
CHAP T E R

1

Introdution

Pratie Exerises

1.1 This hapter has desribed several major advantages of a database system. What

are two disadvantages?

Answer:

Two disadvantages assoiated with database systems are listed below.

a. Setup of the database system requires more knowledge, money, skills, and

time.

b. The omplexity of the database may result in poor performane.

1.2 List �ve ways in whih the type delaration system of a language suh as Java

or C++ di�ers from the data de�nition language used in a database.

Answer:

a. Exeuting an ation in the DDL results in the reation of an objet in the

database; in ontrast, a programming language type delaration is simply

an abstration used in the program.

b. Database DDLs allow onsisteny onstraints to be spei�ed, whih pro-

gramming language type systems generally do not allow. These inlude

domain onstraints and referential integrity onstraints.

. Database DDLs support authorization, giving di�erent aess rights to

di�erent users. Programming language type systems do not provide suh

protetion (at best, they protet attributes in a lass from being aessed

by methods in another lass).

d. Programming language type systems are usually muh riher than the SQL

type system. Most databases support only basi types suh as di�erent

types of numbers and strings, although some databases do support some

omplex types suh as arrays and objets.

1

2 Chapter 1 Introdution

e. A database DDL is foused on speifying types of attributes of relations;

in ontrast, a programming language allows objets and olletions of ob-

jets to be reated.

1.3 List six major steps that you would take in setting up a database for a partiular

enterprise.

Answer:

Six major steps in setting up a database for a partiular enterprise are:

�

De�ne the high-level requirements of the enterprise (this step generates a

doument known as the system requirements spei�ation.)

�

De�ne a model ontaining all appropriate types of data and data relation-

ships.

�

De�ne the integrity onstraints on the data.

�

De�ne the physial level.

�

For eah known problem to be solved on a regular basis (e.g., tasks to be

arried out by lerks or web users), de�ne a user interfae to arry out the

task, and write the neessary appliation programs to implement the user

interfae.

�

Create/initialize the database.

1.4 Suppose you want to build a video site similar to YouTube. Consider eah of the

points listed in Setion 1.2 as disadvantages of keeping data in a �le-proessing

system. Disuss the relevane of eah of these points to the storage of atual

video data, and to metadata about the video, suh as title, the user who uploaded

it, tags, and whih users viewed it.

Answer:

�

Data redundany and inonsisteny. This would be relevant to metadata to

some extent, although not to the atual video data, whih are not updated.

There are very few relationships here, and none of them an lead to redun-

dany.

�

Di	ulty in aessing data. If video data are only aessed through a few

prede�ned interfaes, as is done in video sharing sites today, this will not

be a problem. However, if an organization needs to �nd video data based

on spei� searh onditions (beyond simple keyword queries), if metadata

were stored in �les it would be hard to �nd relevant data without writing

appliation programs. Using a database would be important for the task of

�nding data.

�

Data isolation. Sine data are not usually updated, but instead newly re-

ated, data isolation is not a major issue. Even the task of keeping trak of

Pratie Exerises 3

who has viewed what videos is (oneptually) append only, again making

isolation not a major issue. However, if authorization is added, there may

be some issues of onurrent updates to authorization information.

�

Integrity problems. It seems unlikely there are signi�ant integrity on-

straints in this appliation, exept for primary keys. If the data are dis-

tributed, there may be issues in enforing primary key onstraints. Integrity

problems are probably not a major issue.

�

Atomiity problems. When a video is uploaded, metadata about the video

and the video should be added atomially, otherwise there would be an

inonsisteny in the data. An underlying reovery mehanism would be

required to ensure atomiity in the event of failures.

�

Conurrent-aess anomalies. Sine data are not updated, onurrent aess

anomalies would be unlikely to our.

�

Seurity problems. These would be an issue if the system supported autho-

rization.

1.5 Keyword queries used in web searh are quite di�erent from database queries.

List key di�erenes between the two, in terms of the way the queries are spei�ed

and in terms of what is the result of a query.

Answer:

Queries used in the web are spei�ed by providing a list of keywords with no spe-

i� syntax. The result is typially an ordered list of URLs, along with snippets

of information about the ontent of the URLs. In ontrast, database queries

have a spei� syntax allowing omplex queries to be spei�ed. And in the rela-

tional world the result of a query is always a table.

CHAP T E R

2

Introdution to the Relational

Model

Pratie Exerises

2.1 Consider the employee database of Figure 2.17. What are the appropriate pri-

mary keys?

Answer:

The appropriate primary keys are shown below:

employee (person name, street, ity)

works (person name, ompany name, salary)

ompany (ompany name, ity)

2.2 Consider the foreign-key onstraint from the dept name attribute of instrutor to

the department relation. Give examples of inserts and deletes to these relations

that an ause a violation of the foreign-key onstraint.

Answer:

�

Inserting a tuple:

(10111, Ostrom, Eonomis, 110000)

employee (ID, person name, street, ity)

works (ID, ompany name, salary)

ompany (ompany name, ity)

Figure 2.17 Employee database.

5

6 Chapter 2 Introdution to the Relational Model

into the instrutor table, where the department table does not have the de-

partment Eonomis, would violate the foreign-key onstraint.

�

Deleting the tuple:

(Biology, Watson, 90000)

from the department table, where at least one student or instrutor tuple

has dept name as Biology, would violate the foreign-key onstraint.

2.3 Consider the time slot relation. Given that a partiular time slot an meet more

than one in a week, explain why day and start time are part of the primary key

of this relation, while end time is not.

Answer:

The attributes day and start time are part of the primary key sine a partiular

lass will most likely meet on several di�erent days and may even meet more

than one in a day. However, end time is not part of the primary key sine a

partiular lass that starts at a partiular time on a partiular day annot end at

more than one time.

2.4 In the instane of instrutor shown in Figure 2.1, no two instrutors have the

same name. From this, an we onlude that name an be used as a superkey

(or primary key) of instrutor?

Answer:

No. For this possible instane of the instrutor table the names are unique, but

in general this may not always be the ase (unless the university has a rule that

two instrutors annot have the same name, whih is a rather unlikey senario).

2.5 What is the result of �rst performing the Cartesian produt of student and advi-

sor, and then performing a seletion operation on the result with the prediate

s id = ID? (Using the symboli notation of relational algebra, this query an be

written as �

s id=ID

(student � advisor).)

Answer:

The result attributes inlude all attribute values of student followed by all at-

tributes of advisor. The tuples in the result are as follows: For eah student who

has an advisor, the result has a row ontaining that student's attributes, followed

by an s id attribute idential to the student's ID attribute, followed by the i id

attribute ontaining the ID of the students advisor.

Students who do not have an advisor will not appear in the result. A student

who has more than one advisor will appear a orresponding number of times

in the result.

2.6 Consider the employee database of Figure 2.17. Give an expression in the rela-

tional algebra to express eah of the following queries:

a. Find the name of eah employee who lives in ity �Miami�.

Pratie Exerises 7

branh(branh name, branh ity, assets)

ustomer (ID, ustomer name, ustomer street, ustomer ity)

loan (loan number, branh name, amount)

borrower (ID, loan number)

aount (aount number, branh name, balane)

depositor (ID, aount number)

Figure 2.18 Bank database.

b. Find the name of eah employee whose salary is greater than $100000.

. Find the name of eah employee who lives in �Miami� and whose salary

is greater than $100000.

Answer:

a. �

person name

(�

ity= �Miami�

(employee))

b. �

person name

(�

salary> 100000

(employee Æ works))

. �

person name

(�

ity= �Miami�á salary>100000

(employee Æ works))

2.7 Consider the bank database of Figure 2.18. Give an expression in the relational

algebra for eah of the following queries:

a. Find the name of eah branh loated in �Chiago�.

b. Find the ID of eah borrower who has a loan in branh �Downtown�.

Answer:

a. �

branh name

(�

branh ity= �Chiago�

(branh))

b. �

ID

(�

branh name= �Downtown�

(borrower Æ

borrower:loan number=loan:loan number

loan)).

2.8 Consider the employee database of Figure 2.17. Give an expression in the rela-

tional algebra to express eah of the following queries:

a. Find the ID and name of eah employee who does not work for �BigBank�.

b. Find the ID and name of eah employee who earns at least as muh as

every employee in the database.

Answer:

a. To �nd employees who do not work for BigBank, we �rst �nd all those

who do work for BigBank. Those are exatly the employees not part of the

8 Chapter 2 Introdution to the Relational Model

desired result. We then use set di�erene to �nd the set of all employees

minus those employees that should not be in the result.

�

ID,person name

(employee)*

�

ID,person name

(employee Æ

employee:ID=works:ID

(�

ompany name=``BigBank

¨¨

(works)))

b. We use the same approah as in part a by �rst �nding those employess

who do not earn the highest salary, or, said di�erently, for whom some

other employee earns more. Sine this involves omparing two employee

salary values, we need to referene the employee relation twie and there-

fore use renaming.

�

ID,person name

(employee)*

�

A:ID,A:person name

(�

A

(employee) Æ

A:salary<B:salary

�

B

(employee))

2.9 The division operator of relational algebra, ���, is de�ned as follows. Let r(R)

and s(S) be relations, and let S Ó R; that is, every attribute of shema S is

also in shema R. Given a tuple t, let t[S℄ denote the projetion of tuple t on

the attributes in S. Then r � s is a relation on shema R * S (that is, on the

shema ontaining all attributes of shema R that are not in shema S). A tuple

t is in r � s if and only if both of two onditions hold:

�

t is in �

R*S

(r)

�

For every tuple t

s

in s, there is a tuple t

r

in r satisfying both of the following:

a. t

r

[S℄ = t

s

[S℄

b. t

r

[R * S℄ = t

Given the above de�nition:

a. Write a relational algebra expression using the division operator to �nd

the IDs of all students who have taken all Comp. Si. ourses. (Hint:

projet takes to just ID and ourse id, and generate the set of all Comp.

Si. ourse ids using a selet expression, before doing the division.)

b. Show how to write the above query in relational algebra, without using

division. (By doing so, you would have shown how to de�ne the division

operation using the other relational algebra operations.)

Answer:

a. �

ID

(�

ID,ourse id

(takes) � �

ourse id

(�

dept name='Comp. Si'

(ourse))

b. The required expression is as follows:

Pratie Exerises 9

r } �

ID,ourse id

(takes)

s } �

ourse id

(�

dept name='Comp. Si'

(ourse))

�

ID

(takes) * �

ID

((�

ID

(takes) � s) * r)

In general, let r(R) and s(S) be given, with S Ó R. Then we an express

the division operation using basi relational algebra operations as follows:

r � s = �

R*S

(r) * �

R*S

((�

R*S

(r) � s) * �

R*S,S

(r))

To see that this expression is true, we observe that �

R*S

(r) gives us all

tuples t that satisfy the �rst ondition of the de�nition of division. The

expression on the right side of the set di�erene operator

�

R*S

((�

R*S

(r) � s) * �

R*S,S

(r))

serves to eliminate those tuples that fail to satisfy the seond ondition of

the de�nition of division. Let us see how it does so. Consider�

R*S

(r) � s.

This relation is on shema R, and pairs every tuple in �

R*S

(r) with every

tuple in s. The expression �

R*S,S

(r) merely reorders the attributes of r.

Thus, (�

R*S

(r) � s) * �

R*S,S

(r) gives us those pairs of tuples from

�

R*S

(r) and s that do not appear in r. If a tuple t

j

is in

�

R*S

((�

R*S

(r) � s) * �

R*S,S

(r))

then there is some tuple t

s

in s that does not ombine with tuple t

j

to form

a tuple in r. Thus, t

j

holds a value for attributes R * S that does not appear

in r � s. It is these values that we eliminate from �

R*S

(r).

CHAP T E R

3

Introdution to SQL

Pratie Exerises

3.1 Write the following queries in SQL, using the university shema. (We suggest

you atually run these queries on a database, using the sample data that we

provide on the web site of the book, db-book.om. Instrutions for setting up

a database, and loading sample data, are provided on the above web site.)

a. Find the titles of ourses in the Comp. Si. department that have 3 redits.

b. Find the IDs of all students who were taught by an instrutor named Ein-

stein; make sure there are no dupliates in the result.

. Find the highest salary of any instrutor.

d. Find all instrutors earning the highest salary (there may be more than

one with the same salary).

e. Find the enrollment of eah setion that was o�ered in Fall 2017.

f. Find the maximum enrollment, aross all setions, in Fall 2017.

g. Find the setions that had the maximum enrollment in Fall 2017.

Answer:

a. Find the titles of ourses in the Comp. Si. department that have 3 redits.

selet title

from ourse

where dept name = 'Comp. Si.' and redits = 3

b. Find the IDs of all students who were taught by an instrutor named Ein-

stein; make sure there are no dupliates in the result.

This query an be answered in several di�erent ways. One way is as fol-

lows.

11

db-book.com

12 Chapter 3 Introdution to SQL

selet distint takes.ID

from takes, instrutor, teahes

where takes.ourse id = teahes.ourse id and

takes.se id = teahes.se id and

takes.semester = teahes.semester and

takes.year = teahes.year and

teahes.id = instrutor.id and

instrutor.name = 'Einstein'

. Find the highest salary of any instrutor.

selet max(salary)

from instrutor

d. Find all instrutors earning the highest salary (there may be more than

one with the same salary).

selet ID, name

from instrutor

where salary = (selet max(salary) from instrutor)

e. Find the enrollment of eah setion that was o�ered in Fall 2017.

selet ourse id, se id,

(selet ount(ID)

from takes

where takes.year = setion.year

and takes.semester = setion.semester

and takes.ourse id = setion.ourse id

and takes.se id = setion.se id)

as enrollment

from setion

where semester = 'Fall'

and year = 2017

Note that if the result of the subquery is empty, the aggregate funtion

ount returns a value of 0.

One way of writing the query might appear to be:

Pratie Exerises 13

selet takes.ourse id, takes.se id, ount(ID)

from setion, takes

where takes.ourse id = setion.ourse id

and takes.se id = setion.se id

and takes.semester = setion.semester

and takes.year = setion.year

and takes.semester = 'Fall'

and takes.year = 2017

group by takes.ourse id, takes.se id

But note that if a setion does not have any students taking it, it would

not appear in the result. One way of ensuring suh a setion appears with

a ount of 0 is to use the outer join operation, overed in Chapter 4.

f. Find the maximum enrollment, aross all setions, in Fall 2017.

One way of writing this query is as follows:

selet max(enrollment)

from (selet ount(ID) as enrollment

from setion, takes

where takes.year = setion.year

and takes.semester = setion.semester

and takes.ourse id = setion.ourse id

and takes.se id = setion.se id

and takes.semester = 'Fall'

and takes.year = 2017

group by takes.ourse id, takes.se id)

As an alternative to using a nested subquery in the from lause, it is pos-

sible to use a with lause, as illustrated in the answer to the next part of

this question.

A subtle issue in the above query is that if no setion had any enroll-

ment, the answer would be empty, not 0. We an use the alternative using

a subquery, from the previous part of this question, to ensure the ount is

0 in this ase.

g. Find the setions that had the maximum enrollment in Fall 2017.

The following answer uses a with lause, simplifying the query.

14 Chapter 3 Introdution to SQL

with se enrollment as (

selet takes.ourse id, takes.se id, ount(ID) as enrollment

from setion, takes

where takes.year = setion.year

and takes.semester = setion.semester

and takes.ourse id = setion.ourse id

and takes.se id = setion.se id

and takes.semester = 'Fall'

and takes.year = 2017

group by takes.ourse id, takes.se id)

selet ourse id, se id

from se enrollment

where enrollment = (selet max(enrollment) from se enrollment)

It is also possible to write the query without the with lause, but the sub-

query to �nd enrollment would get repeated twie in the query.

While not inorret to add distint in the ount, it is not neessary in light

of the primary key onstraint on takes.

3.2 Suppose you are given a relation grade points(grade, points) that provides a on-

version from letter grades in the takes relation to numeri sores; for example,

an �A� grade ould be spei�ed to orrespond to 4 points, an �A*� to 3.7 points,

a �B+� to 3.3 points, a �B� to 3 points, and so on. The grade points earned by a

student for a ourse o�ering (setion) is de�ned as the number of redits for the

ourse multiplied by the numeri points for the grade that the student reeived.

Given the preeding relation, and our university shema, write eah of the

following queries in SQL. You may assume for simpliity that no takes tuple has

the null value for grade.

a. Find the total grade points earned by the student with ID �12345�, aross

all ourses taken by the student.

b. Find the grade point average (GPA) for the above student, that is, the total

grade points divided by the total redits for the assoiated ourses.

. Find the ID and the grade-point average of eah student.

d. Now reonsider your answers to the earlier parts of this exerise under

the assumption that some grades might be null. Explain whether your

solutions still work and, if not, provide versions that handle nulls properly.

Answer:

a. Find the total grade-points earned by the student with ID �12345�, aross

all ourses taken by the student.

Pratie Exerises 15

selet sum(redits * points)

from takes, ourse, grade points

where takes.grade = grade points.grade

and takes.ourse id = ourse.ourse id

and ID = �12345�

In the above query, a student who has not taken any ourse would not

have any tuples, whereas we would expet to get 0 as the answer. One way

of �xing this problem is to use the outer join operation, whih we study

later in Chapter 4. Another way to ensure that we get 0 as the answer is

via the following query:

(selet sum(redits * points)

from takes, ourse, grade points

where takes.grade = grade points.grade

and takes.ourse id = ourse.ourse id

and ID= �12345�)

union

(selet 0

from student

where ID = �12345� and

not exists (selet * from takes where ID = �12345�))

b. Find the grade point average (GPA) for the above student, that is, the total

grade-points divided by the total redits for the assoiated ourses.

selet sum(redits * points)/sum(redits) as GPA

from takes, ourse, grade points

where takes.grade = grade points.grade

and takes.ourse id = ourse.ourse id

and ID= �12345�

As before, a student who has not taken any ourse would not appear in

the above result; we an ensure that suh a student appears in the result by

using themodi�ed query from the previous part of this question. However,

an additional issue in this ase is that the sum of redits would also be 0,

resulting in a divide-by-zero ondition. In fat, the only meaningful way

of de�ning the GPA in this ase is to de�ne it as null. We an ensure that

suh a student appears in the result with a nullGPA by adding the following

union lause to the above query.

union

(selet null as GPA

from student

where ID = �12345� and

not exists (selet * from takes where ID = �12345�))

16 Chapter 3 Introdution to SQL

. Find the ID and the grade-point average of eah student.

selet ID, sum(redits * points)/sum(redits) as GPA

from takes, ourse, grade points

where takes.grade = grade points.grade

and takes.ourse id = ourse.ourse id

group by ID

Again, to handle students who have not taken any ourse, we would have

to add the following union lause:

union

(selet ID, null as GPA

from student

where not exists (selet * from takes where takes.ID = student.ID))

d. Now reonsider your answers to the earlier parts of this exerise under

the assumption that some grades might be null. Explain whether your

solutions still work and, if not, provide versions that handle nulls properly.

The queries listed above all inlude a test of equality on grade between

grade points and takes. Thus, for any takes tuple with a null grade, that

student's ourse would be eliminated from the rest of the omputation

of the result. As a result, the redits of suh ourses would be eliminated

also, and thus the queries would return the orret answer even if some

grades are null.

3.3 Write the following inserts, deletes, or updates in SQL, using the university

shema.

a. Inrease the salary of eah instrutor in the Comp. Si. department by

10%.

b. Delete all ourses that have never been o�ered (i.e., do not our in the

setion relation).

. Insert every student whose tot red attribute is greater than 100 as an in-

strutor in the same department, with a salary of $10,000.

Answer:

a. Inrease the salary of eah instrutor in the Comp. Si. department by

10%.

update instrutor

set salary = salary * 1.10

where dept name = �Comp. Si.�

b. Delete all ourses that have never been o�ered (that is, do not our in

the setion relation).

Pratie Exerises 17

person (driver id, name, address)

ar (liense plate, model, year)

aident (report number, year, loation)

owns (driver id, liense plate)

partiipated (report number, liense plate, driver id, damage amount)

Figure 3.17 Insurane database

delete from ourse

where ourse id not in

(selet ourse id from setion)

. Insert every student whose tot red attribute is greater than 100 as an in-

strutor in the same department, with a salary of $10,000.

insert into instrutor

selet ID, name, dept name, 10000

from student

where tot red > 100

3.4 Consider the insurane database of Figure 3.17, where the primary keys are

underlined. Construt the following SQL queries for this relational database.

a. Find the total number of people who owned ars that were involved in

aidents in 2017.

b. Delete all year-2010 ars belonging to the person whose ID is �12345�.

Answer:

a. Find the total number of people who owned ars that were involved in

aidents in 2017.

Note: This is not the same as the total number of aidents in 2017. We

must ount people with several aidents only one. Furthermore, note

that the question asks for owners, and it might be that the owner of the

ar was not the driver atually involved in the aident.

selet ount (distint person.driver id)

from aident, partiipated, person, owns

where aident.report number = partiipated.report number

and owns.driver id = person.driver id

and owns.liense plate = partiipated.liense plate

and year = 2017

18 Chapter 3 Introdution to SQL

b. Delete all year-2010 ars belonging to the person whose ID is �12345�.

delete ar

where year = 2010 and liense plate in

(selet liense plate

from owns o

where o.driver id = �12345�)

Note: The owns, aident and partiipated reords assoiated with the

deleted ars still exist.

3.5 Suppose that we have a relation marks(ID, sore) and we wish to assign grades

to students based on the sore as follows: grade F if sore < 40, grade C if 40

f sore < 60, grade B if 60 f sore < 80, and grade A if 80 f sore. Write SQL

queries to do the following:

a. Display the grade for eah student, based on the marks relation.

b. Find the number of students with eah grade.

Answer:

a. Display the grade for eah student, based on the marks relation.

selet ID,

ase

when sore < 40 then 'F'

when sore < 60 then 'C'

when sore < 80 then 'B'

else 'A'

end

from marks

b. Find the number of students with eah grade.

Pratie Exerises 19

with grades as

(

selet ID,

ase

when sore < 40 then 'F'

when sore < 60 then 'C'

when sore < 80 then 'B'

else 'A'

end as grade

from marks

)

selet grade, ount(ID)

from grades

group by grade

As an alternative, the with lause an be removed, and instead the de�ni-

tion of grades an be made a subquery of the main query.

3.6 The SQL like operator is ase sensitive (in most systems), but the lower() fun-

tion on strings an be used to perform ase-insensitive mathing. To show how,

write a query that �nds departments whose names ontain the string �si� as a

substring, regardless of the ase.

Answer:

selet dept name

from department

where lower(dept name) like '%si%'

3.7 Consider the SQL query

selet p.a1

from p, r1, r2

where p.a1 = r1.a1 or p.a1 = r2.a1

Under what onditions does the preeding query selet values of p:a1 that are

either in r1 or in r2? Examine arefully the ases where either r1 or r2 may be

empty.

Answer:

The query selets those values of p.a1 that are equal to some value of r1.a1 or

r2.a1 if and only if both r1 and r2 are non-empty. If one or both of r1 and r2 are

empty, the Cartesian produt of p, r1 and r2 is empty, hene the result of the

query is empty. If p itself is empty, the result is empty.

3.8 Consider the bank database of Figure 3.18, where the primary keys are under-

lined. Construt the following SQL queries for this relational database.

20 Chapter 3 Introdution to SQL

branh(branh name, branh ity, assets)

ustomer (ID, ustomer name, ustomer street, ustomer ity)

loan (loan number, branh name, amount)

borrower (ID, loan number)

aount (aount number, branh name, balane)

depositor (ID, aount number)

Figure 3.18 Banking database.

a. Find the ID of eah ustomer of the bank who has an aount but not a

loan.

b. Find the ID of eah ustomer who lives on the same street and in the same

ity as ustomer �12345�.

. Find the name of eah branh that has at least one ustomer who has an

aount in the bank and who lives in �Harrison�.

Answer:

a. Find the ID of eah ustomer of the bank who has an aount but not a

loan.

(selet ID

from depositor)

exept

(selet ID

from borrower)

b. Find the ID of eah ustomer who lives on the same street and in the same

ity as ustomer �12345�.

selet F.ID

from ustomer as F, ustomer as S

where F.ustomer street = S.ustomer street

and F.ustomer ity = S.ustomer ity

and S.ustomer id = �12345�

. Find the name of eah branh that has at least one ustomer who has an

aount in the bank and who lives in �Harrison�.

Pratie Exerises 21

selet distint branh name

from aount, depositor, ustomer

where ustomer.id = depositor.id

and depositor.aount number = aount.aount number

and ustomer ity = 'Harrison'

3.9 Consider the relational database of Figure 3.19, where the primary keys are

underlined. Give an expression in SQL for eah of the following queries.

a. Find the ID, name, and ity of residene of eah employee who works for

�First Bank Corporation�.

b. Find the ID, name, and ity of residene of eah employee who works for

�First Bank Corporation� and earns more than $10000.

. Find the ID of eah employee who does not work for �First Bank Corpo-

ration�.

d. Find the ID of eah employee who earns more than every employee of

�Small Bank Corporation�.

e. Assume that ompanies may be loated in several ities. Find the name

of eah ompany that is loated in every ity in whih �Small Bank Cor-

poration� is loated.

f. Find the name of the ompany that has the most employees (or ompa-

nies, in the ase where there is a tie for the most).

g. Find the name of eah ompany whose employees earn a higher salary,

on average, than the average salary at �First Bank Corporation�.

Answer:

a. Find the ID, name, and ity of residene of eah employee who works for

�First Bank Corporation�.

employee (ID, person name, street, ity)

works (ID, ompany name, salary)

ompany (ompany name, ity)

manages (ID, manager id)

Figure 3.19 Employee database.

22 Chapter 3 Introdution to SQL

selet e.ID, e.person name, ity

from employee as e, works as w

where w.ompany name = �First Bank Corporation� and

w.ID = e.ID

b. Find the ID, name, and ity of residene of eah employee who works for

�First Bank Corporation� and earns more than $10000.

selet *

from employee

where ID in

(selet ID

from works

where ompany name = �First Bank Corporation� and salary > 10000)

This ould be written also in the style of the answer to part a.

. Find the ID of eah employee who does not work for �First Bank Corpo-

ration�.

selet ID

from works

where ompany name <> �First Bank Corporation�

If one allows people to appear in employee without appearing also in

works, the solution is slightly more ompliated. An outer join as dis-

ussed in Chapter 4 ould be used as well.

selet ID

from employee

where ID not in

(selet ID

from works

where ompany name = �First Bank Corporation�)

d. Find the ID of eah employee who earns more than every employee of

�Small Bank Corporation�.

selet ID

from works

where salary > all

(selet salary

from works

where ompany name = �Small Bank Corporation�)

If peoplemay work for several ompanies and wewish to onsider the total

earnings of eah person, the problem is more omplex. But note that the

Pratie Exerises 23

fat that ID is the primary key for works implies that this annot be the

ase.

e. Assume that ompanies may be loated in several ities. Find the name

of eah ompany that is loated in every ity in whih �Small Bank Cor-

poration� is loated.

selet S.ompany name

from ompany as S

where not exists ((selet ity

from ompany

where ompany name = �Small Bank Corporation�)

exept

(selet ity

from ompany as T

where S.ompany name = T.ompany name))

f. Find the name of the ompany that has the most employees (or ompa-

nies, in the ase where there is a tie for the most).

selet ompany name

from works

group by ompany name

having ount (distint ID) >= all

(selet ount (distint ID)

from works

group by ompany name)

g. Find the name of eah ompany whose employees earn a higher salary,

on average, than the average salary at �First Bank Corporation�.

selet ompany name

from works

group by ompany name

having avg (salary) > (selet avg (salary)

from works

where ompany name = �First Bank Corporation�)

3.10 Consider the relational database of Figure 3.19. Give an expression in SQL for

eah of the following:

a. Modify the database so that the employee whose ID is �12345� now lives

in �Newtown�.

b. Give eah manager of �First Bank Corporation� a 10 perent raise unless

the salary beomes greater than $100000; in suh ases, give only a 3

perent raise.

24 Chapter 3 Introdution to SQL

Answer:

a. Modify the database so that the employee whose ID is �12345� now lives

in �Newtown�.

update employee

set ity = �Newtown�

where ID = �12345�

b. Give eah manager of �First Bank Corporation� a 10 perent raise unless

the salary beomes greater than $100000; in suh ases, give only a 3

perent raise.

update works T

set T.salary = T.salary * 1.03

where T .ID in (selet manager id

from manages)

and T.salary * 1.1 > 100000

and T.ompany name = �First Bank Corporation�

update works T

set T.salary = T.salary * 1.1

where T .ID in (selet manager id

from manages)

and T.salary * 1.1 <= 100000

and T.ompany name = �First Bank Corporation�

The above updates would give di�erent results if exeuted in the opposite

order. We give below a safer solution using the ase statement.

update works T

set T.salary = T.salary <

(ase

when (T.salary < 1:1 > 100000) then 1.03

else 1.1

end)

where T.ID in (selet manager id

from manages) and

T.ompany name = �First Bank Corporation�

CHAP T E R

4

Intermediate SQL

Pratie Exerises

4.1 Consider the following SQL query that seeks to �nd a list of titles of all ourses

taught in Spring 2017 along with the name of the instrutor.

selet name, title

from instrutor natural join teahes natural join setion natural join ourse

where semester = �Spring� and year = 2017

What is wrong with this query?

Answer:

Although the query is syntatially orret, it does not ompute the expeted

answer beause dept name is an attribute of both ourse and instrutor. As a

result of the natural join, results are shown only when an instrutor teahes a

ourse in her or his own department.

4.2 Write the following queries in SQL:

a. Display a list of all instrutors, showing eah instrutor's ID and the num-

ber of setions taught. Make sure to show the number of setions as 0 for

instrutors who have not taught any setion. Your query should use an

outer join, and should not use subqueries.

b. Write the same query as in part a, but using a salar subquery and not

using outer join.

. Display the list of all ourse setions o�ered in Spring 2018, along with

the ID and name of eah instrutor teahing the setion. If a setion has

more than one instrutor, that setion should appear as many times in

the result as it has instrutors. If a setion does not have any instrutor,

it should still appear in the result with the instrutor name set to ���.

25

26 Chapter 4 Intermediate SQL

d. Display the list of all departments, with the total number of instrutors

in eah department, without using subqueries. Make sure to show depart-

ments that have no instrutors, and list those departments with an instru-

tor ount of zero.

Answer:

a. Display a list of all instrutors, showing eah instrutor's ID and the num-

ber of setions taught. Make sure to show the number of setions as 0 for

instrutors who have not taught any setion. Your query should use an

outer join, and should not use subqueries.

selet ID, ount(se id) as Number of setions

from instrutor natural left outer join teahes

group by ID

The above query should not be written using ount(*) sine that would

ount null values also. It ould be written using any attribute from teahes

whih does not our in instrutor, whih would be orret although it

may be onfusing to the reader. (Attributes that our in instrutor would

not be null even if the instrutor has not taught any setion.)

b. Write the same query as above, but using a salar subquery, and not using

outerjoin.

selet ID,

(selet ount(*) as Number of setions

from teahes T where T.id = I.id)

from instrutor I

. Display the list of all ourse setions o�ered in Spring 2018, along with

the ID and name of eah instrutor teahing the setion. If a setion has

more than one instrutor, that setion should appear as many times in

the result as it has instrutors. If a setion does not have any instrutor,

it should still appear in the result with the instrutor name set to ���.

selet ourse id, se id, ID,

deode(name, null, '*', name) as name

from (setion natural left outer join teahes)

natural left outer join instrutor

where semester='Spring' and year= 2018

The query may also be written using the oalese operator, by replaing

deode(..) with oalese(name, '*'). A more omplex version of the query

an be written using union of join result with another query that uses a

subquery to �nd ourses that do not math; refer to Exerise 4.3.

Exerises 27

d. Display the list of all departments, with the total number of instrutors

in eah department, without using subqueries. Make sure to show depart-

ments that have no instrutors, and list those departments with an instru-

tor ount of zero.

selet dept name, ount(ID)

from department natural left outer join instrutor

group by dept name

4.3 Outer join expressions an be omputed in SQL without using the SQL outer

join operation. To illustrate this fat, show how to rewrite eah of the following

SQL queries without using the outer join expression.

a. selet * from student natural left outer join takes

b. selet * from student natural full outer join takes

Answer:

a. selet * from student natural left outer join takes

an be rewritten as:

selet * from student natural join takes

union

selet ID, name, dept name, tot red, null, null, null, null, null

from student S1 where not exists

(selet ID from takes T1 where T1.id = S1.id)

b. selet * from student natural full outer join takes

an be rewritten as:

(selet * from student natural join takes)

union

(selet ID, name, dept name, tot red, null, null, null, null, null

from student S1

where not exists

(selet ID from takes T1 where T1.id = S1.id))

union

(selet ID, null, null, null, ourse id, se id, semester, year, grade

from takes T1

where not exists

(selet ID from student S1 whereT1.id = S1.id))

4.4 Suppose we have three relations r(A, B), s(B, C), and t(B, D), with all attributes

delared as not null.

a. Give instanes of relations r, s, and t suh that in the result of

(r natural left outer join s) natural left outer join t

attribute C has a null value but attribute D has a non-null value.

28 Chapter 4 Intermediate SQL

b. Are there instanes of r, s, and t suh that the result of

r natural left outer join (s natural left outer join t)

has a null value for C but a non-null value for D? Explain why or why not.

Answer:

a. Consider r = (a, b), s = (b1, 1), t = (b, d). The seond expression would

give (a, b, null, d).

b. Sine s natural left outer join t is omputed �rst, the absene of nulls is

both s and t implies that eah tuple of the result an have D null, but C

an never be null.

4.5 Testing SQL queries: To test if a query spei�ed in English has been orretly

written in SQL, the SQL query is typially exeuted on multiple test databases,

and a human heks if the SQL query result on eah test database mathes the

intention of the spei�ation in English.

a. In Setion 4.1.1 we saw an example of an erroneous SQL query whih was

intended to �nd whih ourses had been taught by eah instrutor; the

query omputed the natural join of instrutor, teahes, and ourse, and as

a result it unintentionally equated the dept name attribute of instrutor and

ourse. Give an example of a dataset that would help ath this partiular

error.

b. When reating test databases, it is important to reate tuples in referened

relations that do not have any mathing tuple in the referening relation

for eah foreign key. Explain why, using an example query on the univer-

sity database.

. When reating test databases, it is important to reate tuples with null

values for foreign-key attributes, provided the attribute is nullable (SQL

allows foreign-key attributes to take on null values, as long as they are not

part of the primary key and have not been delared as not null). Explain

why, using an example query on the university database.

Hint: Use the queries from Exerise 4.2.

Answer:

a. Consider the ase where a professor in the Physis department teahes

an Ele. Eng. ourse. Even though there is a valid orresponding entry in

teahes, it is lost in the natural join of instrutor, teahes and ourse, sine

the instrutor's department name does not math the department name

of the ourse. A dataset orresponding to the same is:

Exerises 29

instrutor = {(�12345�,'Gauss', 'Physis', 10000)}

teahes = {(�12345�, 'EE321', 1, 'Spring', 2017)}

ourse = {('EE321', 'Magnetism', 'Ele. Eng.', 6)}

b. The query in question 4.2(a) is a good example for this. Instrutors who

have not taught a single ourse should have number of setions as 0 in

the query result. (Many other similar examples are possible.)

. Consider the query

selet * from teahes natural join instrutor;

In this query, we would lose some setions if teahes.ID is allowed to be

null and suh tuples exist. If, just beause teahes.ID is a foreign key to

instrutor, we did not reate suh a tuple, the error in the above query

would not be deteted.

4.6 Show how to de�ne the view student grades (ID, GPA) giving the grade-point

average of eah student, based on the query in Exerise 3.2; reall that we used

a relation grade points(grade, points) to get the numeri points assoiated with

a letter grade. Make sure your view de�nition orretly handles the ase of null

values for the grade attribute of the takes relation.

Answer:

We should not add redits for ourses with a null grade; further, to orretly

handle the ase where a student has not ompleted any ourse, we should make

sure we don't divide by zero, and should instead return a null value.

We break the query into a subquery that �nds sum of redits and sum of

redit-grade-points, taking null grades into aount The outer query divides the

above to get the average, taking are of divide by zero.

reate view student grades(ID, GPA) as

selet ID, redit points / deode(redit sum, 0, null, redit sum)

from ((selet ID, sum(deode(grade, null, 0, redits)) as redit sum,

sum(deode(grade, null, 0, redits*points)) as redit points

from(takes natural join ourse) natural left outer join grade points

group by ID)

union

selet ID, null, null

from student

where ID not in (selet ID from takes))

The view de�ned above takes are of null grades by onsidering the redit points

to be 0 and not adding the orresponding redits in redit sum.

30 Chapter 4 Intermediate SQL

employee (ID, person name, street, ity)

works (ID, ompany name, salary)

ompany (ompany name, ity)

manages (ID, manager id)

Figure 4.12 Employee database.

The query above ensures that a student who has not taken any ourse with

non-null redits, and has redit sum = 0 gets a GPA of null. This avoids the

division by zero, whih would otherwise have resulted.

In systems that do note support deode, an alternative is the ase onstrut.

Using ase, the solution would be written as follows:

reate view student grades(ID, GPA) as

selet ID, redit points / (ase when redit sum = 0 then null

else redit sum end)

from ((selet ID, sum (ase when grade is null then 0

else redits end) as redit sum,

sum (ase when grade is null then 0

else redits*points end) as redit points

from(takes natural join ourse) natural left outer join grade points

group by ID)

union

selet ID, null, null

from student

where ID not in (selet ID from takes))

An alternative way of writing the above query would be to use student natural

left outer join gpa, in order to onsider students who have not taken any ourse.

4.7 Consider the employee database of Figure 4.12. Give an SQL DDL de�nition

of this database. Identify referential-integrity onstraints that should hold, and

inlude them in the DDL de�nition.

Answer:

Plese see ??.

Note that alternative data types are possible. Other hoies for not null at-

tributes may be aeptable.

4.8 As disussed in Setion 4.4.8, we expet the onstraint �an instrutor annot

teah setions in two di�erent lassrooms in a semester in the same time slot�

to hold.

Exerises 31

reate table employee

(ID numeri(6,0),

person name har(20),

street har(30),

ity har(30),

primary key (ID))

reate table works

(ID numeri(6,0),

ompany name har(15),

salary integer,

primary key (ID),

foreign key (ID) referenes employee,

foreign key (ompany name) referenes ompany)

reate table ompany

(ompany name har(15),

ity har(30),

primary key (ompany name))

reate table manages

(ID numeri(6,0),

manager iid numeri(6,0),

primary key (ID),

foreign key (ID) referenes employee,

foreign key (manager iid) referenes employee(ID))

Figure 4.101 Figure for Exerise 4.7.

a. Write an SQL query that returns all (instrutor, setion) ombinations that

violate this onstraint.

b. Write an SQL assertion to enfore this onstraint (as disussed in Se-

tion 4.4.8, urrent generation database systems do not support suh as-

sertions, although they are part of the SQL standard).

Answer:

32 Chapter 4 Intermediate SQL

a. Query:

selet ID, name, se id, semester, year, time slot id,

ount(distint building, room number)

from instrutor natural join teahes natural join setion

group by (ID, name, se id, semester, year, time slot id)

having ount(building, room number) > 1

Note that the distint keyword is required above. This is to allow two dif-

ferent setions to run onurrently in the same time slot and are taught

by the same instrutor without being reported as a onstraint violation.

b. Query:

reate assertion hek not exists

(selet ID, name, se id, semester, year, time slot id,

ount(distint building, room number)

from instrutor natural join teahes natural join setion

group by (ID, name, se id, semester, year, time slot id)

having ount(building, room number) > 1)

4.9 SQL allows a foreign-key dependeny to refer to the same relation, as in the

following example:

reate table manager

(employee ID har(20),

manager ID har(20),

primary key employee ID,

foreign key (manager ID) referenes manager(employee ID)

on delete asade)

Here, employee ID is a key to the table manager, meaning that eah employee

has at most one manager. The foreign-key lause requires that every manager

also be an employee. Explain exatly what happens when a tuple in the relation

manager is deleted.

Answer:

The tuples of all employees of the manager, at all levels, get deleted as well! This

happens in a series of steps. The initial deletion will trigger deletion of all the

tuples orresponding to diret employees of the manager. These deletions will

in turn ause deletions of seond-level employee tuples, and so on, till all diret

and indiret employee tuples are deleted.

4.10 Given the relations a(name, address, title) and b(name, address, salary), show

how to express a natural full outer join b using the full outer-join operation with

an on ondition rather than using the natural join syntax. This an be done using

the oalese operation. Make sure that the result relation does not ontain two

Exerises 33

opies of the attributes name and address and that the solution is orret even

if some tuples in a and b have null values for attributes name or address.

Answer:

selet oalese(a.name, b.name) as name,

oalese(a.address, b.address) as address,

a.title,

b.salary

from a full outer join b on a.name = b.name and

a.address = b.address

4.11 Operating systems usually o�er only two types of authorization ontrol for data

�les: read aess and write aess.Why do database systems o�er somany kinds

of authorization?

Answer: There are many reasons�we list a few here. One might wish to allow

a user only to append new information without altering old information. One

might wish to allow a user to aess a relation but not hange its shema. One

might wish to limit aess to aspets of the database that are not tehnially

data aess but instead impat resoure utilization, suh as reating an index.

4.12 Suppose a user wants to grant selet aess on a relation to another user. Why

should the user inlude (or not inlude) the lause granted by urrent role in the

grant statement?

Answer: Both ases give the same authorization at the time the statement

is exeuted, but the long-term e�ets di�er. If the grant is done based on the

role, then the grant remains in e�et even if the user who performed the grant

leaves and that user's aount is terminated. Whether that is a good or bad idea

depends on the spei� situation, but usually granting through a role is more

onsistent with a well-run enterprise.

4.13 Consider a view v whose de�nition referenes only relation r.

�

If a user is granted selet authorization on v, does that user need to have

selet authorization on r as well? Why or why not?

�

If a user is granted update authorization on v, does that user need to have

update authorization on r as well? Why or why not?

�

Give an example of an insert operation on a view v to add a tuple t that is

not visible in the result of selet * from v. Explain your answer.

Answer:

�

No. This allows a user to be granted aess to only part of relation r.

34 Chapter 4 Intermediate SQL

�

Yes. A valid update issued using view v must update r for the update to be

stored in the database.

�

Any tuple t ompatible with the shema for v but not satisfying the where

lause in the de�nition of view v is a valid example. One suh example

appears in Setion 4.2.4.

CHAP T E R

5

Advaned SQL

Pratie Exerises

5.1 Consider the following relations for a ompany database:

�

emp (ename, dname, salary)

�

mgr (ename, mname)

and the Java ode in Figure 5.20, whih uses the JDBC API. Assume that the

userid, password, mahine name, et. are all okay. Desribe in onise English

what the Java program does. (That is, produe an English sentene like �It �nds

the manager of the toy department,� not a line-by-line desription of what eah

Java statement does.)

Answer:

It prints out the manager of �dog,� that manager's manager, et., until we reah

a manager who has no manager (presumably, the CEO, who most ertainly is a

at). Note: If you try to run this, use your own Orale ID and password.

5.2 Write a Java method using JDBC metadata features that takes a ResultSet as

an input parameter and prints out the result in tabular form, with appropriate

names as olumn headings.

Answer:

Please see ??

5.3 Suppose that we wish to �nd all ourses that must be taken before some given

ourse. That means �nding not only the prerequisites of that ourse, but prereq-

uisites of prerequisites, and so on. Write a omplete Java program using JDBC

that:

�

Takes a ourse id value from the keyboard.

�

Finds prerequisites of that ourse using an SQL query submitted via JDBC.

35

36 Chapter 5 Advaned SQL

import java.sql.*;

publi lass Mystery {

publi stati void main(String[℄ args) {

try (

Connetion on=DriverManager.getConnetion(

"jdb:orale:thin:star/X�//edgar.se.lehigh.edu:1521/XE");

q = "selet mname from mgr where ename = ?";

PreparedStatement stmt=on.prepareStatement();

)

{

String q;

String empName = "dog";

boolean more;

ResultSet result;

do {

stmt.setString(1, empName);

result = stmt.exeuteQuery(q);

more = result.next();

if (more) {

empName = result.getString("mname");

System.out.println (empName);

}

} while (more);

s.lose();

on.lose();

}

ath(Exeption e){

e.printStakTrae();

}

}

}

Figure 5.20 Java ode for Exerise 5.1 (using Orale JDBC).

�

For eah ourse returned, �nds its prerequisites and ontinues this proess

iteratively until no new prerequisite ourses are found.

�

Prints out the result.

For this exerise, do not use a reursive SQL query, but rather use the iterative

approah desribed previously. A well-developed solution will be robust to the

error ase where a university has aidentally reated a yle of prerequisites

(that is, for example, ourse A is a prerequisite for ourse B, ourse B is a pre-

requisite for ourse C, and ourse C is a prerequisite for ourse A).

Pratie Exerises 37

printTable(ResultSet result) throws SQLException {

metadata = result.getMetaData();

num cols = metadata.getColumnCount();

for(int i = 1; i <= num cols; i++) {

System.out.print(metadata.getColumnName(i) + ’\t’);

}

System.out.println();

while(result.next()) {

for(int i = 1; i <= num cols; i++) {

System.out.print(result.getString(i) + ’\t’

}

System.out.println();

} }

Figure 5.101 Java method using JDBC for Exerise 5.2.

Answer:

Please see ??

5.4 Desribe the irumstanes in whih you would hoose to use embedded SQL

rather than SQL alone or only a general-purpose programming language.

Answer:

Writing queries in SQL is typially muh easier than oding the same queries

in a general-purpose programming language. However, not all kinds of queries

an be written in SQL. Also, nondelarative ations suh as printing a report,

interating with a user, or sending the results of a query to a graphial user inter-

fae annot be done from within SQL. Under irumstanes in whih we want

the best of both worlds, we an hoose embedded SQL or dynami SQL, rather

than using SQL alone or using only a general-purpose programming language.

5.5 Show how to enfore the onstraint �an instrutor annot teah two di�erent

setions in a semester in the same time slot.� using a trigger (remember that the

onstraint an be violated by hanges to the teahes relation as well as to the

setion relation).

Answer:

Please see ??

5.6 Consider the bank database of Figure 5.21. Let us de�ne a view branh ust as

follows:

38 Chapter 5 Advaned SQL

import java.sql.*;

import java.util.Scanner;

import java.util.Arrays;

public class AllCoursePrereqs {

public static void main(String[] args) {

try (

Connection con=DriverManager.getConnection

("jdbc:oracle:thin:@edgar0.cse.lehigh.edu:1521:cse241","star","pw");

Statement s=con.createStatement();

){

String q;

String c;

ResultSet result;

int maxCourse = 0;

q = "select count(*) as C from course";

result = s.executeQuery(q);

if (!result.next()) System.out.println ("Unexpected empty result.");

else maxCourse = Integer.parseInt(result.getString("C"));

int numCourse = 0, oldNumCourse = -1;

String[] prereqs = new String [maxCourse];

Scanner krb = new Scanner(System.in);

System.out.print("Input a course id (number): ");

String course = krb.next();

String courseString = "" + ’\’’ + course + ’\’’;

while (numCourse != oldNumCourse) {

for (int i = oldNumCourse + 1; i < numCourse; i++) {

courseString += ", " + ’\’’ + prereqs[i] + ’\’’ ;

}

oldNumCourse = numCourse;

q = "select prereq_id from prereq where course_id in ("

+ courseString + ")";

result = s.executeQuery(q);

while (result.next()) {

c = result.getString("prereq_id");

boolean found = false;

for (int i = 0; i < numCourse; i++)

found |= prereqs[i].equals(c);

if (!found) prereqs[numCourse++] = c;

}

courseString = "" + ’\’’ + prereqs[oldNumCourse] + ’\’’;

}

Arrays.sort(prereqs,0,numCourse);

System.out.print("The courses that must be taken prior to "

+ course + " are: ");

for (int i = 0; i < numCourse; i++)

System.out.print ((i==0?" ":", ") + prereqs[i]);

System.out.println();

} catch(Exception e){e.printStackTrace();

} }

Figure 5.102 Complete Java program using JDBC for Exerise 5.3.

Pratie Exerises 39

reate trigger onese before insert on setion

referening new row as nrow

for eah row

when (nrow.time slot id in (

selet time slot id

from teahes natural join setion

where ID in (

selet ID

from teahes natural join setion

where se id = nrow.se id and ourse id = nrow.ourse id and

semester = nrow.semester and year = nrow.year

)))

begin

rollbak

end;

reate trigger oneteah before insert on teahes

referening new row as nrow

for eah row

when (exists (

selet time slot id

from teahes natural join setion

where ID = nrow.ID

interset

selet time slot id

from setion

where se id = nrow.se id and ourse id = nrow.ourse id and

semester = nrow.semester and year = nrow.year

))

begin

rollbak

end;

Figure 5.103 Trigger ode for Exerise 5.5.

reate view branh ust as

selet branh name, ustomer name

from depositor, aount

where depositor.aount number = aount.aount number

40 Chapter 5 Advaned SQL

branh (branh name, branh ity, assets)

ustomer (ustomer name, ustomer street, ust omer ity)

loan (loan number, branh name, amount)

borrower (ustomer name, loan number)

aount (aount number, branh name, balane)

depositor (ustomer name, aount number)

Figure 5.21 Banking database for Exerise 5.6.

Suppose that the view is materialized; that is, the view is omputed and stored.

Write triggers to maintain the view, that is, to keep it up-to-date on insertions

to depositor or aount. It is not neessary to handle deletions or updates. Note

that, for simpliity, we have not required the elimination of dupliates.

Answer:

Please see ??

5.7 Consider the bank database of Figure 5.21. Write an SQL trigger to arry out

the following ation: On delete of an aount, for eah ustomer-owner of the

reate trigger insert into branh ust via depositor

after insert on depositor

referening new row as inserted

for eah row

insert into branh ust

selet branh name, inserted.ustomer name

from aount

where inserted.aount number = aount.aount number

reate trigger insert into branh ust via aount

after insert on aount

referening new row as inserted

for eah statement

insert into branh ust

selet inserted.branh name, ustomer name

from depositor

where depositor.aount number = inserted.aount number

Figure 5.22 Trigger ode for Exerise 5.6.

Pratie Exerises 41

aount, hek if the owner has any remaining aounts, and if she does not,

delete her from the depositor relation.

Answer:

reate trigger hek-delete-trigger after delete on aount

referening old row as orow

for eah row

delete from depositor

where depositor.ustomer name not in

(selet ustomer name from depositor

where aount number <> orow.aount number)

end

5.8 Given a relation S(student, subjet,marks), write a query to �nd the top 10 stu-

dents by total marks, by using SQL ranking. Inlude all students tied for the �nal

spot in the ranking, even if that results in more than 10 total students.

Answer:

selet *

from (

selet student, total, rank() over (order by (total) des) as t rank

from (

selet student, sum(marks) as total

from S group by student

)

)

where t rank <= 10

5.9 Given a relation nyse(year, month, day, shares traded, dollar volume) with trad-

ing data from the New York Stok Exhange, list eah trading day in order of

number of shares traded, and show eah day's rank.

Answer:

selet year, month, day, shares traded,

rank() over (order by shares traded des) as mostshares

from nyse

5.10 Using the relation from Exerise 5.9, write an SQL query to generate a report

showing the number of shares traded, number of trades, and total dollar volume

broken down by year, eah month of eah year, and eah trading day.

Answer:

42 Chapter 5 Advaned SQL

selet year, month, day, sum(shares traded) as shares,

sum(num trades) as trades, sum(dollar volume) as total volume

from nyse

group by rollup (year, month, day)

5.11 Show how to express group by ube(a, b, , d) using rollup; your answer should

have only one group by lause.

Answer:

groupby rollup(a), rollup(b), rollup(), rollup(d)

CHAP T E R

6

Database Design using the E-R

Model

Pratie Exerises

6.1 Construt an E-R diagram for a ar insurane ompany whose ustomers own

one or more ars eah. Eah ar has assoiated with it zero to any number of

reorded aidents. Eah insurane poliy overs one or more ars and has one

or more premium payments assoiated with it. Eah payment is for a partiular

period of time, and has an assoiated due date, and the date when the payment

was reeived.

Answer:

One possible E-R diagram is shown in Figure 6.101. Payments are modeled as

weak entities sine they are related to a spei� poliy.

Note that the partiipation of aident in the relationship partiipated is not

total, sine it is possible that there is an aident report where the partiipating

ar is unknown.

6.2 Consider a database that inludes the entity sets student, ourse, and setion

from the university shema and that additionally reords themarks that students

reeive in di�erent exams of di�erent setions.

a. Construt an E-R diagram that models exams as entities and uses a ternary

relationship as part of the design.

b. Construt an alternative E-R diagram that uses only a binary relationship

between student and setion. Make sure that only one relationship exists

between a partiular student and setion pair, yet you an represent the

marks that a student gets in di�erent exams.

Answer:

43

44 Chapter 6 Database Design using the E-R Model

customer

customer_id

name

address

owns

participated

 car

license_no

model

accident

report_id

date

place

payment

policy

policy_idcovers
1 . . 11 . . *

premium_ payment

payment_no

due_date

amount

received_on

Figure 6.101 E-R diagram for a ar insurane ompany.

a. The E-R diagram is shown in Figure 6.102. Note that an alternative is to

model examinations as weak entities related to a setion, rather than as

strong entities. The marks relationship would then be a binary relation-

ship between student and exam, without diretly involving setion.

b. The E-R diagram is shown in Figure 6.103. Note that here we have not

modeled the name, plae, and time of the exam as part of the relationship

attributes. Doing so would result in dupliation of the information, one

per student, and we would not be able to reord this information without

an assoiated student. If we wish to represent this information, we need

to retain a separate entity orresponding to eah exam.

6.3 Design an E-R diagram for keeping trak of the soring statistis of your favorite

sports team. You should store the mathes played, the sores in eah math, the

players in eah math, and individual player soring statistis for eah math.

student

student_id

name

dept_name

tot_cred

course

course_id

title

credits

section

sec_id

semester

year

exam_marks sec_course

exam

exam_id

name

place

time

marks

Figure 6.102 E-R diagram for marks database.

Pratie Exerise 45

student

student_id

name

dept_name

tot_cred

course

course_id

title

credits

section

sec_id

semester

year

exam_marks sec_course

{exam_marks

 exam_id

 marks

}

Figure 6.103 Another E-R diagram for marks database.

Summary statistis should be modeled as derived attributes with an explanation

as to how they are omputed.

Answer:

The diagram is shown in Figure 6.104. The derived attribute season sore is

omputed by summing the sore values assoiated with the player entity set via

the played relationship set.

6.4 Consider an E-R diagram in whih the same entity set appears several times,

with its attributes repeated in more than one ourrene. Why is allowing this

redundany a bad pratie that one should avoid?

Answer:

The reason an entity set would appear more than one is if one is drawing a

diagram that spans multiple pages.

The di�erent ourrenes of an entity set may have di�erent sets of at-

tributes, leading to an inonsistent diagram. Instead, the attributes of an entity

set should be spei�ed only one. All other ourrenes of the entity should

omit attributes. Sine it is not possible to have an entity set without any at-

tributes, an ourrene of an entity set without attributes learly indiates that

the attributes are spei�ed elsewhere.

played

player

player_id

name
age

season_score()

score

match

match_id

date

stadium

opponent

own_score

opp_score

Figure 6.104 E-R diagram for favorite team statistis.

46 Chapter 6 Database Design using the E-R Model

B C

A

CB E

A

RA

RB
RC

(a) (b)

(c)

A

B C

R

RBC

RAB
RAC

Figure 6.29 Representation of a ternary relationship using binary relationships.

6.5 An E-R diagram an be viewed as a graph. What do the following mean in terms

of the struture of an enterprise shema?

a. The graph is disonneted.

b. The graph has a yle.

Answer:

a. If a pair of entity sets are onneted by a path in an E-R diagram, the

entity sets are related, though perhaps indiretly. A disonneted graph

implies that there are pairs of entity sets that are unrelated to eah other.

In an enterprise, we an say that the two parts of the enterprise are om-

pletely independent of eah other. If we split the graph into onneted

omponents, we have, in e�et, a separate database orresponding to eah

independent part of the enterprise.

b. As indiated in the answer to the previous part, a path in the graph be-

tween a pair of entity sets indiates a (possibly indiret) relationship be-

tween the two entity sets. If there is a yle in the graph, then every pair

of entity sets on the yle are related to eah other in at least two distint

ways. If the E-R diagram is ayli, then there is a unique path between

every pair of entity sets and thus a unique relationship between every pair

of entity sets.

Pratie Exerise 47

A

EB C
R

B
R

A
R

C

Figure 6.105 E-R diagram for Exerise Exerise 6.6b.

6.6 Consider the representation of the ternary relationship of Figure 6.29a using

the binary relationships illustrated in Figure 6.29b (attributes not shown).

a. Show a simple instane of E,A,B,C, R

A

,R

B

, and R

C

that annot orre-

spond to any instane of A,B,C, and R.

b. Modify the E-R diagram of Figure 6.29b to introdue onstraints that will

guarantee that any instane of E,A,B,C, R

A

,R

B

, and R

C

that satis�es the

onstraints will orrespond to an instane of A,B,C, and R.

. Modify the preeding translation to handle total partiipation onstraints

on the ternary relationship.

Answer:

a. Let E = ^e

1

, e

2

`, A = ^a

1

, a

2

`, B = ^b

1

`, C = ^

1

`, R

A

=

^(e

1

, a

1

), (e

2

, a

2

)`, R

B

= ^(e

1

, b

1

)`, and R

C

= ^(e

1

,

1

)`. We see that

beause of the tuple (e

2

, a

2

), no instane of A,B,C, and R exists that or-

responds to E, R

A

, R

B

and R

C

.

b. See Figure 6.105. The idea is to introdue total partiipation onstraints

between E and the relationships R

A

, R

B

, R

C

so that every tuple in E has a

relationship with A, B, and C.

. Suppose A totally partiipates in the relationhip R, then introdue a total

partiipation onstraint between A and R

A

, and similarly for B and C.

6.7 A weak entity set an always be made into a strong entity set by adding to its

attributes the primary-key attributes of its identifying entity set. Outline what

sort of redundany will result if we do so.

Answer:

The primary key of a weak entity set an be inferred from its relationship with

the strong entity set. If we add primary-key attributes to the weak entity set, they

will be present in both the entity set, and the relationship set and they have to

be the same. Hene there will be redundany.

48 Chapter 6 Database Design using the E-R Model

6.8 Consider a relation suh as se ourse, generated from a many-to-one relation-

ship set se ourse. Do the primary and foreign key onstraints reated on the

relation enfore the many-to-one ardinality onstraint? Explain why.

Answer:

In this example, the primary key of setion onsists of the attributes (ourse id,

se id, semester, year), whih would also be the primary key of se ourse, while

ourse id is a foreign key from se ourse referening ourse. These onstraints

ensure that a partiular setion an only orrespond to one ourse, and thus the

many-to-one ardinality onstraint is enfored.

However, these onstraints annot enfore a total partiipation onstraint, sine

a ourse or a setion may not partiipate in the se ourse relationship.

6.9 Suppose the advisor relationship set were one-to-one. What extra onstraints

are required on the relation advisor to ensure that the one-to-one ardinality

onstraint is enfored?

Answer:

In addition to delaring s ID as primary key for advisor, we delare i ID as a

superkey for advisor (this an be done in SQL using the unique onstraint on

i ID).

6.10 Consider a many-to-one relationship R between entity sets A and B. Suppose

the relation reated from R is ombined with the relation reated from A. In

SQL, attributes partiipating in a foreign key onstraint an be null. Explain

how a onstraint on total partiipation of A in R an be enfored using not null

onstraints in SQL.

Answer:

The foreign-key attribute in R orresponding to the primary key of B should be

made not null. This ensures that no tuple of A whih is not related to any entry

in B under R an ome in R. For example, say a is a tuple in A whih has no

orresponding entry in R. This means when R is ombined with A, it would have

a foreign-key attribute orresponding to B as null, whih is not allowed.

6.11 In SQL, foreign key onstraints an referene only the primary key attributes of

the referened relation or other attributes delared to be a superkey using the

unique onstraint. As a result, total partiipation onstraints on a many-to-many

relationship set (or on the �one� side of a one-to-many relationship set) annot

be enfored on the relations reated from the relationship set, using primary

key, foreign key, and not null onstraints on the relations.

a. Explain why.

b. Explain how to enfore total partiipation onstraints using omplex

hek onstraints or assertions (see Setion 4.4.8). (Unfortunately, these

features are not supported on any widely used database urrently.)

Pratie Exerise 49

Answer:

a. For the many-to-many ase, the relationship set must be represented as a

separate relation that annot be ombined with either partiipating entity.

Now, there is no way in SQL to ensure that a primary-key value ourring

in an entity E1 also ours in a many-to-many relationship R, sine the

orresponding attribute in R is not unique; SQL foreign keys an only

refer to the primary key or some other unique key.

Similarly, for the one-to-many ase, there is no way to ensure that an at-

tribute on the one side appears in the relation orresponding to the many

side, for the same reason.

b. Let the relation R be many-to-one from entity A to entity B with a and b as

their respetive primary keys. We an put the following hek onstraints

on the "one" side relation B:

onstraint total part hek (b in (selet b from A));

set onstraints total part deferred;

Note that the onstraint should be set to deferred so that it is only heked

at the end of the transation; otherwise if we insert a b value in B before

it is inserted in A, the onstraint would be violated, and if we insert it in

A before we insert it in B, a foreign-key violation would our.

6.12 Consider the following lattie struture of generalization and speialization (at-

tributes not shown).

X Y

A B C

For entity sets A, B, and C, explain how attributes are inherited from the higher-

level entity sets X and Y . Disuss how to handle a ase where an attribute of X

has the same name as some attribute of Y .

Answer:

A inherits all the attributes of X, plus it may de�ne its own attributes. Similarly,

C inherits all the attributes of Y plus its own attributes. B inherits the attributes

of both X and Y. If there is some attribute name whih belongs to both X and Y,

it may be referred to in B by the quali�ed name X.name or Y.name.

6.13 An E-R diagram usually models the state of an enterprise at a point in time.

Suppose we wish to trak temporal hanges, that is, hanges to data over time.

For example, Zhang may have been a student between September 2015 and

50 Chapter 6 Database Design using the E-R Model

May 2019, while Shankar may have had instrutor Einstein as advisor fromMay

2018 to Deember 2018, and again from June 2019 to January 2020. Similarly,

attribute values of an entity or relationship, suh as title and redits of ourse,

salary, or even name of instrutor, and tot red of student, an hange over time.

One way to model temporal hanges is as follows: We de�ne a new data type

alled valid time, whih is a time interval, or a set of time intervals. We then

assoiate a valid time attribute with eah entity and relationship, reording the

time periods during whih the entity or relationship is valid. The end time of an

interval an be in�nity; for example, if Shankar beame a student in September

2018, and is still a student, we an represent the end time of the valid time in-

terval as in�nity for the Shankar entity. Similarly, we model attributes that an

hange over time as a set of values, eah with its own valid time.

a. Draw an E-R diagram with the student and instrutor entities, and the ad-

visor relationship, with the above extensions to trak temporal hanges.

b. Convert the E-R diagram disussed above into a set of relations.

It should be lear that the set of relations generated is rather omplex, leading

to di	ulties in tasks suh as writing queries in SQL. An alternative approah,

whih is used more widely, is to ignore temporal hanges when designing the

E-R model (in partiular, temporal hanges to attribute values), and to modify

the relations generated from the E-R model to trak temporal hanges.

Answer:

.

a. The E-R diagram is shown in Figure 6.106.

The primary key attributes student id and instrutor id are assumed to be

immutable, that is, they are not allowed to hange with time. All other

attributes are assumed to potentially hange with time.

Note that the diagram uses multivalued omposite attributes suh as

valid times or name, with subattributes suh as start time or value. The

value attribute is a subattribute of several attributes suh as name, tot red

and salary, and refers to the name, total redits or salary during a parti-

ular interval of time.

b. The generated relations are as shown below. Eah multivalued attribute

has turned into a relation, with the relation name onsisting of the orig-

inal relation name onatenated with the name of the multivalued at-

tribute. The relation orresponding to the entity has only the primary-key

attribute, and this is needed to ensure uniqueness.

Pratie Exerise 51

student(student id)

student valid times(student id, start time, end time)

student name(student id, value, start time, end time

student dept name(student id, value, start time, end time

student tot red(student id, value, start time, end time

instrutor(instrutor id)

instrutor valid times(instrutor id, start time, end time)

instrutor name(instrutor id, value, start time, end time

instrutor dept name(instrutor id, value, start time, end time

instrutor salary(instrutor id, value, start time, end time

advisor(student id, instrutor id, start time, end time)

The primary keys shown are derived diretly from the E-R diagram. If we

add the additional onstraint that time intervals annot overlap (or even

the weaker ondition that one start time annot have two end times), we

an remove the end time from all the above primary keys.

student

student_id

{valid_times

 start_time

 end_time

}

{name

 value

 start_time

 end_time

}

{dept_name

 value

 start_time

 end_time

}

{tot_cred

 value

 start_time

 end_time

}

instructor

instructor_id

{valid_times

 start_time

 end_time

}

{name

 value

 start_time

 end_time

}

{dept_name

 value

 start_time

 end_time

}

{salary

 value

 start_time

 end_time

}

advisor

{valid_time

 start_time

 end_time

}

Figure 6.106 E-R diagram for Exerise 6.13

CHAP T E R

7

Relational Database Design

Pratie Exerises

7.1 Suppose that we deompose the shema R = (A, B, C, D, E) into

(A, B, C)

(A, D, E).

Show that this deomposition is a lossless deomposition if the following set F

of funtional dependenies holds:

A� BC

CD� E

B � D

E � A

Answer:

A deomposition ^R

1

, R

2

` is a lossless deomposition if R

1

ã R

2

� R

1

or

R

1

ã R

2

� R

2

. Let R

1

= (A, B, C), R

2

= (A, D, E), and R

1

ã R

2

= A.

Sine A is a andidate key (see Pratie Exerise 7.6), R

1

ã R

2

� R

1

.

7.2 List all nontrivial funtional dependenies satis�ed by the relation of Figure

7.18.

A B C

a

1

b

1

1

a

1

b

1

2

a

2

b

1

1

a

2

b

1

3

Figure 7.17 Relation of Exerise 7.2.

53

54 Chapter 7 Relational Database Design

Answer:

The nontrivial funtional dependenies are: A � B and C � B, and a

dependeny they logially imply: AC � B. C does not funtionally determine

A beause the �rst and third tuples have the same C but di�erent A values. The

same tuples also show B does not funtionally determine A. Likewise, A does not

funtionally determine C beause the �rst two tuples have the same A value and

di�erent C values. The same tuples also show B does not funtionally determine

C. There are 19 trivial funtional dependenies of the form � � �, where

� Ó �.

7.3 Explain how funtional dependenies an be used to indiate the following:

�

A one-to-one relationship set exists between entity sets student and instru-

tor.

�

Amany-to-one relationship set exists between entity sets student and instru-

tor.

Answer:

Let Pk(r) denote the primary key attribute of relation r.

�

The funtional dependenies Pk(student) � Pk (instrutor) and

Pk(instrutor) � Pk(student) indiate a one-to-one relationship be-

ause any two tuples with the same value for student must have the same

value for instrutor, and any two tuples agreeing on instrutor must have

the same value for student.

�

The funtional dependeny Pk(student)� Pk(instrutor) indiates a many-

to-one relationship sine any student value whih is repeated will have the

same instrutor value, but many student values may have the same instru-

tor value.

7.4 UseArmstrong's axioms to prove the soundness of the union rule. (Hint: Use the

augmentation rule to show that, if �� �, then �� ��. Apply the augmentation

rule again, using �� , and then apply the transitivity rule.)

Answer:

To prove that:

if � � � and � � then � � �

Following the hint, we derive:

Pratie Exerises 55

� � � given

�� � �� augmentation rule

� � �� union of idential sets

� � given

�� � � augmentation rule

� � � transitivity rule and set union ommutativity

7.5 Use Armstrong's axioms to prove the soundness of the pseudotransitivity rule.

Answer:

Proof using Armstrong's axioms of the pseudotransitivity rule:

if � � � and � � Æ, then � � Æ.

� � � given

� � � augmentation rule and set union ommutativity

 � � Æ given

� � Æ transitivity rule

7.6 Compute the losure of the following set F of funtional dependenies for rela-

tion shema R = (A, B, C, D, E).

A� BC

CD� E

B� D

E � A

List the andidate keys for R.

Answer:

Note: It is not reasonable to expet students to enumerate all of F

+

. Some short-

hand representation of the result should be aeptable as long as the nontrivial

members of F

+

are found.

Starting with A � BC, we an onlude: A � B and A � C.

Sine A � B and B � D, A � D (deomposition,

transitive)

Sine A � CD and CD � E, A � E (union, deom-

position, transi-

tive)

Sine A � A, we have (re�exive)

A � ABCDE from the above steps (union)

Sine E � A, E � ABCDE (transitive)

Sine CD � E, CD � ABCDE (transitive)

Sine B � D and BC � CD, BC �

ABCDE

(augmentative,

transitive)

Also, C � C, D � D, BD � D, et.

56 Chapter 7 Relational Database Design

Therefore, any funtional dependeny with A, E, BC, or CD on the left-hand

side of the arrow is in F

+

, no matter whih other attributes appear in the FD.

Allow * to represent any set of attributes in R, then F

+

is BD � B, BD � D,

C � C, D � D, BD � BD, B � D, B � B, B � BD, and all FDs of the

form A <� �, BC <� �, CD <� �, E <� � where � is any subset of

^A, B, C, D, E`. The andidate keys are A, BC, CD, and E.

7.7 Using the funtional dependenies of Exerise 7.6, ompute the anonial

over F

.

Answer:

The given set of FDs F is:-

A� BC

CD� E

B� D

E� A

The left side of eah FD in F is unique. Also, none of the attributes in the left

side or right side of any of the FDs is extraneous. Therefore the anonial over

F

is equal to F .

7.8 Consider the algorithm in Figure 7.19 to ompute �

+

. Show that this algorithm

is more e	ient than the one presented in Figure 7.8 (Setion 7.4.2) and that it

omputes �

+

orretly.

Answer:

The algorithm is orret beause:

�

If A is added to result then there is a proof that � � A. To see this, observe

that � � � trivially, so � is orretly part of result. If A Ì � is added to

result, there must be some FD � � suh that A Ë and � is already a

subset of result. (Otherwise fdount would be nonzero and the if ondition

would be false.) A full proof an be given by indution on the depth of

reursion for an exeution of addin, but suh a proof an be expeted only

from students with a good mathematial bakground.

�

If A Ë �

+

, then A is eventually added to result. We prove this by indution

on the length of the proof of � � A using Armstrong's axioms. First observe

that if proedure addin is alled with some argument �, all the attributes in

� will be added to result. Also if a partiular FD's fdount beomes 0, all

the attributes in its tail will de�nitely be added to result. The base ase of

the proof, A Ë � Ù A Ë �

+

, is obviously true beause the �rst all to

addin has the argument �. The indutive hypothesis is that if � � A an

be proved in n steps or less, then A Ë result: If there is a proof in n + 1

Pratie Exerises 57

result := ç;

/* fdount is an array whose ith element ontains the number

of attributes on the left side of the ith FD that are

not yet known to be in �

+

*/

for i := 1 to ðF ð do

begin

let � � denote the ith FD;

fdount [i℄ := ð�ð;

end

/* appears is an array with one entry for eah attribute. The

entry for attribute A is a list of integers. Eah integer

i on the list indiates that A appears on the left side

of the ith FD */

for eah attribute A do

begin

appears [A℄ := NIL;

for i := 1 to ðF ð do

begin

let � � denote the ith FD;

if A Ë � then add i to appears [A℄;

end

end

addin (�);

return (result);

proedure addin (�);

for eah attribute A in � do

begin

if A Ì result then

begin

result := result ä ^A`;

for eah element i of appears[A℄ do

begin

fdount [i℄ := fdount [i℄ * 1;

if fdount [i℄ := 0 then

begin

let � � denote the ith FD;

addin ();

end

end

end

end

Figure 7.18 An algorithm to ompute �

+

.

58 Chapter 7 Relational Database Design

steps that � � A, then the last step was an appliation of either re�exivity,

augmentation, or transitivity on a fat � � � proved in n or fewer steps.

If re�exivity or augmentation was used in the (n + 1)

st

step, A must have

been in result by the end of the n

th

step itself. Otherwise, by the indutive

hypothesis, � Ó result. Therefore, the dependeny used in proving � � ,

A Ë , will have fdount set to 0 by the end of the n

th

step. Hene A will

be added to result.

To see that this algorithm is more e	ient than the one presented in the hap-

ter, note that we san eah FD one in the main program. The resulting array

appears has size proportional to the size of the given FDs. The reursive alls

to addin result in proessing linear in the size of appears. Hene the algorithm

has time omplexity whih is linear in the size of the given FDs. On the other

hand, the algorithm given in the text has quadrati time omplexity, as it may

perform the loop as many times as the number of FDs, in eah loop sanning

all of them one.

7.9 Given the database shema R(A,B,C), and a relation r on the shema R, write

an SQL query to test whether the funtional dependeny B � C holds on re-

lation r. Also write an SQL assertion that enfores the funtional dependeny.

Assume that no null values are present. (Although part of the SQL standard,

suh assertions are not supported by any database implementation urrently.)

Answer:

a. The query is given below. Its result is non-empty if and only if B � C

does not hold on r.

selet B

from r

group by B

having ount(distint C) > 1

b.

reate assertion b to hek

(not exists

(selet B

from r

group by B

having ount(distint C) > 1

)

)

Pratie Exerises 59

7.10 Our disussion of lossless deomposition impliitly assumed that attributes on

the left-hand side of a funtional dependeny annot take on null values. What

ould go wrong on deomposition, if this property is violated?

Answer:

The natural join operator is de�ned in terms of the Cartesian produt and the

seletion operator. The seletion operator gives unknown for any query on a null

value. Thus, the natural join exludes all tuples with null values on the ommon

attributes from the �nal result. Thus, the deomposition would be lossy (in a

manner di�erent from the usual ase of lossy deomposition), if null values

our in the left-hand side of the funtional dependeny used to deompose the

relation. (Null values in attributes that our only in the right-hand side of the

funtional dependeny do not ause any problems.)

7.11 In the BCNF deomposition algorithm, suppose you use a funtional depen-

deny � � � to deompose a relation shema r(�, �,) into r

1

(�, �) and r

2

(�,).

a. What primary and foreign-key onstraint do you expet to hold on the

deomposed relations?

b. Give an example of an inonsisteny that an arise due to an erroneous

update, if the foreign-key onstraint were not enfored on the deomposed

relations above.

. When a relation shema is deomposed into 3NF using the algorithm in

Setion 7.5.2, what primary and foreign-key dependenies would you ex-

pet to hold on the deomposed shema?

Answer:

a. � should be a primary key for r

1

, and � should be the foreign key from r

2

,

referening r

1

.

b. If the foreign key onstraint is not enfored, then a deletion of a tuple from

r

1

would not have a orresponding deletion from the referening tuples in

r

2

. Instead of deleting a tuple from r, this would amount to simply setting

the value of � to null in some tuples.

. For every shema r

i

(��) added to the deomposition beause of a fun-

tional dependeny � � �, � should be made the primary key. Also, a

andidate key for the original relation is loated in some newly reated

relation r

k

and is a primary key for that relation.

Foreign-key onstraints are reated as follows: for eah relation r

i

reated

above, if the primary key attributes of r

i

also our in any other relation

r

j

, then a foreign-key onstraint is reated from those attributes in r

j

, ref-

erening (the primary key of) r

i

.

60 Chapter 7 Relational Database Design

7.12 Let R

1

, R

2

,§ ,R

n

be a deomposition of shema U. Let u(U) be a relation, and

let r

i

= �

R

I

(u). Show that

u Ó r

1

Æ r

2

Æ 5 Æ r

n

Answer:

Consider some tuple t in u.

Note that r

i

= �

R

i

(u) implies that t[R

i

℄ Ë r

i

, 1 f i f n. Thus,

t[R

1

℄ Æ t[R

2

℄ Æ § Æ t[R

n

℄ Ë r

1

Æ r

2

Æ § Æ r

n

By the de�nition of natural join,

t[R

1

℄ Æ t[R

2

℄ Æ § Æ t[R

n

℄ = �

�

(�

�

(t[R

1

℄ � t[R

2

℄ � § � t[R

n

℄))

where the ondition � is satis�ed if values of attributes with the same name

in a tuple are equal and where � = U . The Cartesian produt of single tuples

generates one tuple. The seletion proess is satis�ed beause all attributes with

the same name must have the same value sine they are projetions from the

same tuple. Finally, the projetion lause removes dupliate attribute names.

By the de�nition of deomposition, U = R

1

ä R

2

ä § ä R

n

, whih means

that all attributes of t are in t[R

1

℄ Æ t[R

2

℄ Æ § Æ t[R

n

℄. That is, t is equal to

the result of this join.

Sine t is any arbitrary tuple in u,

u Ó r

1

Æ r

2

Æ § Æ r

n

7.13 Show that the deomposition in Exerise 7.1 is not a dependeny-preserving

deomposition.

Answer:

Therer are several funtional dependenies that are not preserved. We disuss

one example here. The dependeny B � D is not preserved. F

1

, the restrition

of F to (A, B, C) is A � ABC, A � AB, A � AC, A � BC, A � B,

A � C, A � A, B � B, C � C, AB � AC, AB � ABC, AB � BC,

AB � AB, AB � A, AB � B, AB � C, AC (same as AB), BC (same as AB),

ABC (same as AB). F

2

, the restrition of F to (C, D, E) is A � ADE, A � AD,

A � AE, A � DE, A � A, A � D, A � E, D � D, E (same as A), AD,

AE, DE, ADE (same as A). (F

1

ä F

2

)

+

is easily seen not to ontain B � D

sine the only FD in F

1

ä F

2

with B as the left side is B � B, a trivial FD.

Thus B � D is not preserved.

A simpler argument is as follows: F

1

ontains no dependenies with D on

the right side of the arrow. F

2

ontains no dependenies with B on the left side

of the arrow. Therefore for B � D to be preserved there must be a funtional

dependeny B � � in F

+

1

and � � D in F

+

2

(so B � D would follow by

Pratie Exerises 61

transitivity). Sine the intersetion of the two shemes is A, � = A. Observe that

B � A is not in F

+

1

sine B

+

= BD.

7.14 Show that there an be more than one anonial over for a given set of fun-

tional dependenies, using the following set of dependenies:

X � YZ, Y � XZ, and Z � XY .

Answer: Consider the �rst funtional dependeny. We an verify that Z is

extraneous in X � YZ and delete it. Subsequently, we an similarly hek that

X is extraneous in Y � XZ and delete it, and that Y is extraneous in Z � XY

and delete it, resulting in a anonial over X � Y , Y � Z,Z � X .

However, we an also verify that Y is extraneous in X � YZ and delete it.

Subsequently, we an similarly hek that Z is extraneous in Y � XZ and delete

it, and that X is extraneous in Z � XY and delete it, resulting in a anonial

over X � Z, Y � X ,Z � Y .

7.15 The algorithm to generate a anonial over only removes one extraneous at-

tribute at a time. Use the funtional dependenies from Exerise 7.14 to show

what an go wrong if two attributes inferred to be extraneous are deleted at

one.

Answer: In X � YZ, one an infer that Y is extraneous, and so is Z. But

deleting both will result in a set of dependenies from whih X � YZ an no

longer be inferred. Deleting Y results in Z no longer being extraneous, and delet-

ing Z results in Y no longer being extraneous. The anonial over algorithm

only deletes one attribute at a time, avoiding the problem that ould our if

two attributes are deleted at the same time.

7.16 Show that it is possible to ensure that a dependeny-preserving deomposition

into 3NF is a lossless deomposition by guaranteeing that at least one shema

ontains a andidate key for the shema being deomposed. (Hint: Show that

the join of all the projetions onto the shemas of the deomposition annot

have more tuples than the original relation.)

Answer:

Let F be a set of funtional dependenies that hold on a shema R. Let � =

^R

1

,R

2

,§ ,R

n

` be a dependeny-preserving 3NF deomposition of R. Let X be

a andidate key for R.

Consider a legal instane r ofR. Let j = �

X

(r) Æ �

R

1

(r) Æ �

R

2

(r)§ Æ �

R

n

(r).

We want to prove that r = j.

We laim that if t

1

and t

2

are two tuples in j suh that t

1

[X ℄ = t

2

[X ℄, then

t

1

= t

2

. To prove this laim, we use the following indutive argument:

Let F

¨

= F

1

ä F

2

ä§ ä F

n

, where eah F

i

is the restrition of F to the shema

R

i

in �. Consider the use of the algorithm given in Figure 7.8 to ompute the

62 Chapter 7 Relational Database Design

losure of X under F

¨

. We use indution on the number of times that the for

loop in this algorithm is exeuted.

�

Basis: In the �rst step of the algorithm, result is assigned to X , and hene

given that t

1

[X ℄ = t

2

[X ℄, we know that t

1

[result℄ = t

2

[result℄ is true.

�

Indution Step: Let t

1

[result℄ = t

2

[result℄ be true at the end of the k th

exeution of the for loop.

Suppose the funtional dependeny onsidered in the k+1 th exeution

of the for loop is � � , and that � Ó result. � Ó result implies that

t

1

[�℄ = t

2

[�℄ is true. The fats that � � holds for some attribute set

R

i

in � and that t

1

[R

i

℄ and t

2

[R

i

℄ are in �

R

i

(r) imply that t

1

[℄ = t

2

[℄ is

also true. Sine is now added to result by the algorithm, we know that

t

1

[result℄ = t

2

[result℄ is true at the end of the k + 1 th exeution of the for

loop.

Sine � is dependeny-preserving and X is a key for R, all attributes in R are in

result when the algorithm terminates. Thus, t

1

[R℄ = t

2

[R℄ is true, that is, t

1

= t

2

� as laimed earlier.

Our laim implies that the size of �

X

(j) is equal to the size of j. Note also

that �

X

(j) = �

X

(r) = r (sine X is a key for R). Thus we have proved that the

size of j equals that of r. Using the result of Exerise 7.12, we know that r Ó j.

Hene we onlude that r = j.

Note that sine X is trivially in 3NF, � ä ^X` is a dependeny-preserving

lossless deomposition into 3NF.

7.17 Give an example of a relation shema R

¨

and set F

¨

of funtional dependen-

ies suh that there are at least three distint lossless deompositions of R

¨

into

BCNF.

Answer:

Given the relation R

¨

= (A, B, C, D) the set of funtional dependenies F

¨

=

A � B, C � D, B � C allows three distint BCNF deompositions.

R

1

= ^(A, B), (C, D), (B, C)`

is in BCNF as is

R

2

= ^(A, B), (C, D), (A, C)`

R

3

= ^(B, C), (A, D), (A, B)`

7.18 Let a prime attribute be one that appears in at least one andidate key. Let � and

� be sets of attributes suh that � � � holds, but �� � does not hold. Let A be

Pratie Exerises 63

an attribute that is not in �, is not in �, and for whih � � A holds. We say that

A is transitively dependent on �. We an restate the de�nition of 3NF as follows:

A relation shema R is in 3NF with respet to a set F of funtional dependenies

if there are no nonprime attributes A in R for whih A is transitively dependent

on a key for R. Show that this new de�nition is equivalent to the original one.

Answer:

Suppose R is in 3NF aording to the textbook de�nition. We show that it is in

3NF aording to the de�nition in the exerise. Let A be a nonprime attribute

in R that is transitively dependent on a key � for R. Then there exists � Ó R

suh that � � A, � � �, A Ì �, A Ì �, and � � � does not hold. But

then � � A violates the textbook de�nition of 3NF sine

�

A Ì � implies � � A is nontrivial

�

Sine � � � does not hold, � is not a superkey

�

A is not any andidate key, sine A is nonprime

Now we show that if R is in 3NF aording to the exerise de�nition, it is in

3NF aording to the textbook de�nition. Suppose R is not in 3NF aording

to the the textbook de�nition. Then there is an FD � � � that fails all three

onditions. Thus

�

� � � is nontrivial.

�

� is not a superkey for R.

�

Some A in � * � is not in any andidate key.

This implies that A is nonprime and � � A. Let be a andidate key for R.

Then � �, � � does not hold (sine � is not a superkey), A Ì �, and

A Ì (sine A is nonprime). Thus A is transitively dependent on , violating

the exerise de�nition.

7.19 A funtional dependeny � � � is alled a partial dependeny if there is a

proper subset of � suh that � �; we say that � is partially dependent on �. A

relation shema R is in seond normal form (2NF) if eah attribute A in Rmeets

one of the following riteria:

�

It appears in a andidate key.

�

It is not partially dependent on a andidate key.

Show that every 3NF shema is in 2NF. (Hint: Show that every partial depen-

deny is a transitive dependeny.)

Answer:

Referring to the de�nitions in Exerise 7.18, a relation shema R is said to be in

3NF if there is no nonprime attribute A in R for whih A is transitively dependent

on a key for R.

64 Chapter 7 Relational Database Design

We an also rewrite the de�nition of 2NF given here as:

�A relation shema R is in 2NF if no nonprime attribute A is partially dependent

on any andidate key for R.�

To prove that every 3NF shema is in 2NF, it su	es to show that if a non-

prime attribute A is partially dependent on a andidate key �, then A is also

transitively dependent on the key �.

Let A be a nonprime attribute in R. Let � be a andidate key for R. Suppose

A is partially dependent on �.

�

From the de�nition of a partial dependeny, we know that for some proper

subset � of �, �� A.

�

Sine � Ï �, � � �. Also, �� � does not hold, sine � is a andidate key.

�

Finally, sine A is nonprime, it annot be in either � or �.

Thus we onlude that � � A is a transitive dependeny. Hene we have proved

that every 3NF shema is also in 2NF.

7.20 Give an example of a relation shema R and a set of dependenies suh that R

is in BCNF but is not in 4NF.

Answer:

There are, of ourse, an in�nite number of suh examples. We show the simplest

one here.

Let R be the shema (A, B, C) with the only nontrivial dependeny being A��

B

CHAP T E R

8

Complex Data Types

Pratie Exerises

8.1 Provide information about the student named Shankar in our sample univer-

sity database, inluding information from the student tuple orresponding to

Shankar, the takes tuples orresponding to Shankar and the ourse tuples or-

responding to these takes tuples, in eah of the following representations:

a. Using JSON, with an appropriate nested representation.

b. Using XML, with the same nested representation.

. Using RDF triples.

d. As an RDF graph.

Answer:

a. FILL IN

b. FILL IN

. FILL IN

d. FILL IN

8.2 Consider the RDF representation of information from the university shema as

shown in Figure 8.3. Write the following queries in SPARQL.

a. Find the titles of all ourses taken by any student named Zhang.

b. Find titles of all ourses suh that a student named Zhang takes a setion

of the ourse that is taught by an instrutor named Srinivasan.

. Find the attribute names and values of all attributes of the instru-

tor named Srinivasan, without enumerating the attribute names in your

query.

65

66 Chapter 8 Complex Data Types

Answer:

FILL IN

8.3 A ar-rental ompany maintains a database for all vehiles in its urrent �eet.

For all vehiles, it inludes the vehile identi�ation number, liense number,

manufaturer, model, date of purhase, and olor. Speial data are inluded for

ertain types of vehiles:

�

Truks: argo apaity.

�

Sports ars: horsepower, renter age requirement.

�

Vans: number of passengers.

�

O�-road vehiles: ground learane, drivetrain (four- or two-wheel drive).

Construt an SQL shema de�nition for this database. Use inheritane where

appropriate.

Answer:

For this problem, we use table inheritane. We assume thatMyDate, Color and

DriveTrainType are pre-de�ned types.

reate type Vehile

(vehile id integer,

liense number har(15),

manufaturer har(30),

model har(30),

purhase date MyDate,

olor Color)

reate table vehile of type Vehile

reate table truk

(argo apaity integer)

under vehile

reate table sportsCar

(horsepower integer

renter age requirement integer)

under vehile

reate table van

(num passengers integer)

under vehile

Pratie Exerises 67

reate table o�RoadVehile

(ground learane real

driveTrain DriveTrainType)

under vehile

8.4 Consider a database shema with a relation Emp whose attributes are as shown

below, with types spei�ed for multivalued attributes.

Emp = (ename, ChildrenSet multiset(Children), SkillSet multiset(Skills))

Children = (name, birthday)

Skills = (type, ExamSet setof(Exams))

Exams = (year, ity)

De�ne the above shema in SQL, using the SQL Server table type syntax from

Setion 8.2.1.1 to delare multiset attributes.

Answer:

a. No answer.

b. Queries in SQL.

i. Program:

selet ename

from emp as e, e.ChildrenSet as

where 'Marh' in

(selet birthday.month

from

)

ii. Program:

selet e.ename

from emp as e, e.SkillSet as s, s.ExamSet as x

where s.type = 'typing' and x.ity = 'Dayton'

iii. Program:

selet distint s.type

from emp as e, e.SkillSet as s

8.5 Consider the E-R diagram in Figure 8.7 showing entity set instrutor.

Give an SQL shema de�nition orresponding to the E-R diagram, treating

phone number as an array of 10 elements, using Orale or PostgreSQL syntax.

Answer:

The orresponding SQL:1999 shema de�nition is given below. Note that the

derived attribute age has been translated into a method.

68 Chapter 8 Complex Data Types

instructor

ID

name

first_name

middle_inital

last_name

address

street

street_number

street_name

apt_number

city

state

zip

{phone_number}

date_of_birth

age ()

Figure 8.7 E-R diagram with omposite, multivalued, and derived attributes.

reate type Name

(�rst name varhar(15),

middle initial har,

last name varhar(15))

reate type Street

(street name varhar(15),

street number varhar(4),

apartment number varhar(7))

reate type Address

(street Street,

ity varhar(15),

state varhar(15),

zip ode har(6))

reate table ustomer

(name Name,

ustomer id varhar(10),

address Adress,

phones varray(10) of har(7) ,

dob date)

method integer age()

Pratie Exerises 69

employee (person name, street, ity)

works (person name, ompany name, salary)

ompany (ompany name, ity)

manages (person name, manager name)

Figure 8.8 Relational database for Exerise 8.6.

The above array syntax is based on Orale, in PostgreSQL phones would be

delared to have type har(7)[℄.

8.6 Consider the relational shema shown in Figure 8.8.

a. Give a shema de�nition in SQL orresponding to the relational shema

but using referenes to express foreign-key relationships.

b. Write eah of the following queries on the shema, using SQL.

i. Find the ompany with the most employees.

ii. Find the ompany with the smallest payroll.

iii. Find those ompanies whose employees earn a higher salary, on aver-

age, than the average salary at First Bank Corporation.

Answer:

a. The shema de�nition is given below.

reate type Employee

(person name varhar(30),

street varhar(15),

ity varhar(15))

reate type Company

(ompany name varhar(15),

(ity varhar(15))

reate table employee of Employee

reate table ompany of Company

reate type Works

(person ref(Employee) sope employee,

omp ref(Company) sope ompany,

salary int)

reate table works of Works

reate type Manages

(person ref(Employee) sope employee,

(manager ref(Employee) sope employee)

reate table manages of Manages

70 Chapter 8 Complex Data Types

b. i. selet omp* >name

from works

group by omp

having ount(person) g all(selet ount(person)

from works

group by omp)

ii. selet omp* >name

from works

group by omp

having sum(salary) f all(selet sum(salary)

from works

group by omp)

iii. selet omp* >name

from works

group by omp

having avg(salary) > (selet avg(salary)

from works

where omp* >ompany name="First Bank Corporation")

8.7 Compute the relevane (using appropriate de�nitions of term frequeny and

inverse doument frequeny) of eah of the Pratie Exerises in this hapter

to the query �SQL relation�.

Answer:

We do not onsider the questions ontaining neither of the keywords beause

their relevane to the keywords is zero. The number of words in a question

inlude stop words. We use the equations given in Setion 31.2 to ompute rel-

evane; the log term in the equation is assumed to be to the base 2.

Q# #wo- # #“rela- “SQL” “relation” “SQL” “relation”

-rds “SQL” -tion” term freq. term freq. relv. relv. relv.

Tota

1 84 1 1 0.0170 0.0170 0.0002 0.0002 0.0004

4 22 0 1 0.0000 0.0641 0.0000 0.0029 0.0029

5 46 1 1 0.0310 0.0310 0.0006 0.0006 0.0013

6 22 1 0 0.0641 0.0000 0.0029 0.0000 0.0029

7 33 1 1 0.0430 0.0430 0.0013 0.0013 0.0026

8 32 1 3 0.0443 0.1292 0.0013 0.0040 0.0054

9 77 0 1 0.0000 0.0186 0.0000 0.0002 0.0002

14 30 1 0 0.0473 0.0000 0.0015 0.0000 0.0015

15 26 1 1 0.0544 0.0544 0.0020 0.0020 0.0041

Pratie Exerises 71

8.8 Show how to represent the matries used for omputing PageRank as relations.

Then write an SQL query that implements one iterative step of the iterative

tehnique for �nding PageRank; the entire algorithm an then be implemented

as a loop ontaining the query.

Answer:

FILL

8.9 Suppose the student relation has an attribute named loation of type point, and

the lassroom relation has an attribute loation of type polygon. Write the fol-

lowing queries in SQL using the PostGIS spatial funtions and prediates that

we saw earlier:

a. Find the names of all students whose loation is within the lassroom

Pakard 101.

b. Find all lassrooms that are within 100 meters or Pakard 101; assume all

distanes are represented in units of meters.

. Find the ID and name of student who is geographially nearest to the

student with ID 12345.

d. Find the ID and names of all pairs of students whose loations are less

than 200 meters apart.

Answer:

FILL

CHAP T E R

9

Appliation Development

Pratie Exerises

9.1 What is the main reason why servlets give better performane than programs

that use the ommon gateway interfae (CGI), even though Java programs gen-

erally run slower than C or C++ programs?

Answer:

The CGI interfae starts a new proess to servie eah request, whih has a

signi�ant operating system overhead. On the other hand, servlets are run as

threads of an existing proess, avoiding this overhead. Further, the proess run-

ning threads ould be the web server proess itself, avoiding interproess om-

muniation, whih an be expensive. Thus, for small to moderate-sized tasks,

the overhead of Java is less than the overhead saved by avoiding proess re-

ation and ommuniation.

For tasks involving a lot of CPU ativity, this may not be the ase, and using

CGI with a C or C++ program may give better performane.

9.2 List some bene�ts and drawbaks of onnetionless protools over protools

that maintain onnetions.

Answer:

Most omputers have limits on the number of simultaneous onnetions they

an aept. With onnetionless protools, onnetions are broken as soon as

the request is satis�ed, and therefore other lients an open onnetions. Thus

more lients an be served at the same time. A request an be routed to any one

of a number of di�erent servers to balane load, and if a server rashes, another

an take over without the lient notiing any problem.

The drawbak of onnetionless protools is that a onnetion has to be

reestablished every time a request is sent. Also, session information has to be

sent eah time in the form of ookies or hidden �elds. This makes them slower

than the protools whih maintain onnetions in ase state information is re-

quired.

73

74 Chapter 9 Appliation Development

9.3 Consider a arelessly written web appliation for an online-shopping site, whih

stores the prie of eah item as a hidden form variable in the web page sent to

the ustomer; when the ustomer submits the form, the information from the

hidden form variable is used to ompute the bill for the ustomer. What is the

loophole in this sheme? (There was a real instane where the loophole was

exploited by some ustomers of an online-shopping site before the problem was

deteted and �xed.)

Answer:

A haker an edit the HTML soure ode of the web page and replae the value

of the hidden variable prie with another value, use the modi�ed web page to

plae an order. The web appliation would then use the user-modi�ed value as

the prie of the produt.

9.4 Consider another arelessly written web appliation whih uses a servlet that

heks if there was an ative session but does not hek if the user is autho-

rized to aess that page, instead depending on the fat that a link to the page is

shown only to authorized users. What is the risk with this sheme? (There was

a real instane where appliants to a ollege admissions site ould, after logging

into the web site, exploit this loophole and view information they were not au-

thorized to see; the unauthorized aess was, however, deteted, and those who

aessed the information were punished by being denied admission.)

Answer:

Although the link to the page is shown only to authorized users, an unauthorized

user may somehow ome to know of the existene of the link (for example, from

an unauthorized user, or via web proxy logs). The user may then log in to the

system and aess the unauthorized page by entering its URL in the browser. If

the hek for user authorization was inadvertently left out from that page, the

user will be able to see the result of the page.

The HTTP referer attribute an be used to blok a naive attempt to exploit suh

loopholes by ensuring the referer value is from a valid page of the web site.

However, the referer attribute is set by the browser and an be spoofed, so a

maliious user an easily work around the referer hek.

9.5 Why is it important to open JDBC onnetions using the try-with-resoures (try

(§){ § }) syntax?

Answer:

This ensures onnetions are losed properly, and you will not run out of

database onnetions.

9.6 List three ways in whih ahing an be used to speed up web server perfor-

mane.

Answer:

Pratie Exerises 75

Cahing an be used to improve performane by exploiting the ommonalities

between transations.

a. If the appliation ode for serviing eah request needs to open a on-

netion to the database, whih is time onsuming, then a pool of open

onnetions may be reated beforehand, and eah request uses one from

those.

b. The results of a query generated by a request an be ahed. If the same

request omes again, or generates the same query, then the ahed result

an be used instead of onneting to the database again.

. The �nal web page generated in response to a request an be ahed. If

the same request omes again, then the ahed page an be outputed.

9.7 The netstat ommand (available on Linux and on Windows) shows the ative

network onnetions on a omputer. Explain how this ommand an be used to

�nd out if a partiular web page is not losing onnetions that it opened, or if

onnetion pooling is used, not returning onnetions to the onnetion pool.

You should aount for the fat that with onnetion pooling, the onnetion

may not get losed immediately.

Answer:

The tester should run netstat to �nd all onnetions open to the mahine/soket

used by the database. (If the appliation server is separate from the database

server, the ommand may be exeuted at either of the mahines). Then the web

page being tested should be aessed repeatedly (this an be automated by using

tools suh as JMeter to generate page aesses). The number of onnetions to

the database would go from 0 to some value (depending on the number of on-

netions retained in the pool), but after some time the number of onnetions

should stop inreasing. If the number keeps inreasing, the ode underlying the

web page is learly not losing onnetions or returning the onnetion to the

pool.

9.8 Testing for SQL-injetion vulnerability:

a. Suggest an approah for testing an appliation to �nd if it is vulnerable to

SQL injetion attaks on text input.

b. Can SQL injetion our with forms ofHTML input other than text boxes?

If so, how would you test for vulnerability?

Answer:

a. One approah is to enter a string ontaining a single quote in eah of the

input text boxes of eah of the forms provided by the appliation to see

76 Chapter 9 Appliation Development

if the appliation orretly saves the value. If it does not save the value

orretly and/or gives an error message, it is vulnerable to SQL injetion.

b. Yes, SQL injetion an even our with seletion inputs suh as drop-

down menus, by modifying the value sent bak to the server when the

input value is hosen�for example by editing the page diretly, or in the

browser's DOM tree. Most modern browsers provide a way for users to

edit the DOM tree. This feature an be able to modify the values sent to

the appliation, inserting a single quote into the value.

9.9 A database relation may have the values of ertain attributes enrypted for se-

urity. Why do database systems not support indexing on enrypted attributes?

Using your answer to this question, explain why database systems do not allow

enryption of primary-key attributes.

Answer:

It is not possible in general to index on an enrypted value, unless all our-

renes of the value enrypt to the same value (and even in this ase, only equality

prediates would be supported). However, mapping all ourrenes of a value to

the same enrypted value is risky, sine statistial analysis an be used to reveal

ommon values, even without deryption; tehniques based on adding random

�salt� bits are used to prevent suh analysis, but they make indexing impossible.

One possible workaround is to store the index unenrypted, but then the index

an be used to leak values. Another option is to keep the index enrypted, but

then the database system should know the deryption key, to derypt required

parts of the index on the �y. Sine this requires modifying large parts of the

database system ode, databases typially do not support this option.

The primary-key onstraint has to be heked by the database when tuples are

inserted, and if the values are enrypted as above, the database systemwill not be

able to detet primary-key violations. Therefore, database systems that support

enryption of spei�ed attributes do not allow primary-key attributes, or for that

matter foreign-key attributes, to be enrypted.

9.10 Exerise 9.9 addresses the problem of enryption of ertain attributes. However,

some database systems support enryption of entire databases. Explain how the

problems raised in Exerise 9.9 are avoided if the entire database is enrypted.

Answer:

When the entire database is enrypted, it is easy for the database to perform

deryption as data are fethed from disk into memory, so in-memory storage is

unenrypted. With this option, everything in the database, inluding indies, is

enrypted when on disk, but unenrypted in memory. As a result, only the data

aess layer of the database system ode needs to be modi�ed to perform en-

ryption, leaving other layers untouhed. Thus, indies an be used unhanged,

and primary-key and foreign-key onstraints enfored without any hange to the

orresponding layers of the database system ode.

Pratie Exerises 77

9.11 Suppose someone impersonates a ompany and gets a erti�ate from a

erti�ate-issuing authority. What is the e�et on things (suh as purhase or-

ders or programs) erti�ed by the impersonated ompany, and on things erti-

�ed by other ompanies?

Answer:

The key problem with digital erti�ates (when used oine, without ontating

the erti�ate issuer) is that there is no way to withdraw them.

For instane (this atually happened, but names of the parties have been

hanged) person C laims to be an employee of ompany X and gets a new

publi key erti�ed by the ertifying authority A. Suppose the authority A in-

orretly believed that C was ating on behalf of ompany X , and it gave C a

erti�ate ert. Now C an ommuniate with person Y , who heks the er-

ti�ate ert presented by C and believes the publi key ontained in ert really

belongs to X . C an ommuniate with Y using the publi key, and Y trusts the

ommuniation is from ompany X .

Person Y may now reveal on�dential information to C or aept a pur-

hase order from C or exeute programs erti�ed by C, based on the publi key,

thinking he is atually ommuniating with ompany X . In eah ase there is

potential for harm to Y .

Even if A detets the impersonation, as long as Y does not hek with A (the

protool does not require this hek), there is no way for Y to �nd out that the

erti�ate is forged.

If X was a erti�ation authority itself, further levels of fake erti�ates ould

be reated. But erti�ates that are not part of this hain would not be a�eted.

9.12 Perhaps themost important data items in any database system are the passwords

that ontrol aess to the database. Suggest a sheme for the seure storage

of passwords. Be sure that your sheme allows the system to test passwords

supplied by users who are attempting to log into the system.

Answer:

A sheme for storing passwords would be to enrypt eah password (after

adding randomly generated �salt� bits to prevent ditionary attaks), and then

use a hash index on the user-id to store/aess the enrypted password. The

password being used in a login attempt is then enrypted (if randomly gener-

ated �salt� bits were used initially, these bits should be stored with the user-id

and used when enrypting the user-supplied password). The enrypted value

is then ompared with the stored enrypted value of the orret password. An

advantage of this sheme is that passwords are not stored in lear text, and the

ode for deryption need not even exist. Thus, �one-way� enryption funtions,

suh as seure hashing funtions, whih do not support deryption an be used

for this task. The seure hashing algorithm SHA-1 is widely used for suh one-

way enryption.

CHAP T E R

10

Big Data

Pratie Exerises

10.1 Suppose you need to store a very large number of small �les, eah of size say 2

kilobytes. If your hoie is between a distributed �le system and a distributed

key-value store, whih would you prefer, and explain why.

Answer:

The key-value store, sine the distributed �le system is designed to store a mod-

erate number of large �les. With eah �le blok being multiple megabytes,

kilobyte-sized �les would result in a lot of wasted spae in eah blok and poor

storage performane.

10.2 Suppose you need to store data for a very large number of students in a dis-

tributed doument store suh as MongoDB. Suppose also that the data for

eah student orrespond to the data in the student and the takes relations.

How would you represent the above data about students, ensuring that all the

data for a partiular student an be aessed e	iently? Give an example of

the data representation for one student.

Answer:

We would store the student data as a JSON objet, with the takes tuples for

the student stored as a JSON array of objets, eah objet orresponding to a

single takes tuple. Give example ...

10.3 Suppose you wish to store utility bills for a large number of users, where eah

bill is identi�ed by a ustomer ID and a date. How would you store the bills in

a key-value store that supports range queries, if queries request the bills of a

spei�ed ustomer for a spei�ed date range.

Answer:

Create a key by onatenating the ustomer ID and date (with date represented

in the form year/month/date, e.g., 2018/02/28) and store the reords indexed

on this key. Now the required reords an be retrieved by a range query.

79

80 Chapter 10 Big Data

10.4 Give pseudoode for omputing a join r Æ

r:A=s:A

s using a single MapRedue

step, assuming that the map() funtion is invoked on eah tuple of r and s.

Assume that the map() funtion an �nd the name of the relation using on-

text.relname().

Answer:

With themap funtion, output reords from both the input relations, using the

join attribute value as the redue key. The redue funtion gets reords from

both relations with mathing join attribute values and outputs all mathing

pairs.

10.5 What is the oneptual problem with the following snippet of Apahe Spark

ode meant to work on very large data. Note that the ollet() funtion returns

a Java olletion, and Java olletions (from Java 8 onwards) support map and

redue funtions.

JavaRDD<String< lines = s.textFile("logDiretory");

int totalLength = lines.ollet().map(s *> s.length())

.redue(0,(a,b) *> a+b);

Answer:

The problem with the ode is that the ollet() funtion gathers the RDD data

at a single node, and the map and redue funtions are then exeuted on that

single node, not in parallel as intended.

10.6 Apahe Spark:

a. How does Apahe Spark perform omputations in parallel?

b. Explain the statement: �Apahe Spark performs transformations on

RDDs in a lazy manner.�

. What are some of the bene�ts of lazy evaluation of operations in Apahe

Spark?

Answer:

a. RDDs are stored partitioned aross multiple nodes. Eah of the trans-

formation operations on an RDD are exeuted in parallel on multiple

nodes.

b. Transformations are not exeuted immediately but postponed until the

result is required for funtions suh as ollet() or saveAsTextFile().

. The operations are organized into a tree, and query optimization an

be applied to the tree to speed up omputation. Also, answers an be

pipelined from one operation to another, without being written to disk,

to redue time overheads of disk storage.

Pratie Exerises 81

10.7 Given a olletion of douments, for eah word w

i

, let n

i

denote the number of

times the word ours in the olletion. Let N be the total number of word o-

urrenes aross all douments. Next, onsider all pairs of onseutive words

(w

i

,w

j

) in the doument; let n

i,j

denote the number of ourrenes of the word

pair (w

i

,w

j

) aross all douments.

Write an Apahe Spark program that, given a olletion of douments in a

diretory, omputesN , all pairs (w

i

, n

i

), and all pairs ((w

i

,w

j

), n

i,j

). Then output

all word pairs suh that n

i,j

_N g 10 < (n

i

_N) < (n

j

_N). These are word pairs

that our 10 times or more as frequently as they would be expeted to our

if the two words ourred independently of eah other.

You will �nd the join operation on RDDs useful for the last step, to bring

related ounts together. For simpliity, do not bother about word pairs that

ross lines. Also assume for simpliity that words only our in lowerase and

that there are no puntuation marks.

Answer:

FILL IN ANSWER (available with SS)

10.8 Consider the following query using the tumbling window operator:

selet item, System.Timestamp as window end, sum(amount)

from order timestamp by datetime

group by itemid, tumblingwindow(hour, 1)

Give an equivalent query using normal SQL onstruts, without using the tum-

bling window operator. You an assume that the timestamp an be onverted

to an integer value that represents the number of seonds elapsed sine (say)

midnight, January 1, 1970, using the funtion to seonds(timestamp). You an

also assume that the usual arithmeti funtions are available, along with the

funtion �oor(a) whih returns the largest integer f a.

Answer:

Divide by 3600, and take �oor, group by that. To output the timestamp of the

window end, add 1 to hour and multiply by 3600

10.9 Suppose you wish to model the university shema as a graph. For eah of the

following relations, explain whether the relation would be modeled as a node

or as an edge:

(i) student, (ii) instrutor, (iii) ourse, (iv) setion, (v) takes, (vi) teahes.

Does the model apture onnetions between setions and ourses?

Answer:

Eah relation orresponding to an entity (student, instrutor, ourse, and se-

tion) would be modeled as a node. Takes and teahes would be modeled as

edges. There is a further edge between ourse and setion, whih has been

82 Chapter 10 Big Data

merged into the setion relation and annot be aptured with the above shema.

It an be modeled if we reate a separate relation that links setions to ourses.

CHAP T E R

11

Data Analytis

Pratie Exerises

11.1 Desribe bene�ts and drawbaks of a soure-driven arhiteture for gathering

of data at a data warehouse, as ompared to a destination-driven arhiteture.

Answer:

In a destination-driven arhiteture for gathering data, data transfers from the

data soures to the data warehouse are based on demand from the warehouse,

whereas in a soure-driven arhiteture, the transfers are initiated by eah

soure.

The bene�ts of a soure-driven arhiteture are

�

Data an be propagated to the destination as soon as they beome avail-

able. For a destination-driven arhiteture to ollet data as soon as they

are available, the warehouse would have to probe the soures frequently,

leading to a high overhead.

�

The soure does not have to keep historial information. As soon as data

are updated, the soure an send an update message to the destination

and forget the history of the updates. In ontrast, in a destination-driven

arhiteture, eah soure has to maintain a history of data whih have not

yet been olleted by the data warehouse. Thus storage requirements at

the soure are lower for a soure-driven arhiteture.

On the other hand, a destination-driven arhiteture has the following advan-

tages.

�

In a soure-driven arhiteture, the soure has to be ative and must han-

dle error onditions suh as not being able to ontat the warehouse for

some time. It is easier to implement passive soures, and a single ative

warehouse. In a destination-driven arhiteture, eah soure is required to

provide only a basi funtionality of exeuting queries.

83

84 Chapter 11 Data Analytis

�

The warehouse has more ontrol on when to arry out data gathering

ativities and when to proess user queries; it is not a good idea to perform

both simultaneously, sine they may on�it on loks.

11.2 Draw a diagram that shows how the lassroom relation of our university exam-

ple as shown in Appendix A would be stored under a olumn-oriented storage

struture.

Answer:

The relation would be stored in three �les, one per attribute, as shown below.

We assume that the row number an be inferred impliitly from position, by

using �xed-size spae for eah attribute. Otherwise, the row number would also

have to be stored expliitly.

building

Pakard

Painter

Taylor

Watson

Watson

room number

101

514

3128

100

120

apaity

500

10

70

30

50

11.3 Consider the takes relation. Write an SQL query that omputes a ross-tab

that has a olumn for eah of the years 2017 and 2018, and a olumn for all,

and one row for eah ourse, as well as a row for all. Eah ell in the table

should ontain the number of students who took the orresponding ourse in

the orresponding year, with olumn all ontaining the aggregate aross all

years, and row all ontaining the aggregate aross all ourses.

Answer:

Pratie Exerises 85

11.4 Consider the data warehouse shema depited in Figure 11.2. Give an SQL

query to summarize sales numbers and prie by store and date, along with the

hierarhies on store and date.

Answer:

query:

selet store-id, ity, state, ountry,

date, month, quarter, year,

sum(number), sum(prie)

from sales, store, date

where sales.store-id = store.store-id and

sales.date = date.date

groupby rollup(ountry, state, ity, store-id),

rollup(year, quarter, month, date)

11.5 Classi�ation an be done using lassi�ation rules, whih have a ondition, a

lass, and a on�dene; the on�dene is the perentage of the inputs satisfying

the ondition that fall in the spei�ed lass.

For example, a lassi�ation rule for redit ratings may have a ondition

that salary is between $30,000 and $50,000, and eduation level is graduate,

with the redit rating lass of good, and a on�dene of 80%. A seond rulemay

have a ondition that salary is between $30,000 and $50,000, and eduation

level is high-shool, with the redit rating lass of satisfatory, and a on�dene

of 80%. A third rule may have a ondition that salary is above $50,001, with

the redit rating lass of exellent, and on�dene of 90%. Show a deision tree

lassi�er orresponding to the above rules.

Show how the deision tree lassi�er an be extended to reord the on�-

dene values.

Answer:

FILL IN

11.6 Consider a lassi�ation problem where the lassi�er predits whether a per-

son has a partiular disease. Suppose that 95% of the people tested do not

su�er from the disease. Let pos denote the fration of true positives, whih is

5% of the test ases, and let neg denote the fration of true negatives, whih is

95% of the test ases. Consider the following lassi�ers:

�

Classi�er C

1

, whih always predits negative (a rather useless lassi�er, of

ourse).

�

Classi�er C

2

, whih predits positive in 80% of the ases where the person

atually has the disease but also predits positive in 5% of the ases where

the person does not have the disease.

86 Chapter 11 Data Analytis

�

Classi�er C

3

, whih predits positive in 95% of the ases where the person

atually has the disease but also predits positive in 20% of the ases where

the person does not have the disease.

For eah lassi�er, let t pos denote the true positive fration, that is the fration

of ases where the lassi�er predition was positive, and the person atually

had the disease. Let f pos denote the false positive fration, that is the fration

of ases where the predition was positive, but the person did not have the

disease. Let t neg denote true negative and f neg denote false negative frations,

whih are de�ned similarly, but for the ases where the lassi�er predition

was negative.

a. Compute the following metris for eah lassi�er:

i. Auray, de�ned as (t pos + t neg)_(pos+neg), that is, the fration of

the time when the lassi�er gives the orret lassi�ation.

ii. Reall (also known as sensitivity) de�ned as t pos_pos, that is, how

many of the atual positive ases are lassi�ed as positive.

iii. Preision, de�ned as t pos/(t pos+f pos), that is, how often the positive

predition is orret.

iv. Spei�ity, de�ned as t neg/neg.

b. If you intend to use the results of lassi�ation to perform further sreen-

ing for the disease, how would you hoose between the lassi�ers?

. On the other hand, if you intend to use the result of lassi�ation to start

mediation, where the mediation ould have harmful e�ets if given to

someone who does not have the disease, how would you hoose between

the lassi�ers?

Answer:

FILL

CHAP T E R

12

Physial Storage Systems

Pratie Exerises

12.1 SSDs an be used as a storage layer between memory and magneti disks, with

some parts of the database (e.g., some relations) stored on SSDs and the rest

on magneti disks. Alternatively, SSDs an be used as a bu�er or ahe for

magneti disks; frequently used bloks would reside on the SSD layer, while

infrequently used bloks would reside on magneti disk.

a. Whih of the two alternatives would you hoose if you need to support

real-time queries that must be answered within a guaranteed short period

of time? Explain why.

b. Whih of the two alternatives would you hoose if you had a very large

ustomer relation, where only some disk bloks of the relation are a-

essed frequently, with other bloks rarely aessed.

Answer:

In the �rst ase, SSD as storage layer is better sine performane is guaran-

teed. With SSD as ahe, some requests may have to read from magneti disk,

ausing delays.

In the seond ase, sine we don't know exatly whih bloks are frequently

aessed at a higher level, it is not possible to assign part of the relation to SSD.

Sine the relation is very large, it is not possible to assign all of the relation to

SSD. The SSD as ahe option will work better in this ase.

12.2 Some databases usemagneti disks in a way that only setors in outer traks are

used, while setors in inner traks are left unused. What might be the bene�ts

of doing so?

Answer:

The disk's data-transfer rate will be greater on the outer traks than the inner

traks. This is beause the disk spins at a onstant rate, so more setors pass

underneath the drive head in a given amount of time when the arm is posi-

87

88 Chapter 12 Physial Storage Systems

tioned on an outer trak than when on an inner trak. Even more importantly,

by using only outer traks, the disk arm movement is minimized, reduing the

disk aess lateny. This aspet is important for transation-proessing sys-

tems, where lateny a�ets the transation-proessing rate.

12.3 Flash storage:

a. How is the �ash translation table, whih is used to map logial page

numbers to physial page numbers, reated in memory?

b. Suppose you have a 64-gigabyte �ash storage system, with a 4096-byte

page size. How big would the �ash translation table be, assuming eah

page has a 32-bit address, and the table is stored as an array?

. Suggest how to redue the size of the translation table if very often long

ranges of onseutive logial page numbers are mapped to onseutive

physial page numbers.

Answer:

a. It is stored as an array ontaining physial page numbers, indexed by

logial page numbers. This representation gives an overhead equal to

the size of the page address for eah page.

b. It takes 32 bits for every page or every 4096 bytes of storage. Hene, it

takes 64 megabytes for the 64 gigabytes of �ash storage.

. If the mapping is suh that every p onseutive logial page numbers are

mapped to p onseutive physial pages, we an store the mapping of

the �rst page for every p pages. This redues the in-memory struture by

a fator of p. Further, if p is an exponent of 2, we an avoid some of the

least signi�ant digits of the addresses stored.

12.4 Consider the following data and parity-blok arrangement on four disks:

Disk 1 Disk 2 Disk 3 Disk 4

B1

P1

B8

…

B2

B5

P2

…

B3

B6

B9

…

B4

B7

B10

…

The B

i

s represent data bloks; the P

i

s represent parity bloks. Parity blok P

i

is the parity blok for data bloks B

4i*3

to B

4i

. What, if any, problemmight this

arrangement present?

Answer:

Pratie Exerises 89

This arrangement has the problem that P

i

and B

4i*3

are on the same disk. So

if that disk fails, reonstrution of B

4i*3

is not possible, sine data and parity

are both lost.

12.5 A database administrator an hoose how many disks are organized into a

single RAID 5 array. What are the trade-o�s between having fewer disks ver-

sus more disks, in terms of ost, reliability, performane during failure, and

performane during rebuild?

Answer:

Fewer disks has higher ost, but with more disks, the hane of two disk fail-

ures, whih would lead to data loss, is higher. Further, performane during

failure would be poor sine a blok read from a failed disk would result a large

number of blok reads from the other disks. Similarly, the overhead for rebuild-

ing the failed disk would also be higher, sine more disks need to be read to

reonstrut the data in the failed disk.

12.6 A power failure that ours while a disk blok is being written ould result in

the blok being only partially written. Assume that partially written bloks an

be deteted. An atomi blok write is one where either the disk blok is fully

written or nothing is written (i.e., there are no partial writes). Suggest shemes

for getting the e�et of atomi blok writes with the following RAID shemes.

Your shemes should involve work on reovery from failure.

a. RAID level 1 (mirroring)

b. RAID level 5 (blok interleaved, distributed parity)

Answer:

a. To ensure atomiity, a blok write operation is arried out as follows:

i. Write the information onto the �rst physial blok.

ii. When the �rst write ompletes suessfully, write the same informa-

tion onto the seond physial blok.

iii. The output is delared ompleted only after the seond write om-

pletes suessfully.

During reovery, eah pair of physial bloks is examined. If both are

idential and there is no detetable partial-write, then no further ations

are neessary. If one blok has been partially rewritten, then we replae

its ontents with the ontents of the other blok. If there has been no

partial-write, but they di�er in ontent, then we replae the ontents

of the �rst blok with the ontents of the seond, or vie versa. This

reovery proedure ensures that a write to stable storage either sueeds

ompletely (that is, updates both opies) or results in no hange.

The requirement of omparing every orresponding pair of bloks

during reovery is expensive to meet. We an redue the ost greatly by

90 Chapter 12 Physial Storage Systems

keeping trak of blok writes that are in progress, using a small amount

of nonvolatile RAM. On reovery, only bloks for whih writes were in

progress need to be ompared.

b. The idea is similar here. For any blok write, the information blok is

written �rst, followed by the orresponding parity blok. At the time of

reovery, eah set onsisting of the n

th

blok of eah of the disks is on-

sidered. If none of the bloks in the set have been partially written, and

the parity blok ontents are onsistent with the ontents of the informa-

tion bloks, then no further ation need be taken. If any blok has been

partially written, its ontents are reonstruted using the other bloks. If

no blok has been partially written, but the parity blok ontents do not

agree with the information blok ontents, the parity blok's ontents

are reonstruted.

12.7 Storing all bloks of a large �le on onseutive disk bloks would minimize

seeks during sequential �le reads. Why is it impratial to do so? What do op-

erating systems do instead, to minimize the number of seeks during sequential

reads?

Answer:

Reading data sequentially from a large �le ould be done with only one seek

if the entire �le were stored on onseutive disk bloks. Ensuring availability

of large numbers of onseutive free bloks is not easy, sine �les are reated

and deleted, resulting in fragmentation of the free bloks on disks. Operating

systems alloate bloks on large but �xed-sized sequential extents instead, and

only one seek is required per extent.

CHAP T E R

13

Data Storage Strutures

Pratie Exerises

13.1 Consider the deletion of reord 5 from the �le of Figure 13.3. Compare the

relative merits of the following tehniques for implementing the deletion:

a. Move reord 6 to the spae oupied by reord 5, and move reord 7 to

the spae oupied by reord 6.

b. Move reord 7 to the spae oupied by reord 5.

. Mark reord 5 as deleted, and move no reords.

Answer:

a. Although moving reord 6 to the spae for 5 and moving reord 7 to the

spae for 6 is the most straightforward approah, it requires moving the

most reords and involves the most aesses.

b. Moving reord 7 to the spae for 5 moves fewer reords but destroys any

ordering in the �le.

. Marking the spae for 5 as deleted preserves ordering and moves no

reords, but it requires additional overhead to keep trak of all of the

free spae in the �le. This method may lead to too many �holes� in the

�le, whih if not ompated from time to time, will a�et performane

beause of the redued availability of ontiguous free reords.

13.2 Show the struture of the �le of Figure 13.4 after eah of the following steps:

a. Insert (24556, Turnamian, Finane, 98000).

b. Delete reord 2.

. Insert (34556, Thompson, Musi, 67000).

Answer:

91

92 Chapter 13 Data Storage Strutures

header ~ 4

reord 0 10101 Srinivasan Comp. Si. 65000

reord 1 24556 Turnamian Finane 98000

reord 2 15151 Mozart Musi 40000

reord 3 22222 Einstein Physis 95000

reord 4 ~ 6

reord 5 33456 Gold Physis 87000

reord 6

reord 7 58583 Cali�eri History 62000

reord 8 76543 Singh Finane 80000

reord 9 76766 Crik Biology 72000

reord 10 83821 Brandt Comp. Si. 92000

reord 11 98345 Kim Ele. Eng. 80000

Figure 13.101 The file after insert (24556, Turnamian, Finane, 98000).

header ~ 2

reord 0 10101 Srinivasan Comp. Si. 65000

reord 1 24556 Turnamian Finane 98000

reord 2 ~ 4

reord 3 22222 Einstein Physis 95000

reord 4 ~ 6

reord 5 33456 Gold Physis 87000

reord 6

reord 7 58583 Cali�eri History 62000

reord 8 76543 Singh Finane 80000

reord 9 76766 Crik Biology 72000

reord 10 83821 Brandt Comp. Si. 92000

reord 11 98345 Kim Ele. Eng. 80000

Figure 13.102 The file after delete reord 2.

We use �~ i� to denote a pointer to reord �i�.

a. See ??.

b. See ??. Note that the free reord hain ould have alternatively been

from the header to 4, from 4 to 2, and �nally from 2 to 6.

. See ??.

Pratie Exerises 93

header ~ 4

reord 0 10101 Srinivasan Comp. Si. 65000

reord 1 24556 Turnamian Finane 98000

reord 2 34556 Thompson Musi 67000

reord 3 22222 Einstein Physis 95000

reord 4 ~ 6

reord 5 33456 Gold Physis 87000

reord 6

reord 7 58583 Cali�eri History 62000

reord 8 76543 Singh Finane 80000

reord 9 76766 Crik Biology 72000

reord 10 83821 Brandt Comp. Si. 92000

reord 11 98345 Kim Ele. Eng. 80000

Figure 13.103 The file after insert (34556, Thompson, Musi, 67000).

13.3 Consider the relations setion and takes. Give an example instane of these

two relations, with three setions, eah of whih has �ve students. Give a �le

struture of these relations that uses multitable lustering.

Answer:

The relation setion with three tuples is as follows:

ourse id se id semester year building room number time slot id

BIO-301 1 Summer 2010 Painter 514 A

CS-101 1 Fall 2009 Pakard 101 H

CS-347 1 Fall 2009 Taylor 3128 C

The relation takes with �ve students for eah setion is as follows:

See ??.

See ??.

The multitable lustering for the above two instanes an be taken as:

13.4 Consider the bitmap representation of the free-spae map, where for eah

blok in the �le, two bits are maintained in the bitmap. If the blok is between

0 and 30 perent full the bits are 00, between 30 and 60 perent the bits are

01, between 60 and 90 perent the bits are 10, and above 90 perent the bits

are 11. Suh bitmaps an be kept in memory even for quite large �les.

a. Outline two bene�ts and one drawbak to using two bits for a blok,

instead of one byte as desribed earlier in this hapter.

94 Chapter 13 Data Storage Strutures

ID ourse id se id semester year grade

00128 CS-101 1 Fall 2009 A

00128 CS-347 1 Fall 2009 A-

12345 CS-347 1 Fall 2009 A

12345 CS-101 1 Fall 2009 C

17968 BIO-301 1 Summer 2010 null

23856 CS-347 1 Fall 2009 A

45678 CS-101 1 Fall 2009 F

54321 CS-101 1 Fall 2009 A-

54321 CS-347 1 Fall 2009 A

59762 BIO-301 1 Summer 2010 null

76543 CS-101 1 Fall 2009 A

76543 CS-347 1 Fall 2009 A

78546 BIO-301 1 Summer 2010 null

89729 BIO-301 1 Summer 2010 null

98988 BIO-301 1 Summer 2010 null

Figure 13.104 The relation takes with five students for eah setion.

b. Desribe how to keep the bitmap up to date on reord insertions and

deletions.

. Outline the bene�t of the bitmap tehnique over free lists in searhing

for free spae and in updating free spae information.

Answer:

a. The spae used is less with 2 bits, and the number of times the free-

spae map needs to be updated dereases signi�antly, sine many in-

serts/deletes do not result in any hange in the free-spae map. However,

we have only an approximate idea of the free spae available, whih ould

lead both to wasted spae and/or to inreased searh ost for �nding free

spae for a reord.

b. Every time a reord is inserted/deleted, hek if the usage of the blok

has hanged levels. In that ase, update the orresponding bits. Note

that we don't need to aess the bitmaps at all unless the usage rosses

a boundary, so in most of the ases there is no overhead.

. When free spae for a large reord or a set of reords is sought, then

multiple free list entries may have to be sanned before a proper-sized

one is found, so overheads are muh higher. With bitmaps, one page of

bitmap an store free info for many pages, so I/O spent for �nding free

spae is minimal. Similarly, when a whole blok or a large part of it is

Pratie Exerises 95

BIO-301 1 Summer 2010 Painter 514 A

17968 BIO-301 1 Summer 2010 null

59762 BIO-301 1 Summer 2010 null

78546 BIO-301 1 Summer 2010 null

89729 BIO-301 1 Summer 2010 null

98988 BIO-301 1 Summer 2010 null

CS-101 1 Fall 2009 Pakard 101 H

00128 CS-101 1 Fall 2009 A

12345 CS-101 1 Fall 2009 C

45678 CS-101 1 Fall 2009 F

54321 CS-101 1 Fall 2009 A-

76543 CS-101 1 Fall 2009 A

CS-347 1 Fall 2009 Taylor 3128 C

00128 CS-347 1 Fall 2009 A-

12345 CS-347 1 Fall 2009 A

23856 CS-347 1 Fall 2009 A

54321 CS-347 1 Fall 2009 A

76543 CS-347 1 Fall 2009 A

Figure 13.105 The multitable lustering for the above two instanes an be taken as:

deleted, bitmap tehnique is more onvenient for updating free spae

information.

13.5 It is important to be able to quikly �nd out if a blok is present in the bu�er,

and if so where in the bu�er it resides. Given that database bu�er sizes are

very large, what (in-memory) data struture would you use for this task?

Answer:

Hash table is the ommon option for large database bu�ers. The hash funtion

helps in loating the appropriate buket on whih linear searh is performed.

13.6 Suppose your university has a very large number of takes reords, aumulated

over many years. Explain how table partitioning an be done on the takes rela-

tion, and what bene�ts it ould o�er. Explain also one potential drawbak of

the tehnique.

Answer:

The table an be partitioned on (year, semester). Old takes reords that are

no longer aessed frequently an be stored on magneti disk, while newer

reords an be stored on SSD. Queries that speify a year an be answered

without reading reords for other years.

96 Chapter 13 Data Storage Strutures

A drawbak is that queries that feth reords orresponding to multiple years

will have a higher overhead, sine the reords may be partitioned aross di�er-

ent relations and disk bloks.

13.7 Give an example of a relational-algebra expression and a query-proessing strat-

egy in eah of the following situations:

a. MRU is preferable to LRU.

b. LRU is preferable to MRU.

Answer:

a. MRU is preferable to LRUwhereR

1

Æ R

2

is omputed by using a nested-

loop proessing strategy where eah tuple in R

2

must be ompared to

eah blok in R

1

. After the �rst tuple of R

2

is proessed, the next needed

blok is the �rst one in R

1

. However, sine it is the least reently used,

the LRU bu�er management strategy would replae that blok if a new

blok was needed by the system.

b. LRU is preferable to MRU where R

1

Æ R

2

is omputed by sorting the

relations by join values and then omparing the values by proeeding

through the relations. Due to dupliate join values, it may be neessary

to �bak up� in one of the relations. This �baking up� ould ross a

blok boundary into the most reently used blok, whih would have

been replaed by a system usingMRU bu�er management, if a new blok

was needed.

Under MRU, some unused bloks may remain in memory forever. In

pratie, MRU an be used only in speial situations like that of the

nested-loop strategy disussed in Exerise Setion 13.8a.

13.8 PostgreSQL normally uses a small bu�er, leaving it to the operating system

bu�er manager to manage the rest of main memory available for �le system

bu�ering. Explain (a) what is the bene�t of this approah, and (b) one key

limitation of this approah.

Answer:

The database system does not know what are the memory demands from other

proesses. By using a small bu�er, PostgreSQL ensures that it does not grab

too muh of main memory. But at the same time, even if a blok is evited

from bu�er, if the �le system bu�er manager has enough memory alloated to

it, the evited page is likely to still be ahed in the �le system bu�er. Thus, a

database bu�er miss is often not very expensive sine the blok is still in the

�le system bu�er.

Pratie Exerises 97

The drawbak of this approah is that the database system may not be able to

ontrol the �le system bu�er replaement poliy. Thus, the operating system

may make suboptimal deisions on what to evit from the �le system bu�er.

CHAP T E R

14

Indexing

Pratie Exerises

14.1 Indies speed query proessing, but it is usually a bad idea to reate indies on

every attribute, and every ombination of attributes, that are potential searh

keys. Explain why.

Answer:

Reasons for not keeping indies on every attribute inlude:

�

Every index requires additional CPU time and disk I/O overhead during

inserts and deletions.

�

Indies on non-primary keys might have to be hanged on updates, al-

though an index on the primary key might not (this is beause updates

typially do not modify the primary-key attributes).

�

Eah extra index requires additional storage spae.

�

For queries whih involve onditions on several searh keys, e	ieny

might not be bad even if only some of the keys have indies on them.

Therefore, database performane is improved less by adding indies when

many indies already exist.

14.2 Is it possible in general to have two lustering indies on the same relation for

di�erent searh keys? Explain your answer.

Answer:

In general, it is not possible to have two primary indies on the same relation

for di�erent keys beause the tuples in a relation would have to be stored in

di�erent order to have the same values stored together. We ould aomplish

this by storing the relation twie and dupliating all values, but for a entralized

system, this is not e	ient.

14.3 Construt a B

+

-tree for the following set of key values:

99

100 Chapter 14 Indexing

(2, 3, 5, 7, 11, 17, 19, 23, 29, 31)

Assume that the tree is initially empty and values are added in asending order.

Construt B

+

-trees for the ases where the number of pointers that will �t in

one node is as follows:

a. Four

b. Six

. Eight

Answer:

The following were generated by inserting values into the B

+

-tree in asending

order. A node (other than the root) was never allowed to have fewer than än_2å

values/pointers.

a.

5 7 11 17 19 23 29 3132

29

19

115

b.

7 19

2 3 5 7 11 17 19 23 29 31

.

11

11 17 19 23 29 312 3 5 7

14.4 For eah B

+

-tree of Exerise 14.3, show the form of the tree after eah of the

following series of operations:

a. Insert 9.

Pratie Exerises 101

b. Insert 10.

. Insert 8.

d. Delete 23.

e. Delete 19.

Answer:

�

With struture Exerise 14.3.a:

Insert 9:

19

5 119 29

2 3 5 7 11 17 19 23 29 31

Insert 10:

19

5 9 11 29

2 3 5 7 10 11 17 19 23 29 31

Insert 8:

19

5 9 11 29

2 3 5 7 10 11 17 19 23 29 31

Delete 23:

11

195 9

2 3 5 7 8 9 10 11 17 19 29 31

102 Chapter 14 Indexing

Delete 19:

11

5 9 29

2 3 5 7 8 9 10 11 17 29 31

�

With struture Exerise 14.3.b:

Insert 9:

2 3 5

7

7 9 11 17 19 23 29 31

19

Insert 10:

2 3 5

7 19

97 10 11 17 19 23 29 31

Insert 8:

7 10 19

2 3 5 7 8 9 10 11 17 9 23 29 31

Delete 23:

7 10 19

2 3 5 7 8 9 10 1711 19 29 31

Delete 19:

10

10 11 17 3129

7

7 8 92 3 5

Pratie Exerises 103

�

With struture Exerise 14.3.:

Insert 9:

11

2 3 5 7 9 11 17 19 23 29 31

Insert 10:

11

2 3 5 7 9 10 11 17 19 23 29 31

Insert 8:

11

2 3 5 7 8 9 10 11 17 19 23 29 31

Delete 23:

11

2 3 5 7 8 9 10 11 17 19 29 31

Delete 19:

11

2 3 5 7 8 9 10 11 17 29 31

14.5 Consider the modi�ed redistribution sheme for B

+

-trees desribed on page

651. What is the expeted height of the tree as a funtion of n?

Answer:

If there are K searh-key values and m * 1 siblings are involved in the redistri-

bution, the expeted height of the tree is: log

â(m*1)n_mã

(K)

14.6 Give pseudoode for a B

+

-tree funtion findRangeIterator(), whih is like the

funtion findRange(), exept that it returns an iterator objet, as desribed

in Setion 14.3.2. Also give pseudoode for the iterator lass, inluding the

variables in the iterator objet, and the next() method.

Answer:

104 Chapter 14 Indexing

FILL IN

14.7 What would the oupany of eah leaf node of a B

+

-tree be if index entries

were inserted in sorted order? Explain why.

Answer:

If the index entries are inserted in asending order, the new entries get direted

to the last leaf node. When this leaf node gets �lled, it is split into two. Of

the two nodes generated by the split, the left node is left untouhed and the

insertions take plae on the right node. This makes the oupany of the leaf

nodes about 50 perent exept for the last leaf.

If keys that are inserted are sorted in desending order, the above situation

would still our, but symmetrially, with the right node of a split never getting

touhed again, and oupany would again be 50 perent for all nodes other

than the �rst leaf.

14.8 Suppose you have a relation r with n

r

tuples on whih a seondary B

+

-tree is

to be onstruted.

a. Give a formula for the ost of building the B

+

-tree index by inserting one

reord at a time. Assume eah blok will hold an average of f entries and

that all levels of the tree above the leaf are in memory.

b. Assuming a random disk aess takes 10 milliseonds, what is the ost

of index onstrution on a relation with 10 million reords?

. Write pseudoode for bottom-up onstrution of a B

+

-tree, whih was

outlined in Setion 14.4.4. You an assume that a funtion to e	iently

sort a large �le is available.

Answer:

a. The ost to loate the page number of the required leaf page for an in-

sertion is negligible sine the non-leaf nodes are in memory. On the leaf

level it takes one random disk aess to read and one random disk a-

ess to update it along with the ost to write one page. Insertions whih

lead to splitting of leaf nodes require an additional page write. Hene to

build a B

+

-tree with n

r

entries it takes a maximum of 2 < n

r

random disk

aesses and n

r

+ 2 < (n

r

_f) page writes. The seond part of the ost

omes from the fat that in the worst ase eah leaf is half �lled, so the

number of splits that our is twie n

r

_f .

The above formula ignores the ost of writing non-leaf nodes, sine

we assume they are in memory, but in reality they would also be written

eventually. This ost is losely approximated by 2 < (n

r

_f)_f , whih

is the number of internal nodes just above the leaf; we an add further

terms to aount for higher levels of nodes, but these are muh smaller

than the number of leaves and an be ignored.

Pratie Exerises 105

b. Substituting the values in the above formula and negleting the ost for

page writes, it takes about 10, 000, 000 < 20 milliseonds, or 56 hours,

sine eah insertion osts 20 milliseonds.

.

funtion insert in leaf(value K , pointer P)

if(tree is empty) reate an empty leaf node L, whih is also the root

else Find the last leaf node in the leaf nodes hain L

if (L has less than n * 1 key values)

then insert (K ,P) at the �rst available loation in L

else begin

Create leaf node L1

Set L:P

n

= L1;

Set K1 = last value from page L

insert in parent(1, L, K1, L1)

insert (K ,P) at the �rst loation in L1

end

funtion insert in parent(level l, pointer P, value K , pointer P1)

if (level l is empty) then begin

Create an empty non-leaf node N , whih is also the root

insert(P, K , P1) at the starting of the node N

return

else begin

Find the right most node N at level l

if (N has less than n pointers)

then insert(K , P1) at the �rst available loation in N

else begin

Create a new non-leaf page N1

insert (P1) at the starting of the node N

insert in parent(l + 1, pointer N , value K , pointer N1)

end

end

The insert in leaf funtion is alled for eah of the value, pointer pairs in

asending order. Similar funtion an also be built for desending order.

The searh for the last leaf or non-leaf node at any level an be avoided

by storing the urrent last page details in an array.

The last node in eah level might be less than half �lled. To make this

index struture meet the requirements of a B

+

-tree, we an redistribute

the keys of the last two pages at eah level. Sine the last but one node is

always full, redistribution makes sure that both of them are at least half

�lled.

106 Chapter 14 Indexing

14.9 The leaf nodes of a B

+

-tree �le organization may lose sequentiality after a se-

quene of inserts.

a. Explain why sequentiality may be lost.

b. To minimize the number of seeks in a sequential san, many databases

alloate leaf pages in extents of n bloks, for some reasonably large n.

When the �rst leaf of a B

+

-tree is alloated, only one blok of an n-blok

unit is used, and the remaining pages are free. If a page splits, and its

n-blok unit has a free page, that spae is used for the new page. If the

n-blok unit is full, another n-blok unit is alloated, and the �rst n_2 leaf

pages are plaed in one n-blok unit and the remaining one in the seond

n-blok unit. For simpliity, assume that there are no delete operations.

i. What is the worst-ase oupany of alloated spae, assuming no

delete operations, after the �rst n-blok unit is full?

ii. Is it possible that leaf nodes alloated to an n-node blok unit are not

onseutive, that is, is it possible that two leaf nodes are alloated

to one n-node blok, but another leaf node in between the two is

alloated to a di�erent n-node blok?

iii. Under the reasonable assumption that bu�er spae is su	ient to

store an n-page blok, how many seeks would be required for a leaf-

level san of the B

+

-tree, in the worst ase? Compare this number

with the worst ase if leaf pages are alloated a blok at a time.

iv. The tehnique of redistributing values to siblings to improve spae

utilization is likely to be more e	ient when used with the preeding

alloation sheme for leaf bloks. Explain why.

Answer:

a. In a B

+

-tree index or �le organization, leaf nodes that are adjaent to

eah other in the tree may be loated at di�erent plaes on disk. When

a �le organization is newly reated on a set of reords, it is possible to

alloate bloks that are mostly ontiguous on disk to leafs nodes that

are ontiguous in the tree. As insertions and deletions our on the tree,

sequentiality is inreasingly lost, and sequential aess has to wait for

disk seeks inreasingly often.

b. i. In the worst ase, eah n-blok unit and eah node of the B

+

-tree is

half �lled. This gives the worst-ase oupany as 25 perent.

ii. No.While splitting the n-blok unit, the �rst n_2 leaf pages are plaed

in one n-blok unit and the remaining pages in the seond n-blok

unit. That is, every n-blok split maintains the order. Hene, the

nodes in the n-blok units are onseutive.

Pratie Exerises 107

iii. In the regular B

+

-tree onstrution, the leaf pages might not be se-

quential and hene in the worst-ase, it takes one seek per leaf page.

Using the blok at a time method, for eah n-node blok, we will have

at least n_2 leaf nodes in it. Eah n-node blok an be read using one

seek. Hene the worst-ase seeks ome down by a fator of n_2.

iv. Allowing redistribution among the nodes of the same blok does not

require additional seeks, whereas in regular B

+

-trees we require as

many seeks as the number of leaf pages involved in the redistribution.

This makes redistribution for leaf bloks e	ient with this sheme.

Also, the worst-ase oupany omes bak to nearly 50 perent.

(Splitting of leaf nodes is preferred when the partiipating leaf nodes

are nearly full. Hene nearly 50 perent instead of exat 50 perent)

14.10 Suppose you are given a database shema and some queries that are exeuted

frequently. How would you use the above information to deide what indies

to reate?

Answer:

Indies on any attributes on whih there are seletion onditions; if there are

only a few distint values for that attribute, a bitmap index may be reated,

otherwise a normal B

+

-tree index.

B

+

-tree indies on primary-key and foreign-key attributes.

Also indies on attributes that are involved in join onditions in the queries.

14.11 In write-optimized trees suh as the LSM tree or the stepped-merge index, en-

tries in one level are merged into the next level only when the level is full.

Suggest how this poliy an be hanged to improve read performane during

periods when there are many reads but no updates.

Answer:

If there have been no updates in a while, but there are a lot of index look ups

on an index, then entries at one level, say i, an be merged into the next level,

even if the level is not full. The bene�t is that reads would then not have to

look up indies at level i, reduing the ost of reads.

14.12 What trade o�s do bu�er trees pose as ompared to LSM trees?

Answer:

The idea of bu�er trees an be used with any tree-strutured index to redue the

ost of inserts and updates, inluding spatial indies. In ontrast, LSM trees an

only be used with linearly ordered data that are amenable to merging. On the

other hand, bu�er trees require more random I/O to perform insert operations

as ompared to (all variants of) LSM trees.

Write-optimized indies an signi�antly redue the ost of inserts, and to

a lesser extent, of updates, as ompared to B

+

-trees. On the other hand, the

108 Chapter 14 Indexing

index lookup ost an be signi�antly higher for write-optimized indies as

ompared to B

+

-trees.

14.13 Consider the instrutor relation shown in Figure 14.1.

a. Construt a bitmap index on the attribute salary, dividing salary values

into four ranges: below 50,000, 50,000 to below 60,000, 60,000 to below

70,000, and 70,000 and above.

b. Consider a query that requests all instrutors in the Finane department

with salary of 80,000 or more. Outline the steps in answering the query,

and show the �nal and intermediate bitmaps onstruted to answer the

query.

Answer:

We reprodue the instrutor relation below.

ID name dept name salary

10101 Srinivasan Comp. Si. 65000

12121 Wu Finane 90000

15151 Mozart Musi 40000

22222 Einstein Physis 95000

32343 El Said History 60000

33456 Gold Physis 87000

45565 Katz Comp. Si. 75000

58583 Cali�eri History 62000

76543 Singh Finane 80000

76766 Crik Biology 72000

83821 Brandt Comp. Si. 92000

98345 Kim Ele. Eng. 80000

a. Bitmap for salary, with S

1

, S

2

, S

3

and S

4

representing the given intervals

in the same order

S

1

0 0 1 0 0 0 0 0 0 0 0 0

S

2

0 0 0 0 0 0 0 0 0 0 0 0

S

3

1 0 0 0 1 0 0 1 0 0 0 0

S

4

0 1 0 1 0 1 1 0 1 1 1 1

b. The question is a bit trivial if there is no bitmap on the dept name at-

tribute. The bitmap for the dept name attribute is:

Pratie Exerises 109

Comp. Si 1 0 0 0 0 0 1 0 0 0 1 0

Finane 0 1 0 0 0 0 0 0 1 0 0 0

Musi 0 0 1 0 0 0 0 0 0 0 0 0

Physis 0 0 0 1 0 1 0 0 0 0 0 0

History 0 0 0 0 1 0 0 1 0 0 0 0

Biology 0 0 0 0 0 0 0 0 0 1 0 0

Ele. Eng. 0 0 0 0 0 0 0 0 0 0 0 1

To �nd all instrutors in the Finane department with salary of 80000

or more, we �rst �nd the intersetion of the Finane department bitmap

and S

4

bitmap of salary and then san on these reords for salary of

80000 or more.

Intersetion of Finane department bitmap and S

4

bitmap of salary.

S

4

0 1 0 1 0 1 1 0 1 1 1 1

Finane 0 1 0 0 0 0 0 0 1 0 0 0

S

4

ã Finane 0 1 0 0 0 0 0 0 1 0 0 0

San on these reords with salary 80000 or more gives Wu and Singh as

the instrutors who satisfy the given query.

14.14 Suppose you have a relation ontaining the x, y oordinates and names of

restaurants. Suppose also that the only queries that will be asked are of the

following form: The query spei�es a point and asks if there is a restaurant ex-

atly at that point. Whih type of index would be preferable, R-tree or B-tree?

Why?

Answer:

FILL IN

14.15 Suppose you have a spatial database that supports region queries with irular

regions, but not nearest-neighbor queries. Desribe an algorithm to �nd the

nearest neighbor by making use of multiple region queries.

Answer:

Start with regions with very small radius, and retry with a larger radius if a

partiular region does not ontain any result. For example, eah time the radius

ould be inreased by a fator of (say) 1.5. The bene�t is that sine we do not

use a very large radius ompared to the minimum radius required, there will

(hopefully!) not be too many points in the irular range query result.

CHAP T E R

15

Query Proessing

Pratie Exerises

15.1 Assume (for simpliity in this exerise) that only one tuple �ts in a blok and

memory holds at most three bloks. Show the runs reated on eah pass of

the sort-merge algorithm when applied to sort the following tuples on the �rst

attribute: (kangaroo, 17), (wallaby, 21), (emu, 1), (wombat, 13), (platypus,

3), (lion, 8), (warthog, 4), (zebra, 11), (meerkat, 6), (hyena, 9), (hornbill, 2),

(baboon, 12).

Answer:

We will refer to the tuples (kangaroo, 17) through (baboon, 12) using tuple

numbers t

1

through t

12

. We refer to the j

th

run used by the i

th

pass, as r

ij

. The

initial sorted runs have three bloks eah. They are:

r

11

= ^t

3

, t

1

, t

2

`

r

12

= ^t

6

, t

5

, t

4

`

r

13

= ^t

9

, t

7

, t

8

`

r

14

= ^t

12

, t

11

, t

10

`

Eah pass merges three runs. Therefore the runs after the end of the �rst pass

are:

r

21

= ^t

3

, t

1

, t

6

, t

9

, t

5

, t

2

, t

7

, t

4

, t

8

`

r

22

= ^t

12

, t

11

, t

10

`

At the end of the seond pass, the tuples are ompletely sorted into one run:

r

31

= ^t

12

, t

3

, t

11

, t

10

, t

1

, t

6

, t

9

, t

5

, t

2

, t

7

, t

4

, t

8

`

15.2 Consider the bank database of Figure 15.14, where the primary keys are un-

derlined, and the following SQL query:

111

112 Chapter 15 Query Proessing

selet T.branh name

from branh T, branh S

where T.assets > S.assets and S.branh ity = �Brooklyn�

Write an e	ient relational-algebra expression that is equivalent to this query.

Justify your hoie.

Answer:

Query:

�

T.branh name

((�

branh name, assets

(�

T

(branh))) Æ

T.assets > S.assets

(�

assets

(�

(branh ity= 'Brooklyn')

(�

S

(branh)))))

This expression performs the theta join on the smallest amount of data possi-

ble. It does this by restriting the right-hand side operand of the join to only

those branhes in Brooklyn and also eliminating the unneeded attributes from

both the operands.

15.3 Let relations r

1

(A,B,C) and r

2

(C,D,E) have the following properties: r

1

has

20,000 tuples, r

2

has 45,000 tuples, 25 tuples of r

1

�t on one blok, and 30

tuples of r

2

�t on one blok. Estimate the number of blok transfers and seeks

required using eah of the following join strategies for r

1

Æ r

2

:

a. Nested-loop join.

b. Blok nested-loop join.

. Merge join.

d. Hash join.

Answer:

r

1

needs 800 bloks, and r

2

needs 1500 bloks. Let us assume M pages of

memory. If M > 800, the join an easily be done in 1500 + 800 disk aesses,

branh(branh name, branh ity, assets)

ustomer (ustomer name, ustomer street, ustomer ity)

loan (loan number, branh name, amount)

borrower (ustomer name, loan number)

aount (aount number, branh name, balane)

depositor (ustomer name, aount number)

Figure 15.14 Bank database.

Pratie Exerises 113

using even plain nested-loop join. So we onsider only the ase whereM f 800

pages.

a. Nested-loop join:

Using r

1

as the outer relation, we need 20000 < 1500 + 800 =

30, 000, 800 disk aesses. If r

2

is the outer relation, we need 45000 <

800 + 1500 = 36, 001, 500 disk aesses.

b. Blok nested-loop join:

If r

1

is the outer relation, we need ä

800

M*1

å < 1500+ 800 disk aesses. If

r

2

is the outer relation, we need ä

1500

M*1

å < 800 + 1500 disk aesses.

. Merge join:

Assuming that r

1

and r

2

are not initially sorted on the join key, the total

sorting ost inlusive of the output isB

s

= 1500(2älog

M*1

(1500_M)å+

2) + 800(2älog

M*1

(800_M)å + 2) disk aesses. Assuming all tuples

with the same value for the join attributes �t in memory, the total ost

is B

s

+ 1500 + 800 disk aesses.

d. Hash join:

We assume no over�ow ours. Sine r

1

is smaller, we use it as the build

relation and r

2

as the probe relation. If M > 800_M , i.e., no need for

reursive partitioning, then the ost is 3(1500 + 800) = 6900 disk

aesses, else the ost is 2(1500+ 800)älog

M*1

(800)* 1å+ 1500+ 800

disk aesses.

15.4 The indexed nested-loop join algorithm desribed in Setion 15.5.3 an be

ine	ient if the index is a seondary index and there are multiple tuples with

the same value for the join attributes. Why is it ine	ient? Desribe a way,

using sorting, to redue the ost of retrieving tuples of the inner relation. Under

what onditions would this algorithm bemore e	ient than hybridmerge join?

Answer:

If there are multiple tuples in the inner relation with the same value for the

join attributes, we may have to aess that many bloks of the inner relation

for eah tuple of the outer relation. That is why it is ine	ient. To redue this

ost we an perform a join of the outer relation tuples with just the seondary

index leaf entries, postponing the inner relation tuple retrieval. The result �le

obtained is then sorted on the inner relation addresses, allowing an e	ient

physial order san to omplete the join.

Hybrid merge�join requires the outer relation to be sorted. The above al-

gorithm does not have this requirement, but for eah tuple in the outer relation

it needs to perform an index lookup on the inner relation. If the outer relation

is muh larger than the inner relation, this index lookup ost will be less than

the sorting ost, thus this algorithm will be more e	ient.

114 Chapter 15 Query Proessing

15.5 Let r and s be relations with no indies, and assume that the relations are not

sorted. Assuming in�nite memory, what is the lowest-ost way (in terms of I/O

operations) to ompute r Æ s? What is the amount of memory required for

this algorithm?

Answer:

We an store the entire smaller relation in memory, read the larger relation

blok by blok, and perform nested-loop join using the larger one as the outer

relation. The number of I/O operations is equal to b

r

+ b

s

, and the memory

requirement is min(b

r

, b

s

) + 2 pages.

15.6 Consider the bank database of Figure 15.14, where the primary keys are un-

derlined. Suppose that a B

+

-tree index on branh ity is available on relation

branh, and that no other index is available. List di�erent ways to handle the

following seletions that involve negation:

a. �

�(branh ity<�Brooklyn�)

(branh)

b. �

�(branh ity=�Brooklyn�)

(branh)

. �

�(branh ity<�Brooklyn� â assets<5000)

(branh)

Answer:

a. Use the index to loate the �rst tuple whose branh ity �eld has value

�Brooklyn�. From this tuple, follow the pointer hains till the end, re-

trieving all the tuples.

b. For this query, the index serves no purpose. We an san the �le sequen-

tially and selet all tuples whose branh ity �eld is anything other than

�Brooklyn�.

. This query is equivalent to the query

�

(branh ityg

¨

Brooklyn

¨

á assets<5000)

(branh)

Using the branh-ity index, we an retrieve all tuples with branh-ity

value greater than or equal to �Brooklyn� by following the pointer hains

from the �rst �Brooklyn� tuple. We also apply the additional riteria of

assets < 5000 on every tuple.

15.7 Write pseudoode for an iterator that implements indexed nested-loop join,

where the outer relation is pipelined. Your pseudoode must de�ne the stan-

dard iterator funtions open(), next(), and lose(). Showwhat state information

the iterator must maintain between alls.

Answer:

Let outer be the iterator whih returns suessive tuples from the pipelined

outer relation. Let inner be the iterator whih returns suessive tuples of

Pratie Exerises 115

the inner relation having a given value at the join attributes. The inner iter-

ator returns these tuples by performing an index lookup. The funtions In-

dexedNLJoin::open, IndexedNLJoin::lose and IndexedNLJoin::next to imple-

ment the indexed nested-loop join iterator are given below. The two iterators

outer and inner, the value of the last read outer relation tuple t

r

and a �ag done

r

indiating whether the end of the outer relation san has been reahed are the

state information whih need to be remembered by IndexedNLJoin between

alls. Please see ??

15.8 Design sort-based and hash-based algorithms for omputing the relational di-

vision operation (see Pratie Exerise 2.9 for a de�nition of the division op-

eration).

Answer:

Suppose r(T ä S) and s(S) are two relations and r � s has to be omputed.

For a sorting-based algorithm, sort relation s on S. Sort relation r on (T , S).

Now, start sanning r and look at the T attribute values of the �rst tuple. San r

till tuples have same value of T . Also san s simultaneously and hek whether

every tuple of s also ours as the S attribute of r, in a fashion similar to merge

join. If this is the ase, output that value of T and proeed with the next value of

T . Relation smay have to be sanned multiple times, but r will only be sanned

one. Total disk aesses, after sorting both the relations, will be ðrð+N < ðsð,

where N is the number of distint values of T in r.

We assume that for any value of T , all tuples in r with that T value �t in

memory, and we onsider the general ase at the end. Partition the relation

r on attributes in T suh that eah partition �ts in memory (always possible

beause of our assumption). Consider partitions one at a time. Build a hash

table on the tuples, at the same time olleting all distintT values in a separate

hash table. For eah value of T , Now, for eah value V

T

of T , eah value s of

S, probe the hash table on (V

T

, s). If any of the values is absent, disard the

value V

T

, else output the value V

T

.

In the ase that not all r tuples with one value for T �t in memory, parti-

tion r and s on the S attributes suh that the ondition is satis�ed, and run

the algorithm on eah orresponding pair of partitions r

i

and s

i

. Output the

intersetion of the T values generated in eah partition.

15.9 What is the e�et on the ost of merging runs if the number of bu�er bloks

per run is inreased while overall memory available for bu�ering runs remains

�xed?

Answer:

Seek overhead is redued, but the the number of runs that an be merged in a

pass dereases, potentially leading tomore passes. A value of b

b

that minimizes

overall ost should be hosen.

116 Chapter 15 Query Proessing

IndexedNLJoin::open()

begin

outer.open();

inner.open();

done

r

:= false;

if(outer.next() � false)

move tuple from outer's output bu�er to t

r

;

else

done

r

:= true;

end

IndexedNLJoin::lose()

begin

outer.lose();

inner.lose();

end

boolean IndexedNLJoin::next()

begin

while(�done

r

)

begin

if(inner.next(t

r

[JoinAttrs℄) � false)

begin

move tuple from inner's output bu�er to t

s

;

ompute t

r

Æ t

s

and plae it in output bu�er;

return true;

end

else

if(outer.next() � false)

begin

move tuple from outer's output bu�er to t

r

;

rewind inner to �rst tuple of s;

end

else

done

r

:= true;

end

return false;

end

Figure 15.101 Answer for Exerise 15.7.

Pratie Exerises 117

15.10 Consider the following extended relational-algebra operators. Desribe how to

implement eah operation using sorting and using hashing.

a. Semijoin (�

�

): Themultiset semijoin operator r�

�

s is de�ned as follows:

if a tuple r

i

appears n times in r, it appears n times in the result of r�

�

if there is at least one tuple s

j

suh that r

i

and s

j

satisfy prediate �;

otherwise r

i

does not appear in the result.

b. Anti-semijoin (�

�

): The multiset anti-semijoin operator r�

�

s is de�ned

as follows: if a tuple r

i

appears n times in r, it appears n times in the result

of r�

�

if there does not exist any tuple s

j

in s suh that r

i

and s

j

satisfy

prediate �; otherwise r

i

does not appear in the result.

Answer:

FILL IN: CHek for dupliate preservation

As in the ase of join algorithms, semijoin and anti-semijoin an be done e	-

iently if the join onditions are equijoin onditions. We desribe below how

to e	iently handle the ase of equijoin onditions using sorting and hashing.

With arbitrary join onditions, sorting and hashing annot be used; (blok)

nested loops join needs to be used instead.

a. Semijoin:

�

Semijoin using sorting: Sort both r and s on the join attributes in

�. Perform a san of both r and s similar to the merge algorithm

and add tuples of r to the result whenever the join attributes of the

urrent tuples of r and s math.

�

Semijoin using hashing: Create a hash index in s on the join at-

tributes in �. Iterate over r, and for eah distint value of the join

attributes, perform a hash lookup in s. If the hash lookup returns a

value, add the urrent tuple of r to the result.

Note that if r and s are large, they an be partitioned on the join

attributes �rst and the above proedure applied on eah partition.

If r is small but s is large, a hash index an be built on r and probed

using s; and if an s tuple mathes an r tuple, the r tuple an be output

and deleted from the hash index.

b. Anti-semijoin:

�

Anti-semijoin using sorting: Sort both r and s on the join attributes

in �. Perform a san of both r and s similar to the merge algorithm

and add tuples of r to the result if no tuple of s satis�es the join

prediate for the orresponding tuple of r.

�

Anti-semijoin using hashing: Create a hash index in s on the join

attributes in �. Iterate over r, and for eah distint value of the join

attributes, perform a hash lookup in s. If the hash lookup returns a

null value, add the urrent tuple of r to the result.

118 Chapter 15 Query Proessing

As for semijoin, partitioning an be used if r and s are large. An

index on r an be used instead of an index on s, but then when an s

tuple mathes an r tuple, the r tuple is deleted from the index. After

proessing all s tuples, all remaining r tuples in the index are output

as the result of the anti-semijoin operation.

15.11 Suppose a query retrieves only the �rst K results of an operation and termi-

nates after that. Whih hoie of demand-driven or produer-driven pipelining

(with bu�ering) would be a good hoie for suh a query? Explain your an-

swer.

Answer:

Demand driven is better, sine it will only generate the top K results. Produer

driven may generate a lot more answers, many of whih would not get used.

15.12 Current generation CPUs inlude an instrution ahe, whih ahes reently

used instrutions. A funtion all then has a signi�ant overhead beause the

set of instrutions being exeuted hanges, resulting in ahe misses on the

instrution ahe.

a. Explain why produer-driven pipelining with bu�ering is likely to result

in a better instrution ahe hit rate, as ompared to demand-driven

pipelining.

b. Explain why modifying demand-driven pipelining by generating multiple

results on one all to next(), and returning them together, an improve

the instrution ahe hit rate.

Answer:

Produer-driven pipelining exeutes the same set of instrutions to generate

multiple tuples by onsuming already generated tuples from the inputs. Thus

instrution ahe hits will be more. In omparison, demand-driven pipelining

swithes from the instrutions of one funtion to another for eah tuple, re-

sulting in more misses.

By generating multiple results at one go, a next(() funtion would reeive

multiple tuples in its inputs and have a loop that generates multiple tuples for

its output without swithing exeution to another funtion. Thus, the instru-

tion ahe hit rate an be expeted to improve.

15.13 Suppose you want to �nd douments that ontain at least k of a given set of n

keywords. Suppose also you have a keyword index that gives you a (sorted) list

of identi�ers of douments that ontain a spei�ed keyword. Give an e	ient

algorithm to �nd the desired set of douments.

Answer:

Let S be a set of n keywords. An algorithm to �nd all douments that ontain

at least k of these keywords is given in ??

Pratie Exerises 119

initialize the list L to the empty list;

for (eah keyword in S) do

begin

D := the list of douments identi�ers orresponding to ;

for (eah doument identi�er d in D) do

if (a reord R with doument identi�er as d is on list L) then

R:referene ount := R:referene ount + 1;

else begin

make a new reord R;

R:doument id := d;

R:referene ount := 1;

add R to L;

end;

end;

for (eah reord R in L) do

if (R:referene ount >= k) then

output R;

Figure 15.102 Answer for Exerise 15.13.

This algorithm alulates a referene ount for eah doument identi�er.

A referene ount of i for a doument identi�er d means that at least i of the

keywords in S our in the doument identi�ed by d. The algorithm maintains

a list of reords, eah having two �elds � a doument identi�er, and the refer-

ene ount for this identi�er. This list is maintained sorted on the doument

identi�er �eld.

Note that exeution of the seond for statement auses the list D to �merge�

with the list L. Sine the lists L and D are sorted, the time taken for this merge

is proportional to the sum of the lengths of the two lists. Thus the algorithm

runs in time (at most) proportional to n times the sum total of the number of

doument identi�ers orresponding to eah keyword in S.

15.14 Suggest how a doument ontaining a word (suh as �leopard�) an be in-

dexed suh that it is e	iently retrieved by queries using a more general on-

ept (suh as �arnivore� or �mammal�). You an assume that the onept

hierarhy is not very deep, so eah onept has only a few generalizations (a

onept an, however, have a large number of speializations). You an also

assume that you are provided with a funtion that returns the onept for eah

word in a doument. Also suggest how a query using a speialized onept an

retrieve douments using a more general onept.

Answer:

Add do to index lists for more general onepts also.

120 Chapter 15 Query Proessing

15.15 Explain why the nested-loops join algorithm (see Setion 15.5.1) would work

poorly on a database stored in a olumn-oriented manner. Desribe an alterna-

tive algorithm that would work better, and explain why your solution is better.

Answer:

If the nested-loops join algorithm is used as is, it would require tuples for eah

of the relations to be assembled before they are joined. Assembling tuples an

be expensive in a olumn store, sine eah attribute may ome from a separate

area of the disk; the overhead of assembly would be partiularly wasteful if

many tuples do not satisfy the join ondition and would be disarded. In suh

a situation it would be better to �rst �nd whih tuples math by aessing only

the join olumns of the relations. Sort-merge join, hash join, or indexed nested

loops join an be used for this task. After the join is performed, only tuples that

get output by the join need to be assembled; assembly an be done by sorting

the join result on the reord identi�er of one of the relations and aessing

the orresponding attributes, then resorting on reord identi�ers of the other

relation to aess its attributes.

15.16 Consider the following queries. For eah query, indiate if olumn-oriented

storage is likely to be bene�ial or not, and explain why.

a. Feth ID, name and dept name of the student with ID 12345.

b. Group the takes relation by year and ourse id, and �nd the total number

of students for eah (year, ourse id) ombination.

Answer:

FILL IN AND rehek question

CHAP T E R

16

Query Optimization

Pratie Exerises

16.1 Download the university database shema and the large university dataset from

dbbook.om. Create the university shema on your favorite database, and load

the large university dataset. Use the explain feature desribed in Note 16.1 on

page 746 to view the plan hosen by the database, in di�erent ases as detailed

below.

a. Write a query with an equality ondition on student.name (whih does

not have an index), and view the plan hosen.

b. Create an index on the attribute student.name, and view the plan hosen

for the above query.

. Create simple queries joining two relations, or three relations, and view

the plans hosen.

d. Create a query that omputes an aggregate with grouping, and view the

plan hosen.

e. Create an SQL query whose hosen plan uses a semijoin operation.

f. Create an SQL query that uses a not in lause, with a subquery using

aggregation. Observe what plan is hosen.

g. Create a query for whih the hosen plan uses orrelated evaluation (the

way orrelated evaluation is represented varies by database, but most

databases would show a �lter or a projet operator with a subplan or

subquery).

h. Create an SQL update query that updates a single row in a relation. View

the plan hosen for the update query.

121

http://dbbook.com

122 Chapter 16 Query Optimization

i. Create an SQL update query that updates a large number of rows in a re-

lation, using a subquery to ompute the new value. View the plan hosen

for the update query.

Answer:

The answer depends on the database.

FILL IN Suggested queries for eah exerise as veri�ed on some database

16.2 Show that the following equivalenes hold. Explain how you an apply them

to improve the e	ieny of ertain queries:

a. E

1

Æ

�

(E

2

* E

3

) � (E

1

Æ

�

E

2

* E

1

Æ

�

E

3

).

b. �

�

(

A

F

(E)) �

A

F

(�

�

(E)), where � uses only attributes from A.

. �

�

(E

1

�E

2

) � �

�

(E

1

)�E

2

, where � uses only attributes from E

1

.

Answer:

a. E

1

Æ

�

(E

2

* E

3

) = (E

1

Æ

�

E

2

* E

1

Æ

�

E

3

).

Let us rename (E

1

Æ

�

(E

2

*E

3

)) as R

1

, (E

1

Æ

�

E

2

) asR

2

and (E

1

Æ

�

E

3

)

as R

3

. It is lear that if a tuple t belongs to R

1

, it will also belong to R

2

.

If a tuple t belongs to R

3

, t[E

3

's attributes℄ will belong to E

3

, hene t

annot belong to R

1

. From these two we an say that

Åt, t Ë R

1

Ù t Ë (R

2

* R

3

)

It is lear that if a tuple t belongs to R

2

*R

3

, then t[R

2

's attributes℄ Ë E

2

and t[R

2

's attributes℄ Ì E

3

. Therefore:

Åt, t Ë (R

2

* R

3

) Ù t Ë R

1

The above two equations imply the given equivalene.

This equivalene is helpful beause evaluation of the right-hand side

join will produe many tuples whih will �nally be removed from the

result. The left-hand side expression an be evaluated more e	iently.

b. �

�

(

A

F

(E)) =

A

F

(�

�

(E)), where � uses only attributes from A.

� uses only attributes from A. Therefore if any tuple t in the output of

A

F

(E) is �ltered out by the seletion of the left-hand side, all the tuples

in E whose value in A is equal to t[A℄ are �ltered out by the seletion of

the right-hand side. Therefore:

Åt, t Ì �

�

(

A

F

(E)) Ù t Ì

A

F

(�

�

(E))

Using similar reasoning, we an also onlude that

Åt, t Ì

A

F

(�

�

(E)) Ù t Ì �

�

(

A

F

(E))

Pratie Exerises 123

The above two equations imply the given equivalene.

This equivalene is helpful beause evaluation of the right-hand side

avoids performing the aggregation on groups whih are going to be re-

moved from the result. Thus the right-hand side expression an be eval-

uated more e	iently than the left-hand side expression.

. �

�

(E

1

�E

2

) = �

�

(E

1

)�E

2

where � uses only attributes from E

1

.

� uses only attributes from E

1

. Therefore if any tuple t in the output of

(E

1

�E

2

) is �ltered out by the seletion of the left-hand side, all the

tuples in E

1

whose value is equal to t[E

1

℄ are �ltered out by the seletion

of the right-hand side. Therefore:

Åt, t Ì �

�

(E

1

�E

2

) Ù t Ì �

�

(E

1

)�E

2

Using similar reasoning, we an also onlude that

Åt, t Ì �

�

(E

1

)�E

2

Ù t Ì �

�

(E

1

�E

2

)

The above two equations imply the given equivalene.

This equivalene is helpful beause evaluation of the right-hand side

avoids produing many output tuples whih are going to be removed

from the result. Thus the right-hand side expression an be evaluated

more e	iently than the left-hand side expression.

16.3 For eah of the following pairs of expressions, give instanes of relations that

show the expressions are not equivalent.

a. �

A

(r * s) and �

A

(r) * �

A

(s).

b. �

B<4

(

A

max(B) as B

(r)) and

A

max(B) as B

(�

B<4

(r)).

. In the preeding expressions, if both ourrenes of max were replaed

by min, would the expressions be equivalent?

d. (r� s)� t and r�(s� t)

In other words, the natural right outer join is not assoiative.

e. �

�

(E

1

�E

2

) and E

1

� �

�

(E

2

), where � uses only attributes from E

2

.

Answer:

a. R = ^(1, 2)`, S = ^(1, 3)`

The result of the left-hand side expression is ^(1)`, whereas the result of

the right-hand side expression is empty.

b. R = ^(1, 2), (1, 5)`

The left-hand side expression has an empty result, whereas the right hand

side one has the result ^(1, 2)`.

124 Chapter 16 Query Optimization

. Yes, on replaing themax by themin, the expressions will beome equiv-

alent. Any tuple that the seletion in the rhs eliminates would not pass

the seletion on the lhs if it were the minimum value and would be elim-

inated anyway if it were not the minimum value.

d. R = ^(1, 2)`, S = ^(2, 3)`, T = ^(1, 4)`. The left-hand expres-

sion gives ^(1, 2, null, 4)` whereas the the right-hand expression gives

^(1, 2, 3, null)`.

e. Let R be of the shema (A,B) and S of (A,C). Let R = ^(1, 2)`, S =

^(2, 3)` and let � be the expression C = 1. The left side expression's

result is empty, whereas the right side expression results in ^(1, 2, null)`.

16.4 SQL allows relations with dupliates (Chapter 3), and the multiset version of

the relational algebra is de�ned in Note 3.1 on page 80, Note 3.2 on page 97,

and Note 3.3 on page 108. Chek whih of the equivalene rules 1 through 7.b

hold for the multiset version of the relational algebra.

Answer:

All the equivalene rules 1 through 7.b of setion Setion 16.2.1 hold for the

multiset version of the relational algebra de�ned in Chapter 2.

There exist equivalene rules that hold for the ordinary relational algebra but

do not hold for the multiset version. For example onsider the rule :-

A ã B = A ä B * (A * B) * (B * A)

This is learly valid in plain relational algebra. Consider a multiset instane

in whih a tuple t ours 4 times in A and 3 times in B. t will our 3 times

in the output of the left-hand side expression, but 6 times in the output of the

right-hand side expression. The reason for this rule to not hold in the multiset

version is the asymmetry in the semantis of multiset union and intersetion.

16.5 Consider the relations r

1

(A,B,C), r

2

(C,D,E), and r

3

(E, F), with primary keys

A, C, and E, respetively. Assume that r

1

has 1000 tuples, r

2

has 1500 tuples,

and r

3

has 750 tuples. Estimate the size of r

1

Æ r

2

Æ r

3

, and give an e	ient

strategy for omputing the join.

Answer:

�

The relation resulting from the join of r

1

, r

2

, and r

3

will be the same no

matter whih way we join them, due to the assoiative and ommutative

properties of joins. So we will onsider the size based on the strategy of

((r

1

Æ r

2

) Æ r

3

). Joining r

1

with r

2

will yield a relation of at most 1000

tuples, sine C is a key for r

2

. Likewise, joining that result with r

3

will yield

a relation of at most 1000 tuples beause E is a key for r

3

. Therefore, the

�nal relation will have at most 1000 tuples.

Pratie Exerises 125

�

An e	ient strategy for omputing this join would be to reate an index

on attribute C for relation r

2

and on E for r

3

. Then for eah tuple in r

1

, we

do the following:

a. Use the index for r

2

to look up at most one tuple whih mathes the

C value of r

1

.

b. Use the reated index on E to look up in r

3

at most one tuple whih

mathes the unique value for E in r

2

.

16.6 Consider the relations r

1

(A,B,C), r

2

(C,D,E), and r

3

(E, F) of Pratie Exer-

ise 16.5. Assume that there are no primary keys, exept the entire shema.

Let V (C, r

1

) be 900, V (C, r

2

) be 1100, V (E, r

2

) be 50, and V (E, r

3

) be 100.

Assume that r

1

has 1000 tuples, r

2

has 1500 tuples, and r

3

has 750 tuples. Es-

timate the size of r

1

Æ r

2

Æ r

3

and give an e	ient strategy for omputing

the join.

Answer:

The estimated size of the relation an be determined by alulating the average

number of tuples whih would be joined with eah tuple of the seond relation.

In this ase, for eah tuple in r

1

, 1500/V (C, r

2

) = 15/11 tuples (on the average)

of r

2

would join with it. The intermediate relation would have 15000/11 tuples.

This relation is joined with r

3

to yield a result of approximately 10,227 tuples

(15000/11 � 750/100 = 10227). A good strategy should join r

1

and r

2

�rst,

sine the intermediate relation is about the same size as r

1

or r

2

. Then r

3

is

joined to this result.

16.7 Suppose that a B

+

-tree index on building is available on relation department

and that no other index is available. What would be the best way to handle the

following seletions that involve negation?

a. �

� (building < �Watson�)

(department)

b. �

� (building = �Watson�)

(department)

. �

� (building < �Watson� â budget < 50000)

(department)

Answer:

a. Use the index to loate the �rst tuple whose building �eld has value �Wat-

son�. From this tuple, follow the pointer hains till the end, retrieving all

the tuples.

b. For this query, the index serves no purpose. We an san the �le sequen-

tially and selet all tuples whose building �eld is anything other than

�Watson�.

. This query is equivalent to the query:

�

building g'Watson' á budget <5000)

(department).

126 Chapter 16 Query Optimization

Using the building index, we an retrieve all tuples with building value

greater than or equal to �Watson� by following the pointer hains from

the �rst �Watson� tuple.We also apply the additional riteria of budget <

5000 on every tuple.

16.8 Consider the query:

selet *

from r, s

where upper(r:A) = upper(s:A);

where �upper� is a funtion that returns its input argument with all lowerase

letters replaed by the orresponding upperase letters.

a. Find out what plan is generated for this query on the database system

you use.

b. Some database systems would use a (blok) nested-loop join for this

query, whih an be very ine	ient. Brie�y explain how hash-join or

merge-join an be used for this query.

Answer:

a. First reate relations r and s, and add some tuples to the two relations,

before �nding the plan hosen; or use existing relations in plae of r and

s. Compare the hosen plan with the plan hosen for a query diretly

equating r:A = s:B. Chek the estimated statistis, too. Some databases

may give the same plan, but with vastly di�erent statistis.

(On PostgreSQL, we found that the optimizer used the merge join

plan desribed in the answer to the next part of this question.)

b. To use hash join, hashing should be done after applying the upper()

funtion to r:A and s:A. Similarly, for merge join, the relations should

be sorted on the result of applying the upper() funtion on r:A and s:A.

The hash or merge join algorithms an then be used unhanged.

16.9 Give onditions under whih the following expressions are equivalent:

A,B

agg(C)

(E

1

Æ E

2

) and (

A

agg(C)

(E

1

)) Æ E

2

where agg denotes any aggregation operation. How an the above onditions

be relaxed if agg is one of min or max?

Answer:

The above expressions are equivalent provided E

2

ontains only attributes A

and B, with A as the primary key (so there are no dupliates). It is OK if E

2

does not ontain some A values that exist in the result of E

1

, sine suh values

will get �ltered out in either expression. However, if there are dupliate values

in E

2

:A, the aggregate results in the two ases would be di�erent.

Pratie Exerises 127

If the aggregate funtion is min or max, dupliate A values do not have any

e�et. However, there should be no dupliates on (A,B); the �rst expression

removes suh dupliates, while the seond does not.

16.10 Consider the issue of interesting orders in optimization. Suppose you are given

a query that omputes the natural join of a set of relations S. Given a subset

S1 of S, what are the interesting orders of S1?

Answer:

The interesting orders are all orders on subsets of attributes that an potentially

partiipate in join onditions in further joins. Thus, let T be the set of all

attributes of S1 that also our in any relation in S * S1. Then every ordering

of every subset of T is an interesting order.

16.11 Modify the FindBestPlan(S) funtion to reate a funtion FindBestPlan(S,O),

where O is a desired sort order for S, and whih onsiders interesting sort

orders. A null order indiates that the order is not relevant.Hints: An algorithm

A may give the desired order O; if not a sort operation may need to be added

to get the desired order. If A is a merge-join, FindBestPlan must be invoked on

the two inputs with the desired orders for the inputs.

Answer:

FILL IN

16.12 Show that, with n relations, there are (2(n*1))�_(n*1)� di�erent join orders.

Hint: A omplete binary tree is one where every internal node has exatly two

hildren. Use the fat that the number of di�erent omplete binary trees with

n leaf nodes is:

1

n

0

2(n * 1)

(n * 1)

1

If you wish, you an derive the formula for the number of omplete binary trees

with n nodes from the formula for the number of binary trees with n nodes.

The number of binary trees with n nodes is:

1

n + 1

0

2n

n

1

This number is known as the Catalan number, and its derivation an be found

in any standard textbook on data strutures or algorithms.

Answer:

Eah join order is a omplete binary tree (every non-leaf node has exatly two

hildren) with the relations as the leaves. The number of di�erent omplete

binary trees with n leaf nodes is

1

n

�

2(n*1)

(n*1)

�

. This is beause there is a bijetion

between the number of omplete binary trees with n leaves and number of

binary trees with n*1 nodes. Any omplete binary tree with n leaves has n*1

internal nodes. Removing all the leaf nodes, we get a binary tree with n * 1

128 Chapter 16 Query Optimization

nodes. Conversely, given any binary tree with n* 1 nodes, it an be onverted

to a omplete binary tree by adding n leaves in a unique way. The number

of binary trees with n * 1 nodes is given by

1

n

�

2(n*1)

(n*1)

�

, known as the Catalan

number. Multiplying this by n� for the number of permutations of the n leaves,

we get the desired result.

16.13 Show that the lowest-ost join order an be omputed in time O(3

n

). Assume

that you an store and look up information about a set of relations (suh as

the optimal join order for the set, and the ost of that join order) in onstant

time. (If you �nd this exerise di	ult, at least show the looser time bound of

O(2

2n

).)

Answer:

Consider the dynami programming algorithm given in Setion 16.4. For eah

subset having k + 1 relations, the optimal join order an be omputed in time

2

k+1

. That is beause for one partiular pair of subsets A and B, we need on-

stant time, and there are at most 2

k+1

* 2 di�erent subsets that A an denote.

Thus, over all the

�

n

k+1

�

subsets of size k + 1, this ost is

�

n

k+1

�

2

k+1

. Summing

over all k from 1 to n* 1 gives the binomial expansion of ((1+ x)

n

* x) with

x = 2. Thus the total ost is less than 3

n

.

16.14 Show that, if only left-deep join trees are onsidered, as in the System R opti-

mizer, the time taken to �nd themost e	ient join order is around n2

n

. Assume

that there is only one interesting sort order.

Answer:

The derivation of time taken is similar to the general ase, exept that instead

of onsidering 2

k+1

* 2 subsets of size less than or equal to k for A, we only

need to onsider k + 1 subsets of size exatly equal to k. That is beause the

right-hand operand of the topmost join has to be a single relation. Therefore

the total ost for �nding the best join order for all subsets of size k + 1 is

�

n

k+1

�

(k + 1), whih is equal to n

�

n*1

k

�

. Summing over all k from 1 to n * 1

using the binomial expansion of (1+ x)

n*1

with x = 1 gives a total ost of less

than n2

n*1

.

16.15 Consider the bank database of Figure 16.9, where the primary keys are under-

lined. Construt the following SQL queries for this relational database.

a. Write a nested query on the relation aount to �nd, for eah branh

with name starting with B, all aounts with the maximum balane at

the branh.

b. Rewrite the preeding query without using a nested subquery; in other

words, deorrelate the query, but in SQL.

. Give a relational algebra expression using semijoin equivalent to the

query.

Pratie Exerises 129

d. Give a proedure (similar to that desribed in Setion 16.4.4) for deor-

relating suh queries.

Answer:

a. The nested query is as follows:

selet S.aount number

from aount S

where S.branh name like 'B%' and

S.balane =

(selet max(T.balane)

from aount T

where T.branh name = S.branh name)

b. The deorrelated query is as follows:

reate table t

1

as

selet branh name, max(balane)

from aount

group by branh name

selet aount number

from aount, t

1

where aount.branh name like 'B%' and

aount.branh name = t

1

.branh name and

aount.balane = t

1

.balane

. FILL IN

d. In general, onsider the queries of the form:

branh(branh name, branh ity, assets)

ustomer (ustomer name, ustomer street, ustomer ity)

loan (loan number, branh name, amount)

borrower (ustomer name, loan number)

aount (aount number, branh name, balane)

depositor (ustomer name, aount number)

Figure 16.9 Banking database.

130 Chapter 16 Query Optimization

selet 5

from L

1

where P

1

and

A

1

op

(selet f(A

2

)

from L

2

where P

2

)

where f is some aggregate funtion on attributes A

2

and op is some

boolean binary operator. It an be rewritten as

***** FILL IN **** GIVE Relational algebra version *****

reate table t

1

as

selet f(A

2

),V

from L

2

where P

1

2

group by V

selet 5

from L

1

, t

1

where P

1

and P

2

2

and

A

1

op t

1

:A

2

where P

1

2

ontains prediates in P

2

without seletions involving orrela-

tion variables, and P

2

2

introdues the seletions involving the orrelation

variables. V ontains all the attributes that are used in the seletions in-

volving orrelation variables in the nested query.

CHAP T E R

17

Transations

Pratie Exerises

17.1 Suppose that there is a database system that never fails. Is a reovery manager

required for this system?

Answer:

Even in this ase the reoverymanager is needed to perform rollbak of aborted

transations for ases where the transation itself fails.

17.2 Consider a �le system suh as the one on your favorite operating system.

a. What are the steps involved in the reation and deletion of �les and in

writing data to a �le?

b. Explain how the issues of atomiity and durability are relevant to the

reation and deletion of �les and to writing data to �les.

Answer:

There are several steps in the reation of a �le. A storage area is assigned to the

�le in the �le system. (In UNIX, a unique i-number is given to the �le and an

i-node entry is inserted into the i-list.) Deletion of �le involves exatly opposite

steps.

For the �le system user, durability is important for obvious reasons, but

atomiity is not relevant generally as the �le system doesn't support transa-

tions. To the �le system implementor, though, many of the internal �le sys-

tem ations need to have transation semantis. All steps involved in re-

ation/deletion of the �le must be atomi, otherwise there will be unreferene-

able �les or unusable areas in the �le system.

17.3 Database-system implementers have paid muh more attention to the ACID

properties than have �le-system implementers. Why might this be the ase?

Answer:

131

132 Chapter 17 Transations

Database systems usually perform ruial tasks whose e�ets need to be atomi

and durable, and whose outome a�ets the real world in a permanent manner.

Examples of suh tasks are monetary transations, seat bookings et. Hene

the ACID properties have to be ensured. In ontrast, most users of �le systems

would not be willing to pay the prie (monetary, disk spae, time) of supporting

ACID properties.

17.4 What lass or lasses of storage an be used to ensure durability? Why?

Answer:

Only stable storage ensures true durability. Even nonvolatile storage is susep-

tible to data loss, albeit less so than volatile storage. Stable storage is only an

abstration. It is approximated by redundant use of nonvolatile storage in whih

data are not only repliated but distributed phyially to redue to near zero the

hane of a single event asuing data loss.

17.5 Sine every on�it-serializable shedule is view serializable, why do we em-

phasize on�it serializability rather than view serializability?

Answer:

Most of the onurreny ontrol protools (protools for ensuring that only

serializable shedules are generated) used in pratie are based on on�it

serializability�they atually permit only a subset of on�it serializable shed-

ules. The general form of view serializability is very expensive to test, and only

a very restrited form of it is used for onurreny ontrol.

17.6 Consider the preedene graph of Figure 17.16. Is the orresponding shedule

on�it serializable? Explain your answer.

Answer:

T
1

T
4

T
5

T
3

T
2

Figure 17.16 Preedene graph for Pratie Exerise 17.6.

Pratie Exerises 133

There is a serializable shedule orresponding to the preedene graph sine

the graph is ayli. A possible shedule is obtained by doing a topologial

sort, that is, T

1

, T

2

, T

3

, T

4

, T

5

.

17.7 What is a asadeless shedule? Why is asadelessness of shedules desir-

able? Are there any irumstanes under whih it would be desirable to allow

nonasadeless shedules? Explain your answer.

Answer:

A asadeless shedule is one where, for eah pair of transations T

i

and T

j

suh that T

j

reads data items previously written by T

i

, the ommit operation of

T

i

appears before the read operation of T

j

. Casadeless shedules are desirable

beause the failure of a transation does not lead to the aborting of any other

transation. Of ourse this omes at the ost of less onurreny. If failures

our rarely, so that we an pay the prie of asading aborts for the inreased

onurreny, nonasadeless shedules might be desirable.

17.8 The lost update anomaly is said to our if a transation T

j

reads a data item,

then another transation T

k

writes the data item (possibly based on a previous

read), after whih T

j

writes the data item. The update performed by T

k

has

been lost, sine the update done by T

j

ignored the value written by T

k

.

a. Give an example of a shedule showing the lost update anomaly.

b. Give an example shedule to show that the lost update anomaly is possi-

ble with the read ommitted isolation level.

. Explain why the lost update anomaly is not possible with the repeatable

read isolation level.

Answer:

a. A shedule showing the lost update anomaly:

T1 T2

read(A)

write(A)

read(A)

write(A)

In the above shedule, the value written by the transation T

2

is lost

beause of the write of the transation T

1

.

b. Lost update anomaly in read-ommitted isolation level:

134 Chapter 17 Transations

T1 T2

lock-S(A)

read(A)

unlock(A)

lock-X(A)

write(A)

unlock(A)

commit

lock-X(A)

read(A)

write(A)

unlock(A)

commit

The loking in the above shedule ensures the read-ommitted isolation

level. The value written by transation T

2

is lost due to T

1

's write.

. Lost update anomaly is not possible in repeatable read isolation level.

In repeatable read isolation level, a transation T

1

reading a data item

X holds a shared lok on X till the end. This makes it impossible for a

newer transation T

2

to write the value of X (whih requires X-lok) until

T

1

�nishes. This fores the serialization order T

1

, T

2

, and thus the value

written by T

2

is not lost.

17.9 Consider a database for a bank where the database system uses snapshot iso-

lation. Desribe a partiular senario in whih a nonserializable exeution o-

urs that would present a problem for the bank.

Answer:

Suppose that the bank enfores the integrity onstraint that the sum of the

balanes in the heking and the savings aount of a ustomer must not be

negative. Suppose the heking and savings balanes for a ustomer are $100

and $200 respetively.

Suppose that transation T

1

withdraws $200 from the heking aount

after verifying the integrity onstraint by reading both the balanes. Suppose

that onurrent transation T

2

withdraws $200 from the heking aount af-

ter verifying the integrity onstraint by reading both the balanes.

Sine eah of the transations heks the integrity onstraints on its own

snapshot, if they run onurrently, eah will believe that the sum of the bal-

anes after the withdrawal is $100, and therefore its withdrawal does not vio-

late the integrity onstraint. Sine the two transations update di�erent data

items, they do not have any update on�it, and under snapshot isolation both

Pratie Exerises 135

of them an ommit. This is a nonserializable exeution whih results into a

serious problem.

17.10 Consider a database for an airline where the database system uses snapshot

isolation. Desribe a partiular senario in whih a nonserializable exeution

ours, but the airline may be willing to aept it in order to gain better overall

performane.

Answer:

Consider a web-based airline reservation system. There ould be many on-

urrent requests to see the list of available �ights and available seats in eah

�ight and to book tikets. Suppose there are two users A and B onurrently

aessing this web appliation, and only one seat is left on a �ight.

Suppose that both user A and user B exeute transations to book a seat on

the �ight and suppose that eah transation heks the total number of seats

booked on the �ight, and inserts a new booking reord if there are enough seats

left. Let T

3

and T

4

be their respetive booking transations, whih run onur-

rently. Now T

3

and T

4

will see from their snapshots that one tiket is available

and will insert new booking reords. Sine the two transations do not update

any ommon data item (tuple), snapshot isolation allows both transations to

ommit. This results in an extra booking, beyond the number of seats available

on the �ight.

However, this situation is usually not very serious sine anellations of-

ten resolve the on�it; even if the on�it is present at the time the �ight

is to leave, the airline an arrange a di�erent �ight for one of the passengers

on the �ight, giving inentives to aept the hange. Using snapshot isolation

improves the overall performane in this ase sine the booking transations

read the data from their snapshots only and do not blok other onurrent

transations.

17.11 The de�nition of a shedule assumes that operations an be totally ordered

by time. Consider a database system that runs on a system with multiple pro-

essors, where it is not always possible to establish an exat ordering between

operations that exeuted on di�erent proessors. However, operations on a

data item an be totally ordered.

Does this situation ause any problem for the de�nition of on�it serializ-

ability? Explain your answer.

Answer:

The given situation will not ause any problem for the de�nition of on�it

serializability sine the ordering of operations on eah data item is neessary

for on�it serializability, whereas the ordering of operations on di�erent data

items is not important.

136 Chapter 17 Transations

T1 T2

read(A)

write(B)

read(B)

For the above shedule to be on�it serializable, the only ordering require-

ment is read(B) -> write(B). read(A) and read(B) an be in any order.

Therefore, as long as the operations on a data item an be totally ordered,

the de�nition of on�it serializability should hold on the givenmultiproessor

system.

CHAP T E R

18

Conurreny Control

Pratie Exerises

18.1 Show that the two-phase loking protool ensures on�it serializability and

that transations an be serialized aording to their lok points.

Answer:

Suppose two-phase loking does not ensure serializability. Then there exists a

set of transations T

0

, T

1

:::T

n*1

whih obey 2PL andwhih produe a nonseri-

alizable shedule. A nonserializable shedule implies a yle in the preedene

graph, and we shall show that 2PL annot produe suh yles. Without loss

of generality, assume the following yle exists in the preedene graph: T

0

�

T

1

� T

2

� ... � T

n*1

� T

0

. Let �

i

be the time at whih T

i

obtains its last

lok (i.e. T

i

's lok point). Then for all transations suh that T

i

� T

j

, �

i

< �

j

.

Then for the yle we have

�

0

< �

1

< �

2

< ::: < �

n*1

< �

0

Sine �

0

< �

0

is a ontradition, no suh yle an exist. Hene 2PL annot

produe nonserializable shedules. Beause of the property that for all trans-

ations suh that T

i

� T

j

, �

i

< �

j

, the lok point ordering of the transations

is also a topologial sort ordering of the preedene graph. Thus transations

an be serialized aording to their lok points.

18.2 Consider the following two transations:

137

138 Chapter 18 Conurreny Control

T

34

: read(A);

read(B);

if A = 0 then B := B + 1;

write(B).

T

35

: read(B);

read(A);

if B = 0 then A := A + 1;

write(A).

Add lok and unlok instrutions to transations T

31

and T

32

so that they ob-

serve the two-phase loking protool. Can the exeution of these transations

result in a deadlok?

Answer:

a. Lok and unlok instrutions:

T

34

: lok-S(A)

read(A)

lok-X(B)

read(B)

if A = 0

then B := B + 1

write(B)

unlok(A)

unlok(B)

T

35

: lok-S(B)

read(B)

lok-X(A)

read(A)

if B = 0

then A := A + 1

write(A)

unlok(B)

unlok(A)

b. Exeution of these transations an result in deadlok. For example, on-

sider the following partial shedule:

Pratie Exerises 139

T31 T32

lock-S (A)

lock-S (B)

read(B)

read(A)

lock-X (B)

lock-X (A)

The transations are now deadloked.

18.3 What bene�t does rigorous two-phase loking provide? How does it ompare

with other forms of two-phase loking?

Answer:

Rigorous two-phase loking has the advantages of strit 2PL. In addition it has

the property that for two on�iting transations, their ommit order is their

serializability order. In some systems users might expet this behavior.

18.4 Consider a database organized in the form of a rooted tree. Suppose that we

insert a dummy vertex between eah pair of verties. Show that, if we follow

the tree protool on the new tree, we get better onurreny than if we follow

the tree protool on the original tree.

Answer:

Consider two nodes A and B, where A is a parent of B. Let dummy vertex D

be added between A and B. Consider a ase where transation T

2

has a lok

on B, and T

1

, whih has a lok on A wishes to lok B, and T

3

wishes to lok

A. With the original tree, T

1

annot release the lok on A until it gets the lok

on B. With the modi�ed tree, T

1

an get a lok on D and release the lok on

A, whih allows T

3

to proeed while T

1

waits for T

2

. Thus, the protool allows

loks on verties to be released earlier to other transations, instead of holding

them when waiting for a lok on a hild.

A generalization of the idea based on edge loks is desribed in Bukley

and Silbershatz, �Conurreny Control in Graph Protools by Using Edge

Loks,� Pro. ACM SIGACT-SIGMOD Symposium on the Priniples of Database

Systems, 1984 .

18.5 Show by example that there are shedules possible under the tree protool that

are not possible under the two-phase loking protool, and vie versa.

Answer:

Consider the tree-strutured database graph given below.

140 Chapter 18 Conurreny Control

o

o

o

A

B

C

Shedule possible under tree protool but not under 2PL:

T1 T2

lock (A)

lock (B)

unlock (A)

lock (A)

lock (C)

unlock (B)

lock (B)

unlock (A)

unlock (B)

unlock (C)

Shedule possible under 2PL but not under tree protool:

T1 T2

lock (A)

lock (B)

lock (C)

unlock (B)

unlock (A)

unlock (C)

18.6 Loking is not done expliitly in persistent programming languages. Rather,

objets (or the orresponding pages) must be loked when the objets are a-

essed.Most modern operating systems allow the user to set aess protetions

(no aess, read, write) on pages, and memory aess that violate the aess

protetions result in a protetion violation (see the Unixmprotet ommand,

for example). Desribe how the aess-protetion mehanism an be used for

page-level loking in a persistent programming language.

Answer:

The aess protetion mehanism an be used to implement page- level lok-

ing. Consider reads �rst. A proess is allowed to read a page only after it read-

loks the page. This is implemented by usingmprotet to initially turn o� read

Pratie Exerises 141

permissions to all pages, for the proess. When the proess tries to aess an

address in a page, a protetion violation ours. The handler assoiated with

protetion violation then requests a read lok on the page, and after the lok

is aquired, it uses mprotet to allow read aess to the page by the proess,

and �nally allows the proess to ontinue. Write aess is handled similarly.

18.7 Consider a database system that inludes an atomi inrement operation, in

addition to the read and write operations. Let V be the value of data item X.

The operation

inrement(X) by C

sets the value of X to V + C in an atomi step. The value of X is not available

to the transation unless the latter exeutes a read(X).

Assume that inrement operations lok the item in inrement mode using the

ompatibility matrix in Figure 18.25.

a. Show that, if all transations lok the data that they aess in the orre-

sponding mode, then two-phase loking ensures serializability.

b. Show that the inlusion of inrement mode loks allows for inreased

onurreny.

Answer:

a. Serializability an be shown by observing that if two transations have an

I mode lok on the same item, the inrement operations an be swapped,

just like read operations. However, any pair of on�iting operations

must be serialized in the order of the lok points of the orresponding

transations, as shown in Exerise 15.1.

b. The inrement lok mode being ompatible with itself allows multiple

inrementing transations to take the lok simultaneously, thereby im-

proving the onurreny of the protool. In the absene of this mode, an

exlusive mode will have to be taken on a data item by eah transation

that wants to inrement the value of this data item. An exlusive lok be-

ing inompatible with itself adds to the lok waiting time and obstruts

the overall progress of the onurrent shedule.

In general, inreasing the true entries in the ompatibility matrix in-

reases the onurreny and improves the throughput.

The proof is in Korth, �Loking Primitives in a Database System,� Journal of

the ACM Volume 30, (1983).

18.8 In timestamp ordering,W-timestamp(Q) denotes the largest timestamp of any

transation that exeuted write(Q) suessfully. Suppose that, instead, we de-

�ned it to be the timestamp of the most reent transation to exeutewrite(Q)

142 Chapter 18 Conurreny Control

suessfully. Would this hange in wording make any di�erene? Explain your

answer.

Answer:

It would make no di�erene. The write protool is suh that the most reent

transation to write an item is also the one with the largest timestamp to have

done so.

18.9 Use of multiple-granularity loking may require more or fewer loks than an

equivalent system with a single lok granularity. Provide examples of both sit-

uations, and ompare the relative amount of onurreny allowed.

Answer:

If a transation needs to aess a large set of items, multiple granularity lok-

ing requires fewer loks, whereas if only one item needs to be aessed, the

single lok granularity system allows this with just one lok. Beause all the

desired data items are loked and unloked together in the multiple granularity

sheme, the loking overhead is low, but onurreny is also redued.

18.10 For eah of the following protools, desribe aspets of pratial appliations

that would lead you to suggest using the protool, and aspets that would sug-

gest not using the protool:

�

Two-phase loking

�

Two-phase loking with multiple-granularity loking.

�

The tree protool

�

Timestamp ordering

�

Validation

�

Multiversion timestamp ordering

�

Multiversion two-phase loking

Answer:

�

Two-phase loking: Use for simple appliations where a single granularity

is aeptable. If there are large read-only transations, multiversion proto-

ols would do better. Also, if deadloks must be avoided at all osts, the

tree protool would be preferable.

�

Two-phase loking with multiple granularity loking: Use for an applia-

tion mix where some appliations aess individual reords and others

aess whole relations or substantial parts thereof. The drawbaks of 2PL

mentioned above also apply to this one.

�

The tree protool: Use if all appliations tend to aess data items in an

order onsistent with a partiular partial order. This protool is free of

Pratie Exerises 143

deadloks, but transations will often have to lok unwanted nodes in or-

der to aess the desired nodes.

�

Timestamp ordering: Use if the appliation demands a onurrent exe-

ution that is equivalent to a partiular serial ordering (say, the order of

arrival), rather than any serial ordering. But on�its are handled by roll

bak of transations rather than waiting, and shedules are not reover-

able. To make them reoverable, additional overheads and inreased re-

sponse time have to be tolerated. Not suitable if there are long read-only

transations, sine they will starve. Deadloks are absent.

�

Validation: If the probability that two onurrently exeuting transations

on�it is low, this protool an be used advantageously to get better on-

urreny and good response times with low overheads. Not suitable under

high ontention, when a lot of wasted work will be done.

�

Multiversion timestamp ordering: Use if timestamp ordering is appropri-

ate but it is desirable for read requests to never wait. Shares the other

disadvantages of the timestamp ordering protool.

�

Multiversion two-phase loking: This protool allows read-only transa-

tions to always ommit without ever waiting. Update transations follow

2PL, thus allowing reoverable shedules with on�its solved by waiting

rather than roll bak. But the problem of deadloks omes bak, though

read-only transations annot get involved in them. Keeping multiple ver-

sions adds spae and time overheads though, therefore plain 2PL may be

preferable in low-on�it situations.

18.11 Explain why the following tehnique for transation exeution may provide

better performane than just using strit two-phase loking: First exeute the

transation without aquiring any loks and without performing any writes

to the database as in the validation-based tehniques, but unlike the validation

tehniques do not perform either validation or writes on the database. Instead,

rerun the transation using strit two-phase loking. (Hint: Consider waits for

disk I/O.)

Answer:

A transation waits on (a) disk I/O and (b) lok aquisition. Transations gen-

erally wait on disk reads and not on disk writes as disk writes are handled

by the bu�ering mehanism in asynhronous fashion and transations update

only the in-memory opy of the disk bloks.

The tehnique proposed essentially separates the waiting times into two

phases. The �rst phase�where transation is exeuted without aquiring any

loks and without performing any writes to the database�aounts for almost

all the waiting time on disk I/O as it reads all the data bloks it needs from

144 Chapter 18 Conurreny Control

disk if they are not already in memory. The seond phase�the transation re-

exeution with strit two-phase loking�aounts for all the waiting time on

aquiring loks. The seond phase may, though rarely, involve a small waiting

time on disk I/O if a disk blok that the transation needs is �ushed to memory

(by bu�er manager) before the seond phase starts.

The tehnique may inrease onurreny as transations spend almost no

time on disk I/O with loks held and hene loks are held for a shorter time.

In the �rst phase, the transation reads all the data items required�and not

already in memory�from disk. The loks are aquired in the seond phase

and the transation does almost no disk I/O in this phase. Thus the transation

avoids spending time in disk I/O with loks held.

The tehnique may even inrease disk throughput as the disk I/O is not

stalled for want of a lok. Consider the following senario with strit two-phase

loking protool: A transation is waiting for a lok, the disk is idle, and there

are some items to be read from disk. In suh a situation, disk bandwidth is

wasted. But in the proposed tehnique, the transation will read all the required

items from the disk without aquiring any lok, and the disk bandwidth may

be properly utilized.

Note that the proposed tehnique ismost useful if the omputation involved

in the transations is less and most of the time is spent in disk I/O and waiting

on loks, as is usually the ase in disk-resident databases. If the transation is

omputation intensive, there may be wasted work. An optimization is to save

the updates of transations in a temporary bu�er, and instead of reexeuting

the transation, to ompare the data values of items when they are loked with

the values used earlier. If the two values are the same for all items, then the

bu�ered updates of the transation are exeuted, instead of reexeuting the

entire transation.

18.12 Consider the timestamp-ordering protool, and two transations, one that

writes two data items p and q, and another that reads the same two data items.

Give a shedule whereby the timestamp test for a write operation fails and

auses the �rst transation to be restarted, in turn ausing a asading abort

of the other transation. Show how this ould result in starvation of both trans-

ations. (Suh a situation, where two or more proesses arry out ations, but

are unable to omplete their task beause of interation with the other pro-

esses, is alled a livelok.)

Answer:

Consider two transations T

1

and T

2

shown below.

Pratie Exerises 145

T1 T2

write (p)

read (p)

read (q)

write (q)

Let TS(T

1

) < TS(T

2

), and let the timestamp test at eah operation exept

write(q) be suessful. When transation T

1

does the timestamp test for

write(q), it �nds that TS(T

1

) < R-timestamp(q), sine TS(T

1

) < TS(T

2

) and

R-timestamp(q) = TS(T

2

). Hene thewrite operation fails, and transation T

1

rolls bak. The asading results in transation T

2

also being rolled bak as it

uses the value for item p that is written by transation T

1

.

If this senario is exatly repeated every time the transations are restarted,

this ould result in starvation of both transations.

18.13 Devise a timestamp-based protool that avoids the phantom phenomenon.

Answer:

In the text, we onsidered two approahes to dealing with the phantom phe-

nomenon by means of loking. The oarser granularity approah obviously

works for timestamps as well. The B

+

-tree index- based approah an be

adapted to timestamping by treating index bukets as data items with times-

tamps assoiated with them, and requiring that all read aesses use an index.

We now show that this simple method works. Suppose a transation T

i

wants

to aess all tuples with a partiular range of searh key values, using a B

+

-

tree index on that searh key. T

i

will need to read all the bukets in that index

whih have key values in that range. It an be seen that any delete or insert of

a tuple with a key value in the same range will need to write one of the index

bukets read by T

i

. Thus the logial on�it is onverted to a on�it on an

index buket, and the phantom phenomenon is avoided.

18.14 Suppose that we use the tree protool of Setion 18.1.5 to manage onurrent

aess to a B

+

-tree. Sine a split may our on an insert that a�ets the root, it

appears that an insert operation annot release any loks until it has ompleted

the entire operation. Under what irumstanes is it possible to release a lok

earlier?

Answer:

Note: The tree protool of Setion Setion 18.1.5 whih is referred to in this

question is di�erent from the multigranularity protool of Setion 18.3 and

the B

+

-tree onurreny protool of Setion 18.10.2.

One strategy for early lok releasing is given here. Going down the tree from

the root, if the urrently visited node's hild is not full, release loks held on

all nodes exept the urrent node, then request an X-lok on the hild node.

146 Chapter 18 Conurreny Control

After getting it, release the lok on the urrent node, and then desend to the

hild. On the other hand, if the hild is full, retain all loks held, request an

X-lok on the hild, and desend to it after getting the lok. On reahing the

leaf node, start the insertion proedure. This strategy results in holding loks

only on the full index tree nodes from the leaf upward, until and inluding the

�rst non-full node.

An optimization to the above strategy is possible. Even if the urrent node's

hild is full, we an still release the loks on all nodes but the urrent one. But

after getting the X-lok on the hild node, we split it right away. Releasing the

lok on the urrent node and retaining just the lok on the appropriate split

hild, we desend into it, making it the urrent node. With this optimization,

at any time at most two loks are held, of a parent and a hild node.

18.15 The snapshot isolation protool uses a validation step whih, before perform-

ing a write of a data item by transation T , heks if a transation onurrent

with T has already written the data item.

a. A straightforward implementation uses a start timestamp and a ommit

timestamp for eah transation, in addition to an update set, that, is the

set of data items updated by the transation. Explain how to perform

validation for the �rst-ommitter-wins sheme by using the transation

timestamps along with the update sets. You may assume that validation

and other ommit proessing steps are exeuted serially, that is, for one

transation at a time,

b. Explain how the validation step an be implemented as part of ommit

proessing for the �rst-ommitter-wins sheme, using a modi�ation of

the above sheme, where instead of using update sets, eah data item

has a write timestamp assoiated with it. Again, you may assume that

validation and other ommit proessing steps are exeuted serially.

. The �rst-updater-wins sheme an be implemented using timestamps as

desribed above, exept that validation is done immediately after aquir-

ing an exlusive lok, instead of being done at ommit time.

i. Explain how to assign write timestamps to data items to implement

the �rst-updater-wins sheme.

ii. Show that as a result of loking, if the validation is repeated at om-

mit time the result would not hange.

iii. Explain why there is no need to perform validation and other ommit

proessing steps serially in this ase.

Answer:

a. Validation test for �rst-ommitter-wins sheme: Let StartTS(T

i

),

CommitTS(T

i

) and be the timestamps assoiated with a transation T

i

Pratie Exerises 147

and the update set for T

i

be update set(T

i

). Then for all transations T

k

with CommitTS(T

k

) < CommitTS(T

i

), one of the following two ondi-

tions must hold:

�

If CommitTS(T

k

) < StartTS(T

k

), T

k

ompletes its exeution before

T

i

started, the serializability is maintained.

�

StartTS(T

i

) < CommitTS(T

k

) < CommitTS(T

i

), and update set(T

i

)

and update set(T

k

) do not interset

b. Validation test for �rst-ommitter-wins sheme with W-timestamps for

data items: If a transation T

i

writes a data item Q, then the W-

timestamp(Q) is set to CommitTS(T

i

). For the validation test of a trans-

ation T

i

to pass, the following ondition must hold:

�

For eah data item Q written by T

i

, W-timestamp(Q) < StartTS(T

i

).

. First-updater-wins sheme:

i. For a data item Q written by T

i

, the W-timestamp is assigned the

timestamp when the write ourred in T

i

ii. Sine the validation is done after aquiring the exlusive loks and

the exlusive loks are held till the end of the transation, the data

item annot be modi�ed in between the lok aquisition and ommit

time. So, the result of the validation test for a transation would be

the same at the ommit time as that at the update time.

iii. Beause of the exlusive loking, at most one transation an aquire

the lok on a data item at a time and do the validation testing. Thus,

two or more transations annot do validation testing for the same

data item simultaneously.

18.16 Consider funtions insert lathfree() and delete lathfree(), shown in Figure

18.23.

a. Explain how the ABA problem an our if a deleted node is reinserted.

b. Suppose that adjaent to head we store a ounter nt. Also suppose that

DCAS((head,nt), (oldhead, oldnt), (newhead, newnt)) atomially per-

forms a ompare-and-swap on the 128 bit value (head,nt). Modify the in-

sert lathfree() and delete lathfree() to use the DCAS operation to avoid

the ABA problem.

. Sine most proessors use only 48 bits of a 64 bit address to atually

address memory, explain how the other 16 bits an be used to implement

a ounter, in ase the DCAS operation is not supported.

Answer:

a. Let the head of the list be pointer n1, and the next three elements be n2

and n3. Suppose proess P1 whih is performing a delete, reads pointer

148 Chapter 18 Conurreny Control

n1 as head and n2 as newhead, but before it exeutes CAS(head, n1, n2),

proess P2 deletes n1, then deletes n2 and then inserts n1 bak at the

head.

The CAS would replae n1 by a pointer to n2, sine the head is still

n1. However, node n2 has meanwhile been deleted and is garbage. Thus,

the list is now inonsistent.

b. The following ode

atomi read(head, nt) {

repeat

oldhead = head

oldnt = nt

result = DCAS((head, nt), (oldhead, oldnt), (oldhead, oldnt))

until (result == suess)

return (oldhead, oldnt)

}

insert lathfree(head, value) {

node = new node

node*>value = value

repeat

(oldhead, oldnt) = atomi read(head, nt)

node*>next = oldhead

newnt = oldnt+1

result = DCAS(head, (oldhead, oldnt), (node, newnt))

until (result == suess)

}

delete lathfree(head) {

/* This funtion is not quite safe; see explanation in text. */

repeat

(oldhead, oldnt) = atomi read(head, nt)

newhead = oldhead*>next

newnt = oldnt+1

result = DCAS(head, (oldhead, oldnt), (newhead, newnt))

until (result == suess)

}

The atomi read funtion ensures that the 128 bit address, ounter pair is

read atomially, by using the DCAS instrution to ensure that the values

are still same (the DCAS instrution stores the same values bak if it

sueeds, so there is no hange in the value). If the DCAS fails, we may

Pratie Exerises 149

have read an old pointer and a new value, or vie versa, requiring the

values to be read again.

The ABA problem would be avoided by the modi�ed ode for in-

sert lathfree() and delete lathfree(), sine although the reinsert of the

n1 by P2 would result in the head having the same pointer n1 as earlier,

ounter nt would be di�erent from oldnt, resulting in the CAS opera-

tion of P1 failing.

. Most proessors use only the last 48 bits of a 64 bit address to aess

memory (whih an support 256 Terabytes of memory). The �rst 16 bits

of a 64 bit value an then be used as a ounter, and the last 48 bits as

the address, with the ounter and the address extrated using bit-and

operations before being used, and using bit-and and bit-or operations to

reonstrut the 64 bit value from a pointer and a ounter. If a hardware

implementation does not support DCAS, this ould be used as an alter-

native to a DCAS, although it still runs a the small risk of the ounter

wrapping around if there are exatly 64K other operations on the list

between the read of the head and the CAS operation.

CHAP T E R

19

Reovery System

Pratie Exerises

19.1 Explain why log reords for transations on the undo-list must be proessed in

reverse order, whereas redo is performed in a forward diretion.

Answer:

Within a single transation in undo-list, suppose a data item is updated more

than one, say from 1 to 2, and then from 2 to 3. If the undo log reords are

proessed in forward order, the �nal value of the data item will be inorretly

set to 2, whereas by proessing them in reverse order, the value is set to 1. The

same logi also holds for data items updated by more than one transation on

undo-list.

Using the same example as above, but assuming the transation ommitted,

it is easy to see that if redo proessing proesses the reords in forward order,

the �nal value is set orretly to 3, but if done in reverse order, the �nal value

is set inorretly to 2.

19.2 Explain the purpose of the hekpoint mehanism. How often should hek-

points be performed? How does the frequeny of hekpoints a�et:

�

System performane when no failure ours?

�

The time it takes to reover from a system rash?

�

The time it takes to reover from a media (disk) failure?

Answer:

Chekpointing is done with log-based reovery shemes to redue the time

required for reovery after a rash. If there is no hekpointing, then the entire

logmust be searhed after a rash, and all transations must be undone/redone

from the log. If hekpointing is performed, then most of the log reords prior

to the hekpoint an be ignored at the time of reovery.

Another reason to perform hekpoints is to lear log reords from stable

storage as it gets full.

151

152 Chapter 19 Reovery System

Sine hekpoints ause some loss in performane while they are being

taken, their frequeny should be redued if fast reovery is not ritial. If we

need fast reovery, hekpointing frequeny should be inreased. If the amount

of stable storage available is less, frequent hekpointing is unavoidable.

Chekpoints have no e�et on reovery from a disk rash; arhival dumps

are the equivalent of hekpoints for reovery from disk rashes.

19.3 Some database systems allow the administrator to hoose between two forms

of logging: normal logging, used to reover from system rashes, and arhival

logging, used to reover from media (disk) failure. When an a log reord be

deleted, in eah of these ases, using the reovery algorithm of Setion 19.4?

Answer:

Normal logging: The following log reords annot be deleted, sine they may

be required for reovery:

a. Any log reord orresponding to a transation whih was ative during

the most reent hekpoint (i.e., whih is part of the <hekpoint L>

entry)

b. Any log reord orresponding to transations started after the reent

hekpoint

All other log reords an be deleted. After eah hekpoint, more reords be-

ome andidates for deletion as per the above rule.

Deleting a log reord while retaining an earlier log reord would result in

gaps in the log and would require more omplex log proessing. Therefore in

pratie, systems �nd a point in the log where all earlier log reords an be

deleted, and they delete that part of the log. Often, the log is broken up into

multiple �les, and a �le is deleted when all log reords in the �le an be deleted.

Arhival logging: Arhival logging retains log reords that may be needed for

reovery from media failure (suh as disk rashes). Arhival dumps are the

equivalent of hekpoints for reovery from media failure. The preeding

rules for deletion an be used for arhival logs, but based on the last arhival

dump instead of the last hekpoint. The frequeny of arhival dumps would

be less than hekpointing, sine a lot of data have to be written. Thus more

log reords would need to be retained with arhival logging.

19.4 Desribe how to modify the reovery algorithm of Setion 19.4 to implement

savepoints and to perform rollbak to a savepoint. (Savepoints are desribed

in Setion 19.9.3.)

Answer:

A savepoint an be performed as follows:

Pratie Exerises 153

a. Output onto stable storage all log reords for that transation whih are

urrently in main memory.

b. Output onto stable storage a log reord of the form <savepoint T

i

>, where

T

I

is the transation identi�er.

To roll bak a urrently exeuting transation partially to a partiular save-

point, exeute undo proessing for that transation until the savepoint is

reahed. Redo log reords are generated as usual during the undo phase above.

It is possible to perform repeated undo to a single savepoint by writing a fresh

savepoint reord after rolling bak to that savepoint. The above algorithm an

be extended to support multiple savepoints for a single transation by giving

eah savepoint a name. However, one undo has rolled bak past a savepoint,

it is no longer possible to undo up to that savepoint.

19.5 Suppose the deferred modi�ation tehnique is used in a database.

a. Is the old value part of an update log reord required any more? Why or

why not?

b. If old values are not stored in update log reords, transation undo is

learly not feasible. How would the redo phase of reovery have to be

modi�ed as a result?

. Deferred modi�ation an be implemented by keeping updated data

items in loal memory of transations and reading data items that have

not been updated diretly from the database bu�er. Suggest how to e	-

iently implement a data item read, ensuring that a transation sees its

own updates.

d. What problem would arise with the above tehnique if transations per-

form a large number of updates?

Answer:

a. The old-value part of an update log reord is not required. If the trans-

ation has ommitted, then the old value is no longer neessary as there

would be no need to undo the transation. And if the transation was

ative when the system rashed, the old values are still safe in the stable

storage beause they haven't been modi�ed yet.

b. During the redo phase, the undo list need not be maintained any more,

sine the stable storage does not re�et updates due to any unommitted

transation.

. A data item read will �rst issue a read request on the loal memory of

the transation. If it is found there, it is returned. Otherwise, the item is

154 Chapter 19 Reovery System

loaded from the database bu�er into the loal memory of the transation

and then returned.

d. If a single transation performs a large number of updates, there is a

possibility of the transation running out of memory to store the loal

opies of the data items.

19.6 The shadow-paging sheme requires the page table to be opied. Suppose the

page table is represented as a B

+

-tree.

a. Suggest how to share as many nodes as possible between the new opy

and the shadow opy of the B

+

-tree, assuming that updates are made

only to leaf entries, with no insertions or deletions.

b. Even with the above optimization, logging is muh heaper than a

shadow opy sheme, for transations that perform small updates. Ex-

plain why.

Answer:

a. To begin with, we start with the opy of just the root node pointing to

the shadow opy. As modi�ations are made, the leaf entry where the

modi�ation is made and all the nodes in the path from that leaf node

to the root are opied and updated. All other nodes are shared.

b. For transations that perform small updates, the shadow-paging sheme

would opy multiple pages for a single update, even with the above op-

timization. Logging, on the other hand, just requires small reords to

be reated for every update; the log reords are physially together in

one page or a few pages, and thus only a few log page I/O operations

are required to ommit a transation. Furthermore, the log pages writ-

ten out aross subsequent transation ommits are likely to be adjaent

physially on disk, minimizing disk arm movement.

19.7 Suppose we (inorretly) modify the reovery algorithm of Setion 19.4 to

note log ations taken during transation rollbak. When reovering from a

system rash, transations that were rolled bak earlier would then be inluded

in undo-list and rolled bak again. Give an example to show how ations taken

during the undo phase of reovery ould result in an inorret database state.

(Hint: Consider a data item updated by an aborted transation and then up-

dated by a transation that ommits.)

Answer:

Consider the following log reords generated with the (inorretly) modi�ed

reovery algorithm:

1. <T

1

start>

Pratie Exerises 155

2. <T

1

, A, 1000, 900>

3. <T

2

start>

4. <T

2

, A, 1000, 2000>

5. <T

2

ommit>

A rollbak atually happened between steps 2 and 3, but there are no log

reords re�eting the same. Now, this log data is proessed by the reovery

algorithm. At the end of the redo phase, T

1

would get added to the undo-list,

and the value of A would be 2000. During the undo phase, sine T

1

is present

in the undo-list, the reovery algorithm does an undo of statement 2, and A

takes the value 1000. The update made by T

2

, though ommited, is lost.

The orret sequene of logs is as follows:

1. <T

1

start>

2. <T

1

, A, 1000, 900>

3. <T

1

, A, 1000>

4. <T

1

abort>

5. <T

2

start>

6. <T

2

, A, 1000, 2000>

7. <T

2

ommit>

This would make sure that T

1

would not get added to the undo-list after the

redo phase.

19.8 Disk spae alloated to a �le as a result of a transation should not be released

even if the transation is rolled bak. Explain why, and explain how ARIES

ensures that suh ations are not rolled bak.

Answer:

If a transation alloates a page to a relation, even if the transation is rolled

bak, the page alloation should not be undone beause other transations

may have stored reords in the same page. Suh operations that should not

be undone are alled nested top ations in ARIES. They an be modeled as

operations whose undo ation does nothing. In ARIES suh operations are

implemented by reating a dummy CLR whose UndoNextLSN is set suh that

the transation rollbak skips the log reords generated by the operation.

19.9 Suppose a transation deletes a reord, and the free spae generated thus is

alloated to a reord inserted by another transation, even before the �rst trans-

ation ommits.

a. What problem an our if the �rst transation needs to be rolled bak?

b. Would this problem be an issue if page-level loking is used instead of

tuple-level loking?

156 Chapter 19 Reovery System

. Suggest how to solve this problem while supporting tuple-level loking,

by logging post-ommit ations in speial log reords, and exeuting

them after ommit. Make sure your sheme ensures that suh ations

are performed exatly one.

Answer:

a. If the �rst transation needs to be rolled bak, the tuple deleted by that

transation will have to be restored. If undo is performed in the usual

physial manner using the old values of data items, the spae alloated to

the new tuple would get overwritten by the transation undo, damaging

the new tuples, and assoiated data strutures on the disk blok. This

means that a logial undo operation has to be performed, i.e., an insert

has to be performed to undo the delete, whih ompliates reovery.

On a related note, if the seond transation inserts with the same key,

integrity onstraints might be violated on rollbak.

b. If page-level loking is used, the free spae generated by the �rst trans-

ation is not alloated to another transation till the �rst one ommits.

So this problem will not be an issue if page-level loking is used.

. The problem an be solved by deferring freeing of spae until after the

transation ommits. To ensure that spae will be freed even if there is

a system rash immediately after ommit, the ommit log reord an be

modi�ed to ontain information about freeing of spae (and other sim-

ilar operations) whih must be performed after ommit. The exeution

of these operations an be performed as a transation and log reords

generated, following by a post-ommit log reord whih indiates that

post-ommit proessing has been ompleted for the transation.

During reovery, if a ommit log reord is found with post-ommit

ations, but no post-ommit log reord is found, the e�ets of any partial

exeution of post-ommit operations are rolled bak during reovery,

and the post-ommit operations are reexeuted at the end of reovery.

If the post-ommit log reord is found, the post-ommit ations are not

reexeuted. Thus, the ations are guaranteed to be exeuted exatly one.

The problem of lashes on primary key values an be solved by hold-

ing key-level loks so that no other transation an use the key until the

�rst transation ompletes.

19.10 Explain the reasons why reovery of interative transations is more di	ult

to deal with than is reovery of bath transations. Is there a simple way to deal

with this di	ulty? (Hint: Consider an automati teller mahine transation

in whih ash is withdrawn.)

Answer:

Pratie Exerises 157

Interative transations are more di	ult to reover from than bath transa-

tions beause some ations may be irrevoable. For example, an output (write)

statement may have �red a missile or aused a bank mahine to give money to

a ustomer. The best way to deal with this is to try to do all output statements

at the end of the transation. That way if the transation aborts in the middle,

no harm will be have been done.

Output operations should ideally be done atomially; for example, ATM

mahines often ount out notes and deliver all the notes together instead of

delivering notes one at a time. If output operations annot be done atomially,

a physial log of output operations, suh as a disk log of events, or even a video

log of what happened in the physial world an bemaintained to allow perform

reovery to be performed manually later, for example, by rediting ash bak

to a ustomer's aount.

19.11 Sometimes a transation has to be undone after it has ommitted beause it

was erroneously exeuted�for example, beause of erroneous input by a bank

teller.

a. Give an example to show that using the normal transation undo meh-

anism to undo suh a transation ould lead to an inonsistent state.

b. One way to handle this situation is to bring the whole database to a state

prior to the ommit of the erroneous transation (alled point-in-time re-

overy). Transations that ommitted later have their e�ets rolled bak

with this sheme.

Suggest a modi�ation to the reovery algorithm of Setion 19.4 to

implement point-in-time reovery using database dumps.

. Later nonerroneous transations an be reexeuted logially, if the up-

dates are available in the form of SQL but annot be reexeuted using

their log reords. Why?

Answer:

a. Consider the a bank aount A with balane $100. Consider two trans-

ations T

1

and T

2

, eah depositing $10 in the aount. Thus the bal-

ane would be $120 after both these transations are exeuted. Let the

transations exeute in sequene: T

1

�rst and then T

2

. The log reords

orresponding to the updates of A by transations T

1

and T

2

would be

< T

1

,A, 100, 110 > and < T

2

,A, 110, 120 > respetively.

Say we wish to undo transation T

1

. The normal transation undo

mehanism will replae the value in question�A in this example�with

the old-value �eld in the log reord. Thus if we undo transation T

1

using

the normal transation undo mehanism, the resulting balane will be

158 Chapter 19 Reovery System

$100 and we will, in e�et, undo both transations, whereas we intend

to undo only transation T

1

.

b. Let the erroneous transation be T

e

.

�

Identify the latest arhival dump, say D, before the log reord < T

e

,

START>. Restore the database using the dump.

�

Redo all log reords starting from the dump D to the log reord

< T

e

, COMMIT>. Some transation�apart from transation T

e

�

would be ative at the ommit time of transation T

e

. Let S

1

be the

set of suh transations.

�

Roll bak T

e

and the transations in the set S

1

. This ompletes point-

in-time reovery.

In ase logial redo is possible, later transations an be rex-

euted logially, assuming log reords ontaining logial redo in-

formation were written for every transation. To perform logial

redo of later transations, san the log further starting from the log

reord < T

e

, COMMIT> to the end of the log. Note the transations

that were started after the ommit point of T

e

. Let the set of suh

transations be S

2

. Reexeute the transations in set S

1

and S

2

log-

ially.

. Consider again an example from the �rst item. Let us assume that both

transations are undone and the balane is reverted bak to the original

value $100.

Now we wish to redo transation T

2

. If we redo the log reord < T

2

,A,

110, 120 > orresponding to transation T

2

, the balane will beome

$120 and we will, in e�et, redo both transations, whereas we intend to

redo only transation T

2

.

19.12 The reovery tehniques that we desribed assume that bloks are written

atomially to disk. However, a blok may be partially written when power fails,

with some setors written, and others not yet written.

a. What problems an partial blok writes ause?

b. Partial blok writes an be deteted using tehniques similar to those

used to validate setor reads. Explain how.

. Explain how RAID 1 an be used to reover from a partially written

blok, restoring the blok to either its old value or to its new value.

Answer:

FILL IN

Pratie Exerises 159

19.13 The Orale database system uses undo log reords to provide a snapshot view

of the database under snapshot isolation. The snapshot view seen by transa-

tion T

i

re�ets updates of all transations that had ommitted when T

i

started

and the updates of T

i

; updates of all other transations are not visible to T

i

.

Desribe a sheme for bu�er handling whereby transations are given a

snapshot view of pages in the bu�er. Inlude details of how to use the log to

generate the snapshot view. You an assume that operations as well as their

undo ations a�et only one page.

Answer:

First, determine if a transation is urrently modifying the bu�er. If not, then

return the urrent ontents of the bu�er. Otherwise, examine the reords in

the undo log pertaining to this bu�er. Make a opy of the bu�er, then for

eah relevant operation in the undo log, apply the operation to the bu�er opy

starting with the most reent operation and working bakwards until the point

at whih the modifying transation began. Finally, return the bu�er opy as

the snapshot bu�er.

CHAP T E R

20

Database-System Arhitetures

Pratie Exerises

20.1 Is a multiuser system neessarily a parallel system? Why or why not?

Answer:

No. A single proessor with only one ore an run multiple proesses to man-

age mutiple users. Most modern systems are parallel, however.

20.2 Atomi instrutions suh as ompare-and-swap and test-and-set also exeute a

memory fene as part of the instrution on many arhitetures. Explain what

is the motivation for exeuting the memory fene, from the viewpoint of data

in shared memory that is proteted by a mutex implemented by the atomi

instrution. Also explain what a proess should do before releasing a mutex.

Answer:

FILL IN MORE

The memory fene ensures that the proess that gets the mutex will see all

updates that happened before the instrution, as long as proesses exeute

a fene before releasing the mutex. Thus, even if the data was updated on a

di�erent ore, the proess that aquires the mutex is guaranteed to see the

latest value of the data.

20.3 Instead of storing shared strutures in shared memory, an alternative arhi-

teture would be to store them in the loal memory of a speial proess and

aess the shared data by interproess ommuniation with the proess. What

would be the drawbak of suh an arhiteture?

Answer:

The drawbaks would be that two interproess messages would be required

to aquire loks, one for the request and one to on�rm grant. Interproess

ommuniation is muh more expensive than memory aess, so the ost of

loking would inrease. The proess storing the shared strutures ould also

beome a bottlenek.

161

162 Chapter 20 Database-System Arhitetures

The bene�t of this alternative is that the lok table is proteted better from

erroneous updates sine only one proess an aess it.

20.4 Explain the distintion between a lath and a lok as used for transational

onurreny ontrol.

Answer:

Lathes are short-duration loks that manage aess to internal system data

strutures. Loks taken by transations are taken on database data items and

are often held for a substantial fration of the duration of the transation.

Lath aquisition and release are not overed by the two-phase loking proto-

ol.

20.5 Suppose a transation is written in C with embedded SQL, and about 80 per-

ent of the time is spent in the SQL ode, with the remaining 20 perent spent

in C ode. How muh speedup an one hope to attain if parallelism is used

only for the SQL ode? Explain.

Answer:

Sine the part whih annot be parallelized takes 20% of the total running time,

the best speedup we an hope for is 5. In Amdahl's law:

1

(1*p)+(p_n)

, p = 4_5

and n is arbitrarily large. So, 1 * p = 1_5 and p_n aproahes zero.

20.6 Consider a pair of proesses in a shared memory system suh that proess

A updates a data struture, and then sets a �ag to indiate that the update is

ompleted. Proess B monitors the �ag, and starts proessing the data stru-

ture only after it �nds the �ag is set.

Explain the problems that ould arise in a memory arhiteture where

writes may be reordered, and explain how the sfene and lfene instrutions

an be used to ensure the problem does not our.

Answer:

The goal here is that the onsumer proess B should see the data struture state

after all updates have been ompleted. But out of order writes to main memory

an result in the onsumer proess seeing some but not all the updates to the

data struture, even after the �ag has been set.

To avoid this problem, the produer proess A should issue an sfene af-

ter the updates, but before setting the �ag. It an optionally issue an sfene

after setting the �ag, to push the update to memory with minimum delay. The

onsumer proess B should orrespondingly issue an lfene after the �ag has

been found to be set, before aessing the datastruture.

20.7 In a shared-memory arhiteture, why might the time to aess a memory lo-

ation vary depending on the memory loation being aessed?

Answer:

Pratie Exerises 163

In a NUMA arhiteture, a proessor an aess its own memory faster than it

an aess shared memory assoiated with another proessor due to the time

taken to transfer data between proessors.

20.8 Most operating systems for parallel mahines (i) alloate memory in a loal

memory area when a proess requests memory, and (ii) avoid moving a pro-

ess from one ore to another. Why are these optimizations important with a

NUMA arhiteture?

Answer:

In a NUMA arhiteture, a proessor an aess its own memory faster that it

an aess shared memory assoiated with another proessor due to the time

taken to transfer data between proessors. Thus, if the data of a proess resides

in loal memory, the proess exeution would be faster than if the memory is

non-loal.

Further, if a proess moves from one ore to another, it may lose the ben-

e�ts of loal alloation of memory, and be fored to arry out many memory

aesses from other ores. To avoid this problem,most operating systems avoid

moving a proess from one ore to another wherever possible.

20.9 Some database operations suh as joins an see a signi�ant di�erene in

speed when data (e.g., one of the relations involved in a join) �ts in mem-

ory as ompared to the situation where the data do not �t in memory. Show

how this fat an explain the phenomenon of superlinear speedup, where an

appliation sees a speedup greater than the amount of resoures alloated to

it.

Answer:

We illustrate this by an example. Suppose we double the amount of main mem-

ory and that as a result, one of the relations now �ts entirely in main memory.

We an now use a nested-loop join with the inner-loop relation entirely in main

memory and inur disk aesses for reading the input relations only one time.

With the original amount of main memory, the best join strategy may have had

to read a relation in from disk more than one.

20.10 What is the key distintion between homogeneous and federated distributed

database systems?

Answer:

The key diferene is the degree of ooperation among the systems and the

degree of entralized ontrol. Homogeneous systems share a global shema,

run the same database-system software and atively ooperate on query pro-

essing. Federated systems may have distint shemas and software, and may

ooperate in only a limited manner.

164 Chapter 20 Database-System Arhitetures

20.11 Why might a lient hoose to subsribe only to the basi infrastruture-as-a-

servie model rather than to the servies o�ered by other loud servie mod-

els?

Answer:

A lient may wish to ontrol its own appliations and thus may not wish to

subsribe to a software-as-a-servie model; or the lient might wish further to

be able to hoose and manage its own database system and thus not wish to

subsribe to a platform-as-a-servie model.

20.12 Why do loud-omputing servies support traditional database systems best by

using a virtual mahine, instead of running diretly on the servie provider's

atual mahine, assuming that data is on external storage?

Answer:

By using a virtual mahine, if a physial mahine fails, virtual mahines run-

ning on that physial mahine an be restarted quikly on one or more other

physial mahines, improving availability. (Assuming of ourse that data re-

mains aessible, either by storing multiple opies of data, or by storing data

in an highly available external storage system.)

CHAP T E R

21

Parallel and Distributed Storage

Pratie Exerises

21.1 In a range seletion on a range-partitioned attribute, it is possible that only

one disk may need to be aessed. Desribe the bene�ts and drawbaks of this

property.

Answer:

If there are few tuples in the queried range, then eah query an be proessed

quikly on a single disk. This allows parallel exeution of queries with redued

overhead of initiating queries on multiple disks.

On the other hand, if there are many tuples in the queried range, eah query

takes a long time to exeute as there is no parallelismwithin its exeution. Also,

some of the disks an beome hot spots, further inreasing response time.

Hybrid range partitioning, in whih small ranges (a few bloks eah) are

partitioned in a round-robin fashion, provides the bene�ts of range partitioning

without its drawbaks.

21.2 Reall that histograms are used for onstruting load-balaned range parti-

tions.

a. Suppose you have a histogram where values are between 1 and 100, and

are partitioned into 10 ranges, 1�10, 11�20,§ , 91�100, with frequen-

ies 15, 5, 20, 10, 10, 5, 5, 20, 5, and 5, respetively. Give a load-balaned

range partitioning funtion to divide the values into �ve partitions.

b. Write an algorithm for omputing a balaned range partition with p par-

titions, given a histogram of frequeny distributions ontaining n ranges.

Answer:

a. A partitioning vetor whih gives 5 partitions with 20 tuples in eah

partition is: [21, 31, 51, 76℄. The 5 partitions obtained are 1*20, 21*30,

31* 50, 51* 75, and 76* 100. The assumption made in arriving at this

165

166 Chapter 21 Parallel and Distributed Storage

partitioning vetor is that within a histogram range, eah value is equally

likely.

b. Let the histogram ranges be alled h

1

, h

2

,§ , h

h

, and the partitions

p

1

, p

2

,§ , p

p

. Let the frequenies of the histogram ranges be

n

1

, n

2

,§ , n

h

. Eah partition should ontain N_p tuples, where

N = �

h

i=1

n

i

.

To onstrut the load-balaned partitioning vetor, we need to de-

termine the value of the k

th

1

tuple, the value of the k

th

2

tuple, and so on,

where k

1

= N_p, k

2

= 2N_p, et., until k

p*1

. The partitioning vetor will

then be [k

1

, k

2

,§ , k

p*1

℄. The value of the k

th

i

tuple is determined as fol-

lows: First determine the histogram range h

j

in whih it falls. Assuming

all values in a range are equally likely, the k

th

i

value will be

s

j

+

�

e

j

* s

j

�

<

k

ij

n

j

where

s

j

: �rst value in h

j

e

j

: last value in h

j

k

ij

: k

i

* �

j*1

l=1

n

l

21.3 Histograms are traditionally onstruted on the values of a spei� attribute

(or set of attributes) of a relation. Suh histograms are good for avoiding data

distribution skew but are not very useful for avoiding exeution skew. Explain

why.

Now suppose you have a workload of queries that perform point lookups.

Explain how you an use the queries in the workload to ome up with a parti-

tioning sheme that avoids exeution skew.

Answer:

FILL

21.4 Repliation:

a. Give two reasons for repliating data aross geographially distributed

data enters.

b. Centralized databases support repliation using log reords. How is

the repliation in entralized databases di�erent from that in paral-

lel/distributed databases?

Answer:

a. By repliating aross data enters, even if a data enter fails, for example

due to a power outage or a natural disaster, the data would still be avail-

Pratie Exerises 167

able from another data enter. By keeping the data enters geographi-

ally separated, the hanes of a single natural disaster suh as an earth-

quake or a storm a�eting both the data enters at the same time are

minimized.

b. Centralized databases typially support only full database repliation us-

ing log reords (although some support logial repliation allowing repli-

ation to be restrited to some relations). However, they do not support

partitioning, or the ability to repliate di�erent parts of the database at

di�erent nodes; the latter helps minimize the load inrease at a replia

when a node fails by spreading the load aross multiple nodes.

21.5 Parallel indies:

a. Seondary indies in a entralized database store the reord identi�er.

A global seondary index too ould potentially store a partition num-

ber holding the reord, and a reord identi�er within the partition. Why

would this be a bad idea?

b. Global seondary indies are implemented in a way similar to loal se-

ondary indies that are used when reords are stored in a B

+

-tree �le

organization. Explain the similarities between the two senarios that re-

sult in a similar implementation of the seondary indies.

Answer:

a. Any updated suh as splitting or moving a partition, whih is required

to balane load, would require a large number of updates to seondary

indies.

b. In both ases reords may move (aross nodes, or to a di�erent loation

within the node) whih would require a large number of updates to se-

ondary indies if they stored diret pointers. The indiretion through the

lustering index key / partitioning key allows reord movement without

any updates to the seondary index.

21.6 Parallel database systems store replias of eah data item (or partition) on

more than one node.

a. Why is it a good idea to distribute the opies of the data items alloated

to a node aross multiple other nodes, instead of storing all the opies

in the same node (or set of nodes).

b. What are the bene�ts and drawbaks of using RAID storage instead of

storing an extra opy of eah data item?

Answer:

168 Chapter 21 Parallel and Distributed Storage

a. The opies of the data items at a node should be partitioned aross mul-

tiple other nodes, rather than stored in a single node, for the following

reasons:

�

To better distribute the work whih should have been done by the

failed node, among the remaining nodes.

�

Even when there is no failure, this tehnique an to some extent deal

with hot-spots reated by read-only transations.

b. RAID level 0 itself stores an extra opy of eah data item (mirroring).

Thus this is similar to mirroring performed by the database itself, exept

that the database system does not have to bother about the details of

performing the mirroring. It just issues the write to the RAID system,

whih automatially performs the mirroring.

RAID level 5 is less expensive than mirroring in terms of disk spae

requirement, but writes are more expensive, and rebuilding a rashed

disk is more expensive.

21.7 Partitioning and repliation.

a. Explain why range-partitioning gives better ontrol on tablet sizes than

hash partitioning. List an analogy between this ase and the ase of B

+

-

tree indies versus hash indies.

b. Some systems �rst perform hashing on the key, and then use range par-

titioning on the hash values. What ould be a motivation for this hoie,

and what are its drawbaks as ompared to performing range partition

diretion on the key?

. It is possible to horizontally partition data, and then perform vertial

partitioning loally at eah node. It is also possible to do the onverse,

where vertial partitioning is done �rst, and then eah partition is then

horizontally partitioned independently. What are are the bene�ts of the

�rst option over the seond one?

Answer:

a. Hash partitioning does not permit any ontrol on individual tablet sizes,

unlike range partitioning whih allows overfull partitions to be split quite

easily. B

+

-tree indies use range partitioning, allowing a leaf node to be

split if it is overfull. In ontrast, it is not easy to split a hash buket in a

hash index if the buket is overfull.

Some approahes similar to those used for dynami hashing (suh as

linear hashing or extendable hashing) have been proposed to allow over-

full hash bukets to be split while leaving other hash bukets untouhed,

but range partitioning provides a simpler solution.

Pratie Exerises 169

b. Hashing allows keys of various types to be mapped to a single data type,

simplifying the job of partitioning the data. The drawbak is that range

queries annot be supported using hashing (without performing a full

table san), whereas diret range-partitioning allows e	ient support for

range queries.

. The �rst option allows reonstrution of reords at a single node if a

query only aesses reords at that node. With the seond option, the

vertial fragments orresponding to one reord may potentially be resid-

ing on di�erent nodes, requiring extra ommuniation to get the vertial

fragments together.

21.8 In order to send a request to the master replia of a data item, a node must

know whih replia is the master for that data item.

a. Suppose that between the time the node identi�es whih node is the

master replia for a data item, and the time the request reahes the iden-

ti�ed node, the mastership has hanged, and a di�erent node is now the

master. How an suh a situation be dealt with?

b. While the master replia ould be hosen on a per-partition basis, some

systems support a per-reord master replia, where the reords of a par-

tition (or tablet) are repliated at some set of nodes, but eah reord's

master replia an be on any of the nodes from within this set of nodes,

independent of the master replia of other reords. List two bene�ts of

keeping trak of master on a per-reord basis.

. Suggest how to keep trak of the master replia for eah reord, when

there are a large number of reords.

Answer:

a. If a node reeives a request for a data itemwhen it is not themaster, it an

send an error reply with the reason for the error to the requesting node.

The requesting node an then �nd the urrent master and resend the

request to the urrent master. Alternatively, the old master an forward

the message to the new master, whih an reply to the requesting node.

b. Trakingmastership on a per-reord basis allows the master to be loated

in a geographial region where most requests for the data item our, for

example the region where the user resides. Reads an then be satis�ed

without any ommuniation with other regions, whih is generally muh

slower due to speed-of-light delays. Further, writes an also be done lo-

ally, and repliated asynhronously to the other replias.

. Eah reord an have an extra hidden �eld that stores the master replia

of that reord. In ase the information is outdated, all the replias of the

170 Chapter 21 Parallel and Distributed Storage

data item an be aessed to �nd the nodes listed as masters for that data

item; those nodes an be ontated to �nd the urrent master.

CHAP T E R

22

Parallel and Distributed Query

Proessing

Pratie Exerises

22.1 What form of parallelism (interquery, interoperation, or intraoperation) is

likely to be the most important for eah of the following tasks?

a. Inreasing the throughput of a system with many small queries

b. Inreasing the throughput of a system with a few large queries when the

number of disks and proessors is large

Answer:

a. When there are many small queries, interquery parallelism gives good

throughput. Parallelizing eah of these small queries would inrease the

initiation overhead, without any signi�ant redution in response time.

b. With a few large queries, intraquery parallelism is essential to get fast

response times. Given that there are large numbers of proessors and

disks, only intraoperation parallelism an take advantage of the parallel

hardware, for queries typially have few operations, but eah one needs

to proess a large number of tuples.

22.2 Desribe how partial aggregation an be implemented for the ount and avg

aggregate funtions to redue data transfer.

Answer:

FILL

22.3 With pipelined parallelism, it is often a good idea to perform several operations

in a pipeline on a single proessor, even when many proessors are available.

a. Explain why.

171

172 Chapter 22 Parallel and Distributed Query Proessing

b. Would the arguments you advaned in part a hold if the mahine has a

shared-memory arhiteture? Explain why or why not.

. Would the arguments in part a hold with independent parallelism? (That

is, are there ases where, even if the operations are not pipelined and

there are many proessors available, it is still a good idea to perform

several operations on the same proessor?)

Answer:

a. The speedup obtained by parallelizing the operations would be o�set by

the data transfer overhead, as eah tuple produed by an operator would

have to be transferred to its onsumer, whih is running on a di�erent

proessor.

b. In a shared-memory arhiteture, transferring the tuples is very e	ient.

So the above argument does not hold to any signi�ant degree.

. Even if two operations are independent, it may be that they both supply

their outputs to a ommon third operator. In that ase, running all three

on the same proessor may be better than transferring tuples aross pro-

essors.

22.4 Consider join proessing using symmetri fragment and repliate with range

partitioning. How an you optimize the evaluation if the join ondition is of

the form Ý r:A * s:B Ý f k, where k is a small onstant? Here, Ý x Ý denotes

the absolute value of x. A join with suh a join ondition is alled a band join.

Answer:

Relation r is partitioned into n partitions, r

0

, r

1

,§ , r

n*1

, and s is also parti-

tioned into n partitions, s

0

, s

1

,§ , s

n*1

. The partitions are repliated and as-

signed to proessors as shown in ??

Eah fragment is repliated on three proessors only, unlike in the general

ase where it is repliated on n proessors. The number of proessors required

is now approximately 3n, instead of n

2

in the general ase. Therefore, given the

same number of proessors, we an partition the relations intomore fragments

with this optimization, thus making eah loal join faster.

22.5 Suppose relation r is stored partitioned and indexed on A, and s is stored par-

titioned and indexed on B. Consider the query:

r:C

ount(s:D)

((�

A>5

(r)) Æ

r:B=s:B

s)

a. Give a parallel query plan using the exhange operator, for omputing

the subtree of the query involving only the selet and join operators.

b. Now extend the above to ompute the aggregate. Make sure to use pre-

aggregation to minimize the data transfer.

Pratie Exerises 173

. . . .

.

.

.

.

.
.
.
.

.

.

.

.

.

.

.

s0 s1 s2 s3 sn 1

r 0

r 1

r 2

r n 1

P0,0 P0,1

P1,0 P1,1 P1,2

P2,1 P2,2 P2,3

P n 1,
n 1

Figure 22.101 The three levels of data abstration.

. Skew during aggregation is a serious problem. Explain how pre-

aggregation as above an also signi�antly redue the e�et of skew dur-

ing aggregation.

Answer:

a. This is a small variant of an example from the hapter.

b. This one is very straightforward, sine it is already the example in the

hapter

. Pre-aggregation an greatly redue the size of the data sent to the �nal

aggregation step. So even if there is skew, the absolute data sizes are

smaller, resulting in signi�ant redution in the impat of the skew.

22.6 Suppose relation r is stored partitioned and indexed on A, and s is stored parti-

tioned and indexed on B. Consider the join r Æ

r:B=s:B

s. Suppose s is relatively

small, but not small enough to make asymmetri fragment-and-repliate join

the best hoie, and r is large, with most r tuples not mathing any s tuple. A

hash-join an be performed but with a semijoin �lter used to redue the data

transfer. Explain how semijoin �ltering using Bloom �lters would work in this

parallel join setting.

Answer:

174 Chapter 22 Parallel and Distributed Query Proessing

Sine s is small, it makes sense to send a Bloom�lter on s:B to all partitions of r.

Then we use the Bloom �lter to �nd r tuples that may math some s tuple, and

repartition the mathing r tuples on r:B, sending them to the nodes ontaining

s (whih is already partitioned on s:B). Then the join an be performed at eah

site storing s tuples. The Bloom �lter an signi�antly redue the number of r

tuples transferred.

Note that repartitioning s does notmake sense sine it is already partitioned

on the join attribute, unlike r.

22.7 Suppose you want to ompute r�

r:A=s:A

s.

a. Suppose s is a small relation, while r is stored partitioned on r:B. Give

an e	ient parallel algorithm for omputing the left outer join.

b. Now suppose that r is a small relation, and s is a large relation, stored

partitioned on attribute s:B. Give an e	ient parallel algorithm for om-

puting the above left outer join.

Answer:

a. Repliating s to all nodes, and omputing the left outerjoin indepen-

dently at eah node would be a good option in this ase.

b. The best tehnique in this ase is to repliate r to all nodes, and ompute

r Æ s

i

at eah node i. Then, we send bak the list of r tuples that had

mathes at site i bak to a single node, whih takes the union of the

returned r tuples from eah node i. Tuples in r that are absent in this

union are then padded with nulls and added to the output.

22.8 Suppose you want to ompute

A,B

sum(C)

on a relation s whih is stored par-

titioned on s:B. Explain how you would do it e	iently, minimizing/avoiding

repartitioning, if the number of distint s:B values is large, and the distribution

of number of tuples with eah s:B value is relatively uniform.

Answer:

The aggregate an be omputed loally at eah node, with no repartitioning

at all, sine partitioning on s:B implies partitioning on s:A, s:B. To understand

why, partitioning on (A,B) requires that tuples with the same value for (A,B)

must be in the same partition. Partitioning on just B, ignoring A, also satis�es

this requirement.

Of ourse not partitioning at all also satis�es the requirement, but that

defeats the purpose of parallel query proessing. As long as the number of

distint s:B values is large enough and the number of tuples with eah s:B value

are relatively uniform and not highly skewed, using the existing partitioning on

s:B will give good performane.

Pratie Exerises 175

22.9 MapRedue implementations provide fault tolerane, where you an reexeute

only failed mappers or reduers. By default, a partitioned parallel join exeu-

tion would have to be rerun ompletely in ase of even one node failure. It is

possible to modify a parallel partitioned join exeution to add fault tolerane

in a manner similar to MapRedue, so failure of a node does not require full

reexeution of the query, but only ations related to that node. Explain what

needs to be done at the time of partitioning at the sending node and reeiving

node to do this.

Answer: This is an appliation of ideas from MapRedue to join proessing.

There are two steps: �rst the data is repartitioned, and then join is performed,

orresponding to the map and redue steps.

A failure during the repartition an be handled by reexeuting the work

of the failed node. However, the destination must ensure that tuples are not

proessed twie. To do so, it an store all reeived tuples in loal disk, and

start proessing only after all tuples have been reeived. If the sender fails

meanwhile, and a new node takes over, the reeivers an disard all tuples

reeived from the failed sender, and reeive them again. This part is not too

expensive.

Failures during the �nal join omputation an be handled similar to re-

duer failure, by getting the data again from the partitioners. However, in the

MapRedue paradigm tuples to be sent to reduers are stored on disk at the

mappers, so they an be resent if required. This an also be done with parallel

joins, but there is now a signi�ant extra ost of writing the tuples to disk.

Another option is to �nd the tuples to be sent to the failed join node by

resanning the input. But now, all partitioners have to reread their entire input,

whih makes the proess very expensive, similar in ost to rerunning the join.

As a result this is not viewed as useful.

22.10 If a parallel data-store is used to store two relations r and s and we need to join

r and s, it may be useful to maintain the join as a materialized view. What are

the bene�ts and overheads in terms of overall throughput, use of spae, and

response time to user queries?

Answer:

Performing a join on a loud data-storage system an be very expensive, if

either of the relations to be joined is partitioned on attributes other than the

join attributes, sine a very large amount of data would need to be transferred

to perform the join. However, if r Æ s is maintained as a materialized view,

it an be updated at a relatively low ost eah time eah time either r or s is

updated, instead of inurring a very large ost when the query is exeuted.

Thus, queries are bene�tted at some ost to updates.

176 Chapter 22 Parallel and Distributed Query Proessing

With the materialized view, overall throughput will be muh better if the

join query is exeuted reasonably often relative to updates, but may be worse

if the join is rarely used, but updates are frequent.

The materialized view will ertainly require extra spae, but given that disk

apaities are very high relative to IO (seek) operations and transfer rates, the

extra spae is likely to not be an major overhead.

The materialized view will obviously be very useful to evaluate join queries,

reduing time greatly by reduing data transfer aross mahines.

22.11 Explain how eah of the following join algorithms an be implemented using

the MapRedue framework:

a. Broadast join (also known as asymmetri fragment-and-repliate join).

b. Indexed nested loop join, where the inner relation is stored in a parallel

data-store.

. Partitioned join.

Answer:

FILL

CHAP T E R

23

Parallel and Distributed

Transation Proessing

Pratie Exerises

23.1 What are the key di�erenes between a loal-area network and a wide-area

network, that a�et the design of a distributed database?

Answer:

Data transfer is muh faster, and ommuniation lateny is muh lower on

a loal-area network (LAN) than on a wide-area network (WAN). Protools

that require multiple rounds of ommuniation maybe aeptable in a loal

area network, but distributed databases designed for wide-area networks try to

minimize the number of suh rounds of ommuniation.

Repliation to a loal node for reduing lateny is quite important in a wide-

area network, but less so in a loal area network.

Network link failure and network partition are also more likely in a wide-area

network than in a loal area network, where systems an be designed with

more redundany to deal with failures. Protools designed for wide-area net-

works should handle suh failures without reating any inonsistenies in the

database.

23.2 To build a highly available distributed system, you must know what kinds of

failures an our.

a. List possible types of failure in a distributed system.

b. Whih items in your list from part a are also appliable to a entralized

system?

Answer:

a. The types of failure that an our in a distributed system inlude

i. Site failure.

177

178 Chapter 23 Parallel and Distributed Transation Proessing

ii. Disk failure.

iii. Communiation failure, leading to disonnetion of one or more

sites from the network.

b. The �rst two failure types an also our on entralized systems.

23.3 Consider a failure that ours during 2PC for a transation. For eah possible

failure that you listed in Exerise 23.2a, explain how 2PC ensures transation

atomiity despite the failure.

Answer:

A proof that 2PC guarantees atomi ommits/aborts in spite of site and link

failures follows. The main idea is that after all sites reply with a <ready T>

message, only the oordinator of a transation an make a ommit or abort

deision. Any subsequent ommit or abort by a site an happen only after it

asertains the oordinator's deision, either diretly from the oordinator or

indiretly from some other site. Let us enumerate the ases for a site aborting,

and then for a site ommitting.

a. A site an abort a transation T (by writing an <abort T> log reord)

only under the following irumstanes:

i. It has not yet written a <ready T> log reord. In this ase, the oor-

dinator ould not have got, and will not get, a<ready T> or<ommit

T> message from this site. Therefore, only an abort deision an be

made by the oordinator.

ii. It has written the <ready T> log reord, but on inquiry it found out

that some other site has an <abort T> log reord. In this ase it is

orret for it to abort, beause that other site would have asertained

the oordinator's deision (either diretly or indiretly) before atu-

ally aborting.

iii. It is itself the oordinator. In this ase also no site ould have om-

mitted, or will ommit in the future, beause ommit deisions an

be made only by the oordinator.

b. A site an ommit a transation T (by writing a <ommit T> log reord)

only under the following irumstanes:

i. It has written the <ready T> log reord, and on inquiry it found out

that some other site has a <ommit T> log reord. In this ase it

is orret for it to ommit, beause that other site would have aser-

tained the oordinator's deision (either diretly or indiretly) before

atually ommitting.

Pratie Exerises 179

ii. It is itself the oordinator. In this ase no other partiipating site an

abort or would have aborted beause abort deisions are made only

by the oordinator.

23.4 Consider a distributed system with two sites, A and B. Can site A distinguish

among the following?

�

B goes down.

�

The link between A and B goes down.

�

B is extremely overloaded and response time is 100 times longer than nor-

mal.

What impliations does your answer have for reovery in distributed systems?

Answer:

Site A annot distinguish between the three ases until ommuniation has

resumed with site B. The ation whih it performs while B is inaessible must

be orret irrespetive of whih of these situations has atually ourred, and

it must be suh that B an re-integrate onsistently into the distributed system

one ommuniation is restored.

23.5 The persistent messaging sheme desribed in this hapter depends on time-

stamps. A drawbak is that they an disard reeived messages only if they are

too old, and may need to keep trak of a large number of reeived messages.

Suggest an alternative sheme based on sequene numbers instead of time-

stamps, that an disard messages more rapidly.

Answer:

We an have a sheme based on sequene numbers similar to the sheme based

on timestamps. We tag eah message with a sequene number that is unique

for the (sending site, reeiving site) pair. The number is inreased by 1 for eah

new message sent from the sending site to the reeiving site.

The reeiving site stores and aknowledges a reeived message only if it has re-

eived all lower-numbered messages also; the message is stored in the reeived-

messages relation.

The sending site retransmits a message until it has reeived an ak from the

reeiving site ontaining the sequene number of the transmitted message or a

higher sequene number. One the aknowledgment is reeived, it an delete

the message from its send queue.

The reeiving site disards all messages it reeives that have a lower sequene

number than the latest stored message from the sending site. The reeiving

site disards from reeived-messages all but the (number of the) most reent

message from eah sending site (message an be disarded only after being

proessed loally).

180 Chapter 23 Parallel and Distributed Transation Proessing

Note that this sheme requires a �xed (and small) overhead at the reeiving

site for eah sending site, regardless of the number of messages reeived. In

ontrast, the timestamp sheme requires extra spae for every message. The

timestamp sheme would have lower storage overhead if the number of mes-

sages reeived within the timeout interval is small ompared to the number of

sites, whereas the sequene number sheme would have lower overhead other-

wise.

23.6 Explain the di�erene between data repliation in a distributed system and the

maintenane of a remote bakup site.

Answer:

In remote bakup systems, all transations are performed at the primary site

and the entire database is repliated at the remote bakup site. The remote

bakup site is kept synhronized with the updates at the primary site by send-

ing all log reords. Whenever the primary site fails, the remote bakup site

takes over proessing.

The distributed systems o�er greater availability by having multiple opies of

the data at di�erent sites, whereas the remote bakup systems o�er lesser avail-

ability at lower ost and exeution overhead. Di�erent data items may be repli-

ated at di�erent nodes.

In a distributed system, transation ode an run at all the sites, whereas in a

remote bakup system it runs only at the primary site. The distributed system

transations needs to follow two-phase ommit or other onsensus protools

to keep the data in onsistent state, whereas a remote bakup system does not

follow two-phase ommit and avoids related overhead.

23.7 Give an example where lazy repliation an lead to an inonsistent database

state even when updates get an exlusive lok on the primary (master) opy if

data were read from a node other than the master.

Answer:

Consider the balane in an aount, repliated at N sites. Let the urrent bal-

ane be $100 � onsistent aross all sites. Consider two transations T

1

and

T

2

eah depositing $10 in the aount. Thus the balane would be $120 after

both these transations are exeuted. Let the transations exeute in sequene:

T

1

�rst and then T

2

. Suppose the opy of the balane at one of the sites, say

s, is not onsistent � due to lazy repliation strategy � with the primary opy

after transation T

1

is exeuted, and let transation T

2

read this opy of the

balane. One an see that the balane at the primary site would be $110 at the

end.

23.8 Consider the following deadlok-detetion algorithm. When transation T

i

, at

site S

1

, requests a resoure from T

j

, at site S

3

, a request message with time-

stamp n is sent. The edge (T

i

,T

j

, n) is inserted in the loal wait-for graph of

Pratie Exerises 181

S

1

. The edge (T

i

,T

j

, n) is inserted in the loal wait-for graph of S

3

only if T

j

has reeived the request message and annot immediately grant the requested

resoure. A request from T

i

to T

j

in the same site is handled in the usual man-

ner; no timestamps are assoiated with the edge (T

i

,T

j

). A entral oordinator

invokes the detetion algorithm by sending an initiating message to eah site

in the system.

On reeiving this message, a site sends its loal wait-for graph to the o-

ordinator. Note that suh a graph ontains all the loal information that the

site has about the state of the real graph. The wait-for graph re�ets an instan-

taneous state of the site, but it is not synhronized with respet to any other

site.

When the ontroller has reeived a reply from eah site, it onstruts a

graph as follows:

�

The graph ontains a vertex for every transation in the system.

�

The graph has an edge (T

i

,T

j

) if and only if:

°

There is an edge (T

i

,T

j

) in one of the wait-for graphs.

°

An edge (T

i

,T

j

, n) (for some n) appears in more than one wait-for

graph.

Show that, if there is a yle in the onstruted graph, then the system is in a

deadlok state, and that, if there is no yle in the onstruted graph, then the

system was not in a deadlok state when the exeution of the algorithm began.

Answer:

Let us say a yle T

i

� T

j

� 5 � T

m

� T

i

exists in the graph built by

the ontroller. The edges in the graph will either be loal edgem (T

k

,T

l

) or

distributed edges of the form (T

k

,T

l

, n). Eah loal edge (T

k

,T

l

) de�nitely

implies that T

k

is waiting for T

l

. Sine a distributed edge (T

k

,T

l

, n) is inserted

into the graph only if T

k

's request has reahed T

l

and T

l

annot immediately

release the lok, T

k

is indeed waiting for T

l

. Therefore every edge in the yle

indeed represents a transation waiting for another. For a detailed proof that

this implies a deadlok, refer to Stuart et al. [1984℄.

We now prove the onverse impliation. As soon as it is disovered that T

k

is

waiting for T

l

:

a. A loal edge (T

k

,T

l

) is added if both are on the same site.

b. The edge (T

k

,T

l

, n) is added in both the sites, if T

k

and T

l

are on di�erent

sites.

Therefore, if the algorithm were able to ollet all the loal wait-for graphs at

the same instant, it would de�nitely disover a yle in the onstruted graph,

in ase there is a irular wait at that instant. If there is a irular wait at the

instant when the algorithm began exeution, none of the edges partiipating in

182 Chapter 23 Parallel and Distributed Transation Proessing

that yle an disappear until the algorithm �nishes. Therefore, even though

the algorithm annot ollet all the loal graphs at the same instant, any yle

whih existed just before it started will be deteted.

23.9 Consider the hain-repliation protool, desribed in Setion 23.4.3.2, whih

is a variant of the primary-opy protool.

a. If loking is used for onurreny ontrol, what is the earliest point when

a proess an release an exlusive lok after updating a data item?

b. While eah data item ould have its own hain, give two reasons it would

be preferable to have a hain de�ned at a higher level, suh as for eah

partition or tablet.

. How an onsensus protools be used to ensure that the hain is

uniquely determined at any point in time?

Answer:

a. The lok an be released only after the update has been reorded at the

tail of the hain, sine further reads will read the tail. Two phase loking

may also have to be respeted.

b. The overhead of reording hains per data item would be high. Even

more so, in ase of failures, hains have to be updated, whih would

have an even greater overhead if done per item.

. All nodes in the hain have to agree on the hain membership and or-

der. Consensus an be used to ensure that updates to the hain are done

in a fault-tolerant manner. A fault-tolerant oordination servie suh as

ZooKeeper or Chubby ould be used to ensure this onsensus, by updat-

ing metadata that is repliated using onsensus; the oordination servie

hides the details of onsensus, and allows storage and update of (a lim-

ited amount of) metadata.

23.10 If the primary opy sheme is used for repliation, and the primary gets dis-

onneted from the rest of the system, a new node may get eleted as primary.

But the old primary may not realize it has got disonneted, and may get re-

onneted subsequently without realizing that there is a new primary.

a. What problems an arise if the old primary does not realize that a new

one has taken over?

b. How an leases be used to avoid these problems?

. Would suh a situation, where a partiipant node gets disonneted and

then reonneted without realizing it was disonneted, ause any prob-

lem with the majority or quorum protools?

Pratie Exerises 183

Answer:

a. The old primary may reeive read requests and reply to them, serving

old data that is missing subsequent updates.

b. Leases an be used so that at the end of the lease, the primary knows

that it if it did not suessfuly renew the lease, it should stop serving

requests. If it is disonneted, it would be unable to renew the lease.

. This situation would not ause a problem with the majority protool

sine the write set (or write quorum) and the read set (read quorum)

must have at least one node in ommon, whih would serve the latest

value.

23.11 Consider a federated database system in whih it is guaranteed that at most

one global transation is ative at any time, and every loal site ensures loal

serializability.

a. Suggest ways in whih the federated database system an ensure that

there is at most one ative global transation at any time.

b. Show by example that it is possible for a nonserializable global shedule

to result despite the assumptions.

Answer:

a. We an have a speial data item at some site on whih a lok will have

to be obtained before starting a global transation. The lok should be

released after the transation ompletes. This ensures the single ative

global transation requirement. To redue dependeny on that parti-

ular site being up, we an generalize the solution by having an eletion

sheme to hoose one of the urrently up sites to be the oordinator and

requiring that the lok be requested on the data item whih resides on

the urrently eleted oordinator.

b. The following shedule involves two sites and four transations. T

1

and

T

2

are loal transations, running at site 1 and site 2 respetively. T

G1

and T

G2

are global transations running at both sites. X

1

, Y

1

are data

items at site 1, and X

2

, Y

2

are at site 2.

184 Chapter 23 Parallel and Distributed Transation Proessing

T1 T2 TG1 TG2

write(Y)

 read(Y)

 write(X)

 read(X)

 write(Y)

 read(Y)

 write(X)

read(X)

1

2

2

2

2

1

1

1

In this shedule, T

G2

starts only after T

G1

�nishes.Within eah site, there

is loal serializability. In site 1, T

G2

� T

1

� T

G1

is a serializability

order. In site 2, T

G1

� T

2

� T

G2

is a serializability order. Yet the global

shedule shedule is nonserializable.

23.12 Consider a federated database system in whih every loal site ensures loal

serializability, and all global transations are read only.

a. Show by example that nonserializable exeutions may result in suh a

system.

b. Show how you ould use a tiket sheme to ensure global serializability.

Answer:

a. The same system as in the answer to Exerise 23.11 is assumed, exept

that now both the global transations are read-only. Consider the follow-

ing shedule:

T1 T2 TG1 TG2

 read(X)

write(X)

 read(X)

 read(X)

 write(X)

 read(X)

1

1

2

2

2

1

Though there is loal serializability in both sites, the global shedule is

not serializable.

b. Sine loal serializability is guaranteed, any yle in the systemwide

preedene graph must involve at least two di�erent sites and two dif-

ferent global transations. The tiket sheme ensures that whenever two

Pratie Exerises 185

global transations aess data at a site, they on�it on a data item (the

tiket) at that site. The global transation manager ontrols tiket aess

in suh a manner that the global transations exeute with the same se-

rializability order in all the sites. Thus the hane of their partiipating

in a yle in the systemwide preedene graph is eliminated.

23.13 Suppose you have a large relation r(A,B,C) and a materialized view

v =

A

sum(B)

(r). View maintenane an be performed as part of eah trans-

ation that updates r, on a parallel/distributed storage system that supports

transations aross multiple nodes. Suppose the system uses two-phase om-

mit along with a onsensus protool suh as Paxos, aross geographially dis-

tributed data enters.

a. Explain why it is not a good idea to perform view maintenane as part of

the update transation, if some values of attribute A are �hot� at ertain

points in time, that is, many updates pertain to those values of A.

b. Explain how operation loking (if supported) ould solve this problem.

. Explain the tradeo�s of using asynhronous view maintenane in this

ontext.

Answer:

This is a very bad idea from the viewpoint of throughput. Most transations

would now update a few aggregate reords, and updates would get serialized

on the lok. The problem that due to Paxos delays plus 2PC delays, ommit

proessing will take a long time (hundreds of milliseonds) and there would

be very high ontention on the lok. Transation throughput would derease

to tens of transations per seond, even if transations do not on�it on any

other items.

If the storage system supported operation loking, that ould be an alterna-

tive to improve onurreny, sine view maintenane an be done using opera-

tion loks that do not on�it with eah other. Transation throughput would

be greatly inreased.

Asynhronous view maintenane would avoid the bottlenek and lead to

muh better throughput, but at the risk of reads of the view seeing stale data.

	1. Introduction
	2. Introduction to the Relational Model
	3. Introduction to SQL
	4. Intermediate SQL
	5. Advanced SQL
	6. Database Design using the E-R Model
	7. Relational Database Design
	8. Complex Data Types
	9. Application Development
	10. Big Data
	11. Data Analytics
	12. Physical Storage Systems
	13. Data Storage Structures
	14. Indexing
	15. Query Processing
	16. Query Optimization
	17. Transactions
	18. Concurrency Control
	19. Recovery System
	20. Database-System Architectures
	21. Parallel and Distributed Storage
	22. Parallel and Distributed Query Processing
	23. Parallel and Distributed Transaction Processing

