Alkyl Halides

R----X

where $R = CH_3, C_2H_5, etc$ X = F, CI, Br, I

Darshan Kumar Assoc. Prof. GC Amb

Organic halides

Alkyl halides

Monohalogen derivatives of alkanes
 Also contain aralkyl halides

Benzyl chloride (Phenyl chloromethane)

Cyclohexyl chloride (Chlorocyclohexane)

CH₃Cl

Methyl chloride (Monochloromethane)

CH₃CH₂Br

Ethyl bromide (Monobromoethane)

CHI Isopropyl iodide (2-Iodopropane)

Classification of Alkyl halides

Structural Isomerism in alkyl halides

Chain Isomerism

- Isomers differ in the chain of carbon atoms
- Compounds must contain 4 or more carbon atoms

CH₃-CH₂-CH₂-CH₂CH₂CH₂CI

1-Chlorobutane (n-Butyl chloride)

1-Chloro-2-methylpropane (Isobutyl chloride)

CH₃—CH—CH₂CI

Position isomerism

- Isomers differ in the position of halogen atom
- Compound must contain 3 or more carbon atoms

CH₃—CH₂—CH₂I 1-Iodopropane (*n*-Propyl iodide)

CH₃—CHI—CH₃ 2-Iodopropane (Isopropyl iodide)

From Alcohols

- By action of hydrogen halides
- $\succ \text{ ROH} + \text{HX} \rightarrow \text{RX} + \text{H}_2\text{O}$
- Primary and secondary alkyl chlorides are prepared by action of HCl in the presence of Anhydrous ZnCl₂ on corresponding alcohol
- Process is known as Groove's Process
- Tertiary alkyl chlorides are prepared by action of Conc. HCl on corresponding alcohol(No ZnCl₂ required)

 CH_1 -CH,OH + HCl (g) Anhyd, ZnCl CH_1 --CH₁Cl + H₂O Ethanol Chloroethane Anhyd. ZnCl₂ CH_1 -CHOH-CH₁ + HCl (g) $CH_1 - CHCI - CH_1 + H_1O$ 2-Chloropropane 2 Propanol (3) CH CH₁ H₂O CH₃- $CH_1 - C - OH + HCI$ \searrow conc. CH₁ CH, 2-Methyl-2-propanol 2 Chloro-2-methylpropane

Cł

From Alcohols contd.

Alkyl Bromides and iodides are prepared by action of HBr & HI on corresponding alcohol

$$\begin{array}{rcl} H_{3}-CH_{2}-CH_{2}OH+HBr & \longrightarrow & CH_{3}-CH_{2}-CH_{2}Br+H_{2}O\\ & & 1\text{-Bromopropane}\\ C_{2}H_{3}OH+HI & \longrightarrow & C_{2}H_{5}I+H_{2}O\\ & & \text{Ethanol} & & & \text{Iodoethane} \end{array}$$

HBr & HI can also be prepared in situ ie

$$\checkmark$$
 NaBr + H₂SO₄ \rightarrow HBr + NaHSO₄

 $\checkmark \text{ KI} + \text{H}_{3}\text{PO}_{4} \rightarrow \text{HI} + \text{KH}_{2}\text{PO}_{4}$

Order of reactivity of hydrogen halides

- HI > HBr > HCi
- Order of reactivity of alcohols
- Tertiary alcohols > Secondary alcohols > Primary alcohols

From Alcohols contd.

- By action of phosphorus halides on corresponding alcohols
- > 3ROH + PX_3 → 3RX + H_3PO_3
- Alkyl chlorides by action of either PCl₃ or PCl₅
- Alkyl bromides and alkyl iodides are prepared by action of PBr₃ or Pl₃
- PBr₃ and Pl₃ are prepared in situ ie by action of red phosphorus on halogen
- \checkmark 2P + 3I₂ \rightarrow 2PI₃
- $\checkmark 2P + 3Br_2 \rightarrow 2PBr_3$

From Alcohols contd.

By action of thionyl chloride on corresponding alcohols

 $\begin{array}{cccc} CH_{3}CH_{2}CH_{2}OH + PCl_{5} & \longrightarrow & CH_{3}CH_{2}CH_{2}Cl + POCl_{3} + HCl \\ 1 - Propanol & & 1 - Chloropropane \\ 3CH_{3}--CHOH--CH_{3} + PCl_{3} & \longrightarrow & 3CH_{3}--CHCl--CH_{3} + H_{3}PO_{3} \\ 2 - Propanol & & 2 - Chloropropane \end{array}$

$$H_{3}CH_{2}OH + SOCl_{2} \xrightarrow{Pyridine} CH_{3}CH_{2}CI + Chloroethane$$

Darshan Kumar Assoc. Prof. GC Amb

Mechanism with PCl₃

Similarly other two Cl atoms replace two other –OH gps & we get

- **From Alkenes**
- By addition of hydrogen halides
- $\begin{array}{c|c} & \mbox{Addition is as per Markownikoff's rule} & \mbox{CH}_2 = CH_2 + HI & \longrightarrow & CH_3 CH_2I \\ & CH_2 = CH_2 + HI & \longrightarrow & CH_3 CH_2I \\ & \mbox{Iodoethane} & & \mbox{Iodoethane} \\ & CH_3 CH = CH_2 + HCI & \longrightarrow & CH_3 CHCI CH_3 \\ & \mbox{Propene} & & 2-Chloropropane \end{array}$
- Peroxide effect or Kharasch's effect (Anti-Markownikoff's rule)

Physical properties

Boiling points

- ✤ Alkyl halides have higher boiling points than corresponding alkanes
- > For a given alkyl group
- ➢ R-I > R-Br > R-CI
- For a given halogen atom
- $\succ CH_3Br < CH_3CH_2Br < CH_3CH_2CH_2Br$
- > As branching increases the B. Pt. decreases
- n- Butyl bromide(374.6 K) > iso Butyl bromide(364.7 K) > tert. Butyl bromide(346 K)

$$CH_3 - CH_2 - CH_2 - CH_2Br$$
, $CH_3 - CH_2 - CH_2Br$

Insoluble in water

✤ R-I > R-Br > R-CI

Chemical properties

- Undergo Nucleophilic substitution reactions
- Most important synthetic reagents in organic chemistry
- C-X bond is polar
- Due to partial positive charge on Carbon atom, the nucleophile can attack it easily to replace halogen atom

- **Order of reactivity wrt halogen atom**
- ➢ R-I > R-Br > R-Cl > R-F
- It is because C-F bond is strongest due its smaller bond length

Nucleophilic substitution reactions

Williamson's Synthesis of Ethers

Nucleophilic substitution reactions

In Ag-O-Ñ=O, Ag-O bond is covalent so attack takes place via the lone pair on nitrogen atom. In Na-O-N=O, Na–O bond is ionic so ionisation takes place and –vely charged oxygen attacks

Similarly Ag-C bond in AgCN is covalent and attack takes place via lone pair present on Nitrogen atom

Nucleophilic substitution reactions

Some more reactions

Types of Nucleophilic substitution reactions

- Bimolecular Nucleophilic substitution reactions (S_N² reactions)
- When nucleophile is strong ie \overline{OR} , \overline{OH} , \overline{CN}
- Takes place by concerted one step process
- ***** Rate of the reaction depends upon the conc. Of alkyl halide as well as conc. of nucleophile
- Order of reaction is 2

$$OH^- + R - X \longrightarrow R - OH + X^- r = k [RX] [OH^-]$$

Attack of nucleophile takes place from opposite side of halogen atom

Darshan Kumar Assoc. Prof. GC Amb

Energy profile diagram of S_N² reactions

Stereochemistry of S_N² reactions

- Take place with complete inversion of configuration
- Also known as Walden inversion

Factors affecting the occurrence and rates of S_N² reactions

- 1. Nature of alkyl group in alkyl halides (Steric factors)
- > If attack of nucleophile is sterically hindered, the reactivity of alkyl halide decreases
- Steric hinderance is maximum in 3° halides
- > Methyl halides > Primary alkyl halides > Secondary alkyl halides > Tertiary alkyl halides

Factors affecting the occurrence and rates of S_N^2 reactions

- 2. Nature of halogen atom in alkyl halide (Nature of leaving group)
- Weaker is the basic nature of the leaving group, better would be its leaving tendency
- > Order of increasing basic strength of halide ions is

Low charge density Makes halide ion a weaker base

> So ease of elimination of leaving groups is as

$$: \overline{I} > : Br \rightarrow : Cl \rightarrow : \overline{F}$$

➢ R-I > R-Br > R-CI > R-F

Reactivity decreases

Factors affecting the occurrence and rates of S_N² reactions

3. Strength of nucleophile

- Stronger nucleophiles favour S_N² mechanism
- > Stronger is the nucleophile, greater is rate of S_N^2 reaction

$$: CN > RO :> : OH > CH_3COO :> H_2O :$$

4. Nature of solvent

- \succ Transition state is less polar so less polar solvents favour S_N^2 mechanism
- > More polar solvents decrease rate of S_N^2 reactions

Unimolecular or Monomolecular Nucleophilic substitution (S_N¹)

Two step mechanism

$$R \xrightarrow{flow} R^+ + X^-$$

$$R^+ + OH^- \xrightarrow{Fast} R \longrightarrow OH$$

- Rate depends upon the conc. Of alkyl halide only
- > The order of reaction is one r = k [RX]

Energy profile diagram of S_N¹ reaction

Two step mechanism so there are two transition states

Progress of reaction ———

Stereochemistry of S_N¹ reaction

- Reaction is accompanied by partial racemization (Racemic mixture is formed)
- It is because nucleophile can attack the planer carbocation from both the sides
- Racemization is not complete but partial
- It is because Bromide ion does not depart immediately so initially nucleophile attacks from the side opposite to bromine atom
- So one enantiomer will be more in concentration ie inversion dominates initially

Rearrangement in S_N¹ reactions

- **S**_N¹ reactions give rearranged products
- > It is because of the formation of intermediate carbocation
- Less stable carbocation may change to more stable carbocation by Hydride or Methyl shift

Factors affecting the occurrence and rates of S_N¹ reactions

1. Nature of alkyl group in alkyl halides (Electronic factors)

- Since carbocation is formed in rate determining step, so relative stability of carbocation determines the rate of reaction.
- Fert. Alkyl halides from most stable tertiary carbocation so they are most reactive and follow S_N¹ mechanism

So order of reactivity towards S_N¹ mechanism is

Methyl halides < Primary alkyl halides < Secondary alkyl halides < Tertiary alkyl halides

Factors affecting the occurrence and rates of S_N¹ reactions

- 2. Nature of halogen atom in alkyl halide (Nature of leaving group)
- Weaker is the basic nature of the leaving group, better would be its leaving tendency
- > Order of increasing basic strength of halide ions is

:I⁻ < : Br⁻ < : Cl⁻ < : F⁻

> So ease of elimination of leaving groups is as

$$: I > : Br > : Cl > : F^{-}$$

ightarrow R-I > R-Br > R-Cl > R-F(Order of reactivity is same as in S_N² reactions)

Factors affecting the occurrence and rates of S_N² reactions

3. Strength of nucleophile

Since attack of nucleophile is not involved in rate determining step so nature of nucleophile does not affect the rate of S_N¹ reactions

4. Nature of solvent

- Carbocation formed is stabilised by solvation by the solvent
- Higher polarity of the solvent causes greater solvation of carbocation so alkyl halide can undergo ionisation easily
- Hence S_N¹ reactions are favoured in polar solvents

$$R \longrightarrow \begin{bmatrix} x^{+} & x^{-} \\ R \dots & X \end{bmatrix} \longrightarrow R^{+} + X^{-}$$

Transition state more polar than reactant and, therefore, strongly stabilised by solvation.

S_Nⁱ reactions(Internal nucleophilic substitution)

- > Part of the leaving group gets detached and attack the substrate from the same side
- Follow 1st order Kinetics as in S_N¹ reactions

Examples

- Chlorination of alcohols with thionyl chloride
- \succ ROH + SOCl₂ \rightarrow R-Cl + SO₂ + HCl
- The mechanism of this reaction is

S_Nⁱ reactions(Internal nucleophilic substitution)

□ stereochemistry

> Occur by retention of configuration as the detached group attacks from the same side

S_Nⁱ reactions(Internal nucleophilic substitution)

Evidence for mechanism

- > If we add pyridine to the reaction mixture, then there is inversion of configuration
- > It is because pyridine attacks Alkyl chlorosulphite to make chloride ion free
- > Chloride ion then attacks the alkyl group from back side

Relative reactivity of Allyl halides and Alkyl halides

- Allyl halides are more reactive than alkyl halides towards nucleophilic substitution reactions
- It is because allyl carbocation is resonance stabilised

$$CH_{2} = CH - CH_{2}X \xrightarrow{-\chi^{-}} [CH_{2} \stackrel{+}{=} CH - CH_{2} \stackrel{+}{\longleftrightarrow} CH_{2} - CH = CH_{2}]$$
Allyl halide
$$CH_{2} = CH - CH_{2} \stackrel{+}{\longleftrightarrow} CH_{2} - CH = CH_{2}$$
Resonance stabilised
allyl carbocation

Relative reactivity of Vinyl halides and Alkyl halides

- Vinyl halides are less reactive than alkyl halides towards nucleophilic substitution reactions
- It is because C-Cl bond acquires double bond character due to resonance and its cleavage becomes difficult

Secondly, the carbon to which Cl is attached is SP² hybridised in case of vinyl halides. SP² hybridised carbon atom has greater electronegativity and it does not release the electron pair to Cl atom easily. Hence C-Cl bond cleavage becomes difficult

$$CH_2 = CH - CP$$

 SP^2 hybridised
CREPON.

Darshan Kumar Assoc. Prof. GC Amb

Questions

- 1. Tabulate the differences between $S_N^2 \& S_N^1$ reactions.
- 2. S_N^1 reactions of alkyl halides are accompanied by partial racemization. Explain.
- 3. Discuss the effect of polarity of the solvent on S_N^2 and S_N^1 reactions.
- 4. Haloalkanes are polar in nature, still they are insoluble in water. Explain.
- 5. Vinyl chloride is less reactive than Ethyl chloride. Explain giving reasons.
- 6. How will you prepare the following
 - i. n-Propyl bromide from an alkene
 - ii. Ethyl chloride from an alcohol
- 7. How will you convert n-Propyl chloride into n-Propyl methyl ether?
- 8. Reaction of Ethyl bromide with Silver nitrite gives Nitroethane whereas its reaction with Sodium nitrite gives Ethyl nitrite. Explain.