, we �rst �nd the interse
tion of the Finan
e department bitmap

and S

4

bitmap of salary and then s
an on these re
ords for salary of

80000 or more.

Interse
tion of Finan
e department bitmap and S

4

bitmap of salary.

S

4

0 1 0 1 0 1 1 0 1 1 1 1

Finan
e 0 1 0 0 0 0 0 0 1 0 0 0

S

4

ã Finan
e 0 1 0 0 0 0 0 0 1 0 0 0

S
an on these re
ords with salary 80000 or more gives Wu and Singh as

the instru
tors who satisfy the given query.

14.14 Suppose you have a relation
ontaining the x, y
oordinates and names of

restaurants. Suppose also that the only queries that will be asked are of the

following form: The query spe
i�es a point and asks if there is a restaurant ex-

a
tly at that point. Whi
h type of index would be preferable, R-tree or B-tree?

Why?

Answer:

FILL IN

14.15 Suppose you have a spatial database that supports region queries with
ir
ular

regions, but not nearest-neighbor queries. Des
ribe an algorithm to �nd the

nearest neighbor by making use of multiple region queries.

Answer:

Start with regions with very small radius, and retry with a larger radius if a

parti
ular region does not
ontain any result. For example, ea
h time the radius

ould be in
reased by a fa
tor of (say) 1.5. The bene�t is that sin
e we do not

use a very large radius
ompared to the minimum radius required, there will

(hopefully!) not be too many points in the
ir
ular range query result.

CHAP T E R

15

Query Pro
essing

Pra
ti
e Exer
ises

15.1 Assume (for simpli
ity in this exer
ise) that only one tuple �ts in a blo
k and

memory holds at most three blo
ks. Show the runs
reated on ea
h pass of

the sort-merge algorithm when applied to sort the following tuples on the �rst

attribute: (kangaroo, 17), (wallaby, 21), (emu, 1), (wombat, 13), (platypus,

3), (lion, 8), (warthog, 4), (zebra, 11), (meerkat, 6), (hyena, 9), (hornbill, 2),

(baboon, 12).

Answer:

We will refer to the tuples (kangaroo, 17) through (baboon, 12) using tuple

numbers t

1

through t

12

. We refer to the j

th

run used by the i

th

pass, as r

ij

. The

initial sorted runs have three blo
ks ea
h. They are:

r

11

= ^t

3

, t

1

, t

2

`

r

12

= ^t

6

, t

5

, t

4

`

r

13

= ^t

9

, t

7

, t

8

`

r

14

= ^t

12

, t

11

, t

10

`

Ea
h pass merges three runs. Therefore the runs after the end of the �rst pass

are:

r

21

= ^t

3

, t

1

, t

6

, t

9

, t

5

, t

2

, t

7

, t

4

, t

8

`

r

22

= ^t

12

, t

11

, t

10

`

At the end of the se
ond pass, the tuples are
ompletely sorted into one run:

r

31

= ^t

12

, t

3

, t

11

, t

10

, t

1

, t

6

, t

9

, t

5

, t

2

, t

7

, t

4

, t

8

`

15.2 Consider the bank database of Figure 15.14, where the primary keys are un-

derlined, and the following SQL query:

111

112 Chapter 15 Query Pro
essing

sele
t T.bran
h name

from bran
h T, bran
h S

where T.assets > S.assets and S.bran
h
ity = �Brooklyn�

Write an e	
ient relational-algebra expression that is equivalent to this query.

Justify your
hoi
e.

Answer:

Query:

�

T.bran
h name

((�

bran
h name, assets

(�

T

(bran
h))) Æ

T.assets > S.assets

(�

assets

(�

(bran
h
ity= 'Brooklyn')

(�

S

(bran
h)))))

This expression performs the theta join on the smallest amount of data possi-

ble. It does this by restri
ting the right-hand side operand of the join to only

those bran
hes in Brooklyn and also eliminating the unneeded attributes from

both the operands.

15.3 Let relations r

1

(A,B,C) and r

2

(C,D,E) have the following properties: r

1

has

20,000 tuples, r

2

has 45,000 tuples, 25 tuples of r

1

�t on one blo
k, and 30

tuples of r

2

�t on one blo
k. Estimate the number of blo
k transfers and seeks

required using ea
h of the following join strategies for r

1

Æ r

2

:

a. Nested-loop join.

b. Blo
k nested-loop join.

. Merge join.

d. Hash join.

Answer:

r

1

needs 800 blo
ks, and r

2

needs 1500 blo
ks. Let us assume M pages of

memory. If M > 800, the join
an easily be done in 1500 + 800 disk a

esses,

bran
h(bran
h name, bran
h
ity, assets)

ustomer (
ustomer name,
ustomer street,
ustomer
ity)

loan (loan number, bran
h name, amount)

borrower (
ustomer name, loan number)

a

ount (a

ount number, bran
h name, balan
e)

depositor (
ustomer name, a

ount number)

Figure 15.14 Bank database.

Pra
ti
e Exer
ises 113

using even plain nested-loop join. So we
onsider only the
ase whereM f 800

pages.

a. Nested-loop join:

Using r

1

as the outer relation, we need 20000 < 1500 + 800 =

30, 000, 800 disk a

esses. If r

2

is the outer relation, we need 45000 <

800 + 1500 = 36, 001, 500 disk a

esses.

b. Blo
k nested-loop join:

If r

1

is the outer relation, we need ä

800

M*1

å < 1500+ 800 disk a

esses. If

r

2

is the outer relation, we need ä

1500

M*1

å < 800 + 1500 disk a

esses.

. Merge join:

Assuming that r

1

and r

2

are not initially sorted on the join key, the total

sorting
ost in
lusive of the output isB

s

= 1500(2älog

M*1

(1500_M)å+

2) + 800(2älog

M*1

(800_M)å + 2) disk a

esses. Assuming all tuples

with the same value for the join attributes �t in memory, the total
ost

is B

s

+ 1500 + 800 disk a

esses.

d. Hash join:

We assume no over�ow o

urs. Sin
e r

1

is smaller, we use it as the build

relation and r

2

as the probe relation. If M > 800_M , i.e., no need for

re
ursive partitioning, then the
ost is 3(1500 + 800) = 6900 disk

a

esses, else the
ost is 2(1500+ 800)älog

M*1

(800)* 1å+ 1500+ 800

disk a

esses.

15.4 The indexed nested-loop join algorithm des
ribed in Se
tion 15.5.3
an be

ine	
ient if the index is a se
ondary index and there are multiple tuples with

the same value for the join attributes. Why is it ine	
ient? Des
ribe a way,

using sorting, to redu
e the
ost of retrieving tuples of the inner relation. Under

what
onditions would this algorithm bemore e	
ient than hybridmerge join?

Answer:

If there are multiple tuples in the inner relation with the same value for the

join attributes, we may have to a

ess that many blo
ks of the inner relation

for ea
h tuple of the outer relation. That is why it is ine	
ient. To redu
e this

ost we
an perform a join of the outer relation tuples with just the se
ondary

index leaf entries, postponing the inner relation tuple retrieval. The result �le

obtained is then sorted on the inner relation addresses, allowing an e	
ient

physi
al order s
an to
omplete the join.

Hybrid merge�join requires the outer relation to be sorted. The above al-

gorithm does not have this requirement, but for ea
h tuple in the outer relation

it needs to perform an index lookup on the inner relation. If the outer relation

is mu
h larger than the inner relation, this index lookup
ost will be less than

the sorting
ost, thus this algorithm will be more e	
ient.

114 Chapter 15 Query Pro
essing

15.5 Let r and s be relations with no indi
es, and assume that the relations are not

sorted. Assuming in�nite memory, what is the lowest-
ost way (in terms of I/O

operations) to
ompute r Æ s? What is the amount of memory required for

this algorithm?

Answer:

We
an store the entire smaller relation in memory, read the larger relation

blo
k by blo
k, and perform nested-loop join using the larger one as the outer

relation. The number of I/O operations is equal to b

r

+ b

s

, and the memory

requirement is min(b

r

, b

s

) + 2 pages.

15.6 Consider the bank database of Figure 15.14, where the primary keys are un-

derlined. Suppose that a B

+

-tree index on bran
h
ity is available on relation

bran
h, and that no other index is available. List di�erent ways to handle the

following sele
tions that involve negation:

a. �

�(bran
h
ity<�Brooklyn�)

(bran
h)

b. �

�(bran
h
ity=�Brooklyn�)

(bran
h)

. �

�(bran
h
ity<�Brooklyn� â assets<5000)

(bran
h)

Answer:

a. Use the index to lo
ate the �rst tuple whose bran
h
ity �eld has value

�Brooklyn�. From this tuple, follow the pointer
hains till the end, re-

trieving all the tuples.

b. For this query, the index serves no purpose. We
an s
an the �le sequen-

tially and sele
t all tuples whose bran
h
ity �eld is anything other than

�Brooklyn�.

. This query is equivalent to the query

�

(bran
h
ityg

¨

Brooklyn

¨

á assets<5000)

(bran
h)

Using the bran
h-
ity index, we
an retrieve all tuples with bran
h-
ity

value greater than or equal to �Brooklyn� by following the pointer
hains

from the �rst �Brooklyn� tuple. We also apply the additional
riteria of

assets < 5000 on every tuple.

15.7 Write pseudo
ode for an iterator that implements indexed nested-loop join,

where the outer relation is pipelined. Your pseudo
ode must de�ne the stan-

dard iterator fun
tions open(), next(), and
lose(). Showwhat state information

the iterator must maintain between
alls.

Answer:

Let outer be the iterator whi
h returns su

essive tuples from the pipelined

outer relation. Let inner be the iterator whi
h returns su

essive tuples of

Pra
ti
e Exer
ises 115

the inner relation having a given value at the join attributes. The inner iter-

ator returns these tuples by performing an index lookup. The fun
tions In-

dexedNLJoin::open, IndexedNLJoin::
lose and IndexedNLJoin::next to imple-

ment the indexed nested-loop join iterator are given below. The two iterators

outer and inner, the value of the last read outer relation tuple t

r

and a �ag done

r

indi
ating whether the end of the outer relation s
an has been rea
hed are the

state information whi
h need to be remembered by IndexedNLJoin between

alls. Please see ??

15.8 Design sort-based and hash-based algorithms for
omputing the relational di-

vision operation (see Pra
ti
e Exer
ise 2.9 for a de�nition of the division op-

eration).

Answer:

Suppose r(T ä S) and s(S) are two relations and r � s has to be
omputed.

For a sorting-based algorithm, sort relation s on S. Sort relation r on (T , S).

Now, start s
anning r and look at the T attribute values of the �rst tuple. S
an r

till tuples have same value of T . Also s
an s simultaneously and
he
k whether

every tuple of s also o

urs as the S attribute of r, in a fashion similar to merge

join. If this is the
ase, output that value of T and pro
eed with the next value of

T . Relation smay have to be s
anned multiple times, but r will only be s
anned

on
e. Total disk a

esses, after sorting both the relations, will be ðrð+N < ðsð,

where N is the number of distin
t values of T in r.

We assume that for any value of T , all tuples in r with that T value �t in

memory, and we
onsider the general
ase at the end. Partition the relation

r on attributes in T su
h that ea
h partition �ts in memory (always possible

be
ause of our assumption). Consider partitions one at a time. Build a hash

table on the tuples, at the same time
olle
ting all distin
tT values in a separate

hash table. For ea
h value of T , Now, for ea
h value V

T

of T , ea
h value s of

S, probe the hash table on (V

T

, s). If any of the values is absent, dis
ard the

value V

T

, else output the value V

T

.

In the
ase that not all r tuples with one value for T �t in memory, parti-

tion r and s on the S attributes su
h that the
ondition is satis�ed, and run

the algorithm on ea
h
orresponding pair of partitions r

i

and s

i

. Output the

interse
tion of the T values generated in ea
h partition.

15.9 What is the e�e
t on the
ost of merging runs if the number of bu�er blo
ks

per run is in
reased while overall memory available for bu�ering runs remains

�xed?

Answer:

Seek overhead is redu
ed, but the the number of runs that
an be merged in a

pass de
reases, potentially leading tomore passes. A value of b

b

that minimizes

overall
ost should be
hosen.

116 Chapter 15 Query Pro
essing

IndexedNLJoin::open()

begin

outer.open();

inner.open();

done

r

:= false;

if(outer.next() � false)

move tuple from outer's output bu�er to t

r

;

else

done

r

:= true;

end

IndexedNLJoin::
lose()

begin

outer.
lose();

inner.
lose();

end

boolean IndexedNLJoin::next()

begin

while(�done

r

)

begin

if(inner.next(t

r

[JoinAttrs℄) � false)

begin

move tuple from inner's output bu�er to t

s

;

ompute t

r

Æ t

s

and pla
e it in output bu�er;

return true;

end

else

if(outer.next() � false)

begin

move tuple from outer's output bu�er to t

r

;

rewind inner to �rst tuple of s;

end

else

done

r

:= true;

end

return false;

end

Figure 15.101 Answer for Exer
ise 15.7.

Pra
ti
e Exer
ises 117

15.10 Consider the following extended relational-algebra operators. Des
ribe how to

implement ea
h operation using sorting and using hashing.

a. Semijoin (�

�

): Themultiset semijoin operator r�

�

s is de�ned as follows:

if a tuple r

i

appears n times in r, it appears n times in the result of r�

�

if there is at least one tuple s

j

su
h that r

i

and s

j

satisfy predi
ate �;

otherwise r

i

does not appear in the result.

b. Anti-semijoin (�

�

): The multiset anti-semijoin operator r�

�

s is de�ned

as follows: if a tuple r

i

appears n times in r, it appears n times in the result

of r�

�

if there does not exist any tuple s

j

in s su
h that r

i

and s

j

satisfy

predi
ate �; otherwise r

i

does not appear in the result.

Answer:

FILL IN: CHe
k for dupli
ate preservation

As in the
ase of join algorithms, semijoin and anti-semijoin
an be done e	-

iently if the join
onditions are equijoin
onditions. We des
ribe below how

to e	
iently handle the
ase of equijoin
onditions using sorting and hashing.

With arbitrary join
onditions, sorting and hashing
annot be used; (blo
k)

nested loops join needs to be used instead.

a. Semijoin:

�

Semijoin using sorting: Sort both r and s on the join attributes in

�. Perform a s
an of both r and s similar to the merge algorithm

and add tuples of r to the result whenever the join attributes of the

urrent tuples of r and s mat
h.

�

Semijoin using hashing: Create a hash index in s on the join at-

tributes in �. Iterate over r, and for ea
h distin
t value of the join

attributes, perform a hash lookup in s. If the hash lookup returns a

value, add the
urrent tuple of r to the result.

Note that if r and s are large, they
an be partitioned on the join

attributes �rst and the above pro
edure applied on ea
h partition.

If r is small but s is large, a hash index
an be built on r and probed

using s; and if an s tuple mat
hes an r tuple, the r tuple
an be output

and deleted from the hash index.

b. Anti-semijoin:

�

Anti-semijoin using sorting: Sort both r and s on the join attributes

in �. Perform a s
an of both r and s similar to the merge algorithm

and add tuples of r to the result if no tuple of s satis�es the join

predi
ate for the
orresponding tuple of r.

�

Anti-semijoin using hashing: Create a hash index in s on the join

attributes in �. Iterate over r, and for ea
h distin
t value of the join

attributes, perform a hash lookup in s. If the hash lookup returns a

null value, add the
urrent tuple of r to the result.

118 Chapter 15 Query Pro
essing

As for semijoin, partitioning
an be used if r and s are large. An

index on r
an be used instead of an index on s, but then when an s

tuple mat
hes an r tuple, the r tuple is deleted from the index. After

pro
essing all s tuples, all remaining r tuples in the index are output

as the result of the anti-semijoin operation.

15.11 Suppose a query retrieves only the �rst K results of an operation and termi-

nates after that. Whi
h
hoi
e of demand-driven or produ
er-driven pipelining

(with bu�ering) would be a good
hoi
e for su
h a query? Explain your an-

swer.

Answer:

Demand driven is better, sin
e it will only generate the top K results. Produ
er

driven may generate a lot more answers, many of whi
h would not get used.

15.12 Current generation CPUs in
lude an instru
tion
a
he, whi
h
a
hes re
ently

used instru
tions. A fun
tion
all then has a signi�
ant overhead be
ause the

set of instru
tions being exe
uted
hanges, resulting in
a
he misses on the

instru
tion
a
he.

a. Explain why produ
er-driven pipelining with bu�ering is likely to result

in a better instru
tion
a
he hit rate, as
ompared to demand-driven

pipelining.

b. Explain why modifying demand-driven pipelining by generating multiple

results on one
all to next(), and returning them together,
an improve

the instru
tion
a
he hit rate.

Answer:

Produ
er-driven pipelining exe
utes the same set of instru
tions to generate

multiple tuples by
onsuming already generated tuples from the inputs. Thus

instru
tion
a
he hits will be more. In
omparison, demand-driven pipelining

swit
hes from the instru
tions of one fun
tion to another for ea
h tuple, re-

sulting in more misses.

By generating multiple results at one go, a next(() fun
tion would re
eive

multiple tuples in its inputs and have a loop that generates multiple tuples for

its output without swit
hing exe
ution to another fun
tion. Thus, the instru
-

tion
a
he hit rate
an be expe
ted to improve.

15.13 Suppose you want to �nd do
uments that
ontain at least k of a given set of n

keywords. Suppose also you have a keyword index that gives you a (sorted) list

of identi�ers of do
uments that
ontain a spe
i�ed keyword. Give an e	
ient

algorithm to �nd the desired set of do
uments.

Answer:

Let S be a set of n keywords. An algorithm to �nd all do
uments that
ontain

at least k of these keywords is given in ??

Pra
ti
e Exer
ises 119

initialize the list L to the empty list;

for (ea
h keyword
 in S) do

begin

D := the list of do
uments identi�ers
orresponding to
;

for (ea
h do
ument identi�er d in D) do

if (a re
ord R with do
ument identi�er as d is on list L) then

R:referen
e
ount := R:referen
e
ount + 1;

else begin

make a new re
ord R;

R:do
ument id := d;

R:referen
e
ount := 1;

add R to L;

end;

end;

for (ea
h re
ord R in L) do

if (R:referen
e
ount >= k) then

output R;

Figure 15.102 Answer for Exer
ise 15.13.

This algorithm
al
ulates a referen
e
ount for ea
h do
ument identi�er.

A referen
e
ount of i for a do
ument identi�er d means that at least i of the

keywords in S o

ur in the do
ument identi�ed by d. The algorithm maintains

a list of re
ords, ea
h having two �elds � a do
ument identi�er, and the refer-

en
e
ount for this identi�er. This list is maintained sorted on the do
ument

identi�er �eld.

Note that exe
ution of the se
ond for statement
auses the list D to �merge�

with the list L. Sin
e the lists L and D are sorted, the time taken for this merge

is proportional to the sum of the lengths of the two lists. Thus the algorithm

runs in time (at most) proportional to n times the sum total of the number of

do
ument identi�ers
orresponding to ea
h keyword in S.

15.14 Suggest how a do
ument
ontaining a word (su
h as �leopard�)
an be in-

dexed su
h that it is e	
iently retrieved by queries using a more general
on-

ept (su
h as �
arnivore� or �mammal�). You
an assume that the
on
ept

hierar
hy is not very deep, so ea
h
on
ept has only a few generalizations (a

on
ept
an, however, have a large number of spe
ializations). You
an also

assume that you are provided with a fun
tion that returns the
on
ept for ea
h

word in a do
ument. Also suggest how a query using a spe
ialized
on
ept
an

retrieve do
uments using a more general
on
ept.

Answer:

Add do
 to index lists for more general
on
epts also.

120 Chapter 15 Query Pro
essing

15.15 Explain why the nested-loops join algorithm (see Se
tion 15.5.1) would work

poorly on a database stored in a
olumn-oriented manner. Des
ribe an alterna-

tive algorithm that would work better, and explain why your solution is better.

Answer:

If the nested-loops join algorithm is used as is, it would require tuples for ea
h

of the relations to be assembled before they are joined. Assembling tuples
an

be expensive in a
olumn store, sin
e ea
h attribute may
ome from a separate

area of the disk; the overhead of assembly would be parti
ularly wasteful if

many tuples do not satisfy the join
ondition and would be dis
arded. In su
h

a situation it would be better to �rst �nd whi
h tuples mat
h by a

essing only

the join
olumns of the relations. Sort-merge join, hash join, or indexed nested

loops join
an be used for this task. After the join is performed, only tuples that

get output by the join need to be assembled; assembly
an be done by sorting

the join result on the re
ord identi�er of one of the relations and a

essing

the
orresponding attributes, then resorting on re
ord identi�ers of the other

relation to a

ess its attributes.

15.16 Consider the following queries. For ea
h query, indi
ate if
olumn-oriented

storage is likely to be bene�
ial or not, and explain why.

a. Fet
h ID, name and dept name of the student with ID 12345.

b. Group the takes relation by year and
ourse id, and �nd the total number

of students for ea
h (year,
ourse id)
ombination.

Answer:

FILL IN AND re
he
k question

CHAP T E R

16

Query Optimization

Pra
ti
e Exer
ises

16.1 Download the university database s
hema and the large university dataset from

dbbook.
om. Create the university s
hema on your favorite database, and load

the large university dataset. Use the explain feature des
ribed in Note 16.1 on

page 746 to view the plan
hosen by the database, in di�erent
ases as detailed

below.

a. Write a query with an equality
ondition on student.name (whi
h does

not have an index), and view the plan
hosen.

b. Create an index on the attribute student.name, and view the plan
hosen

for the above query.

. Create simple queries joining two relations, or three relations, and view

the plans
hosen.

d. Create a query that
omputes an aggregate with grouping, and view the

plan
hosen.

e. Create an SQL query whose
hosen plan uses a semijoin operation.

f. Create an SQL query that uses a not in
lause, with a subquery using

aggregation. Observe what plan is
hosen.

g. Create a query for whi
h the
hosen plan uses
orrelated evaluation (the

way
orrelated evaluation is represented varies by database, but most

databases would show a �lter or a proje
t operator with a subplan or

subquery).

h. Create an SQL update query that updates a single row in a relation. View

the plan
hosen for the update query.

121

http://dbbook.com

122 Chapter 16 Query Optimization

i. Create an SQL update query that updates a large number of rows in a re-

lation, using a subquery to
ompute the new value. View the plan
hosen

for the update query.

Answer:

The answer depends on the database.

FILL IN Suggested queries for ea
h exer
ise as veri�ed on some database

16.2 Show that the following equivalen
es hold. Explain how you
an apply them

to improve the e	
ien
y of
ertain queries:

a. E

1

Æ

�

(E

2

* E

3

) � (E

1

Æ

�

E

2

* E

1

Æ

�

E

3

).

b. �

�

(

A

F

(E)) �

A

F

(�

�

(E)), where � uses only attributes from A.

. �

�

(E

1

�E

2

) � �

�

(E

1

)�E

2

, where � uses only attributes from E

1

.

Answer:

a. E

1

Æ

�

(E

2

* E

3

) = (E

1

Æ

�

E

2

* E

1

Æ

�

E

3

).

Let us rename (E

1

Æ

�

(E

2

*E

3

)) as R

1

, (E

1

Æ

�

E

2

) asR

2

and (E

1

Æ

�

E

3

)

as R

3

. It is
lear that if a tuple t belongs to R

1

, it will also belong to R

2

.

If a tuple t belongs to R

3

, t[E

3

's attributes℄ will belong to E

3

, hen
e t

annot belong to R

1

. From these two we
an say that

Åt, t Ë R

1

Ù t Ë (R

2

* R

3

)

It is
lear that if a tuple t belongs to R

2

*R

3

, then t[R

2

's attributes℄ Ë E

2

and t[R

2

's attributes℄ Ì E

3

. Therefore:

Åt, t Ë (R

2

* R

3

) Ù t Ë R

1

The above two equations imply the given equivalen
e.

This equivalen
e is helpful be
ause evaluation of the right-hand side

join will produ
e many tuples whi
h will �nally be removed from the

result. The left-hand side expression
an be evaluated more e	
iently.

b. �

�

(

A

F

(E)) =

A

F

(�

�

(E)), where � uses only attributes from A.

� uses only attributes from A. Therefore if any tuple t in the output of

A

F

(E) is �ltered out by the sele
tion of the left-hand side, all the tuples

in E whose value in A is equal to t[A℄ are �ltered out by the sele
tion of

the right-hand side. Therefore:

Åt, t Ì �

�

(

A

F

(E)) Ù t Ì

A

F

(�

�

(E))

Using similar reasoning, we
an also
on
lude that

Åt, t Ì

A

F

(�

�

(E)) Ù t Ì �

�

(

A

F

(E))

Pra
ti
e Exer
ises 123

The above two equations imply the given equivalen
e.

This equivalen
e is helpful be
ause evaluation of the right-hand side

avoids performing the aggregation on groups whi
h are going to be re-

moved from the result. Thus the right-hand side expression
an be eval-

uated more e	
iently than the left-hand side expression.

. �

�

(E

1

�E

2

) = �

�

(E

1

)�E

2

where � uses only attributes from E

1

.

� uses only attributes from E

1

. Therefore if any tuple t in the output of

(E

1

�E

2

) is �ltered out by the sele
tion of the left-hand side, all the

tuples in E

1

whose value is equal to t[E

1

℄ are �ltered out by the sele
tion

of the right-hand side. Therefore:

Åt, t Ì �

�

(E

1

�E

2

) Ù t Ì �

�

(E

1

)�E

2

Using similar reasoning, we
an also
on
lude that

Åt, t Ì �

�

(E

1

)�E

2

Ù t Ì �

�

(E

1

�E

2

)

The above two equations imply the given equivalen
e.

This equivalen
e is helpful be
ause evaluation of the right-hand side

avoids produ
ing many output tuples whi
h are going to be removed

from the result. Thus the right-hand side expression
an be evaluated

more e	
iently than the left-hand side expression.

16.3 For ea
h of the following pairs of expressions, give instan
es of relations that

show the expressions are not equivalent.

a. �

A

(r * s) and �

A

(r) * �

A

(s).

b. �

B<4

(

A

max(B) as B

(r)) and

A

max(B) as B

(�

B<4

(r)).

. In the pre
eding expressions, if both o

urren
es of max were repla
ed

by min, would the expressions be equivalent?

d. (r� s)� t and r�(s� t)

In other words, the natural right outer join is not asso
iative.

e. �

�

(E

1

�E

2

) and E

1

� �

�

(E

2

), where � uses only attributes from E

2

.

Answer:

a. R = ^(1, 2)`, S = ^(1, 3)`

The result of the left-hand side expression is ^(1)`, whereas the result of

the right-hand side expression is empty.

b. R = ^(1, 2), (1, 5)`

The left-hand side expression has an empty result, whereas the right hand

side one has the result ^(1, 2)`.

124 Chapter 16 Query Optimization

. Yes, on repla
ing themax by themin, the expressions will be
ome equiv-

alent. Any tuple that the sele
tion in the rhs eliminates would not pass

the sele
tion on the lhs if it were the minimum value and would be elim-

inated anyway if it were not the minimum value.

d. R = ^(1, 2)`, S = ^(2, 3)`, T = ^(1, 4)`. The left-hand expres-

sion gives ^(1, 2, null, 4)` whereas the the right-hand expression gives

^(1, 2, 3, null)`.

e. Let R be of the s
hema (A,B) and S of (A,C). Let R = ^(1, 2)`, S =

^(2, 3)` and let � be the expression C = 1. The left side expression's

result is empty, whereas the right side expression results in ^(1, 2, null)`.

16.4 SQL allows relations with dupli
ates (Chapter 3), and the multiset version of

the relational algebra is de�ned in Note 3.1 on page 80, Note 3.2 on page 97,

and Note 3.3 on page 108. Che
k whi
h of the equivalen
e rules 1 through 7.b

hold for the multiset version of the relational algebra.

Answer:

All the equivalen
e rules 1 through 7.b of se
tion Se
tion 16.2.1 hold for the

multiset version of the relational algebra de�ned in Chapter 2.

There exist equivalen
e rules that hold for the ordinary relational algebra but

do not hold for the multiset version. For example
onsider the rule :-

A ã B = A ä B * (A * B) * (B * A)

This is
learly valid in plain relational algebra. Consider a multiset instan
e

in whi
h a tuple t o

urs 4 times in A and 3 times in B. t will o

ur 3 times

in the output of the left-hand side expression, but 6 times in the output of the

right-hand side expression. The reason for this rule to not hold in the multiset

version is the asymmetry in the semanti
s of multiset union and interse
tion.

16.5 Consider the relations r

1

(A,B,C), r

2

(C,D,E), and r

3

(E, F), with primary keys

A, C, and E, respe
tively. Assume that r

1

has 1000 tuples, r

2

has 1500 tuples,

and r

3

has 750 tuples. Estimate the size of r

1

Æ r

2

Æ r

3

, and give an e	
ient

strategy for
omputing the join.

Answer:

�

The relation resulting from the join of r

1

, r

2

, and r

3

will be the same no

matter whi
h way we join them, due to the asso
iative and
ommutative

properties of joins. So we will
onsider the size based on the strategy of

((r

1

Æ r

2

) Æ r

3

). Joining r

1

with r

2

will yield a relation of at most 1000

tuples, sin
e C is a key for r

2

. Likewise, joining that result with r

3

will yield

a relation of at most 1000 tuples be
ause E is a key for r

3

. Therefore, the

�nal relation will have at most 1000 tuples.

Pra
ti
e Exer
ises 125

�

An e	
ient strategy for
omputing this join would be to
reate an index

on attribute C for relation r

2

and on E for r

3

. Then for ea
h tuple in r

1

, we

do the following:

a. Use the index for r

2

to look up at most one tuple whi
h mat
hes the

C value of r

1

.

b. Use the
reated index on E to look up in r

3

at most one tuple whi
h

mat
hes the unique value for E in r

2

.

16.6 Consider the relations r

1

(A,B,C), r

2

(C,D,E), and r

3

(E, F) of Pra
ti
e Exer-

ise 16.5. Assume that there are no primary keys, ex
ept the entire s
hema.

Let V (C, r

1

) be 900, V (C, r

2

) be 1100, V (E, r

2

) be 50, and V (E, r

3

) be 100.

Assume that r

1

has 1000 tuples, r

2

has 1500 tuples, and r

3

has 750 tuples. Es-

timate the size of r

1

Æ r

2

Æ r

3

and give an e	
ient strategy for
omputing

the join.

Answer:

The estimated size of the relation
an be determined by
al
ulating the average

number of tuples whi
h would be joined with ea
h tuple of the se
ond relation.

In this
ase, for ea
h tuple in r

1

, 1500/V (C, r

2

) = 15/11 tuples (on the average)

of r

2

would join with it. The intermediate relation would have 15000/11 tuples.

This relation is joined with r

3

to yield a result of approximately 10,227 tuples

(15000/11 � 750/100 = 10227). A good strategy should join r

1

and r

2

�rst,

sin
e the intermediate relation is about the same size as r

1

or r

2

. Then r

3

is

joined to this result.

16.7 Suppose that a B

+

-tree index on building is available on relation department

and that no other index is available. What would be the best way to handle the

following sele
tions that involve negation?

a. �

� (building < �Watson�)

(department)

b. �

� (building = �Watson�)

(department)

. �

� (building < �Watson� â budget < 50000)

(department)

Answer:

a. Use the index to lo
ate the �rst tuple whose building �eld has value �Wat-

son�. From this tuple, follow the pointer
hains till the end, retrieving all

the tuples.

b. For this query, the index serves no purpose. We
an s
an the �le sequen-

tially and sele
t all tuples whose building �eld is anything other than

�Watson�.

. This query is equivalent to the query:

�

building g'Watson' á budget <5000)

(department).

126 Chapter 16 Query Optimization

Using the building index, we
an retrieve all tuples with building value

greater than or equal to �Watson� by following the pointer
hains from

the �rst �Watson� tuple.We also apply the additional
riteria of budget <

5000 on every tuple.

16.8 Consider the query:

sele
t *

from r, s

where upper(r:A) = upper(s:A);

where �upper� is a fun
tion that returns its input argument with all lower
ase

letters repla
ed by the
orresponding upper
ase letters.

a. Find out what plan is generated for this query on the database system

you use.

b. Some database systems would use a (blo
k) nested-loop join for this

query, whi
h
an be very ine	
ient. Brie�y explain how hash-join or

merge-join
an be used for this query.

Answer:

a. First
reate relations r and s, and add some tuples to the two relations,

before �nding the plan
hosen; or use existing relations in pla
e of r and

s. Compare the
hosen plan with the plan
hosen for a query dire
tly

equating r:A = s:B. Che
k the estimated statisti
s, too. Some databases

may give the same plan, but with vastly di�erent statisti
s.

(On PostgreSQL, we found that the optimizer used the merge join

plan des
ribed in the answer to the next part of this question.)

b. To use hash join, hashing should be done after applying the upper()

fun
tion to r:A and s:A. Similarly, for merge join, the relations should

be sorted on the result of applying the upper() fun
tion on r:A and s:A.

The hash or merge join algorithms
an then be used un
hanged.

16.9 Give
onditions under whi
h the following expressions are equivalent:

A,B

agg(C)

(E

1

Æ E

2

) and (

A

agg(C)

(E

1

)) Æ E

2

where agg denotes any aggregation operation. How
an the above
onditions

be relaxed if agg is one of min or max?

Answer:

The above expressions are equivalent provided E

2

ontains only attributes A

and B, with A as the primary key (so there are no dupli
ates). It is OK if E

2

does not
ontain some A values that exist in the result of E

1

, sin
e su
h values

will get �ltered out in either expression. However, if there are dupli
ate values

in E

2

:A, the aggregate results in the two
ases would be di�erent.

Pra
ti
e Exer
ises 127

If the aggregate fun
tion is min or max, dupli
ate A values do not have any

e�e
t. However, there should be no dupli
ates on (A,B); the �rst expression

removes su
h dupli
ates, while the se
ond does not.

16.10 Consider the issue of interesting orders in optimization. Suppose you are given

a query that
omputes the natural join of a set of relations S. Given a subset

S1 of S, what are the interesting orders of S1?

Answer:

The interesting orders are all orders on subsets of attributes that
an potentially

parti
ipate in join
onditions in further joins. Thus, let T be the set of all

attributes of S1 that also o

ur in any relation in S * S1. Then every ordering

of every subset of T is an interesting order.

16.11 Modify the FindBestPlan(S) fun
tion to
reate a fun
tion FindBestPlan(S,O),

where O is a desired sort order for S, and whi
h
onsiders interesting sort

orders. A null order indi
ates that the order is not relevant.Hints: An algorithm

A may give the desired order O; if not a sort operation may need to be added

to get the desired order. If A is a merge-join, FindBestPlan must be invoked on

the two inputs with the desired orders for the inputs.

Answer:

FILL IN

16.12 Show that, with n relations, there are (2(n*1))�_(n*1)� di�erent join orders.

Hint: A
omplete binary tree is one where every internal node has exa
tly two

hildren. Use the fa
t that the number of di�erent
omplete binary trees with

n leaf nodes is:

1

n

0

2(n * 1)

(n * 1)

1

If you wish, you
an derive the formula for the number of
omplete binary trees

with n nodes from the formula for the number of binary trees with n nodes.

The number of binary trees with n nodes is:

1

n + 1

0

2n

n

1

This number is known as the Catalan number, and its derivation
an be found

in any standard textbook on data stru
tures or algorithms.

Answer:

Ea
h join order is a
omplete binary tree (every non-leaf node has exa
tly two

hildren) with the relations as the leaves. The number of di�erent
omplete

binary trees with n leaf nodes is

1

n

�

2(n*1)

(n*1)

�

. This is be
ause there is a bije
tion

between the number of
omplete binary trees with n leaves and number of

binary trees with n*1 nodes. Any
omplete binary tree with n leaves has n*1

internal nodes. Removing all the leaf nodes, we get a binary tree with n * 1

128 Chapter 16 Query Optimization

nodes. Conversely, given any binary tree with n* 1 nodes, it
an be
onverted

to a
omplete binary tree by adding n leaves in a unique way. The number

of binary trees with n * 1 nodes is given by

1

n

�

2(n*1)

(n*1)

�

, known as the Catalan

number. Multiplying this by n� for the number of permutations of the n leaves,

we get the desired result.

16.13 Show that the lowest-
ost join order
an be
omputed in time O(3

n

). Assume

that you
an store and look up information about a set of relations (su
h as

the optimal join order for the set, and the
ost of that join order) in
onstant

time. (If you �nd this exer
ise di	
ult, at least show the looser time bound of

O(2

2n

).)

Answer:

Consider the dynami
 programming algorithm given in Se
tion 16.4. For ea
h

subset having k + 1 relations, the optimal join order
an be
omputed in time

2

k+1

. That is be
ause for one parti
ular pair of subsets A and B, we need
on-

stant time, and there are at most 2

k+1

* 2 di�erent subsets that A
an denote.

Thus, over all the

�

n

k+1

�

subsets of size k + 1, this
ost is

�

n

k+1

�

2

k+1

. Summing

over all k from 1 to n* 1 gives the binomial expansion of ((1+ x)

n

* x) with

x = 2. Thus the total
ost is less than 3

n

.

16.14 Show that, if only left-deep join trees are
onsidered, as in the System R opti-

mizer, the time taken to �nd themost e	
ient join order is around n2

n

. Assume

that there is only one interesting sort order.

Answer:

The derivation of time taken is similar to the general
ase, ex
ept that instead

of
onsidering 2

k+1

* 2 subsets of size less than or equal to k for A, we only

need to
onsider k + 1 subsets of size exa
tly equal to k. That is be
ause the

right-hand operand of the topmost join has to be a single relation. Therefore

the total
ost for �nding the best join order for all subsets of size k + 1 is

�

n

k+1

�

(k + 1), whi
h is equal to n

�

n*1

k

�

. Summing over all k from 1 to n * 1

using the binomial expansion of (1+ x)

n*1

with x = 1 gives a total
ost of less

than n2

n*1

.

16.15 Consider the bank database of Figure 16.9, where the primary keys are under-

lined. Constru
t the following SQL queries for this relational database.

a. Write a nested query on the relation a

ount to �nd, for ea
h bran
h

with name starting with B, all a

ounts with the maximum balan
e at

the bran
h.

b. Rewrite the pre
eding query without using a nested subquery; in other

words, de
orrelate the query, but in SQL.

. Give a relational algebra expression using semijoin equivalent to the

query.

Pra
ti
e Exer
ises 129

d. Give a pro
edure (similar to that des
ribed in Se
tion 16.4.4) for de
or-

relating su
h queries.

Answer:

a. The nested query is as follows:

sele
t S.a
ount number

from a

ount S

where S.bran
h name like 'B%' and

S.balan
e =

(sele
t max(T.balan
e)

from a

ount T

where T.bran
h name = S.bran
h name)

b. The de
orrelated query is as follows:

reate table t

1

as

sele
t bran
h name, max(balan
e)

from a

ount

group by bran
h name

sele
t a

ount number

from a

ount, t

1

where a

ount.bran
h name like 'B%' and

a

ount.bran
h name = t

1

.bran
h name and

a

ount.balan
e = t

1

.balan
e

. FILL IN

d. In general,
onsider the queries of the form:

bran
h(bran
h name, bran
h
ity, assets)

ustomer (
ustomer name,
ustomer street,
ustomer
ity)

loan (loan number, bran
h name, amount)

borrower (
ustomer name, loan number)

a

ount (a

ount number, bran
h name, balan
e)

depositor (
ustomer name, a

ount number)

Figure 16.9 Banking database.

130 Chapter 16 Query Optimization

sele
t 5

from L

1

where P

1

and

A

1

op

(sele
t f(A

2

)

from L

2

where P

2

)

where f is some aggregate fun
tion on attributes A

2

and op is some

boolean binary operator. It
an be rewritten as

***** FILL IN **** GIVE Relational algebra version *****

reate table t

1

as

sele
t f(A

2

),V

from L

2

where P

1

2

group by V

sele
t 5

from L

1

, t

1

where P

1

and P

2

2

and

A

1

op t

1

:A

2

where P

1

2

ontains predi
ates in P

2

without sele
tions involving
orrela-

tion variables, and P

2

2

introdu
es the sele
tions involving the
orrelation

variables. V
ontains all the attributes that are used in the sele
tions in-

volving
orrelation variables in the nested query.

CHAP T E R

17

Transa
tions

Pra
ti
e Exer
ises

17.1 Suppose that there is a database system that never fails. Is a re
overy manager

required for this system?

Answer:

Even in this
ase the re
overymanager is needed to perform rollba
k of aborted

transa
tions for
ases where the transa
tion itself fails.

17.2 Consider a �le system su
h as the one on your favorite operating system.

a. What are the steps involved in the
reation and deletion of �les and in

writing data to a �le?

b. Explain how the issues of atomi
ity and durability are relevant to the

reation and deletion of �les and to writing data to �les.

Answer:

There are several steps in the
reation of a �le. A storage area is assigned to the

�le in the �le system. (In UNIX, a unique i-number is given to the �le and an

i-node entry is inserted into the i-list.) Deletion of �le involves exa
tly opposite

steps.

For the �le system user, durability is important for obvious reasons, but

atomi
ity is not relevant generally as the �le system doesn't support transa
-

tions. To the �le system implementor, though, many of the internal �le sys-

tem a
tions need to have transa
tion semanti
s. All steps involved in
re-

ation/deletion of the �le must be atomi
, otherwise there will be unreferen
e-

able �les or unusable areas in the �le system.

17.3 Database-system implementers have paid mu
h more attention to the ACID

properties than have �le-system implementers. Why might this be the
ase?

Answer:

131

132 Chapter 17 Transa
tions

Database systems usually perform
ru
ial tasks whose e�e
ts need to be atomi

and durable, and whose out
ome a�e
ts the real world in a permanent manner.

Examples of su
h tasks are monetary transa
tions, seat bookings et
. Hen
e

the ACID properties have to be ensured. In
ontrast, most users of �le systems

would not be willing to pay the pri
e (monetary, disk spa
e, time) of supporting

ACID properties.

17.4 What
lass or
lasses of storage
an be used to ensure durability? Why?

Answer:

Only stable storage ensures true durability. Even nonvolatile storage is sus
ep-

tible to data loss, albeit less so than volatile storage. Stable storage is only an

abstra
tion. It is approximated by redundant use of nonvolatile storage in whi
h

data are not only repli
ated but distributed phyi
ally to redu
e to near zero the

han
e of a single event
asuing data loss.

17.5 Sin
e every
on�i
t-serializable s
hedule is view serializable, why do we em-

phasize
on�i
t serializability rather than view serializability?

Answer:

Most of the
on
urren
y
ontrol proto
ols (proto
ols for ensuring that only

serializable s
hedules are generated) used in pra
ti
e are based on
on�i
t

serializability�they a
tually permit only a subset of
on�i
t serializable s
hed-

ules. The general form of view serializability is very expensive to test, and only

a very restri
ted form of it is used for
on
urren
y
ontrol.

17.6 Consider the pre
eden
e graph of Figure 17.16. Is the
orresponding s
hedule

on�i
t serializable? Explain your answer.

Answer:

T
1

T
4

T
5

T
3

T
2

Figure 17.16 Pre
eden
e graph for Pra
ti
e Exer
ise 17.6.

Pra
ti
e Exer
ises 133

There is a serializable s
hedule
orresponding to the pre
eden
e graph sin
e

the graph is a
y
li
. A possible s
hedule is obtained by doing a topologi
al

sort, that is, T

1

, T

2

, T

3

, T

4

, T

5

.

17.7 What is a
as
adeless s
hedule? Why is
as
adelessness of s
hedules desir-

able? Are there any
ir
umstan
es under whi
h it would be desirable to allow

non
as
adeless s
hedules? Explain your answer.

Answer:

A
as
adeless s
hedule is one where, for ea
h pair of transa
tions T

i

and T

j

su
h that T

j

reads data items previously written by T

i

, the
ommit operation of

T

i

appears before the read operation of T

j

. Cas
adeless s
hedules are desirable

be
ause the failure of a transa
tion does not lead to the aborting of any other

transa
tion. Of
ourse this
omes at the
ost of less
on
urren
y. If failures

o

ur rarely, so that we
an pay the pri
e of
as
ading aborts for the in
reased

on
urren
y, non
as
adeless s
hedules might be desirable.

17.8 The lost update anomaly is said to o

ur if a transa
tion T

j

reads a data item,

then another transa
tion T

k

writes the data item (possibly based on a previous

read), after whi
h T

j

writes the data item. The update performed by T

k

has

been lost, sin
e the update done by T

j

ignored the value written by T

k

.

a. Give an example of a s
hedule showing the lost update anomaly.

b. Give an example s
hedule to show that the lost update anomaly is possi-

ble with the read
ommitted isolation level.

. Explain why the lost update anomaly is not possible with the repeatable

read isolation level.

Answer:

a. A s
hedule showing the lost update anomaly:

T1 T2

read(A)

write(A)

read(A)

write(A)

In the above s
hedule, the value written by the transa
tion T

2

is lost

be
ause of the write of the transa
tion T

1

.

b. Lost update anomaly in read-
ommitted isolation level:

134 Chapter 17 Transa
tions

T1 T2

lock-S(A)

read(A)

unlock(A)

lock-X(A)

write(A)

unlock(A)

commit

lock-X(A)

read(A)

write(A)

unlock(A)

commit

The lo
king in the above s
hedule ensures the read-
ommitted isolation

level. The value written by transa
tion T

2

is lost due to T

1

's write.

. Lost update anomaly is not possible in repeatable read isolation level.

In repeatable read isolation level, a transa
tion T

1

reading a data item

X holds a shared lo
k on X till the end. This makes it impossible for a

newer transa
tion T

2

to write the value of X (whi
h requires X-lo
k) until

T

1

�nishes. This for
es the serialization order T

1

, T

2

, and thus the value

written by T

2

is not lost.

17.9 Consider a database for a bank where the database system uses snapshot iso-

lation. Des
ribe a parti
ular s
enario in whi
h a nonserializable exe
ution o
-

urs that would present a problem for the bank.

Answer:

Suppose that the bank enfor
es the integrity
onstraint that the sum of the

balan
es in the
he
king and the savings a

ount of a
ustomer must not be

negative. Suppose the
he
king and savings balan
es for a
ustomer are $100

and $200 respe
tively.

Suppose that transa
tion T

1

withdraws $200 from the
he
king a

ount

after verifying the integrity
onstraint by reading both the balan
es. Suppose

that
on
urrent transa
tion T

2

withdraws $200 from the
he
king a

ount af-

ter verifying the integrity
onstraint by reading both the balan
es.

Sin
e ea
h of the transa
tions
he
ks the integrity
onstraints on its own

snapshot, if they run
on
urrently, ea
h will believe that the sum of the bal-

an
es after the withdrawal is $100, and therefore its withdrawal does not vio-

late the integrity
onstraint. Sin
e the two transa
tions update di�erent data

items, they do not have any update
on�i
t, and under snapshot isolation both

Pra
ti
e Exer
ises 135

of them
an
ommit. This is a nonserializable exe
ution whi
h results into a

serious problem.

17.10 Consider a database for an airline where the database system uses snapshot

isolation. Des
ribe a parti
ular s
enario in whi
h a nonserializable exe
ution

o

urs, but the airline may be willing to a

ept it in order to gain better overall

performan
e.

Answer:

Consider a web-based airline reservation system. There
ould be many
on-

urrent requests to see the list of available �ights and available seats in ea
h

�ight and to book ti
kets. Suppose there are two users A and B
on
urrently

a

essing this web appli
ation, and only one seat is left on a �ight.

Suppose that both user A and user B exe
ute transa
tions to book a seat on

the �ight and suppose that ea
h transa
tion
he
ks the total number of seats

booked on the �ight, and inserts a new booking re
ord if there are enough seats

left. Let T

3

and T

4

be their respe
tive booking transa
tions, whi
h run
on
ur-

rently. Now T

3

and T

4

will see from their snapshots that one ti
ket is available

and will insert new booking re
ords. Sin
e the two transa
tions do not update

any
ommon data item (tuple), snapshot isolation allows both transa
tions to

ommit. This results in an extra booking, beyond the number of seats available

on the �ight.

However, this situation is usually not very serious sin
e
an
ellations of-

ten resolve the
on�i
t; even if the
on�i
t is present at the time the �ight

is to leave, the airline
an arrange a di�erent �ight for one of the passengers

on the �ight, giving in
entives to a

ept the
hange. Using snapshot isolation

improves the overall performan
e in this
ase sin
e the booking transa
tions

read the data from their snapshots only and do not blo
k other
on
urrent

transa
tions.

17.11 The de�nition of a s
hedule assumes that operations
an be totally ordered

by time. Consider a database system that runs on a system with multiple pro-

essors, where it is not always possible to establish an exa
t ordering between

operations that exe
uted on di�erent pro
essors. However, operations on a

data item
an be totally ordered.

Does this situation
ause any problem for the de�nition of
on�i
t serializ-

ability? Explain your answer.

Answer:

The given situation will not
ause any problem for the de�nition of
on�i
t

serializability sin
e the ordering of operations on ea
h data item is ne
essary

for
on�i
t serializability, whereas the ordering of operations on di�erent data

items is not important.

136 Chapter 17 Transa
tions

T1 T2

read(A)

write(B)

read(B)

For the above s
hedule to be
on�i
t serializable, the only ordering require-

ment is read(B) -> write(B). read(A) and read(B)
an be in any order.

Therefore, as long as the operations on a data item
an be totally ordered,

the de�nition of
on�i
t serializability should hold on the givenmultipro
essor

system.

CHAP T E R

18

Con
urren
y Control

Pra
ti
e Exer
ises

18.1 Show that the two-phase lo
king proto
ol ensures
on�i
t serializability and

that transa
tions
an be serialized a

ording to their lo
k points.

Answer:

Suppose two-phase lo
king does not ensure serializability. Then there exists a

set of transa
tions T

0

, T

1

:::T

n*1

whi
h obey 2PL andwhi
h produ
e a nonseri-

alizable s
hedule. A nonserializable s
hedule implies a
y
le in the pre
eden
e

graph, and we shall show that 2PL
annot produ
e su
h
y
les. Without loss

of generality, assume the following
y
le exists in the pre
eden
e graph: T

0

�

T

1

� T

2

� ... � T

n*1

� T

0

. Let �

i

be the time at whi
h T

i

obtains its last

lo
k (i.e. T

i

's lo
k point). Then for all transa
tions su
h that T

i

� T

j

, �

i

< �

j

.

Then for the
y
le we have

�

0

< �

1

< �

2

< ::: < �

n*1

< �

0

Sin
e �

0

< �

0

is a
ontradi
tion, no su
h
y
le
an exist. Hen
e 2PL
annot

produ
e nonserializable s
hedules. Be
ause of the property that for all trans-

a
tions su
h that T

i

� T

j

, �

i

< �

j

, the lo
k point ordering of the transa
tions

is also a topologi
al sort ordering of the pre
eden
e graph. Thus transa
tions

an be serialized a

ording to their lo
k points.

18.2 Consider the following two transa
tions:

137

138 Chapter 18 Con
urren
y Control

T

34

: read(A);

read(B);

if A = 0 then B := B + 1;

write(B).

T

35

: read(B);

read(A);

if B = 0 then A := A + 1;

write(A).

Add lo
k and unlo
k instru
tions to transa
tions T

31

and T

32

so that they ob-

serve the two-phase lo
king proto
ol. Can the exe
ution of these transa
tions

result in a deadlo
k?

Answer:

a. Lo
k and unlo
k instru
tions:

T

34

: lo
k-S(A)

read(A)

lo
k-X(B)

read(B)

if A = 0

then B := B + 1

write(B)

unlo
k(A)

unlo
k(B)

T

35

: lo
k-S(B)

read(B)

lo
k-X(A)

read(A)

if B = 0

then A := A + 1

write(A)

unlo
k(B)

unlo
k(A)

b. Exe
ution of these transa
tions
an result in deadlo
k. For example,
on-

sider the following partial s
hedule:

Pra
ti
e Exer
ises 139

T31 T32

lock-S (A)

lock-S (B)

read(B)

read(A)

lock-X (B)

lock-X (A)

The transa
tions are now deadlo
ked.

18.3 What bene�t does rigorous two-phase lo
king provide? How does it
ompare

with other forms of two-phase lo
king?

Answer:

Rigorous two-phase lo
king has the advantages of stri
t 2PL. In addition it has

the property that for two
on�i
ting transa
tions, their
ommit order is their

serializability order. In some systems users might expe
t this behavior.

18.4 Consider a database organized in the form of a rooted tree. Suppose that we

insert a dummy vertex between ea
h pair of verti
es. Show that, if we follow

the tree proto
ol on the new tree, we get better
on
urren
y than if we follow

the tree proto
ol on the original tree.

Answer:

Consider two nodes A and B, where A is a parent of B. Let dummy vertex D

be added between A and B. Consider a
ase where transa
tion T

2

has a lo
k

on B, and T

1

, whi
h has a lo
k on A wishes to lo
k B, and T

3

wishes to lo
k

A. With the original tree, T

1

annot release the lo
k on A until it gets the lo
k

on B. With the modi�ed tree, T

1

an get a lo
k on D and release the lo
k on

A, whi
h allows T

3

to pro
eed while T

1

waits for T

2

. Thus, the proto
ol allows

lo
ks on verti
es to be released earlier to other transa
tions, instead of holding

them when waiting for a lo
k on a
hild.

A generalization of the idea based on edge lo
ks is des
ribed in Bu
kley

and Silbers
hatz, �Con
urren
y Control in Graph Proto
ols by Using Edge

Lo
ks,� Pro
. ACM SIGACT-SIGMOD Symposium on the Prin
iples of Database

Systems, 1984 .

18.5 Show by example that there are s
hedules possible under the tree proto
ol that

are not possible under the two-phase lo
king proto
ol, and vi
e versa.

Answer:

Consider the tree-stru
tured database graph given below.

140 Chapter 18 Con
urren
y Control

o

o

o

A

B

C

S
hedule possible under tree proto
ol but not under 2PL:

T1 T2

lock (A)

lock (B)

unlock (A)

lock (A)

lock (C)

unlock (B)

lock (B)

unlock (A)

unlock (B)

unlock (C)

S
hedule possible under 2PL but not under tree proto
ol:

T1 T2

lock (A)

lock (B)

lock (C)

unlock (B)

unlock (A)

unlock (C)

18.6 Lo
king is not done expli
itly in persistent programming languages. Rather,

obje
ts (or the
orresponding pages) must be lo
ked when the obje
ts are a
-

essed.Most modern operating systems allow the user to set a

ess prote
tions

(no a

ess, read, write) on pages, and memory a

ess that violate the a

ess

prote
tions result in a prote
tion violation (see the Unixmprote
t
ommand,

for example). Des
ribe how the a

ess-prote
tion me
hanism
an be used for

page-level lo
king in a persistent programming language.

Answer:

The a

ess prote
tion me
hanism
an be used to implement page- level lo
k-

ing. Consider reads �rst. A pro
ess is allowed to read a page only after it read-

lo
ks the page. This is implemented by usingmprote
t to initially turn o� read

Pra
ti
e Exer
ises 141

permissions to all pages, for the pro
ess. When the pro
ess tries to a

ess an

address in a page, a prote
tion violation o

urs. The handler asso
iated with

prote
tion violation then requests a read lo
k on the page, and after the lo
k

is a
quired, it uses mprote
t to allow read a

ess to the page by the pro
ess,

and �nally allows the pro
ess to
ontinue. Write a

ess is handled similarly.

18.7 Consider a database system that in
ludes an atomi
 in
rement operation, in

addition to the read and write operations. Let V be the value of data item X.

The operation

in
rement(X) by C

sets the value of X to V + C in an atomi
 step. The value of X is not available

to the transa
tion unless the latter exe
utes a read(X).

Assume that in
rement operations lo
k the item in in
rement mode using the

ompatibility matrix in Figure 18.25.

a. Show that, if all transa
tions lo
k the data that they a

ess in the
orre-

sponding mode, then two-phase lo
king ensures serializability.

b. Show that the in
lusion of in
rement mode lo
ks allows for in
reased

on
urren
y.

Answer:

a. Serializability
an be shown by observing that if two transa
tions have an

I mode lo
k on the same item, the in
rement operations
an be swapped,

just like read operations. However, any pair of
on�i
ting operations

must be serialized in the order of the lo
k points of the
orresponding

transa
tions, as shown in Exer
ise 15.1.

b. The in
rement lo
k mode being
ompatible with itself allows multiple

in
rementing transa
tions to take the lo
k simultaneously, thereby im-

proving the
on
urren
y of the proto
ol. In the absen
e of this mode, an

ex
lusive mode will have to be taken on a data item by ea
h transa
tion

that wants to in
rement the value of this data item. An ex
lusive lo
k be-

ing in
ompatible with itself adds to the lo
k waiting time and obstru
ts

the overall progress of the
on
urrent s
hedule.

In general, in
reasing the true entries in the
ompatibility matrix in-

reases the
on
urren
y and improves the throughput.

The proof is in Korth, �Lo
king Primitives in a Database System,� Journal of

the ACM Volume 30, (1983).

18.8 In timestamp ordering,W-timestamp(Q) denotes the largest timestamp of any

transa
tion that exe
uted write(Q) su

essfully. Suppose that, instead, we de-

�ned it to be the timestamp of the most re
ent transa
tion to exe
utewrite(Q)

142 Chapter 18 Con
urren
y Control

su

essfully. Would this
hange in wording make any di�eren
e? Explain your

answer.

Answer:

It would make no di�eren
e. The write proto
ol is su
h that the most re
ent

transa
tion to write an item is also the one with the largest timestamp to have

done so.

18.9 Use of multiple-granularity lo
king may require more or fewer lo
ks than an

equivalent system with a single lo
k granularity. Provide examples of both sit-

uations, and
ompare the relative amount of
on
urren
y allowed.

Answer:

If a transa
tion needs to a

ess a large set of items, multiple granularity lo
k-

ing requires fewer lo
ks, whereas if only one item needs to be a

essed, the

single lo
k granularity system allows this with just one lo
k. Be
ause all the

desired data items are lo
ked and unlo
ked together in the multiple granularity

s
heme, the lo
king overhead is low, but
on
urren
y is also redu
ed.

18.10 For ea
h of the following proto
ols, des
ribe aspe
ts of pra
ti
al appli
ations

that would lead you to suggest using the proto
ol, and aspe
ts that would sug-

gest not using the proto
ol:

�

Two-phase lo
king

�

Two-phase lo
king with multiple-granularity lo
king.

�

The tree proto
ol

�

Timestamp ordering

�

Validation

�

Multiversion timestamp ordering

�

Multiversion two-phase lo
king

Answer:

�

Two-phase lo
king: Use for simple appli
ations where a single granularity

is a

eptable. If there are large read-only transa
tions, multiversion proto-

ols would do better. Also, if deadlo
ks must be avoided at all
osts, the

tree proto
ol would be preferable.

�

Two-phase lo
king with multiple granularity lo
king: Use for an appli
a-

tion mix where some appli
ations a

ess individual re
ords and others

a

ess whole relations or substantial parts thereof. The drawba
ks of 2PL

mentioned above also apply to this one.

�

The tree proto
ol: Use if all appli
ations tend to a

ess data items in an

order
onsistent with a parti
ular partial order. This proto
ol is free of

Pra
ti
e Exer
ises 143

deadlo
ks, but transa
tions will often have to lo
k unwanted nodes in or-

der to a

ess the desired nodes.

�

Timestamp ordering: Use if the appli
ation demands a
on
urrent exe-

ution that is equivalent to a parti
ular serial ordering (say, the order of

arrival), rather than any serial ordering. But
on�i
ts are handled by roll

ba
k of transa
tions rather than waiting, and s
hedules are not re
over-

able. To make them re
overable, additional overheads and in
reased re-

sponse time have to be tolerated. Not suitable if there are long read-only

transa
tions, sin
e they will starve. Deadlo
ks are absent.

�

Validation: If the probability that two
on
urrently exe
uting transa
tions

on�i
t is low, this proto
ol
an be used advantageously to get better
on-

urren
y and good response times with low overheads. Not suitable under

high
ontention, when a lot of wasted work will be done.

�

Multiversion timestamp ordering: Use if timestamp ordering is appropri-

ate but it is desirable for read requests to never wait. Shares the other

disadvantages of the timestamp ordering proto
ol.

�

Multiversion two-phase lo
king: This proto
ol allows read-only transa
-

tions to always
ommit without ever waiting. Update transa
tions follow

2PL, thus allowing re
overable s
hedules with
on�i
ts solved by waiting

rather than roll ba
k. But the problem of deadlo
ks
omes ba
k, though

read-only transa
tions
annot get involved in them. Keeping multiple ver-

sions adds spa
e and time overheads though, therefore plain 2PL may be

preferable in low-
on�i
t situations.

18.11 Explain why the following te
hnique for transa
tion exe
ution may provide

better performan
e than just using stri
t two-phase lo
king: First exe
ute the

transa
tion without a
quiring any lo
ks and without performing any writes

to the database as in the validation-based te
hniques, but unlike the validation

te
hniques do not perform either validation or writes on the database. Instead,

rerun the transa
tion using stri
t two-phase lo
king. (Hint: Consider waits for

disk I/O.)

Answer:

A transa
tion waits on (a) disk I/O and (b) lo
k a
quisition. Transa
tions gen-

erally wait on disk reads and not on disk writes as disk writes are handled

by the bu�ering me
hanism in asyn
hronous fashion and transa
tions update

only the in-memory
opy of the disk blo
ks.

The te
hnique proposed essentially separates the waiting times into two

phases. The �rst phase�where transa
tion is exe
uted without a
quiring any

lo
ks and without performing any writes to the database�a

ounts for almost

all the waiting time on disk I/O as it reads all the data blo
ks it needs from

144 Chapter 18 Con
urren
y Control

disk if they are not already in memory. The se
ond phase�the transa
tion re-

exe
ution with stri
t two-phase lo
king�a

ounts for all the waiting time on

a
quiring lo
ks. The se
ond phase may, though rarely, involve a small waiting

time on disk I/O if a disk blo
k that the transa
tion needs is �ushed to memory

(by bu�er manager) before the se
ond phase starts.

The te
hnique may in
rease
on
urren
y as transa
tions spend almost no

time on disk I/O with lo
ks held and hen
e lo
ks are held for a shorter time.

In the �rst phase, the transa
tion reads all the data items required�and not

already in memory�from disk. The lo
ks are a
quired in the se
ond phase

and the transa
tion does almost no disk I/O in this phase. Thus the transa
tion

avoids spending time in disk I/O with lo
ks held.

The te
hnique may even in
rease disk throughput as the disk I/O is not

stalled for want of a lo
k. Consider the following s
enario with stri
t two-phase

lo
king proto
ol: A transa
tion is waiting for a lo
k, the disk is idle, and there

are some items to be read from disk. In su
h a situation, disk bandwidth is

wasted. But in the proposed te
hnique, the transa
tion will read all the required

items from the disk without a
quiring any lo
k, and the disk bandwidth may

be properly utilized.

Note that the proposed te
hnique ismost useful if the
omputation involved

in the transa
tions is less and most of the time is spent in disk I/O and waiting

on lo
ks, as is usually the
ase in disk-resident databases. If the transa
tion is

omputation intensive, there may be wasted work. An optimization is to save

the updates of transa
tions in a temporary bu�er, and instead of reexe
uting

the transa
tion, to
ompare the data values of items when they are lo
ked with

the values used earlier. If the two values are the same for all items, then the

bu�ered updates of the transa
tion are exe
uted, instead of reexe
uting the

entire transa
tion.

18.12 Consider the timestamp-ordering proto
ol, and two transa
tions, one that

writes two data items p and q, and another that reads the same two data items.

Give a s
hedule whereby the timestamp test for a write operation fails and

auses the �rst transa
tion to be restarted, in turn
ausing a
as
ading abort

of the other transa
tion. Show how this
ould result in starvation of both trans-

a
tions. (Su
h a situation, where two or more pro
esses
arry out a
tions, but

are unable to
omplete their task be
ause of intera
tion with the other pro-

esses, is
alled a livelo
k.)

Answer:

Consider two transa
tions T

1

and T

2

shown below.

Pra
ti
e Exer
ises 145

T1 T2

write (p)

read (p)

read (q)

write (q)

Let TS(T

1

) < TS(T

2

), and let the timestamp test at ea
h operation ex
ept

write(q) be su

essful. When transa
tion T

1

does the timestamp test for

write(q), it �nds that TS(T

1

) < R-timestamp(q), sin
e TS(T

1

) < TS(T

2

) and

R-timestamp(q) = TS(T

2

). Hen
e thewrite operation fails, and transa
tion T

1

rolls ba
k. The
as
ading results in transa
tion T

2

also being rolled ba
k as it

uses the value for item p that is written by transa
tion T

1

.

If this s
enario is exa
tly repeated every time the transa
tions are restarted,

this
ould result in starvation of both transa
tions.

18.13 Devise a timestamp-based proto
ol that avoids the phantom phenomenon.

Answer:

In the text, we
onsidered two approa
hes to dealing with the phantom phe-

nomenon by means of lo
king. The
oarser granularity approa
h obviously

works for timestamps as well. The B

+

-tree index- based approa
h
an be

adapted to timestamping by treating index bu
kets as data items with times-

tamps asso
iated with them, and requiring that all read a

esses use an index.

We now show that this simple method works. Suppose a transa
tion T

i

wants

to a

ess all tuples with a parti
ular range of sear
h key values, using a B

+

-

tree index on that sear
h key. T

i

will need to read all the bu
kets in that index

whi
h have key values in that range. It
an be seen that any delete or insert of

a tuple with a key value in the same range will need to write one of the index

bu
kets read by T

i

. Thus the logi
al
on�i
t is
onverted to a
on�i
t on an

index bu
ket, and the phantom phenomenon is avoided.

18.14 Suppose that we use the tree proto
ol of Se
tion 18.1.5 to manage
on
urrent

a

ess to a B

+

-tree. Sin
e a split may o

ur on an insert that a�e
ts the root, it

appears that an insert operation
annot release any lo
ks until it has
ompleted

the entire operation. Under what
ir
umstan
es is it possible to release a lo
k

earlier?

Answer:

Note: The tree proto
ol of Se
tion Se
tion 18.1.5 whi
h is referred to in this

question is di�erent from the multigranularity proto
ol of Se
tion 18.3 and

the B

+

-tree
on
urren
y proto
ol of Se
tion 18.10.2.

One strategy for early lo
k releasing is given here. Going down the tree from

the root, if the
urrently visited node's
hild is not full, release lo
ks held on

all nodes ex
ept the
urrent node, then request an X-lo
k on the
hild node.

146 Chapter 18 Con
urren
y Control

After getting it, release the lo
k on the
urrent node, and then des
end to the

hild. On the other hand, if the
hild is full, retain all lo
ks held, request an

X-lo
k on the
hild, and des
end to it after getting the lo
k. On rea
hing the

leaf node, start the insertion pro
edure. This strategy results in holding lo
ks

only on the full index tree nodes from the leaf upward, until and in
luding the

�rst non-full node.

An optimization to the above strategy is possible. Even if the
urrent node's

hild is full, we
an still release the lo
ks on all nodes but the
urrent one. But

after getting the X-lo
k on the
hild node, we split it right away. Releasing the

lo
k on the
urrent node and retaining just the lo
k on the appropriate split

hild, we des
end into it, making it the
urrent node. With this optimization,

at any time at most two lo
ks are held, of a parent and a
hild node.

18.15 The snapshot isolation proto
ol uses a validation step whi
h, before perform-

ing a write of a data item by transa
tion T ,
he
ks if a transa
tion
on
urrent

with T has already written the data item.

a. A straightforward implementation uses a start timestamp and a
ommit

timestamp for ea
h transa
tion, in addition to an update set, that, is the

set of data items updated by the transa
tion. Explain how to perform

validation for the �rst-
ommitter-wins s
heme by using the transa
tion

timestamps along with the update sets. You may assume that validation

and other
ommit pro
essing steps are exe
uted serially, that is, for one

transa
tion at a time,

b. Explain how the validation step
an be implemented as part of
ommit

pro
essing for the �rst-
ommitter-wins s
heme, using a modi�
ation of

the above s
heme, where instead of using update sets, ea
h data item

has a write timestamp asso
iated with it. Again, you may assume that

validation and other
ommit pro
essing steps are exe
uted serially.

. The �rst-updater-wins s
heme
an be implemented using timestamps as

des
ribed above, ex
ept that validation is done immediately after a
quir-

ing an ex
lusive lo
k, instead of being done at
ommit time.

i. Explain how to assign write timestamps to data items to implement

the �rst-updater-wins s
heme.

ii. Show that as a result of lo
king, if the validation is repeated at
om-

mit time the result would not
hange.

iii. Explain why there is no need to perform validation and other
ommit

pro
essing steps serially in this
ase.

Answer:

a. Validation test for �rst-
ommitter-wins s
heme: Let StartTS(T

i

),

CommitTS(T

i

) and be the timestamps asso
iated with a transa
tion T

i

Pra
ti
e Exer
ises 147

and the update set for T

i

be update set(T

i

). Then for all transa
tions T

k

with CommitTS(T

k

) < CommitTS(T

i

), one of the following two
ondi-

tions must hold:

�

If CommitTS(T

k

) < StartTS(T

k

), T

k

ompletes its exe
ution before

T

i

started, the serializability is maintained.

�

StartTS(T

i

) < CommitTS(T

k

) < CommitTS(T

i

), and update set(T

i

)

and update set(T

k

) do not interse
t

b. Validation test for �rst-
ommitter-wins s
heme with W-timestamps for

data items: If a transa
tion T

i

writes a data item Q, then the W-

timestamp(Q) is set to CommitTS(T

i

). For the validation test of a trans-

a
tion T

i

to pass, the following
ondition must hold:

�

For ea
h data item Q written by T

i

, W-timestamp(Q) < StartTS(T

i

).

. First-updater-wins s
heme:

i. For a data item Q written by T

i

, the W-timestamp is assigned the

timestamp when the write o

urred in T

i

ii. Sin
e the validation is done after a
quiring the ex
lusive lo
ks and

the ex
lusive lo
ks are held till the end of the transa
tion, the data

item
annot be modi�ed in between the lo
k a
quisition and
ommit

time. So, the result of the validation test for a transa
tion would be

the same at the
ommit time as that at the update time.

iii. Be
ause of the ex
lusive lo
king, at most one transa
tion
an a
quire

the lo
k on a data item at a time and do the validation testing. Thus,

two or more transa
tions
annot do validation testing for the same

data item simultaneously.

18.16 Consider fun
tions insert lat
hfree() and delete lat
hfree(), shown in Figure

18.23.

a. Explain how the ABA problem
an o

ur if a deleted node is reinserted.

b. Suppose that adja
ent to head we store a
ounter
nt. Also suppose that

DCAS((head,
nt), (oldhead, old
nt), (newhead, new
nt)) atomi
ally per-

forms a
ompare-and-swap on the 128 bit value (head,
nt). Modify the in-

sert lat
hfree() and delete lat
hfree() to use the DCAS operation to avoid

the ABA problem.

. Sin
e most pro
essors use only 48 bits of a 64 bit address to a
tually

address memory, explain how the other 16 bits
an be used to implement

a
ounter, in
ase the DCAS operation is not supported.

Answer:

a. Let the head of the list be pointer n1, and the next three elements be n2

and n3. Suppose pro
ess P1 whi
h is performing a delete, reads pointer

148 Chapter 18 Con
urren
y Control

n1 as head and n2 as newhead, but before it exe
utes CAS(head, n1, n2),

pro
ess P2 deletes n1, then deletes n2 and then inserts n1 ba
k at the

head.

The CAS would repla
e n1 by a pointer to n2, sin
e the head is still

n1. However, node n2 has meanwhile been deleted and is garbage. Thus,

the list is now in
onsistent.

b. The following
ode

atomi
 read(head,
nt) {

repeat

oldhead = head

old
nt =
nt

result = DCAS((head,
nt), (oldhead, old
nt), (oldhead, old
nt))

until (result == su

ess)

return (oldhead, old
nt)

}

insert lat
hfree(head, value) {

node = new node

node*>value = value

repeat

(oldhead, old
nt) = atomi
 read(head,
nt)

node*>next = oldhead

new
nt = old
nt+1

result = DCAS(head, (oldhead, old
nt), (node, new
nt))

until (result == su

ess)

}

delete lat
hfree(head) {

/* This fun
tion is not quite safe; see explanation in text. */

repeat

(oldhead, old
nt) = atomi
 read(head,
nt)

newhead = oldhead*>next

new
nt = old
nt+1

result = DCAS(head, (oldhead, old
nt), (newhead, new
nt))

until (result == su

ess)

}

The atomi
 read fun
tion ensures that the 128 bit address,
ounter pair is

read atomi
ally, by using the DCAS instru
tion to ensure that the values

are still same (the DCAS instru
tion stores the same values ba
k if it

su

eeds, so there is no
hange in the value). If the DCAS fails, we may

Pra
ti
e Exer
ises 149

have read an old pointer and a new value, or vi
e versa, requiring the

values to be read again.

The ABA problem would be avoided by the modi�ed
ode for in-

sert lat
hfree() and delete lat
hfree(), sin
e although the reinsert of the

n1 by P2 would result in the head having the same pointer n1 as earlier,

ounter
nt would be di�erent from old
nt, resulting in the CAS opera-

tion of P1 failing.

. Most pro
essors use only the last 48 bits of a 64 bit address to a

ess

memory (whi
h
an support 256 Terabytes of memory). The �rst 16 bits

of a 64 bit value
an then be used as a
ounter, and the last 48 bits as

the address, with the
ounter and the address extra
ted using bit-and

operations before being used, and using bit-and and bit-or operations to

re
onstru
t the 64 bit value from a pointer and a
ounter. If a hardware

implementation does not support DCAS, this
ould be used as an alter-

native to a DCAS, although it still runs a the small risk of the
ounter

wrapping around if there are exa
tly 64K other operations on the list

between the read of the head and the CAS operation.

CHAP T E R

19

Re
overy System

Pra
ti
e Exer
ises

19.1 Explain why log re
ords for transa
tions on the undo-list must be pro
essed in

reverse order, whereas redo is performed in a forward dire
tion.

Answer:

Within a single transa
tion in undo-list, suppose a data item is updated more

than on
e, say from 1 to 2, and then from 2 to 3. If the undo log re
ords are

pro
essed in forward order, the �nal value of the data item will be in
orre
tly

set to 2, whereas by pro
essing them in reverse order, the value is set to 1. The

same logi
 also holds for data items updated by more than one transa
tion on

undo-list.

Using the same example as above, but assuming the transa
tion
ommitted,

it is easy to see that if redo pro
essing pro
esses the re
ords in forward order,

the �nal value is set
orre
tly to 3, but if done in reverse order, the �nal value

is set in
orre
tly to 2.

19.2 Explain the purpose of the
he
kpoint me
hanism. How often should
he
k-

points be performed? How does the frequen
y of
he
kpoints a�e
t:

�

System performan
e when no failure o

urs?

�

The time it takes to re
over from a system
rash?

�

The time it takes to re
over from a media (disk) failure?

Answer:

Che
kpointing is done with log-based re
overy s
hemes to redu
e the time

required for re
overy after a
rash. If there is no
he
kpointing, then the entire

logmust be sear
hed after a
rash, and all transa
tions must be undone/redone

from the log. If
he
kpointing is performed, then most of the log re
ords prior

to the
he
kpoint
an be ignored at the time of re
overy.

Another reason to perform
he
kpoints is to
lear log re
ords from stable

storage as it gets full.

151

152 Chapter 19 Re
overy System

Sin
e
he
kpoints
ause some loss in performan
e while they are being

taken, their frequen
y should be redu
ed if fast re
overy is not
riti
al. If we

need fast re
overy,
he
kpointing frequen
y should be in
reased. If the amount

of stable storage available is less, frequent
he
kpointing is unavoidable.

Che
kpoints have no e�e
t on re
overy from a disk
rash; ar
hival dumps

are the equivalent of
he
kpoints for re
overy from disk
rashes.

19.3 Some database systems allow the administrator to
hoose between two forms

of logging: normal logging, used to re
over from system
rashes, and ar
hival

logging, used to re
over from media (disk) failure. When
an a log re
ord be

deleted, in ea
h of these
ases, using the re
overy algorithm of Se
tion 19.4?

Answer:

Normal logging: The following log re
ords
annot be deleted, sin
e they may

be required for re
overy:

a. Any log re
ord
orresponding to a transa
tion whi
h was a
tive during

the most re
ent
he
kpoint (i.e., whi
h is part of the <
he
kpoint L>

entry)

b. Any log re
ord
orresponding to transa
tions started after the re
ent

he
kpoint

All other log re
ords
an be deleted. After ea
h
he
kpoint, more re
ords be-

ome
andidates for deletion as per the above rule.

Deleting a log re
ord while retaining an earlier log re
ord would result in

gaps in the log and would require more
omplex log pro
essing. Therefore in

pra
ti
e, systems �nd a point in the log where all earlier log re
ords
an be

deleted, and they delete that part of the log. Often, the log is broken up into

multiple �les, and a �le is deleted when all log re
ords in the �le
an be deleted.

Ar
hival logging: Ar
hival logging retains log re
ords that may be needed for

re
overy from media failure (su
h as disk
rashes). Ar
hival dumps are the

equivalent of
he
kpoints for re
overy from media failure. The pre
eding

rules for deletion
an be used for ar
hival logs, but based on the last ar
hival

dump instead of the last
he
kpoint. The frequen
y of ar
hival dumps would

be less than
he
kpointing, sin
e a lot of data have to be written. Thus more

log re
ords would need to be retained with ar
hival logging.

19.4 Des
ribe how to modify the re
overy algorithm of Se
tion 19.4 to implement

savepoints and to perform rollba
k to a savepoint. (Savepoints are des
ribed

in Se
tion 19.9.3.)

Answer:

A savepoint
an be performed as follows:

Pra
ti
e Exer
ises 153

a. Output onto stable storage all log re
ords for that transa
tion whi
h are

urrently in main memory.

b. Output onto stable storage a log re
ord of the form <savepoint T

i

>, where

T

I

is the transa
tion identi�er.

To roll ba
k a
urrently exe
uting transa
tion partially to a parti
ular save-

point, exe
ute undo pro
essing for that transa
tion until the savepoint is

rea
hed. Redo log re
ords are generated as usual during the undo phase above.

It is possible to perform repeated undo to a single savepoint by writing a fresh

savepoint re
ord after rolling ba
k to that savepoint. The above algorithm
an

be extended to support multiple savepoints for a single transa
tion by giving

ea
h savepoint a name. However, on
e undo has rolled ba
k past a savepoint,

it is no longer possible to undo up to that savepoint.

19.5 Suppose the deferred modi�
ation te
hnique is used in a database.

a. Is the old value part of an update log re
ord required any more? Why or

why not?

b. If old values are not stored in update log re
ords, transa
tion undo is

learly not feasible. How would the redo phase of re
overy have to be

modi�ed as a result?

. Deferred modi�
ation
an be implemented by keeping updated data

items in lo
al memory of transa
tions and reading data items that have

not been updated dire
tly from the database bu�er. Suggest how to e	-

iently implement a data item read, ensuring that a transa
tion sees its

own updates.

d. What problem would arise with the above te
hnique if transa
tions per-

form a large number of updates?

Answer:

a. The old-value part of an update log re
ord is not required. If the trans-

a
tion has
ommitted, then the old value is no longer ne
essary as there

would be no need to undo the transa
tion. And if the transa
tion was

a
tive when the system
rashed, the old values are still safe in the stable

storage be
ause they haven't been modi�ed yet.

b. During the redo phase, the undo list need not be maintained any more,

sin
e the stable storage does not re�e
t updates due to any un
ommitted

transa
tion.

. A data item read will �rst issue a read request on the lo
al memory of

the transa
tion. If it is found there, it is returned. Otherwise, the item is

154 Chapter 19 Re
overy System

loaded from the database bu�er into the lo
al memory of the transa
tion

and then returned.

d. If a single transa
tion performs a large number of updates, there is a

possibility of the transa
tion running out of memory to store the lo
al

opies of the data items.

19.6 The shadow-paging s
heme requires the page table to be
opied. Suppose the

page table is represented as a B

+

-tree.

a. Suggest how to share as many nodes as possible between the new
opy

and the shadow
opy of the B

+

-tree, assuming that updates are made

only to leaf entries, with no insertions or deletions.

b. Even with the above optimization, logging is mu
h
heaper than a

shadow
opy s
heme, for transa
tions that perform small updates. Ex-

plain why.

Answer:

a. To begin with, we start with the
opy of just the root node pointing to

the shadow
opy. As modi�
ations are made, the leaf entry where the

modi�
ation is made and all the nodes in the path from that leaf node

to the root are
opied and updated. All other nodes are shared.

b. For transa
tions that perform small updates, the shadow-paging s
heme

would
opy multiple pages for a single update, even with the above op-

timization. Logging, on the other hand, just requires small re
ords to

be
reated for every update; the log re
ords are physi
ally together in

one page or a few pages, and thus only a few log page I/O operations

are required to
ommit a transa
tion. Furthermore, the log pages writ-

ten out a
ross subsequent transa
tion
ommits are likely to be adja
ent

physi
ally on disk, minimizing disk arm movement.

19.7 Suppose we (in
orre
tly) modify the re
overy algorithm of Se
tion 19.4 to

note log a
tions taken during transa
tion rollba
k. When re
overing from a

system
rash, transa
tions that were rolled ba
k earlier would then be in
luded

in undo-list and rolled ba
k again. Give an example to show how a
tions taken

during the undo phase of re
overy
ould result in an in
orre
t database state.

(Hint: Consider a data item updated by an aborted transa
tion and then up-

dated by a transa
tion that
ommits.)

Answer:

Consider the following log re
ords generated with the (in
orre
tly) modi�ed

re
overy algorithm:

1. <T

1

start>

Pra
ti
e Exer
ises 155

2. <T

1

, A, 1000, 900>

3. <T

2

start>

4. <T

2

, A, 1000, 2000>

5. <T

2

ommit>

A rollba
k a
tually happened between steps 2 and 3, but there are no log

re
ords re�e
ting the same. Now, this log data is pro
essed by the re
overy

algorithm. At the end of the redo phase, T

1

would get added to the undo-list,

and the value of A would be 2000. During the undo phase, sin
e T

1

is present

in the undo-list, the re
overy algorithm does an undo of statement 2, and A

takes the value 1000. The update made by T

2

, though
ommited, is lost.

The
orre
t sequen
e of logs is as follows:

1. <T

1

start>

2. <T

1

, A, 1000, 900>

3. <T

1

, A, 1000>

4. <T

1

abort>

5. <T

2

start>

6. <T

2

, A, 1000, 2000>

7. <T

2

ommit>

This would make sure that T

1

would not get added to the undo-list after the

redo phase.

19.8 Disk spa
e allo
ated to a �le as a result of a transa
tion should not be released

even if the transa
tion is rolled ba
k. Explain why, and explain how ARIES

ensures that su
h a
tions are not rolled ba
k.

Answer:

If a transa
tion allo
ates a page to a relation, even if the transa
tion is rolled

ba
k, the page allo
ation should not be undone be
ause other transa
tions

may have stored re
ords in the same page. Su
h operations that should not

be undone are
alled nested top a
tions in ARIES. They
an be modeled as

operations whose undo a
tion does nothing. In ARIES su
h operations are

implemented by
reating a dummy CLR whose UndoNextLSN is set su
h that

the transa
tion rollba
k skips the log re
ords generated by the operation.

19.9 Suppose a transa
tion deletes a re
ord, and the free spa
e generated thus is

allo
ated to a re
ord inserted by another transa
tion, even before the �rst trans-

a
tion
ommits.

a. What problem
an o

ur if the �rst transa
tion needs to be rolled ba
k?

b. Would this problem be an issue if page-level lo
king is used instead of

tuple-level lo
king?

156 Chapter 19 Re
overy System

. Suggest how to solve this problem while supporting tuple-level lo
king,

by logging post-
ommit a
tions in spe
ial log re
ords, and exe
uting

them after
ommit. Make sure your s
heme ensures that su
h a
tions

are performed exa
tly on
e.

Answer:

a. If the �rst transa
tion needs to be rolled ba
k, the tuple deleted by that

transa
tion will have to be restored. If undo is performed in the usual

physi
al manner using the old values of data items, the spa
e allo
ated to

the new tuple would get overwritten by the transa
tion undo, damaging

the new tuples, and asso
iated data stru
tures on the disk blo
k. This

means that a logi
al undo operation has to be performed, i.e., an insert

has to be performed to undo the delete, whi
h
ompli
ates re
overy.

On a related note, if the se
ond transa
tion inserts with the same key,

integrity
onstraints might be violated on rollba
k.

b. If page-level lo
king is used, the free spa
e generated by the �rst trans-

a
tion is not allo
ated to another transa
tion till the �rst one
ommits.

So this problem will not be an issue if page-level lo
king is used.

. The problem
an be solved by deferring freeing of spa
e until after the

transa
tion
ommits. To ensure that spa
e will be freed even if there is

a system
rash immediately after
ommit, the
ommit log re
ord
an be

modi�ed to
ontain information about freeing of spa
e (and other sim-

ilar operations) whi
h must be performed after
ommit. The exe
ution

of these operations
an be performed as a transa
tion and log re
ords

generated, following by a post-
ommit log re
ord whi
h indi
ates that

post-
ommit pro
essing has been
ompleted for the transa
tion.

During re
overy, if a
ommit log re
ord is found with post-
ommit

a
tions, but no post-
ommit log re
ord is found, the e�e
ts of any partial

exe
ution of post-
ommit operations are rolled ba
k during re
overy,

and the post-
ommit operations are reexe
uted at the end of re
overy.

If the post-
ommit log re
ord is found, the post-
ommit a
tions are not

reexe
uted. Thus, the a
tions are guaranteed to be exe
uted exa
tly on
e.

The problem of
lashes on primary key values
an be solved by hold-

ing key-level lo
ks so that no other transa
tion
an use the key until the

�rst transa
tion
ompletes.

19.10 Explain the reasons why re
overy of intera
tive transa
tions is more di	
ult

to deal with than is re
overy of bat
h transa
tions. Is there a simple way to deal

with this di	
ulty? (Hint: Consider an automati
 teller ma
hine transa
tion

in whi
h
ash is withdrawn.)

Answer:

Pra
ti
e Exer
ises 157

Intera
tive transa
tions are more di	
ult to re
over from than bat
h transa
-

tions be
ause some a
tions may be irrevo
able. For example, an output (write)

statement may have �red a missile or
aused a bank ma
hine to give money to

a
ustomer. The best way to deal with this is to try to do all output statements

at the end of the transa
tion. That way if the transa
tion aborts in the middle,

no harm will be have been done.

Output operations should ideally be done atomi
ally; for example, ATM

ma
hines often
ount out notes and deliver all the notes together instead of

delivering notes one at a time. If output operations
annot be done atomi
ally,

a physi
al log of output operations, su
h as a disk log of events, or even a video

log of what happened in the physi
al world
an bemaintained to allow perform

re
overy to be performed manually later, for example, by
rediting
ash ba
k

to a
ustomer's a

ount.

19.11 Sometimes a transa
tion has to be undone after it has
ommitted be
ause it

was erroneously exe
uted�for example, be
ause of erroneous input by a bank

teller.

a. Give an example to show that using the normal transa
tion undo me
h-

anism to undo su
h a transa
tion
ould lead to an in
onsistent state.

b. One way to handle this situation is to bring the whole database to a state

prior to the
ommit of the erroneous transa
tion (
alled point-in-time re-

overy). Transa
tions that
ommitted later have their e�e
ts rolled ba
k

with this s
heme.

Suggest a modi�
ation to the re
overy algorithm of Se
tion 19.4 to

implement point-in-time re
overy using database dumps.

. Later nonerroneous transa
tions
an be reexe
uted logi
ally, if the up-

dates are available in the form of SQL but
annot be reexe
uted using

their log re
ords. Why?

Answer:

a. Consider the a bank a

ount A with balan
e $100. Consider two trans-

a
tions T

1

and T

2

, ea
h depositing $10 in the a

ount. Thus the bal-

an
e would be $120 after both these transa
tions are exe
uted. Let the

transa
tions exe
ute in sequen
e: T

1

�rst and then T

2

. The log re
ords

orresponding to the updates of A by transa
tions T

1

and T

2

would be

< T

1

,A, 100, 110 > and < T

2

,A, 110, 120 > respe
tively.

Say we wish to undo transa
tion T

1

. The normal transa
tion undo

me
hanism will repla
e the value in question�A in this example�with

the old-value �eld in the log re
ord. Thus if we undo transa
tion T

1

using

the normal transa
tion undo me
hanism, the resulting balan
e will be

158 Chapter 19 Re
overy System

$100 and we will, in e�e
t, undo both transa
tions, whereas we intend

to undo only transa
tion T

1

.

b. Let the erroneous transa
tion be T

e

.

�

Identify the latest ar
hival dump, say D, before the log re
ord < T

e

,

START>. Restore the database using the dump.

�

Redo all log re
ords starting from the dump D to the log re
ord

< T

e

, COMMIT>. Some transa
tion�apart from transa
tion T

e

�

would be a
tive at the
ommit time of transa
tion T

e

. Let S

1

be the

set of su
h transa
tions.

�

Roll ba
k T

e

and the transa
tions in the set S

1

. This
ompletes point-

in-time re
overy.

In
ase logi
al redo is possible, later transa
tions
an be rex-

e
uted logi
ally, assuming log re
ords
ontaining logi
al redo in-

formation were written for every transa
tion. To perform logi
al

redo of later transa
tions, s
an the log further starting from the log

re
ord < T

e

, COMMIT> to the end of the log. Note the transa
tions

that were started after the
ommit point of T

e

. Let the set of su
h

transa
tions be S

2

. Reexe
ute the transa
tions in set S

1

and S

2

log-

i
ally.

. Consider again an example from the �rst item. Let us assume that both

transa
tions are undone and the balan
e is reverted ba
k to the original

value $100.

Now we wish to redo transa
tion T

2

. If we redo the log re
ord < T

2

,A,

110, 120 >
orresponding to transa
tion T

2

, the balan
e will be
ome

$120 and we will, in e�e
t, redo both transa
tions, whereas we intend to

redo only transa
tion T

2

.

19.12 The re
overy te
hniques that we des
ribed assume that blo
ks are written

atomi
ally to disk. However, a blo
k may be partially written when power fails,

with some se
tors written, and others not yet written.

a. What problems
an partial blo
k writes
ause?

b. Partial blo
k writes
an be dete
ted using te
hniques similar to those

used to validate se
tor reads. Explain how.

. Explain how RAID 1
an be used to re
over from a partially written

blo
k, restoring the blo
k to either its old value or to its new value.

Answer:

FILL IN

Pra
ti
e Exer
ises 159

19.13 The Ora
le database system uses undo log re
ords to provide a snapshot view

of the database under snapshot isolation. The snapshot view seen by transa
-

tion T

i

re�e
ts updates of all transa
tions that had
ommitted when T

i

started

and the updates of T

i

; updates of all other transa
tions are not visible to T

i

.

Des
ribe a s
heme for bu�er handling whereby transa
tions are given a

snapshot view of pages in the bu�er. In
lude details of how to use the log to

generate the snapshot view. You
an assume that operations as well as their

undo a
tions a�e
t only one page.

Answer:

First, determine if a transa
tion is
urrently modifying the bu�er. If not, then

return the
urrent
ontents of the bu�er. Otherwise, examine the re
ords in

the undo log pertaining to this bu�er. Make a
opy of the bu�er, then for

ea
h relevant operation in the undo log, apply the operation to the bu�er
opy

starting with the most re
ent operation and working ba
kwards until the point

at whi
h the modifying transa
tion began. Finally, return the bu�er
opy as

the snapshot bu�er.

CHAP T E R

20

Database-System Ar
hite
tures

Pra
ti
e Exer
ises

20.1 Is a multiuser system ne
essarily a parallel system? Why or why not?

Answer:

No. A single pro
essor with only one
ore
an run multiple pro
esses to man-

age mutiple users. Most modern systems are parallel, however.

20.2 Atomi
 instru
tions su
h as
ompare-and-swap and test-and-set also exe
ute a

memory fen
e as part of the instru
tion on many ar
hite
tures. Explain what

is the motivation for exe
uting the memory fen
e, from the viewpoint of data

in shared memory that is prote
ted by a mutex implemented by the atomi

instru
tion. Also explain what a pro
ess should do before releasing a mutex.

Answer:

FILL IN MORE

The memory fen
e ensures that the pro
ess that gets the mutex will see all

updates that happened before the instru
tion, as long as pro
esses exe
ute

a fen
e before releasing the mutex. Thus, even if the data was updated on a

di�erent
ore, the pro
ess that a
quires the mutex is guaranteed to see the

latest value of the data.

20.3 Instead of storing shared stru
tures in shared memory, an alternative ar
hi-

te
ture would be to store them in the lo
al memory of a spe
ial pro
ess and

a

ess the shared data by interpro
ess
ommuni
ation with the pro
ess. What

would be the drawba
k of su
h an ar
hite
ture?

Answer:

The drawba
ks would be that two interpro
ess messages would be required

to a
quire lo
ks, one for the request and one to
on�rm grant. Interpro
ess

ommuni
ation is mu
h more expensive than memory a

ess, so the
ost of

lo
king would in
rease. The pro
ess storing the shared stru
tures
ould also

be
ome a bottlene
k.

161

162 Chapter 20 Database-System Ar
hite
tures

The bene�t of this alternative is that the lo
k table is prote
ted better from

erroneous updates sin
e only one pro
ess
an a

ess it.

20.4 Explain the distin
tion between a lat
h and a lo
k as used for transa
tional

on
urren
y
ontrol.

Answer:

Lat
hes are short-duration lo
ks that manage a

ess to internal system data

stru
tures. Lo
ks taken by transa
tions are taken on database data items and

are often held for a substantial fra
tion of the duration of the transa
tion.

Lat
h a
quisition and release are not
overed by the two-phase lo
king proto-

ol.

20.5 Suppose a transa
tion is written in C with embedded SQL, and about 80 per-

ent of the time is spent in the SQL
ode, with the remaining 20 per
ent spent

in C
ode. How mu
h speedup
an one hope to attain if parallelism is used

only for the SQL
ode? Explain.

Answer:

Sin
e the part whi
h
annot be parallelized takes 20% of the total running time,

the best speedup we
an hope for is 5. In Amdahl's law:

1

(1*p)+(p_n)

, p = 4_5

and n is arbitrarily large. So, 1 * p = 1_5 and p_n aproa
hes zero.

20.6 Consider a pair of pro
esses in a shared memory system su
h that pro
ess

A updates a data stru
ture, and then sets a �ag to indi
ate that the update is

ompleted. Pro
ess B monitors the �ag, and starts pro
essing the data stru
-

ture only after it �nds the �ag is set.

Explain the problems that
ould arise in a memory ar
hite
ture where

writes may be reordered, and explain how the sfen
e and lfen
e instru
tions

an be used to ensure the problem does not o

ur.

Answer:

The goal here is that the
onsumer pro
ess B should see the data stru
ture state

after all updates have been
ompleted. But out of order writes to main memory

an result in the
onsumer pro
ess seeing some but not all the updates to the

data stru
ture, even after the �ag has been set.

To avoid this problem, the produ
er pro
ess A should issue an sfen
e af-

ter the updates, but before setting the �ag. It
an optionally issue an sfen
e

after setting the �ag, to push the update to memory with minimum delay. The

onsumer pro
ess B should
orrespondingly issue an lfen
e after the �ag has

been found to be set, before a

essing the datastru
ture.

20.7 In a shared-memory ar
hite
ture, why might the time to a

ess a memory lo-

ation vary depending on the memory lo
ation being a

essed?

Answer:

Pra
ti
e Exer
ises 163

In a NUMA ar
hite
ture, a pro
essor
an a

ess its own memory faster than it

an a

ess shared memory asso
iated with another pro
essor due to the time

taken to transfer data between pro
essors.

20.8 Most operating systems for parallel ma
hines (i) allo
ate memory in a lo
al

memory area when a pro
ess requests memory, and (ii) avoid moving a pro-

ess from one
ore to another. Why are these optimizations important with a

NUMA ar
hite
ture?

Answer:

In a NUMA ar
hite
ture, a pro
essor
an a

ess its own memory faster that it

an a

ess shared memory asso
iated with another pro
essor due to the time

taken to transfer data between pro
essors. Thus, if the data of a pro
ess resides

in lo
al memory, the pro
ess exe
ution would be faster than if the memory is

non-lo
al.

Further, if a pro
ess moves from one
ore to another, it may lose the ben-

e�ts of lo
al allo
ation of memory, and be for
ed to
arry out many memory

a

esses from other
ores. To avoid this problem,most operating systems avoid

moving a pro
ess from one
ore to another wherever possible.

20.9 Some database operations su
h as joins
an see a signi�
ant di�eren
e in

speed when data (e.g., one of the relations involved in a join) �ts in mem-

ory as
ompared to the situation where the data do not �t in memory. Show

how this fa
t
an explain the phenomenon of superlinear speedup, where an

appli
ation sees a speedup greater than the amount of resour
es allo
ated to

it.

Answer:

We illustrate this by an example. Suppose we double the amount of main mem-

ory and that as a result, one of the relations now �ts entirely in main memory.

We
an now use a nested-loop join with the inner-loop relation entirely in main

memory and in
ur disk a

esses for reading the input relations only one time.

With the original amount of main memory, the best join strategy may have had

to read a relation in from disk more than on
e.

20.10 What is the key distin
tion between homogeneous and federated distributed

database systems?

Answer:

The key diferen
e is the degree of
ooperation among the systems and the

degree of
entralized
ontrol. Homogeneous systems share a global s
hema,

run the same database-system software and a
tively
ooperate on query pro-

essing. Federated systems may have distin
t s
hemas and software, and may

ooperate in only a limited manner.

164 Chapter 20 Database-System Ar
hite
tures

20.11 Why might a
lient
hoose to subs
ribe only to the basi
 infrastru
ture-as-a-

servi
e model rather than to the servi
es o�ered by other
loud servi
e mod-

els?

Answer:

A
lient may wish to
ontrol its own appli
ations and thus may not wish to

subs
ribe to a software-as-a-servi
e model; or the
lient might wish further to

be able to
hoose and manage its own database system and thus not wish to

subs
ribe to a platform-as-a-servi
e model.

20.12 Why do
loud-
omputing servi
es support traditional database systems best by

using a virtual ma
hine, instead of running dire
tly on the servi
e provider's

a
tual ma
hine, assuming that data is on external storage?

Answer:

By using a virtual ma
hine, if a physi
al ma
hine fails, virtual ma
hines run-

ning on that physi
al ma
hine
an be restarted qui
kly on one or more other

physi
al ma
hines, improving availability. (Assuming of
ourse that data re-

mains a

essible, either by storing multiple
opies of data, or by storing data

in an highly available external storage system.)

CHAP T E R

21

Parallel and Distributed Storage

Pra
ti
e Exer
ises

21.1 In a range sele
tion on a range-partitioned attribute, it is possible that only

one disk may need to be a

essed. Des
ribe the bene�ts and drawba
ks of this

property.

Answer:

If there are few tuples in the queried range, then ea
h query
an be pro
essed

qui
kly on a single disk. This allows parallel exe
ution of queries with redu
ed

overhead of initiating queries on multiple disks.

On the other hand, if there are many tuples in the queried range, ea
h query

takes a long time to exe
ute as there is no parallelismwithin its exe
ution. Also,

some of the disks
an be
ome hot spots, further in
reasing response time.

Hybrid range partitioning, in whi
h small ranges (a few blo
ks ea
h) are

partitioned in a round-robin fashion, provides the bene�ts of range partitioning

without its drawba
ks.

21.2 Re
all that histograms are used for
onstru
ting load-balan
ed range parti-

tions.

a. Suppose you have a histogram where values are between 1 and 100, and

are partitioned into 10 ranges, 1�10, 11�20,§ , 91�100, with frequen-

ies 15, 5, 20, 10, 10, 5, 5, 20, 5, and 5, respe
tively. Give a load-balan
ed

range partitioning fun
tion to divide the values into �ve partitions.

b. Write an algorithm for
omputing a balan
ed range partition with p par-

titions, given a histogram of frequen
y distributions
ontaining n ranges.

Answer:

a. A partitioning ve
tor whi
h gives 5 partitions with 20 tuples in ea
h

partition is: [21, 31, 51, 76℄. The 5 partitions obtained are 1*20, 21*30,

31* 50, 51* 75, and 76* 100. The assumption made in arriving at this

165

166 Chapter 21 Parallel and Distributed Storage

partitioning ve
tor is that within a histogram range, ea
h value is equally

likely.

b. Let the histogram ranges be
alled h

1

, h

2

,§ , h

h

, and the partitions

p

1

, p

2

,§ , p

p

. Let the frequen
ies of the histogram ranges be

n

1

, n

2

,§ , n

h

. Ea
h partition should
ontain N_p tuples, where

N = �

h

i=1

n

i

.

To
onstru
t the load-balan
ed partitioning ve
tor, we need to de-

termine the value of the k

th

1

tuple, the value of the k

th

2

tuple, and so on,

where k

1

= N_p, k

2

= 2N_p, et
., until k

p*1

. The partitioning ve
tor will

then be [k

1

, k

2

,§ , k

p*1

℄. The value of the k

th

i

tuple is determined as fol-

lows: First determine the histogram range h

j

in whi
h it falls. Assuming

all values in a range are equally likely, the k

th

i

value will be

s

j

+

�

e

j

* s

j

�

<

k

ij

n

j

where

s

j

: �rst value in h

j

e

j

: last value in h

j

k

ij

: k

i

* �

j*1

l=1

n

l

21.3 Histograms are traditionally
onstru
ted on the values of a spe
i�
 attribute

(or set of attributes) of a relation. Su
h histograms are good for avoiding data

distribution skew but are not very useful for avoiding exe
ution skew. Explain

why.

Now suppose you have a workload of queries that perform point lookups.

Explain how you
an use the queries in the workload to
ome up with a parti-

tioning s
heme that avoids exe
ution skew.

Answer:

FILL

21.4 Repli
ation:

a. Give two reasons for repli
ating data a
ross geographi
ally distributed

data
enters.

b. Centralized databases support repli
ation using log re
ords. How is

the repli
ation in
entralized databases di�erent from that in paral-

lel/distributed databases?

Answer:

a. By repli
ating a
ross data
enters, even if a data
enter fails, for example

due to a power outage or a natural disaster, the data would still be avail-

Pra
ti
e Exer
ises 167

able from another data
enter. By keeping the data
enters geographi-

ally separated, the
han
es of a single natural disaster su
h as an earth-

quake or a storm a�e
ting both the data
enters at the same time are

minimized.

b. Centralized databases typi
ally support only full database repli
ation us-

ing log re
ords (although some support logi
al repli
ation allowing repli-

ation to be restri
ted to some relations). However, they do not support

partitioning, or the ability to repli
ate di�erent parts of the database at

di�erent nodes; the latter helps minimize the load in
rease at a repli
a

when a node fails by spreading the load a
ross multiple nodes.

21.5 Parallel indi
es:

a. Se
ondary indi
es in a
entralized database store the re
ord identi�er.

A global se
ondary index too
ould potentially store a partition num-

ber holding the re
ord, and a re
ord identi�er within the partition. Why

would this be a bad idea?

b. Global se
ondary indi
es are implemented in a way similar to lo
al se
-

ondary indi
es that are used when re
ords are stored in a B

+

-tree �le

organization. Explain the similarities between the two s
enarios that re-

sult in a similar implementation of the se
ondary indi
es.

Answer:

a. Any updated su
h as splitting or moving a partition, whi
h is required

to balan
e load, would require a large number of updates to se
ondary

indi
es.

b. In both
ases re
ords may move (a
ross nodes, or to a di�erent lo
ation

within the node) whi
h would require a large number of updates to se
-

ondary indi
es if they stored dire
t pointers. The indire
tion through the

lustering index key / partitioning key allows re
ord movement without

any updates to the se
ondary index.

21.6 Parallel database systems store repli
as of ea
h data item (or partition) on

more than one node.

a. Why is it a good idea to distribute the
opies of the data items allo
ated

to a node a
ross multiple other nodes, instead of storing all the
opies

in the same node (or set of nodes).

b. What are the bene�ts and drawba
ks of using RAID storage instead of

storing an extra
opy of ea
h data item?

Answer:

168 Chapter 21 Parallel and Distributed Storage

a. The
opies of the data items at a node should be partitioned a
ross mul-

tiple other nodes, rather than stored in a single node, for the following

reasons:

�

To better distribute the work whi
h should have been done by the

failed node, among the remaining nodes.

�

Even when there is no failure, this te
hnique
an to some extent deal

with hot-spots
reated by read-only transa
tions.

b. RAID level 0 itself stores an extra
opy of ea
h data item (mirroring).

Thus this is similar to mirroring performed by the database itself, ex
ept

that the database system does not have to bother about the details of

performing the mirroring. It just issues the write to the RAID system,

whi
h automati
ally performs the mirroring.

RAID level 5 is less expensive than mirroring in terms of disk spa
e

requirement, but writes are more expensive, and rebuilding a
rashed

disk is more expensive.

21.7 Partitioning and repli
ation.

a. Explain why range-partitioning gives better
ontrol on tablet sizes than

hash partitioning. List an analogy between this
ase and the
ase of B

+

-

tree indi
es versus hash indi
es.

b. Some systems �rst perform hashing on the key, and then use range par-

titioning on the hash values. What
ould be a motivation for this
hoi
e,

and what are its drawba
ks as
ompared to performing range partition

dire
tion on the key?

. It is possible to horizontally partition data, and then perform verti
al

partitioning lo
ally at ea
h node. It is also possible to do the
onverse,

where verti
al partitioning is done �rst, and then ea
h partition is then

horizontally partitioned independently. What are are the bene�ts of the

�rst option over the se
ond one?

Answer:

a. Hash partitioning does not permit any
ontrol on individual tablet sizes,

unlike range partitioning whi
h allows overfull partitions to be split quite

easily. B

+

-tree indi
es use range partitioning, allowing a leaf node to be

split if it is overfull. In
ontrast, it is not easy to split a hash bu
ket in a

hash index if the bu
ket is overfull.

Some approa
hes similar to those used for dynami
 hashing (su
h as

linear hashing or extendable hashing) have been proposed to allow over-

full hash bu
kets to be split while leaving other hash bu
kets untou
hed,

but range partitioning provides a simpler solution.

Pra
ti
e Exer
ises 169

b. Hashing allows keys of various types to be mapped to a single data type,

simplifying the job of partitioning the data. The drawba
k is that range

queries
annot be supported using hashing (without performing a full

table s
an), whereas dire
t range-partitioning allows e	
ient support for

range queries.

. The �rst option allows re
onstru
tion of re
ords at a single node if a

query only a

esses re
ords at that node. With the se
ond option, the

verti
al fragments
orresponding to one re
ord may potentially be resid-

ing on di�erent nodes, requiring extra
ommuni
ation to get the verti
al

fragments together.

21.8 In order to send a request to the master repli
a of a data item, a node must

know whi
h repli
a is the master for that data item.

a. Suppose that between the time the node identi�es whi
h node is the

master repli
a for a data item, and the time the request rea
hes the iden-

ti�ed node, the mastership has
hanged, and a di�erent node is now the

master. How
an su
h a situation be dealt with?

b. While the master repli
a
ould be
hosen on a per-partition basis, some

systems support a per-re
ord master repli
a, where the re
ords of a par-

tition (or tablet) are repli
ated at some set of nodes, but ea
h re
ord's

master repli
a
an be on any of the nodes from within this set of nodes,

independent of the master repli
a of other re
ords. List two bene�ts of

keeping tra
k of master on a per-re
ord basis.

. Suggest how to keep tra
k of the master repli
a for ea
h re
ord, when

there are a large number of re
ords.

Answer:

a. If a node re
eives a request for a data itemwhen it is not themaster, it
an

send an error reply with the reason for the error to the requesting node.

The requesting node
an then �nd the
urrent master and resend the

request to the
urrent master. Alternatively, the old master
an forward

the message to the new master, whi
h
an reply to the requesting node.

b. Tra
kingmastership on a per-re
ord basis allows the master to be lo
ated

in a geographi
al region where most requests for the data item o

ur, for

example the region where the user resides. Reads
an then be satis�ed

without any
ommuni
ation with other regions, whi
h is generally mu
h

slower due to speed-of-light delays. Further, writes
an also be done lo-

ally, and repli
ated asyn
hronously to the other repli
as.

. Ea
h re
ord
an have an extra hidden �eld that stores the master repli
a

of that re
ord. In
ase the information is outdated, all the repli
as of the

170 Chapter 21 Parallel and Distributed Storage

data item
an be a

essed to �nd the nodes listed as masters for that data

item; those nodes
an be
onta
ted to �nd the
urrent master.

CHAP T E R

22

Parallel and Distributed Query

Pro
essing

Pra
ti
e Exer
ises

22.1 What form of parallelism (interquery, interoperation, or intraoperation) is

likely to be the most important for ea
h of the following tasks?

a. In
reasing the throughput of a system with many small queries

b. In
reasing the throughput of a system with a few large queries when the

number of disks and pro
essors is large

Answer:

a. When there are many small queries, interquery parallelism gives good

throughput. Parallelizing ea
h of these small queries would in
rease the

initiation overhead, without any signi�
ant redu
tion in response time.

b. With a few large queries, intraquery parallelism is essential to get fast

response times. Given that there are large numbers of pro
essors and

disks, only intraoperation parallelism
an take advantage of the parallel

hardware, for queries typi
ally have few operations, but ea
h one needs

to pro
ess a large number of tuples.

22.2 Des
ribe how partial aggregation
an be implemented for the
ount and avg

aggregate fun
tions to redu
e data transfer.

Answer:

FILL

22.3 With pipelined parallelism, it is often a good idea to perform several operations

in a pipeline on a single pro
essor, even when many pro
essors are available.

a. Explain why.

171

172 Chapter 22 Parallel and Distributed Query Pro
essing

b. Would the arguments you advan
ed in part a hold if the ma
hine has a

shared-memory ar
hite
ture? Explain why or why not.

. Would the arguments in part a hold with independent parallelism? (That

is, are there
ases where, even if the operations are not pipelined and

there are many pro
essors available, it is still a good idea to perform

several operations on the same pro
essor?)

Answer:

a. The speedup obtained by parallelizing the operations would be o�set by

the data transfer overhead, as ea
h tuple produ
ed by an operator would

have to be transferred to its
onsumer, whi
h is running on a di�erent

pro
essor.

b. In a shared-memory ar
hite
ture, transferring the tuples is very e	
ient.

So the above argument does not hold to any signi�
ant degree.

. Even if two operations are independent, it may be that they both supply

their outputs to a
ommon third operator. In that
ase, running all three

on the same pro
essor may be better than transferring tuples a
ross pro-

essors.

22.4 Consider join pro
essing using symmetri
 fragment and repli
ate with range

partitioning. How
an you optimize the evaluation if the join
ondition is of

the form Ý r:A * s:B Ý f k, where k is a small
onstant? Here, Ý x Ý denotes

the absolute value of x. A join with su
h a join
ondition is
alled a band join.

Answer:

Relation r is partitioned into n partitions, r

0

, r

1

,§ , r

n*1

, and s is also parti-

tioned into n partitions, s

0

, s

1

,§ , s

n*1

. The partitions are repli
ated and as-

signed to pro
essors as shown in ??

Ea
h fragment is repli
ated on three pro
essors only, unlike in the general

ase where it is repli
ated on n pro
essors. The number of pro
essors required

is now approximately 3n, instead of n

2

in the general
ase. Therefore, given the

same number of pro
essors, we
an partition the relations intomore fragments

with this optimization, thus making ea
h lo
al join faster.

22.5 Suppose relation r is stored partitioned and indexed on A, and s is stored par-

titioned and indexed on B. Consider the query:

r:C

ount(s:D)

((�

A>5

(r)) Æ

r:B=s:B

s)

a. Give a parallel query plan using the ex
hange operator, for
omputing

the subtree of the query involving only the sele
t and join operators.

b. Now extend the above to
ompute the aggregate. Make sure to use pre-

aggregation to minimize the data transfer.

Pra
ti
e Exer
ises 173

. . . .

.

.

.

.

.
.
.
.

.

.

.

.

.

.

.

s0 s1 s2 s3 sn 1

r 0

r 1

r 2

r n 1

P0,0 P0,1

P1,0 P1,1 P1,2

P2,1 P2,2 P2,3

P n 1,
n 1

Figure 22.101 The three levels of data abstra
tion.

. Skew during aggregation is a serious problem. Explain how pre-

aggregation as above
an also signi�
antly redu
e the e�e
t of skew dur-

ing aggregation.

Answer:

a. This is a small variant of an example from the
hapter.

b. This one is very straightforward, sin
e it is already the example in the

hapter

. Pre-aggregation
an greatly redu
e the size of the data sent to the �nal

aggregation step. So even if there is skew, the absolute data sizes are

smaller, resulting in signi�
ant redu
tion in the impa
t of the skew.

22.6 Suppose relation r is stored partitioned and indexed on A, and s is stored parti-

tioned and indexed on B. Consider the join r Æ

r:B=s:B

s. Suppose s is relatively

small, but not small enough to make asymmetri
 fragment-and-repli
ate join

the best
hoi
e, and r is large, with most r tuples not mat
hing any s tuple. A

hash-join
an be performed but with a semijoin �lter used to redu
e the data

transfer. Explain how semijoin �ltering using Bloom �lters would work in this

parallel join setting.

Answer:

174 Chapter 22 Parallel and Distributed Query Pro
essing

Sin
e s is small, it makes sense to send a Bloom�lter on s:B to all partitions of r.

Then we use the Bloom �lter to �nd r tuples that may mat
h some s tuple, and

repartition the mat
hing r tuples on r:B, sending them to the nodes
ontaining

s (whi
h is already partitioned on s:B). Then the join
an be performed at ea
h

site storing s tuples. The Bloom �lter
an signi�
antly redu
e the number of r

tuples transferred.

Note that repartitioning s does notmake sense sin
e it is already partitioned

on the join attribute, unlike r.

22.7 Suppose you want to
ompute r�

r:A=s:A

s.

a. Suppose s is a small relation, while r is stored partitioned on r:B. Give

an e	
ient parallel algorithm for
omputing the left outer join.

b. Now suppose that r is a small relation, and s is a large relation, stored

partitioned on attribute s:B. Give an e	
ient parallel algorithm for
om-

puting the above left outer join.

Answer:

a. Repli
ating s to all nodes, and
omputing the left outerjoin indepen-

dently at ea
h node would be a good option in this
ase.

b. The best te
hnique in this
ase is to repli
ate r to all nodes, and
ompute

r Æ s

i

at ea
h node i. Then, we send ba
k the list of r tuples that had

mat
hes at site i ba
k to a single node, whi
h takes the union of the

returned r tuples from ea
h node i. Tuples in r that are absent in this

union are then padded with nulls and added to the output.

22.8 Suppose you want to
ompute

A,B

sum(C)

on a relation s whi
h is stored par-

titioned on s:B. Explain how you would do it e	
iently, minimizing/avoiding

repartitioning, if the number of distin
t s:B values is large, and the distribution

of number of tuples with ea
h s:B value is relatively uniform.

Answer:

The aggregate
an be
omputed lo
ally at ea
h node, with no repartitioning

at all, sin
e partitioning on s:B implies partitioning on s:A, s:B. To understand

why, partitioning on (A,B) requires that tuples with the same value for (A,B)

must be in the same partition. Partitioning on just B, ignoring A, also satis�es

this requirement.

Of
ourse not partitioning at all also satis�es the requirement, but that

defeats the purpose of parallel query pro
essing. As long as the number of

distin
t s:B values is large enough and the number of tuples with ea
h s:B value

are relatively uniform and not highly skewed, using the existing partitioning on

s:B will give good performan
e.

Pra
ti
e Exer
ises 175

22.9 MapRedu
e implementations provide fault toleran
e, where you
an reexe
ute

only failed mappers or redu
ers. By default, a partitioned parallel join exe
u-

tion would have to be rerun
ompletely in
ase of even one node failure. It is

possible to modify a parallel partitioned join exe
ution to add fault toleran
e

in a manner similar to MapRedu
e, so failure of a node does not require full

reexe
ution of the query, but only a
tions related to that node. Explain what

needs to be done at the time of partitioning at the sending node and re
eiving

node to do this.

Answer: This is an appli
ation of ideas from MapRedu
e to join pro
essing.

There are two steps: �rst the data is repartitioned, and then join is performed,

orresponding to the map and redu
e steps.

A failure during the repartition
an be handled by reexe
uting the work

of the failed node. However, the destination must ensure that tuples are not

pro
essed twi
e. To do so, it
an store all re
eived tuples in lo
al disk, and

start pro
essing only after all tuples have been re
eived. If the sender fails

meanwhile, and a new node takes over, the re
eivers
an dis
ard all tuples

re
eived from the failed sender, and re
eive them again. This part is not too

expensive.

Failures during the �nal join
omputation
an be handled similar to re-

du
er failure, by getting the data again from the partitioners. However, in the

MapRedu
e paradigm tuples to be sent to redu
ers are stored on disk at the

mappers, so they
an be resent if required. This
an also be done with parallel

joins, but there is now a signi�
ant extra
ost of writing the tuples to disk.

Another option is to �nd the tuples to be sent to the failed join node by

res
anning the input. But now, all partitioners have to reread their entire input,

whi
h makes the pro
ess very expensive, similar in
ost to rerunning the join.

As a result this is not viewed as useful.

22.10 If a parallel data-store is used to store two relations r and s and we need to join

r and s, it may be useful to maintain the join as a materialized view. What are

the bene�ts and overheads in terms of overall throughput, use of spa
e, and

response time to user queries?

Answer:

Performing a join on a
loud data-storage system
an be very expensive, if

either of the relations to be joined is partitioned on attributes other than the

join attributes, sin
e a very large amount of data would need to be transferred

to perform the join. However, if r Æ s is maintained as a materialized view,

it
an be updated at a relatively low
ost ea
h time ea
h time either r or s is

updated, instead of in
urring a very large
ost when the query is exe
uted.

Thus, queries are bene�tted at some
ost to updates.

176 Chapter 22 Parallel and Distributed Query Pro
essing

With the materialized view, overall throughput will be mu
h better if the

join query is exe
uted reasonably often relative to updates, but may be worse

if the join is rarely used, but updates are frequent.

The materialized view will
ertainly require extra spa
e, but given that disk

apa
ities are very high relative to IO (seek) operations and transfer rates, the

extra spa
e is likely to not be an major overhead.

The materialized view will obviously be very useful to evaluate join queries,

redu
ing time greatly by redu
ing data transfer a
ross ma
hines.

22.11 Explain how ea
h of the following join algorithms
an be implemented using

the MapRedu
e framework:

a. Broad
ast join (also known as asymmetri
 fragment-and-repli
ate join).

b. Indexed nested loop join, where the inner relation is stored in a parallel

data-store.

. Partitioned join.

Answer:

FILL

CHAP T E R

23

Parallel and Distributed

Transa
tion Pro
essing

Pra
ti
e Exer
ises

23.1 What are the key di�eren
es between a lo
al-area network and a wide-area

network, that a�e
t the design of a distributed database?

Answer:

Data transfer is mu
h faster, and
ommuni
ation laten
y is mu
h lower on

a lo
al-area network (LAN) than on a wide-area network (WAN). Proto
ols

that require multiple rounds of
ommuni
ation maybe a

eptable in a lo
al

area network, but distributed databases designed for wide-area networks try to

minimize the number of su
h rounds of
ommuni
ation.

Repli
ation to a lo
al node for redu
ing laten
y is quite important in a wide-

area network, but less so in a lo
al area network.

Network link failure and network partition are also more likely in a wide-area

network than in a lo
al area network, where systems
an be designed with

more redundan
y to deal with failures. Proto
ols designed for wide-area net-

works should handle su
h failures without
reating any in
onsisten
ies in the

database.

23.2 To build a highly available distributed system, you must know what kinds of

failures
an o

ur.

a. List possible types of failure in a distributed system.

b. Whi
h items in your list from part a are also appli
able to a
entralized

system?

Answer:

a. The types of failure that
an o

ur in a distributed system in
lude

i. Site failure.

177

178 Chapter 23 Parallel and Distributed Transa
tion Pro
essing

ii. Disk failure.

iii. Communi
ation failure, leading to dis
onne
tion of one or more

sites from the network.

b. The �rst two failure types
an also o

ur on
entralized systems.

23.3 Consider a failure that o

urs during 2PC for a transa
tion. For ea
h possible

failure that you listed in Exer
ise 23.2a, explain how 2PC ensures transa
tion

atomi
ity despite the failure.

Answer:

A proof that 2PC guarantees atomi

ommits/aborts in spite of site and link

failures follows. The main idea is that after all sites reply with a <ready T>

message, only the
oordinator of a transa
tion
an make a
ommit or abort

de
ision. Any subsequent
ommit or abort by a site
an happen only after it

as
ertains the
oordinator's de
ision, either dire
tly from the
oordinator or

indire
tly from some other site. Let us enumerate the
ases for a site aborting,

and then for a site
ommitting.

a. A site
an abort a transa
tion T (by writing an <abort T> log re
ord)

only under the following
ir
umstan
es:

i. It has not yet written a <ready T> log re
ord. In this
ase, the
oor-

dinator
ould not have got, and will not get, a<ready T> or<
ommit

T> message from this site. Therefore, only an abort de
ision
an be

made by the
oordinator.

ii. It has written the <ready T> log re
ord, but on inquiry it found out

that some other site has an <abort T> log re
ord. In this
ase it is

orre
t for it to abort, be
ause that other site would have as
ertained

the
oordinator's de
ision (either dire
tly or indire
tly) before a
tu-

ally aborting.

iii. It is itself the
oordinator. In this
ase also no site
ould have
om-

mitted, or will
ommit in the future, be
ause
ommit de
isions
an

be made only by the
oordinator.

b. A site
an
ommit a transa
tion T (by writing a <
ommit T> log re
ord)

only under the following
ir
umstan
es:

i. It has written the <ready T> log re
ord, and on inquiry it found out

that some other site has a <
ommit T> log re
ord. In this
ase it

is
orre
t for it to
ommit, be
ause that other site would have as
er-

tained the
oordinator's de
ision (either dire
tly or indire
tly) before

a
tually
ommitting.

Pra
ti
e Exer
ises 179

ii. It is itself the
oordinator. In this
ase no other parti
ipating site
an

abort or would have aborted be
ause abort de
isions are made only

by the
oordinator.

23.4 Consider a distributed system with two sites, A and B. Can site A distinguish

among the following?

�

B goes down.

�

The link between A and B goes down.

�

B is extremely overloaded and response time is 100 times longer than nor-

mal.

What impli
ations does your answer have for re
overy in distributed systems?

Answer:

Site A
annot distinguish between the three
ases until
ommuni
ation has

resumed with site B. The a
tion whi
h it performs while B is ina

essible must

be
orre
t irrespe
tive of whi
h of these situations has a
tually o

urred, and

it must be su
h that B
an re-integrate
onsistently into the distributed system

on
e
ommuni
ation is restored.

23.5 The persistent messaging s
heme des
ribed in this
hapter depends on time-

stamps. A drawba
k is that they
an dis
ard re
eived messages only if they are

too old, and may need to keep tra
k of a large number of re
eived messages.

Suggest an alternative s
heme based on sequen
e numbers instead of time-

stamps, that
an dis
ard messages more rapidly.

Answer:

We
an have a s
heme based on sequen
e numbers similar to the s
heme based

on timestamps. We tag ea
h message with a sequen
e number that is unique

for the (sending site, re
eiving site) pair. The number is in
reased by 1 for ea
h

new message sent from the sending site to the re
eiving site.

The re
eiving site stores and a
knowledges a re
eived message only if it has re-

eived all lower-numbered messages also; the message is stored in the re
eived-

messages relation.

The sending site retransmits a message until it has re
eived an a
k from the

re
eiving site
ontaining the sequen
e number of the transmitted message or a

higher sequen
e number. On
e the a
knowledgment is re
eived, it
an delete

the message from its send queue.

The re
eiving site dis
ards all messages it re
eives that have a lower sequen
e

number than the latest stored message from the sending site. The re
eiving

site dis
ards from re
eived-messages all but the (number of the) most re
ent

message from ea
h sending site (message
an be dis
arded only after being

pro
essed lo
ally).

180 Chapter 23 Parallel and Distributed Transa
tion Pro
essing

Note that this s
heme requires a �xed (and small) overhead at the re
eiving

site for ea
h sending site, regardless of the number of messages re
eived. In

ontrast, the timestamp s
heme requires extra spa
e for every message. The

timestamp s
heme would have lower storage overhead if the number of mes-

sages re
eived within the timeout interval is small
ompared to the number of

sites, whereas the sequen
e number s
heme would have lower overhead other-

wise.

23.6 Explain the di�eren
e between data repli
ation in a distributed system and the

maintenan
e of a remote ba
kup site.

Answer:

In remote ba
kup systems, all transa
tions are performed at the primary site

and the entire database is repli
ated at the remote ba
kup site. The remote

ba
kup site is kept syn
hronized with the updates at the primary site by send-

ing all log re
ords. Whenever the primary site fails, the remote ba
kup site

takes over pro
essing.

The distributed systems o�er greater availability by having multiple
opies of

the data at di�erent sites, whereas the remote ba
kup systems o�er lesser avail-

ability at lower
ost and exe
ution overhead. Di�erent data items may be repli-

ated at di�erent nodes.

In a distributed system, transa
tion
ode
an run at all the sites, whereas in a

remote ba
kup system it runs only at the primary site. The distributed system

transa
tions needs to follow two-phase
ommit or other
onsensus proto
ols

to keep the data in
onsistent state, whereas a remote ba
kup system does not

follow two-phase
ommit and avoids related overhead.

23.7 Give an example where lazy repli
ation
an lead to an in
onsistent database

state even when updates get an ex
lusive lo
k on the primary (master)
opy if

data were read from a node other than the master.

Answer:

Consider the balan
e in an a

ount, repli
ated at N sites. Let the
urrent bal-

an
e be $100 �
onsistent a
ross all sites. Consider two transa
tions T

1

and

T

2

ea
h depositing $10 in the a

ount. Thus the balan
e would be $120 after

both these transa
tions are exe
uted. Let the transa
tions exe
ute in sequen
e:

T

1

�rst and then T

2

. Suppose the
opy of the balan
e at one of the sites, say

s, is not
onsistent � due to lazy repli
ation strategy � with the primary
opy

after transa
tion T

1

is exe
uted, and let transa
tion T

2

read this
opy of the

balan
e. One
an see that the balan
e at the primary site would be $110 at the

end.

23.8 Consider the following deadlo
k-dete
tion algorithm. When transa
tion T

i

, at

site S

1

, requests a resour
e from T

j

, at site S

3

, a request message with time-

stamp n is sent. The edge (T

i

,T

j

, n) is inserted in the lo
al wait-for graph of

Pra
ti
e Exer
ises 181

S

1

. The edge (T

i

,T

j

, n) is inserted in the lo
al wait-for graph of S

3

only if T

j

has re
eived the request message and
annot immediately grant the requested

resour
e. A request from T

i

to T

j

in the same site is handled in the usual man-

ner; no timestamps are asso
iated with the edge (T

i

,T

j

). A
entral
oordinator

invokes the dete
tion algorithm by sending an initiating message to ea
h site

in the system.

On re
eiving this message, a site sends its lo
al wait-for graph to the
o-

ordinator. Note that su
h a graph
ontains all the lo
al information that the

site has about the state of the real graph. The wait-for graph re�e
ts an instan-

taneous state of the site, but it is not syn
hronized with respe
t to any other

site.

When the
ontroller has re
eived a reply from ea
h site, it
onstru
ts a

graph as follows:

�

The graph
ontains a vertex for every transa
tion in the system.

�

The graph has an edge (T

i

,T

j

) if and only if:

°

There is an edge (T

i

,T

j

) in one of the wait-for graphs.

°

An edge (T

i

,T

j

, n) (for some n) appears in more than one wait-for

graph.

Show that, if there is a
y
le in the
onstru
ted graph, then the system is in a

deadlo
k state, and that, if there is no
y
le in the
onstru
ted graph, then the

system was not in a deadlo
k state when the exe
ution of the algorithm began.

Answer:

Let us say a
y
le T

i

� T

j

� 5 � T

m

� T

i

exists in the graph built by

the
ontroller. The edges in the graph will either be lo
al edgem (T

k

,T

l

) or

distributed edges of the form (T

k

,T

l

, n). Ea
h lo
al edge (T

k

,T

l

) de�nitely

implies that T

k

is waiting for T

l

. Sin
e a distributed edge (T

k

,T

l

, n) is inserted

into the graph only if T

k

's request has rea
hed T

l

and T

l

annot immediately

release the lo
k, T

k

is indeed waiting for T

l

. Therefore every edge in the
y
le

indeed represents a transa
tion waiting for another. For a detailed proof that

this implies a deadlo
k, refer to Stuart et al. [1984℄.

We now prove the
onverse impli
ation. As soon as it is dis
overed that T

k

is

waiting for T

l

:

a. A lo
al edge (T

k

,T

l

) is added if both are on the same site.

b. The edge (T

k

,T

l

, n) is added in both the sites, if T

k

and T

l

are on di�erent

sites.

Therefore, if the algorithm were able to
olle
t all the lo
al wait-for graphs at

the same instant, it would de�nitely dis
over a
y
le in the
onstru
ted graph,

in
ase there is a
ir
ular wait at that instant. If there is a
ir
ular wait at the

instant when the algorithm began exe
ution, none of the edges parti
ipating in

182 Chapter 23 Parallel and Distributed Transa
tion Pro
essing

that
y
le
an disappear until the algorithm �nishes. Therefore, even though

the algorithm
annot
olle
t all the lo
al graphs at the same instant, any
y
le

whi
h existed just before it started will be dete
ted.

23.9 Consider the
hain-repli
ation proto
ol, des
ribed in Se
tion 23.4.3.2, whi
h

is a variant of the primary-
opy proto
ol.

a. If lo
king is used for
on
urren
y
ontrol, what is the earliest point when

a pro
ess
an release an ex
lusive lo
k after updating a data item?

b. While ea
h data item
ould have its own
hain, give two reasons it would

be preferable to have a
hain de�ned at a higher level, su
h as for ea
h

partition or tablet.

. How
an
onsensus proto
ols be used to ensure that the
hain is

uniquely determined at any point in time?

Answer:

a. The lo
k
an be released only after the update has been re
orded at the

tail of the
hain, sin
e further reads will read the tail. Two phase lo
king

may also have to be respe
ted.

b. The overhead of re
ording
hains per data item would be high. Even

more so, in
ase of failures,
hains have to be updated, whi
h would

have an even greater overhead if done per item.

. All nodes in the
hain have to agree on the
hain membership and or-

der. Consensus
an be used to ensure that updates to the
hain are done

in a fault-tolerant manner. A fault-tolerant
oordination servi
e su
h as

ZooKeeper or Chubby
ould be used to ensure this
onsensus, by updat-

ing metadata that is repli
ated using
onsensus; the
oordination servi
e

hides the details of
onsensus, and allows storage and update of (a lim-

ited amount of) metadata.

23.10 If the primary
opy s
heme is used for repli
ation, and the primary gets dis-

onne
ted from the rest of the system, a new node may get ele
ted as primary.

But the old primary may not realize it has got dis
onne
ted, and may get re-

onne
ted subsequently without realizing that there is a new primary.

a. What problems
an arise if the old primary does not realize that a new

one has taken over?

b. How
an leases be used to avoid these problems?

. Would su
h a situation, where a parti
ipant node gets dis
onne
ted and

then re
onne
ted without realizing it was dis
onne
ted,
ause any prob-

lem with the majority or quorum proto
ols?

Pra
ti
e Exer
ises 183

Answer:

a. The old primary may re
eive read requests and reply to them, serving

old data that is missing subsequent updates.

b. Leases
an be used so that at the end of the lease, the primary knows

that it if it did not su

essfuly renew the lease, it should stop serving

requests. If it is dis
onne
ted, it would be unable to renew the lease.

. This situation would not
ause a problem with the majority proto
ol

sin
e the write set (or write quorum) and the read set (read quorum)

must have at least one node in
ommon, whi
h would serve the latest

value.

23.11 Consider a federated database system in whi
h it is guaranteed that at most

one global transa
tion is a
tive at any time, and every lo
al site ensures lo
al

serializability.

a. Suggest ways in whi
h the federated database system
an ensure that

there is at most one a
tive global transa
tion at any time.

b. Show by example that it is possible for a nonserializable global s
hedule

to result despite the assumptions.

Answer:

a. We
an have a spe
ial data item at some site on whi
h a lo
k will have

to be obtained before starting a global transa
tion. The lo
k should be

released after the transa
tion
ompletes. This ensures the single a
tive

global transa
tion requirement. To redu
e dependen
y on that parti
-

ular site being up, we
an generalize the solution by having an ele
tion

s
heme to
hoose one of the
urrently up sites to be the
oordinator and

requiring that the lo
k be requested on the data item whi
h resides on

the
urrently ele
ted
oordinator.

b. The following s
hedule involves two sites and four transa
tions. T

1

and

T

2

are lo
al transa
tions, running at site 1 and site 2 respe
tively. T

G1

and T

G2

are global transa
tions running at both sites. X

1

, Y

1

are data

items at site 1, and X

2

, Y

2

are at site 2.

184 Chapter 23 Parallel and Distributed Transa
tion Pro
essing

T1 T2 TG1 TG2

write(Y)

 read(Y)

 write(X)

 read(X)

 write(Y)

 read(Y)

 write(X)

read(X)

1

2

2

2

2

1

1

1

In this s
hedule, T

G2

starts only after T

G1

�nishes.Within ea
h site, there

is lo
al serializability. In site 1, T

G2

� T

1

� T

G1

is a serializability

order. In site 2, T

G1

� T

2

� T

G2

is a serializability order. Yet the global

s
hedule s
hedule is nonserializable.

23.12 Consider a federated database system in whi
h every lo
al site ensures lo
al

serializability, and all global transa
tions are read only.

a. Show by example that nonserializable exe
utions may result in su
h a

system.

b. Show how you
ould use a ti
ket s
heme to ensure global serializability.

Answer:

a. The same system as in the answer to Exer
ise 23.11 is assumed, ex
ept

that now both the global transa
tions are read-only. Consider the follow-

ing s
hedule:

T1 T2 TG1 TG2

 read(X)

write(X)

 read(X)

 read(X)

 write(X)

 read(X)

1

1

2

2

2

1

Though there is lo
al serializability in both sites, the global s
hedule is

not serializable.

b. Sin
e lo
al serializability is guaranteed, any
y
le in the systemwide

pre
eden
e graph must involve at least two di�erent sites and two dif-

ferent global transa
tions. The ti
ket s
heme ensures that whenever two

Pra
ti
e Exer
ises 185

global transa
tions a

ess data at a site, they
on�i
t on a data item (the

ti
ket) at that site. The global transa
tion manager
ontrols ti
ket a

ess

in su
h a manner that the global transa
tions exe
ute with the same se-

rializability order in all the sites. Thus the
han
e of their parti
ipating

in a
y
le in the systemwide pre
eden
e graph is eliminated.

23.13 Suppose you have a large relation r(A,B,C) and a materialized view

v =

A

sum(B)

(r). View maintenan
e
an be performed as part of ea
h trans-

a
tion that updates r, on a parallel/distributed storage system that supports

transa
tions a
ross multiple nodes. Suppose the system uses two-phase
om-

mit along with a
onsensus proto
ol su
h as Paxos, a
ross geographi
ally dis-

tributed data
enters.

a. Explain why it is not a good idea to perform view maintenan
e as part of

the update transa
tion, if some values of attribute A are �hot� at
ertain

points in time, that is, many updates pertain to those values of A.

b. Explain how operation lo
king (if supported)
ould solve this problem.

. Explain the tradeo�s of using asyn
hronous view maintenan
e in this

ontext.

Answer:

This is a very bad idea from the viewpoint of throughput. Most transa
tions

would now update a few aggregate re
ords, and updates would get serialized

on the lo
k. The problem that due to Paxos delays plus 2PC delays,
ommit

pro
essing will take a long time (hundreds of millise
onds) and there would

be very high
ontention on the lo
k. Transa
tion throughput would de
rease

to tens of transa
tions per se
ond, even if transa
tions do not
on�i
t on any

other items.

If the storage system supported operation lo
king, that
ould be an alterna-

tive to improve
on
urren
y, sin
e view maintenan
e
an be done using opera-

tion lo
ks that do not
on�i
t with ea
h other. Transa
tion throughput would

be greatly in
reased.

Asyn
hronous view maintenan
e would avoid the bottlene
k and lead to

mu
h better throughput, but at the risk of reads of the view seeing stale data.

	1. Introduction
	2. Introduction to the Relational Model
	3. Introduction to SQL
	4. Intermediate SQL
	5. Advanced SQL
	6. Database Design using the E-R Model
	7. Relational Database Design
	8. Complex Data Types
	9. Application Development
	10. Big Data
	11. Data Analytics
	12. Physical Storage Systems
	13. Data Storage Structures
	14. Indexing
	15. Query Processing
	16. Query Optimization
	17. Transactions
	18. Concurrency Control
	19. Recovery System
	20. Database-System Architectures
	21. Parallel and Distributed Storage
	22. Parallel and Distributed Query Processing
	23. Parallel and Distributed Transaction Processing

