CHAPTER

Introduction

Practice Exercises

1.1 This chapter has described several major advantages of a database system. What
are two disadvantages?

Answer:
Two disadvantages associated with database systems are listed below.

a.

b.

Setup of the database system requires more knowledge, money, skills, and
time.

The complexity of the database may result in poor performance.

1.2 List five ways in which the type declaration system of a language such as Java
or C++ differs from the data definition language used in a database.

Answer:

Executing an action in the DDL results in the creation of an object in the
database; in contrast, a programming language type declaration is simply
an abstraction used in the program.

Database DDLs allow consistency constraints to be specified, which pro-
gramming language type systems generally do not allow. These include
domain constraints and referential integrity constraints.

Database DDLs support authorization, giving different access rights to
different users. Programming language type systems do not provide such
protection (at best, they protect attributes in a class from being accessed
by methods in another class).

Programming language type systems are usually much richer than the SQL
type system. Most databases support only basic types such as different
types of numbers and strings, although some databases do support some
complex types such as arrays and objects.

2

Chapter 1 Introduction

€.

A database DDL is focused on specifying types of attributes of relations;
in contrast, a programming language allows objects and collections of ob-
jects to be created.

1.3 List six major steps that you would take in setting up a database for a particular
enterprise.

1.4

Answer:
Six major steps in setting up a database for a particular enterprise are:

Define the high-level requirements of the enterprise (this step generates a
document known as the system requirements specification.)

Define a model containing all appropriate types of data and data relation-
ships.

Define the integrity constraints on the data.
Define the physical level.

For each known problem to be solved on a regular basis (e.g., tasks to be
carried out by clerks or web users), define a user interface to carry out the
task, and write the necessary application programs to implement the user
interface.

Create/initialize the database.

Suppose you want to build a video site similar to YouTube. Consider each of the
points listed in Section 1.2 as disadvantages of keeping data in a file-processing
system. Discuss the relevance of each of these points to the storage of actual
video data, and to metadata about the video, such as title, the user who uploaded
it, tags, and which users viewed it.

Answer:

Data redundancy and inconsistency. This would be relevant to metadata to
some extent, although not to the actual video data, which are not updated.
There are very few relationships here, and none of them can lead to redun-
dancy.

Difficulty in accessing data. If video data are only accessed through a few
predefined interfaces, as is done in video sharing sites today, this will not
be a problem. However, if an organization needs to find video data based
on specific search conditions (beyond simple keyword queries), if metadata
were stored in files it would be hard to find relevant data without writing
application programs. Using a database would be important for the task of
finding data.

Data isolation. Since data are not usually updated, but instead newly cre-
ated, data isolation is not a major issue. Even the task of keeping track of

Practice Exercises 3

who has viewed what videos is (conceptually) append only, again making
isolation not a major issue. However, if authorization is added, there may
be some issues of concurrent updates to authorization information.

* Integrity problems. It seems unlikely there are significant integrity con-
straints in this application, except for primary keys. If the data are dis-
tributed, there may be issues in enforcing primary key constraints. Integrity
problems are probably not a major issue.

° Atomicity problems. When a video is uploaded, metadata about the video
and the video should be added atomically, otherwise there would be an
inconsistency in the data. An underlying recovery mechanism would be
required to ensure atomicity in the event of failures.

* Concurrent-access anomalies. Since data are not updated, concurrent access
anomalies would be unlikely to occur.

° Security problems. These would be an issue if the system supported autho-
rization.

1.5 Keyword queries used in web search are quite different from database queries.
List key differences between the two, in terms of the way the queries are specified
and in terms of what is the result of a query.

Answer:

Queries used in the web are specified by providing a list of keywords with no spe-
cific syntax. The result is typically an ordered list of URLSs, along with snippets
of information about the content of the URLSs. In contrast, database queries
have a specific syntax allowing complex queries to be specified. And in the rela-
tional world the result of a query is always a table.

CHAPTER

Introduction to the Relational
Model

Practice Exercises

2.1 Consider the employee database of Figure 2.17. What are the appropriate pri-
mary keys?

Answer:
The appropriate primary keys are shown below:

employee (person_name, street, city)
works (person_name, company-name, salary)
company (company_name, city)

2.2 Consider the foreign-key constraint from the dept_name attribute of instructor to
the department relation. Give examples of inserts and deletes to these relations
that can cause a violation of the foreign-key constraint.

Answer:
* Inserting a tuple:

(10111, Ostrom, Economics, 110000)

employee (ID, person_name, street, city)
works (ID, company_name, salary)
company (company_name, city)

Figure 2.17 Employee database.

6

Chapter 2 Introduction to the Relational Model

2.3

2.4

2.5

2.6

into the instructor table, where the department table does not have the de-
partment Economics, would violate the foreign-key constraint.

* Deleting the tuple:
(Biology, Watson, 90000)

from the department table, where at least one student or instructor tuple
has dept_name as Biology, would violate the foreign-key constraint.

Consider the time_slot relation. Given that a particular time slot can meet more
than once in a week, explain why day and start_time are part of the primary key
of this relation, while end_time is not.

Answer:

The attributes day and start_time are part of the primary key since a particular
class will most likely meet on several different days and may even meet more
than once in a day. However, end_time is not part of the primary key since a
particular class that starts at a particular time on a particular day cannot end at
more than one time.

In the instance of instructor shown in Figure 2.1, no two instructors have the
same name. From this, can we conclude that name can be used as a superkey
(or primary key) of instructor?

Answer:

No. For this possible instance of the instructor table the names are unique, but
in general this may not always be the case (unless the university has a rule that
two instructors cannot have the same name, which is a rather unlikey scenario).

What is the result of first performing the Cartesian product of student and advi-
sor, and then performing a selection operation on the result with the predicate
s_id = ID? (Using the symbolic notation of relational algebra, this query can be
written as o ;,_;p(student X advisor).)

Answer:
The result attributes include all attribute values of student followed by all at-
tributes of advisor. The tuples in the result are as follows: For each student who
has an advisor, the result has a row containing that student’s attributes, followed
by an s_id attribute identical to the student’s ID attribute, followed by the i_id
attribute containing the ID of the students advisor.

Students who do not have an advisor will not appear in the result. A student
who has more than one advisor will appear a corresponding number of times
in the result.

Consider the employee database of Figure 2.17. Give an expression in the rela-
tional algebra to express each of the following queries:

a. Find the name of each employee who lives in city “Miami”.

Practice Exercises 7

branch(branch_name, branch_city, assets)

customer (ID, customer_name, customer_street, customer_ity)
loan (loan_number, branch_name, amount)

borrower (ID, loan_number)

account (account_number, branch_name, balance)

depositor (ID, account_number)

2.7

2.8

Figure 2.18 Bank database.

b. Find the name of each employee whose salary is greater than $100000.

c. Find the name of each employee who lives in “Miami” and whose salary
is greater than $100000.

Answer:

a. Hperson_name (Gcity=“Miami” (emp loy 66‘))
b. Hperson_name (Gsalary> 100000 (employee M WOI‘kS))

C. Hperson_name (Gcfty = “Miami” A salary>100000 (emp loy ee D4 wor kS))

Consider the bank database of Figure 2.18. Give an expression in the relational
algebra for each of the following queries:

a. Find the name of each branch located in “Chicago”.

b. Find the ID of each borrower who has a loan in branch “Downtown”.

Answer:

a. Hbranch_name (Gbranch_cil}:“Chicago” (b T anch))

b. H[D (Gbranch;name = “Downtown” (bOI‘ rower D4borrower.loarmumber:loan.loaruwmber

loan)).

Consider the employee database of Figure 2.17. Give an expression in the rela-
tional algebra to express each of the following queries:

a. Findthe ID and name of each employee who does not work for “BigBank”.

b. Find the ID and name of each employee who earns at least as much as
every employee in the database.

Answer:

a. To find employees who do not work for BigBank, we first find all those
who do work for BigBank. Those are exactly the employees not part of the

Chapter 2 Introduction to the Relational Model

desired result. We then use set difference to find the set of all employees
minus those employees that should not be in the result.

H[D,person_name (emp / oy ee) -
H[D,person,name
(emp ZOJ/ ee Nemployee.[D:works.]D (Gcompany_name: }}BigBank” (WOI’ ks)))

b. We use the same approach as in part a by first finding those employess
who do not earn the highest salary, or, said differently, for whom some
other employee earns more. Since this involves comparing two employee
salary values, we need to reference the employee relation twice and there-
fore use renaming.

HlD,person_name (emp loy €€) -
HA-IDA.persongalne(pA (employee) My salary<B.salary pg(employee))

2.9 The division operator of relational algebra, “+”, is defined as follows. Let r(R)
and s(S) be relations, and let S C R; that is, every attribute of schema S is

also in schema R. Given a tuple ¢, let z[S] denote the projection of tuple 7 on
the attributes in S. Then r + s is a relation on schema R — S (that is, on the
schema containing all attributes of schema R that are not in schema S). A tuple
tisin r + sif and only if both of two conditions hold:

° tisin I, (r)

* For every tuple 7, in s, there is a tuple ¢, in r satisfying both of the following:
a. 1.[S] = ¢S]
b.t,[R — S] =1

Given the above definition:

a. Write a relational algebra expression using the division operator to find
the IDs of all students who have taken all Comp. Sci. courses. (Hint:
project takes to just ID and course_id, and generate the set of all Comp.
Sci. course_ids using a select expression, before doing the division.)

b. Show how to write the above query in relational algebra, without using
division. (By doing so, you would have shown how to define the division
operation using the other relational algebra operations.)

Answer:

a. HID(HID,course_id (takes) - Hcourse_id (Gdept_name=’C0mp. Sci’ (COLII' S e))

b. The required expression is as follows:

Practice Exercises 9

r < H[D,course_id (takes)

s« II s(course))

course_id (Ga'ept_name=’Comp. Sci

I,y (takes) — II;, (11, (takes) X s) — r)

In general, let 7(R) and s(S) be given, with § C R. Then we can express
the division operation using basic relational algebra operations as follows:

r+s=1Ig o) — Hp_g ((Tg_g (r) X s) — Mg_g5(r))

To see that this expression is true, we observe that I1,_g (r) gives us all
tuples ¢ that satisfy the first condition of the definition of division. The
expression on the right side of the set difference operator

Iy g ((IMy_g (r) X 5) — HR—S,S(r))

serves to eliminate those tuples that fail to satisfy the second condition of
the definition of division. Let us see how it does so. Consider Il,_g (7) X s.
This relation is on schema R, and pairs every tuple in I1,_g () with every
tuple in 5. The expression I1;_g ¢(r) merely reorders the attributes of r.

Thus, (Iz_g (r) X s) — Ilz_g c(r) gives us those pairs of tuples from
IIz_g (r) and s that do not appear in r. If a tuple 7, is in

s (Te_g (1) X 8) — Mp_g5(r)

then there is some tuple 7 in s that does not combine with tuple 7 to form
atuple in r. Thus, 7, holds a value for attributes R — S that does not appear
inr + s. Itis these values that we eliminate from I,_g (7).

CHAPTER

Introduction to SQL

Practice Exercises

3.1 Write the following queries in SQL, using the university schema. (We suggest
you actually run these queries on a database, using the sample data that we
provide on the web site of the book, db-book.com. Instructions for setting up
a database, and loading sample data, are provided on the above web site.)

a. Find the titles of courses in the Comp. Sci. department that have 3 credits.

b. Find the IDs of all students who were taught by an instructor named Ein-
stein; make sure there are no duplicates in the result.

c. Find the highest salary of any instructor.

d. Find all instructors earning the highest salary (there may be more than
one with the same salary).

e. Find the enrollment of each section that was offered in Fall 2017.
f. Find the maximum enrollment, across all sections, in Fall 2017.

g. Find the sections that had the maximum enrollment in Fall 2017.

Answer:
a. Findthe titles of courses in the Comp. Sci. department that have 3 credits.

select ritle
from course
where dept_name =’Comp. Sci.’ and credits = 3

b. Find the IDs of all students who were taught by an instructor named Ein-
stein; make sure there are no duplicates in the result.
This query can be answered in several different ways. One way is as fol-
lows.

11

db-book.com

12

Chapter 3 Introduction to SQL

select distinct rakes.ID

from takes, instructor, teaches

where takes.course_id = teaches.course_id and
takes.sec_id = teaches.sec_id and
takes.semester = teaches.semester and
takes.year = teaches.year and
teaches.id = instructor.id and
instructor.name = Einstein’

Find the highest salary of any instructor.

select max(salary)
from instructor

Find all instructors earning the highest salary (there may be more than
one with the same salary).

select ID, name
from instructor
where salary = (select max(salary) from instructor)

Find the enrollment of each section that was offered in Fall 2017.

select course_id, sec_id,
(select count(/D)
from takes
where rakes.year = section.year
and fakes.semester = section.semester
and fakes.course_id = section.course_id
and rakes.sec_id = section.sec_id)
as enrollment
from section
where semester = Fall’
and year=2017

Note that if the result of the subquery is empty, the aggregate function
count returns a value of 0.
One way of writing the query might appear to be:

Practice Exercises 13

select rtakes.course_id, takes.sec_id, count(/D)
from section, takes
where takes.course_id = section.course_id
and rakes.sec_id = section.sec_id
and fakes.semester = section.semester
and fakes.year = section.year
and takes.semester = "Fall’
and rakes.year = 2017
group by takes.course_id, takes.sec_id

But note that if a section does not have any students taking it, it would
not appear in the result. One way of ensuring such a section appears with
a count of 0 is to use the outer join operation, covered in Chapter 4.

Find the maximum enrollment, across all sections, in Fall 2017.
One way of writing this query is as follows:

select max(enrollment)
from (select count(/D) as enrollment
from section, takes
where takes.year = section.year
and rakes.semester = section.semester
and takes.course_id = section.course_id
and rakes.sec_id = section.sec_id
and takes.semester = "Fall’
and takes.year = 2017
group by takes.course_id, takes.sec_id)

As an alternative to using a nested subquery in the from clause, it is pos-
sible to use a with clause, as illustrated in the answer to the next part of
this question.

A subtle issue in the above query is that if no section had any enroll-
ment, the answer would be empty, not 0. We can use the alternative using
a subquery, from the previous part of this question, to ensure the count is
0 in this case.

Find the sections that had the maximum enrollment in Fall 2017.
The following answer uses a with clause, simplifying the query.

14

Chapter 3 Introduction to SQL

with sec_enrollment as (
select takes.course_id, takes.sec_id, count(/D) as enrollment
from section, takes
where takes.year = section.year
and fakes.semester = section.semester
and fakes.course_id = section.course_id
and rakes.sec_id = section.sec_id
and takes.semester = "Fall’
and rakes.year = 2017
group by takes.course_id, takes.sec_id)
select course_id, sec_id
from sec_enrollment
where enrollment = (select max(enrollment) from sec_enrollment)

It is also possible to write the query without the with clause, but the sub-
query to find enrollment would get repeated twice in the query.

While not incorrect to add distinct in the count, it is not necessary in light
of the primary key constraint on takes.

3.2 Suppose you are given a relation grade_points(grade, points) that provides a con-
version from letter grades in the fakes relation to numeric scores; for example,
an “A” grade could be specified to correspond to 4 points, an “A—"to 3.7 points,
a “B+” to 3.3 points, a “B” to 3 points, and so on. The grade points earned by a
student for a course offering (section) is defined as the number of credits for the
course multiplied by the numeric points for the grade that the student received.

Given the preceding relation, and our university schema, write each of the

following queries in SQL. You may assume for simplicity that no takes tuple has
the null value for grade.

a. Find the total grade points earned by the student with ID '12345', across
all courses taken by the student.

b. Find the grade point average (GPA) for the above student, that is, the total
grade points divided by the total credits for the associated courses.

c. Find the ID and the grade-point average of each student.

d. Now reconsider your answers to the earlier parts of this exercise under
the assumption that some grades might be null. Explain whether your
solutions still work and, if not, provide versions that handle nulls properly.

Answer:
a. Find the total grade-points earned by the student with ID '12345', across

all courses taken by the student.

Practice Exercises 15

select sum(credits * points)

from takes, course, grade_points

where takes.grade = grade_points.grade
and fakes.course_id = course.course_id
and /D = '12345'

In the above query, a student who has not taken any course would not
have any tuples, whereas we would expect to get 0 as the answer. One way
of fixing this problem is to use the outer join operation, which we study
later in Chapter 4. Another way to ensure that we get O as the answer is
via the following query:

(select sum(credits * points)
from takes, course, grade_points
where takes.grade = grade_points.grade
and fakes.course_id = course.course_id
and /D="12345")
union
(select 0O
from student
where ID="'12345" and
not exists (select * from zakes where ID = '12345"))

Find the grade point average (GPA) for the above student, that is, the total
grade-points divided by the total credits for the associated courses.

select sum(credits * points)/sum(credits) as GPA
from takes, course, grade_points
where takes.grade = grade_points.grade
and fakes.course_id = course.course_id
and /D= "'12345'

As before, a student who has not taken any course would not appear in
the above result; we can ensure that such a student appears in the result by
using the modified query from the previous part of this question. However,
an additional issue in this case is that the sum of credits would also be 0,
resulting in a divide-by-zero condition. In fact, the only meaningful way
of defining the GPA in this case is to define it as #u//. We can ensure that
such a student appears in the result with a null GP4 by adding the following
union clause to the above query.

union
(select null as GPA
from student
where ID ="'12345" and
not exists (select * from fakes where ID = '12345"))

16 Chapter 3 Introduction to SQL

c. Find the ID and the grade-point average of each student.

select 1D, sum(credits * points)/sum(credits) as GPA
from takes, course, grade_points
where takes.grade = grade_points.grade
and fakes.course_id = course.course_id
group by /D

Again, to handle students who have not taken any course, we would have
to add the following union clause:

union

(select ID, null as GPA

from student

where not exists (select * from takes where takes.ID = student.ID))

d. Now reconsider your answers to the earlier parts of this exercise under
the assumption that some grades might be null. Explain whether your
solutions still work and, if not, provide versions that handle nulls properly.
The queries listed above all include a test of equality on grade between
grade_points and takes. Thus, for any takes tuple with a null grade, that
student’s course would be eliminated from the rest of the computation
of the result. As a result, the credits of such courses would be eliminated
also, and thus the queries would return the correct answer even if some
grades are null.

3.3 Write the following inserts, deletes, or updates in SQL, using the university
schema.

a. Increase the salary of each instructor in the Comp. Sci. department by
10%.

b. Delete all courses that have never been offered (i.e., do not occur in the
section relation).

c. Insert every student whose fot_cred attribute is greater than 100 as an in-
structor in the same department, with a salary of $10,000.

Answer:

a. Increase the salary of each instructor in the Comp. Sci. department by
10%.

update instructor
set salary = salary * 1.10
where dept_name ='Comp. Sci.'

b. Delete all courses that have never been offered (that is, do not occur in
the section relation).

Practice Exercises 17

person (driver_id, name, address)

car (license_plate, model, year)

accident (report_-number, year, location)

owns (driver_id, license_plate)

participated (report_number, license_plate, driver_id, damage_amount)

Figure 3.17 Insurance database

delete from course
where course_id not in
(select course_id from section)

c. Insert every student whose fof_cred attribute is greater than 100 as an in-
structor in the same department, with a salary of $10,000.

insert into instructor

select /D, name, dept_name, 10000
from student

where fot_cred > 100

3.4 Consider the insurance database of Figure 3.17, where the primary keys are
underlined. Construct the following SQL queries for this relational database.

a. Find the total number of people who owned cars that were involved in
accidents in 2017.

b. Delete all year-2010 cars belonging to the person whose ID is '12345".

Answer:

a. Find the total number of people who owned cars that were involved in
accidents in 2017.
Note: This is not the same as the total number of accidents in 2017. We
must count people with several accidents only once. Furthermore, note
that the question asks for owners, and it might be that the owner of the
car was not the driver actually involved in the accident.

select count (distinct person.driver_id)
from accident, participated, person, owns
where accident.report_number = participated.report_-number

and owns.driver_id = person.driver_id
and owns.license_plate = participated.license_plate
and year = 2017

18 Chapter 3 Introduction to SQL

b. Delete all year-2010 cars belonging to the person whose ID is '12345".

delete car

where year = 2010 and /icense_plate in
(select license_plate
from owns o
where o.driver_id = '12345")

Note: The owns, accident and participated records associated with the
deleted cars still exist.

3.5 Suppose that we have a relation marks(ID, score) and we wish to assign grades
to students based on the score as follows: grade F if score < 40, grade C if 40
< score < 60, grade B if 60 < score < 80, and grade A4 if 80 < score. Write SQL
queries to do the following:

a. Display the grade for each student, based on the marks relation.

b. Find the number of students with each grade.

Answer:

a. Display the grade for each student, based on the marks relation.

select /D,
case
when score < 40 then 'F’
when score < 60 then 'C’
when score < 80 then 'B’
else 'A’
end
from marks

b. Find the number of students with each grade.

3.6

3.7

3.8

Practice Exercises 19

with grades as
(
select /D,
case
when score < 40 then 'F’
when score < 60 then 'C’
when score < 80 then ‘B’
else ‘A’
end as grade
from marks
)
select grade, count(ID)
from grades
group by grade

As an alternative, the with clause can be removed, and instead the defini-
tion of grades can be made a subquery of the main query.

The SQL like operator is case sensitive (in most systems), but the lower() func-
tion on strings can be used to perform case-insensitive matching. To show how,
write a query that finds departments whose names contain the string “sci” as a
substring, regardless of the case.

Answer:

select dept_name
from department
where lower(dept_name) like *%sci%’

Consider the SQL query

select p.al
from p, 1, r2
where p.al = rl.al or p.al = r2.al

Under what conditions does the preceding query select values of p.al that are
either in r1 or in r2? Examine carefully the cases where either 71 or 72 may be
empty.

Answer:

The query selects those values of p.a/ that are equal to some value of r/.al or
r2.al if and only if both r/ and r2 are non-empty. If one or both of r/ and r2 are
empty, the Cartesian product of p, r/ and r2 is empty, hence the result of the
query is empty. If p itself is empty, the result is empty.

Consider the bank database of Figure 3.18, where the primary keys are under-
lined. Construct the following SQL queries for this relational database.

20 Chapter 3 Introduction to SQL

branch(branch_name, branch_city, assets)

customer (ID, customer_name, customer-street, customer-city)
loan (loan_number, branch_name, amount)

borrower (ID, loan_number)

account (account_number, branch_name, balance)

depositor (ID, account_number)

Figure 3.18 Banking database.

a. Find the ID of each customer of the bank who has an account but not a
loan.

b. Find the ID of each customer who lives on the same street and in the same
city as customer '12345".

c. Find the name of each branch that has at least one customer who has an
account in the bank and who lives in “Harrison”.

Answer:

a. Find the ID of each customer of the bank who has an account but not a
loan.

(select ID

from depositor)
except

(select ID

from borrower)

b. Find the ID of each customer who lives on the same street and in the same
city as customer '12345".

select FID

from customer as F, customer as S

where F.customer_street = S.customer_street
and F.customer_city = S.customer_city
and S.customer_id ="12345'

c. Find the name of each branch that has at least one customer who has an
account in the bank and who lives in “Harrison”.

Practice Exercises 21

select distinct branch_name

from account, depositor, customer

where customer.id = depositor.id
and depositor.account_number = account.account_number
and customer_city = "Harrison’

3.9 Consider the relational database of Figure 3.19, where the primary keys are
underlined. Give an expression in SQL for each of the following queries.

a. Find the ID, name, and city of residence of each employee who works for
“First Bank Corporation”.

b. Find the ID, name, and city of residence of each employee who works for
“First Bank Corporation” and earns more than $10000.

c. Find the ID of each employee who does not work for “First Bank Corpo-
ration”.

d. Find the ID of each employee who earns more than every employee of
“Small Bank Corporation”.

e. Assume that companies may be located in several cities. Find the name
of each company that is located in every city in which “Small Bank Cor-
poration” is located.

f. Find the name of the company that has the most employees (or compa-
nies, in the case where there is a tie for the most).

g. Find the name of each company whose employees earn a higher salary,
on average, than the average salary at “First Bank Corporation”.

Answer:
a. Find the ID, name, and city of residence of each employee who works for

“First Bank Corporation”.

employee (ID, person_name, street, city)
works (ID, company_name, salary)
company (company_name, city)
manages (ID, manager-id)

Figure 3.19 Employee database.

22 Chapter 3 Introduction to SQL

select e.ID, e.person_name, city

from employee as e, works as w

where w.company_name = 'First Bank Corporation' and
w.iD =e.lD

b. Find the ID, name, and city of residence of each employee who works for
“First Bank Corporation” and earns more than $10000.

select *
from employee
where D in
(select /D
from works
where company_name = 'First Bank Corporation' and salary > 10000)

This could be written also in the style of the answer to part a.

c. Find the ID of each employee who does not work for “First Bank Corpo-
ration”.

select 7D
from works
where company_name <> 'First Bank Corporation'

If one allows people to appear in employee without appearing also in
works, the solution is slightly more complicated. An outer join as dis-
cussed in Chapter 4 could be used as well.

select /D
from employee
where /D not in
(select ID
from works
where company_name = "First Bank Corporation")

d. Find the ID of each employee who earns more than every employee of
“Small Bank Corporation”.

select /D
from works
where salary > all
(select salary
from works
where company_name = 'Small Bank Corporation')

If people may work for several companies and we wish to consider the rotal
earnings of each person, the problem is more complex. But note that the

Practice Exercises 23

fact that ID is the primary key for works implies that this cannot be the
case.

e. Assume that companies may be located in several cities. Find the name
of each company that is located in every city in which “Small Bank Cor-
poration” is located.

select S.company_name
from company as S
where not exists ((select city
from company
where company_name = 'Small Bank Corporation")
except
(select city
from company as T
where S.company_name = T.company_name))

f. Find the name of the company that has the most employees (or compa-
nies, in the case where there is a tie for the most).

select company_name

from works

group by company_name

having count (distinct /D) >= all
(select count (distinct /D)
from works
group by company_name)

g. Find the name of each company whose employees earn a higher salary,
on average, than the average salary at “First Bank Corporation”.

select company_name
from works
group by company_name
having avg (salary) > (select avg (salary)
from works
where company_name = "First Bank Corporation")

3.10 Consider the relational database of Figure 3.19. Give an expression in SQL for
each of the following:

a. Modify the database so that the employee whose ID is '12345' now lives
in “Newtown”.

b. Give each manager of “First Bank Corporation” a 10 percent raise unless
the salary becomes greater than $100000; in such cases, give only a 3
percent raise.

24 Chapter 3 Introduction to SQL

Answer:

a. Modify the database so that the employee whose ID is '12345' now lives
in “Newtown”.

update employee
set city = 'Newtown'
where ID = '12345'

b. Give each manager of “First Bank Corporation” a 10 percent raise unless
the salary becomes greater than $100000; in such cases, give only a 3
percent raise.

update works T
set T'salary = T'salary * 1.03
where 7.ID in (select manager_id
from manages)
and T'salary * 1.1 > 100000
and T.company_name = 'First Bank Corporation'

update works T
set T'salary = T'salary * 1.1
where 7'.ID in (select manager_id
from manages)
and T'salary * 1.1 <= 100000
and T.company_name = 'First Bank Corporation'

The above updates would give different results if executed in the opposite
order. We give below a safer solution using the case statement.

update works T
set T.salary = T.salary =
(case
when (Zsalary + 1.1 > 100000) then 1.03
else 1.1
end)
where 7./D in (select manager_id
from manages) and
T.company_name = "First Bank Corporation'

CHAPTER

Intermediate SQL

Practice Exercises

4.1 Consider the following SQL query that seeks to find a list of titles of all courses
taught in Spring 2017 along with the name of the instructor.

select name, title
from instructor natural join teaches natural join section natural join course
where semester = 'Spring' and year = 2017

What is wrong with this query?

Answer:

Although the query is syntactically correct, it does not compute the expected
answer because dept_name is an attribute of both course and instructor. As a
result of the natural join, results are shown only when an instructor teaches a
course in her or his own department.

4.2 Write the following queries in SQL:

a. Display a list of all instructors, showing each instructor’s ID and the num-
ber of sections taught. Make sure to show the number of sections as 0 for
instructors who have not taught any section. Your query should use an
outer join, and should not use subqueries.

b. Write the same query as in part a, but using a scalar subquery and not
using outer join.

c. Display the list of all course sections offered in Spring 2018, along with
the ID and name of each instructor teaching the section. If a section has
more than one instructor, that section should appear as many times in
the result as it has instructors. If a section does not have any instructor,
it should still appear in the result with the instructor name set to “—".

25

26

Chapter 4 Intermediate SQL

Display the list of all departments, with the total number of instructors
in each department, without using subqueries. Make sure to show depart-
ments that have no instructors, and list those departments with an instruc-
tor count of zero.

Answer:

a.

Display a list of all instructors, showing each instructor’s ID and the num-
ber of sections taught. Make sure to show the number of sections as 0 for
instructors who have not taught any section. Your query should use an
outer join, and should not use subqueries.

select /D, count(sec_id) as Number_of_sections
from instructor natural left outer join reaches
group by /D

The above query should not be written using count(*) since that would
count null values also. It could be written using any attribute from reaches
which does not occur in instructor, which would be correct although it
may be confusing to the reader. (Attributes that occur in instructor would
not be null even if the instructor has not taught any section.)

Write the same query as above, but using a scalar subquery, and not using
outerjoin.

select 1D,
(select count(*) as Number_of_sections
from teaches T where Tid = 1.id)

from instructor I

Display the list of all course sections offered in Spring 2018, along with
the ID and name of each instructor teaching the section. If a section has
more than one instructor, that section should appear as many times in
the result as it has instructors. If a section does not have any instructor,
it should still appear in the result with the instructor name set to “—".

select course_id, sec_id, ID,
decode(name, null,’—’, name) as name
from (section natural left outer join reaches)
natural left outer join instructor
where semester="Spring’ and year= 2018

The query may also be written using the coalesce operator, by replacing
decode(..) with coalesce(name, ’—’). A more complex version of the query
can be written using union of join result with another query that uses a
subquery to find courses that do not match; refer to Exercise 4.3.

Exercises 27

d. Display the list of all departments, with the total number of instructors
in each department, without using subqueries. Make sure to show depart-
ments that have no instructors, and list those departments with an instruc-
tor count of zero.

select dept name, count(ID)
from department natural left outer join instructor
group by dept_name

4.3 Outer join expressions can be computed in SQL without using the SQL outer
join operation. To illustrate this fact, show how to rewrite each of the following
SQL queries without using the outer join expression.

a. select * from student natural left outer join takes

b. select * from student natural full outer join rakes

Answer:

a. select * from student natural left outer join rakes
can be rewritten as:

select * from student natural join rakes
union
select ID, name, dept_name, tot_cred, null, null, null, null, null
from student S1 where not exists
(select ID from takes T1 where T'l.id = S1.id)

b. select * from student natural full outer join zakes
can be rewritten as:

(select * from student natural join fakes)
union
(select ID, name, dept_name, tot_cred, null, null, null, null, null
from student S1
where not exists
(select ID from takes T1 where T'Lid = S1.id))
union
(select ID, null, null, null, course_id, sec_id, semester, year, grade
from rakes T1
where not exists
(select ID from student S1 whereT'Lid = S1.id))

4.4 Suppose we have three relations r(4, B), s(B, C), and #(B, D), with all attributes
declared as not null.

a. Give instances of relations r, s, and ¢ such that in the result of
(r natural left outer join s) natural left outer join ¢
attribute C has a null value but attribute D has a non-null value.

28

Chapter 4 Intermediate SQL

4.5

b. Are there instances of , 5, and 7 such that the result of
r natural left outer join (s natural left outer join 7)
has a null value for C but a non-null value for D? Explain why or why not.

Answer:

a. Consider r = (a, b), s = (bl,cl), t = (b,d). The second expression would
give (a, b, null, d).

b. Since s natural left outer join 7 is computed first, the absence of nulls is
both s and ¢ implies that each tuple of the result can have D null, but C
can never be null.

Testing SQL queries: To test if a query specified in English has been correctly
written in SQL, the SQL query is typically executed on multiple test databases,
and a human checks if the SQL query result on each test database matches the
intention of the specification in English.

a. In Section 4.1.1 we saw an example of an erroneous SQL query which was
intended to find which courses had been taught by each instructor; the
query computed the natural join of instructor, teaches, and course, and as
a result it unintentionally equated the dept_name attribute of instructor and
course. Give an example of a dataset that would help catch this particular
error.

b. When creating test databases, it is important to create tuples in referenced
relations that do not have any matching tuple in the referencing relation
for each foreign key. Explain why, using an example query on the univer-
sity database.

c. When creating test databases, it is important to create tuples with null
values for foreign-key attributes, provided the attribute is nullable (SQL
allows foreign-key attributes to take on null values, as long as they are not
part of the primary key and have not been declared as not null). Explain
why, using an example query on the university database.

Hint: Use the queries from Exercise 4.2.

Answer:

a. Consider the case where a professor in the Physics department teaches
an Elec. Eng. course. Even though there is a valid corresponding entry in
teaches, it is lost in the natural join of instructor, teaches and course, since
the instructor’s department name does not match the department name
of the course. A dataset corresponding to the same is:

Exercises 29

instructor = {('12345',Gauss’, "Physics’, 10000)}
teaches = {('12345', "EE321’, 1, Spring’, 2017)}
course = {CEE321’, "Magnetism’, 'Elec. Eng.’, 6)}

b. The query in question 4.2(a) is a good example for this. Instructors who
have not taught a single course should have number of sections as 0 in
the query result. (Many other similar examples are possible.)

c. Consider the query
select * from reaches natural join instructor,

In this query, we would lose some sections if feaches.ID is allowed to be
null and such tuples exist. If, just because reaches.ID is a foreign key to
instructor, we did not create such a tuple, the error in the above query
would not be detected.

4.6 Show how to define the view student_grades (ID, GPA) giving the grade-point
average of each student, based on the query in Exercise 3.2; recall that we used
a relation grade_points(grade, points) to get the numeric points associated with
a letter grade. Make sure your view definition correctly handles the case of null
values for the grade attribute of the fakes relation.

Answer:
We should not add credits for courses with a null grade; further, to correctly
handle the case where a student has not completed any course, we should make
sure we don’t divide by zero, and should instead return a null value.

We break the query into a subquery that finds sum of credits and sum of
credit-grade-points, taking null grades into account The outer query divides the
above to get the average, taking care of divide by zero.

create view student_grades(ID, GPA) as

select ID, credit_points | decode(credit_sum, 0, null, credit_sum)

from ((select /D, sum(decode(grade, null, 0, credits)) as credit_sum,
sum(decode(grade, null, 0, credits*points)) as credit_points
from(takes natural join course) natural left outer join grade_points
group by /D)

union

select ID, null, null

from student

where D not in (select /D from takes))

The view defined above takes care of null grades by considering the credit points
to be 0 and not adding the corresponding credits in credit_sum.

30 Chapter 4 Intermediate SQL

employee (ID, person_name, street, city)
works (ID, company_name, salary)
company (company_name, city)
manages (ID, manager_id)

Figure 4.12 Employee database.

The query above ensures that a student who has not taken any course with
non-null credits, and has credit_sum = 0 gets a GPA of null. This avoids the
division by zero, which would otherwise have resulted.

In systems that do note support decode, an alternative is the case construct.
Using case, the solution would be written as follows:

create view student grades(ID, GPA) as
select /D, credit_points | (case when credit_sum = 0 then null
else credit_sum end)
from ((select /D, sum (case when grade is null then 0
else credits end) as credit_sum,
sum (case when grade is null then 0
else credits*points end) as credit_points
from(takes natural join course) natural left outer join grade_points
group by /D)
union
select 1D, null, null
from student
where D not in (select /D from rakes))

An alternative way of writing the above query would be to use student natural
left outer join gpa, in order to consider students who have not taken any course.

4.7 Consider the employee database of Figure 4.12. Give an SQL DDL definition
of this database. Identify referential-integrity constraints that should hold, and
include them in the DDL definition.

Answer:
Plese see ??.

Note that alternative data types are possible. Other choices for not null at-
tributes may be acceptable.

4.8 As discussed in Section 4.4.8, we expect the constraint “an instructor cannot
teach sections in two different classrooms in a semester in the same time slot”
to hold.

Exercises 31

create table employee

(ID numeric(6,0),
person_name char(20),
Street char(30),
city char(30),
primary key (/D))

create table works
(ID numeric(6,0),
company_name char(15),
salary integer,
primary key (/D),
foreign key (/D) references employee,
foreign key (company_name) references company)

create table company
(company_name char(15),
city char(30),
primary key (company_name))

create table manages

(ID numeric(6,0),
manager_iid numeric(6,0),
primary key (/D),

foreign key (/D) references employee,
foreign key (manager.iid) references employee(ID))

Figure 4.101 Figure for Exercise 4.7.

a. Write an SQL query that returns all (instructor, section) combinations that
violate this constraint.

b. Write an SQL assertion to enforce this constraint (as discussed in Sec-
tion 4.4.8, current generation database systems do not support such as-
sertions, although they are part of the SQL standard).

Answer:

32

Chapter 4 Intermediate SQL

4.9

4.10

a. Query:

select D, name, sec_id, semester, year, time_slot_id,
count(distinct building, room_number)

from instructor natural join feaches natural join section

group by (ID, name, sec_id, semester, year, time_slot_id)

having count(building, room_number) > 1

Note that the distinct keyword is required above. This is to allow two dif-
ferent sections to run concurrently in the same time slot and are taught
by the same instructor without being reported as a constraint violation.

b. Query:

create assertion check not exists
(select ID, name, sec_id, semester, year, time_slot_id,
count(distinct building, room_number)
from instructor natural join teaches natural join section
group by (ID, name, sec_id, semester, year, time_slot_id)
having count(building, room_number) > 1)

SQL allows a foreign-key dependency to refer to the same relation, as in the
following example:

create table manager
(employee_ID char(20),
manager_ID char(20),
primary key employee_ID,
foreign key (imanager_ID) references manager(employee_ID)
on delete cascade)

Here, employee_ID is a key to the table manager, meaning that each employee
has at most one manager. The foreign-key clause requires that every manager
also be an employee. Explain exactly what happens when a tuple in the relation
manager is deleted.

Answer:

The tuples of all employees of the manager, at all levels, get deleted as well! This
happens in a series of steps. The initial deletion will trigger deletion of all the
tuples corresponding to direct employees of the manager. These deletions will
in turn cause deletions of second-level employee tuples, and so on, till all direct
and indirect employee tuples are deleted.

Given the relations a(name, address, title) and b(name, address, salary), show
how to express « natural full outer join b using the full outer-join operation with
an on condition rather than using the natural join syntax. This can be done using
the coalesce operation. Make sure that the result relation does not contain two

4.11

4.12

4.13

Exercises 33

copies of the attributes name and address and that the solution is correct even
if some tuples in ¢ and b have null values for attributes name or address.

Answer:

select coalesce(a.name, b.name) as name,
coalesce(a.address, b.address) as address,
a.title,
b.salary
from ¢ full outer join b on a.name = b.name and
a.address = b.address

Operating systems usually offer only two types of authorization control for data
files: read access and write access. Why do database systems offer so many kinds
of authorization?

Answer: There are many reasons—we list a few here. One might wish to allow
a user only to append new information without altering old information. One
might wish to allow a user to access a relation but not change its schema. One
might wish to limit access to aspects of the database that are not technically
data access but instead impact resource utilization, such as creating an index.

Suppose a user wants to grant select access on a relation to another user. Why
should the user include (or not include) the clause granted by current role in the
grant statement?

Answer: Both cases give the same authorization at the time the statement
is executed, but the long-term effects differ. If the grant is done based on the
role, then the grant remains in effect even if the user who performed the grant
leaves and that user’s account is terminated. Whether that is a good or bad idea
depends on the specific situation, but usually granting through a role is more
consistent with a well-run enterprise.

Consider a view v whose definition references only relation r.

° If a user is granted select authorization on v, does that user need to have
select authorization on r as well? Why or why not?

* If a user is granted update authorization on v, does that user need to have
update authorization on r as well? Why or why not?

* Give an example of an insert operation on a view v to add a tuple ¢ that is
not visible in the result of select * from v. Explain your answer.

Answer:

* No. This allows a user to be granted access to only part of relation r.

34 Chapter 4 Intermediate SQL

Yes. A valid update issued using view v must update r for the update to be
stored in the database.

Any tuple ¢ compatible with the schema for v but not satisfying the where

clause in the definition of view v is a valid example. One such example
appears in Section 4.2.4.

CHAPTER

Advanced SQL

Practice Exercises

5.1

5.2

5.3

Consider the following relations for a company database:

° emp (ename, dname, salary)

* mgr (ename, mname)

and the Java code in Figure 5.20, which uses the JDBC API. Assume that the
userid, password, machine name, etc. are all okay. Describe in concise English
what the Java program does. (That is, produce an English sentence like “It finds
the manager of the toy department,” not a line-by-line description of what each
Java statement does.)

Answer:

It prints out the manager of “dog,” that manager’s manager, etc., until we reach
a manager who has no manager (presumably, the CEO, who most certainly is a
cat). Note: If you try to run this, use your own Oracle ID and password.

Write a Java method using JDBC metadata features that takes a ResultSet as
an input parameter and prints out the result in tabular form, with appropriate
names as column headings.

Answer:
Please see ??

Suppose that we wish to find all courses that must be taken before some given
course. That means finding not only the prerequisites of that course, but prereg-
uisites of prerequisites, and so on. Write a complete Java program using JDBC
that:

* Takes a course_id value from the keyboard.
* Finds prerequisites of that course using an SQL query submitted via JDBC.

35

36 Chapter 5 Advanced SQL

import java.sql.*;
public class Mystery {
public static void main(Stringl1 args) {
try (
Connection con=DriverManager.getConnection(
“jdbc:oracle:thin:star/X@//edgar.cse.lehigh.edu:1521/XE");

g = "select mname from mgr where ename = ?”;
PreparedStatement stmt=con.prepareStatement();

{
String q;
String empName = “dog”;
boolean more;
ResultSet result;
do {
stmt.setString(1, empName);
result = stmt.executeQuery(q);
more = result.next();
if (more) {
empName = result.getString(*"mname”);
System.out.printin (empName);
}
} while (more);
s.close();
con.close();
}

catch(Exception e){
e.printStackTrace();

}

Figure 5.20 Java code for Exercise 5.1 (using Oracle JDBC).

* For each course returned, finds its prerequisites and continues this process
iteratively until no new prerequisite courses are found.

* Prints out the result.

For this exercise, do not use a recursive SQL query, but rather use the iterative
approach described previously. A well-developed solution will be robust to the
error case where a university has accidentally created a cycle of prerequisites
(that is, for example, course A4 is a prerequisite for course B, course B is a pre-
requisite for course C, and course C is a prerequisite for course 4).

Practice Exercises 37

printTable (ResultSet result) throws SQLException {
metadata = result.getMetaData();
num_cols = metadata.getColumnCount();
for(int i = 1; i <= num_cols; i++) {

System.out.print (metadata.getColumnName (i) + ’\t’);

System.out.println();
while (result.next()) {

for(int i = 1; i <= num_cols; i++) {
System.out.print(result.getString(i) + ’\t’

}

System.out.println();

3

5.4

5.5

5.6

Figure 5.101 Java method using JDBC for Exercise 5.2.

Answer:
Please see ??

Describe the circumstances in which you would choose to use embedded SQL
rather than SQL alone or only a general-purpose programming language.

Answer:

Writing queries in SQL is typically much easier than coding the same queries
in a general-purpose programming language. However, not all kinds of queries
can be written in SQL. Also, nondeclarative actions such as printing a report,
interacting with a user, or sending the results of a query to a graphical user inter-
face cannot be done from within SQL. Under circumstances in which we want
the best of both worlds, we can choose embedded SQL or dynamic SQL, rather
than using SQL alone or using only a general-purpose programming language.

Show how to enforce the constraint “an instructor cannot teach two different
sections in a semester in the same time slot.” using a trigger (remember that the
constraint can be violated by changes to the feaches relation as well as to the
section relation).

Answer:
Please see ??

Consider the bank database of Figure 5.21. Let us define a view branch_cust as
follows:

38 Chapter 5 Advanced SQL

import java.sql.*;
import java.util.Scanner;
import java.util.Arrays;
public class AllCoursePrereqs {
public static void main(String[] args) {
try (
Connection con=DriverManager.getConnection
("jdbc:oracle:thin:QedgarO.cse.lehigh.edu:1521:cse241","star","pu") ;
Statement s=con.createStatement();
)
String q;
String c;
ResultSet result;
int maxCourse = 0;
q = "select count(*) as C from course";
result = s.executeQuery(q);
if (!result.next()) System.out.println ("Unexpected empty result.");
else maxCourse = Integer.parselnt(result.getString("C"));
int numCourse = 0, oldNumCourse = -1;
String[] preregqs = new String [maxCourse];
Scanner krb = new Scanner(System.in);

System.out.print ("Input a course id (number): ");
String course = krb.next();
String courseString = "" + ’\’’ + course + ’\’’;
while (numCourse != oldNumCourse) {
for (int i = oldNumCourse + 1; i < numCourse; i++) {
courseString += ", " + ’\’’ + preregs[i] + ’\’’
}
oldNumCourse = numCourse;
q = "select prereq_id from prereq where course_id in ("

+ courseString + ")";
result = s.executeQuery(q);
while (result.next()) {
¢ = result.getString("prereq_id");
boolean found = false;
for (int i = 0; i < numCourse; i++)

found |= prereqgs[i].equals(c);
if (!found) preregs[numCourse++] = c;
}
courseString = "" + ’\’’ + prereqgs[oldNumCourse] + ’\’’;

}
Arrays.sort(prereqs,0,numCourse) ;
System.out.print ("The courses that must be taken prior to "
+ course + " are: ");
for (int i = 0; i < numCourse; i++)
System.out.print ((i==07" ":", ") + prereqs[i]);
System.out.println();
} catch(Exception e){e.printStackTrace();

3
Figure 5.102 Complete Java program using JDBC for Exercise 5.3.

Practice Exercises

39

create trigger onesec before insert on section
referencing new row as nrow
for each row
when (nrow.time_slot_id in (
select time_slot_id
from teaches natural join section
where D in (
select /D
from teaches natural join section
where sec_id = nrow.sec_id and course_id = nrow.course_id and
semester = nrow.semester and year = nrow.year
)))
begin
rollback
end;

create trigger oneteach before insert on teaches
referencing new row as nrow
for each row
when (exists (
select time_slot_id
from reaches natural join section
where /D = nrow.ID
intersect
select time_slot_id
from section
where sec_id = nrow.sec_id and course_id = nrow.course_id and
semester = nrow.semester and year = nrow.year
)
begin
rollback
end;

Figure 5.103 Trigger code for Exercise 5.5.

create view branch_cust as
select branch_name, customer_name
from depositor, account
where depositor.account_number = account.account_number

40

Chapter 5 Advanced SQL

branch (branch_name, branch_city, assets)

customer (customer_name, customer_street, cust omer_city)
loan (loan_number, branch_name, amount)

borrower (customer_name, loan_number)

account (account_number, branch_name, balance)
depositor (customer_name, account_number)

5.7

Figure 5.21 Banking database for Exercise 5.6.

Suppose that the view is materialized; that is, the view is computed and stored.
Write triggers to maintain the view, that is, to keep it up-to-date on insertions
to depositor or account. It is not necessary to handle deletions or updates. Note
that, for simplicity, we have not required the elimination of duplicates.

Answer:
Please see ??

Consider the bank database of Figure 5.21. Write an SQL trigger to carry out
the following action: On delete of an account, for each customer-owner of the

create trigger insert_into_branch_cust_via_depositor
after insert on depositor
referencing new row as inserted
for each row
insert into branch_cust
select branch_name, inserted.customer_name
from account
where inserted.account_number = account.account_number

create trigger insert_into_branch_cust_via_account
after insert on account
referencing new row as inserted
for each statement
insert into branch_cust
select inserted.branch_name, customer_name
from depositor
where depositor.account_number = inserted.account_ number

Figure 5.22 Trigger code for Exercise 5.6.

5.8

5.9

5.10

Practice Exercises 41

account, check if the owner has any remaining accounts, and if she does not,
delete her from the depositor relation.

Answer:

create trigger check-delete-trigger after delete on account
referencing old row as orow
for each row
delete from depositor
where depositor.customer_name not in

(select customer_name from depositor

where account_number <> orow.account_number)
end

Given a relation S(student, subject, marks), write a query to find the top 10 stu-
dents by total marks, by using SQL ranking. Include all students tied for the final
spot in the ranking, even if that results in more than 10 total students.

Answer:

select *
from (
select student, total, rank() over (order by (total) desc) as t_rank
from (
select student, sum(marks) as total
from S group by student

)
)

where t_rank <= 10

Given a relation nyse(year, month, day, shares_traded, dollar_volume) with trad-
ing data from the New York Stock Exchange, list each trading day in order of
number of shares traded, and show each day’s rank.

Answer:

select year, month, day, shares_traded,
rank() over (order by shares_traded desc) as mostshares
from nyse

Using the relation from Exercise 5.9, write an SQL query to generate a report
showing the number of shares traded, number of trades, and total dollar volume
broken down by year, each month of each year, and each trading day.

Answer:

42 Chapter 5 Advanced SQL

select year, month, day, sum(shares_traded) as shares,
sum(num-_trades) as trades, sum(dollar_volume) as total_volume

from nyse

group by rollup (vear, month, day)

5.11 Show how to express group by cube(a, b, ¢, d) using rollup; your answer should
have only one group by clause.

Answer:

groupby rollup(a), rollup(b), rollup(c), rollup(d)

CHAPTER

Database Design using the E-R

Model

Practice Exercises

6.1

6.2

Construct an E-R diagram for a car insurance company whose customers own
one or more cars each. Each car has associated with it zero to any number of
recorded accidents. Each insurance policy covers one or more cars and has one
or more premium payments associated with it. Each payment is for a particular
period of time, and has an associated due date, and the date when the payment
was received.

Answer:

One possible E-R diagram is shown in Figure 6.101. Payments are modeled as
weak entities since they are related to a specific policy.

Note that the participation of accident in the relationship participated is not
total, since it is possible that there is an accident report where the participating
car is unknown.

Consider a database that includes the entity sets student, course, and section
from the university schema and that additionally records the marks that students
receive in different exams of different sections.

a. Construct an E-R diagram that models exams as entities and uses a ternary
relationship as part of the design.

b. Construct an alternative E-R diagram that uses only a binary relationship
between student and section. Make sure that only one relationship exists
between a particular student and section pair, yet you can represent the
marks that a student gets in different exams.

Answer:

43

44

Chapter 6 Database Design using the E-R Model

customer car policy
customer_id license_no M
name model
address
participated
accident premium_ payment
report_id payment_no
date due_date
place amount
received_on

Figure 6.101 E-R diagram for a car insurance company.

a. The E-R diagram is shown in Figure 6.102. Note that an alternative is to
model examinations as weak entities related to a section, rather than as
strong entities. The marks relationship would then be a binary relation-
ship between student and exam, without directly involving section.

b. The E-R diagram is shown in Figure 6.103. Note that here we have not
modeled the name, place, and time of the exam as part of the relationship
attributes. Doing so would result in duplication of the information, once
per student, and we would not be able to record this information without
an associated student. If we wish to represent this information, we need
to retain a separate entity corresponding to each exam.

6.3 Design an E-R diagram for keeping track of the scoring statistics of your favorite
sports team. You should store the matches played, the scores in each match, the
players in each match, and individual player scoring statistics for each match.

marks

student ; -

. ! section course
student_id - -
name sec_id course_id
dept_name exam_marks >——{ semester sec_course title
tot_cred year_ credits

exam

exam_id
name
place
time

Figure 6.102 E-R diagram for marks database.

6.4

Practice Exercise 45

{exam_marks
exam_id
marks
/
student ; -

! section course
student_id - :
name secid course_id
dept_name semester. title
tot_cred year credits

Figure 6.103 Another E-R diagram for marks database.

Summary statistics should be modeled as derived attributes with an explanation
as to how they are computed.

Answer:

The diagram is shown in Figure 6.104. The derived attribute season_score is
computed by summing the score values associated with the player entity set via
the played relationship set.

Consider an E-R diagram in which the same entity set appears several times,
with its attributes repeated in more than one occurrence. Why is allowing this
redundancy a bad practice that one should avoid?

Answer:
The reason an entity set would appear more than once is if one is drawing a
diagram that spans multiple pages.

The different occurrences of an entity set may have different sets of at-
tributes, leading to an inconsistent diagram. Instead, the attributes of an entity
set should be specified only once. All other occurrences of the entity should
omit attributes. Since it is not possible to have an entity set without any at-
tributes, an occurrence of an entity set without attributes clearly indicates that
the attributes are specified elsewhere.

score
match i
1
match_id ' player
date /\ p i
; layed prayer
stadium play name
opponent age
own_score season_score()
opp_score

Figure 6.104 E-R diagram for favorite team statistics.

46

Chapter 6 Database Design using the E-R Model

Figure 6.29 Representation of a ternary relationship using binary relationships.

6.5 AnE-R diagram can be viewed as a graph. What do the following mean in terms
of the structure of an enterprise schema?

a. The graph is disconnected.
b. The graph has a cycle.
Answer:

a. If a pair of entity sets are connected by a path in an E-R diagram, the
entity sets are related, though perhaps indirectly. A disconnected graph
implies that there are pairs of entity sets that are unrelated to each other.
In an enterprise, we can say that the two parts of the enterprise are com-
pletely independent of each other. If we split the graph into connected
components, we have, in effect, a separate database corresponding to each
independent part of the enterprise.

b. As indicated in the answer to the previous part, a path in the graph be-

tween a pair of entity sets indicates a (possibly indirect) relationship be-
tween the two entity sets. If there is a cycle in the graph, then every pair
of entity sets on the cycle are related to each other in at least two distinct
ways. If the E-R diagram is acyclic, then there is a unique path between
every pair of entity sets and thus a unique relationship between every pair
of entity sets.

Practice Exercise 47

B |« Rp E Re > C

Figure 6.105 E-R diagram for Exercise Exercise 6.6b.

6.6 Consider the representation of the ternary relationship of Figure 6.29a using
the binary relationships illustrated in Figure 6.29b (attributes not shown).

a. Show a simple instance of E,4, B, C, R,, R, and R that cannot corre-
spond to any instance of 4, B, C, and R.

b. Modify the E-R diagram of Figure 6.29b to introduce constraints that will
guarantee that any instance of £,4, B, C, R, R, and R that satisfies the
constraints will correspond to an instance of 4, B, C, and R.

c. Modify the preceding translation to handle total participation constraints
on the ternary relationship.

Answer:

because of the tuple (e,, a,), no instance of 4, B, C, and R exists that cor-
responds to E, R, Rp and R.

b. See Figure 6.105. The idea is to introduce total participation constraints
between E and the relationships R, Ry, R, so that every tuple in £ has a
relationship with 4, B, and C.

c. Suppose 4 totally participates in the relationhip R, then introduce a total
participation constraint between 4 and R, and similarly for B and C.

6.7 A weak entity set can always be made into a strong entity set by adding to its
attributes the primary-key attributes of its identifying entity set. Outline what
sort of redundancy will result if we do so.

Answer:

The primary key of a weak entity set can be inferred from its relationship with
the strong entity set. If we add primary-key attributes to the weak entity set, they
will be present in both the entity set, and the relationship set and they have to
be the same. Hence there will be redundancy.

48

Chapter 6

6.8

6.9

6.10

6.11

Database Design using the E-R Model

Consider a relation such as sec_course, generated from a many-to-one relation-
ship set sec_course. Do the primary and foreign key constraints created on the
relation enforce the many-to-one cardinality constraint? Explain why.

Answer:

In this example, the primary key of section consists of the attributes (course_id,
sec_id, semester, year), which would also be the primary key of sec_course, while
course_id is a foreign key from sec_course referencing course. These constraints
ensure that a particular section can only correspond to one course, and thus the
many-to-one cardinality constraint is enforced.

However, these constraints cannot enforce a total participation constraint, since
a course or a section may not participate in the sec_course relationship.

Suppose the advisor relationship set were one-to-one. What extra constraints
are required on the relation advisor to ensure that the one-to-one cardinality
constraint is enforced?

Answer:

In addition to declaring s_ID as primary key for advisor, we declare i_ID as a
superkey for advisor (this can be done in SQL using the unique constraint on
i_ID).

Consider a many-to-one relationship R between entity sets 4 and B. Suppose
the relation created from R is combined with the relation created from 4. In
SQL, attributes participating in a foreign key constraint can be null. Explain
how a constraint on total participation of 4 in R can be enforced using not null
constraints in SQL.

Answer:

The foreign-key attribute in R corresponding to the primary key of B should be
made not null. This ensures that no tuple of 4 which is not related to any entry
in B under R can come in R. For example, say a is a tuple in A which has no
corresponding entry in R. This means when R is combined with A4, it would have
a foreign-key attribute corresponding to B as null, which is not allowed.

In SQL, foreign key constraints can reference only the primary key attributes of
the referenced relation or other attributes declared to be a superkey using the
unique constraint. As a result, total participation constraints on a many-to-many
relationship set (or on the “one” side of a one-to-many relationship set) cannot
be enforced on the relations created from the relationship set, using primary
key, foreign key, and not null constraints on the relations.

a. Explain why.

b. Explain how to enforce total participation constraints using complex
check constraints or assertions (see Section 4.4.8). (Unfortunately, these
features are not supported on any widely used database currently.)

6.12

6.13

Practice Exercise 49

Answer:

a. For the many-to-many case, the relationship set must be represented as a
separate relation that cannot be combined with either participating entity.
Now, there is no way in SQL to ensure that a primary-key value occurring
in an entity £1 also occurs in a many-to-many relationship R, since the
corresponding attribute in R is not unique; SQL foreign keys can only
refer to the primary key or some other unique key.

Similarly, for the one-to-many case, there is no way to ensure that an at-
tribute on the one side appears in the relation corresponding to the many
side, for the same reason.

b. Letthe relation R be many-to-one from entity 4 to entity B with ¢ and b as
their respective primary keys. We can put the following check constraints
on the "one" side relation B:

constraint total_part check (b in (select b from A));
set constraints fotal_part deferred;

Note that the constraint should be set to deferred so that it is only checked
at the end of the transaction; otherwise if we insert a b value in B before
it is inserted in A, the constraint would be violated, and if we insert it in
A before we insert it in B, a foreign-key violation would occur.

Consider the following lattice structure of generalization and specialization (at-
tributes not shown).

Y

N

PaN

B

For entity sets 4, B, and C, explain how attributes are inherited from the higher-
level entity sets X and Y. Discuss how to handle a case where an attribute of X
has the same name as some attribute of Y.

Answer:

A inherits all the attributes of X, plus it may define its own attributes. Similarly,
C inherits all the attributes of Y plus its own attributes. B inherits the attributes
of both X and Y. If there is some attribute name which belongs to both X and Y,
it may be referred to in B by the qualified name X.name or Y.name.

An E-R diagram usually models the state of an enterprise at a point in time.
Suppose we wish to track temporal changes, that is, changes to data over time.
For example, Zhang may have been a student between September 2015 and

50

Chapter 6 Database Design using the E-R Model

May 2019, while Shankar may have had instructor Einstein as advisor from May
2018 to December 2018, and again from June 2019 to January 2020. Similarly,
attribute values of an entity or relationship, such as title and credits of course,
salary, or even name of instructor, and tot_cred of student, can change over time.

One way to model temporal changes is as follows: We define a new data type
called valid_time, which is a time interval, or a set of time intervals. We then
associate a valid_time attribute with each entity and relationship, recording the
time periods during which the entity or relationship is valid. The end time of an
interval can be infinity; for example, if Shankar became a student in September
2018, and is still a student, we can represent the end time of the valid_time in-
terval as infinity for the Shankar entity. Similarly, we model attributes that can
change over time as a set of values, each with its own valid_time.

a. Draw an E-R diagram with the student and instructor entities, and the ad-
visor relationship, with the above extensions to track temporal changes.

b. Convert the E-R diagram discussed above into a set of relations.

It should be clear that the set of relations generated is rather complex, leading
to difficulties in tasks such as writing queries in SQL. An alternative approach,
which is used more widely, is to ignore temporal changes when designing the
E-R model (in particular, temporal changes to attribute values), and to modify
the relations generated from the E-R model to track temporal changes.

Answer:

a. The E-R diagram is shown in Figure 6.106.
The primary key attributes student_id and instructor_id are assumed to be
immutable, that is, they are not allowed to change with time. All other
attributes are assumed to potentially change with time.

Note that the diagram uses multivalued composite attributes such as
valid_times or name, with subattributes such as start_time or value. The
value attribute is a subattribute of several attributes such as name, tot_cred
and salary, and refers to the name, total credits or salary during a partic-
ular interval of time.

b. The generated relations are as shown below. Each multivalued attribute
has turned into a relation, with the relation name consisting of the orig-
inal relation name concatenated with the name of the multivalued at-
tribute. The relation corresponding to the entity has only the primary-key
attribute, and this is needed to ensure uniqueness.

Practice Exercise 51

student(student_id)

student valid_times(student_id, start_time, end_time)
student_name(student_id, value, start_time, end_time
student_dept_name(student_id, value, start_time, end_time
student_tot_cred(student_id, value, start_time, end_time
instructor(instructor_id)
instructor_valid_times(instructor_id, start_time, end_time)

instructor_name(instructor_id, value, start_time, end_time

instructor_dept_name(instructor_id, value, start_time, end_time

instructor_salary(instructor_id, value, start_time, end_time
advisor(student_id, instructor_id, start_time, end_time)

The primary keys shown are derived directly from the E-R diagram. If we
add the additional constraint that time intervals cannot overlap (or even
the weaker condition that one start time cannot have two end times), we
can remove the end_time from all the above primary keys.

Student instructor
student _id instructor_id
[valid_times [valid_times

start_time [valid_tir-ne start_time

end_time star t_{lme end_time

) end_time]

[name / : [name
value i value
start_time start_time
end_time end_time

/ /

[dept_name [dept_name
value value
start_time start_time
end_time end_time

]]

[tot_cred [salary
value value
start_time start_time
end_time end_time

/ /

Figure 6.106 E-R diagram for Exercise 6.13

CHAPTER

Relational Database Design

Practice Exercises

7.1

7.2

Suppose that we decompose the schema R = (4, B, C, D, E) into

(4, B, C)
(4, D, E).

Show that this decomposition is a lossless decomposition if the following set F
of functional dependencies holds:

A - BC
CD - E
B—-D
E—- A4

Answer:

A decomposition {R, R,} is a lossless decomposition if R, N R, — R, or
R, NR, - Ry LetR| = (4, B,C), R, = (A4, D, E), andR;, N R, = A.
Since 4 is a candidate key (see Practice Exercise 7.6), R, N R, — R;.

List all nontrivial functional dependencies satisfied by the relation of Figure
7.18.

|48 c]

Figure 7.17 Relation of Exercise 7.2.

53

54

Chapter 7 Relational Database Design

7.3

7.4

Answer:

The nontrivial functional dependencies are: 4 — Band C — B, and a
dependency they logically imply: AC — B. C does not functionally determine
A because the first and third tuples have the same C but different 4 values. The
same tuples also show B does not functionally determine A. Likewise, 4 does not
functionally determine C because the first two tuples have the same A value and
different C values. The same tuples also show B does not functionally determine
C. There are 19 trivial functional dependencies of the form aa — f3, where
B C a.

Explain how functional dependencies can be used to indicate the following:

° A one-to-one relationship set exists between entity sets student and instruc-
tor.

* A many-to-one relationship set exists between entity sets student and instruc-
tor.

Answer:
Let Pk(r) denote the primary key attribute of relation r.

* The functional dependencies Pk(student) — Pk (instructor) and
Pk(instructor) — Pk(student) indicate a one-to-one relationship be-
cause any two tuples with the same value for student must have the same
value for instructor, and any two tuples agreeing on instructor must have
the same value for student.

* The functional dependency Pk(student) — Pk(instructor) indicates a many-
to-one relationship since any student value which is repeated will have the
same instructor value, but many student values may have the same instruc-
tor value.

Use Armstrong’s axioms to prove the soundness of the union rule. (Hint: Use the
augmentation rule to show that, if @ — f§, then a — aff. Apply the augmentation
rule again, using « — Y, and then apply the transitivity rule.)

Answer:
To prove that:

ifo - panda — ythena — Py

Following the hint, we derive:

o —
o — of
o — of
o - v
oaf - yP
a — Py

Practice Exercises 55

given

augmentation rule

union of identical sets

given

augmentation rule

transitivity rule and set union commutativity

7.5 Use Armstrong’s axioms to prove the soundness of the pseudotransitivity rule.

7.6

Answer:

Proof using Armstrong’s axioms of the pseudotransitivity rule:
ifa - Pandyp — O, thenay — d.

oa — B
ay = yp
Yp — o
oy — O

given

augmentation rule and set union commutativity
given

transitivity rule

Compute the closure of the following set F' of functional dependencies for rela-
tion schema R = (4, B, C, D, E).

A— BC
CD—E
B—-D
E—A4

List the candidate keys for R.

Answer:

Note: It is not reasonable to expect students to enumerate all of 7. Some short-
hand representation of the result should be acceptable as long as the nontrivial

members of F+ are found.

Starting with A — BC, we can conclude:4 — BandA4 — C.

SinceA — BandB — D,A — D (decomposition,
transitive)

SinceA —» CDand CD — E,A — E (union, decom-
position, transi-
tive)

Since A — A, we have (reflexive)

A — ABCDE from the above steps (union)

Since E - A,E — ABCDE (transitive)

Since CD — E,CD — ABCDE (transitive)

Since B - Dand BC — CD,BC — (augmentative,

ABCDE transitive)

Also,C - C,D — D,BD — D, etc.

56

Chapter 7 Relational Database Design

1.7

7.8

Therefore, any functional dependency with 4, E, BC, or CD on the left-hand
side of the arrow is in F*, no matter which other attributes appear in the FD.
Allow * to represent any set of attributes in R, then F*is BD — B, BD — D,
C - C,D - D,BD - BD,B — D,B — B,B — BD, and all FDs of the
formA * - o BC % —> o, CD % — o, E % — o where « is any subset of
{4, B, C, D, E}. The candidate keys are 4, BC, CD, and E.

Using the functional dependencies of Exercise 7.6, compute the canonical
cover F,.

Answer:

The given set of FDs F is:-
A - BC
CD—E
B—-D
E—-4

The left side of each FD in F is unique. Also, none of the attributes in the left
side or right side of any of the FDs is extraneous. Therefore the canonical cover
F,is equal to F.

Consider the algorithm in Figure 7.19 to compute at. Show that this algorithm
is more efficient than the one presented in Figure 7.8 (Section 7.4.2) and that it
computes o™ correctly.

Answer:
The algorithm is correct because:

* IfAisadded to result then there is a proof that « — A. To see this, observe
that o — « trivially, so o is correctly part of result. If A ¢ o is added to
result, there must be some FD f — vy suchthat4 € y and B is already a
subset of result. (Otherwise fdcount would be nonzero and the if condition
would be false.) A full proof can be given by induction on the depth of
recursion for an execution of addin, but such a proof can be expected only
from students with a good mathematical background.

* IfA € o', then A4 is eventually added to result. We prove this by induction
on the length of the proof of @« — A4 using Armstrong’s axioms. First observe
that if procedure addin is called with some argument {, all the attributes in
p will be added to result. Also if a particular FD’s fdcount becomes 0, all
the attributes in its tail will definitely be added to result. The base case of
the proof, A € « = A € at, is obviously true because the first call to
addin has the argument . The inductive hypothesis is that if x — 4 can
be proved in # steps or less, then A € result. If there is a proof in n + 1

Practice Exercises

result = @,

[* fdcount is an array whose ith element contains the number
of attributes on the left side of the ith FD that are
not yet known to be in ot */

fori := 1to|F|do
begin

let B — vy denote the ith FD;
Sfdcount [i] = |P|;
end

[* appears is an array with one entry for each attribute. The
entry for attribute A4 is a list of integers. Each integer
i on the list indicates that A appears on the left side
of the ith FD */

for each attribute 4 do
begin

appears [A] := NIL;
fori := 1to|F|do
begin
let p — vy denote the ith FD;
if A € P then add i to appears [A];
end
end
addin (a);
return (result);

procedure addin (o);
for each attribute 4 in o do
begin
if A & result then
begin
result ;= result U {A};
for each element / of appears|A] do
begin
fdcount [i] :=fdcount [i] — 1;
if fdcount |i] := 0 then
begin
let B — v denote the ith FD;
addin (y);
end
end
end
end

Figure 7.18 An algorithm to compute a™.

57

58

Chapter 7 Relational Database Design

7.9

steps that « — A, then the last step was an application of either reflexivity,
augmentation, or transitivity on a fact x — 3 proved in n or fewer steps.
If reflexivity or augmentation was used in the (n + 1)% step, 4 must have
been in result by the end of the n” step itself. Otherwise, by the inductive
hypothesis, p C result. Therefore, the dependency used in proving f — v,
A € v, will have fdcount set to 0 by the end of the n” step. Hence A will
be added to result.

To see that this algorithm is more efficient than the one presented in the chap-
ter, note that we scan each FD once in the main program. The resulting array
appears has size proportional to the size of the given FDs. The recursive calls
to addin result in processing linear in the size of appears. Hence the algorithm
has time complexity which is linear in the size of the given FDs. On the other
hand, the algorithm given in the text has quadratic time complexity, as it may
perform the loop as many times as the number of FDs, in each loop scanning
all of them once.

Given the database schema R(4, B, C), and a relation 7 on the schema R, write
an SQL query to test whether the functional dependency B — C holds on re-
lation r. Also write an SQL assertion that enforces the functional dependency.
Assume that no null values are present. (Although part of the SQL standard,
such assertions are not supported by any database implementation currently.)

Answer:

a. The query is given below. Its result is non-empty if and only if B — C
does not hold on r.

select B

from r

group by B

having count(distinct C) > 1

create assertion b_fo_c check
(not exists
(select B
from r
group by B
having count(distinct C) > 1
)

Practice Exercises 59

7.10 Our discussion of lossless decomposition implicitly assumed that attributes on

7.11

the left-hand side of a functional dependency cannot take on null values. What
could go wrong on decomposition, if this property is violated?

Answer:

The natural join operator is defined in terms of the Cartesian product and the
selection operator. The selection operator gives unknown for any query on a null
value. Thus, the natural join excludes all tuples with null values on the common
attributes from the final result. Thus, the decomposition would be lossy (in a
manner different from the usual case of lossy decomposition), if null values
occur in the left-hand side of the functional dependency used to decompose the
relation. (Null values in attributes that occur only in the right-hand side of the
functional dependency do not cause any problems.)

In the BCNF decomposition algorithm, suppose you use a functional depen-
dency o — fto decompose a relation schema r(«w, 3, y) into r, (o, f) and r, (, y).

a. What primary and foreign-key constraint do you expect to hold on the
decomposed relations?

b. Give an example of an inconsistency that can arise due to an erroneous
update, if the foreign-key constraint were not enforced on the decomposed
relations above.

c. When a relation schema is decomposed into 3NF using the algorithm in
Section 7.5.2, what primary and foreign-key dependencies would you ex-
pect to hold on the decomposed schema?

Answer:

a. o should be a primary key for r;, and « should be the foreign key from r,,
referencing r,.

b. Ifthe foreign key constraint is not enforced, then a deletion of a tuple from
r; would not have a corresponding deletion from the referencing tuples in
r,. Instead of deleting a tuple from r, this would amount to simply setting
the value of o to null in some tuples.

c. For every schema r,(af) added to the decomposition because of a func-

tional dependency a« — f, o should be made the primary key. Also, a
candidate key y for the original relation is located in some newly created
relation r, and is a primary key for that relation.
Foreign-key constraints are created as follows: for each relation r; created
above, if the primary key attributes of r; also occur in any other relation
s then a foreign-key constraint is created from those attributes in I, ref-
erencing (the primary key of) r;.

60

Chapter 7 Relational Database Design

712 LetR,, R,, ..., R, be adecomposition of schema U. Let u(U) be a relation, and

7.13

let r; = Il (u). Show that
ungNrZN'"Nrn

Answer:
Consider some tuple 7 in u.
Note that r, = HRl_(u) implies that ¢/[R;] € r;, 1 <i < n. Thus,

(Ry] ™ f[R,] X ... M f[R,] € r; M r, X ... X 7,
By the definition of natural join,
(Ry] ™ 1[Ry] M ... X 1[R,] = TI (o (Z[Ry] X t[Ry] X ... X f[R,]))

where the condition B is satisfied if values of attributes with the same name
in a tuple are equal and where « = U. The Cartesian product of single tuples
generates one tuple. The selection process is satisfied because all attributes with
the same name must have the same value since they are projections from the
same tuple. Finally, the projection clause removes duplicate attribute names.

By the definition of decomposition, U = R; UR, U ... U R, which means
that all attributes of 7 are in 7[R;] X t[R,] X ... X #[R,]. That is, 7 is equal to
the result of this join.

Since ¢ is any arbitrary tuple in u,

uCr XrX..NXr,

Show that the decomposition in Exercise 7.1 is not a dependency-preserving
decomposition.

Answer:

Therer are several functional dependencies that are not preserved. We discuss
one example here. The dependency B — D is not preserved. F, the restriction
of Fto(4,B, C)isA — ABC,A — AB,A — AC,A — BC,A — B,
A - CA - A, B - B,C - C,AB — AC,AB — ABC,AB — BC,
AB — AB,AB — A,AB — B,AB — C, AC (same as AB), BC (same as AB),
ABC (same as AB). F,, the restriction of F' to (C, D, E)isA — ADE,A — AD,
A - AE,A - DE,A - AA - D,A - E,D — D, E (same as A), AD,
AE, DE, ADE (same as A). (F; U F,)* is easily seen not to contain B — D
since the only FD in F; U F, with B as the left side is B — B, a trivial FD.
Thus B — D is not preserved.

A simpler argument is as follows: /| contains no dependencies with D on
the right side of the arrow. F, contains no dependencies with B on the left side
of the arrow. Therefore for B — D to be preserved there must be a functional
dependency B — « in F1+ anda — Din F2+ (so B = D would follow by

7.14

7.15

7.16

Practice Exercises 61

transitivity). Since the intersection of the two schemes is A, & = 4. Observe that
B — Aisnotin F1+ since Bt = BD.

Show that there can be more than one canonical cover for a given set of func-
tional dependencies, using the following set of dependencies:

X—=>YZ Y > XZ and Z — XY.

Answer: Consider the first functional dependency. We can verify that Z is
extraneous in X — YZ and delete it. Subsequently, we can similarly check that
X is extraneous in ¥ — XZ and delete it, and that Y is extraneous in Z — XY
and delete it, resulting in a canonical cover X — Y,Y — Z,Z — X.

However, we can also verify that Y is extraneous in X — YZ and delete it.
Subsequently, we can similarly check that Z is extraneous in Y — XZ and delete
it, and that X is extraneous in Z — XY and delete it, resulting in a canonical
cover X - Z, Y - X,Z—>Y.

The algorithm to generate a canonical cover only removes one extraneous at-
tribute at a time. Use the functional dependencies from Exercise 7.14 to show
what can go wrong if two attributes inferred to be extraneous are deleted at
once.

Answer: In X — YZ, one can infer that Y is extraneous, and so is Z. But
deleting both will result in a set of dependencies from which X — YZ can no
longer be inferred. Deleting Y results in Z no longer being extraneous, and delet-
ing Z results in Y no longer being extraneous. The canonical cover algorithm
only deletes one attribute at a time, avoiding the problem that could occur if
two attributes are deleted at the same time.

Show that it is possible to ensure that a dependency-preserving decomposition
into 3NF is a lossless decomposition by guaranteeing that at least one schema
contains a candidate key for the schema being decomposed. (Hint: Show that
the join of all the projections onto the schemas of the decomposition cannot
have more tuples than the original relation.)

Answer:
Let F be a set of functional dependencies that hold on a schema R. Let 6 =
{R.R,,...,R,} be adependency-preserving 3NF decomposition of R. Let X be
a candidate key for R.
Consider a legal instance r of R. Letj = I1,(r) X HRl(r) X HRz(r) .o X HR”(r).
We want to prove that r = /.

We claim that if 7, and 7, are two tuples in j such that 7,[X] = 7,[X], then
t; = t,. To prove this claim, we use the following inductive argument:
Let F/ = F{ UF, U ... UF,, where each F; is the restriction of F to the schema

n’

R, in . Consider the use of the algorithm given in Figure 7.8 to compute the

62 Chapter 7 Relational Database Design

7.17

7.18

closure of X under F’. We use induction on the number of times that the for
loop in this algorithm is executed.

® Basis: In the first step of the algorithm, resul/t is assigned to X, and hence
given that 7, [X]| = #,[X], we know that ¢, [result] = t,[result] is true.

® Induction Step: Let t|[result] = t,[result] be true at the end of the k th
execution of the for loop.

Suppose the functional dependency considered in the £+ 1 th execution
of the for loop is — 7y, and that § C result. B C result implies that
t,[B] = #,[P] is true. The facts that § — vy holds for some attribute set
R; in ¢ and that ¢,[R;] and £,[R;] are in I, (r) imply that 7,[y] = t,[y] is
also true. Since y is now added to result bgl the algorithm, we know that
t,[result] = t,[result] is true at the end of the k£ + 1 th execution of the for
loop.

Since o is dependency-preserving and X is a key for R, all attributes in R are in
result when the algorithm terminates. Thus, #,[R] = 1,[R] is true, thatis, t, = 1,
- as claimed earlier.

Our claim implies that the size of I1, () is equal to the size of j. Note also
that IT, () = I1y(r) = r (since X is a key for R). Thus we have proved that the
size of j equals that of r. Using the result of Exercise 7.12, we know that r C ;.
Hence we conclude that » = ;.

Note that since X is trivially in 3NF, 6 U {X} is a dependency-preserving
lossless decomposition into 3NF.

Give an example of a relation schema R’ and set F’ of functional dependen-
cies such that there are at least three distinct lossless decompositions of R’ into
BCNF.

Answer:
Given the relation R = (4, B, C, D) the set of functional dependencies F/ =
A —- B,C — D,B — C(allows three distinct BCNF decompositions.

Rl = {(A’ B)’ (C’ D)’ (B’ C)}

is in BCNF as is

R, = {4, B), (C, D), (4, O)}

R3 {(B: C)’ (As D)s (As B)}

Let a prime attribute be one that appears in at least one candidate key. Let a and
f be sets of attributes such that @ — f holds, but § — o does not hold. Let 4 be

7.19

Practice Exercises 63

an attribute that is not in «, is not in §, and for which § — 4 holds. We say that
A is transitively dependent on a. We can restate the definition of 3NF as follows:
A relation schema R is in 3NF with respect to a set F of functional dependencies
if there are no nonprime attributes 4 in R for which 4 is transitively dependent
on a key for R. Show that this new definition is equivalent to the original one.

Answer:

Suppose R is in 3NF according to the textbook definition. We show that it is in
3NF according to the definition in the exercise. Let 4 be a nonprime attribute
in R that is transitively dependent on a key o for R. Then there exists p C R
suchthatp — 4, 0 — B, 4 & a, 4 ¢ P, and B — a does not hold. But
then B — A violates the textbook definition of 3NF since

° A & Pimplies p — A is nontrivial
* Since p — o does not hold, B is not a superkey

* A is not any candidate key, since 4 is nonprime

Now we show that if R is in 3NF according to the exercise definition, it is in
3NF according to the textbook definition. Suppose R is not in 3NF according
to the the textbook definition. Then there is an FD o« — J that fails all three
conditions. Thus

° o — [is nontrivial.
® «is not a superkey for R.

® Some 4 in — « is not in any candidate key.

This implies that 4 is nonprime and « — A. Let y be a candidate key for R.
Theny — a, « — 7y does not hold (since a is not a superkey), 4 ¢ «, and
A & v (since 4 is nonprime). Thus 4 is transitively dependent on vy, violating
the exercise definition.

A functional dependency « — f is called a partial dependency if there is a
proper subset y of a such that y — B; we say that 3 is partially dependent on a.. A
relation schema R is in second normal form (2NF) if each attribute 4 in R meets
one of the following criteria:

* It appears in a candidate key.

¢ It is not partially dependent on a candidate key.

Show that every 3NF schema is in 2NF. (Hint: Show that every partial depen-
dency is a transitive dependency.)

Answer:

Referring to the definitions in Exercise 7.18, a relation schema R is said to be in
3NF if there is no nonprime attribute 4 in R for which 4 is transitively dependent
on a key for R.

64

Chapter 7 Relational Database Design

7.20

We can also rewrite the definition of 2NF given here as:

“A relation schema R is in 2NF if no nonprime attribute 4 is partially dependent
on any candidate key for R.”

To prove that every 3NF schema is in 2NF, it suffices to show that if a non-
prime attribute A is partially dependent on a candidate key a, then A is also
transitively dependent on the key o.

Let A be a nonprime attribute in R. Let o be a candidate key for R. Suppose
A is partially dependent on a.

* From the definition of a partial dependency, we know that for some proper
subset p of o, p — A.

° Since f C o, & — P. Also, p — a does not hold, since a is a candidate key.
° Finally, since 4 is nonprime, it cannot be in either p or o.

Thus we conclude that o — A4 is a transitive dependency. Hence we have proved
that every 3NF schema is also in 2NF.

Give an example of a relation schema R and a set of dependencies such that R
is in BCNF but is not in 4NF.

Answer:

There are, of course, an infinite number of such examples. We show the simplest
one here.

Let R be the schema (4, B, C) with the only nontrivial dependency being 4 —
B

CHAPTER

Complex Data Types

Practice Exercises

8.1 Provide information about the student named Shankar in our sample univer-
sity database, including information from the student tuple corresponding to
Shankar, the takes tuples corresponding to Shankar and the course tuples cor-
responding to these takes tuples, in each of the following representations:

a. Using JSON, with an appropriate nested representation.
b. Using XML, with the same nested representation.

c. Using RDF triples.

d. Asan RDF graph.

Answer:
a. FILLIN
b. FILLIN
c. FILLIN
d. FILLIN

8.2 Consider the RDF representation of information from the university schema as
shown in Figure 8.3. Write the following queries in SPARQL.

a. Find the titles of all courses taken by any student named Zhang.

b. Find titles of all courses such that a student named Zhang takes a section
of the course that is taught by an instructor named Srinivasan.

c. Find the attribute names and values of all attributes of the instruc-
tor named Srinivasan, without enumerating the attribute names in your
query.

65

66

Chapter 8 Complex Data Types

8.3

Answer:
FILL IN

A car-rental company maintains a database for all vehicles in its current fleet.
For all vehicles, it includes the vehicle identification number, license number,
manufacturer, model, date of purchase, and color. Special data are included for
certain types of vehicles:

* Trucks: cargo capacity.
° Sports cars: horsepower, renter age requirement.
® Vans: number of passengers.

* Offroad vehicles: ground clearance, drivetrain (four- or two-wheel drive).

Construct an SQL schema definition for this database. Use inheritance where
appropriate.

Answer:
For this problem, we use table inheritance. We assume that MyDate, Color and
DriveTrainType are pre-defined types.

create type Vehicle
(vehicle_id integer,
license_number char(15),
manufacturer char(30),
model char(30),
purchase_date MyDate,
color Color)

create table vehicle of type Vehicle

create table rruck
(cargo_capacity integer)
under vehicle

create table sportsCar
(horsepower integer
renter_age_requirement integer)
under vehicle

create table van
(num_passengers integer)
under vehicle

Practice Exercises 67

create table offRoadVehicle
(ground_clearance real
driveTrain DriveTrainType)
under vehicle

8.4 Consider a database schema with a relation Emp whose attributes are as shown
below, with types specified for multivalued attributes.

Emp = (ename, ChildrenSet multiset(Children), SkillSet multiset(Skills))
Children = (name, birthday)

Skills = (type, ExamSet setof(Exams))

Exams = (year, city)

Define the above schema in SQL, using the SQL Server table type syntax from
Section 8.2.1.1 to declare multiset attributes.

Answer:
a. No answer.

b. Queries in SQL.

i. Program:

select ename
from emp as e, e.ChildrenSet as ¢
where "March’ in
(select birthday.month
from ¢
)
ii. Program:
select e.ename
from emp as e, e.SkillSet as s, s.ExamSet as x
where s.zype = ’typing’ and x.city = 'Dayton’
iii. Program:
select distinct s.7ype
from emp as e, e.SkillSet as s

8.5 Consider the E-R diagram in Figure 8.7 showing entity set instructor.
Give an SQL schema definition corresponding to the E-R diagram, treating
phone_number as an array of 10 elements, using Oracle or PostgreSQL syntax.

Answer:
The corresponding SQL:1999 schema definition is given below. Note that the
derived attribute age has been translated into a method.

68 Chapter 8 Complex Data Types

instructor

ID
name
first_name
middle_inital
last_name
address
street
Street_number
street_name
apt_number
city
state
zip
{ phone_number}
date_of _birth
age ()

Figure 8.7 E-R diagram with composite, multivalued, and derived attributes.

create type Name
(first_name varchar(15),
middle_initial char,
last_name varchar(15))
create type Street
(street_.name varchar(15),
street_number varchar(4),
apartment_number varchar(7))
create type Address
(street Street,
city varchar(15),
state varchar(15),
zip_code char(6))
create table customer
(name Name,
customer_id varchar(10),
address Adress,
phones varray(10) of char(7) ,
dob date)
method integer age()

Practice Exercises 69

employee (person_name, street, city)

works (person_name, company_name, salary)
company (company_name, city)

manages (person_name, manager_name)

Figure 8.8 Relational database for Exercise 8.6.

The above array syntax is based on Oracle, in PostgreSQL phones would be

cla hav t e
on51r er t e rela %na 2na shown in Figure 8.8.
a. Give a schema definition in SQL corresponding to the relational schema

but using references to express foreign-key relationships.

b. Write each of the following queries on the schema, using SQL.
i. Find the company with the most employees.
ii. Find the company with the smallest payroll.
iii. Find those companies whose employees earn a higher salary, on aver-
age, than the average salary at First Bank Corporation.
Answer:
a. The schema definition is given below.

create type Employee
(person_name varchar(30),
street varchar(15),
city varchar(15))
create type Company
(company_name varchar(15),
(city varchar(15))
create table employee of Employee
create table company of Company
create type Works
(person ref(Employee) scope employee,
comp ref(Company) scope company,
salary int)
create table works of Works
create type Manages
(person ref(Employee) scope employee,
(manager ref(Employee) scope employee)
create table manages of Manages

70 Chapter 8 Complex Data Types

b. i. select comp— >name
from works
group by comp
having count(person) > all(select count(person)
from works
group by comp)
ii. select comp— >name
from works
group by comp
having sum(salary) < all(select sum(salary)
from works
group by comp)
iii. select comp— >name
from works
group by comp
having avg(salary) > (select avg(salary)
from works
where comp— >company_name="First Bank Corporation")

8.7 Compute the relevance (using appropriate definitions of term frequency and
inverse document frequency) of each of the Practice Exercises in this chapter
to the query “SQL relation”.

Answer:

We do not consider the questions containing neither of the keywords because
their relevance to the keywords is zero. The number of words in a question
include stop words. We use the equations given in Section 31.2 to compute rel-
evance; the log term in the equation is assumed to be to the base 2.

Q# | #wo- # #“rela- “SQL” “relation” | “SQL” | “relation” Tota

rds | “SQL” | -tion” | term freq. | term freq. relv. relv. relv.
1|84 1 1 0.0170 0.0170 0.0002 | 0.0002 0.0004
4122 0 1 0.0000 0.0641 0.0000 | 0.0029 0.0029
5146 1 1 0.0310 0.0310 0.0006 | 0.0006 0.0013
6|22 1 0 0.0641 0.0000 0.0029 | 0.0000 0.0029
7133 1 1 0.0430 0.0430 0.0013 | 0.0013 0.0026
8|32 1 3 0.0443 0.1292 0.0013 | 0.0040 0.0054
9177 0 1 0.0000 0.0186 0.0000 | 0.0002 0.0002
14 | 30 1 0 0.0473 0.0000 0.0015 | 0.0000 0.0015
15| 26 1 1 0.0544 0.0544 0.0020 | 0.0020 0.0041

8.8

8.9

Practice Exercises 71

Show how to represent the matrices used for computing PageRank as relations.
Then write an SQL query that implements one iterative step of the iterative
technique for finding PageRank; the entire algorithm can then be implemented
as a loop containing the query.

Answer:
FILL

Suppose the student relation has an attribute named /location of type point, and
the classroom relation has an attribute /ocation of type polygon. Write the fol-
lowing queries in SQL using the PostGIS spatial functions and predicates that
we saw earlier:

a. Find the names of all students whose location is within the classroom
Packard 101.

b. Find all classrooms that are within 100 meters or Packard 101; assume all
distances are represented in units of meters.

c. Find the ID and name of student who is geographically nearest to the
student with ID 12345.

d. Find the ID and names of all pairs of students whose locations are less
than 200 meters apart.

Answer:
FILL

CHAPTER

Application Development

Practice Exercises

9.1

9.2

What is the main reason why servlets give better performance than programs
that use the common gateway interface (CGI), even though Java programs gen-
erally run slower than C or C++ programs?

Answer:

The CGI interface starts a new process to service each request, which has a
significant operating system overhead. On the other hand, servlets are run as
threads of an existing process, avoiding this overhead. Further, the process run-
ning threads could be the web server process itself, avoiding interprocess com-
munication, which can be expensive. Thus, for small to moderate-sized tasks,
the overhead of Java is less than the overhead saved by avoiding process cre-
ation and communication.

For tasks involving a lot of CPU activity, this may not be the case, and using
CGI with a C or C++ program may give better performance.

List some benefits and drawbacks of connectionless protocols over protocols
that maintain connections.

Answer:

Most computers have limits on the number of simultaneous connections they
can accept. With connectionless protocols, connections are broken as soon as
the request is satisfied, and therefore other clients can open connections. Thus
more clients can be served at the same time. A request can be routed to any one
of a number of different servers to balance load, and if a server crashes, another
can take over without the client noticing any problem.

The drawback of connectionless protocols is that a connection has to be
reestablished every time a request is sent. Also, session information has to be
sent each time in the form of cookies or hidden fields. This makes them slower
than the protocols which maintain connections in case state information is re-
quired.

73

74

Chapter 9 Application Development

9.3

9.4

9.5

9.6

Consider a carelessly written web application for an online-shopping site, which
stores the price of each item as a hidden form variable in the web page sent to
the customer; when the customer submits the form, the information from the
hidden form variable is used to compute the bill for the customer. What is the
loophole in this scheme? (There was a real instance where the loophole was
exploited by some customers of an online-shopping site before the problem was
detected and fixed.)

Answer:

A hacker can edit the HTML source code of the web page and replace the value
of the hidden variable price with another value, use the modified web page to
place an order. The web application would then use the user-modified value as
the price of the product.

Consider another carelessly written web application which uses a servlet that
checks if there was an active session but does not check if the user is autho-
rized to access that page, instead depending on the fact that a link to the page is
shown only to authorized users. What is the risk with this scheme? (There was
a real instance where applicants to a college admissions site could, after logging
into the web site, exploit this loophole and view information they were not au-
thorized to see; the unauthorized access was, however, detected, and those who
accessed the information were punished by being denied admission.)

Answer:

Although the link to the page is shown only to authorized users, an unauthorized
user may somehow come to know of the existence of the link (for example, from
an unauthorized user, or via web proxy logs). The user may then log in to the
system and access the unauthorized page by entering its URL in the browser. If
the check for user authorization was inadvertently left out from that page, the
user will be able to see the result of the page.

The HTTP referer attribute can be used to block a naive attempt to exploit such
loopholes by ensuring the referer value is from a valid page of the web site.
However, the referer attribute is set by the browser and can be spoofed, so a
malicious user can easily work around the referer check.

Why is it important to open JDBC connections using the try-with-resources (try
¢..){ ... }) syntax?

Answer:
This ensures connections are closed properly, and you will not run out of
database connections.

List three ways in which caching can be used to speed up web server perfor-
mance.

Answer:

9.7

9.8

Practice Exercises 75

Caching can be used to improve performance by exploiting the commonalities
between transactions.

a. If the application code for servicing each request needs to open a con-
nection to the database, which is time consuming, then a pool of open
connections may be created beforehand, and each request uses one from
those.

b. The results of a query generated by a request can be cached. If the same
request comes again, or generates the same query, then the cached result
can be used instead of connecting to the database again.

c. The final web page generated in response to a request can be cached. If
the same request comes again, then the cached page can be outputed.

The netstat command (available on Linux and on Windows) shows the active
network connections on a computer. Explain how this command can be used to
find out if a particular web page is not closing connections that it opened, or if
connection pooling is used, not returning connections to the connection pool.
You should account for the fact that with connection pooling, the connection
may not get closed immediately.

Answer:

The tester should run netstat to find all connections open to the machine/socket
used by the database. (If the application server is separate from the database
server, the command may be executed at either of the machines). Then the web
page being tested should be accessed repeatedly (this can be automated by using
tools such as JMeter to generate page accesses). The number of connections to
the database would go from 0 to some value (depending on the number of con-
nections retained in the pool), but after some time the number of connections
should stop increasing. If the number keeps increasing, the code underlying the
web page is clearly not closing connections or returning the connection to the
pool.

Testing for SQL-injection vulnerability:
a. Suggest an approach for testing an application to find if it is vulnerable to
SQL injection attacks on text input.

b. Can SQL injection occur with forms of HTML input other than text boxes?
If so, how would you test for vulnerability?

Answer:

a. One approach is to enter a string containing a single quote in each of the
input text boxes of each of the forms provided by the application to see

76

Chapter 9 Application Development

9.9

9.10

if the application correctly saves the value. If it does not save the value
correctly and/or gives an error message, it is vulnerable to SQL injection.

b. Yes, SQL injection can even occur with selection inputs such as drop-
down menus, by modifying the value sent back to the server when the
input value is chosen—for example by editing the page directly, or in the
browser’s DOM tree. Most modern browsers provide a way for users to
edit the DOM tree. This feature can be able to modify the values sent to
the application, inserting a single quote into the value.

A database relation may have the values of certain attributes encrypted for se-
curity. Why do database systems not support indexing on encrypted attributes?
Using your answer to this question, explain why database systems do not allow
encryption of primary-key attributes.

Answer:

It is not possible in general to index on an encrypted value, unless all occur-
rences of the value encrypt to the same value (and even in this case, only equality
predicates would be supported). However, mapping all occurrences of a value to
the same encrypted value is risky, since statistical analysis can be used to reveal
common values, even without decryption; techniques based on adding random
“salt” bits are used to prevent such analysis, but they make indexing impossible.
One possible workaround is to store the index unencrypted, but then the index
can be used to leak values. Another option is to keep the index encrypted, but
then the database system should know the decryption key, to decrypt required
parts of the index on the fly. Since this requires modifying large parts of the
database system code, databases typically do not support this option.

The primary-key constraint has to be checked by the database when tuples are
inserted, and if the values are encrypted as above, the database system will not be
able to detect primary-key violations. Therefore, database systems that support
encryption of specified attributes do not allow primary-key attributes, or for that
matter foreign-key attributes, to be encrypted.

Exercise 9.9 addresses the problem of encryption of certain attributes. However,
some database systems support encryption of entire databases. Explain how the
problems raised in Exercise 9.9 are avoided if the entire database is encrypted.

Answer:

When the entire database is encrypted, it is easy for the database to perform
decryption as data are fetched from disk into memory, so in-memory storage is
unencrypted. With this option, everything in the database, including indices, is
encrypted when on disk, but unencrypted in memory. As a result, only the data
access layer of the database system code needs to be modified to perform en-
cryption, leaving other layers untouched. Thus, indices can be used unchanged,
and primary-key and foreign-key constraints enforced without any change to the
corresponding layers of the database system code.

9.11

9.12

Practice Exercises 77

Suppose someone impersonates a company and gets a certificate from a
certificate-issuing authority. What is the effect on things (such as purchase or-
ders or programs) certified by the impersonated company, and on things certi-
fied by other companies?

Answer:
The key problem with digital certificates (when used offline, without contacting
the certificate issuer) is that there is no way to withdraw them.

For instance (this actually happened, but names of the parties have been
changed) person C claims to be an employee of company X and gets a new
public key certified by the certifying authority 4. Suppose the authority 4 in-
correctly believed that C was acting on behalf of company X, and it gave C a
certificate cert. Now C can communicate with person Y, who checks the cer-
tificate cert presented by C and believes the public key contained in cert really
belongs to X. C can communicate with Y using the public key, and Y trusts the
communication is from company X.

Person Y may now reveal confidential information to C or accept a pur-
chase order from C or execute programs certified by C, based on the public key,
thinking he is actually communicating with company X. In each case there is
potential for harm to Y.

Even if 4 detects the impersonation, as long as Y does not check with A4 (the
protocol does not require this check), there is no way for Y to find out that the
certificate is forged.

If X was a certification authority itself, further levels of fake certificates could
be created. But certificates that are not part of this chain would not be affected.

Perhaps the most important data items in any database system are the passwords
that control access to the database. Suggest a scheme for the secure storage
of passwords. Be sure that your scheme allows the system to test passwords
supplied by users who are attempting to log into the system.

Answer:

A scheme for storing passwords would be to encrypt each password (after
adding randomly generated “salt” bits to prevent dictionary attacks), and then
use a hash index on the user-id to store/access the encrypted password. The
password being used in a login attempt is then encrypted (if randomly gener-
ated “salt” bits were used initially, these bits should be stored with the user-id
and used when encrypting the user-supplied password). The encrypted value
is then compared with the stored encrypted value of the correct password. An
advantage of this scheme is that passwords are not stored in clear text, and the
code for decryption need not even exist. Thus, “one-way” encryption functions,
such as secure hashing functions, which do not support decryption can be used
for this task. The secure hashing algorithm SHA-1 is widely used for such one-
way encryption.

CHAPTER

Big Data

Practice Exercises

10.1

10.2

10.3

Suppose you need to store a very large number of small files, each of size say 2
kilobytes. If your choice is between a distributed file system and a distributed
key-value store, which would you prefer, and explain why.

Answer:

The key-value store, since the distributed file system is designed to store a mod-
erate number of large files. With each file block being multiple megabytes,
kilobyte-sized files would result in a lot of wasted space in each block and poor
storage performance.

Suppose you need to store data for a very large number of students in a dis-
tributed document store such as MongoDB. Suppose also that the data for
each student correspond to the data in the student and the takes relations.
How would you represent the above data about students, ensuring that all the
data for a particular student can be accessed efficiently? Give an example of
the data representation for one student.

Answer:

We would store the student data as a JSON object, with the takes tuples for
the student stored as a JSON array of objects, each object corresponding to a
single takes tuple. Give example ...

Suppose you wish to store utility bills for a large number of users, where each
bill is identified by a customer ID and a date. How would you store the bills in
a key-value store that supports range queries, if queries request the bills of a
specified customer for a specified date range.

Answer:

Create a key by concatenating the customer ID and date (with date represented
in the form year/month/date, e.g., 2018/02/28) and store the records indexed
on this key. Now the required records can be retrieved by a range query.

79

80

Chapter 10 Big Data

10.4

10.5

10.6

Give pseudocode for computing a join r X, ,_, , s using a single MapReduce
step, assuming that the map() function is invoked on each tuple of r and s.
Assume that the map() function can find the name of the relation using con-
text.relname().

Answer:

With the map function, output records from both the input relations, using the
join attribute value as the reduce key. The reduce function gets records from
both relations with matching join attribute values and outputs all matching
pairs.

What is the conceptual problem with the following snippet of Apache Spark
code meant to work on very large data. Note that the collect() function returns
a Java collection, and Java collections (from Java 8 onwards) support map and
reduce functions.

JavaRDD<String< lines = sc.textFile("logDirectory”);
int totalLength = lines.collect().map(s —> s.length())
.reduce(O,(a,b) —> a+b);

Answer:

The problem with the code is that the collect() function gathers the RDD data
at a single node, and the map and reduce functions are then executed on that
single node, not in parallel as intended.

Apache Spark:
a. How does Apache Spark perform computations in parallel?

b. Explain the statement: “Apache Spark performs transformations on
RDDs in a lazy manner.”

c. What are some of the benefits of lazy evaluation of operations in Apache
Spark?

Answer:

a. RDDs are stored partitioned across multiple nodes. Each of the trans-
formation operations on an RDD are executed in parallel on multiple
nodes.

b. Transformations are not executed immediately but postponed until the
result is required for functions such as collect() or saveAsTextFile().

c. The operations are organized into a tree, and query optimization can
be applied to the tree to speed up computation. Also, answers can be
pipelined from one operation to another, without being written to disk,
to reduce time overheads of disk storage.

10.7

10.8

10.9

Practice Exercises 81

Given a collection of documents, for each word w,, let n; denote the number of
times the word occurs in the collection. Let N be the total number of word oc-
currences across all documents. Next, consider all pairs of consecutive words
(w;, w;) in the document; let n;; denote the number of occurrences of the word
pair (w;, w;) across all documents.

Write an Apache Spark program that, given a collection of documents in a
directory, computes N, all pairs (w;, n;), and all pairs ((w;, w;), n; ;). Then output
all word pairs such that n,;/N > 10 = (n;/N) * (n;/N). These are word pairs
that occur 10 times or more as frequently as they would be expected to occur
if the two words occurred independently of each other.

You will find the join operation on RDDs useful for the last step, to bring
related counts together. For simplicity, do not bother about word pairs that
cross lines. Also assume for simplicity that words only occur in lowercase and

that there are no punctuation marks.

Answer:
FILL IN ANSWER (available with SS)

Consider the following query using the tumbling window operator:

select item, System. Timestamp as window_end, sum(amount)
from order timestamp by datetime
group by itemid, tumblingwindow(/our, 1)

Give an equivalent query using normal SQL constructs, without using the tum-
bling window operator. You can assume that the timestamp can be converted
to an integer value that represents the number of seconds elapsed since (say)
midnight, January 1, 1970, using the function to_seconds(timestamp). You can
also assume that the usual arithmetic functions are available, along with the
function floor(a) which returns the largest integer < a.

Answer:
Divide by 3600, and take floor, group by that. To output the timestamp of the
window end, add 1 to hour and multiply by 3600

Suppose you wish to model the university schema as a graph. For each of the
following relations, explain whether the relation would be modeled as a node
or as an edge:

(i) student, (ii) instructor, (iii) course, (iv) section, (v) takes, (Vi) teaches.
Does the model capture connections between sections and courses?

Answer:

Each relation corresponding to an entity (student, instructor, course, and sec-
tion) would be modeled as a node. Takes and teaches would be modeled as
edges. There is a further edge between course and section, which has been

82 Chapter 10 Big Data

merged into the section relation and cannot be captured with the above schema.
It can be modeled if we create a separate relation that links sections to courses.

CHAPTER 11

Data Analytics

Practice Exercises

11.1 Describe benefits and drawbacks of a source-driven architecture for gathering
of data at a data warehouse, as compared to a destination-driven architecture.

Answer:

In a destination-driven architecture for gathering data, data transfers from the
data sources to the data warehouse are based on demand from the warehouse,
whereas in a source-driven architecture, the transfers are initiated by each
source.

The benefits of a source-driven architecture are

Data can be propagated to the destination as soon as they become avail-
able. For a destination-driven architecture to collect data as soon as they
are available, the warehouse would have to probe the sources frequently,
leading to a high overhead.

The source does not have to keep historical information. As soon as data
are updated, the source can send an update message to the destination
and forget the history of the updates. In contrast, in a destination-driven
architecture, each source has to maintain a history of data which have not
yet been collected by the data warehouse. Thus storage requirements at
the source are lower for a source-driven architecture.

On the other hand, a destination-driven architecture has the following advan-
tages.

In a source-driven architecture, the source has to be active and must han-
dle error conditions such as not being able to contact the warehouse for
some time. It is easier to implement passive sources, and a single active
warehouse. In a destination-driven architecture, each source is required to
provide only a basic functionality of executing queries.

83

84 Chapter 11 Data Analytics

* The warehouse has more control on when to carry out data gathering
activities and when to process user queries; it is not a good idea to perform
both simultaneously, since they may conflict on locks.

11.2 Draw a diagram that shows how the classroom relation of our university exam-
ple as shown in Appendix A would be stored under a column-oriented storage
structure.

Answer:

The relation would be stored in three files, one per attribute, as shown below.
We assume that the row number can be inferred implicitly from position, by
using fixed-size space for each attribute. Otherwise, the row number would also
have to be stored explicitly.

Packard
Painter
Taylor
Watson
Watson

room_number

101
514
3128
100
120

500
10
70
30
50

11.3 Consider the takes relation. Write an SQL query that computes a cross-tab
that has a column for each of the years 2017 and 2018, and a column for all,
and one row for each course, as well as a row for all. Each cell in the table
should contain the number of students who took the corresponding course in
the corresponding year, with column all containing the aggregate across all
years, and row all containing the aggregate across all courses.

Answer:

11.4

11.5

11.6

Practice Exercises 85

Consider the data warehouse schema depicted in Figure 11.2. Give an SQL
query to summarize sales numbers and price by store and date, along with the
hierarchies on store and date.

Answer:
query:

select store-id, city, state, country,
date, month, quarter, year,
sum(number), sum(price)

from sales, store, date

where sales.store-id = store.store-id and
sales.date = date.date

groupby rollup(country, state, city, store-id),
rollup(year, quarter, month, date)

Classification can be done using classification rules, which have a condition, a
class, and a confidence; the confidence is the percentage of the inputs satisfying
the condition that fall in the specified class.

For example, a classification rule for credit ratings may have a condition
that salary is between $30,000 and $50,000, and education level is graduate,
with the credit rating class of good, and a confidence of 80%. A second rule may
have a condition that salary is between $30,000 and $50,000, and education
level is high-school, with the credit rating class of satisfactory, and a confidence
of 80%. A third rule may have a condition that salary is above $50,001, with
the credit rating class of excellent, and confidence of 90%. Show a decision tree
classifier corresponding to the above rules.

Show how the decision tree classifier can be extended to record the confi-
dence values.

Answer:
FILL IN

Consider a classification problem where the classifier predicts whether a per-
son has a particular disease. Suppose that 95% of the people tested do not
suffer from the disease. Let pos denote the fraction of true positives, which is
5% of the test cases, and let neg denote the fraction of true negatives, which is
95% of the test cases. Consider the following classifiers:

° Classifier C;, which always predicts negative (a rather useless classifier, of
course).

* Classifier C,, which predicts positive in 80% of the cases where the person
actually has the disease but also predicts positive in 5% of the cases where
the person does not have the disease.

86

Chapter 11

Data Analytics

° Classifier C;, which predicts positive in 95% of the cases where the person
actually has the disease but also predicts positive in 20% of the cases where
the person does not have the disease.

For each classifier, let £_pos denote the true positive fraction, that is the fraction
of cases where the classifier prediction was positive, and the person actually
had the disease. Let f pos denote the false positive fraction, that is the fraction
of cases where the prediction was positive, but the person did not have the
disease. Let £.neg denote true negative and f neg denote false negative fractions,
which are defined similarly, but for the cases where the classifier prediction
was negative.

a. Compute the following metrics for each classifier:
i. Accuracy, defined as (t_pos + t_neg) /(post+neg), that is, the fraction of

the time when the classifier gives the correct classification.

ii. Recall (also known as sensitivity) defined as z_pos/pos, that is, how
many of the actual positive cases are classified as positive.

iii. Precision, defined as t_pos/(t_pos+f_pos), that is, how often the positive
prediction is correct.

iv. Specificity, defined as r_neg/neg.

b. Ifyouintend to use the results of classification to perform further screen-
ing for the disease, how would you choose between the classifiers?

c. Onthe other hand, if you intend to use the result of classification to start
medication, where the medication could have harmful effects if given to
someone who does not have the disease, how would you choose between
the classifiers?

Answer:
FILL

CHAPTER 1 Z

Physical Storage Systems

Practice Exercises

12.1

12.2

SSDs can be used as a storage layer between memory and magnetic disks, with
some parts of the database (e.g., some relations) stored on SSDs and the rest
on magnetic disks. Alternatively, SSDs can be used as a buffer or cache for
magnetic disks; frequently used blocks would reside on the SSD layer, while
infrequently used blocks would reside on magnetic disk.

a. Which of the two alternatives would you choose if you need to support
real-time queries that must be answered within a guaranteed short period
of time? Explain why.

b. Which of the two alternatives would you choose if you had a very large
customer relation, where only some disk blocks of the relation are ac-
cessed frequently, with other blocks rarely accessed.

Answer:

In the first case, SSD as storage layer is better since performance is guaran-
teed. With SSD as cache, some requests may have to read from magnetic disk,
causing delays.

In the second case, since we don’t know exactly which blocks are frequently
accessed at a higher level, it is not possible to assign part of the relation to SSD.
Since the relation is very large, it is not possible to assign all of the relation to
SSD. The SSD as cache option will work better in this case.

Some databases use magnetic disks in a way that only sectors in outer tracks are
used, while sectors in inner tracks are left unused. What might be the benefits
of doing so?

Answer:

The disk’s data-transfer rate will be greater on the outer tracks than the inner
tracks. This is because the disk spins at a constant rate, so more sectors pass
underneath the drive head in a given amount of time when the arm is posi-

87

88

Chapter 12 Physical Storage Systems

tioned on an outer track than when on an inner track. Even more importantly,
by using only outer tracks, the disk arm movement is minimized, reducing the
disk access latency. This aspect is important for transaction-processing sys-
tems, where latency affects the transaction-processing rate.

12.3 Flash storage:

a. How is the flash translation table, which is used to map logical page
numbers to physical page numbers, created in memory?

b. Suppose you have a 64-gigabyte flash storage system, with a 4096-byte
page size. How big would the flash translation table be, assuming each
page has a 32-bit address, and the table is stored as an array?

c. Suggest how to reduce the size of the translation table if very often long
ranges of consecutive logical page numbers are mapped to consecutive
physical page numbers.

Answer:

a. It is stored as an array containing physical page numbers, indexed by
logical page numbers. This representation gives an overhead equal to
the size of the page address for each page.

b. It takes 32 bits for every page or every 4096 bytes of storage. Hence, it
takes 64 megabytes for the 64 gigabytes of flash storage.

c. Ifthe mapping is such that every p consecutive logical page numbers are

mapped to p consecutive physical pages, we can store the mapping of
the first page for every p pages. This reduces the in-memory structure by
a factor of p. Further, if p is an exponent of 2, we can avoid some of the
least significant digits of the addresses stored.

12.4 Consider the following data and parity-block arrangement on four disks:

Disk 1 | Disk2 | Disk3 | Disk 4

B, B, B, B,
P, Bs B B;

By P, By By

The B;s represent data blocks; the P;s represent parity blocks. Parity block P;
is the parity block for data blocks B,,_; to B,;. What, if any, problem might this
arrangement present?

Answer:

12.5

12.6

Practice Exercises 89

This arrangement has the problem that P; and B,,;_; are on the same disk. So
if that disk fails, reconstruction of By;_; is not possible, since data and parity
are both lost.

A database administrator can choose how many disks are organized into a
single RAID 5 array. What are the trade-offs between having fewer disks ver-
sus more disks, in terms of cost, reliability, performance during failure, and
performance during rebuild?

Answer:

Fewer disks has higher cost, but with more disks, the chance of two disk fail-
ures, which would lead to data loss, is higher. Further, performance during
failure would be poor since a block read from a failed disk would result a large
number of block reads from the other disks. Similarly, the overhead for rebuild-
ing the failed disk would also be higher, since more disks need to be read to
reconstruct the data in the failed disk.

A power failure that occurs while a disk block is being written could result in
the block being only partially written. Assume that partially written blocks can
be detected. An atomic block write is one where either the disk block is fully
written or nothing is written (i.e., there are no partial writes). Suggest schemes
for getting the effect of atomic block writes with the following RAID schemes.
Your schemes should involve work on recovery from failure.

a. RAID level 1 (mirroring)
b. RAID level 5 (block interleaved, distributed parity)

Answer:

a. To ensure atomicity, a block write operation is carried out as follows:
i. Write the information onto the first physical block.

ii. When the first write completes successfully, write the same informa-
tion onto the second physical block.

iii. The output is declared completed only after the second write com-
pletes successfully.

During recovery, each pair of physical blocks is examined. If both are
identical and there is no detectable partial-write, then no further actions
are necessary. If one block has been partially rewritten, then we replace
its contents with the contents of the other block. If there has been no
partial-write, but they differ in content, then we replace the contents
of the first block with the contents of the second, or vice versa. This
recovery procedure ensures that a write to stable storage either succeeds
completely (that is, updates both copies) or results in no change.

The requirement of comparing every corresponding pair of blocks
during recovery is expensive to meet. We can reduce the cost greatly by

90

Chapter 12

12.7

Physical Storage Systems

keeping track of block writes that are in progress, using a small amount
of nonvolatile RAM. On recovery, only blocks for which writes were in
progress need to be compared.

b. The idea is similar here. For any block write, the information block is
written first, followed by the corresponding parity block. At the time of
recovery, each set consisting of the n” block of each of the disks is con-
sidered. If none of the blocks in the set have been partially written, and
the parity block contents are consistent with the contents of the informa-
tion blocks, then no further action need be taken. If any block has been
partially written, its contents are reconstructed using the other blocks. If
no block has been partially written, but the parity block contents do not
agree with the information block contents, the parity block’s contents
are reconstructed.

Storing all blocks of a large file on consecutive disk blocks would minimize
seeks during sequential file reads. Why is it impractical to do so? What do op-
erating systems do instead, to minimize the number of seeks during sequential
reads?

Answer:

Reading data sequentially from a large file could be done with only one seek
if the entire file were stored on consecutive disk blocks. Ensuring availability
of large numbers of consecutive free blocks is not easy, since files are created
and deleted, resulting in fragmentation of the free blocks on disks. Operating
systems allocate blocks on large but fixed-sized sequential extents instead, and
only one seek is required per extent.

CHAPTER 13

Data Storage Structures

Practice Exercises

13.1 Consider the deletion of record 5 from the file of Figure 13.3. Compare the
relative merits of the following techniques for implementing the deletion:

a. Move record 6 to the space occupied by record 5, and move record 7 to
the space occupied by record 6.

b. Move record 7 to the space occupied by record 5.

c. Mark record 5 as deleted, and move no records.

Answer:

a. Although moving record 6 to the space for 5 and moving record 7 to the
space for 6 is the most straightforward approach, it requires moving the
most records and involves the most accesses.

b. Moving record 7 to the space for 5 moves fewer records but destroys any
ordering in the file.

c. Marking the space for 5 as deleted preserves ordering and moves no
records, but it requires additional overhead to keep track of all of the
free space in the file. This method may lead to too many “holes” in the
file, which if not compacted from time to time, will affect performance
because of the reduced availability of contiguous free records.

13.2 Show the structure of the file of Figure 13.4 after each of the following steps:
a. Insert (24556, Turnamian, Finance, 98000).

b. Delete record 2.
c. Insert (34556, Thompson, Music, 67000).

Answer:

91

92

Chapter 13 Data Storage Structures

header 14
record 0 10101 Srinivasan Comp. Sci. 65000
record 1 24556 Turnamian Finance 98000
record 2 15151 Mozart Music 40000
record 3 22222 Einstein Physics 95000
record 4 16
record 5 33456 Gold Physics 87000
record 6

record 7 58583 Califieri History 62000
record 8 76543 Singh Finance 80000
record 9 76766 Crick Biology 72000
record 10 83821 Brandt Comp. Sci. 92000
record 11 98345 Kim Elec. Eng. 80000

Figure 13.101 The file after insert (24556, Turnamian, Finance, 98000).

header 12
record 0 10101 Srinivasan Comp. Sci. 65000
record 1 24556 Turnamian Finance 98000
record 2 14
record 3 22222 Einstein Physics 95000
record 4 16
record 5 33456 Gold Physics 87000
record 6

record 7 58583 Califieri History 62000
record 8 76543 Singh Finance 80000
record 9 76766 Crick Biology 72000
record 10 83821 Brandt Comp. Sci. 92000
record 11 98345 Kim Elec. Eng. 80000

Figure 13.102 The file after delete record 2.

9

We use “1 i” to denote a pointer to record “i”.

a. See??.

b. See ??. Note that the free record chain could have alternatively been

from the header to 4, from 4 to 2, and finally from 2 to 6.

c. See??.

Practice Exercises 93
header 14
record 0 10101 Srinivasan Comp. Sci. 65000
record 1 24556 Turnamian Finance 98000
record 2 34556 Thompson Music 67000
record 3 22222 Einstein Physics 95000
record 4 16
record 5 33456 Gold Physics 87000
record 6
record 7 58583 Califieri History 62000
record 8 76543 Singh Finance 80000
record 9 76766 Crick Biology 72000
record 10 83821 Brandt Comp. Sci. 92000
record 11 98345 Kim Elec. Eng. 80000
Figure 13.103 The file after insert (34556, Thompson, Music, 67000).
13.3 Consider the relations section and takes. Give an example instance of these
two relations, with three sections, each of which has five students. Give a file
structure of these relations that uses multitable clustering.
Answer:
The relation section with three tuples is as follows:
course_id sec_id | semester year building room
BIO-301 1 Summer 2010 Painter 514
CS-101 1 Fall 2009 Packard 101
CS-347 1 Fall 2009 Taylor 3128

The relation takes with five students for each section is as follows:
See ??.

See ??2.
The multitable clustering for the above two instances can be taken as:

13.4 Consider the bitmap representation of the free-space map, where for each
block in the file, two bits are maintained in the bitmap. If the block is between
0 and 30 percent full the bits are 00, between 30 and 60 percent the bits are
01, between 60 and 90 percent the bits are 10, and above 90 percent the bits
are 11. Such bitmaps can be kept in memory even for quite large files.

a. Outline two benefits and one drawback to using two bits for a block,
instead of one byte as described earlier in this chapter.

94 Chapter 13 Data Storage Structures

| ID | course_id | sec_id | semester | year grade

00128 CS-101 1 Fall 2009 A
00128 CS-347 1 Fall 2009 A-
12345 CS-347 1 Fall 2009 A
12345 CS-101 1 Fall 2009 C
17968 BIO-301 1 Summer 2010 null
23856 CS-347 1 Fall 2009 A
45678 CS-101 1 Fall 2009 F
54321 CS-101 1 Fall 2009 A-
54321 CS-347 1 Fall 2009 A
59762 BIO-301 1 Summer 2010 null
76543 CS-101 1 Fall 2009 A
76543 CS-347 1 Fall 2009 A
78546 BIO-301 1 Summer 2010 null
89729 BIO-301 1 Summer 2010 null
98988 BIO-301 1 Summer 2010 null

Figure 13.104 The relation kes with five students for each section.

b.

Describe how to keep the bitmap up to date on record insertions and
deletions.

Outline the benefit of the bitmap technique over free lists in searching
for free space and in updating free space information.

Answer:

a.

The space used is less with 2 bits, and the number of times the free-
space map needs to be updated decreases significantly, since many in-
serts/deletes do not result in any change in the free-space map. However,
we have only an approximate idea of the free space available, which could
lead both to wasted space and/or to increased search cost for finding free
space for a record.

Every time a record is inserted/deleted, check if the usage of the block
has changed levels. In that case, update the corresponding bits. Note
that we don’t need to access the bitmaps at all unless the usage crosses
a boundary, so in most of the cases there is no overhead.

When free space for a large record or a set of records is sought, then
multiple free list entries may have to be scanned before a proper-sized
one is found, so overheads are much higher. With bitmaps, one page of
bitmap can store free info for many pages, so I/O spent for finding free
space is minimal. Similarly, when a whole block or a large part of it is

Practice Exercises 95
BIO-301 1 Summer 2010 Painter 5
17968 BIO-301 1 Summer 2010 n
59762 BIO-301 1 Summer 2010 n
78546 BIO-301 1 Summer 2010 n
89729 BIO-301 1 Summer 2010 n
98988 BIO-301 1 Summer 2010 n
CS-101 1 Fall 2009 Packard 1
00128 CS-101 1 Fall 2009 A
12345 CS-101 1 Fall 2009 C
45678 CS-101 1 Fall 2009 F
54321 CS-101 1 Fall 2009 A
76543 CS-101 1 Fall 2009 A
CS-347 1 Fall 2009 Taylor 3
00128 CS-347 1 Fall 2009 A
12345 CS-347 1 Fall 2009 A
23856 CS-347 1 Fall 2009 A
54321 CS-347 1 Fall 2009 A
76543 CS-347 1 Fall 2009 A

Figure 13.105 The multitable clustering for the above two instances can be taken as:

13.5

13.6

deleted, bitmap technique is more convenient for updating free space
information.

It is important to be able to quickly find out if a block is present in the buffer,
and if so where in the buffer it resides. Given that database buffer sizes are
very large, what (in-memory) data structure would you use for this task?

Answer:
Hash table is the common option for large database buffers. The hash function
helps in locating the appropriate bucket on which linear search is performed.

Suppose your university has a very large number of takes records, accumulated
over many years. Explain how table partitioning can be done on the fakes rela-
tion, and what benefits it could offer. Explain also one potential drawback of
the technique.

Answer:

The table can be partitioned on (year, semester). Old takes records that are
no longer accessed frequently can be stored on magnetic disk, while newer
records can be stored on SSD. Queries that specify a year can be answered
without reading records for other years.

96

Chapter 13 Data Storage Structures

A drawback is that queries that fetch records corresponding to multiple years
will have a higher overhead, since the records may be partitioned across differ-
ent relations and disk blocks.

13.7 Give an example of a relational-algebra expression and a query-processing strat-
egy in each of the following situations:

a. MRU is preferable to LRU.
b. LRU is preferable to MRU.

Answer:

a. MRU s preferable to LRU where R; X R, is computed by using a nested-
loop processing strategy where each tuple in R, must be compared to
each block in R;. After the first tuple of R, is processed, the next needed
block is the first one in R,. However, since it is the least recently used,
the LRU buffer management strategy would replace that block if a new
block was needed by the system.

b. LRU is preferable to MRU where R, X R, is computed by sorting the
relations by join values and then comparing the values by proceeding
through the relations. Due to duplicate join values, it may be necessary
to “back up” in one of the relations. This “backing up” could cross a
block boundary into the most recently used block, which would have
been replaced by a system using MRU buffer management, if a new block
was needed.

Under MRU, some unused blocks may remain in memory forever. In
practice, MRU can be used only in special situations like that of the
nested-loop strategy discussed in Exercise Section 13.8a.

13.8 PostgreSQL normally uses a small buffer, leaving it to the operating system
buffer manager to manage the rest of main memory available for file system
buffering. Explain (a) what is the benefit of this approach, and (b) one key
limitation of this approach.

Answer:

The database system does not know what are the memory demands from other
processes. By using a small buffer, PostgreSQL ensures that it does not grab
too much of main memory. But at the same time, even if a block is evicted
from buffer, if the file system buffer manager has enough memory allocated to
it, the evicted page is likely to still be cached in the file system buffer. Thus, a
database buffer miss is often not very expensive since the block is still in the
file system buffer.

Practice Exercises 97

The drawback of this approach is that the database system may not be able to
control the file system buffer replacement policy. Thus, the operating system
may make suboptimal decisions on what to evict from the file system buffer.

CHAPTER

Indexing

Practice Exercises

14.1

14.2

14.3

Indices speed query processing, but it is usually a bad idea to create indices on
every attribute, and every combination of attributes, that are potential search
keys. Explain why.

Answer:
Reasons for not keeping indices on every attribute include:

* Every index requires additional CPU time and disk I/O overhead during
inserts and deletions.

* Indices on non-primary keys might have to be changed on updates, al-
though an index on the primary key might not (this is because updates
typically do not modify the primary-key attributes).

* [Each extra index requires additional storage space.

* For queries which involve conditions on several search keys, efficiency
might not be bad even if only some of the keys have indices on them.
Therefore, database performance is improved less by adding indices when
many indices already exist.

Is it possible in general to have two clustering indices on the same relation for
different search keys? Explain your answer.

Answer:

In general, it is not possible to have two primary indices on the same relation
for different keys because the tuples in a relation would have to be stored in
different order to have the same values stored together. We could accomplish
this by storing the relation twice and duplicating all values, but for a centralized
system, this is not efficient.

Construct a B*-tree for the following set of key values:

99

100 Chapter 14 Indexing

(2,3,5,7,11, 17, 19, 23, 29, 31)

Assume that the tree is initially empty and values are added in ascending order.
Construct B*-trees for the cases where the number of pointers that will fit in
one node is as follows:

a. Four

b. Six

c. Fight
Answer:

The following were generated by inserting values into the B*-tree in ascending
order. A node (other than the root) was never allowed to have fewer than [r/2]
values/pointers.

a.

Lo l] 1 1]
s [Jo]]] o] 1 1]

W [ls [[[Fls [l [I T—tlulla [l [F~helbs [[F1lollall |

WL fhe [1T 1 1]

LallsllsIl 1T Iz Tullwll [T TH{lo[T2sllaellatl] |

I
/ \,

L2l T2 T T—{Tu [T [[so]f23 [T2o [[3t [[1}

14.4 For each B™-tree of Exercise 14.3, show the form of the tree after each of the
following series of operations:

a. Insert9.

Practice Exercises 101
Insert 10.

Delete 23.

b.
c. Insert 8.
d.
e. Delete 19.

Answer:

* With structure Exercise 14.3.a:

Insert 9:

Insert 10:

L2 AT (1 s [Tz 0 T Tho T T{Tu [l [T TF~To ll2s [T [Ftl2o [[1[] 1]

Insert &:

Lol 1T 1]

L2 AT (1 [[Tz 0T T Tho [T T{u [l [T Tl [les [T [F—{l2o I3t [] 1]

Delete 23:

IERIER I e I ERIFRIFNI —{Lo [[20[[a1

102 Chapter 14 Indexing

Delete 19:
Jull I

s 4o l] 1] Lo [[1
Ua [ls [I TFls 17 s [l [0][[Flulla [l [F—tloo[[all 1]

* With structure Exercise 14.3.b:

Insert 9:

Uz dfol] [T [I
L2l slfs[[([TF=tlz [T ullw [l [Ftlo [faslloo[[at]] 1]

Insert 10:

Lol l] [T I 1]
W2 Is][[[z 1o lfo[lu [[~ [2sfo[lst [[]

Insert 8:

Delete 23:

L71lo o[1T 1

C2lsIls T 1T Tl Tsllel T TF—hollullw T [T T-~Twl2of[sil 1T 1]

Delete 19:

L lLoll T 1T T
W fls sl [I [z s lloll 1T I—{lwol[ullw2o]]s1]]

Practice Exercises 103

* With structure Exercise 14.3.c:

Insert 9:

Insert 10:
Wl T 0T 1T 1T 1
T
L2l sl[7 [[olfw]l [F—{lulfr [[1o [[23]as[[ar]] 1]
Insert 8:

Delete 23:

o fl 1T TE 1T

. \
213 1ls T2 [TslloTuolF—{Tu a7 [Tro]lag [as [T I]

Delete 19:

o fl I I 1T

L T
M2l s M7 M T olTwolF—Tu i [o [fs]l T I T]

14.5 Consider the modified redistribution scheme for B*-trees described on page
651. What is the expected height of the tree as a function of n?

Answer:
If there are K search-key values and m — 1 siblings are involved in the redistri-
bution, the expected height of the tree is: l0g,,— 1,/ (K)

14.6 Give pseudocode for a B*-tree function findRangelterator(), which is like the
function findRange(), except that it returns an iterator object, as described
in Section 14.3.2. Also give pseudocode for the iterator class, including the
variables in the iterator object, and the next() method.

Answer:

104

Chapter 14 Indexing

14.7

14.8

FILL IN

What would the occupancy of each leaf node of a B*-tree be if index entries
were inserted in sorted order? Explain why.

Answer:

If the index entries are inserted in ascending order, the new entries get directed
to the last leaf node. When this leaf node gets filled, it is split into two. Of
the two nodes generated by the split, the left node is left untouched and the
insertions take place on the right node. This makes the occupancy of the leaf
nodes about 50 percent except for the last leaf.

If keys that are inserted are sorted in descending order, the above situation
would still occur, but symmetrically, with the right node of a split never getting
touched again, and occupancy would again be 50 percent for all nodes other
than the first leaf.

Suppose you have a relation r with n, tuples on which a secondary B*-tree is
to be constructed.

a. Give a formula for the cost of building the B*-tree index by inserting one
record at a time. Assume each block will hold an average of / entries and
that all levels of the tree above the leaf are in memory.

b. Assuming a random disk access takes 10 milliseconds, what is the cost
of index construction on a relation with 10 million records?

c. Write pseudocode for bottom-up construction of a B*-tree, which was
outlined in Section 14.4.4. You can assume that a function to efficiently
sort a large file is available.

Answer:

a. The cost to locate the page number of the required leaf page for an in-
sertion is negligible since the non-leaf nodes are in memory. On the leaf
level it takes one random disk access to read and one random disk ac-
cess to update it along with the cost to write one page. Insertions which
lead to splitting of leaf nodes require an additional page write. Hence to
build a B*-tree with n, entries it takes a maximum of 2 % n, random disk
accesses and n, + 2 = (n,/f) page writes. The second part of the cost
comes from the fact that in the worst case each leaf is half filled, so the
number of splits that occur is twice n, /f.

The above formula ignores the cost of writing non-leaf nodes, since
we assume they are in memory, but in reality they would also be written
eventually. This cost is closely approximated by 2 = (n,/f)/f, which
is the number of internal nodes just above the leaf; we can add further
terms to account for higher levels of nodes, but these are much smaller
than the number of leaves and can be ignored.

b.

Practice Exercises 105

Substituting the values in the above formula and neglecting the cost for
page writes, it takes about 10,000, 000 = 20 milliseconds, or 56 hours,
since each insertion costs 20 milliseconds.

c.
function insert_in_leaf(value K, pointer P)

if(tree is empty) create an empty leaf node L, which is also the root
else Find the last leaf node in the leaf nodes chain L
if (L has less than n — 1 key values)

then insert (K,P) at the first available location in L

else begin
Create leaf node L1
Set L.P,=L1;

Set K'1 = last value from page L

insert_in_parent(1, L, K1, L1)

insert (K,P) at the first location in L1
end

function insert_in_parent(level /, pointer P, value K, pointer P1)
if (level / is empty) then begin
Create an empty non-leaf node N, which is also the root
insert(P, K, P1) at the starting of the node N
return
else begin
Find the right most node N at level /
if (V has less than » pointers)
then insert(K, P1) at the first available location in N
else begin
Create a new non-leaf page V1
insert (P1) at the starting of the node N
insert_in_parent(/ + 1, pointer &, value K, pointer N1)
end
end

The insert_in_leaf function is called for each of the value, pointer pairs in
ascending order. Similar function can also be built for descending order.
The search for the last leaf or non-leaf node at any level can be avoided
by storing the current last page details in an array.

The last node in each level might be less than half filled. To make this
index structure meet the requirements of a B*-tree, we can redistribute
the keys of the last two pages at each level. Since the last but one node is
always full, redistribution makes sure that both of them are at least half
filled.

106 Chapter 14 Indexing

14.9 The leaf nodes of a B*-tree file organization may lose sequentiality after a se-
quence of inserts.

Explain why sequentiality may be lost.

To minimize the number of seeks in a sequential scan, many databases
allocate leaf pages in extents of n blocks, for some reasonably large 7.
When the first leaf of a B*-tree is allocated, only one block of an n-block
unit is used, and the remaining pages are free. If a page splits, and its
n-block unit has a free page, that space is used for the new page. If the
n-block unit is full, another n-block unit is allocated, and the first n/2 leaf
pages are placed in one n-block unit and the remaining one in the second
n-block unit. For simplicity, assume that there are no delete operations.

i. What is the worst-case occupancy of allocated space, assuming no
delete operations, after the first #-block unit is full?

ii. Isit possible that leaf nodes allocated to an n-node block unit are not
consecutive, that is, is it possible that two leaf nodes are allocated
to one n-node block, but another leaf node in between the two is
allocated to a different n-node block?

iii. Under the reasonable assumption that buffer space is sufficient to
store an n-page block, how many seeks would be required for a leaf-
level scan of the B*-tree, in the worst case? Compare this number
with the worst case if leaf pages are allocated a block at a time.

iv. The technique of redistributing values to siblings to improve space
utilization is likely to be more efficient when used with the preceding
allocation scheme for leaf blocks. Explain why.

Answer:

a.

In a B*-tree index or file organization, leaf nodes that are adjacent to
each other in the tree may be located at different places on disk. When
a file organization is newly created on a set of records, it is possible to
allocate blocks that are mostly contiguous on disk to leafs nodes that
are contiguous in the tree. As insertions and deletions occur on the tree,
sequentiality is increasingly lost, and sequential access has to wait for
disk seeks increasingly often.

i. In the worst case, each n-block unit and each node of the B*-tree is
half filled. This gives the worst-case occupancy as 25 percent.

ii. No. While splitting the n-block unit, the first /2 leaf pages are placed
in one n-block unit and the remaining pages in the second n-block
unit. That is, every n-block split maintains the order. Hence, the
nodes in the n-block units are consecutive.

14.10

14.11

14.12

Practice Exercises 107

iii. In the regular B*-tree construction, the leaf pages might not be se-
quential and hence in the worst-case, it takes one seek per leaf page.
Using the block at a time method, for each n-node block, we will have
at least n/2 leaf nodes in it. Each n-node block can be read using one
seek. Hence the worst-case seeks come down by a factor of n/2.

iv. Allowing redistribution among the nodes of the same block does not
require additional seeks, whereas in regular B*-trees we require as
many seeks as the number of leaf pages involved in the redistribution.
This makes redistribution for leaf blocks efficient with this scheme.
Also, the worst-case occupancy comes back to nearly 50 percent.
(Splitting of leaf nodes is preferred when the participating leaf nodes
are nearly full. Hence nearly 50 percent instead of exact 50 percent)

Suppose you are given a database schema and some queries that are executed
frequently. How would you use the above information to decide what indices
to create?

Answer:
Indices on any attributes on which there are selection conditions; if there are
only a few distinct values for that attribute, a bitmap index may be created,
otherwise a normal B*-tree index.

B*-tree indices on primary-key and foreign-key attributes.

Also indices on attributes that are involved in join conditions in the queries.

In write-optimized trees such as the LSM tree or the stepped-merge index, en-
tries in one level are merged into the next level only when the level is full.
Suggest how this policy can be changed to improve read performance during
periods when there are many reads but no updates.

Answer:

If there have been no updates in a while, but there are a lot of index look ups
on an index, then entries at one level, say /, can be merged into the next level,
even if the level is not full. The benefit is that reads would then not have to
look up indices at level 7, reducing the cost of reads.

What trade offs do buffer trees pose as compared to LSM trees?

Answer:
The idea of buffer trees can be used with any tree-structured index to reduce the
cost of inserts and updates, including spatial indices. In contrast, LSM trees can
only be used with linearly ordered data that are amenable to merging. On the
other hand, buffer trees require more random 1/O to perform insert operations
as compared to (all variants of) LSM trees.

Write-optimized indices can significantly reduce the cost of inserts, and to
a lesser extent, of updates, as compared to B*-trees. On the other hand, the

108 Chapter 14

14.13

Indexing

index lookup cost can be significantly higher for write-optimized indices as
compared to B*-trees.

Consider the instructor relation shown in Figure 14.1.

a.

Construct a bitmap index on the attribute salary, dividing salary values
into four ranges: below 50,000, 50,000 to below 60,000, 60,000 to below
70,000, and 70,000 and above.

Consider a query that requests all instructors in the Finance department
with salary of 80,000 or more. Outline the steps in answering the query,
and show the final and intermediate bitmaps constructed to answer the
query.

Answer:
We reproduce the instructor relation below.

‘ ID ‘ name dept_name ‘ salary ‘
10101 | Srinivasan | Comp. Sci. | 65000
12121 | Wu Finance 90000
15151 | Mozart Music 40000
22222 | Einstein Physics 95000
32343 | El Said History 60000
33456 | Gold Physics 87000
45565 | Katz Comp. Sci. | 75000
58583 | Califieri History 62000
76543 | Singh Finance 80000
76766 | Crick Biology 72000
83821 | Brandt Comp. Sci. | 92000
98345 | Kim Elec. Eng. 80000

Bitmap for salary, with S}, S,, S5 and S, representing the given intervals
in the same order

[5,J0 0 T 0 0 0 0 0 0 0 0 0]
[5,]0 0 0 0 0 0 0 0 0 0 0 O]
[5,]1 0 0 0 1 0 0 1 0 0 0 0]
[5,J0 1 0 1 0 I 1 0 I 1 1 1|

The question is a bit trivial if there is no bitmap on the dept_name at-
tribute. The bitmap for the dept_name attribute is:

14.14

14.15

Practice Exercises 109

Comp. Sci

Finance

Music

History

Biology
Elec. Eng.

O Of| | @ @ @ —
O Of| Q| @ @ —|| ©
O Of| @ @ || @|| ©
O Of| @ || @|| @|| ©
O Of| —|| || @|| @|| ©
O O Q| —|| 2| @|| ©
QO Of| @ @|| @|| @] —
QO Of| —|| @|| @|| @|| ©
O Of| Q| @ @ —|| ©
O —|]| @ O || @|| ©
O Of| | @ @ @ —
— || O @ @|| @|| @|| ©

| |
| |
| |
| Physics |
| |
| |
| |

To find all instructors in the Finance department with salary of 80000
or more, we first find the intersection of the Finance department bitmap
and S, bitmap of salary and then scan on these records for salary of

80000 or more.

Intersection of Finance department bitmap and S, bitmap of salary.

| Sy \ o 1 o 1 o 1 1 O 1 1 1 1 |
| Finance \ o 1 0 0 0o O O o 1 o0 o0 oO |
| S,N Finance \ o 1 o 0 O O O O 1 o o0 o |

Scan on these records with salary 80000 or more gives Wu and Singh as
the instructors who satisfy the given query.

Suppose you have a relation containing the x,y coordinates and names of
restaurants. Suppose also that the only queries that will be asked are of the
following form: The query specifies a point and asks if there is a restaurant ex-
actly at that point. Which type of index would be preferable, R-tree or B-tree?
Why?

Answer:

FILL IN

Suppose you have a spatial database that supports region queries with circular
regions, but not nearest-neighbor queries. Describe an algorithm to find the
nearest neighbor by making use of multiple region queries.

Answer:

Start with regions with very small radius, and retry with a larger radius if a
particular region does not contain any result. For example, each time the radius
could be increased by a factor of (say) 1.5. The benefit is that since we do not
use a very large radius compared to the minimum radius required, there will
(hopefully!) not be too many points in the circular range query result.

CHAPTER 15

Query

Processing

Practice Exercises

15.1

15.2

Assume (for simplicity in this exercise) that only one tuple fits in a block and
memory holds at most three blocks. Show the runs created on each pass of
the sort-merge algorithm when applied to sort the following tuples on the first
attribute: (kangaroo, 17), (wallaby, 21), (emu, 1), (wombat, 13), (platypus,
3), (lion, 8), (warthog, 4), (zebra, 11), (meerkat, 6), (hyena, 9), (hornbill, 2),
(baboon, 12).

Answer:

We will refer to the tuples (kangaroo, 17) through (baboon, 12) using tuple
numbers 7, through 7,,. We refer to the /” run used by the i pass, as r;. The
initial sorted runs have three blocks each. They are:

ry = {.1,4})
ro = g5, 14}
ry = {tg. 17,53}

Iy {2, 115110}

Each pass merges three runs. Therefore the runs after the end of the first pass
are:

ry = Attty Is, 1, 17,1y, 15)
ry = Attt}

At the end of the second pass, the tuples are completely sorted into one run:

ry = Attty byt Loy Bs, 1 17, 1y, 1}

Consider the bank database of Figure 15.14, where the primary keys are un-
derlined, and the following SQL query:

111

112

Chapter 15 Query Processing

15.3

select 7.branch_name
from branch T, branch S
where T.assets > S.assets and S.branch_city = “Brooklyn”

Write an efficient relational-algebra expression that is equivalent to this query.
Justify your choice.

Answer:

Query:

I T branch_name ((Hbranch_name, assets (p T (br anch))) Do T.assets > S.assets
(Hassets (G(branch_cfty =Brooklyn’) (pS(branch)))))

This expression performs the theta join on the smallest amount of data possi-
ble. It does this by restricting the right-hand side operand of the join to only
those branches in Brooklyn and also eliminating the unneeded attributes from
both the operands.

Let relations r,(4, B, C) and r,(C, D, E) have the following properties: r; has
20,000 tuples, r, has 45,000 tuples, 25 tuples of r, fit on one block, and 30
tuples of r, fit on one block. Estimate the number of block transfers and seeks
required using each of the following join strategies for r; X 7,:

a. Nested-loop join.
b. Block nested-loop join.
c. Merge join.
d. Hash join.
Answer:

r, needs 800 blocks, and r, needs 1500 blocks. Let us assume M pages of
memory. If M > 800, the join can easily be done in 1500 + 800 disk accesses,

branch(branch_name, branch_city, assets)

customer (customer_name, customer_street, customer_city)
loan (loan_number, branch_name, amount)

borrower (customer_name, loan_number)

account (account_number, branch_name, balance)
depositor (customer_name, account_number)

Figure 15.14 Bank database.

Practice Exercises 113

using even plain nested-loop join. So we consider only the case where M < 800
pages.

a. Nested-loop join:
Using r, as the outer relation, we need 20000 = 1500 + 800 =
30,000, 800 disk accesses. If r, is the outer relation, we need 45000 =
800 + 1500 = 36,001, 500 disk accesses.

b. Block nested-loop join:
800

If r, is the outer relation, we need [ﬁ] % 1500 + 800 disk accesses. If

r, is the outer relation, we need [%] x 800 + 1500 disk accesses.

c. Merge join:
Assuming that 7, and r, are not initially sorted on the join key, the total
sorting cost inclusive of the outputis B, = 1500(2[log,,_,(1500/M)]+
2) + 800(2[logy,_,(800/M)] + 2) disk accesses. Assuming all tuples
with the same value for the join attributes fit in memory, the total cost
is B, + 1500 + 800 disk accesses.

d. Hash join:
We assume no overflow occurs. Since 7, is smaller, we use it as the build
relation and r, as the probe relation. If M > 800/M, i.e., no need for
recursive partitioning, then the cost is 3(1500 + 800) = 6900 disk
accesses, else the cost is 2(1500 + 800)[log,,_,(800) — 1] + 1500 + 800
disk accesses.

15.4 The indexed nested-loop join algorithm described in Section 15.5.3 can be
inefficient if the index is a secondary index and there are multiple tuples with
the same value for the join attributes. Why is it inefficient? Describe a way,
using sorting, to reduce the cost of retrieving tuples of the inner relation. Under
what conditions would this algorithm be more efficient than hybrid merge join?

Answer:

If there are multiple tuples in the inner relation with the same value for the
join attributes, we may have to access that many blocks of the inner relation
for each tuple of the outer relation. That is why it is inefficient. To reduce this
cost we can perform a join of the outer relation tuples with just the secondary
index leaf entries, postponing the inner relation tuple retrieval. The result file
obtained is then sorted on the inner relation addresses, allowing an efficient
physical order scan to complete the join.

Hybrid merge -join requires the outer relation to be sorted. The above al-
gorithm does not have this requirement, but for each tuple in the outer relation
it needs to perform an index lookup on the inner relation. If the outer relation
is much larger than the inner relation, this index lookup cost will be less than
the sorting cost, thus this algorithm will be more efficient.

114

Chapter 15 Query Processing

15.5

15.6

15.7

Let r and s be relations with no indices, and assume that the relations are not
sorted. Assuming infinite memory, what is the lowest-cost way (in terms of I/O
operations) to compute 7 X s? What is the amount of memory required for
this algorithm?

Answer:

We can store the entire smaller relation in memory, read the larger relation
block by block, and perform nested-loop join using the larger one as the outer
relation. The number of I/O operations is equal to b, + b, and the memory
requirement is min(b,, b,) + 2 pages.

Consider the bank database of Figure 15.14, where the primary keys are un-
derlined. Suppose that a B*-tree index on branch_city is available on relation
branch, and that no other index is available. List different ways to handle the
following selections that involve negation:

A O _(branch_city<*Brooklyn”) (branCh)
b. o —(branchcity="Brooklyn”) (branch)
€. O ~(branch_city<*Brooklyn” v assets<5000)(br anch)

Answer:

a. Use the index to locate the first tuple whose branch_city field has value
“Brooklyn”. From this tuple, follow the pointer chains till the end, re-
trieving all the tuples.

b. For this query, the index serves no purpose. We can scan the file sequen-
tially and select all tuples whose branch_city field is anything other than
“Brooklyn”.

c. This query is equivalent to the query

G(branch_cityz’ Brooklyn’ A assets<5000)(b ranch)

Using the branch-city index, we can retrieve all tuples with branch-city
value greater than or equal to “Brooklyn” by following the pointer chains
from the first “Brooklyn” tuple. We also apply the additional criteria of
assets < 5000 on every tuple.

Write pseudocode for an iterator that implements indexed nested-loop join,
where the outer relation is pipelined. Your pseudocode must define the stan-
dard iterator functions open(), next(), and close(). Show what state information
the iterator must maintain between calls.

Answer:
Let outer be the iterator which returns successive tuples from the pipelined
outer relation. Let inner be the iterator which returns successive tuples of

15.8

15.9

Practice Exercises 115

the inner relation having a given value at the join attributes. The inner iter-
ator returns these tuples by performing an index lookup. The functions In-
dexedNLJoin::open, IndexedNLJoin::close and IndexedNLJoin::next to imple-
ment the indexed nested-loop join iterator are given below. The two iterators
outer and inner, the value of the last read outer relation tuple 7, and a flag done,
indicating whether the end of the outer relation scan has been reached are the
state information which need to be remembered by IndexedNLJoin between
calls. Please see ??

Design sort-based and hash-based algorithms for computing the relational di-
vision operation (see Practice Exercise 2.9 for a definition of the division op-
eration).

Answer:
Suppose (T U S) and s(S) are two relations and 7 + s has to be computed.

For a sorting-based algorithm, sort relation s on S. Sort relation r on (7, S).
Now, start scanning r and look at the 7" attribute values of the first tuple. Scan r
till tuples have same value of 7'. Also scan s simultaneously and check whether
every tuple of s also occurs as the S attribute of r, in a fashion similar to merge
join. If this is the case, output that value of 7" and proceed with the next value of
T. Relation s may have to be scanned multiple times, but » will only be scanned
once. Total disk accesses, after sorting both the relations, will be || + N = |s|,
where N is the number of distinct values of 7" in r.

We assume that for any value of 7, all tuples in » with that 7 value fit in
memory, and we consider the general case at the end. Partition the relation
r on attributes in 7 such that each partition fits in memory (always possible
because of our assumption). Consider partitions one at a time. Build a hash
table on the tuples, at the same time collecting all distinct 7" values in a separate
hash table. For each value of 7', Now, for each value V- of T, each value s of
S, probe the hash table on (V7,s). If any of the values is absent, discard the
value V., else output the value V.

In the case that not all » tuples with one value for 7 fit in memory, parti-
tion r and s on the § attributes such that the condition is satisfied, and run
the algorithm on each corresponding pair of partitions 7, and s;. Output the
intersection of the 7 values generated in each partition.

What is the effect on the cost of merging runs if the number of buffer blocks
per run is increased while overall memory available for buffering runs remains
fixed?

Answer:

Seek overhead is reduced, but the the number of runs that can be merged in a
pass decreases, potentially leading to more passes. A value of b, that minimizes
overall cost should be chosen.

116 Chapter 15 Query Processing

IndexedNLJoin::open()
begin
outer.open();
inner.open();
done, := false;
if(outer.next() # false)
move tuple from outer’s output buffer to 7,;
else
done, = true;
end

IndexedNLJoin::close()
begin
outer.close();
inner.close();
end

boolean IndexedNLJoin::next()

begin
while(—~done,)
begin
if(inner.next(z,[JoinAttrs]) # false)
begin
move tuple from inner’s output buffer to 7;
compute ¢, X ¢, and place it in output buffer;
return frue;
end
else
if(outer next() # false)
begin
move tuple from outer’s output buffer to ,;
rewind inner to first tuple of s;
end
else
done, := true;
end
return false;
end

Figure 15.101 Answer for Exercise 15.7.

Practice Exercises 117

15.10 Consider the following extended relational-algebra operators. Describe how to
implement each operation using sorting and using hashing.

a. Semijoin (Xy): The multiset semijoin operator rXys is defined as follows:
if a tuple r; appears n times in r, it appears » times in the result of 71X
if there is at least one tuple 8; such that r; and 8; satisfy predicate 0;
otherwise r; does not appear in the result.

b. Anti-semijoin ()X,): The multiset anti-semijoin operator rXs is defined
as follows: if a tuple r; appears » times in r, it appears » times in the result
of riX, if there does not exist any tuple s;in s such that r; and s; satisfy
predicate O; otherwise r; does not appear in the result.

Answer:

FILL IN: CHeck for duplicate preservation

As in the case of join algorithms, semijoin and anti-semijoin can be done effi-
ciently if the join conditions are equijoin conditions. We describe below how
to efficiently handle the case of equijoin conditions using sorting and hashing.
With arbitrary join conditions, sorting and hashing cannot be used; (block)
nested loops join needs to be used instead.

a. Semijoin:

Semijoin using sorting: Sort both » and s on the join attributes in
0. Perform a scan of both r and s similar to the merge algorithm
and add tuples of r to the result whenever the join attributes of the
current tuples of and s match.

Semijoin using hashing: Create a hash index in s on the join at-
tributes in 0. Iterate over r, and for each distinct value of the join
attributes, perform a hash lookup in s. If the hash lookup returns a
value, add the current tuple of r to the result.

Note that if 7 and s are large, they can be partitioned on the join
attributes first and the above procedure applied on each partition.
If r is small but s is large, a hash index can be built on » and probed
using s; and if an s tuple matches an r tuple, the tuple can be output
and deleted from the hash index.

b. Anti-semijoin:

Anti-semijoin using sorting: Sort both r and s on the join attributes
in 6. Perform a scan of both r and s similar to the merge algorithm
and add tuples of r to the result if no tuple of s satisfies the join
predicate for the corresponding tuple of .

Anti-semijoin using hashing: Create a hash index in s on the join
attributes in 0. Iterate over r, and for each distinct value of the join
attributes, perform a hash lookup in s. If the hash lookup returns a
null value, add the current tuple of r to the result.

118

Chapter 15

15.11

15.12

15.13

Query Processing

As for semijoin, partitioning can be used if and s are large. An
index on r can be used instead of an index on s, but then when an s
tuple matches an r tuple, the r tuple is deleted from the index. After
processing all s tuples, all remaining r tuples in the index are output
as the result of the anti-semijoin operation.

Suppose a query retrieves only the first K results of an operation and termi-
nates after that. Which choice of demand-driven or producer-driven pipelining
(with buffering) would be a good choice for such a query? Explain your an-
Swer.

Answer:
Demand driven is better, since it will only generate the top K results. Producer
driven may generate a lot more answers, many of which would not get used.

Current generation CPUs include an instruction cache, which caches recently
used instructions. A function call then has a significant overhead because the
set of instructions being executed changes, resulting in cache misses on the
instruction cache.

a. Explain why producer-driven pipelining with buffering is likely to result
in a better instruction cache hit rate, as compared to demand-driven
pipelining.

b. Explain why modifying demand-driven pipelining by generating multiple
results on one call to next(), and returning them together, can improve
the instruction cache hit rate.

Answer:

Producer-driven pipelining executes the same set of instructions to generate
multiple tuples by consuming already generated tuples from the inputs. Thus
instruction cache hits will be more. In comparison, demand-driven pipelining
switches from the instructions of one function to another for each tuple, re-
sulting in more misses.

By generating multiple results at one go, a next(() function would receive
multiple tuples in its inputs and have a loop that generates multiple tuples for
its output without switching execution to another function. Thus, the instruc-
tion cache hit rate can be expected to improve.

Suppose you want to find documents that contain at least k of a given set of n
keywords. Suppose also you have a keyword index that gives you a (sorted) list
of identifiers of documents that contain a specified keyword. Give an efficient
algorithm to find the desired set of documents.

Answer:
Let S be a set of n keywords. An algorithm to find all documents that contain
at least k£ of these keywords is given in ??

15.14

Practice Exercises 119

initialize the list L to the empty list;
for (each keyword c in S) do
begin
D := the list of documents identifiers corresponding to c;
for (each document identifier 4 in D) do
if (a record R with document identifier as d is on list L) then
R.reference_count = R.reference_count + 1;
else begin
make a new record R;
R.document_id = d,
R.reference_count := 1;
add Rto L;
end;
end;
for (each record Rin L) do
if (R.reference_count >= k) then
output R;

Figure 15.102 Answer for Exercise 15.13.

This algorithm calculates a reference count for each document identifier.
A reference count of i for a document identifier 4 means that at least i of the
keywords in S occur in the document identified by d. The algorithm maintains
a list of records, each having two fields - a document identifier, and the refer-
ence count for this identifier. This list is maintained sorted on the document
identifier field.
Note that execution of the second for statement causes the list D to “merge”
with the list L. Since the lists L and D are sorted, the time taken for this merge
is proportional to the sum of the lengths of the two lists. Thus the algorithm
runs in time (at most) proportional to » times the sum total of the number of
document identifiers corresponding to each keyword in S.

Suggest how a document containing a word (such as “leopard”) can be in-
dexed such that it is efficiently retrieved by queries using a more general con-
cept (such as “carnivore” or “mammal”). You can assume that the concept
hierarchy is not very deep, so each concept has only a few generalizations (a
concept can, however, have a large number of specializations). You can also
assume that you are provided with a function that returns the concept for each
word in a document. Also suggest how a query using a specialized concept can
retrieve documents using a more general concept.

Answer:
Add doc to index lists for more general concepts also.

120

Chapter 15 Query Processing

15.15

15.16

Explain why the nested-loops join algorithm (see Section 15.5.1) would work
poorly on a database stored in a column-oriented manner. Describe an alterna-
tive algorithm that would work better, and explain why your solution is better.

Answer:

If the nested-loops join algorithm is used as is, it would require tuples for each
of the relations to be assembled before they are joined. Assembling tuples can
be expensive in a column store, since each attribute may come from a separate
area of the disk; the overhead of assembly would be particularly wasteful if
many tuples do not satisfy the join condition and would be discarded. In such
a situation it would be better to first find which tuples match by accessing only
the join columns of the relations. Sort-merge join, hash join, or indexed nested
loops join can be used for this task. After the join is performed, only tuples that
get output by the join need to be assembled; assembly can be done by sorting
the join result on the record identifier of one of the relations and accessing
the corresponding attributes, then resorting on record identifiers of the other
relation to access its attributes.

Consider the following queries. For each query, indicate if column-oriented
storage is likely to be beneficial or not, and explain why.

a. Fetch ID, name and dept_name of the student with ID 12345.

b. Group the takes relation by year and course_id, and find the total number
of students for each (year, course_id) combination.

Answer:
FILL IN AND recheck question

CHAPTER 16

Query Optimization

Practice Exercises

16.1 Download the university database schema and the large university dataset from
dbbook.com. Create the university schema on your favorite database, and load
the large university dataset. Use the explain feature described in Note 16.1 on
page 746 to view the plan chosen by the database, in different cases as detailed
below.

Write a query with an equality condition on student.name (which does
not have an index), and view the plan chosen.

Create an index on the attribute student.name, and view the plan chosen
for the above query.

Create simple queries joining two relations, or three relations, and view
the plans chosen.

Create a query that computes an aggregate with grouping, and view the
plan chosen.

Create an SQL query whose chosen plan uses a semijoin operation.

Create an SQL query that uses a not in clause, with a subquery using
aggregation. Observe what plan is chosen.

Create a query for which the chosen plan uses correlated evaluation (the
way correlated evaluation is represented varies by database, but most
databases would show a filter or a project operator with a subplan or
subquery).

Create an SQL update query that updates a single row in a relation. View
the plan chosen for the update query.

121

http://dbbook.com

122

Chapter 16 Query Optimization

16.2

i. Create an SQL update query that updates a large number of rows in a re-
lation, using a subquery to compute the new value. View the plan chosen
for the update query.

Answer:
The answer depends on the database.
FILL IN Suggested queries for each exercise as verified on some database

Show that the following equivalences hold. Explain how you can apply them
to improve the efficiency of certain queries:

a. E Wy (E,—E;) = (E, Wy Ey — E|] E;).
b. oy(4,Vr(E)) = ,yr(cy(£)), where O uses only attributes from A.
c. 6y(E; NE,)) = oy(E,)INE,, where O uses only attributes from E.

Answer:

a. El Me (Ez —E3) = (E] Me Ez _El Me E3)

Letusrename (£, M, (E,—E3))as Ry, (£, Xy E,) as R, and (£, Xy E3)
as R;. It is clear that if a tuple 7 belongs to R, it will also belong to R,.
If a tuple 7 belongs to R, {[E;’s attributes] will belong to E;, hence ¢
cannot belong to R;. From these two we can say that

Vi, te€R, = t€ (R, —Ry)

It is clear that if a tuple ¢ belongs to R, — R, then 7[R,’s attributes] € E,
and 1[R,’s attributes] & Ej. Therefore:

The above two equations imply the given equivalence.

This equivalence is helpful because evaluation of the right-hand side
join will produce many tuples which will finally be removed from the
result. The left-hand side expression can be evaluated more efficiently.

b. og(,Yr(E)) = ,yr(cg(E)), where O uses only attributes from 4.
O uses only attributes from A. Therefore if any tuple ¢ in the output of
4Yr(E) is filtered out by the selection of the left-hand side, all the tuples

in E whose value in 4 is equal to #[A] are filtered out by the selection of
the right-hand side. Therefore:

Vi, t € og(4Yp(E)) = 1 & 4¥p(ch(E))

Using similar reasoning, we can also conclude that

Vi, t & ,vp(0g(E)) = 1 & o 4Y(E))

Practice Exercises 123

The above two equations imply the given equivalence.

This equivalence is helpful because evaluation of the right-hand side
avoids performing the aggregation on groups which are going to be re-
moved from the result. Thus the right-hand side expression can be eval-
uated more efficiently than the left-hand side expression.

oo(E; X E,) = oy(E}) X E, where 0 uses only attributes from £|.

0 uses only attributes from £,. Therefore if any tuple ¢ in the output of
(E, N E,) is filtered out by the selection of the left-hand side, all the
tuples in E; whose value is equal to #[£] are filtered out by the selection
of the right-hand side. Therefore:

Vi, t € 69(E, N E,) = t&oy(E))INE,
Using similar reasoning, we can also conclude that
Vi, t € 04(E|))INE, = t & oy(E,INE))

The above two equations imply the given equivalence.

This equivalence is helpful because evaluation of the right-hand side
avoids producing many output tuples which are going to be removed
from the result. Thus the right-hand side expression can be evaluated
more efficiently than the left-hand side expression.

16.3 For each of the following pairs of expressions, give instances of relations that
show the expressions are not equivalent.

a. IL,(r—s)andIL,(r) —IL,(s).

b, 654l 4V max(B) as () ANA 1Y 008) as B(Op<a(F))-

c. In the preceding expressions, if both occurrences of max were replaced
by min, would the expressions be equivalent?

d. (r>Cs)XCtand rixC(sC)
In other words, the natural right outer join is not associative.

e. 0y(E|; N E,) and E| X oy(E,), where O uses only attributes from E).

Answer:

a. R={(1,2)}, S={(1,3)}
The result of the left-hand side expression is {(1)}, whereas the result of
the right-hand side expression is empty.

b. R={(1,2),(1,5)}

The left-hand side expression has an empty result, whereas the right hand
side one has the result {(1,2)}.

124

Chapter 16 Query Optimization

16.4

16.5

c. Yes, onreplacing the max by the min, the expressions will become equiv-
alent. Any tuple that the selection in the rhs eliminates would not pass
the selection on the lhs if it were the minimum value and would be elim-
inated anyway if it were not the minimum value.

d. R = {(L,L2)}, S = {(2,3)}, T = {(1,4)}. The left-hand expres-
sion gives {(1,2,null,4)} whereas the the right-hand expression gives
{(1,2,3, null)}.

e. Let R be of the schema (4, B) and S of (4,C). Let R = {(1,2)}, S =
{(2,3)} and let O be the expression C = 1. The left side expression’s
result is empty, whereas the right side expression results in {(1, 2, null)}.

SQL allows relations with duplicates (Chapter 3), and the multiset version of
the relational algebra is defined in Note 3.1 on page 80, Note 3.2 on page 97,
and Note 3.3 on page 108. Check which of the equivalence rules 1 through 7.b
hold for the multiset version of the relational algebra.

Answer:

All the equivalence rules 1 through 7.b of section Section 16.2.1 hold for the
multiset version of the relational algebra defined in Chapter 2.

There exist equivalence rules that hold for the ordinary relational algebra but
do not hold for the multiset version. For example consider the rule :-

ANB = AUB — (A—B) — (B—A)

This is clearly valid in plain relational algebra. Consider a multiset instance
in which a tuple ¢ occurs 4 times in 4 and 3 times in B. ¢ will occur 3 times
in the output of the left-hand side expression, but 6 times in the output of the
right-hand side expression. The reason for this rule to not hold in the multiset
version is the asymmetry in the semantics of multiset union and intersection.

Consider the relations r,(4, B, C), r,(C, D, E), and r;(E, F'), with primary keys
A, C, and E, respectively. Assume that r; has 1000 tuples, r, has 1500 tuples,
and r; has 750 tuples. Estimate the size of r; I} r, X r3, and give an efficient
strategy for computing the join.

Answer:

° The relation resulting from the join of r|, r,, and r; will be the same no
matter which way we join them, due to the associative and commutative
properties of joins. So we will consider the size based on the strategy of
((r; ™ ry) X ry).Joining r; with r, will yield a relation of at most 1000
tuples, since C is a key for r,. Likewise, joining that result with r; will yield
a relation of at most 1000 tuples because £ is a key for r;. Therefore, the
final relation will have at most 1000 tuples.

16.6

16.7

Practice Exercises 125

* An efficient strategy for computing this join would be to create an index
on attribute C for relation r, and on E for r;. Then for each tuple in r|, we
do the following:

a. Use the index for r, to look up at most one tuple which matches the
C value of r;.

b. Use the created index on E to look up in r; at most one tuple which
matches the unique value for £ in r,.

Consider the relations r,(4, B, C), r,(C,D, E), and r;(E, F) of Practice Exer-
cise 16.5. Assume that there are no primary keys, except the entire schema.
Let V(C,r;) be 900, V(C,r,) be 1100, V(E,r,) be 50, and V(E,r;) be 100.
Assume that 7, has 1000 tuples, r, has 1500 tuples, and r; has 750 tuples. Es-
timate the size of r; X r, I} r; and give an efficient strategy for computing
the join.

Answer:

The estimated size of the relation can be determined by calculating the average
number of tuples which would be joined with each tuple of the second relation.
In this case, for each tuple in r;, 1500/V(C, r,) = 15/11 tuples (on the average)
of r, would join with it. The intermediate relation would have 15000/11 tuples.
This relation is joined with r; to yield a result of approximately 10,227 tuples
(15000/11 x 750/100 = 10227). A good strategy should join r, and r, first,
since the intermediate relation is about the same size as r| or r,. Then r; is
joined to this result.

Suppose that a B*-tree index on building is available on relation department
and that no other index is available. What would be the best way to handle the
following selections that involve negation?

& O (puilding < “Watson”)(department)

b. O (puitding = “Watson”)(department)

C. O (puilding < “Watson” v budger < 50000)(department)
Answer:

a. Usethe index to locate the first tuple whose building field has value “Wat-
son”. From this tuple, follow the pointer chains till the end, retrieving all
the tuples.

b. For this query, the index serves no purpose. We can scan the file sequen-
tially and select all tuples whose building field is anything other than
“Watson”.

¢. This query is equivalent to the query:

O building >"Watson® A budger <5000){department).

126

Chapter 16 Query Optimization

16.8

16.9

Using the building index, we can retrieve all tuples with building value
greater than or equal to “Watson” by following the pointer chains from
the first “Watson” tuple. We also apply the additional criteria of budget <
5000 on every tuple.

Consider the query:
select *
from r, s
where upper(r.4) = upper(s.4);

where “upper” is a function that returns its input argument with all lowercase
letters replaced by the corresponding uppercase letters.

a. Find out what plan is generated for this query on the database system
you use.

b. Some database systems would use a (block) nested-loop join for this
query, which can be very inefficient. Briefly explain how hash-join or
merge-join can be used for this query.

Answer:

a. First create relations r and s, and add some tuples to the two relations,
before finding the plan chosen; or use existing relations in place of r and
s. Compare the chosen plan with the plan chosen for a query directly
equating r.A = s.B. Check the estimated statistics, too. Some databases
may give the same plan, but with vastly different statistics.
(On PostgreSQL, we found that the optimizer used the merge join
plan described in the answer to the next part of this question.)

b. To use hash join, hashing should be done after applying the upper()
function to 7.4 and s.A. Similarly, for merge join, the relations should
be sorted on the result of applying the upper() function on r.4 and s.A4.
The hash or merge join algorithms can then be used unchanged.

Give conditions under which the following expressions are equivalent:

A8V age()(Ey MWUEy) and (1Y ge(c)(E})) N E,

where agg denotes any aggregation operation. How can the above conditions
be relaxed if agg is one of min or max?

Answer:

The above expressions are equivalent provided £, contains only attributes 4
and B, with 4 as the primary key (so there are no duplicates). It is OK if £,
does not contain some A values that exist in the result of £}, since such values
will get filtered out in either expression. However, if there are duplicate values
in £, A, the aggregate results in the two cases would be different.

16.10

16.11

16.12

Practice Exercises 127

If the aggregate function is min or max, duplicate 4 values do not have any
effect. However, there should be no duplicates on (4, B); the first expression
removes such duplicates, while the second does not.

Consider the issue of interesting orders in optimization. Suppose you are given
a query that computes the natural join of a set of relations S. Given a subset
S1 of S, what are the interesting orders of S1?

Answer:

The interesting orders are all orders on subsets of attributes that can potentially
participate in join conditions in further joins. Thus, let 7 be the set of all
attributes of S'1 that also occur in any relation in S — S1. Then every ordering
of every subset of 7 is an interesting order.

Modify the FindBestPlan(S) function to create a function FindBestPlan(S, O),
where O is a desired sort order for S, and which considers interesting sort
orders. A null order indicates that the order is not relevant. Hints: An algorithm
A may give the desired order O; if not a sort operation may need to be added
to get the desired order. If 4 is a merge-join, FindBestPlan must be invoked on
the two inputs with the desired orders for the inputs.

Answer:
FILL IN

Show that, with n relations, there are (2(n— 1))!/(n— 1)! different join orders.
Hint: A complete binary tree is one where every internal node has exactly two
children. Use the fact that the number of different complete binary trees with

n leaf nodes is:
1(2(n-1)
n\(n—1)

If you wish, you can derive the formula for the number of complete binary trees
with # nodes from the formula for the number of binary trees with » nodes.
The number of binary trees with » nodes is:

1 2n
n+1\ n

This number is known as the Catalan number, and its derivation can be found
in any standard textbook on data structures or algorithms.

Answer:

Each join order is a complete binary tree (every non-leaf node has exactly two
children) with the relations as the leaves. The number of different complete
binary trees with » leaf nodes is % (2((’:’__11))) This is because there is a bijection
between the number of complete binary trees with » leaves and number of
binary trees with » — 1 nodes. Any complete binary tree with # leaves has n — 1

internal nodes. Removing all the leaf nodes, we get a binary tree with n — 1

128

Chapter 16 Query Optimization

16.13

16.14

16.15

nodes. Conversely, given any binary tree with » — 1 nodes, it can be converted
to a complete binary tree by adding # leaves in a unique way. The number

of binary trees with » — 1 nodes is given by 1 (2((:__11))), known as the Catalan

n
number. Multiplying this by »n! for the number of permutations of the » leaves,

we get the desired result.

Show that the lowest-cost join order can be computed in time O(3"). Assume
that you can store and look up information about a set of relations (such as
the optimal join order for the set, and the cost of that join order) in constant
time. (If you find this exercise difficult, at least show the looser time bound of
0(2211).)

Answer:

Consider the dynamic programming algorithm given in Section 16.4. For each
subset having k + 1 relations, the optimal join order can be computed in time
2%+1 That is because for one particular pair of subsets 4 and B, we need con-
stant time, and there are at most 2¢*! — 2 different subsets that A can denote.
Thus, over all the (ki 1) subsets of size k + 1, this cost is (ki 1)2"“. Summing
over all k from 1 to n — 1 gives the binomial expansion of ((1 +x)" — x) with
x = 2. Thus the total cost is less than 3".

Show that, if only left-deep join trees are considered, as in the System R opti-
mizer, the time taken to find the most efficient join order is around #2". Assume
that there is only one interesting sort order.

Answer:

The derivation of time taken is similar to the general case, except that instead
of considering 2! — 2 subsets of size less than or equal to k for 4, we only
need to consider k + 1 subsets of size exactly equal to k. That is because the
right-hand operand of the topmost join has to be a single relation. Therefore
the total cost for finding the best join order for all subsets of size k + 1 is
(ki 1)(k + 1), which is equal to n(’7;1). Summing over all k from 1 to n — 1

using the binomial expansion of (1 +x)"~! with x = 1 gives a total cost of less
than n2"~ 1.

Consider the bank database of Figure 16.9, where the primary keys are under-
lined. Construct the following SQL queries for this relational database.

a. Write a nested query on the relation account to find, for each branch
with name starting with B, all accounts with the maximum balance at
the branch.

b. Rewrite the preceding query without using a nested subquery; in other
words, decorrelate the query, but in SQL.

c. Give a relational algebra expression using semijoin equivalent to the
query.

Practice Exercises 129

d. Give a procedure (similar to that described in Section 16.4.4) for decor-
relating such queries.

Answer:

a. The nested query is as follows:

select S.acount_number
from account S
where S.branch_name like 'B%’ and
S.balance =
(select max (7. halance)
from account T
where 7.branch_name = S.branch_name)

b. The decorrelated query is as follows:

create table 7, as
select branch_name, max(balance)
from account
group by branch_name

select account_number

from account, t,

where account.branch_name like 'B%’ and
account.branch_name = t,.branch_name and
account.balance = t,.balance

c. FILLIN

d. In general, consider the queries of the form:

branch(branch_name, branch_city, assets)

customer (customer_name, customer_street, customer_city)
loan (loan_number, branch_name, amount)

borrower (customer_name, loan_number)

account (account_number, branch_name, balance)
depositor (customer_name, account_number)

Figure 16.9 Banking database.

130 Chapter 16 Query Optimization

select
from
where

Ly

P, and

A, op
(select £(4,)
from L,
where P,)

where f is some aggregate function on attributes 4, and op is some
boolean binary operator. It can be rewritten as

wHxxk FILL IN **** GIVE Relational algebra version *****

create table 7, as

select
from
where

select f(4,),V
from L,
where P)
group by V'

Ll, tl
P, and P} and
Ay opt A,

where le contains predicates in P, without selections involving correla-
tion variables, and P22 introduces the selections involving the correlation
variables. V' contains all the attributes that are used in the selections in-
volving correlation variables in the nested query.

CHAPTER 1 7

Transactions

Practice Exercises

171

17.2

17.3

Suppose that there is a database system that never fails. Is a recovery manager
required for this system?

Answer:
Even in this case the recovery manager is needed to perform rollback of aborted
transactions for cases where the transaction itself fails.

Consider a file system such as the one on your favorite operating system.

a. What are the steps involved in the creation and deletion of files and in
writing data to a file?

b. Explain how the issues of atomicity and durability are relevant to the
creation and deletion of files and to writing data to files.

Answer:

There are several steps in the creation of a file. A storage area is assigned to the
file in the file system. (In UNIX, a unique i-number is given to the file and an
i-node entry is inserted into the i-list.) Deletion of file involves exactly opposite
steps.

For the file system user, durability is important for obvious reasons, but
atomicity is not relevant generally as the file system doesn’t support transac-
tions. To the file system implementor, though, many of the internal file sys-
tem actions need to have transaction semantics. All steps involved in cre-
ation/deletion of the file must be atomic, otherwise there will be unreference-
able files or unusable areas in the file system.

Database-system implementers have paid much more attention to the ACID
properties than have file-system implementers. Why might this be the case?

Answer:

131

132

Chapter 17

17.4

17.5

17.6

Transactions

Database systems usually perform crucial tasks whose effects need to be atomic
and durable, and whose outcome affects the real world in a permanent manner.
Examples of such tasks are monetary transactions, seat bookings etc. Hence
the ACID properties have to be ensured. In contrast, most users of file systems
would not be willing to pay the price (monetary, disk space, time) of supporting
ACID properties.

What class or classes of storage can be used to ensure durability? Why?

Answer:

Only stable storage ensures true durability. Even nonvolatile storage is suscep-
tible to data loss, albeit less so than volatile storage. Stable storage is only an
abstraction. It is approximated by redundant use of nonvolatile storage in which
data are not only replicated but distributed phyically to reduce to near zero the
chance of a single event casuing data loss.

Since every conflict-serializable schedule is view serializable, why do we em-
phasize conflict serializability rather than view serializability?

Answer:

Most of the concurrency control protocols (protocols for ensuring that only
serializable schedules are generated) used in practice are based on conflict
serializability—they actually permit only a subset of conflict serializable sched-
ules. The general form of view serializability is very expensive to test, and only
a very restricted form of it is used for concurrency control.

Consider the precedence graph of Figure 17.16. Is the corresponding schedule
conflict serializable? Explain your answer.

@ e

Figure 17.16 Precedence graph for Practice Exercise 17.6.

Answer:

17.7

17.8

Practice Exercises 133

There is a serializable schedule corresponding to the precedence graph since
the graph is acyclic. A possible schedule is obtained by doing a topological
sort, thatis, T, T,, T3, Ty, T.

What is a cascadeless schedule? Why is cascadelessness of schedules desir-
able? Are there any circumstances under which it would be desirable to allow
noncascadeless schedules? Explain your answer.

Answer:

A cascadeless schedule is one where, for each pair of transactions 7; and 7}
such that T} reads data items previously written by 7}, the commit operation of
T; appears before the read operation of T,. Cascadeless schedules are desirable
because the failure of a transaction does not lead to the aborting of any other
transaction. Of course this comes at the cost of less concurrency. If failures
occur rarely, so that we can pay the price of cascading aborts for the increased
concurrency, noncascadeless schedules might be desirable.

The lost update anomaly is said to occur if a transaction 7; reads a data item,
then another transaction 7}, writes the data item (possibly based on a previous
read), after which 7; writes the data item. The update performed by 7} has
been lost, since the update done by 7; ignored the value written by 7.

a. Give an example of a schedule showing the lost update anomaly.

b. Give an example schedule to show that the lost update anomaly is possi-
ble with the read committed isolation level.

c. Explain why the lost update anomaly is not possible with the repeatable
read isolation level.

Answer:

a. A schedule showing the lost update anomaly:

Ti T,
read(4)
read(A4)
write(A4)
write(A4)

In the above schedule, the value written by the transaction 7, is lost
because of the write of the transaction 7.

b. Lost update anomaly in read-committed isolation level:

134

Chapter 17

17.9

Transactions

T T

lock-S(A4)

read(A4)

unlock(A4)
lock-X(A4)
read(A4)
write(4)
unlock(A4)
commit

lock-X(A)

write(A4)

unlock(A4)

commit

The locking in the above schedule ensures the read-committed isolation
level. The value written by transaction 7, is lost due to 7’s write.

c. Lost update anomaly is not possible in repeatable read isolation level.
In repeatable read isolation level, a transaction 7' reading a data item
X holds a shared lock on X till the end. This makes it impossible for a
newer transaction 7, to write the value of X (which requires X-lock) until
T finishes. This forces the serialization order 7, 75, and thus the value
written by 7), is not lost.

Consider a database for a bank where the database system uses snapshot iso-
lation. Describe a particular scenario in which a nonserializable execution oc-
curs that would present a problem for the bank.

Answer:

Suppose that the bank enforces the integrity constraint that the sum of the
balances in the checking and the savings account of a customer must not be
negative. Suppose the checking and savings balances for a customer are $100
and $200 respectively.

Suppose that transaction 7; withdraws $200 from the checking account
after verifying the integrity constraint by reading both the balances. Suppose
that concurrent transaction 7', withdraws $200 from the checking account af-
ter verifying the integrity constraint by reading both the balances.

Since each of the transactions checks the integrity constraints on its own
snapshot, if they run concurrently, each will believe that the sum of the bal-
ances after the withdrawal is $100, and therefore its withdrawal does not vio-
late the integrity constraint. Since the two transactions update different data
items, they do not have any update conflict, and under snapshot isolation both

17.10

17.11

Practice Exercises 135

of them can commit. This is a nonserializable execution which results into a
serious problem.

Consider a database for an airline where the database system uses snapshot
isolation. Describe a particular scenario in which a nonserializable execution
occurs, but the airline may be willing to accept it in order to gain better overall
performance.

Answer:

Consider a web-based airline reservation system. There could be many con-
current requests to see the list of available flights and available seats in each
flight and to book tickets. Suppose there are two users 4 and B concurrently
accessing this web application, and only one seat is left on a flight.

Suppose that both user 4 and user B execute transactions to book a seat on
the flight and suppose that each transaction checks the total number of seats
booked on the flight, and inserts a new booking record if there are enough seats
left. Let 75 and T, be their respective booking transactions, which run concur-
rently. Now 73 and T, will see from their snapshots that one ticket is available
and will insert new booking records. Since the two transactions do not update
any common data item (tuple), snapshot isolation allows both transactions to
commit. This results in an extra booking, beyond the number of seats available
on the flight.

However, this situation is usually not very serious since cancellations of-
ten resolve the conflict; even if the conflict is present at the time the flight
is to leave, the airline can arrange a different flight for one of the passengers
on the flight, giving incentives to accept the change. Using snapshot isolation
improves the overall performance in this case since the booking transactions
read the data from their snapshots only and do not block other concurrent
transactions.

The definition of a schedule assumes that operations can be totally ordered
by time. Consider a database system that runs on a system with multiple pro-
cessors, where it is not always possible to establish an exact ordering between
operations that executed on different processors. However, operations on a
data item can be totally ordered.

Does this situation cause any problem for the definition of conflict serializ-
ability? Explain your answer.

Answer:

The given situation will not cause any problem for the definition of conflict
serializability since the ordering of operations on each data item is necessary
for conflict serializability, whereas the ordering of operations on different data
items is not important.

136

Chapter 17

Transactions

n | B
read(A4)
read(B)
write(B)

For the above schedule to be conflict serializable, the only ordering require-
ment is read(B) -> write(B). read(4) and read(B) can be in any order.

Therefore, as long as the operations on a data item can be totally ordered,
the definition of conflict serializability should hold on the given multiprocessor
system.

CHAPTER 18

Concurrency Control

Practice Exercises

18.1 Show that the two-phase locking protocol ensures conflict serializability and
that transactions can be serialized according to their lock points.

Answer:

Suppose two-phase locking does not ensure serializability. Then there exists a
set of transactions 7y, 7} ... T,,_; which obey 2PL and which produce a nonseri-
alizable schedule. A nonserializable schedule implies a cycle in the precedence
graph, and we shall show that 2PL cannot produce such cycles. Without loss
of generality, assume the following cycle exists in the precedence graph: 7;, —
I'—->T,— ..—- T, = T, Let o; be the time at which 7; obtains its last
lock (i.e. 7}'s lock point). Then for all transactions such that 7; — 7, a; < .
Then for the cycle we have

G < 0 < 0y < oo < Qg < 0

Since oy < a is a contradiction, no such cycle can exist. Hence 2PL cannot
produce nonserializable schedules. Because of the property that for all trans-
actions such that 7; - T}, o; < «, the lock point ordering of the transactions
is also a topological sort ordering of the precedence graph. Thus transactions
can be serialized according to their lock points.

18.2 Consider the following two transactions:

137

138 Chapter 18 Concurrency Control

T;,: read(4);
read(B);
ifA = OthenB:=B+1;
write(B).

T;5: read(B);
read(4);
if B = Othend =4+ 1;
write(4).

Add lock and unlock instructions to transactions 73, and 73, so that they ob-
serve the two-phase locking protocol. Can the execution of these transactions
result in a deadlock?

Answer:

a. Lock and unlock instructions:

Ty lock-S(A4)
read(4)
lock-X(B)
read(B)
if4A =0
thenB := B + 1
write(B)
unlock(A4)
unlock(B)

T;s: lock-S(B)
read(B)
lock-X(A4)
read(4)
ifB =0
thend .= 4 + 1
write(A4)
unlock(B)
unlock(4)

b. Execution of these transactions can result in deadlock. For example, con-
sider the following partial schedule:

18.3

18.4

18.5

Practice Exercises 139

T3 T3
lock-S (A4)
lock-S (B)
read(B)
read(A)
lock-X (B)
lock-X (A4)

The transactions are now deadlocked.

What benefit does rigorous two-phase locking provide? How does it compare
with other forms of two-phase locking?

Answer:

Rigorous two-phase locking has the advantages of strict 2PL. In addition it has
the property that for two conflicting transactions, their commit order is their
serializability order. In some systems users might expect this behavior.

Consider a database organized in the form of a rooted tree. Suppose that we
insert a dummy vertex between each pair of vertices. Show that, if we follow
the tree protocol on the new tree, we get better concurrency than if we follow
the tree protocol on the original tree.

Answer:

Consider two nodes 4 and B, where A4 is a parent of B. Let dummy vertex D
be added between 4 and B. Consider a case where transaction 7, has a lock
on B, and T, which has a lock on A wishes to lock B, and 75 wishes to lock
A. With the original tree, 7', cannot release the lock on 4 until it gets the lock
on B. With the modified tree, 7 can get a lock on D and release the lock on
A, which allows 77 to proceed while T waits for 7. Thus, the protocol allows
locks on vertices to be released earlier to other transactions, instead of holding
them when waiting for a lock on a child.

A generalization of the idea based on edge locks is described in Buckley
and Silberschatz, “Concurrency Control in Graph Protocols by Using Edge
Locks,” Proc. ACM SIGACT-SIGMOD Symposium on the Principles of Database
Systems, 1984 .

Show by example that there are schedules possible under the tree protocol that
are not possible under the two-phase locking protocol, and vice versa.

Answer:
Consider the tree-structured database graph given below.

140 Chapter 18 Concurrency Control

C

Schedule possible under tree protocol but not under 2PL:

T; T,
lock (4)
lock (B)
unlock (A4)
lock (4)
lock (C)
unlock (B)
lock (B)
unlock (4)
unlock (B)
unlock (C)

Schedule possible under 2PL but not under tree protocol:

T T,
lock (A)
lock (B)
lock (CO)
unlock (B)
unlock (A4)
unlock (C)

18.6 Locking is not done explicitly in persistent programming languages. Rather,
objects (or the corresponding pages) must be locked when the objects are ac-
cessed. Most modern operating systems allow the user to set access protections
(no access, read, write) on pages, and memory access that violate the access
protections result in a protection violation (see the Unix mprotect command,
for example). Describe how the access-protection mechanism can be used for
page-level locking in a persistent programming language.

Answer:

The access protection mechanism can be used to implement page- level lock-
ing. Consider reads first. A process is allowed to read a page only after it read-
locks the page. This is implemented by using mprotect to initially turn off read

18.7

18.8

Practice Exercises 141

permissions to all pages, for the process. When the process tries to access an
address in a page, a protection violation occurs. The handler associated with
protection violation then requests a read lock on the page, and after the lock
is acquired, it uses mprotect to allow read access to the page by the process,
and finally allows the process to continue. Write access is handled similarly.

Consider a database system that includes an atomic increment operation, in
addition to the read and write operations. Let V' be the value of data item X.
The operation

increment(X) by C

sets the value of X to V' + C in an atomic step. The value of X is not available
to the transaction unless the latter executes a read(X).

Assume that increment operations lock the item in increment mode using the
compatibility matrix in Figure 18.25.

a. Show that, if all transactions lock the data that they access in the corre-
sponding mode, then two-phase locking ensures serializability.

b. Show that the inclusion of increment mode locks allows for increased
concurrency.

Answer:

a. Serializability can be shown by observing that if two transactions have an
I mode lock on the same item, the increment operations can be swapped,
just like read operations. However, any pair of conflicting operations
must be serialized in the order of the lock points of the corresponding
transactions, as shown in Exercise 15.1.

b. The increment lock mode being compatible with itself allows multiple
incrementing transactions to take the lock simultaneously, thereby im-
proving the concurrency of the protocol. In the absence of this mode, an
exclusive mode will have to be taken on a data item by each transaction
that wants to increment the value of this data item. An exclusive lock be-
ing incompatible with itself adds to the lock waiting time and obstructs
the overall progress of the concurrent schedule.

In general, increasing the true entries in the compatibility matrix in-
creases the concurrency and improves the throughput.

The proof is in Korth, “Locking Primitives in a Database System,” Journal of
the ACM Volume 30, (1983).

In timestamp ordering, W-timestamp(Q) denotes the largest timestamp of any
transaction that executed write(Q) successfully. Suppose that, instead, we de-
fined it to be the timestamp of the most recent transaction to execute write(Q)

142

Chapter 18 Concurrency Control

18.9

18.10

successfully. Would this change in wording make any difference? Explain your
answer.

Answer:
It would make no difference. The write protocol is such that the most recent
transaction to write an item is also the one with the largest timestamp to have
done so.

Use of multiple-granularity locking may require more or fewer locks than an
equivalent system with a single lock granularity. Provide examples of both sit-
uations, and compare the relative amount of concurrency allowed.

Answer:

If a transaction needs to access a large set of items, multiple granularity lock-
ing requires fewer locks, whereas if only one item needs to be accessed, the
single lock granularity system allows this with just one lock. Because all the
desired data items are locked and unlocked together in the multiple granularity
scheme, the locking overhead is low, but concurrency is also reduced.

For each of the following protocols, describe aspects of practical applications
that would lead you to suggest using the protocol, and aspects that would sug-
gest not using the protocol:

* Two-phase locking

* Two-phase locking with multiple-granularity locking.
* The tree protocol

* Timestamp ordering

° Validation

° Multiversion timestamp ordering

° Multiversion two-phase locking

Answer:

* Two-phase locking: Use for simple applications where a single granularity
is acceptable. If there are large read-only transactions, multiversion proto-
cols would do better. Also, if deadlocks must be avoided at all costs, the
tree protocol would be preferable.

* Two-phase locking with multiple granularity locking: Use for an applica-
tion mix where some applications access individual records and others
access whole relations or substantial parts thereof. The drawbacks of 2PL
mentioned above also apply to this one.

* The tree protocol: Use if all applications tend to access data items in an
order consistent with a particular partial order. This protocol is free of

Practice Exercises 143

deadlocks, but transactions will often have to lock unwanted nodes in or-
der to access the desired nodes.

* Timestamp ordering: Use if the application demands a concurrent exe-
cution that is equivalent to a particular serial ordering (say, the order of
arrival), rather than any serial ordering. But conflicts are handled by roll
back of transactions rather than waiting, and schedules are not recover-
able. To make them recoverable, additional overheads and increased re-
sponse time have to be tolerated. Not suitable if there are long read-only
transactions, since they will starve. Deadlocks are absent.

* Validation: If the probability that two concurrently executing transactions
conflict is low, this protocol can be used advantageously to get better con-
currency and good response times with low overheads. Not suitable under
high contention, when a lot of wasted work will be done.

° Multiversion timestamp ordering: Use if timestamp ordering is appropri-
ate but it is desirable for read requests to never wait. Shares the other
disadvantages of the timestamp ordering protocol.

° Multiversion two-phase locking: This protocol allows read-only transac-
tions to always commit without ever waiting. Update transactions follow
2PL, thus allowing recoverable schedules with conflicts solved by waiting
rather than roll back. But the problem of deadlocks comes back, though
read-only transactions cannot get involved in them. Keeping multiple ver-
sions adds space and time overheads though, therefore plain 2PL may be
preferable in low-conflict situations.

18.11 Explain why the following technique for transaction execution may provide
better performance than just using strict two-phase locking: First execute the
transaction without acquiring any locks and without performing any writes
to the database as in the validation-based techniques, but unlike the validation
techniques do not perform either validation or writes on the database. Instead,
rerun the transaction using strict two-phase locking. (Hint: Consider waits for
disk 1/0.)

Answer:

A transaction waits on (a) disk I/O and (b) lock acquisition. Transactions gen-
erally wait on disk reads and not on disk writes as disk writes are handled
by the buffering mechanism in asynchronous fashion and transactions update
only the in-memory copy of the disk blocks.

The technique proposed essentially separates the waiting times into two
phases. The first phase—where transaction is executed without acquiring any
locks and without performing any writes to the database—accounts for almost
all the waiting time on disk I/O as it reads all the data blocks it needs from

144

Chapter 18 Concurrency Control

18.12

disk if they are not already in memory. The second phase—the transaction re-
execution with strict two-phase locking—accounts for all the waiting time on
acquiring locks. The second phase may, though rarely, involve a small waiting
time on disk I/O if a disk block that the transaction needs is flushed to memory
(by buffer manager) before the second phase starts.

The technique may increase concurrency as transactions spend almost no
time on disk I/O with locks held and hence locks are held for a shorter time.
In the first phase, the transaction reads all the data items required—and not
already in memory—from disk. The locks are acquired in the second phase
and the transaction does almost no disk I/O in this phase. Thus the transaction
avoids spending time in disk I/O with locks held.

The technique may even increase disk throughput as the disk I/O is not
stalled for want of a lock. Consider the following scenario with strict two-phase
locking protocol: A transaction is waiting for a lock, the disk is idle, and there
are some items to be read from disk. In such a situation, disk bandwidth is
wasted. But in the proposed technique, the transaction will read all the required
items from the disk without acquiring any lock, and the disk bandwidth may
be properly utilized.

Note that the proposed technique is most useful if the computation involved
in the transactions is less and most of the time is spent in disk I/O and waiting
on locks, as is usually the case in disk-resident databases. If the transaction is
computation intensive, there may be wasted work. An optimization is to save
the updates of transactions in a temporary buffer, and instead of reexecuting
the transaction, to compare the data values of items when they are locked with
the values used earlier. If the two values are the same for all items, then the
buffered updates of the transaction are executed, instead of reexecuting the
entire transaction.

Consider the timestamp-ordering protocol, and two transactions, one that
writes two data items p and ¢, and another that reads the same two data items.
Give a schedule whereby the timestamp test for a write operation fails and
causes the first transaction to be restarted, in turn causing a cascading abort
of the other transaction. Show how this could result in starvation of both trans-
actions. (Such a situation, where two or more processes carry out actions, but
are unable to complete their task because of interaction with the other pro-
cesses, is called a livelock.)

Answer:
Consider two transactions 7, and 7, shown below.

18.13

18.14

Practice Exercises 145

T, | T
write (p)
read (p)
read (q)
write (q)

Let TS(7,) < TS(T,), and let the timestamp test at each operation except
write(q) be successful. When transaction 7 does the timestamp test for
write(g), it finds that TS(7}) < R-timestamp(qg), since TS(7) < TS(7,) and
R-timestamp(g) = TS(7,). Hence the write operation fails, and transaction 7}
rolls back. The cascading results in transaction 7, also being rolled back as it
uses the value for item p that is written by transaction 77.

If this scenario is exactly repeated every time the transactions are restarted,
this could result in starvation of both transactions.

Devise a timestamp-based protocol that avoids the phantom phenomenon.

Answer:

In the text, we considered two approaches to dealing with the phantom phe-
nomenon by means of locking. The coarser granularity approach obviously
works for timestamps as well. The B*-tree index- based approach can be
adapted to timestamping by treating index buckets as data items with times-
tamps associated with them, and requiring that all read accesses use an index.
We now show that this simple method works. Suppose a transaction 7; wants
to access all tuples with a particular range of search key values, using a B*-
tree index on that search key. 7; will need to read all the buckets in that index
which have key values in that range. It can be seen that any delete or insert of
a tuple with a key value in the same range will need to write one of the index
buckets read by 7;. Thus the logical conflict is converted to a conflict on an
index bucket, and the phantom phenomenon is avoided.

Suppose that we use the tree protocol of Section 18.1.5 to manage concurrent
access to a B*-tree. Since a split may occur on an insert that affects the root, it
appears that an insert operation cannot release any locks until it has completed
the entire operation. Under what circumstances is it possible to release a lock
earlier?

Answer:
Note: The tree protocol of Section Section 18.1.5 which is referred to in this
question is different from the multigranularity protocol of Section 18.3 and
the B*-tree concurrency protocol of Section 18.10.2.

One strategy for early lock releasing is given here. Going down the tree from
the root, if the currently visited node’s child is not full, release locks held on
all nodes except the current node, then request an X-lock on the child node.

146

Chapter 18 Concurrency Control

18.15

After getting it, release the lock on the current node, and then descend to the
child. On the other hand, if the child is full, retain all locks held, request an
X-lock on the child, and descend to it after getting the lock. On reaching the
leaf node, start the insertion procedure. This strategy results in holding locks
only on the full index tree nodes from the leaf upward, until and including the
first non-full node.

An optimization to the above strategy is possible. Even if the current node’s
child is full, we can still release the locks on all nodes but the current one. But
after getting the X-lock on the child node, we split it right away. Releasing the
lock on the current node and retaining just the lock on the appropriate split
child, we descend into it, making it the current node. With this optimization,
at any time at most two locks are held, of a parent and a child node.

The snapshot isolation protocol uses a validation step which, before perform-
ing a write of a data item by transaction 7', checks if a transaction concurrent
with 7T has already written the data item.

a. A straightforward implementation uses a start timestamp and a commit
timestamp for each transaction, in addition to an update set, that, is the
set of data items updated by the transaction. Explain how to perform
validation for the first-committer-wins scheme by using the transaction
timestamps along with the update sets. You may assume that validation
and other commit processing steps are executed serially, that is, for one
transaction at a time,

b. Explain how the validation step can be implemented as part of commit
processing for the first-committer-wins scheme, using a modification of
the above scheme, where instead of using update sets, each data item
has a write timestamp associated with it. Again, you may assume that
validation and other commit processing steps are executed serially.

c. The first-updater-wins scheme can be implemented using timestamps as
described above, except that validation is done immediately after acquir-
ing an exclusive lock, instead of being done at commit time.

i. Explain how to assign write timestamps to data items to implement
the first-updater-wins scheme.

ii. Show that as a result of locking, if the validation is repeated at com-
mit time the result would not change.

iii. Explain why there is no need to perform validation and other commit
processing steps serially in this case.

Answer:

a. Validation test for firstcommitter-wins scheme: Let StartTS(T)),
CommitTS(7}) and be the timestamps associated with a transaction 7;

18.16

Practice Exercises 147

and the update set for 7; be update_set(7;). Then for all transactions 7},
with CommitTS(7},) < CommitTS(7;), one of the following two condi-
tions must hold:

e If CommitTS(7},) < StartTS(T}), T, completes its execution before
T; started, the serializability is maintained.

e StartTS(7;) < CommitTS(7},) < CommitTS(7;), and update_set(7})
and update_set(7},) do not intersect

Validation test for first-committer-wins scheme with W-timestamps for
data items: If a transaction 7, writes a data item Q, then the W-
timestamp(Q) is set to CommitTS(7;). For the validation test of a trans-

action T; to pass, the following condition must hold:
* For each data item Q written by 7;, W-timestamp(Q) < StartTS(7;).

First-updater-wins scheme:

i. For a data item Q written by 7}, the W-timestamp is assigned the
timestamp when the write occurred in 7

ii. Since the validation is done after acquiring the exclusive locks and

the exclusive locks are held till the end of the transaction, the data
item cannot be modified in between the lock acquisition and commit
time. So, the result of the validation test for a transaction would be
the same at the commit time as that at the update time.

iii. Because of the exclusive locking, at most one transaction can acquire

the lock on a data item at a time and do the validation testing. Thus,
two or more transactions cannot do validation testing for the same
data item simultaneously.

Consider functions insert_latchfree() and delete_latchfree(), shown in Figure

18.23.
a. Explain how the ABA problem can occur if a deleted node is reinserted.
b. Suppose that adjacent to sead we store a counter cnt. Also suppose that
DCAS((head,cnt), (oldhead, oldcnt), (newhead, newcnt)) atomically per-
forms a compare-and-swap on the 128 bit value (kead,cnt). Modify the in-
sert_latchfree() and delete_latchfree() to use the DCAS operation to avoid
the ABA problem.
c. Since most processors use only 48 bits of a 64 bit address to actually
address memory, explain how the other 16 bits can be used to implement
a counter, in case the DCAS operation is not supported.
Answer:
a. Let the head of the list be pointer #1, and the next three elements be 72

and n3. Suppose process P1 which is performing a delete, reads pointer

148

Chapter 18 Concurrency Control

n1 as head and n2 as newhead, but before it executes CAS(head, nl, n2),
process P2 deletes n1, then deletes #2 and then inserts #1 back at the
head.

The CAS would replace n1 by a pointer to n2, since the head is still
n1l. However, node n2 has meanwhile been deleted and is garbage. Thus,
the list is now inconsistent.

b. The following code

atomic_read(head, cnt) {

repeat
oldhead = head
oldent = cnt

result = DCAS((head, cnt), (oldhead, oldcnt), (oldhead, oldcnt))
until (result == success)
return (oldhead, oldcnt)

}

insert_latchfree(head, value) {
node = new node
node—>value = value
repeat
(oldhead, oldcnt) = atomic_read(head, cnt)
node—>next = oldhead
newcnt = oldcnt+1
result = DCAS(head, (oldhead, oldcnt), (node, newcnt))
until (result == success)

}

delete_latchfree(head) {

/* This function is not quite safe; see explanation in text. */
repeat

(oldhead, oldcnt) = atomic_read(head, cnt)

newhead = oldhead—>next

newcnt = oldcnt+1

result = DCAS(head, (oldhead, oldcnt), (newhead, newcnt))
until (result == success)

}

The atomic_read function ensures that the 128 bit address, counter pair is
read atomically, by using the DCAS instruction to ensure that the values
are still same (the DCAS instruction stores the same values back if it
succeeds, so there is no change in the value). If the DCAS fails, we may

Practice Exercises 149

have read an old pointer and a new value, or vice versa, requiring the
values to be read again.

The ABA problem would be avoided by the modified code for in-
sert_latchfree() and delete_latchfree(), since although the reinsert of the
n1 by P2 would result in the head having the same pointer n1 as earlier,
counter cnt would be different from oldcnt, resulting in the CAS opera-
tion of P1 failing.

Most processors use only the last 48 bits of a 64 bit address to access
memory (which can support 256 Terabytes of memory). The first 16 bits
of a 64 bit value can then be used as a counter, and the last 48 bits as
the address, with the counter and the address extracted using bit-and
operations before being used, and using bit-and and bit-or operations to
reconstruct the 64 bit value from a pointer and a counter. If a hardware
implementation does not support DCAS, this could be used as an alter-
native to a DCAS, although it still runs a the small risk of the counter
wrapping around if there are exactly 64K other operations on the list
between the read of the head and the CAS operation.

CHAPTER 19

Recovery System

Practice Exercises

19.1

19.2

Explain why log records for transactions on the undo-list must be processed in
reverse order, whereas redo is performed in a forward direction.

Answer:

Within a single transaction in undo-list, suppose a data item is updated more
than once, say from 1 to 2, and then from 2 to 3. If the undo log records are
processed in forward order, the final value of the data item will be incorrectly
set to 2, whereas by processing them in reverse order, the value is set to 1. The
same logic also holds for data items updated by more than one transaction on
undo-list.

Using the same example as above, but assuming the transaction committed,
it is easy to see that if redo processing processes the records in forward order,
the final value is set correctly to 3, but if done in reverse order, the final value
is set incorrectly to 2.

Explain the purpose of the checkpoint mechanism. How often should check-
points be performed? How does the frequency of checkpoints affect:

* System performance when no failure occurs?
* The time it takes to recover from a system crash?

* The time it takes to recover from a media (disk) failure?

Answer:
Checkpointing is done with log-based recovery schemes to reduce the time
required for recovery after a crash. If there is no checkpointing, then the entire
log must be searched after a crash, and all transactions must be undone/redone
from the log. If checkpointing is performed, then most of the log records prior
to the checkpoint can be ignored at the time of recovery.

Another reason to perform checkpoints is to clear log records from stable
storage as it gets full.

151

152

Chapter 19

19.3

19.4

Recovery System

Since checkpoints cause some loss in performance while they are being
taken, their frequency should be reduced if fast recovery is not critical. If we
need fast recovery, checkpointing frequency should be increased. If the amount
of stable storage available is less, frequent checkpointing is unavoidable.

Checkpoints have no effect on recovery from a disk crash; archival dumps
are the equivalent of checkpoints for recovery from disk crashes.

Some database systems allow the administrator to choose between two forms
of logging: normal logging, used to recover from system crashes, and archival
logging, used to recover from media (disk) failure. When can a log record be
deleted, in each of these cases, using the recovery algorithm of Section 19.4?

Answer:
Normal logging: The following log records cannot be deleted, since they may
be required for recovery:

a. Any log record corresponding to a transaction which was active during
the most recent checkpoint (i.e., which is part of the <checkpoint L>
entry)

b. Any log record corresponding to transactions started after the recent
checkpoint

All other log records can be deleted. After each checkpoint, more records be-
come candidates for deletion as per the above rule.

Deleting a log record while retaining an earlier log record would result in
gaps in the log and would require more complex log processing. Therefore in
practice, systems find a point in the log where all earlier log records can be
deleted, and they delete that part of the log. Often, the log is broken up into
multiple files, and a file is deleted when all log records in the file can be deleted.

Archival logging: Archival logging retains log records that may be needed for
recovery from media failure (such as disk crashes). Archival dumps are the
equivalent of checkpoints for recovery from media failure. The preceding
rules for deletion can be used for archival logs, but based on the last archival
dump instead of the last checkpoint. The frequency of archival dumps would
be less than checkpointing, since a lot of data have to be written. Thus more
log records would need to be retained with archival logging.

Describe how to modify the recovery algorithm of Section 19.4 to implement
savepoints and to perform rollback to a savepoint. (Savepoints are described
in Section 19.9.3.)

Answer:
A savepoint can be performed as follows:

Practice Exercises 153

Output onto stable storage all log records for that transaction which are
currently in main memory.

Output onto stable storage a log record of the form <savepoint 7;>, where
T; is the transaction identifier.

To roll back a currently executing transaction partially to a particular save-
point, execute undo processing for that transaction until the savepoint is
reached. Redo log records are generated as usual during the undo phase above.
It is possible to perform repeated undo to a single savepoint by writing a fresh
savepoint record after rolling back to that savepoint. The above algorithm can
be extended to support multiple savepoints for a single transaction by giving
each savepoint a name. However, once undo has rolled back past a savepoint,
it is no longer possible to undo up to that savepoint.

19.5 Suppose the deferred modification technique is used in a database.

a.

Is the old value part of an update log record required any more? Why or
why not?

If old values are not stored in update log records, transaction undo is
clearly not feasible. How would the redo phase of recovery have to be
modified as a result?

Deferred modification can be implemented by keeping updated data
items in local memory of transactions and reading data items that have
not been updated directly from the database buffer. Suggest how to effi-
ciently implement a data item read, ensuring that a transaction sees its
own updates.

What problem would arise with the above technique if transactions per-
form a large number of updates?

Answer:

The old-value part of an update log record is not required. If the trans-
action has committed, then the old value is no longer necessary as there
would be no need to undo the transaction. And if the transaction was
active when the system crashed, the old values are still safe in the stable
storage because they haven’t been modified yet.

During the redo phase, the undo list need not be maintained any more,
since the stable storage does not reflect updates due to any uncommitted
transaction.

A data item read will first issue a read request on the local memory of
the transaction. If it is found there, it is returned. Otherwise, the item is

154

Chapter 19 Recovery System

loaded from the database buffer into the local memory of the transaction
and then returned.

If a single transaction performs a large number of updates, there is a
possibility of the transaction running out of memory to store the local
copies of the data items.

19.6 The shadow-paging scheme requires the page table to be copied. Suppose the
page table is represented as a B*-tree.

a.

Suggest how to share as many nodes as possible between the new copy
and the shadow copy of the B*-tree, assuming that updates are made
only to leaf entries, with no insertions or deletions.

Even with the above optimization, logging is much cheaper than a
shadow copy scheme, for transactions that perform small updates. Ex-
plain why.

Answer:

a.

To begin with, we start with the copy of just the root node pointing to
the shadow copy. As modifications are made, the leaf entry where the
modification is made and all the nodes in the path from that leaf node
to the root are copied and updated. All other nodes are shared.

For transactions that perform small updates, the shadow-paging scheme
would copy multiple pages for a single update, even with the above op-
timization. Logging, on the other hand, just requires small records to
be created for every update; the log records are physically together in
one page or a few pages, and thus only a few log page 1/O operations
are required to commit a transaction. Furthermore, the log pages writ-
ten out across subsequent transaction commits are likely to be adjacent
physically on disk, minimizing disk arm movement.

19.7 Suppose we (incorrectly) modify the recovery algorithm of Section 19.4 to
note log actions taken during transaction rollback. When recovering from a
system crash, transactions that were rolled back earlier would then be included
in undo-list and rolled back again. Give an example to show how actions taken
during the undo phase of recovery could result in an incorrect database state.
(Hint: Consider a data item updated by an aborted transaction and then up-
dated by a transaction that commits.)

Answer:
Consider the following log records generated with the (incorrectly) modified
recovery algorithm:

1. <T start>

19.8

19.9

Practice Exercises 155

2.<T}, A, 1000, 900>
3. <T, start>

4. <T,, A, 1000, 2000>
5. <T, commit>

A rollback actually happened between steps 2 and 3, but there are no log
records reflecting the same. Now, this log data is processed by the recovery
algorithm. At the end of the redo phase, 7 would get added to the undo-list,
and the value of A would be 2000. During the undo phase, since 7 is present
in the undo-list, the recovery algorithm does an undo of statement 2, and A
takes the value 1000. The update made by 7,, though commited, is lost.

The correct sequence of logs is as follows:

. <T start>

.<T;, A, 1000, 900>
.<T}, A, 1000>

. <T abort>

. <T, start>

.<T,, A, 1000, 2000>
. <T, commit>

~N NN B W

This would make sure that 7| would not get added to the undo-list after the
redo phase.

Disk space allocated to a file as a result of a transaction should not be released
even if the transaction is rolled back. Explain why, and explain how ARIES
ensures that such actions are not rolled back.

Answer:

If a transaction allocates a page to a relation, even if the transaction is rolled
back, the page allocation should not be undone because other transactions
may have stored records in the same page. Such operations that should not
be undone are called nested top actions in ARIES. They can be modeled as
operations whose undo action does nothing. In ARIES such operations are
implemented by creating a dummy CLR whose UndoNextLSN is set such that
the transaction rollback skips the log records generated by the operation.

Suppose a transaction deletes a record, and the free space generated thus is
allocated to a record inserted by another transaction, even before the first trans-
action commits.

a. What problem can occur if the first transaction needs to be rolled back?

b. Would this problem be an issue if page-level locking is used instead of
tuple-level locking?

156

Chapter 19 Recovery System

c. Suggest how to solve this problem while supporting tuple-level locking,
by logging post-commit actions in special log records, and executing
them after commit. Make sure your scheme ensures that such actions
are performed exactly once.

Answer:

a. If the first transaction needs to be rolled back, the tuple deleted by that
transaction will have to be restored. If undo is performed in the usual
physical manner using the old values of data items, the space allocated to
the new tuple would get overwritten by the transaction undo, damaging
the new tuples, and associated data structures on the disk block. This
means that a logical undo operation has to be performed, i.e., an insert
has to be performed to undo the delete, which complicates recovery.
On a related note, if the second transaction inserts with the same key,
integrity constraints might be violated on rollback.

b. If page-level locking is used, the free space generated by the first trans-
action is not allocated to another transaction till the first one commits.
So this problem will not be an issue if page-level locking is used.

c. The problem can be solved by deferring freeing of space until after the
transaction commits. To ensure that space will be freed even if there is
a system crash immediately after commit, the commit log record can be
modified to contain information about freeing of space (and other sim-
ilar operations) which must be performed after commit. The execution
of these operations can be performed as a transaction and log records
generated, following by a post-commit log record which indicates that
post-commit processing has been completed for the transaction.

During recovery, if a commit log record is found with post-commit
actions, but no post-commit log record is found, the effects of any partial
execution of post-commit operations are rolled back during recovery,
and the post-commit operations are reexecuted at the end of recovery.
If the post-commit log record is found, the post-commit actions are not
reexecuted. Thus, the actions are guaranteed to be executed exactly once.

The problem of clashes on primary key values can be solved by hold-
ing key-level locks so that no other transaction can use the key until the
first transaction completes.

19.10 Explain the reasons why recovery of interactive transactions is more difficult
to deal with than is recovery of batch transactions. Is there a simple way to deal
with this difficulty? (Hint: Consider an automatic teller machine transaction
in which cash is withdrawn.)

Answer:

19.11

Practice Exercises 157

Interactive transactions are more difficult to recover from than batch transac-
tions because some actions may be irrevocable. For example, an output (write)
statement may have fired a missile or caused a bank machine to give money to
a customer. The best way to deal with this is to try to do all output statements
at the end of the transaction. That way if the transaction aborts in the middle,
no harm will be have been done.

Output operations should ideally be done atomically; for example, ATM
machines often count out notes and deliver all the notes together instead of
delivering notes one at a time. If output operations cannot be done atomically,
a physical log of output operations, such as a disk log of events, or even a video
log of what happened in the physical world can be maintained to allow perform
recovery to be performed manually later, for example, by crediting cash back
to a customer’s account.

Sometimes a transaction has to be undone after it has committed because it
was erroneously executed—for example, because of erroneous input by a bank
teller.

a. Give an example to show that using the normal transaction undo mech-
anism to undo such a transaction could lead to an inconsistent state.

b. One way to handle this situation is to bring the whole database to a state
prior to the commit of the erroneous transaction (called point-in-time re-
covery). Transactions that committed later have their effects rolled back
with this scheme.

Suggest a modification to the recovery algorithm of Section 19.4 to
implement point-in-time recovery using database dumps.

c. Later nonerroneous transactions can be reexecuted logically, if the up-
dates are available in the form of SQL but cannot be reexecuted using
their log records. Why?

Answer:

a. Consider the a bank account 4 with balance $100. Consider two trans-
actions 7 and T,, each depositing $10 in the account. Thus the bal-
ance would be $120 after both these transactions are executed. Let the
transactions execute in sequence: 7 first and then 7. The log records
corresponding to the updates of 4 by transactions 7; and 7, would be
< T,,4,100, 110 > and < T,, 4, 110, 120 > respectively.

Say we wish to undo transaction 7). The normal transaction undo
mechanism will replace the value in question—A4 in this example—with
the old-value field in the log record. Thus if we undo transaction 7' using
the normal transaction undo mechanism, the resulting balance will be

158

Chapter 19

19.12

Recovery System

b.

$100 and we will, in effect, undo both transactions, whereas we intend
to undo only transaction 7.

Let the erroneous transaction be 7.

° ldentify the latest archival dump, say D, before the log record < 7,
START>. Restore the database using the dump.

* Redo all log records starting from the dump D to the log record
< T,, COMMIT>. Some transaction—apart from transaction 7,—
would be active at the commit time of transaction 7. Let S; be the
set of such transactions.

* Rollback 7, and the transactions in the set S;. This completes point-
in-time recovery.

In case logical redo is possible, later transactions can be rex-
ecuted logically, assuming log records containing logical redo in-
formation were written for every transaction. To perform logical
redo of later transactions, scan the log further starting from the log
record < T,, COMMIT> to the end of the log. Note the transactions
that were started after the commit point of 7,. Let the set of such
transactions be S,. Reexecute the transactions in set S; and S, log-
ically.

Consider again an example from the first item. Let us assume that both
transactions are undone and the balance is reverted back to the original
value $100.

Now we wish to redo transaction 7. If we redo the log record < 75, 4,
110, 120 > corresponding to transaction 75, the balance will become
$120 and we will, in effect, redo both transactions, whereas we intend to
redo only transaction 7.

The recovery techniques that we described assume that blocks are written
atomically to disk. However, a block may be partially written when power fails,
with some sectors written, and others not yet written.

a. What problems can partial block writes cause?
b. Partial block writes can be detected using techniques similar to those
used to validate sector reads. Explain how.
c. Explain how RAID 1 can be used to recover from a partially written
block, restoring the block to either its old value or to its new value.
Answer:

FILL IN

Practice Exercises 159

19.13 The Oracle database system uses undo log records to provide a snapshot view
of the database under snapshot isolation. The snapshot view seen by transac-
tion 7; reflects updates of all transactions that had committed when 7 started
and the updates of 7}; updates of all other transactions are not visible to 7.

Describe a scheme for buffer handling whereby transactions are given a
snapshot view of pages in the buffer. Include details of how to use the log to
generate the snapshot view. You can assume that operations as well as their
undo actions affect only one page.

Answer:

First, determine if a transaction is currently modifying the buffer. If not, then
return the current contents of the buffer. Otherwise, examine the records in
the undo log pertaining to this buffer. Make a copy of the buffer, then for
each relevant operation in the undo log, apply the operation to the buffer copy
starting with the most recent operation and working backwards until the point
at which the modifying transaction began. Finally, return the buffer copy as
the snapshot buffer.

CHAPTER Zo

Database-System Architectures

Practice Exercises

20.1

20.2

20.3

Is a multiuser system necessarily a parallel system? Why or why not?

Answer:
No. A single processor with only one core can run multiple processes to man-
age mutiple users. Most modern systems are parallel, however.

Atomic instructions such as compare-and-swap and test-and-set also execute a
memory fence as part of the instruction on many architectures. Explain what
is the motivation for executing the memory fence, from the viewpoint of data
in shared memory that is protected by a mutex implemented by the atomic
instruction. Also explain what a process should do before releasing a mutex.

Answer:

FILL IN MORE

The memory fence ensures that the process that gets the mutex will see all
updates that happened before the instruction, as long as processes execute
a fence before releasing the mutex. Thus, even if the data was updated on a
different core, the process that acquires the mutex is guaranteed to see the
latest value of the data.

Instead of storing shared structures in shared memory, an alternative archi-
tecture would be to store them in the local memory of a special process and
access the shared data by interprocess communication with the process. What
would be the drawback of such an architecture?

Answer:

The drawbacks would be that two interprocess messages would be required
to acquire locks, one for the request and one to confirm grant. Interprocess
communication is much more expensive than memory access, so the cost of
locking would increase. The process storing the shared structures could also
become a bottleneck.

161

162

Chapter 20

204

20.5

20.6

20.7

Database-System Architectures

The benefit of this alternative is that the lock table is protected better from
erroneous updates since only one process can access it.

Explain the distinction between a /latch and a lock as used for transactional
concurrency control.

Answer:

Latches are short-duration locks that manage access to internal system data
structures. Locks taken by transactions are taken on database data items and
are often held for a substantial fraction of the duration of the transaction.
Latch acquisition and release are not covered by the two-phase locking proto-
col.

Suppose a transaction is written in C with embedded SQL, and about 80 per-
cent of the time is spent in the SQL code, with the remaining 20 percent spent
in C code. How much speedup can one hope to attain if parallelism is used
only for the SQL code? Explain.

Answer:
Since the part which cannot be parallelized takes 20% of the total running time,
the best speedup we can hope for is 5. In Amdahl’s law: T—ll-(p/n)’ p=4/5
and # is arbitrarily large. So, 1 —p = 1/5 and p/n aproaches zero.
Consider a pair of processes in a shared memory system such that process
A updates a data structure, and then sets a flag to indicate that the update is
completed. Process B monitors the flag, and starts processing the data struc-
ture only after it finds the flag is set.

Explain the problems that could arise in a memory architecture where
writes may be reordered, and explain how the sfence and Ifence instructions
can be used to ensure the problem does not occur.

Answer:

The goal here is that the consumer process B should see the data structure state
after all updates have been completed. But out of order writes to main memory
can result in the consumer process seeing some but not all the updates to the
data structure, even after the flag has been set.

To avoid this problem, the producer process 4 should issue an sfence af-
ter the updates, but before setting the flag. It can optionally issue an sfence
after setting the flag, to push the update to memory with minimum delay. The
consumer process B should correspondingly issue an Ifence after the flag has
been found to be set, before accessing the datastructure.

In a shared-memory architecture, why might the time to access a memory lo-
cation vary depending on the memory location being accessed?

Answer:

20.8

20.9

20.10

Practice Exercises 163

In a NUMA architecture, a processor can access its own memory faster than it
can access shared memory associated with another processor due to the time
taken to transfer data between processors.

Most operating systems for parallel machines (i) allocate memory in a local
memory area when a process requests memory, and (ii) avoid moving a pro-
cess from one core to another. Why are these optimizations important with a
NUMA architecture?

Answer:

In a NUMA architecture, a processor can access its own memory faster that it
can access shared memory associated with another processor due to the time
taken to transfer data between processors. Thus, if the data of a process resides
in local memory, the process execution would be faster than if the memory is
non-local.

Further, if a process moves from one core to another, it may lose the ben-
efits of local allocation of memory, and be forced to carry out many memory
accesses from other cores. To avoid this problem, most operating systems avoid
moving a process from one core to another wherever possible.

Some database operations such as joins can see a significant difference in
speed when data (e.g., one of the relations involved in a join) fits in mem-
ory as compared to the situation where the data do not fit in memory. Show
how this fact can explain the phenomenon of superlinear speedup, where an
application sees a speedup greater than the amount of resources allocated to
it.

Answer:

We illustrate this by an example. Suppose we double the amount of main mem-
ory and that as a result, one of the relations now fits entirely in main memory.
We can now use a nested-loop join with the inner-loop relation entirely in main
memory and incur disk accesses for reading the input relations only one time.
With the original amount of main memory, the best join strategy may have had
to read a relation in from disk more than once.

What is the key distinction between homogeneous and federated distributed
database systems?

Answer:

The key diference is the degree of cooperation among the systems and the
degree of centralized control. Homogeneous systems share a global schema,
run the same database-system software and actively cooperate on query pro-
cessing. Federated systems may have distinct schemas and software, and may
cooperate in only a limited manner.

164

Chapter 20 Database-System Architectures

20.11

20.12

Why might a client choose to subscribe only to the basic infrastructure-as-a-
service model rather than to the services offered by other cloud service mod-
els?

Answer:

A client may wish to control its own applications and thus may not wish to
subscribe to a software-as-a-service model; or the client might wish further to
be able to choose and manage its own database system and thus not wish to
subscribe to a platform-as-a-service model.

Why do cloud-computing services support traditional database systems best by
using a virtual machine, instead of running directly on the service provider’s
actual machine, assuming that data is on external storage?

Answer:

By using a virtual machine, if a physical machine fails, virtual machines run-
ning on that physical machine can be restarted quickly on one or more other
physical machines, improving availability. (Assuming of course that data re-
mains accessible, either by storing multiple copies of data, or by storing data
in an highly available external storage system.)

CHAPTER Z 1

Parallel and Distributed Storage

Practice Exercises

21.1

21.2

In a range selection on a range-partitioned attribute, it is possible that only
one disk may need to be accessed. Describe the benefits and drawbacks of this
property.

Answer:

If there are few tuples in the queried range, then each query can be processed
quickly on a single disk. This allows parallel execution of queries with reduced
overhead of initiating queries on multiple disks.

On the other hand, if there are many tuples in the queried range, each query
takes a long time to execute as there is no parallelism within its execution. Also,
some of the disks can become hot spots, further increasing response time.

Hybrid range partitioning, in which small ranges (a few blocks each) are
partitioned in a round-robin fashion, provides the benefits of range partitioning
without its drawbacks.

Recall that histograms are used for constructing load-balanced range parti-
tions.

a. Suppose you have a histogram where values are between 1 and 100, and
are partitioned into 10 ranges, 1-10, 11-20, ..., 91 - 100, with frequen-
cies 15, 5, 20, 10, 10, 5, 5, 20, 5, and 5, respectively. Give a load-balanced
range partitioning function to divide the values into five partitions.

b. Write an algorithm for computing a balanced range partition with p par-
titions, given a histogram of frequency distributions containing » ranges.

Answer:

a. A partitioning vector which gives 5 partitions with 20 tuples in each
partition is: [21, 31, 51, 76]. The 5 partitions obtained are 1 —20, 21 — 30,
31 =50, 51 — 75, and 76 — 100. The assumption made in arriving at this

165

166 Chapter 21 Parallel and Distributed Storage

partitioning vector is that within a histogram range, each value is equally
likely.

Let the histogram ranges be called 4y, #,, ..., h,, and the partitions
P1>Pys---5D, Let the frequencies of the histogram ranges be
ny,n,,...,n,. Each partition should contain N/p tuples, where
N=3! n.

To construct the load-balanced partitioning vector, we need to de-
termine the value of the k’lh tuple, the value of the k’z” tuple, and so on,
where k; = N/p, k, = 2N /p, etc., until kp—l' The partitioning vector will
then be [k, k,, ..., kp_1]. The value of the k,’.h tuple is determined as fol-
lows: First determine the histogram range 4 ; in which it falls. Assuming

all values in a range are equally likely, the klf” value will be

s-+(e-—s.) «

J J J n;
where
5; first value in hj
e last value in hj
-1

21.3 Histograms are traditionally constructed on the values of a specific attribute
(or set of attributes) of a relation. Such histograms are good for avoiding data
distribution skew but are not very useful for avoiding execution skew. Explain

214

why.
Now suppose you have a workload of queries that perform point lookups.

Explain how you can use the queries in the workload to come up with a parti-
tioning scheme that avoids execution skew.

Answer:
FILL
Replication:

a. Give two reasons for replicating data across geographically distributed
data centers.

b. Centralized databases support replication using log records. How is
the replication in centralized databases different from that in paral-
lel/distributed databases?

Answer:
a. By replicating across data centers, even if a data center fails, for example

due to a power outage or a natural disaster, the data would still be avail-

Practice Exercises 167

able from another data center. By keeping the data centers geographi-
cally separated, the chances of a single natural disaster such as an earth-
quake or a storm affecting both the data centers at the same time are
minimized.

Centralized databases typically support only full database replication us-
ing log records (although some support logical replication allowing repli-
cation to be restricted to some relations). However, they do not support
partitioning, or the ability to replicate different parts of the database at
different nodes; the latter helps minimize the load increase at a replica
when a node fails by spreading the load across multiple nodes.

21.5 Parallel indices:

a.

Secondary indices in a centralized database store the record identifier.
A global secondary index too could potentially store a partition num-
ber holding the record, and a record identifier within the partition. Why
would this be a bad idea?

Global secondary indices are implemented in a way similar to local sec-
ondary indices that are used when records are stored in a B*-tree file
organization. Explain the similarities between the two scenarios that re-
sult in a similar implementation of the secondary indices.

Answer:

a.

Any updated such as splitting or moving a partition, which is required
to balance load, would require a large number of updates to secondary
indices.

In both cases records may move (across nodes, or to a different location
within the node) which would require a large number of updates to sec-
ondary indices if they stored direct pointers. The indirection through the
clustering index key / partitioning key allows record movement without
any updates to the secondary index.

21.6 Parallel database systems store replicas of each data item (or partition) on
more than one node.

a.

Why is it a good idea to distribute the copies of the data items allocated
to a node across multiple other nodes, instead of storing all the copies
in the same node (or set of nodes).

What are the benefits and drawbacks of using RAID storage instead of
storing an extra copy of each data item?

Answer:

168

Chapter 21 Parallel and Distributed Storage

The copies of the data items at a node should be partitioned across mul-
tiple other nodes, rather than stored in a single node, for the following
reasons:

* To better distribute the work which should have been done by the
failed node, among the remaining nodes.

* Even when there is no failure, this technique can to some extent deal
with hot-spots created by read-only transactions.

RAID level 0 itself stores an extra copy of each data item (mirroring).
Thus this is similar to mirroring performed by the database itself, except
that the database system does not have to bother about the details of
performing the mirroring. It just issues the write to the RAID system,
which automatically performs the mirroring.

RAID level 5 is less expensive than mirroring in terms of disk space
requirement, but writes are more expensive, and rebuilding a crashed
disk is more expensive.

21.7 Partitioning and replication.

a.

Explain why range-partitioning gives better control on tablet sizes than
hash partitioning. List an analogy between this case and the case of B*-
tree indices versus hash indices.

Some systems first perform hashing on the key, and then use range par-
titioning on the hash values. What could be a motivation for this choice,
and what are its drawbacks as compared to performing range partition
direction on the key?

It is possible to horizontally partition data, and then perform vertical
partitioning locally at each node. It is also possible to do the converse,
where vertical partitioning is done first, and then each partition is then
horizontally partitioned independently. What are are the benefits of the
first option over the second one?

Answer:

a.

Hash partitioning does not permit any control on individual tablet sizes,
unlike range partitioning which allows overfull partitions to be split quite
easily. B*-tree indices use range partitioning, allowing a leaf node to be
split if it is overfull. In contrast, it is not easy to split a hash bucket in a
hash index if the bucket is overfull.

Some approaches similar to those used for dynamic hashing (such as
linear hashing or extendable hashing) have been proposed to allow over-
full hash buckets to be split while leaving other hash buckets untouched,
but range partitioning provides a simpler solution.

Practice Exercises 169

Hashing allows keys of various types to be mapped to a single data type,
simplifying the job of partitioning the data. The drawback is that range
queries cannot be supported using hashing (without performing a full
table scan), whereas direct range-partitioning allows efficient support for
range queries.

The first option allows reconstruction of records at a single node if a
query only accesses records at that node. With the second option, the
vertical fragments corresponding to one record may potentially be resid-
ing on different nodes, requiring extra communication to get the vertical
fragments together.

21.8 In order to send a request to the master replica of a data item, a node must
know which replica is the master for that data item.

a.

Suppose that between the time the node identifies which node is the
master replica for a data item, and the time the request reaches the iden-
tified node, the mastership has changed, and a different node is now the
master. How can such a situation be dealt with?

While the master replica could be chosen on a per-partition basis, some
systems support a per-record master replica, where the records of a par-
tition (or tablet) are replicated at some set of nodes, but each record’s
master replica can be on any of the nodes from within this set of nodes,
independent of the master replica of other records. List two benefits of
keeping track of master on a per-record basis.

Suggest how to keep track of the master replica for each record, when
there are a large number of records.

Answer:

a.

Ifa node receives a request for a data item when it is not the master, it can
send an error reply with the reason for the error to the requesting node.
The requesting node can then find the current master and resend the
request to the current master. Alternatively, the old master can forward
the message to the new master, which can reply to the requesting node.

Tracking mastership on a per-record basis allows the master to be located
in a geographical region where most requests for the data item occur, for
example the region where the user resides. Reads can then be satisfied
without any communication with other regions, which is generally much
slower due to speed-of-light delays. Further, writes can also be done lo-
cally, and replicated asynchronously to the other replicas.

Each record can have an extra hidden field that stores the master replica
of that record. In case the information is outdated, all the replicas of the

170 Chapter 21 Parallel and Distributed Storage

data item can be accessed to find the nodes listed as masters for that data
item; those nodes can be contacted to find the current master.

CHAPTER Z Z

Parallel and Distributed Query
Processing

Practice Exercises

22.1 What form of parallelism (interquery, interoperation, or intraoperation) is
likely to be the most important for each of the following tasks?

a. Increasing the throughput of a system with many small queries

b. Increasing the throughput of a system with a few large queries when the
number of disks and processors is large

Answer:

a. When there are many small queries, interquery parallelism gives good
throughput. Parallelizing each of these small queries would increase the
initiation overhead, without any significant reduction in response time.

b. With a few large queries, intraquery parallelism is essential to get fast
response times. Given that there are large numbers of processors and
disks, only intraoperation parallelism can take advantage of the parallel
hardware, for queries typically have few operations, but each one needs
to process a large number of tuples.

22.2 Describe how partial aggregation can be implemented for the count and avg
aggregate functions to reduce data transfer.

Answer:
FILL

22.3 With pipelined parallelism, it is often a good idea to perform several operations
in a pipeline on a single processor, even when many processors are available.

a. Explain why.
171

172

Chapter 22 Parallel and Distributed Query Processing

22.4

22.5

b. Would the arguments you advanced in part a hold if the machine has a
shared-memory architecture? Explain why or why not.

c. Would the arguments in part a hold with independent parallelism? (That
is, are there cases where, even if the operations are not pipelined and
there are many processors available, it is still a good idea to perform
several operations on the same processor?)

Answer:

a. The speedup obtained by parallelizing the operations would be offset by
the data transfer overhead, as each tuple produced by an operator would
have to be transferred to its consumer, which is running on a different
processor.

b. Inashared-memory architecture, transferring the tuples is very efficient.
So the above argument does not hold to any significant degree.

c. Even if two operations are independent, it may be that they both supply
their outputs to a common third operator. In that case, running all three
on the same processor may be better than transferring tuples across pro-
Cessors.

Consider join processing using symmetric fragment and replicate with range
partitioning. How can you optimize the evaluation if the join condition is of
the form | .4 —s.B | < k, where k is a small constant? Here, | x | denotes
the absolute value of x. A join with such a join condition is called a band join.

Answer:

Relation r is partitioned into » partitions, 7y, 7y, ...,r,_;, and s is also parti-
tioned into n partitions, sy, s, ...,s,_;. The partitions are replicated and as-
signed to processors as shown in ??

Each fragment is replicated on three processors only, unlike in the general
case where it is replicated on n processors. The number of processors required
is now approximately 37, instead of n? in the general case. Therefore, given the
same number of processors, we can partition the relations into more fragments

with this optimization, thus making each local join faster.

Suppose relation r is stored partitioned and indexed on 4, and s is stored par-
titioned and indexed on B. Consider the query:

r.CVeount(s.0)((Ou55(r)) X, p_sp s)

a. Give a parallel query plan using the exchange operator, for computing
the subtree of the query involving only the select and join operators.

b. Now extend the above to compute the aggregate. Make sure to use pre-
aggregation to minimize the data transfer.

Practice Exercises 173

So S1 S) S3 s Sn 1

I'O —t PO’O —_ Po,l —_—

I‘l — PI,O —_ Pl’l —_— Pl’z —_—

)

fn g— - L,

Figure 22.101 The three levels of data abstraction.

c. Skew during aggregation is a serious problem. Explain how pre-
aggregation as above can also significantly reduce the effect of skew dur-
ing aggregation.

Answer:

a. This is a small variant of an example from the chapter.

b. This one is very straightforward, since it is already the example in the
chapter

c. Pre-aggregation can greatly reduce the size of the data sent to the final
aggregation step. So even if there is skew, the absolute data sizes are
smaller, resulting in significant reduction in the impact of the skew.

22.6 Suppose relation r is stored partitioned and indexed on A4, and s is stored parti-
tioned and indexed on B. Consider the join r X, z_. 5 5. Suppose s is relatively
small, but not small enough to make asymmetric fragment-and-replicate join
the best choice, and r is large, with most r tuples not matching any s tuple. A
hash-join can be performed but with a semijoin filter used to reduce the data
transfer. Explain how semijoin filtering using Bloom filters would work in this
parallel join setting.

Answer:

174

Chapter 22 Parallel and Distributed Query Processing

Since s is small, it makes sense to send a Bloom filter on 5.8 to all partitions of 7.
Then we use the Bloom filter to find r tuples that may match some s tuple, and
repartition the matching r tuples on r.B, sending them to the nodes containing
s (which is already partitioned on s.B). Then the join can be performed at each
site storing s tuples. The Bloom filter can significantly reduce the number of »
tuples transferred.

Note that repartitioning s does not make sense since it is already partitioned
on the join attribute, unlike r.

22.7 Suppose you want to compute 7 X, ,_ 4 5.

a. Suppose s is a small relation, while r is stored partitioned on r.B. Give
an efficient parallel algorithm for computing the left outer join.

b. Now suppose that r is a small relation, and s is a large relation, stored
partitioned on attribute s.B. Give an efficient parallel algorithm for com-
puting the above left outer join.

Answer:

a. Replicating s to all nodes, and computing the left outerjoin indepen-
dently at each node would be a good option in this case.

b. The best technique in this case is to replicate to all nodes, and compute
r] s; at each node i. Then, we send back the list of r tuples that had
matches at site / back to a single node, which takes the union of the
returned r tuples from each node i. Tuples in r that are absent in this
union are then padded with nulls and added to the output.

22.8 Suppose you want to compute , pY,,.c) On a relation s which is stored par-

titioned on s.B. Explain how you would do it efficiently, minimizing/avoiding
repartitioning, if the number of distinct s.B values is large, and the distribution
of number of tuples with each s.B value is relatively uniform.

Answer:

The aggregate can be computed locally at each node, with no repartitioning
at all, since partitioning on s.B implies partitioning on s.4, s.B. To understand
why, partitioning on (4, B) requires that tuples with the same value for (4, B)
must be in the same partition. Partitioning on just B, ignoring A4, also satisfies
this requirement.

Of course not partitioning at all also satisfies the requirement, but that
defeats the purpose of parallel query processing. As long as the number of
distinct s.B values is large enough and the number of tuples with each s.B value
are relatively uniform and not highly skewed, using the existing partitioning on
s.B will give good performance.

22.9

22.10

Practice Exercises 175

MapReduce implementations provide fault tolerance, where you can reexecute
only failed mappers or reducers. By default, a partitioned parallel join execu-
tion would have to be rerun completely in case of even one node failure. It is
possible to modify a parallel partitioned join execution to add fault tolerance
in a manner similar to MapReduce, so failure of a node does not require full
reexecution of the query, but only actions related to that node. Explain what
needs to be done at the time of partitioning at the sending node and receiving
node to do this.

Answer: This is an application of ideas from MapReduce to join processing.
There are two steps: first the data is repartitioned, and then join is performed,
corresponding to the map and reduce steps.

A failure during the repartition can be handled by reexecuting the work
of the failed node. However, the destination must ensure that tuples are not
processed twice. To do so, it can store all received tuples in local disk, and
start processing only after all tuples have been received. If the sender fails
meanwhile, and a new node takes over, the receivers can discard all tuples
received from the failed sender, and receive them again. This part is not too
expensive.

Failures during the final join computation can be handled similar to re-
ducer failure, by getting the data again from the partitioners. However, in the
MapReduce paradigm tuples to be sent to reducers are stored on disk at the
mappers, so they can be resent if required. This can also be done with parallel
joins, but there is now a significant extra cost of writing the tuples to disk.

Another option is to find the tuples to be sent to the failed join node by
rescanning the input. But now, all partitioners have to reread their entire input,
which makes the process very expensive, similar in cost to rerunning the join.
As a result this is not viewed as useful.

If a parallel data-store is used to store two relations and s and we need to join
r and s, it may be useful to maintain the join as a materialized view. What are
the benefits and overheads in terms of overall throughput, use of space, and
response time to user queries?

Answer:

Performing a join on a cloud data-storage system can be very expensive, if
either of the relations to be joined is partitioned on attributes other than the
join attributes, since a very large amount of data would need to be transferred
to perform the join. However, if 7 X s is maintained as a materialized view,
it can be updated at a relatively low cost each time each time either r or s is
updated, instead of incurring a very large cost when the query is executed.
Thus, queries are benefitted at some cost to updates.

176

Chapter 22 Parallel and Distributed Query Processing

22.11

With the materialized view, overall throughput will be much better if the
join query is executed reasonably often relative to updates, but may be worse
if the join is rarely used, but updates are frequent.

The materialized view will certainly require extra space, but given that disk
capacities are very high relative to 1O (seek) operations and transfer rates, the
extra space is likely to not be an major overhead.

The materialized view will obviously be very useful to evaluate join queries,
reducing time greatly by reducing data transfer across machines.

Explain how each of the following join algorithms can be implemented using
the MapReduce framework:

a. Broadcast join (also known as asymmetric fragment-and-replicate join).

b. Indexed nested loop join, where the inner relation is stored in a parallel
data-store.

c. Partitioned join.

Answer:
FILL

CHAPTER 23

Parallel and Distributed
Transaction Processing

Practice Exercises

23.1

23.2

What are the key differences between a local-area network and a wide-area
network, that affect the design of a distributed database?

Answer:

Data transfer is much faster, and communication latency is much lower on
a local-area network (LAN) than on a wide-area network (WAN). Protocols
that require multiple rounds of communication maybe acceptable in a local
area network, but distributed databases designed for wide-area networks try to
minimize the number of such rounds of communication.

Replication to a local node for reducing latency is quite important in a wide-
area network, but less so in a local area network.

Network link failure and network partition are also more likely in a wide-area
network than in a local area network, where systems can be designed with
more redundancy to deal with failures. Protocols designed for wide-area net-
works should handle such failures without creating any inconsistencies in the
database.

To build a highly available distributed system, you must know what kinds of
failures can occur.

a. List possible types of failure in a distributed system.
b. Which items in your list from part a are also applicable to a centralized
system?

Answer:

a. The types of failure that can occur in a distributed system include
i. Site failure.

177

178

Chapter 23 Parallel and Distributed Transaction Processing

ii.

iii.

Disk failure.

Communication failure, leading to disconnection of one or more
sites from the network.

b. The first two failure types can also occur on centralized systems.

23.3 Consider a failure that occurs during 2PC for a transaction. For each possible
failure that you listed in Exercise 23.2a, explain how 2PC ensures transaction
atomicity despite the failure.

Answer:

A proof that 2PC guarantees atomic commits/aborts in spite of site and link
failures follows. The main idea is that after all sites reply with a <ready 7>
message, only the coordinator of a transaction can make a commit or abort
decision. Any subsequent commit or abort by a site can happen only after it
ascertains the coordinator’s decision, either directly from the coordinator or
indirectly from some other site. Let us enumerate the cases for a site aborting,
and then for a site committing.

a. A site can abort a transaction 7 (by writing an <abort 7> log record)
only under the following circumstances:

ii.

iii.

It has not yet written a <ready 7> log record. In this case, the coor-
dinator could not have got, and will not get, a <ready 7> or <commit
T> message from this site. Therefore, only an abort decision can be
made by the coordinator.

It has written the <ready 7> log record, but on inquiry it found out
that some other site has an <abort 7> log record. In this case it is
correct for it to abort, because that other site would have ascertained
the coordinator’s decision (either directly or indirectly) before actu-
ally aborting.

It is itself the coordinator. In this case also no site could have com-
mitted, or will commit in the future, because commit decisions can
be made only by the coordinator.

b. A site can commit a transaction 7 (by writing a <commit 7> log record)
only under the following circumstances:

It has written the <ready 7> log record, and on inquiry it found out
that some other site has a <commit 7> log record. In this case it
is correct for it to commit, because that other site would have ascer-
tained the coordinator’s decision (either directly or indirectly) before
actually committing.

234

23.5

Practice Exercises 179

ii. Itisitself the coordinator. In this case no other participating site can
abort or would have aborted because abort decisions are made only
by the coordinator.

Consider a distributed system with two sites, 4 and B. Can site 4 distinguish
among the following?

° B goes down.
® The link between 4 and B goes down.

® Bis extremely overloaded and response time is 100 times longer than nor-
mal.

What implications does your answer have for recovery in distributed systems?

Answer:

Site A cannot distinguish between the three cases until communication has
resumed with site B. The action which it performs while B is inaccessible must
be correct irrespective of which of these situations has actually occurred, and
it must be such that B can re-integrate consistently into the distributed system
once communication is restored.

The persistent messaging scheme described in this chapter depends on time-
stamps. A drawback is that they can discard received messages only if they are
too old, and may need to keep track of a large number of received messages.
Suggest an alternative scheme based on sequence numbers instead of time-
stamps, that can discard messages more rapidly.

Answer:

We can have a scheme based on sequence numbers similar to the scheme based
on timestamps. We tag each message with a sequence number that is unique
for the (sending site, receiving site) pair. The number is increased by 1 for each
new message sent from the sending site to the receiving site.

The receiving site stores and acknowledges a received message only if it has re-
ceived all lower-numbered messages also; the message is stored in the received-
messages relation.

The sending site retransmits a message until it has received an ack from the
receiving site containing the sequence number of the transmitted message or a
higher sequence number. Once the acknowledgment is received, it can delete
the message from its send queue.

The receiving site discards all messages it receives that have a lower sequence
number than the latest stored message from the sending site. The receiving
site discards from received-messages all but the (number of the) most recent
message from each sending site (message can be discarded only after being
processed locally).

180

Chapter 23 Parallel and Distributed Transaction Processing

23.6

23.7

23.8

Note that this scheme requires a fixed (and small) overhead at the receiving
site for each sending site, regardless of the number of messages received. In
contrast, the timestamp scheme requires extra space for every message. The
timestamp scheme would have lower storage overhead if the number of mes-
sages received within the timeout interval is small compared to the number of
sites, whereas the sequence number scheme would have lower overhead other-
wise.

Explain the difference between data replication in a distributed system and the
maintenance of a remote backup site.

Answer:

In remote backup systems, all transactions are performed at the primary site
and the entire database is replicated at the remote backup site. The remote
backup site is kept synchronized with the updates at the primary site by send-
ing all log records. Whenever the primary site fails, the remote backup site
takes over processing.

The distributed systems offer greater availability by having multiple copies of
the data at different sites, whereas the remote backup systems offer lesser avail-
ability at lower cost and execution overhead. Different data items may be repli-
cated at different nodes.

In a distributed system, transaction code can run at all the sites, whereas in a
remote backup system it runs only at the primary site. The distributed system
transactions needs to follow two-phase commit or other consensus protocols
to keep the data in consistent state, whereas a remote backup system does not
follow two-phase commit and avoids related overhead.

Give an example where lazy replication can lead to an inconsistent database
state even when updates get an exclusive lock on the primary (master) copy if
data were read from a node other than the master.

Answer:

Consider the balance in an account, replicated at N sites. Let the current bal-
ance be $100 - consistent across all sites. Consider two transactions 7 and
T, each depositing $10 in the account. Thus the balance would be $120 after
both these transactions are executed. Let the transactions execute in sequence:
T, first and then 7,. Suppose the copy of the balance at one of the sites, say
s, is not consistent - due to lazy replication strategy - with the primary copy
after transaction 7 is executed, and let transaction 7, read this copy of the
balance. One can see that the balance at the primary site would be $110 at the
end.

Consider the following deadlock-detection algorithm. When transaction 7}, at
site S, requests a resource from 7} at site S, a request message with time-
stamp # is sent. The edge (7}, T}, n) is inserted in the local wait-for graph of

Practice Exercises 181

S. The edge (T}, T;, n) is inserted in the local wait-for graph of S; only if 7;
has received the request message and cannot immediately grant the requested
resource. A request from 7; to 7; in the same site is handled in the usual man-
ner; no timestamps are associated with the edge (7, 7;). A central coordinator
invokes the detection algorithm by sending an initiating message to each site
in the system.

On receiving this message, a site sends its local wait-for graph to the co-
ordinator. Note that such a graph contains all the local information that the
site has about the state of the real graph. The wait-for graph reflects an instan-
taneous state of the site, but it is not synchronized with respect to any other
site.

When the controller has received a reply from each site, it constructs a
graph as follows:

* The graph contains a vertex for every transaction in the system.
* The graph has an edge (7}, 7}) if and only if:
° There is an edge (7}, 7;) in one of the wait-for graphs.

° An edge (7}, T;,n) (for some n) appears in more than one wait-for
graph.

Show that, if there is a cycle in the constructed graph, then the system is in a
deadlock state, and that, if there is no cycle in the constructed graph, then the
system was not in a deadlock state when the execution of the algorithm began.

Answer:

Let us say a cycle 7, — 7} — -+ =» T — T, exists in the graph built by
the controller. The edges in the graph will either be local edgem (7}, 7;) or
distributed edges of the form (7}, 7;, n). Each local edge (T}, T;) definitely
implies that 7}, is waiting for 7,. Since a distributed edge (7}, T}, n) is inserted
into the graph only if 7}’s request has reached 7; and 7, cannot immediately
release the lock, T}, is indeed waiting for 7. Therefore every edge in the cycle
indeed represents a transaction waiting for another. For a detailed proof that
this implies a deadlock, refer to Stuart et al. [1984].

We now prove the converse implication. As soon as it is discovered that 7, is
waiting for 7:

a. Alocal edge (7}, T}) is added if both are on the same site.

b. Theedge (7}, T}, n)is added in both the sites, if 7, and 7, are on different
sites.

Therefore, if the algorithm were able to collect all the local wait-for graphs at
the same instant, it would definitely discover a cycle in the constructed graph,
in case there is a circular wait at that instant. If there is a circular wait at the
instant when the algorithm began execution, none of the edges participating in

182

Chapter 23 Parallel and Distributed Transaction Processing

23.9

23.10

that cycle can disappear until the algorithm finishes. Therefore, even though
the algorithm cannot collect all the local graphs at the same instant, any cycle
which existed just before it started will be detected.

Consider the chain-replication protocol, described in Section 23.4.3.2, which
is a variant of the primary-copy protocol.

a. Iflockingis used for concurrency control, what is the earliest point when
a process can release an exclusive lock after updating a data item?

b. While each data item could have its own chain, give two reasons it would
be preferable to have a chain defined at a higher level, such as for each
partition or tablet.

c. How can consensus protocols be used to ensure that the chain is
uniquely determined at any point in time?

Answer:

a. The lock can be released only after the update has been recorded at the
tail of the chain, since further reads will read the tail. Two phase locking
may also have to be respected.

b. The overhead of recording chains per data item would be high. Even
more so, in case of failures, chains have to be updated, which would
have an even greater overhead if done per item.

c. All nodes in the chain have to agree on the chain membership and or-

der. Consensus can be used to ensure that updates to the chain are done
in a fault-tolerant manner. A fault-tolerant coordination service such as
ZooKeeper or Chubby could be used to ensure this consensus, by updat-
ing metadata that is replicated using consensus; the coordination service
hides the details of consensus, and allows storage and update of (a lim-
ited amount of) metadata.

If the primary copy scheme is used for replication, and the primary gets dis-
connected from the rest of the system, a new node may get elected as primary.
But the old primary may not realize it has got disconnected, and may get re-
connected subsequently without realizing that there is a new primary.

a.

What problems can arise if the old primary does not realize that a new
one has taken over?

How can leases be used to avoid these problems?

Would such a situation, where a participant node gets disconnected and
then reconnected without realizing it was disconnected, cause any prob-
lem with the majority or quorum protocols?

Practice Exercises 183

Answer:

a. The old primary may receive read requests and reply to them, serving
old data that is missing subsequent updates.

b. Leases can be used so that at the end of the lease, the primary knows
that it if it did not successfuly renew the lease, it should stop serving
requests. If it is disconnected, it would be unable to renew the lease.

c. This situation would not cause a problem with the majority protocol
since the write set (or write quorum) and the read set (read quorum)
must have at least one node in common, which would serve the latest
value.

23.11 Consider a federated database system in which it is guaranteed that at most
one global transaction is active at any time, and every local site ensures local
serializability.

a. Suggest ways in which the federated database system can ensure that
there is at most one active global transaction at any time.

b. Show by example that it is possible for a nonserializable global schedule
to result despite the assumptions.

Answer:

a. We can have a special data item at some site on which a lock will have
to be obtained before starting a global transaction. The lock should be
released after the transaction completes. This ensures the single active
global transaction requirement. To reduce dependency on that partic-
ular site being up, we can generalize the solution by having an election
scheme to choose one of the currently up sites to be the coordinator and
requiring that the lock be requested on the data item which resides on
the currently elected coordinator.

b. The following schedule involves two sites and four transactions. 7 and
T, are local transactions, running at site 1 and site 2 respectively. 7,
and T}, are global transactions running at both sites. X, Y| are data
items at site 1, and X,, Y, are at site 2.

184 Chapter 23 Parallel and Distributed Transaction Processing

Tl T2 TGl TGZ
write(Y])
read(Y,)
write(X)
read(X,)
write(Y,)
read(Y,)
write(X)
read(X)

In this schedule, T, starts only after 7;; finishes. Within each site, there
is local serializability. In site 1, 7;, — T, — T, is a serializability
order. Insite 2, T;; = T, — T, is a serializability order. Yet the global
schedule schedule is nonserializable.

23.12 Consider a federated database system in which every local site ensures local
serializability, and all global transactions are read only.

a. Show by example that nonserializable executions may result in such a
system.

b. Show how you could use a ticket scheme to ensure global serializability.

Answer:

a. The same system as in the answer to Exercise 23.11 is assumed, except
that now both the global transactions are read-only. Consider the follow-
ing schedule:

T, 1 T. 2 TGI T G2
read(X)
write(X;)
read(X)
read(X,)
write(X,)
read(X,)

Though there is local serializability in both sites, the global schedule is
not serializable.

b. Since local serializability is guaranteed, any cycle in the systemwide
precedence graph must involve at least two different sites and two dif-
ferent global transactions. The ticket scheme ensures that whenever two

Practice Exercises 185

global transactions access data at a site, they conflict on a data item (the
ticket) at that site. The global transaction manager controls ticket access
in such a manner that the global transactions execute with the same se-
rializability order in all the sites. Thus the chance of their participating
in a cycle in the systemwide precedence graph is eliminated.

23.13 Suppose you have a large relation r(4,B,C) and a materialized view
V= 4Yamp)(r)- View maintenance can be performed as part of each trans-
action that updates r, on a parallel/distributed storage system that supports
transactions across multiple nodes. Suppose the system uses two-phase com-
mit along with a consensus protocol such as Paxos, across geographically dis-
tributed data centers.

a. Explain why it is not a good idea to perform view maintenance as part of
the update transaction, if some values of attribute 4 are “hot” at certain
points in time, that is, many updates pertain to those values of A.

b. Explain how operation locking (if supported) could solve this problem.

c. Explain the tradeoffs of using asynchronous view maintenance in this
context.

Answer:

This is a very bad idea from the viewpoint of throughput. Most transactions
would now update a few aggregate records, and updates would get serialized
on the lock. The problem that due to Paxos delays plus 2PC delays, commit
processing will take a long time (hundreds of milliseconds) and there would
be very high contention on the lock. Transaction throughput would decrease
to tens of transactions per second, even if transactions do not conflict on any
other items.

If the storage system supported operation locking, that could be an alterna-
tive to improve concurrency, since view maintenance can be done using opera-
tion locks that do not conflict with each other. Transaction throughput would
be greatly increased.

Asynchronous view maintenance would avoid the bottleneck and lead to
much better throughput, but at the risk of reads of the view seeing stale data.

	1. Introduction
	2. Introduction to the Relational Model
	3. Introduction to SQL
	4. Intermediate SQL
	5. Advanced SQL
	6. Database Design using the E-R Model
	7. Relational Database Design
	8. Complex Data Types
	9. Application Development
	10. Big Data
	11. Data Analytics
	12. Physical Storage Systems
	13. Data Storage Structures
	14. Indexing
	15. Query Processing
	16. Query Optimization
	17. Transactions
	18. Concurrency Control
	19. Recovery System
	20. Database-System Architectures
	21. Parallel and Distributed Storage
	22. Parallel and Distributed Query Processing
	23. Parallel and Distributed Transaction Processing

