


The

C++
Programming

Language
Special Edition

Bjarne Stroustrup

AT&T Labs
Florham Park, New Jersey

•'Y'Y
ADDISON-WESLEY

Boston • San Francisco • New York • Toronto • Montreal
London • Munich • Paris • Madrid

Capetown • Sidney • Tokyo • Singapore • Mexico City



Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and we were aware of a trademark claim, the
designations have been printed in initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

The publisher offers discounts on this book when ordered in quantity for special sales. For more informa
tion, please contact:

Pearson Education Corporate Sales Division
One Lake Street
Upper Saddle River, NJ 07458
(800) 382-3419
corpsales@pearsontechgroup.com

Visit AW on the Web: www.awl.com/cseng/

Library of Congress Cataloging-in-Publication Data
Stroustrup, Bjarne.

The C++ programming language / Bjarne Stroustrup.-Special ed.
p. cm.

Includes bibliographical references and index.
ISBN 0-201-70073-5
I. C++ (Computer programming language) I. Title.

QA76.73.CI53 S77 2000
005.13'3 -dc21 99--059344

Copyright © 2000 by AT&T

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording, or other
wise, without the prior consent of the publisher. Printed in the United States of America. Published
simultaneously in Canada.

This book was typeset in Times and Courier by the author.

ISBN 0-201-70073-5
Text printed on recycled paper
3456789 10-CRS-0403020100
3rd printing, May 2000



Preface

Preface to Second Edition

Preface to First Edition

Introductory Material

1 Notes to the Reader .
2 A Tour of C++ .
3 A Tour of the Standard Library ..

Part I: Basic Facilities

4 Types and Declarations .
5 Pointers, Arrays, and Structures .
6 Expressions and Statements .
7 Functions .
8 Namespaces and Exceptions .
9 Source Files and Programs .

Contents

v

vii

ix

1

3
21
45

67

69
87

107
143
165
197



iv Contents

Part II: Abstraction Mechanisms

I() Classes .
II Operator Overloading ..
12 Derived Classes .
13 Templates .
14 Exception Handling .
15 Class Hierarchies .

Part III: The Standard Library

16 Library Organization and Containers ..
17 Standard Containers .
18 Algorithms and Function Objects ..
19 Iterators and Allocators ..
20 Strings .
21 Streams .
22 Numerics .

Part IV: Design Using C++

23 Development and Design .
24 Design and Programming ..
25 Roles of Classes .

Appendices

A The C++ Grammar .
B Compatibility .
C Technicalities .
D Locales .
E Standard Library Exception Safety .

Index

221

223
261
301
327
355
389

427

429
461
507
549
579
605
657

689

691
723
765

791

793
815
827
869
935

969



Preface

Programming is understanding.
- Kristen Nygaard

I find using C++ more enjoyable than ever. C++'s support for design and programming has
improved dramatically over the years, and lots of new helpful techniques have been developed for
its use. However, C++ is not just fun. Ordinary practical programmers have achieved significant
improvements in productivity, maintainability, flexibility, and quality in projects of just about any
kind and scale. By now, C++ has fulfilled most of the hopes I originally had for it, and also suc
ceeded at tasks I hadn't even dreamt of.

This book introduces standard C++t and the key programming and design techniques supported
by C++. Standard C++ is a far more powerful and polished language than the version of C++ intro
duced by the first edition of this book. New language features such as namespaces, exceptions,
templates, and run-time type identification allow many techniques to be applied more directly than
was possible before, and the standard library allows the programmer to start from a much higher
level than the bare language.

About a third of the information in the second edition of this book came from the first. This
third edition is the result of a rewrite of even larger magnitude. It offers something to even the
most experienced C++ programmer; at the same time, this book is easier for the novice to approach
than its predecessors were. The explosion of C++ use and the massive amount of experience accu
mulated as a result makes this possible.

The definition of an extensive standard library makes a difference to the way C++ concepts can
be presented. As before, this book presents C++ independently of any particular implementation,
and as before, the tutorial chapters present language constructs and concepts in a "bottom up"
order so that a construct is used only after it has been defined. However, it is much easier to use a
well-designed library than it is to understand the details of its implementation. Therefore, the stan
dard library can be used to provide realistic and interesting examples well before a reader can be
assumed to understand its inner workings. The standard library itself is also a fertile source of pro
gramming examples and design techniques.

t ISOIIEC 14882, Standard for the C++ Programming Language.



vi Preface

This book presents every major C++ language feature and the standard library. It is organized
around language and library facilities. However, features are presented in the context of their use.
That is, the focus is on the language as the tool for design and programming rather than on the lan
guage in itself. This book demonstrates key techniques that make C++ effective and teaches the
fundamental concepts necessary for mastery. Except where illustrating technicalities, examples are
taken from the domain of systems software. A companion, The Annotated C++ Language Stan
dard, presents the complete language definition together with annotations to make it more compre
hensible.

The primary aim of this book is to help the reader understand how the facilities offered by C++
support key programming techniques. The aim is to take the reader far beyond the point where he
or she gets code running primarily by copying examples and emulating programming styles from
other languages. Only a good understanding of the ideas behind the language facilities leads to
mastery. Supplemented by implementation documentation, the information provided is sufficient
for completing significant real-world projects. The hope is that this book will help the reader gain
new insights and become a better programmer and designer.

Acknowledgments
In addition to the people mentioned in the acknowledgement sections of the first and second edi
tions, I would like to thank Matt Austern, Hans Boehm, Don Caldwell, Lawrence Crowl, Alan
Feuer, Andrew Forrest, David Gay, Tim Griffin, Peter Juhl, Brian Kernighan, Andrew Koenig,
Mike Mowbray, Rob Murray, Lee Nackman, Joseph Newcomer, Alex Stepanov, David Vandevo
orde, Peter Weinberger, and Chris Van Wyk for commenting on draft chapters of this third edition.
Without their help and suggestions, this book would have been harder to understand, contained
more errors, been slightly less complete, and probably been a little bit shorter.

I would also like to thank the volunteers on the C++ standards committees who did an immense
amount of constructive work to make C++ what it is today. It is slightly unfair to single out indi
viduals, but it would be even more unfair not to mention anyone, so I'd like to especially mention
Mike Ball, Dag Bruck, Sean Corfield, Ted Goldstein, Kim Knuttila, Andrew Koenig, Jose Lajoie,
Dmitry Lenkov, Nathan Myers, Martin O'Riordan, Tom Plum, Jonathan Shopiro, John Spicer,
Jerry Schwarz, Alex Stepanov, and Mike Vilot, as people who each directly cooperated with me
over some part of C++ and its standard library.

After the initial printing of this book, many dozens of people have mailed me corrections and
suggestions for improvements. I have been able to accommodate many of their suggestions within
the fram~work of the book so that later printings benefitted significantly. Translators of this book
into many languages have also provided many clarifications. In response to requests from readers,
I have added appendices D and E. Let me take this opportunity to thank a few of those who helped:
Dave Abrahams, Matt Austern, Jan Bielawski, Janina Mincer Daszkiewicz, Andrew Koenig, Diet
mar Kiihl, Nicolai Josuttis, Nathan Myers, Paul E. Sevine, Andy Tenne-Sens, Shoichi Uchida,
Ping-Fai (Mike) Yang, and Dennis Yelle.

Murray Hill, New Jersey Bjarne Stroustrup



Preface to the Second Edition

The road goes ever on and on.
- Bilbo Baggins

As promised in the first edition of this book, C++ has been evolving to meet the needs of its users.
This evolution has been guided by the experience of users of widely varying backgrounds working
in a great range of application areas. The C++ user-community has grown a hundredfold during the
six years since the first edition of this book; many lessons have been learned, and many techniques
have been discovered and/or validated by experience. Some of these experiences are reflected here.

The primary aim of the language extensions made in the last six years has been to enhance C++
as a language for data abstraction and object-oriented programming in general and to enhance it as
a tool for writing high-quality libraries of user-defined types in particular. A "high-quality
library," is a library that provides a concept to a user in the form of one or more classes that are
convenient, safe, and efficient to use. In this context, safe means that a class provides a specific
type-safe interface between the users of the library and its providers; efficient means that use of the
class does not impose significant overheads in run-time or space on the user compared with hand
written C code.

This book presents the complete C++ language. Chapters I through 10 give a tutorial introduc
tion; Chapters 11 through 13 provide a discussion of design and software development issues; and,
finally, the complete C++ reference manual is included. Naturally, the features added and resolu
tions made since the original edition are integral parts of the presentation. They include refined
overloading resolution, memory management facilities, and access control mechanisms, type-safe
linkage, const and static member functions, abstract classes, multiple inheritance, templates, and
exception handling.

C++ is a general-purpose programming language; its core application domain is systems pro
gramming in the broadest sense. In addition, C++ is successfully used in many application areas
that are not covered by this label. Implementations of C++ exist from some of the most modest
microcomputers to the largest supercomputers and for almost all operating systems. Consequently,
this book describes the C++ language itself without trying to explain a particular implementation,
programming environment, or library.

This book presents many examples of classes that, though useful, should be classified as
"toys." This style of exposition allows general principles and useful techniques to stand out more



viii Preface to the Second Edition

clearly than they would in a fully elaborated program, where they would be buried in details. Most
of the useful classes presented here, such as linked lists, arrays, character strings, matrices, graphics
classes, associative arrays, etc., are available in "bulletproof' and/or "goldplated" versions from a
wide variety of commercial and non-commercial sources. Many of these "industrial strength"
classes and libraries are actually direct and indirect descendants of the toy versions found here.

This edition provides a greater emphasis on tutorial aspects than did the first edition of this
book. However, the presentation is still aimed squarely at experienced programmers and endeavors
not to insult their intelligence or experience. The discussion of design issues has been greatly
expanded to reflect the demand for information beyond the description of language features and
their immediate use. Technical detail and precision have also been increased. The reference man
uaL in particular, represents many years of work in this direction. The intent has been to provide a
b00k with a depth sufficient to make more than one reading rewarding to most programmers. In
other \vords, this book presents the C++ language, its fundamental principles, and the key tech
niques needed to apply it. Enjoy!

Acknowledgments
In addition to the people mentioned in the acknowledgements section in the preface to the first edi
tion, I would like to thank AI Aho, Steve Buroff, Jim Coplien, Ted Goldstein, Tony Hansen, Lor
raine Juhl, Peter Juhl, Brian Kernighan, Andrew Koenig, Bill Leggett, Warren Montgomery, Mike
Mowbray, Rob Murray, Jonathan Shopiro, Mike Vitot, and Peter Weinberger for commenting on
draft chapters of this second edition. Many people influenced the development of C++ from 1985
to 1991. I can mention only a few: Andrew Koenig, Brian Kernighan, Doug McIlroy, and Jonathan
Shopiro. Also thanks to the many participants of the' 'external reviews" of the reference manual
drafts and to the people who suffered through the first year of X3J 16.

Murray Hill, New Jersey Bjarne Stroustrup



Preface to the First Edition

Language shapes the \tvay we think,
and determines what we can think about.

- B.L. Whoif

c++ is a general purpose programming language designed to make programming more enjoyable
for the serious programmer. Except for minor details, C++ is a superset of the C programming lan
guage. In addition to the facilities provided by C, C++ provides flexible and efficient facilities for
defining new types. A programmer can partition an application into manageable pieces by defining
new types that closely match the concepts of the application. This technique for program construc
tion is often called data abstraction. Objects of some user-defined types contain type information.
Such objects can be used conveniently and safely in contexts in which their type cannot be deter
mined at compile time. Programs using objects of such types are often called object based. When
used well, these techniques result in shorter, easier to understand, and easier to maintain programs.

The key concept in C++ is class. A class is a user-defined type. Classes provide data hiding,
guaranteed initialization of data, implicit type conversion for user-defined types, dynamic typing,
user-controlled memory management, and mechanisms for overloading operators. C++ provides
much better facilities for type checking and for expressing modularity than C does. It also contains
improvements that are not directly related to classes, including symbolic constants, inline substitu
tion of functions, default function arguments, overloaded function names, free store management
operators, and a reference type. C++ retains C's ability to deal efficiently with the fundamental
objects of the hardware (bits, bytes, words, addresses, etc.). This allows the user-defined types to
be implemented with a pleasing degree of efficiency.

C++ and its standard libraries are designed for portability. The current implementation will run
on most systems that support C. C libraries can be used from a C++ program, and most tools that
support programnling in C can be used with C++.

This book is primarily intended to help serious programmers learn the language and use it for
nontrivial projects. It provides a complete description of C++, many complete examples, and many
more program fragments.



x Preface to the First Edition

Acknowledgments
c++ could never have matured without the constant use, suggestions, and constructive criticism of
many friends and colleagues. In particular, Tom Cargill, Jim Coplien, Stu Feldman, Sandy Fraser,
Steve Johnson, Brian Kernighan, Bart Locanthi, Doug McIlroy, Dennis Ritchie, Larry RosIer, Jerry
Schwarz, and Jon Shopiro provided important ideas for development of the language. Dave Pre
sotto wrote the current implementation of the stream 1/0 library.

In addition, hundreds of people contributed to the development of C++ and its compiler by
sending me suggestions for improvements, descriptions of problems they had encountered, and
compiler errors. I can mention only a few: Gary Bishop, Andrew Hume, Tom Karzes, Victor
Milenkovic, Rob Murray, Leonie Rose, Brian Schmult, and Gary Walker.

Many people have also helped with the production of this book, in particular, Jon Bentley,
Laura Eaves, Brian Kernighan, Ted Kowalski, Steve Mahaney, Jon Shopiro, and the participants in
the C++ course held at Bell Labs, Columbus, Ohio, June 26-27, 1985.

Murray Hill, New Jersey Bjarne Stroustrup



Introduction

This introduction gives an overview of the major concepts and features of
the C++ programming language and its standard library. It also provides
an overview of this book and explains the approach taken to the descrip
tion of the language facilities and their use. In addition, the introductory
chapters present some background information about C++, the design of
C++, and the use of C++.

Chapters

1 Notes to the Reader
2 A Tour of c++
3 A Tour of the Standard Library



2 Introduction

~4 ••• and you, Marcus, you have given me many things; now I shall give you this good
advice. Be many people. Give up the game of being always Marcus Cocoza. You
have worried too much about Marcus Cocoza, so that you have been really his slave
and prisoner. You have not done anything without first considering how it would
affect Marcus Cocoza's happiness and prestige. You were always much afraid that
Marcus might do a stupid thing, or be bored. What would it really have mattered? All
over the world people are doing stupid things ... I should like you to be easy, your lit
tle heart to be light again. You must from now, be more than one, many people, as
many as you can think of ... "

- Karen Blixen
("The Dreamers" from "Seven Gothic Tales"
written under the pseudonym Isak Dinesen,
Random House, Inc.
Copyright, Isak Dinesen, 1934 renewed 1961)



1
Notes to the Reader

"The time has c01ne," the Walrus said,
"to talk (~f1nan." things. "

- L.Carroll

Structure of this book - how to learn C++ - the design of C++ - efficiency and struc
ture - philosophical note - historical note - what C++ is used for - C and C++ 
suggestions for C programmers - suggestions for C++ programmers - thoughts about
programming in C++ - advice - references.

1.1 The Structure of This Book

This book consists of six parts:
Introduction: Chapters 1 through 3 give an overview of the C++ language, the key programming

styles it supports, and the C++ standard library.
Part I: Chapters 4 through 9 provide a tutorial introduction to C++' s built-in types and the

basic facilities for constructing programs out of them.
Part II: Chapters 10 through 15 are a tutorial introduction to object-oriented and generic pro-

gramming using C++.
Part III: Chapters 16 through 22 present the C++ standard library.
Part IV: Chapters 23 through 25 discuss design and software development issues.
Appendices: Appendices A through E provide language-technical details.

Chapter I provides an overview of this book, some hints about how to use it, and some background
information about C++ and its use. You are encouraged to skim through it, read what appears inter
esting, and return to it after reading other parts of the book.

Chapters 2 and 3 provide an overview of the major concepts and features of the C++ program
ming language and its standard library. Their purpose is to motivate you to spend time on funda
mental concepts and basic language features by showing what can be expressed using the complete



4 Notes to the Reader Chapter 1

c++ language. If nothing else, these chapters should convince you that C++ isn't Uust) C and that
c++ has come a long way since the first and second editions of this book. Chapter 2 gives a high
level acquaintance with C++. The discussion focuses on the language features supporting data
abstraction, object-oriented programming, and generic programming. Chapter 3 introduces the
basic principles and major facilities of the standard library. This allows me to use standard library
facilities in the following chapters. It also allows you to use library facilities in exercises rather
than relying directly on lower-level, built-in features.

The introductory chapters provide an example of a general technique that is applied throughout
this book: to enable a more direct and realistic discussion of some technique or feature, I occasion
ally present a concept briefly at first and then discuss it in depth later. This approach allows me to
present concrete examples before a more general treatment of a topic. Thus, the organization of
this book reflects the observation that we usually learn best by progressing from the concrete to the
abstract - even where the abstract seems simple and obvious in retrospect.

Part I describes the subset of C++ that supports the styles of programming traditionally done in
C or Pascal. It covers fundamental types, expressions, and control structures for C++ programs.
Modularity - as supported by namespaces, source files, and exception handling - is also discussed.
I assume that you are familiar with the fundamental programming concepts used in Part I. For
example~ I explain C++'s facilities for expressing recursion and iteration, but I do not spend much
time explaining how these concepts are useful.

Part II describes C++' s facilities for defining and using new types. Concrete and abstract
classes (interfaces) are presented here (Chapter 10, Chapter] 2), together with operator overloading
(Chapter I I), polymorphism, and the use of class hierarchies (Chapter 12, Chapter 15). Chapter 13
presents tetnplates, that is, C++'s facilities for defining families of types and functions. It demon
strates the basic techniques used to provide containers, such as lists, and to support generic pro
gramming. Chapter 14 presents exception handling, discusses techniques for error handling, and
presents strategies for fault tolerance. I assume that you either aren't well acquainted with object
oriented programming and generic programming or could benefit from an explanation of how the
main abstraction techniques are supported by C++. Thus, I don't just present the language features
supporting the abstraction techniques; I also explain the techniques themselves. Part IV goes fur
ther in this direction.

Part III presents the C++ standard library. The aim is to provide an understanding of how to use
the library, to demonstrate general design and programming techniques, and to show how to extend
the library. The library provides containers (such as list, vector, and map; Chapter 16, Chapter 17),
standard algorithms (such as sort, find, and merge; Chapter 18, Chapter 19), strings (Chapter 20),
Input/Output (Chapter 21), and support for numerical computation (Chapter 22).

Part IV discusses issues that arise when C++ is used in the design and implementation of large
software systems. Chapter 23 concentrates on design and management issues. Chapter 24 discusses
the relation between the C++ programming language and design issues. Chapter 25 presents some
ways of using classes in design.

Appendix A is C++'s grammar, with a few annotations. Appendix B discusses the relation
between C and C++ and between Standard C++ (also called ISO C++ and ANSI C++) and the ver
sions of C++ that preceded it. Appendix C presents some language-technical examples. Appendix
o explains the standard library's facilities supporting internationalization. Appendix E discusses
the exception-safety guarantees and requirements of the standard library.



Section 1.1.1 Examples and References 5

1.1.1 Examples and References

This book emphasizes program organization rather than the writing of algorithms. Consequently, I
avoid clever or harder-to-understand algorithms. A trivial algorithm is typically better suited to
illustrate an aspect of the language definition or a point about program structure. For example, I
use a Shell sort where, in real code, a quicksort would be better. Often, reimplementation with a
more suitable algorithm is an exercise. In real code, a call of a library function is typically more
appropriate than the code used here for illustration of language features.

Textbook examples necessarily give a warped view of software development. By clarifying and
simplifying the examples, the complexities that arise from scale disappear. I see no substitute for
writing realistically-sized programs for getting an impression of what programming and a program
ming language are really like. This book concentrates on the language features, the basic tech
niques from which every program is composed, and the rules for composition.

The selection of examples reflects my background in compilers, foundation libraries, and simu
lations. Examples are simplified versions of what is found in real code. The simplification is nec
essary to keep programming language and design points from getting lost in details. There are no
"cute" examples without counterparts in real code. Wherever possible, I relegated to Appendix C
language-technical examples of the sort that use variables named x and y, types called A and B, and
functions calledf () and g ( ) .

In code examples, a proportional-width font is used for identifiers. For example:

#include< iostream>

int main ( )
{

std: : cout « II Hello, new world! \n II i

At first glance, this presentation style will seem' 'unnatural" to programmers accustomed to seeing
code in constant-width fonts. However, proportional-width fonts are generally regarded as better
than constant-width fonts for presentation of text. Using a proportional-width font also allows me
to present code with fewer illogical line breaks. Furthermore, my experiments show that most peo
ple find the new style more readable after a short while.

Where possible, the C++ language and library features are presented in the context of their use
rather than in the dry manner of a manual. The language features presented and the detail in which
they are described reflect my view of what is needed for effective use of C++. A companion, The
Annotated C++ Language Standard, authored by Andrew Koenig and myself, is the complete defi
nition of the language together with comments aimed at making it more accessible. Logically,
there ought to be another companion, The Annotated C++ Standard Library. However, since both
time and my capacity for writing are limited, I cannot promise to produce that.

References to parts of this book are of the form §2.3.4 (Chapter 2, section 3, subsection 4),
§B.5.6 (Appendix B, subsection 5.6), and §6.6[ 10] (Chapter 6, exercise 10). Italics are used spar
ingly for emphasis (e.g., "a string literal is not acceptable"), for first occurrences of important con
cepts (e.g., polymorphism), for nonterminals of the C++ grammar (e.g., for-statement), and for com
ments in code examples. Semi-bold italics are used to refer to identifiers, keywords, and numeric
values from code examples (e.g., class, counter, and 1712).



6 Notes to the Reader

1.1.2 Exercises

Chapter 1

Exercises are found at the ends of chapters. The exercises are mainly of the write-a-program vari
ety. Always write enough code for a solution to be compiled and run with at least a few test cases.
The exercises vary considerably in difficulty, so they are marked with an estimate of their diffi
culty. The scale is exponential so that if a (*1) exercise takes you ten minutes, a (*2) might take an
hour, and a (*3) might take a day. The time needed to write and test a program depends more on
your experience than on the exercise itself. A (* 1) exercise might take a day if you first have to get
acquainted with a new computer system in order to run it. On the other hand, a (*5) exercise might
be done in an hour by someone who happens to have the right collection of programs handy.

Any book on programming in C can be used as a source of extra exercises for Part I. Any book
on data structures and algorithms can be used as a source of exercises for Parts II and III.

1.1.3 Implementation Note

The language used in this book is "pure C++" as defined in the C++ standard [C++,1998]. There
fore, the examples ought to run on every C++ implementation. The major program fragments in
this book were tried using several C++ implementations. Examples using features only recently
adopted into C++ didn't compile on every implementation. However, I see no point in mentioning
which implementations failed to compile which examples. Such information would soon be out of
date because implementers are working hard to ensure that their implementations correctly accept
every C++ feature. See Appendix B for suggestions on how to cope with older C++ compilers and
with code written for C compilers.

1.2 Learning C++

The most important thing to do when learning C++ is to focus on concepts and not get lost in
language-technical details. The purpose of learning a programming language is to become a better
programmer; that is, to become more effective at designing and implementing new systems and at
maintaining old ones. For this, an appreciation of programming and design techniques is far more
important than an understanding of details; that understanding comes with time and practice.

C++ supports a variety of programming styles. All are based on strong static type checking, and
most aim at achieving a high level of abstraction and a direct representation of the programmer's
ideas. Each style can achieve its aims effectively while maintaining run-time and space efficiency.
A programmer coming from a different language (say C, Fortran, Smalltalk, Lisp, ML, Ada, Eiffel,
Pascal, or Modula-2) should realize that to gain the benefits of C++, they must spend time learning
and internalizing programming styles and techniques suitable to c++. The same applies to pro
grammers u~ed to an earlier and less expressive version of c++.

Thoughtlessly applying techniques effective in one language to another typically leads to awk
ward, poorly performing, and hard-to-maintain code. Such code is also most frustrating to write
because every line of code and every compiler error message reminds the programmer that the lan
guage used differs from 4'th~ old language." You can write in the style of Fortran, C, Smalltalk,
etc., in any language, but doing so is neither pleasant nor economical in a language with a different
philosophy. Every language can be a fertile source of ideas of how to write C++ programs.



Section 1.2 Learning C++ 7

However, ideas must be transfornled into sonlething that fits with the general structure and type
system of C++ in order to be effective in the different context. Over the basic type system of a lan
guage, only Pyrrhic victories are possible.

C++ supports a gradual approach to learning. How you approach learning a new programming
language depends on what you already know and what you aim to learn. There is no one approach
that suits everyone. My assumption is that you are learning c++ to become a better programmer
and designer. That is, I assume that your purpose in learning C++ is not simply to learn a new syn
tax for doing things the way you used to, but to learn ne\\' and better ways of building systems.
This has to be done gradually because acquiring any significant new skill takes time and requires
practice. Consider how long it would take to learn a new natural language well or to learn to playa
new musical instrument well. Becoming a better system designer is easier and faster, but not as
much easier and faster as most people would like it to be.

lt follows that you will be using C++ - often for building real systelns - before understanding
every language feature and technique. By supporting several progranllning paradigms (Chapter 2),

C++ supports productive programming at several levels of expertise. Each new style of program
ming adds another tool to your toolbox, but each is effective on its own and each adds to your
effectiveness as a programmer. c++ is organized so that you can learn its concepts in a roughly lin
ear order and gain practical benefits along the way. This is ilnportant because it allows you to gain
benefits roughly in proportion to the effort expended.

In the continuing debate on whether one needs to learn C before C++, I aln firmly convinced
that it is best to go directly to C++. c++ is safer, nlore expressive, and reduces the need to focus on
low-level techniques. It is easier for you to learn the trickier parts of C that are needed to compen
sate for its lack of higher-level facilities after you have been exposed to the conlmon subset of C
and C++ and to some of the higher-level techniques supported directly in C++. Appendix B is a
guide for programmers going from C++ to C, say, to deal with legacy code.

Several independently developed and distributed irnplenlentations of C++ exist. A wealth of
tools, libraries, and software development environments are also available. A Inass of textbooks,
manuals, journals, newsletters, electronic bulletin boards, rnailing lists, conferences, and courses
are available to inform you about the latest developnlents in C++, its use, tools. libraries, ilnplemen
tations, etc. If you plan to use C++ seriously, I strongly suggest that you gain access to such
sources. Each has its own emphasis and bias, so use at least t\\/O. For exalnple, see [Barton, 1994L
[Booch,1994], [Henricson,1997], [Koenig, 19971, [Martin,1995).

1.3 The Design of C++

Simplicity was an important design criterion: where there was a choice between sinlplifying the
language definition and simplifying the cOlnpiler, the former was chosen. However, great impor
tance was attached to retaining a high degree of compatibility with C [Koenig, 1989] [Strous
trup, 1994] (Appendix B); this precluded cleaning up the C syntax.

C++ has no built-in high-level data types and no high-level primitive operations. For example,
the C++ language does not provide a matrix type with an inversion operator or a string type with a
concatenation operator. If a user wants such a type, it can be defined in the language itself. In fact,
defining a new general-purpose or application-specific type is the nlost fundanlental programming



8 Notes to the Reader Chapter 1

activity in C++. A well-designed user-defined type differs from a built-in type only in the way it is
defined, not in the way it is used. The C++ standard library described in Part III provides many
examples of such types and their uses. From a user's point of view, there is little difference
between a built-in type and a type provided by the standard library.

Features that would incur run-time or memory overheads even when not used were avoided in
the design of C++. For example, constructs that would make it necessary to store "housekeeping
information" in every object were rejected, so if a user declares a structure consisting of two 16-bit
quantities, that structure will fit into a 32-bit register.

C++ was designed to be used in a traditional compilation and run-time environment, that is, the
C programming environment on the UNIX system. Fortunately, C++ was never restricted to UNIX;
it simply used UNIX and C as a model for the relationships between language, libraries, compilers,
linkers, execution environments, etc. That minimal model helped C++ to be successful on essen
tially every computing platform. There are, however, good reasons for using C++ in environments
that provide significantly more support. Facilities such as dynamic loading, incremental compila
tion, and a database of type definitions can be put to good use without affecting the language.

C++ type-checking and data-hiding features rely on compile-time analysis of programs to pre
vent accidental corruption of data. They do not provide secrecy or protection against someone who
is deliberately breaking the rules. They can, however, be used freely without incurring run-time or
space overheads. The idea is that to be useful, a language feature must not only be elegant; it must
also be affordable in the context of a real program.

For a systematic and detailed description of the design of C++, see [Stroustrup,1994].

1.3.1 Efficiency and Structure

C++ was developed from the C programming language and, with few exceptions, retains C as a
subset. The base language, the C subset of C++, is designed to ensure a very close correspondence
between its types, operators, and statements and the objects that computers deal with directly: num
bers, characters, and addresses. Except for the new, delete, typeid, dynamic_cast, and throw oper
ators and the try-block, individual C++ expressions and statements need no run-time support.

C++ can use the same function call and return sequences as C - or more efficient ones. When
even such relatively efficient mechanisms are too expensive, a C++ function can be substituted
inline, so that we can enjoy the notational convenience of functions without run-time overhead.

One of the original aims for C was to replace assembly coding for the most demanding systems
programming tasks. When C++ was designed, care was taken not to compromise the gains in this
area. The difference between C and C++ is primarily in the degree of emphasis on types and struc
ture. C is expressive and permissive. c++ is even more expressive. However, to gain that increase
in expressiveness, you must pay more attention to the types of objects. Knowing the types of
objects, the compiler can deal correctly with expressions when you would otherwise have had to
specify operations in painful detail. Knowing the types of objects also enables the compiler to
detect en"ors that would otherwise persist until testing - or even later. Note that using the type sys
tem to check function arguments, to protect data from accidental corruption, to provide new types,
,to provide new operators, etc., does not increase run-time or space overheads in C++.

The emphasis on structure in C++ reflects the increase in the scale of programs written since C
was designed. You can make a small program (say, 1,000 lines) work through brute force even



Section 1.3.1 Efficiency and Structure 9

when breaking every rule of good style. For a larger program, this is simply not so. If the structure
of a lOO,OOO-line program is bad, you will find that new errors are introduced as fast as old ones are
removed. c++ was designed to enable larger programs to be structured in a rational way so that it
would be reasonable for a single person to cope with far larger amounts of code. In addition, the
aim was to have an average line of C++ code express much more than the average line of C or Pas
cal code. C++ has by now been shown to over-fulfill these goals.

Not every piece of code can be well-structured, hardware-independent, easy-to-read, etc. C++
possesses features that are intended for manipulating hardware facilities in a direct and efficient
way without regard for safety or ease of comprehension. It also possesses facilities for hiding such
code behind elegant and safe interfaces.

Naturally, the use of C++ for larger programs leads to the use of C++ by groups of program
mers. C++'s emphasis on modularity, strongly typed interfaces, and flexibility pays off here. C++
has as good a balance of facilities for writing large programs as any language has. However, as
programs get larger, the problems associated with their development and maintenance shift from
being language problems to more global problems of tools and management. Part IV explores
some of these issues.

This book emphasizes techniques for providing general-purpose facilities, generally useful
types, libraries, etc. These techniques will serve programmers of small programs as well as pro
grammers of large ones. Furthermore, because all nontrivial programs consist of many semi
independent parts, the techniques for writing such parts serve programmers of all applications.

You might suspect that specifying a program by using a more detailed type structure would lead
to a larger program source text. With C++, this is not so. A C++ program declaring function argu
ment types, using classes, etc., is typically a bit shorter than the equivalent C program not using
these facilities. Where libraries are used, a C++ program will appear much shorter than its C equiv
alent, assuming, of course, that a functioning C equivalent could have been built.

1.3.2 Philosophical Note

A programming language serves two related purposes: it provides a vehicle for the programmer to
specify actions to be executed, and it provides a set of concepts for the programmer to use when
thinking about what can be done. The first purpose ideally requires a language that is "close to the
machine" so that all important aspects of a machine are handled simply and efficiently in a way
that is reasonably obvious to the programmer. The C language was primarily designed with this in
mind. The second purpose ideally requires a language that is "close to the problem to be solved"
so that the concepts of a solution can be expressed directly and concisely. The facilities added to C
to create C++ were primarily designed with this in mind.

The connection between the language in which we think/program and the problems and solu
tions we can imagine is very close. For this reason, restricting language features with the intent of
eliminating programmer errors is at best dangerous. As with natural languages, there are great ben
efits from being at least bilingual. A language provides a programmer with a set of conceptual
tools; if these are inadequate for a task, they will simply be ignored. Good design and the absence
of errors cannot be guaranteed merely by the presence or the absence of specific language features.

The type system should be especially helpful for nontrivial tasks. The C++ class concept has, in
fact, proven itself to be a powerful conceptual tool.



10 Notes to the Reader

1.4 Historical Note

Chapter 1

I invented C++, wrote its early definitions, and produced its first implementation. I chose and for
mulated the design criteria for C++, designed all its major facilities, and was responsible for the
processing of extension proposals in the C++ standards committee.

Clearly, C++ owes much to C [Kernighan,1978]. Except for closing a few serious loopholes in
the type system (see Appendix B), C is retained as a subset. I also retained C's emphasis on facili
ties that are low-level enough to cope with the most demanding systems programming tasks. C in
tum owes much to its predecessor BCPL [Richards, 1980]; in fact, BCPL's / / comment convention
was (re)introduced in C++. The other main source of inspiration for C++ was Simula67
[Dahl,1970] [Dahl, 1972]; the class concept (with derived classes and virtual functions) was bor
rowed from it. C++'s facility for overloading operators and the freedom to place a declaration
wherever a statement can occur resembles Algol68 [Woodward, 1974].

Since the original edition of this book, the language has been extensively reviewed and refined.
The major areas for revision were overload resolution, linking, and memory management facilities.
In addition, several minor changes were made to increase C compatibility. Several generalizations
and a few major extensions were added: these included multiple inheritance, static member func
tions, const member functions, protected members, templates, exception handling, run-time type
identification, and namespaces. The overall theme of these extensions and revisions was to make
C++ a better language for writing and using libraries. The evolution of C++ is described in [Strous
trup,1994].

The template facility was primarily designed to support statically typed containers (such as lists,
vectors, and maps) and to support elegant and efficient use of such containers (generic program
ming). A key aim was to reduce the use of macros and casts (explicit type conversion). Templates
were partly inspired by Ada's generics (both their strengths and their weaknesses) and partly by
Clu's parameterized modules. Similarly, the C++ exception-handling mechanism was inspired
partly by Ada [Ichbiah,1979], Clu [Liskov,1979], and ML [Wikstrom,1987]. Other developments
in the 1985 to 1995 time span - such as multiple inheritance, pure virtual functions, and name
spaces - were primarily generalizations driven by experience with the use of C++ rather than ideas
imported from other languages.

Earlier versions of the language, collectively known as "C with Classes" [Stroustrup,1994],
have been in use since 1980. The language was originally invented because I wanted to write some
event-driven simulations for which Simula67 would have been ideal, except for efficiency consid
erations. "C with Classes" was used for major projects in which the facilities for writing programs
that use minimal time and space were severely tested. It lacked operator overloading, references,
virtual functions, templates, exceptions, and many details. The first use of C++ outside a research
organization started in July 1983.

The name C++ (pronounced "see plus plus") was coined by Rick Mascitti in the summer of
1983. The name signifies the evolutionary nature of the changes from C; "++" is the C increment
operator. The slightly shorter name "C+" is a syntax error; it has also been used as the name of an
unrelated language. Connoisseurs of C semantics find C++ inferior to ++C. The language is not
called D, because it is an extension of C, and it does not attempt to remedy problems by removing
features. For yet another interpretation of the name C++, see the appendix of [Orwell, 1949].

C++ was designed primarily so that my friends and I would not have to program in assembler,



Section 1.4 Historical Note 11

C, or various modern high-level languages. Its 1l1uin purpose was to Blake writing good programs
easier and more pleasant for the individual progranllller. In the early years. there was no C++ paper
design; design, documentation, and inlplementation went on silnultaneollsly. There was no ~ 'C++
project" either, or a ~ ·C++ design committee." Throughout, C++ evolved to cope with problems
encountered by users and as a result of discussions between nlY friends, Illy colleagues, and me.

Later, the explosive growth of C++ use caused some changes. Sometinle during 1987, it
became clear that formal standardization of C++ was inevitable and that we needed to start prepar
ing the ground for a standardization effort lStroustrup,1994]. The result was a conscious effort to
maintain contact between inlplelnenters of C++ cOlnpilers and major users through paper and elec
tronic mail and through face-ta-face nleetings at C++ conferences and elsewhere.

AT&T Bell Laboratories made a nlajor contribution to this by allowing me to share drafts of
revised versions of the C++ reference manual with implementers and users. Because many of these
people work for companies that could be seen as competing with AT&T, the significance of this
contribution should not be underestimated. A less enlightened COlllpany could have caused major
problems of language fragmentation simply by doing nothing. As it happened, about a hundred
individuals from dozens of organizations read and comlllented on what became the generally
accepted reference manual and the base docunlent for the ANSI C++ standardization effort. Their
names can be found in The Anllotated C++ Re.ferellce Manual [Ellis,19891. Finally, the X3J 16
committee of ANSI was convened in Decenlber 1989 at the initiative of Hewlett-Packard. In June
1991, this ANSI (American national) standardization of C++ became part of an ISO (international)
standardization effort for C++. Froln 1990, these joint C++ standards cOlllmittees have been the
main forum for the evolution of C++ and the refinement of its definition. I served on these comnlit
tees throughout. In particular, as the chairman of the working group for extensions, I was directly
responsible for the handling of proposals for Inajor changes to C++ and the addition of new lan
guage features. An initial draft standard for public review was produced in April 1995. The ISO
C++ standard (ISO/IEC 14882) was ratified in 1998.

C++ evolved hand-in-hand with some of the key classes presented in this hook. For example. I
designed complex, vector, and stack classes together with the operator overloading nlechanisnls.
String and list classes were developed by Jonathan Shopiro and Ine as part of the same effort.
Jonathan's string and list classes were the first to see extensive use as part of a library. The string
class from the standard C++ library has its roots in these early efforts. The task library described in
[Stroustrup, 1987] and in § 12.7[ I 11 was part of the first ··C with Classes'· progranl ever written. I
wrote it and its associated classes to support Silllula-style silllulations. The task library has been
revised and reimplemented, notably by Jonathan Shopiro, and is still in extensive use. The stream
library as described in the first edition of this hook was designed and inlplemented by me. Jerry
Schwarz transformed it into the iostreanls library (Chapter 21) using Andrew Koenig·s 1l1anipulator
technique (§21.4.6) and other ideas. The iostreanls library was further refined during standardiza
tion, when the bulk of the work was done by Jerry Schwarz, Nathan Myers, and Norihiro Kumagai.
The development of the template facility was influenced by the vector, map. list, and sort tem
plates devised by Andrew Koenig, Alex Stepanov, me, and others. In turn, Alex Stepanov's work
on generic programming using tenlplates led to the containers and algorithlllS parts of the standard
C++ library (§ 16.3, Chapter 17, Chapter 18, § 19.2). The va/array library for nllnlerical computa
tion (Chapter 22) is primarily the work of Kent Budge.



12 Notes to the Reader

1.5 Use of C++

Chapter 1

c++ is used by hundreds of thousands of programmers in essentially every application domain.
This use is supported by about a dozen independent implementations, hundreds of libraries, hun
dreds of textbooks, several technical journals, many conferences, and innumerable consultants.
Training and education at a variety of levels are widely available.

Early applications tended to have a strong systems programming flavor. For example, several
major operating systems have been written in c++ [Campbell,1987] [Rozier,1988] [Hamilton, 1993]
[Berg,1995] [Parrington,1995] and many more have key parts done in c++. I considered uncom
promising low-level efficiency essential for C++. This allows us to use C++ to write device drivers
and other software that rely on direct manipulation of hardware under real-time constraints. In such
code, predictability of performance is at least as important as raw speed. Often, so is compactness
of the resulting system. C++ was designed so that every language feature is usable in code under
severe time and space constraints [Stroustrup,1994,§4.5].

Most applications have sections of code that are critical for acceptable performance. However,
the largest amount of code is not in such sections. For most code, maintainability, ease of exten
sion, and ease of testing is key. C++' s support for these concerns has led to its widespread use
where reliability is a must and in areas where requirements change significantly over time. Exam
ples are banking, trading, insurance, telecommunications, and military applications. For years, the
central control of the· U.S. long-distance telephone system has relied on C++ and every 800 call
(that is, a call paid for by the called party) has been routed by a C++ program [Kamath, 1993].
Many such applications are large and long-lived. As a result, stability, compatibility, and scalabil
ity have been constant concerns in the development of C++. Million-line C++ programs are not
uncommon.

Like C, C++ wasn't specifically designed with numerical computation in mind. However, much
numerical, scientific, and engineering computation is done in C++. A major reason for this is that
traditional numerical work must often be combined with graphics and with computations relying on
data structures that don't fit into the traditional Fortran mold [Budge,1992] [Barton, 1994]. Graph
ics and user interfaces are areas in which C++ is heavily used. Anyone who has used either an
Apple Macintosh or a PC running Windows has indirectly used C++ because the primary user inter
faces of these systems are C++ programs. In addition, some of the most popular libraries support
ing X for UNIX are written in C++. Thus, C++ is a common choice for the vast number of applica
tions in which the user interface is a major part.

All of this points to what may be C++'s greatest strength: its ability to be used effectively for
applications that require work in a variety of application areas. It is quite common to find an appli
cation that involves local and wide-area networking, numerics, graphics, user interaction, and data
base access. Traditionally, such application areas have been considered distinct, and they have
most often been served by distinct technical communities using a variety of programming lan
guages. However, C++ has been widely used in all of those areas. Furthermore, it is able to coexist
with code fragments and programs written in other languages.

C++ is widely used for teaching and research. This has surprised some who - correctly - point
out that C++ isn't the smallest or cleanest language ever designed. It is, however

- clean enough for successful teaching of basic concepts,
- realistic, efficient, and flexible enough for demanding projects,



Section 1.5 Use of C++ 13

- available enough for organizations and collaborations relying on diverse development and
execution environments,

- comprehensive enough to be a vehicle for teaching advanced concepts and techniques, and
- commercial enough to be a vehicle for putting what is learned into non-academic use.

c++ is a language that you can grow with.

1.6 C and C++

C was chosen as the base language for c++ because it
[1] is versatile, terse, and relatively low-level;
[2] is adequate for most systems programming tasks;
[3] runs everywhere and on everything; and
[4] fits into the UNIX programming environment.

C has its problems, but a language designed from scratch would have some too, and we know C's
problems. Importantly, working with C enabled "c with Classes" to be a useful (if awkward) tool
within months of the first thought of adding Simula-like classes to C.

As C++ became more widely used, and as the facilities it provided over and above those of C
became more significant, the question of whether to retain compatibility was raised again and
again. Clearly some problems could be avoided if some of the C heritage was rejected (see, e.g.,
[Sethi, 1981 ]). This was not done because

[I] there are millions of lines of C code that might benefit from C++, provided that a complete
rewrite from C to C++ were unnecessary;

[2] there are millions of lines of library functions and utility software code written in C that
could be used from/on C++ programs provided C++ were link-compatible with and syntacti
cally very similar to C;

[3] there are hundreds of thousands of programmers who know C and therefore need only learn
to use the new features of C++ and not relearn the basics; and

[4] C++ and C will be used on the same systems by the same people for years, so the differ
ences should be either very large or very small so as to minimize mistakes and confusion.

The definition of C++ has been revised to ensure that a construct that is both legal C and legal C++
has the same meaning in both languages (§B.2).

The C language has itself evolved, partly under the influence of the development of C++
[RosIer, 1984]. The ANSI C standard [C,1990] contains a function declaration syntax borrowed
from "c with Classes." Borrowing works both ways. For example, the void* pointer type was
invented for ANSI C and first implemented in C++. As promised in the first edition of this book,
the definition of C++ has been reviewed to remove gratuitous incompatibilities; C++ is now more
compatible with C than it was originally. The ideal was for C++ to be as close to ANSI C as possi
ble - but no closer [Koenig, 1989]. One hundred percent compatibility was never a goal because
that would compromise type safety and the smooth integration of user-defined and built-in types.

Knowing C is not a prerequisite for learning C++. Programming in C encourages many tech
niques and tricks that are rendered unnecessary by C++ language features. For example, explicit
type conversion (casting) is less frequently needed in C++ than it is in C (§ 1.6.1). However, good
C programs tend to be C++ programs. For example, every program in Kernighan and Ritchie, The



14 Notes to the Reader Chapter 1

C Programming Language (2nd Edition) [Kernighan,1988], is a c++ program. Experience with
any statically typed language will be a help when learning c++.

1.6.1 Suggestions for C Programmers

The better one knows C, the harder it seems to be to avoid writing C++ in C style, thereby losing
some of the potential benefits of C++. Please take a look at Appendix B, which describes the dif
ferences between C and c++. Here are a few pointers to the areas in which c++ has better ways of
doing something than C has:

[1] Macros are alnlost never necessary in C++. Use const (§5.4) or enum (§4.8) to define mani
fest constants, inline (§7.1.1) to avoid function-calling overhead, tempLates (Chapter 13) to
specify families of functions and types, and namespaces (§8.2) to avoid name clashes.

[2] Don't declare a variable before you need it so that you can initialize it immediately. A
declaration can occur anywhere a statement can (§6.3.1), in for-statement initializers
(§6.3.3), and in conditions (§6.3.2.1).

[3] Don't use maLLoc ( ). The new operator (§6.2.6) does the same job better, and instead of
reaLLoc ( ) , try a vector (§3.8).

[4] Try to avoid void*, pointer arithmetic, unions, and casts, except deep within the implelnen
tation of some function or class. In most cases, a cast is an indication of a design error. If
you must use an explicit type conversion, try using one of the "new casts" (§6.2.7) for a
more precise statement of what you are trying to do.

[5] Minimize the use of arrays and C-style strings. The C++ standard library string (§3.5) and
vector (§3.7.1) classes can often be used to simplify programming compared to traditional C
style. In general, try not to build yourself what has already been provided by the standard
library.

To obey C linkage conventions, a C++ function must be declared to have C linkage (§9.2.4).
Most important, try thinking of a program as a set of interacting concepts represented as classes

and objects, instead of as a bunch of data structures with functions twiddling their bits.

1.6.2 Suggestions for C++ Programmers

By now, many people have been using C++ for a decade. Many more are using C++ in a single
environment and have learned to live with the restrictions imposed by early compilers and first
generation libraries. Often, what an experienced C++ programmer has failed to notice over the
years is not the introduction of new features as such, but rather the changes in relationships between
features that make fundamental new programming techniques feasible. In other words, what you
didn't think of when first learning C++ or found impractical just might be a superior approach
today. You find out only by re-examining the basics.

Read through the chapters in order. If you already know the contents of a chapter, you can be
through in minutes. If you don't already know the contents, you'll have learned something unex
pected. I learned a fair bit writing this book, and I suspect that hardly any C++ programmer knows
every feature and technique presented. Furthermore, to use the language well, you need a perspec
tive that brings order to the set of features and techniques. Through its organization and examples,
this book offers such a perspectivet



Section 1.7 Thinking about Programming in C++ 15

1.7 Thinking about Programming in C++

Ideally, you approach the task of designing a program in three stages. First, you gain a clear under
standing of the problem (analysis), then you identify the key concepts involved in a solution
(design), and finally you express that solution in a program (programming). However, the details
of the problem and the concepts of the solution often become clearly understood only through the
effort to express them in a program and trying to get it to run acceptably. This is where the choice
of programming language matters.

In most applications, there are concepts that are not easily represented as one of the fundamental
types or as a function without associated data. Given such a concept, declare a class to represent it
in the program. A C++ class is a type. That is, it specifies how objects of its class behave: how they
are created, how they can be manipulated, and how they are destroyed. A class may also specify
how objects are represented, although in the early stages of the design of a program that should not
be the major concern. The key to writing good programs is to design classes so that each cleanly
represents a single concept. Often, this means that you must focus on questions such as: How are
objects of this class created? Can objects of this class be copied andlor destroyed? What opera
tions can be applied to such objects? If there are no good answers to such questions, the concept
probably wasn't Hclean" in the first place. It might then be a good idea to think more about the
problem and its proposed solution instead of immediately starting to "code around" the problems.

The concepts that are easiest to deal with are the ones that have a traditional mathematical for
malism: numbers of all sorts, sets, geometric shapes, etc. Text-oriented 1/0, strings, basic contain
ers, the fundamental algorithms on such containers, and some mathematical classes are part of the
standard C++ library (Chapter 3, § 16.1.2). In addition, a bewildering variety of libraries supporting
general and domain-specific concepts are available.

A concept does not exist in a vacuum; there are always clusters of related concepts. Organizing
the relationship between classes in a program - that is, determining the exact relationship between
the different concepts involved in a solution - is often harder than laying out the individual classes
in the first place. The result had better not be a muddle in which every class (concept) depends on
every other. Consider two classes, A and B. Relationships such as "A calls functions from B,"
,.A creates Bs," and ".A. has a B member" seldom cause major problems, while relationships such
as "A uses data from B" can typically be eliminated.

One of the most powerful intellectual tools for managing complexity is hierarchical ordering,
that is, organizing related concepts into a tree structure with the most general concept as the root.
In C++, derived classes represent such structures. A program can often be organized as a set of
trees or directed acyclic graphs of classes. That is, the programmer specifies a number of base
classes, each with its own set of derived classes. Virtual functions (§2.5.5, § 12.2.6) can often be
used to define operations for the most general version of a concept (a base class). When necessary,
the interpretation of these operations can be refined for particular special cases (derived classes).

Sometimes even a directed acyclic graph seems insufficient for organizing the concepts of a
program; some concepts seem to be inherently mutually dependent. In that case, we try to localize
cyclic dependencies so that they do not affect the overall structure of the program. If you cannot
eliminate or localize such mutual dependencies, then you are most likely in a predicament that no
programming language can help you out of. Unless you can conceive of some easily stated rela
tionships between the basic concepts, the program is likely to become unmanageable.



16 Notes to the Reader Chapter 1

One of the best tools for untangling dependency graphs is the clean separation of interface and
implementation. Abstract classes (§2.5.4, §12.3) are C++'s primary tool for doing that.

Another form of commonality can be expressed through templates (§2.7, Chapter 13). A class
template specifies a family of classes. For example, a list template specifies "list of T," where
, 'T" can be any type. Thus, a template is a mechanism for specifying how one type is generated
given another type as an argument. The most common templates are container classes such as lists,
arrays, and associative arrays and the fundamental algorithms using such containers. It is usually a
mistake to express parameterization of a class and its associated functions with a type using inheri
tance. It is best done using templates.

Remember that much programming can be simply and clearly done using only primitive types,
data structures, plain functions, and a few library classes. The whole apparatus involved in defin
ing new types should not be used except when there is a real need.

The question "How does one write good programs in C++?" is very similar to the question
"How does one write good English prose?" There are two answers: "Know what you want to
say" and "Practice. Imitate good writing." Both appear to be as appropriate for C++ as they are
for English - and as hard to follow.

1.8 Advice

Here is a set of "rules" you might consider while learning C++. As you get more proficient you
can evolve them into something suitable for your kind of applications and your style of program
ming. They are deliberately very simple, so they lack detail. Don't take them too literally. To
write a good program takes intelligence, taste, and patience. You are not going to get it right the
first time. Experiment!
[1] When you program, you create a concrete representation of the ideas in your solution to some

problem. Let the structure of the program reflect those ideas as directly as possible:
[a] If you can think of "it" as a separate idea, make it a class.
[b] If you can think of "it" as a separate entity, make it an object of some class.
[c] If two classes have a common interface, make that interface an abstract class.
[d] If the implementations of two classes have something significant in common, make that

commonality a base class.
[e] If a class is a container of objects, make it a template.
[f] If a function implements an algorithm for a container, make it a template function imple

menting the algorithm for a family of containers.
[g] If a set of classes, templates, etc., are logically related, place them in a common namespace.

[2] When you define either a class that does not implement a mathematical entity like a matrix or a
complex number or a low-level type such as a linked list:
[a] Don't use global data (use members).
[b] Don't use global functions.
[c] Don't use public data members.
[d] Don't use friends, except to avoid [a] or [c].
[e] Don't put a "type field" in a class; use virtual functions.
[f] Don't use inline functions, except as a significant optimization.



Section 1.8 Advice 17

More specific or detailed rules of thumb can be found in the "Advice" section of each chapter.
Remember, this advice is only rough rules of thumb, not immutable laws. A piece of advice should
be applied only' 'where reasonable." There is no substitute for intelligence, experience, common
sense, and good taste.

I find rules of the form "never do this" unhelpful. Consequently, most advice is phrased as
suggestions of what to do, while negative suggestions tend not to be phrased as absolute prohibi
tions. I know of no major feature of C++ that I have not seen put to good use. The "Advice" sec
tions do not contain explanations. Instead, each piece of advice is accompanied by a reference to
the appropriate section of the book. Where negative advice is given, that section usually provides a
suggested alternative.

1.8.1 References

There are few direct references in the text, but here is a short list of books and papers that are men
tioned directly or indirectly.
[Barton, 1994] John J. Barton and Lee R. Nackman: Scientific and Engineering C++.

Addison-Wesley. Reading, Mass. 1994. ISBN 1-201-53393-6.
[Berg, 1995] William Berg, Marshall Cline, and Mike Girou: Lessons Learned .from the

OS/400 00 Project. CACM. Vol. 38 No. 10. October 1995.
[Booch,1994] Grady Booch: Object-Oriented Analysis and Design. Benjamin/Cummings.

Menlo Park, Calif. 1994. ISBN 0-8053-5340-2.
[Budge, 1992] Kent Budge, J. S. Perry, and A. C. Robinson: High-Performance Scient~fic

Computation using C++. Proc. USENIX C++ Conference. Portland, Oregon.
August 1992.

[C,1990] X3 Secretariat: Standard - The C Language. X3Jll/90-013. ISO Standard
ISO/IEC 9899. Computer and Business Equipment Manufacturers Association.
Washington, DC, USA.

[C++,1998] X3 Secretariat: International Standard - The C++ Language. X3J 16-14882.
Information Technology Council (NSITC). Washington, DC, USA.

[Campbell, 1987] Roy Campbell, et al.: The Design o.f a Multiprocessor Operating System. Proc.
USENIX C++ Conference. Santa Fe, New Mexico. November 1987.

[Coplien,1995] James O. Coplien and Douglas C. Schmidt (editors): Pattern Languages of
Program Design. Addison-Wesley. Reading, Mass. 1995. ISBN 1-201
60734-4.

[Dahl, 1970] O-J. Dahl, B. Myrhaug, and K. Nygaard: SIMULA Common Base Language.
Norwegian Computing Center S-22. Oslo, Norway. 1970.

[Dahl, 1972] O-J. Dahl and C. A. R. Hoare: Hierarchical Program Construction in Struc
tured Programming. Academic Press, New York. 1972.

[Ellis,1989] Margaret A. Ellis and Bjame Stroustrup: The Annotated C++ Reference Man
ual. Addison-Wesley. Reading, Mass. 1990. ISBN 0-201-51459-1.

[Gamma,1995] Erich Gamma, et al.: Design Patterns. Addison-Wesley. Reading, Mass.
1995. ISBN 0-201-63361-2.

[Goldberg, 1983] A. Goldberg and D. Robson: SMALLTALK-80 - The Language and Its Ilnple
mentation. Addison-Wesley. Reading, Mass. 1983.



18 Notes to the Reader Chapter 1

[Griswold, 1970]

[Griswold, 1983]

[Hamilton, 1993]

[Henricson, 1997]

[lchbiah, 1979]

[Kamath, 1993]

[Kernighan, 1978]

[Kernighan, 1988]

[Koenig,1989]

[Koenig,1997]

[Knuth, 1968]

[Liskov,1979]

[Martin, 1995]

[Orwell, 1949]
[Parrington~ 1995J

[Richards, 1980]

[RosIer, 1984]

[Rozier, 1988]

[Sethi, 1981]

[Stepanov, 1994]

R. E. Griswold, et al.: The Snobol4 Programnlillg Language. Prentice-Hall.
Englewood Cliffs, New Jersey. 1970.
R. E. Griswold and M. T. Griswold: The ICON Programming Language.
Prentice-Hall. Englewood Cliffs, New Jersey. 1983.
G. Hamilton and P. Kougiouris: The Spring Nucleus: A Microkernel for
Objects. Proc. 1993 Summer USENIX Conference. USENIX.
Mats Henricson and Erik Nyquist: Industrial Strength C++: Rules and Recom
111endations. Prentice-Hall. Englewood Cliffs, New Jersey. 1997. ISBN 0-
13-120965-5.
Jean D. Ichbiah, et al.: Rationale .for the Design of the ADA Programming Lan
guage. SIGPLAN Notices. Vol. 14 No.6. June 1979.
Yogeesh H. Kamath, Ruth E. Smilan, and Jean G. Smith: Reaping Benefits with
Ohject-Oriented Technology. AT&T Technical Journal. Vol. 72 No.5.
September/October 1993.
Brian W. Kernighan and Dennis M. Ritchie: The C Programming Language.
Prentice-Hall. Englewood Cliffs, New Jersey. 1978.
Brian W. Kernighan and Dennis M. Ritchie: The C Programming Language
(Second Edition). Prentice-Hall. Englewood Cliffs, New Jersey. 1988. ISBN
0-13-1 10362-8.
Andrew Koenig and Bjarne Stroustrup: C++: As close to C as possible - but
110 closer. The C++ Report. Vol. I No.7. July 1989.
Andrew Koenig and Barbara Moo: RUlninations on C++. Addison Wesley
Longlnan. Reading, Mass. 1997. ISBN 1-201-42339-1.
Donald Knuth: The Art o.f Computer Progralnlning. Addison-Wesley. Read
ing, Mass.
Barbara Liskov et al.: Clu Re.ference Manual. MIT/LCSITR-225. MIT Cam
bridge. Mass. 1979.
Robert C. Martin: Designing Object-Oriented C++ Applications Using the
Booch Method. Prentice-Hall. Englewood Cliffs, New Jersey. 1995. ISBN
0- ]3-203837-4.
George Orwell: 1984. Seeker and Warburg. London. 1949.
Graham Parrington et al.: The Design and Implementation of Arjuna. Com
puter Systen1S. Vol. 8 No.3. Summer 1995.
Martin Richards and Colin Whitby-Strevens: BCPL - The Language and Its
COlnpiler. CUlnbridge University Press, Cambridge. England. 1980. ISBN
0-52] -2] 965-5.
L. RosIer: The Evolution (~f C - Past and Future. AT&T Bell Laboratories
Technical Journal. Vol. 63 No.8. Part 2. October 1984.
M. Rozier, et al.: CHORUS Distributed Operating Systems. Computing Sys
tems. Vol. 1 No.4. Fall 1988.
Ravi Sethi: Un~f'ornl Syntax jor Type Expressions and Declarations. Software
Practice & Experience. Vol. 11. ]981.
Alexander Stepanov and Meng Lee: The Standard Template Library. HP Labs
Technical Report HPL-94-34 (R. I). August, 1994.



Section 1.8.1 References 19

[Stroustrup, 1986] Bjarne Stroustrup: The C+ + Progralnming Language. Addison-Wesley.
Reading, Mass. 1986. ISBN 0-201-12078-X.

[Stroustrup,1987] Bjarne Stroustrup and Jonathan Shopiro: A Set (~f C Classes .for Co-Routine
Style Progralnlning. Proc. USENIX C++ Conference. Santa Fe, New Mexico.
November 1987.

[Stroustrup, 1991] Bjame Stroustrup: The C++ Programlning Language (Second Edition).
Addison-Wesley. Reading, Mass. 1991. ISBN 0-201-53992-6.

lStroustrup, 1994] Bjame Stroustrup: The Design and Evolution of c++. Addison-Wesley. Read
ing, Mass. 1994. ISBN 0-201-54330-3.

[Tarjan, 1983] Robert E. Tarjan: Data Structures and Network Algorithnls. Society for Indus
trial and Applied Mathematics. Philadelphia, Penn. 1983. ISBN 0-898
71187-8.

[Unicode, 1996] The Unicode Consortium: The Unicode Standard, Version 2.0. Addison
Wesley Developers Press. Reading, Mass. 1996. ISBN 0-201-48345-9.

[UNIX,1985] UNIX Tilne-Sharing System: Progranuner's Manual. Research Version, Tenth
Edition. AT&T Bell Laboratories, Murray Hill, New Jersey. February 1985.

[Wilson,1996] Gregory V. Wilson and Paul Lu (editors): Parallel Progralnming Using C++.
The MIT Press. Cambridge. Mass. 1996. ISBN 0-262-73118-5.

[Wikstrom,1987] Ake Wikstrom: Functional Progralnnling Using ML. Prentice-Hall. Engle
wood Cliffs, New Jersey. 1987.

[Woodward, 1974] P. M. Woodward and S. G. Bond: Algol 68-R Users Guide. Her Majesty's Sta
tionery Office. London. England. 1974.

References to books relating to design and larger software development issues can be found at the
end of Chapter 23.





2
A Tour of C++

The first thing we do, let;s
kill all the language lawyers.

- Henry VI, part II

What is C++? - programming paradigms - procedural programming - modularity 
separate compilation - exception handling - data abstraction - user-defined types 
concrete types - abstract types - virtual functions - object-oriented programming .
generic programming - containers - algorithms - language and programming 
advice.

2.1 What is C++?

C++ is a general-purpose programming language with a bias towards systems programming that
- is a better C,
- supports data abstraction,
- supports object-oriented programming, and
- supports generic programming.

This chapter explains what this means without going into the finer details of the language defini
tion. Its purpose is to give you a general overview of C++ and the key techniques for using it, not
to provide you with the detailed information necessary to start programming in C++.

If you find some parts of this chapter rough going, just ignore those parts and plow on. All will
be explained in detail in later chapters. However, if you do skip part of this chapter, do yourself a
favor by returning to it later.

Detailed understanding of language features - even of all features of a language - cannot com
pensate for lack of an overall view of the language and the fundamental techniques for using it.



22 A rrour of C++ Chapter 2

2.2 Programming Paradigms

Object-oriented prognlnlming is a technique for programming - a paradigm for writing "good"
programs for a set of problems. If the term "object-oriented programming language" means any
thing, it must mean a programnling language that provides mechanisms that support the object
oriented style of progralnming well.

There is an important distinction here. A language is said to support a style of programming if
it provides facilities that make it convenient (reasonably easy, safe, and efficient) to use that style.
A language does not support a technique if it takes exceptional effort or skill to write such pro
grams; it 111erely enables the technique to be used. For example, you can write structured programs
in Fortran77 and object-oriented programs in C, but it is unnecessarily hard to do so because these
languages do not directly support those techniques.

Support for a paradigm comes not only in the obvious form of language facilities that allow
direct use of the paradigm, but also in the nlore subtle form of compile-time and/or run-time checks
against unintentional deviation from the paradigm. Type checking is the most obvious example of
this; ambiguity detection and run-time checks are also used to extend linguistic support for para
digms. Extra-linguistic facilities such as libraries and programming environments can provide fur
ther support for paradigms.

One language is not necessarily better than another because it possesses a feature the other does
not. There are many exanlples to the contrary. The important issue is not so much what features a
language possesses, but that the features it does possess are sufficient to support the desired pro
gramming styles in the desired application areas:

[1] All features must be cleanly and elegantly integrated into the language.
[2] It must be possible to use features in combination to achieve solutions that would otherwise

require extra, separate features.
[3] There should be as few spurious and 10 Iospecial-purpose" features as possible.
[4] A feature's iInplementation should not impose significant overheads on programs that do

not require it.
[5] A user should need to know only about the subset of the language explicitly used to write a

program.
The first principle is an appeal to aesthetics and logic. The next two are expressions of the ideal of
minimalism. The last two can be summarized as "what you don't know \\/on't hurt you."

C++ was designed to support data abstraction, object-oriented programming, and generic pro
gramming in addition to traditional C programming techniques under these constraints. It was not
meant to force one particular programming style upon all users.

The following sections consider some prognunming styles and the key language mechanisms
supporting them. The presentation progresses through a series of techniques starting with proce
dural programming and leading up to the use of class hierarchies in object-oriented programming
and generic programming using templates. Each paradigm builds on its predecessors, each adds
something new to the c++ programmer's toolbox, and each reflects a proven design approach.

The presentation of language features is not exhaustive. The emphasis is on design approaches
and ways of organizing programs rather than on language details. At this stage, it is far more
important to gain an idea of what can be done using C++ than to understand exactly how it can be
achieved.



Section 2.3

2.3 Procedural Programming

The original programming paradigm is:

Procedural Programming 23

Decide which procedures you want;
use the best algorithms you can find.

The focus is on the processing - the algorithm needed to perform the desired computation. Lan
guages support this paradigm by providing facilities for passing arguments to functions and return
ing values from functions. The literature related to this way of thinking is filled with discussion of
ways to pass arguments, ways to distinguish different kinds of arguments, different kinds of func
tions (e.g., procedures, routines, and macros), etc.

A typical example of "good style" is a square-root function. Given a double-precision
floating-point argument, it produces a result. To do this, it performs a well-understood mathemati
cal computation:

double sqrt (double arg)
{

/ / code for calculating a square root

void f()

{

double root2 =sqrt (2 ) ;
/ / ...

Curly braces, { }, express grouping in C++. Here, they indicate the start and end of the function
bodies. The double slash, / /, begins a comment that extends to the end of the line. The keyword
void indicates that a function does not return a value.

From the point of view of program organization, functions are used to create order in a maze of
algorithms. The algorithms themselves are written using function calls and other language facili
ties. The following subsections present a thumb-nail sketch of C++' s most basic facilities for
expressing computation.

2.3.1 Variables and Arithmetic

Every name and every expression has a type that determines the operations that may be performed
on it. For example, the declaration

int inch;

specifies that inch is of type int; that is, inch is an integer variable.
A declaration is a statement that introduces a name into the program. It specifies a type for that

name. A type defines the proper use of a name or an expression.
c++ offers a variety of fundamental types, which correspond directly to hardware facilities. For

example:



24 A Tour of C++ Chapter 2

bool
char
int
double

/ / Boolean, possible values are true and false
/ / character, for example, 'a', 'z', and '9'
/ / integer, for example, 1, 42, and 1216
/ / double-precision floating-point number, for example, 3.14 and 299793.0

A char variable is of the natural size to hold a character on a given machine (typically a byte), and
an int variable is of the natural size for integer arithmetic on a given machine (lypically a word).

The arithmetic operators can be used for any combination of th~se types:

+

*
/

/ / plus, both unary and binary
/ / minus, both unary and binary
/ / multiply
/ / divide
/ / remainder

So can the comparison operators:

/ / equal
! = // not equal
< / / less than
> / / greater than
<= // less than or equal
>= / / greater than or equal

In assignments and in arithmetic operations, C++ performs all meaningful conversions between the
basic types so that they can be mixed freely:

void someJunction ( )
{

double d = 2 . 2 ;
int i = 7;
d =d+i;
i =d*i;

/ / function that doesn't return a value

/ / initialize floating-point number
/ / initialize integer
/ / assign sum to d
/ / assign product to i

As in C, =is the assignment operator and ==tests equality.

2.3.2 Tests and Loops

c++ provides a conventional set of statements for expressing selection and looping. For example,
here is a simple function that prompts the user and returns a Boolean indicating the response:

bool accept ( )
{

cout« "Do you want to proceed (y or n) ?\n" ;

char answer = 0;
cin » answer;

if (answer == ' y ') return true;
return false;

/ / write question

/ / read answer



Section 2.3.2 Tests and Loops 25

The << operator (' 'put to") is used as an output operator; cout is the standard output stream. The
>> operator (" get from") is used as an input operator; cin is the standard input stream. The type of
the right-hand operand of» determines what input is accepted and is the target of the input opera
tion. The \n character at the end of the output string represents a newline.

The example could be slightly improved by taking an 'n' answer into account:

bool accept2 ( )
{

cout« "Do you want to proceed (y or n) ?\n";

char answer =0;
cin » answer;

switch (answer) {
case 'y' :

return true;
case'n' :

return false;
default:

cout« II [' II take that for a no. \n" ;
return false;

/ / write question

/ / read answer

A switch-statement tests a value against a set of constants. The case constants must be distinct, and
if the value tested does not match any of them, the default is chosen. The programmer need not
provide a default.

Few programs are written without loops. In this case, we might like to give the user a few tries:

bool accept3 ( )
{

int tries = 1 ;
while (tries < 4) {

cout« II Do you want to proceed (y or n)?\n" ;
char answer = 0;
cin » answer;

switch (answer) {
case 'y':

return true;
case 'n' :

return false;
default:

cout << "Sorry, I don't understand that. \n" ;
tries = tries + 1 ;

}

cout« "I'll take that for a no. \n" ;
return false;

The while-statement executes until its condition becomesfalse.

/ / write question

/ / read answer



26 A Tour of C++

2.3.3 Pointers and Arrays

An array can be declared like this:

char v (10] ; / / array of 10 characters

Similarly, a pointer can be declared like this:

char* p; / / pointer to character

Chapter 2

In declarations, [] means "array of" and * means "pointer to." All arrays have 0 as their lower
bound, so v has ten elements, v [0] ...v [9]. A pointer variable can hold the address of an object of
the appropriate type:

p = &v [3] ; / / p points to v's fourth element

Unary & is the address-of operator.
Consider copying ten elements from one array to another:

void anotherJunction ( )
{

int vI [JO];
int v2 [10];
/ / ...
for (int i=O; i<10; ++;) v1 [i] =v2 [i];

This for-statement can be read as "set i to zero, while i is less than 10, copy the ith element and
increment i." When applied to an integer variable, the increment operator ++ simply adds 1.

2.4 Modular Programming

Over the years, the emphasis in the design of programs has shifted from the design of procedures
and toward the organization of data. Among other things, this reflects an increase in program size.
A set of related procedures with the data they manipulate is often called a module. The progra.1n
ming paradigm becomes:

Decide which modules you want;
partition the program so that data is hidden within modules.

This paradigm is also known as the data-hiding principle. Where there is no grouping of proce
dures with related data, the procedural programming style suffices. Also, the techniques for design
ing "good procedures" are now applied for each procedure in a module. The most common exam
ple of a module is the definition of a stack. The Inain problems that have to be solved are:

[1] Provide a user interface for the stack (e.g., functions push () and pop ( ) ).
[2] Ensure that the representation of the stack (e.g., an array of elements) can be accessed only

through this user interface.
[3] Ensure that the stack is initialized before its first use.



Section 2.4 Modular Programming 27

c++ provides a mechanism for grouping related data, functions, etc., into separate namespaces. For
example, the user interface of a Stack module could be declared and used like this:

namespace Stack {
void push (char);
char pop ();

void f()
{

/ / inteiface

Stack: :push ( ,c ' ) ;
if (Stack: :pop () ! = 'c') error ( lIimpossible ll

);

The Stack:: qualification indicates that the push () and pop () are those from the Stack name
space. Other uses of those names will not interfere or cause confusion.

The definition of the Stack could be provided in a separately-compiled part of the program:

namespace Stack { / / inzplementation
const int max_size =200;
char v [max_size];
int top =0;

void push (char c) { / * checkfor overflow and push c * / }
char pop () { / * check for underflow and pop * / }

The key point about this Stack module is that the user code is insulated from the data representation
of Stack by the code implementing Stack: :push () and Stack: :pop (). The user doesn't need to
know that the Stack is implemented using an array, and the implementation can be changed without
affecting user code. The / * starts a comment that extends to the following * / .

Because data is only one of the things one might want to "hide," the notion of data hiding is
trivially extended to the notion of information hiding; that is, the names of functions, types, etc.,
can also be made local to a module. Consequently, C++ allows any declaration to be placed in a
namespace (§8.2).

This Stack module is one way of representing a stack. The following sections use a variety of
stacks to illustrate different programming styles.

2.4.1 Separate Compilation

C++ supports C's notion of separate compilation. This can be used to organize a program into a set
of semi-independent fragments.

Typically, we place the declarations that specify the interface to a module in a file with a name
indicating its intended use. Thus,

namespace Stack {
void push (char);
char pop ();

/ / inteiface

would be placed in a file stack. h, and users will include that file, called a headerfile, like this:



28 A Tour of C++

#include "stack. h "

void f()
{

/ / get the interface

Chapter 2

Stack: :push ( ,c ' ) ;
if (Stack: :pop () ! = ' c'} error ( "impossible" };

To help the compiler ensure consistency, the file providing the implementation of the Stack module
will also include the interface:

#include "stack. h" / / get the interface

namespace Stack { / / representation
const int max_size = 200;
char v [max_size];
int top = 0;

void Stack:: push (char c) { / * check for overflow and push c * / }

char Stack:: pop () { / * check for underflow and pop * / }

The user code goes in a third file, say user. c. The code in user. c and stack. c shares the stack
interface information presented in stack. h, but the two files are otherwise independent and can be
separately compiled. Graphically, the program fragments can be represented like this:

stack.h:

Stack interface

user.c:

#include "stack. h"
use stack

stack.c:

#include "stack.h"
define stack

Separate compilation is an issue in all real programs. It is not simply a concern in programs that
present facilities, such as a Stack, as modules. Strictly speaking, using separate compilation isn't a
language issue; it is an issue of how best to take advantage of a particular language implementation.
However, it is of great practical importance. The best approach is to maximize modularity, repre
sent that modularity logically through language features, and then exploit the modularity physically
through files for effective separate compilation (Chapter 8, Chapter 9).

2.4.2 Exception Handling

When a program is designed as a set of modules, error handling must be considered in light of these
modules. Which module is responsible for handling what errors? Often, the module that detects an
error doesn't know what action to take. The recovery action depends on the module that invoked



Section 2.4.2 Exception Handling 29

I I interface

the operation rather than on the module that found the error while trying to perform the operation.
As programs grow, and especially when libraries are used extensively, standards for handling errors
(or, more generally, "exceptional circumstances") become important.

Consider again the Stack example. What ought to be done when we try to push () one too
many characters? The writer of the Stack module doesn't know what the user would like to be
done in this case, and the user cannot consistently detect the problem (if the user could, the over
flow wouldn't happen in the first place). The solution is for the Stack implementer to detect the
overflow and then tell the (unknown) user. The user can then take appropriate action. For exam
ple:

namespace Stack {
void push (char);
char pop ();

class Overflow { }; I I type representing overflow exceptions

When detecting an overflow, Stack: :push () can invoke the exception-handling code; that is,
"throw an Overflow exception:"

void Stack:: push (char c)
{

if (top == max_size) throw Overflow ( );
II push c

The throw transfers control to a handler for exceptions of type Stack: : Overflow in some function
that directly or indirectly called Stack: :push ( ). To do that, the implementation will unwind the
function call stack as needed to get back to the context of that caller. Thus, the throw acts as a mul
tilevel return. For example:

void f()

{

/ I ...
try { I I exceptions here are handled by the handler defined below

while (true) Stack: :push ( ,c' );
}

catch (Stack:: Overflow) {
I loops: stack overflow; take appropriate action

}

/ I ...

The while loop will try to loop forever. Therefore, the catch-clause providing a handler for
Stack: : Overflow will be entered after some call of Stack: : push () causes a throw.

Use of the exception-handling mechanisms can make error handling more regular and readable.
See §8.3, Chapter 14, and Appendix E for further discussion, details, and examples.



30 A Tour of C++

2.5 Data Abstraction

Chapter 2

Modularity is a fundamental aspect of all successful large programs. It remains a focus of all
design discussions throughout this book. However, modules in the Conn described previously are
not sufficient to express conlplex systems cleanly. Here, I first present a way of using modules to
provide a form of user-defined types and then show how to overcome some problems with that
approach by defining user-defined types directly.

2.5.1 Modules Defining Types

Programming with modules leads to the centralization of all data of a type under the control of a
type manager module. For example, if we wanted many stacks - rather than the single one pro
vided by the Stack module above - we could define a stack manager with an interface like this:

namespace Stack {
struct Rep;
typedef Rep& slG.ck;

stack create ( ) ;
void destroy (stack s);

void push (stack s, char c);
char pop (stack s);

The declaration

struct Rep;

/ / definition ofstack layout is elsewhere

/ / make a new stack
/ / delete s

/ / push c onto s
/ / pop s

II nlake a new stack
II make another new stack

says that Rep is the name of a type, but it leaves the type to be defined later (§5.7). The declaration

typedef Rep& stack;

gives the name stack to a "reference to Rep" (details in §5.5). The idea is that a stack is identified
by its Stack: : stack and that further details are hidden from users.

A Stack: : stack acts much like a variable of a built-in type:

struct Badyop { };

void f()
{

Stack: : stack s J =Stack: : create ( ) ;
Stack: : stack s2 =Stack: : create ( ) ;

Stack: :push (s J, ' c ' ) ;
Stack: :push (s2, ' k ' ) ;

if (Stack: :pop (sJ) ! = 'c') throw Badyop ( );
if (Stack::pop(s2) != 'k') throw Badyop();

Stack: : destroy (s J ) ;
Stack: : destroy (s2 ) ;



Section 2.5.1 Modules Defining Types 31

We could implement this Stack in several ways. It is important that a user doesn't need to know
how we do it. As long as we keep the interface unchanged, a user will not be affected if we decide
to re-implement Stack.

An implementation might preallocate a few stack representations and let Stack: : create () hand
out a reference to an unused one. Stack:: destroy () could then mark a representation "unused"
so that Stack: : create () can recycle it:

namespace Stack { / / representation

const int max_size =200 i

struct Rep {
char v [max_size] i

int top;
} i

const int max = J6 i / / maximum number ofstacks

Rep stacks [max] i

bool used [max] i

typedef Rep& stack i

/ / preallocated stack representations
/ / used[iJ is true if stacks[iJis in use

void Stack:: push (stack s, char c) { / * check s for overflow and push c * / }

char Stack:: pop (stack s) { / * check s for underflow and pop * / }

Stack: : stack Stack:: create ( )
{

/ / pick an unused Rep, mark it used, initialize it, and return a reference to it

void Stack:: destroy (stack s) { / * mark s unused * / }

What we have done is to wrap a set of interface functions around the representation type. How the
resulting' 'stack type" behaves depends partly on how we defined these interface functions, partly
on how we presented the representation type to the users of Stacks, and partly on the design of the
representation type itself.

This is often less than ideal. A significant problem is that the presentation of such "fake types"
to the users can vary greatly depending on the details of the representation type - and users ought to
be insulated from knowledge of the representation type. For example, had we chosen to use a more
elaborate data structure to identify a stack, the rules for assignment and initialization of
Stack: : stacks would have changed dramatically. This may indeed be desirable at times. How
ever, it shows that we have simply moved the problem of providing convenient stacks from the
Stack module to the Stack: : stack representation type.

More fundamentally, user-defined types implemented through a module providing access to an
implementation type don't behave like built-in types and receive less and different support than do
built-in types. For example, the time that a Stack:: Rep can be used is controlled through
Stack: : create () and Stack: :destroy () rather than by the usual language rules.



32 A Tour of C++ Chapter 2

/ / construct complex from two scalars
/ / construct complex from one scalar
/ / default complex: (0,0)

2.5.2 User-Defined Types

c++ attacks this problem by allowing a user to directly define types that behave in (nearly) the
same way as built-in types. Such a type is often called an abstract data type. I prefer the term
user-defined type. A more reasonable definition of abstract data type would require a mathemati
cal "abstract" specification. Given such a specification, what are called types here would be con
crete examples of such truly abstract entities. The programming paradigm becomes:

Decide which types you want;
provide a full set ofoperations for each type.

Where there is no need for more than one object of a type, the data-hiding programming style using
modules suffices.

Arithmetic types such as rational and complex numbers are common examples of user-defined
types. Consider:

class complex {
double re, im i

public:
complex (double r, double i) {re=r i im=i i

complex{double r) { re=rj im=Oj }
complex () { re = im = 0 i }

} ;

friend complex operator+ (complex, complex);
friend complex operator- (complex, complex);
friend complex operator- (complex);
friend complex operator* (complex, complex);
friend complex operator/ (complex, complex) j

friend bool operator== (complex, complex) i

friend bool operator! = (complex, complex) i

/ / ...

/ / binary
/ / unary

/ / equal
/ I not equal

The declaration of class (that is, user-defined type) complex specifies the representation of a com
plex number and the set of operations on a complex number. The representation is private; that is,
re and im are accessible only to the functions specified in the declaration of class complex. Such
functions can be defined like this:

complex operator+ (complex aI, complex a2)
{

return complex (aJ . re+a2. re, al . im+a2. im);

A member function with the same name as its class is called a constructor. A constructor defines a
way to initialize an object of its class. Class complex provides three constructors. One makes a
complex from a double, another takes a pair of doubles, and the third makes a complex with a
default value.

Class complex can be used like this:



Section 2.5.2

void f (complex z)
{

complex a = 2 . 3 ;
complex b = l/a;
complex c = a+b* complex (1 , 2 .3) ;
/ / ...
If (c ! =b) c =- (b/a) +2*b;

User-Defined Types 33

/ / used as exception
/ / used as exception
/ / used as exception

The compiler converts operators involving complex numbers into appropriate function calls. For
example, c ! =b means operator! = (c , b) and 1 / a means operator / (complex (1 ) , a) .

Most, but not all, modules are better expressed as user-defined types.

2.5.3 Concrete Types

User-defined types can be designed to meet a wide variety of needs. Consider a user-defined Stack
type along the lines of the complex type. To make the example a bit more realistic, this Stack type
is defined to take its number of elements as an argument:

class Stack {
char* v;
int top;
int max_size;

public:
class Underflow { };
class Overflow { };
class Bad_size { };

} ;

Stack (int s);
-Stack ();

void push (char c);
char pop ( );

/ / constructor
/ / destructor

The constructor Stack (int) will be called whenever an object of the class is created. This takes
care of initialization. If any cleanup is needed when an object of the class goes out of scope, a com
plement to the constructor - called the destructor - can be declared:

Stack: : Stack (int s)
{

/ / constructor

top =0;
if (s<O II lOOOO<s) throw Bad_size ( ); / / "11" means "or"
max_size =s;
v =new char [s] ; / / allocate elements on the free store (heap, dynamic store)

Stack: : -Stack ( )
{

delete [] v;

/ / destructor

/ / free the elements for possible reuse of their space (§6.2.6)



34 A Tour of C++ Chapter 2

The constructor initializes a new Stack variable. To do so, it allocates some memory on the free
store (also called the heap or dynamic store) using the new operator. The destructor cleans up by
freeing that memory. This is all done without intervention by users of Stacks. The users simply
create and use Stacks much as they would variables of built-in types. For example:

Stack s_var1 (10) i / / global stack with 10 elements

void f (Stack& s_ref, int i)
{

/ / reference to Stack

Stack s_var2 (i) i / / local stack with i elements
Stack* sytr =new Stack (20) ; / / pointer to Stack allocated on free store

s_varl .push ( ,a');
s_var2 . push ( ,b' ) i

s_ref.push ( ,c');

sytr->push ( ,d' ) ;
/ / ...

This Stack type obeys the same rules for naming, scope, allocation, lifetime, copying, etc., as does
a built-in type such as int and char.

Naturally, the push () and pop () member functions must also be defined somewhere:

void Stack:: push (char c)
{

if (top == max_size) throw Overflow ( ) i

v [top] = c;
top = top + 1;

char Stack:: pop ( )
{

if (top == 0) throw Underflow ( );
top = top - 1 i

return v [top] ;

Types such as complex and Stack are called concrete types, in contrast to abstract types, where the
interface more completely insulates a user from implementation details.

2.5.4 Abstract Types

One property was lost in the transition from Stack as a "fake type" implemented by a module
(§2.5.1) to a proper type (§2.5.3). The representation is not decoupled from the user interface;
rather, it is a part of what would be included in a program fragment using Stacks. The representa
tion is private, and therefore accessible only through the member functions, but it is present. If it
changes in any significant way, a user must recompile. This is the price to pay for having concrete
types behave exactly like built-in types. In particular, we cannot have genuine local variables of a
type without knowing the size of the type's representation.

For types that don't change often, and where local variables provide much-needed clarity and
efficiency, this is acceptable and often ideal. However, if we want to completely isolate users of a



Section 2.5.4 Abstract Types 35

/ / used as exception
/ / used as exception

stack from changes to its implementation, this last Stack is insufficient. Then, the solution is to
decouple the interface from the representation and give up genuine local variables.

First, we define the interface:

class Stack {
public:

class Underflow { } i

class Overflow { };

virtual void push (char c) = 0;
virtual char pop () =0;

} ;

The word virtual means "may be redefined later in a class derived from this one" in Simula and
C++. A class derived from Stack provides an implementation for the Stack interface. The curious
=0 syntax says that some class derived from Stack must define the function. Thus, this Stack can
serve as the interface to any class that implements its push () and pop () functions.

This Stack could be used like this:

void j(Stack& s_rej)
{

s_rej.push ( ,c');
if (s_rej.pop () ! = 'c') throw Badyop ();

Note how f() uses the Stack interface in complete ignorance of implementation details. A class
that provides the interface to a variety of other classes is often called a polymorphic type.

Not surprisingly, the implementation could consist of everything from the concrete class Stack
that we left out of the interface Stack:

class Array_stack : public Stack { / / Array_stack implements Stack
char* p;
int max_size;
int top;

public:
Array_stack (int s);
....Array_stack ( ) ;

void push (char c);
char pop ();

} ;

The ":public" can be read as "is derived from," "implements," and "is a subtype of."
For a function like f() to use a Stack in complete ignorance of implementation details, some

other function will have to make an object on which it can operate. For example:

void g ()
{

Array_stack as (200);
[(as);



36 A Tour of C++ Chapter 2

Since/(} doesn't know about Array_stacks but only knows the Stack interface, it will work just as
well for a different implementation of a Stack. For example:

class List_stack : public Stack { / / List_stack implements Stack
list<char> Ic; / / (standard library) list ofcharacters (§3. 7.3)

public:
List_stack () { }

void push (char c) { Ic. pushJront (c) i }

char pop () i

} ;

char List_stack:: pop ( )
{

char x = Ic .front ( ) i

Ic .popJront ( ) ;
return Xi

/ / get first element
/ / remove first element

Here, the representation is a list of characters. The lc .pushJront (c) adds c as the first element of
Ie, the call Ie . popJront () removes the first element, and le .front () denotes le's first element.

A function can create a List_stack and havef () use it:

void h ()
{

List_stack Is;
f(ls) ;

2.5.5 Virtual Functions

~11__A_r1i_llY s_ta_Ck_:_:_P_US_h_(_}_
~ Array_stack: :pop ( )

vtbl.·

~ I

Ilow is the call s_,ef.pop () inf(} resolved to the right function definition? Whenf() is called
from h ( ), List_stack: :pop ( ) must be called. When f ( ) is called from g ( ) ,
Array_stack: :pop () must be called. To achieve this resolution, a Stack object must contain
information to indicate the function to be called at run-time. A common implementation technique
is for the compiler to convert the name of a virtual function into an index into a table of pointers to
functions. That table is usually called' 'a virtual function table" or simply, a vtbl. Each class with
virtual functions has its own vtbl identifying its virtual functions. This can be represented graphi
cally like this:

Array_stack object:

List_stac1k ob~:c~ltbl: ~ 11__L_is_t__s_ta_c_k_:_:p_u_s_h_(_}_

~ ~ List_stack: :pop()



Section 2.5.5 Virtnal Functions 37

The functions in the vtbl allow the object to be used correctly even when the size of the object and
the layout of its data are unknown to the caller. All the caller needs to know is the location of the
vtbl in a Stack and the index used for each virtual function. This virtual call mechanism can be
made essentially as efficient as the "normal function call" mechanism. Its space overhead is one
pointer in each object of a class with virtual functions plus one vtbl for each such class.

2.6 Object-Oriented Programming

Data abstraction is fundamental to good design and will remain a focus of design throughout this
book. However, user-defined types by themselves are not flexible enough to serve our needs. This
section first demonstrates a problem with simple user-defined data types and then shows how to
overcome that problem by using class hierarchies.

2.6.1 Problems with Concrete Types

A concrete type, like a "fake type" defined through a module, defines a sort of black box. Once
the black box has been defined, it does not really interact with the rest of the program. There is no
way of adapting it to new uses except by modifying its definition. This situation can be ideal, but it
can also lead to severe inflexibility. Consider defining a type Shape for use in a graphics system.
Assume for the moment that the system has to support circles, triangles, and squares. Assume also
that we have

class Point { / * * / } ;
class Color{ / * * / };

The / * and * / specify the beginning and end, respectively, of a comment. This comment notation
can be used for multi-line comments and comments that end before the end of a line.

We might define a shape like this:

enum Kind { circle, triangle, square}; / / enumeration (§4.8)

class Shape {
Kind k; / / type field
Point center;
Color col;
/ / ...

public:
void draw ( ) ;
void rotate (int) ;
/ / ...

} i

The "type field" k is necessary to allow operations such as draw () and rotate () to determine
what kind of shape they are dealing with (in a Pascal-like language, one might use a variant record
with tag k). The function draw () might be defined like this:



38 A Tour of C++

void Shape:: draw ( )
{

switch (k) {
case circle:

/ / draw a circle
break;

case triangle:
/ / draw a triangle
break;

case square:
/ / draw a square
break;

Chapter 2

This is a mess. Functions such as draw () must "know about" all the kinds of shapes there are.
Therefore, the code for any such function grows each time a new shape is added to the system. If
we define a new shape, every operation on a shape must be examined and (possibly) modified. We
are not able to add a new shape to a system unless we have access to the source code for every
operation. Because adding a new shape involves "touching" the code of every important operation
on shapes, doing so requires great skill and potentially introduces bugs into the code that handles
other (older) shapes. The choice of representation of particular shapes can get severely cramped by
the requirement that (at least some of) their representation must fit into the typically fixed-sized
framework presented by the definition of the general type Shape.

2.6.2 Class Hierarchies

The problem is that there is no distinction between the general properties of every shape (that is, a
shape has a color, it can be drawn, etc.) and the properties of a specific kind of shape (a circle is a
shape that has a radius, is drawn by a circle-drawing function, etc.). Expressing this distinction and
taking advantage of it defines object-oriented programming. Languages with constructs that allow
this distinction to be expressed and used support object-oriented programming. Other languages
don't.

The inheritance mechanism (borrowed for C++ from Simula) provides a solution. First, we
specify a class that defines the general properties of all shapes:

class Shape {
Point center;
Color col;
/ / ...

public:
Point where () { return center; }
void move (Point to) {center = to; / * ... * / draw ( ); }

virtual void draw () = 0;
virtual void rotate (int angle) = 0;
/ / ...

} ;



Section 2.6.2 Class Hierarchies 39

As in the abstract type Stack in §2.5.4, the functions for which the calling interface can be defined
- but where the implementation cannot be defined yet - are virtual. In particular, the functions
draw () and rotate () can be defined only for specific shapes, so they are declared virtual.

Given this definition, we can write general functions manipulating vectors of pointers to shapes:

void rotate_all (vector<Shape* >& v I int angle) / / rotate v's elements angle degrees
{

for (int i = 0; i<v. size ( ); ++i) v [i] ->rotate (angle);

To define a particular shape, we must say that it is a shape and specify its particular properties
(including the virtual functions):

class Circle : public Shape {
int radius;

public:
void draw () { / * ... * / }
void rotate (int) {} / / yes, the null function

} ;

In C++, class Circle is said to be derived from class Shape, and class Shape is said to be a base of
class Circle. An alternative terminology calls Circle and Shape subclass and superclass, respec
tively. The derived class is said to inherit members from its base class, so the use of base and
derived classes is commonly referred to as inheritance.

The programming paradigm is:

Decide which classes .vou want;
provide a full set o.foperations.for each class;

make commonality explicit by using inheritance.

Where there is no such commonality, data abstraction suffices. The amount of commonality
between types that can be exploited by using inheritance and virtual functions is the litmus test of
the applicability of object-oriented programming to a problem. In some areas, such as interactive
graphics, there is clearly enormous scope for object-oriented programming. In other areas, such as
classical arithmetic types and computations based on them, there appears to be hardly any scope for
more than data abstraction, and the facilities needed for the support of object-oriented programming
seem unnecessary.

Finding commonality among types in a system is not a trivial process. The amount of common
ality to be exploited is affected by the way the system is designed. When a system is designed 
and even when the requirements for the system are written - commonality must be actively sought.
Classes can be designed specifically as building blocks for other types, and existing classes can be
examined to see if they exhibit similarities that can be exploited in a common base class.

For attempts to explain what object-oriented programming is without recourse to specific pro
gramming language constructs, see [Kerr, 1987] and [Booch, 1994] in §23.6.

Class hierarchies and abstract classes (§2.5.4) complement each other instead of being mutually
exclusive (§ 12.5). In general, the paradigms listed here tend to be complementary and often



40 A Tour of C++ Chapter 2

mutually supportive. For example, classes and modules contain functions, while modules contain
classes and functions. The experienced designer applies a variety of paradigms as need dictates.

2.7 Generic Programming

Someone who wants a stack is unlikely always to want a stack of characters. A stack is a general
concept, independent of the notion of a character. Consequently, it ought to be represented inde
pendently.

More generally, if an algorithm can be expressed independently of representation details and if
it can be done so affordably and without logical contortions, it ought to be done so.

The programming paradigm is:

Decide which algorithms you want;
parameterize them so that they workfor

a variety ofsuitable types and data structures.

2.7.1 Containers

We can generalize a stack-of-characters type to a stack-of-anything type by making it a template
and replacing the specific type char with a template parameter. For example:

template<class T> class Stack {
T* ~;
int max_size;
int top i

public:
class Underflow { };
class Overflow { } i

} ;

Stack (int s);
-Stack ();

void push (T) ;
T pop();

/ / constructor
/ / destructor

The template<class T> prefix makes T a parameter of the declaration it prefixes.
The member functions might be defined similarly:

template<class T> void Stack<T>:: push (T c)
{

if (top == max_size) throw Overflow ();
v [top] = c;

top = top + 1;



Section 2.7.1

template<class T> T Stack<T>: :pop ( )
{

if (top == 0) throw Underflow ( ) ;
top = top - 1;
return v [top];

Given these definitions, we can use stacks like this:

Containers 41

Stack<char> sc (200);
Stack<complex> scplx (30) i

Stack< list<int> > sli (45) ;

void f()
{

/ / stack of200 characters
/ / stack of30 complex numbers
/ / stack of45 lists of integers

sc . push ( , c ' ) ;
if (sc. pop () ! = ' c ') throw Badyop ( ) ;

scplx . push (complex (1 , 2) ) ;

if (scplx .pop () ! = complex (1 ,2) ) throw Badyop ( ) ;

Similarly, we can define lists, vectors, maps (that is, associative arrays), etc., as templates. A class
holding a collection of elements of some type is commonly called a container class, or simply a
container.

Templates are a compile-time mechanism so that their use incurs no run-time overhead com
pared to "hand-written code. ' ,

2.7.2 Generic Algorithms

The c++ standard library provides a variety of containers, and users can write their own (Chapter 3,
Chapter 17, Chapter 18). Thus, we find that we can apply the generic programming paradigm once
more to parameterize algorithms by containers. For example, we want to sort, copy, and search
vectors, lists, and arrays without having to write sort ( ) , copy ( ) , and search () functions for each
container. We also don't want to convert to a specific data structure accepted by a single sort func
tion. Therefore, we must find a generalized way of defining our containers that allows us to manip
ulate one without knowing exactly which kind of container it is.

One approach, the approach taken for the containers and non-numerical algorithms in the C++
standard library (§3.8, Chapter 18) is to focus on the notion of a sequence and manipulate
sequences through iterators.

Here is a graphical representation of the notion of a sequence:

begin

~
elements: D ~ D ~

.....

.....

end

A sequence has a beginning and an end. An iterator refers to an element, and provides an operation
that makes the iterator refer to the next element of the sequence. The end of a sequence is an



42 A Tour of C++ Chapter 2

iterator that refers one beyond the last element of the sequence. The physical representation of
"the end" may be a sentinel element, but it doesn't have to be. In fact, the point is that this notion
of sequences covers a wide variety of representations, including lists and arrays.

We need some standard notation for operations such as "access an element through an iterator"
and "make the iterator refer to the next element." The obvious choices (once you get the idea) are
to use the dereference operator * to mean "access an element through an iterator" and the incre
ment operator ++ to mean "make the iterator refer to the next element."

Given that, we can write code like this:

template<class In, class Out> void copy (In from, In tooJar, Out to)
{

while (from! = tooJar) {
* to = *from; / / copy element pointed to
++to; / / next output
+ +from; / / next input

This copies any container for which we can define iterators with the right syntax and semantics.
C++'s built-in, low-level array and pointer types have the right operations for that, so we can

write

char vel [200]; / / array of200 characters
char ve2 [500] ; / / array of500 characters

void f()
{

copy (&vel [OJ, &vel [200], &ve2 [0] ) i

This copies vel from its first element until its last into ve2 starting at ve2' s first element.
All standard library containers (§ 16.3, Chapter 17) support this notion of iterators and

sequences.
Two template parameters In and Out are used to indicate the types of the source and the target

instead of a single argument. This was done because we often want to copy from one kind of con
tainer into another. For example:

complex ae [200];

void g (veetor<complex>& ve, list<complex>& Ie)
{

copy (&ac [0] I &ac [200] I Ie. begin ( ) ) ;
copy (Ie. begin ( ) I Ie. end ( ) , vc . begin ( ) ) ;

This copies the array to the list and the list to the vector. For a standard container, begin () is an
iterator pointing to the first element.



Section 2.8 Postscript 43

2.8 Postscript

No programming language is perfect. Fortunately, a programming language does not have to be
perfect to be a good tool for building great systems. In fact, a general-purpose programming lan
guage cannot be perfect for all of the many tasks to which it is put. What is perfect for one task is
often seriously flawed for another because perfection in one area implies specialization. Thus, C++
was designed to be a good tool for building a wide variety of systems and to allow a wide variety of
ideas to be expressed directly.

Not everything can be expressed directly using the built-in features of a language. In fact, that
isn't even the ideal. Language features exist to support a variety of programming styles and tech
niques. Consequently, the task of learning a language should focus on mastering the native and
natural styles for that language - not on the understanding of every little detail of all the language
features.

In practical programming, there is little advantage in knowing the most obscure language fea
tures or for using the largest number of features. A single language feature in isolation is of little
interest. Only in the context provided by techniques and by other features does the feature acquire
meaning and interest. Thus, when reading the following chapters, please remember that the real
purpose of examining the details of c++ is to be able to use them in concert to support good pro
gramming style in the context of sound designs.

2.9 Advice

[1] Don't panic! All will become clear in time; §2.1.
[2] You don't have to know every detail of C++ to write good programs; § 1.7.
[3] Focus on programming techniques, not on language features; §2.1.





3
A Tour of the Standard Library

Why waste time learning
when ignorance is instantaneous?

- Hobbes

Standard libraries - output - strings - input - vectors - range checking - lists 
maps - container overview - algorithms - iterators - 110 iterators - traversals and
predicates - algorithms using member functions - algorithm overview - complex
numbers - vector arithmetic- standard library overview - advice.

3.1 Introduction

No significant program is written in just a bare programming language. First, a set of supporting
libraries are developed. These then form the basis for further work.

Continuing Chapter 2, this chapter gives a quick tour of key library facilities to give you an idea
what can be done using C++ and its standard library. Useful library types, such as string, vector,
list, and map, are presented as well as the most common ways of using them. Doing this allows me
to give better examples and to set better exercises in the following chapters. As in Chapter 2, you
are strongly encouraged not to be distracted or discouraged by an incomplete understanding of
details. The purpose of this chapter is to give you a taste of what is to come and to convey an
understanding of the simplest uses of the most useful library facilities. A more detailed introduc
tion to the standard library is given in §16.1.2.

The standard library facilities described in this book are part of every complete C++ implemen
tation. In addition to the standard C++ library, most implementations offer "graphical user inter
face" systems, often referred to as GUIs or window systems, for interaction between a user and a
program. Similarly, lnost application development environments provide "foundation libraries"
that support corporate or industrial "standard" development and/or execution environments. I do
not describe such systems and libraries. The intent is to provide a self-contained description of C++



46 A Tour of the Standard Library Chapter 3

as defined by the standard and to keep the examples portable, except where specifically noted. Nat
urally, a programmer is encouraged to explore the more extensive facilities available on most sys
tems, but that is left to exercises.

3.2 Hello, world!

The minimal C++ program is

int main () { }

It defines a function called main, which takes no arguments and does nothing.
Every C++ program must have a function named main ( ). The program starts by executing that

function. The int value returned by main ( ), if any, is the program's return value to "the system."
If no value is returned, the system will receive a value indicating successful completion. A nonzero
value from main () indicates failure.

Typically, a program produces some output. Here is a program that writes out Hello, world!:

#include < iostream>

int main ()
{

std::cout« "Hello, world!\n ll
;

The line #include <iostream> instructs the compiler to include the declarations of the standard
stream I/O facilities as found in iostream. Without these declarations, the expression

std: :cout« "Hello, world!\n"

would make no sense. The operator << (' 'put to") writes its second argument onto its first. In this
case, the string literal n Hello, world! \n" is written onto the standard output stream std: : couto A
string literal is a sequence of characters surrounded by double quotes. In a string literal, the back
slash character \ followed by another character denotes a single special character. In this case, \n is
the newline character, so that the characters written are Hello, world! followed by a newline.

3.3 The Standard Library Namespace

The standard library is defined in a namespace (§2.4, §8.2) called std. That is why I wrote
std: : cout rather than plain couto I was being explicit about using the standard cout, rather than
some other couto

Every standard library facility is provided through some standard header similar to <iostream>.
For example:

#include<string>
#include<list>

This makes the standard string and list available. To use them, the std:: prefix can be used:



Section 3.3 The Standard Library Namespace 47

std: : string s = "Four legs Good; two legs Baaad! " ;
std: : list<std : : string> slogans;

For simplicity, I will rarely use the std:: prefix explicitly in examples. Neither will I always
#include the necessary headers explicitly. To compile and run the program fragments here, you
must #include the appropriate headers (as listed in §3.7.5, §3.8.6, and Chapter 16). In addition,
you must either use the std:: prefix or make every name from std global (§8.2.3). For example:

#include<string>
using namespace std;

string s = n Ignorance is bliss! " ;

/ / make the standard string facilities accessible
/ / make std names available without std:: prefix

/ / ok: string is std::string

It is generally in poor taste to dump every name from a namespace into the global namespace.
However, to keep short the program fragments used to illustrate language and library features, I
omit repetitive #includes and std:: qualifications. In this book, I use the standard library almost
exclusively, so if a name from the standard library is used, it either is a use of what the standard
offers or part of an explanation of how the standard facility might be defined.

3.4 Output

The iostream library defines output for every built-in type. Further, it is easy to define output of a
user-defined type. By default, values output to cou! are converted to a sequence of characters. For
example,

void f()

{

cout« 10;

will place the character 1 followed by the character 0 on the standard output stream. So will

void g ()
{

int i = 10;
cout« i;

Output of different types can be combined in the obvious way:

void h (int i)

{

cout« "the value of i is " ;
cout « i;
cout« '\n';

If i has the value 10, the output will be

the value of i is 10



48 A Tour of the Standard Library Chapter 3

A character constant is a character enclosed in single quotes. Note that a character constant is out
put as a character rather than as a numerical value. For example,

void k{)
{

cout« ' a' ;
cout« ' b' ;
cout« ' c' ;

will output abc.
People soon tire of repeating the name of the output stream when outputting several related

items. Fortunately, the result of an output expression can itself be used for further output. For
example:

void h2 (int i)
{

cout« II the value of i is II « i« '\n';

This is equivalent to h ( ). Streams are explained in more detail in Chapter 21.

3.5 Strings

The standard library provides a string type to complement the string literals used earlier. The
string type provides a variety of useful string operations, such as concatenation. For example:

string s1 = II Hello" ;
string s2 = If world II ;

void m1 ()
{

string 83 = s1 + If, II + s2 + II !\n II ;

cout« s3;

Here, s3 is initialized to the character sequence

Hello, world!

followed by a newline. Addition of strings means concatenation. You can add strings, string liter
als, and characters to a string.

In many applications, the most common form of concatenation is adding something to the end
of a string. This is directly supported by the +=operation. For example:

void m2 (string& s1, string& s2)
{

s1 =s1 + '\n'; / / append newline
s2 += '\n'; / / append newline



Section 3.5 Strings 49

The two ways of adding to the end of a string are semantically equivalent, but I prefer the latter
because it is more concise and likely to be more efficiently implemented.

Naturally, strings can be compared against each other and against string literals. For example:

string incantation;

void respond (const string& answer)
{

if (answer == incantation)
/ / perform magic

}

else if (answer == II yes II )

/ / ...
}

/ / ...

The standard library string class is described in Chapter 20. Among other useful features, it pro
vides the ability to manipulate substrings. For example:

string name = .. Niels Stroustrup n ;

void m3 ()
{

string s = name. substr (6, 10) ;
name. replace (0, 5, n Nicholas II ) ;

/ / s ="Stroustrup I'

/ / name becomes "Nicholas Stroustrup"

The substr () operation returns a string that is a copy of the substring indicated by its arguments.
The first argument is an index into the string (a position), and the second argument is the length of
the desired substring. Since indexing starts from 0, s gets the value Stroustrup.

The replace () operation replaces a substring with a value. In this case, the substring starting at
o with length 5 is Niels; it is replaced by Nicholas. Thus, the final value of name is Nicholas
Stroustrup. Note that the replacement string need not be the same size as the substring that it is
replacing.

3.5.1 C-Style Strings

A C-style string is a zero-terminated array of characters (§5.2.2). As shown, we can easily enter a
C-style string into a string. To call functions that take C-style strings, we need to be able to extract
the value of a string in the form of a C-style string. The c_str () function does that (§20.3.7). For
example, we can print the name using the C output function printf() (§21.8) like this:

void f()

{

printf( n name: %SVt II I name. c_str ( ) );



SO A Tour of the Standard Library

3.6 Input

Chapter 3

The standard library offers istreams for input. Like ostreams, istreams deal with character string
representations of built-in types and can easily be extended to cope with user-defined types.

The operator >> ("get from") is used as an input operator; cin is the standard input stream.
The type of the right-hand operand of » determines what input is accepted and what is the target
of the input operation. For example,

void f()

{

int i;
cin >> i; / / read an integer into i

double d;
cin >> d; / / read a double-precision. floating-point number into d

reads a number, such as 1234, from the standard input into the integer variable i and a floating
point number, such as 12 . 34e5, into the double-precision, floating-point variable d.

Here is an example that performs inch-to-centimeter and centimeter-to-inch conversions. You
input a number followed by a character indicating the unit: centimeters or inches. The program
then outputs the corresponding value in the other unit:

int main ( )
{

const float factor =2 . 54; / / 1 inch equals 2.54 em

float x, in, cm;
char ch =0;

cout << "enter length: ";

cin »X;
ein » chi

switch (eh)
case 'i' :

/ / read a floating-point number
/ / read a suffix

/ / inch
in =x;

em =x*faetor;
break;

case ' c ' : / / em
in =x/factor;
em =x;
break;

default:
in =em =0;
break;

cout « in « II in = " « em« II em\n" ;

The switch-statement tests a value against a set of constants. The break-statements are used to exit



Section 3.6 Input 51

the switch-statement. The case constants must be distinct. If the value tested does not match any of
them, the default is chosen. The programmer need not provide a default.

Often, we want to read a sequence of characters. A convenient way of doing that is to read into
a string. For example:

int main ()
{

string str;

cout« "Please enter your name\n" ;
cin » str;
cout« "Hello, " «str« " !\n tl

;

If you type in

Eric

the response is

Hello, Eric!

By default, a whitespace character (§5.2.2) such as a space terminates the read, so if you enter

Eric Bloodaxe

pretending to be the ill-fated king of York, the response is still

Hello, Eric!

You can read a whole line using the getline () function. For example:

int main ()
{

string str;

cout« II Please enter your name\n" ;
getline (cin , str) ;
cout« "Hello, " «str« II !\n ll

;

With this program, the input

Eric Bloodaxe

yields the desired output:

Hello, Eric Bloodaxe!

The standard strings have the nice property of expanding to hold what you put in them, so if you
enter a couple of megabytes of semicolons, the program will echo pages of semicolons back at you
- unless your machine or operating system runs out of some critical resource first.



52 A Tour of the Standard Library

3.7 Containers

Chapter 3

Much computing involves creating collections of various forms of objects and then manipulating
such collections. Reading characters into a string and printing out the string is a simple example.
A class with the main purpose of holding objects is commonly called a container. Providing suit
able containers for a given task and supporting them with useful fundamental operations are impor
tant steps in the construction of any program.

To illustrate the standard library's most useful containers, consider a simple program for keep
ing names and telephone numbers. This is the kind of program for which different approaches
appear "simple and obvious" to people of different backgrounds.

3.7.1 Vector

For many C programmers, a built-in array of (name,number) pairs would seem to be a suitable
starting point:

struct Entry {
string name i

int number;
} ;

Entry phone_book [1000] ;

void print_entry (int i)
{

/ / simple use

cout« phone_book [i] . name« ' , «phone_book [i] . number« '\n';

However, a built-in array has a fixed size. If we choose a large size, we waste space; if we choose a
smaller size, the array will overflow. In either case, we will have to write low-level memory
management code. The standard library provides a vector (§ 16.3) that takes care of that:

vector<Entry> phone_book (1000) ;

void print_entry (int i)
{

/ / simple use, exactly as for array

cout« phone_book [i] . name« ' , «phone_book [i] . number« '\n';

void add_entries (int n) / / increase size by n
{

phone_book. resize (phone_book. size () +n) i

The vector member function size () gives the number of elements.
Note the use of parentheses in the definition of phone_book. We made a single object of type

vector<Entry> and supplied its initial size as an initializer. This is very different from declaring a
built-in array:

vector<Entry> book (1000) i

vector<Entry> books [1000] i

/ / vector of1000 elements
/ / 1000 empty vectors



Section 3.7.1 Vector S3

Should you make the mistake of using [] where you meant () when declaring a vector, your com
piler will almost certainly catch the mistake and issue an error message when you try to use the
vector.

A vector is a single object that can be assigned. For example:

void f(vector<Entry>& v)
{

vector<Entry> v2 =phone_book;
v =v2;
/ / ...

Assigning a vector involves copying its elements. Thus, after the initialization and assignment in
f( ) , v and v2 each holds a separate copy of every Entry in the phone book. When a vector holds
many elements, such innocent-looking assignments and initializations can be prohibitively expen
sive. Where copying is undesirable, references or pointers should be used.

3.7.2 Range Checking

The standard library vector does not provide range checking by default (§ 16.3.3). For example:

void f()
{

int i =phone_book [1001] . number; / / 1001 is out o/range
/ / ...

The initialization is likely to place some random value in i rather than giving an error. This is
undesirable, so I will use a simple range-checking adaptation of vector, called Vee, in the following
chapters. A Vec is like a vector, except that it throws an exception of type out_ol_range if a sub
script is out of range.

Techniques for implementing types such as Vec and for using exceptions effectively are dis
cussed in §11.12, §8.3, and Chapter 14. However, the definition here is sufficient for the examples
in this book:

template<class T> class Vec : public vector<T> {
public:

Vec () : vector<T> () { }
Vee (int s) : vector<T> (s) { }

T& operator [] (int i) { return at (i); }

eonst T& operator [] (int i) eonst { return at (i) ;
} ;

/ / range-checked
/ / range-checked

The at () operation is a vector subscript operation that throws an exception of type out_oj_range
if its argument is out of the vector's range (§ 16.3.3).

Returning to the problem of keeping names and telephone numbers, we can now use a Vec to
ensure that out-of-range accesses are caught. For example:

Vee<Entry> phone_book (1000);



54 A Tour of the Standard Library Chapter 3

void print_entry (int i)
{

/ / sinzple use, exactly liS for vector

cout«phone_book[i] .name«' , «phone_book[i] .number« '\n';

An out-of-range access will throw an exception that the user can catch. For example:

void f( )
{

try {
for (int i =0; i<10000; i++) print_entry (i);

}

catch (out_of_range) {
cout « II range error\n II ;

The exception will be thrown, and then caught, when phone_book [i] is tried with i==1000.
If the user doesn't catch this kind of exception, the program will terminate in a well-defined manner
rather than proceeding or failing in an undefined manner. One way to minimize surprises from
exceptions is to use a main () with a try-block as its body:

int main ( )
try {

/ I your code
}

catch (out_of_range)
cerr« II range error\n II ;

}

catch ( ... ) {
cerr« II unknown exception thrown\n II ;

This provides default exception handlers so that if we fail to catch some exception, an error mes
sage is printed on the standard error-diagnostic output stream cerT (§21.2.1).

3.7.3 List

Insertion and deletion of phone book entries could be common. Therefore, a list could be more
appropriate than a vector for representing a simple phone book. For example:

list<Entry> phone_book;

When we use a list, we tend not to access elements using subscripting the way we commonly do for
vectors. Instead, we might search the list looking for an element with a given value. To do this, we
take advantage of the fact that a list is a sequence as described in §3.8:

void print_entry (const string& s)
{

typedeJ list<Entry> : : const_iterator Ll i



Section 3.7.3

for (LI i = phone_book. begin ( ); i ! = phone_book. end ( l; ++i l {
const Entry& e = * i; / / referellce used as shorthand
if (s ==e . name) {

cout « e . name« ' , « e. number« '\n' ;
return;

List 55

The search for s starts at the beginning of the list and proceeds until either s is found or the end is
reached. Every standard library container provides the functions begin () and end ( ) , which return
an iterator to the first and to one-past-the-Iast element., respectively <* 16.3.2). Given an iterator i,
the next element is ++i. Given an iterator i, the element it refers to is * i.

A user need not know the exact type of the iterator for a standard container. That iterator type is
part of the definition of the container and can be referred to by name. When we don't need to mod
ify an element of the container, const_iterator is the type we want. Otherwise, we use the plain
iterator type (* 16.3.1 ).

Adding elements to a list and removing elements from a list is easy:

void f(const Entry& e, !ist<Entry>:: iterator i, list<Entry>:: iterator p)
{

phone_book.push-front(el;
phone_book.push_back(el;
phone_book. insert (i, e l ;

phone_book.erase(p);

/ / add at heRillllillg
/ / add at elld
/ / add hefore the elenlellt referred to by 'i'

/ / renlo\'e the elenlent referred to by 'p'

For a more complete description of insert () and erase ( ), see § 16.3.6.

3.7.4 Map

Writing code to look up a name in a list of (name,number) pairs is really quite tedious. In addition,
a linear search is quite inefficient for all but the shortest lists. Other data structures directly support
insertion, deletion, and searching based on values. In particular, the standard library provides the
map type (§ 17.4.1). A map is a container of pairs of values. For example:

map<string , int> phone_book;

In other contexts, a map is known as an associative array or a dictionary.
When indexed by a value of its first type (called the key) a map returns the corresponding value

of the second type (called the value or the Inapped type). For example:

void print_entry (const string& sl
{

if (int i =phone_hook [s] l cout« s« ' , « i« '\n';

If no match was found for the key s, a default value is returned from the phone_book. The default
value for an integer type in a map is O. Here, I assume that 0 isn't a valid telephone number.



56 A Tour of the Standard Library

3.7.5 Standard Containers

Chapter 3

A map, a list, and a vector can each be used to represent a phone book. However, each has
strengths and weaknesses. For example, subscripting a vector is cheap and easy. On the other
hand, inserting an element between two elements tends to be expensive. A list has exactly the
opposite properties. A map resembles a list of (key,value) pairs except that it is optimized for find
ing values based on keys.

The standard library provides some of the most general and useful container types to allow the
programmer to select a container that best serves the needs of an application:

Standard Container Summary
vector<T>
list<T>
queue<T>
stack<T>
deque<T>
priority_queue<T>
set<T>
multiset<T>
map<key, val>
multimap<key, val>

A variable-sized vector (§ 16.3)
A doubly-linked list (§ 17.2.2)
A queue (§ 17.3.2)
A stack (§ 17.3.1)
A double-ended queue (§17.2.3)
A queue sorted by value (§17.3.3)
A set (§ 17.4.3)
A set in which a value can occur many times (§17.4.4)
An associative array (§ 17.4.1)
A map in which a key can occur many times (§ 17.4.2)

The standard containers are presented in §16.2, §16.3, and Chapter 17. The containers are defined
in namespace std and presented in headers <vector>, <list>, <map>, etc. (§ 16.2).

The standard containers and their basic operations are designed to be similar from a notational
point of view. Furthermore, the meanings of the operations are equivalent for the various contain
ers. In general, basic operations apply to every kind of container. For example, push_back () can
be used (reasonably efficiently) to add elements to the end of a vector as well as for a list, and
every container has a size () member function that returns its number of elements.

This notational and semantic uniformity enables programmers to provide new container types
that can be used in a very similar manner to the standard ones. The range-checked vector, Vec
(§3.7.2), is an example of that. Chapter 17 demonstrates how a hash_map can be added to the
framework. The uniformity of container interfaces also allows us to specify algorithms indepen
dently of individual container types.

3.8 Algorithms

A data structure, such as a list or a vector, is not very useful on its own. To use one, we need oper
ations for basic access such as adding and removing elements. Furthermore, we rarely just store
objects in a container. We sort them, print them, extract subsets, remove elements, search for
objects, etc. Consequently, the standard library provides the most common algorithms for contain
ers in addition to providing the most common container types. For example, the following sorts a
vector and places a copy of each unique vector element on a list:



Section 3.8

void f(vector<Entry>& ve, list<Entry>& Ie)
{

sort (ve . begin ( ) , ve . end ( ) ) ;
unique_copy (ve . begin ( ) , ve . end ( ) , Ie . begin ( ) );

Algorithms 57

The standard algorithms are described in Chapter 18. They are expressed in terms of sequences of
elements (§2.7.2). A sequence is represented by a pair of iterators specifying the first element and
the one-beyond-the-Iast element. In the example, sort () sorts the sequence from ve. begin () to
ve . end () - which just happens to be all the elements of a vector. For writing, you need only to
specify the first element to be written. If more than one element is written, the elements following
that initial element will be overwritten.

If we wanted to add the new elements to the end of a container, we could have written:

void f( vector<Entry>& ve, list<Entry>& Ie)
{

sort (ve . begin ( ) , ve . end ( ) ) ;
unique_copy (ve . begin ( ) , ve . end ( ) , back_inserter (Ie) ) ; / / append to Ie

A back_inserter () adds elements at the end of a container, extending the container to make room
for them (§19.2.4). Thus, the standard containers plus back_inserter ( ) s eliminate the need to use
error-prone, explicit C-style memory management using realloc () (§ 16.3.5). Forgetting to use a
back_inserter () when appending can lead to errors. For example:

void f (vector<Entry>& ve, list<Entry>& Ie)
{

copy (ve . begin ( ) , ve . end ( ) , Ie) ; / / error: Ie not an iterator
copy (ve . begin ( ) , ve . end ( ) , Ie. end ( ) ); / / bad: writes beyond the end
copy (ve . begin ( ) , ve . end ( ) , Ie. begin ( ) ); / / overwrite elements

3.8.1 Use of Iterators

When you first encounter a container, a few iterators referring to useful elements can be obtained;
begin () and end () are the best examples of this. In addition, many algorithms return iterators.
For example, the standard algorithm find looks for a value in a sequence and returns an iterator to
the element found. Usingfind, we can count the number of occurrences of a character in a string:

int count (const string& s, char c) / / count occurrences ofc in s
{

int n = 0;
string: : const_iterator i = find {s •begin ( ) , s •end ( ) , c) ;
while (i ! = s . end ( )} {

++n;
i = find (i+ I , s . end ( ) , c) i

return ni



58 A Tour of the Standard Library Chapter 3

The find algorithm returns an iterator to the first occurrence of a value in a sequence or the one
past-the-end iterator. Consider what happens for a simple call of count:

void f(}

{

string m = II Mary had a little lamb II ;

int a_count = count (m, ' a' );

The first call to find () finds the ' a' in Mary. Thus, the iterator points to that character and not to
s . end ( ) , so we enter the loop. In the loop, we start the search at i+1; that is, we start one past
where we found the ' a '. We then loop finding the other three ' a's. That done, find () reaches
the end and returns s . end () so that the condition i ! =s . end () fails and we exit the loop.

That call of count () could be graphically represented like this:

The arrows indicate the initial, intermediate, and final values of the iterator i.
Naturally, the find algorithm will work equivalently on every standard container. Conse

quently, we could generalize the count () function in the same way:

template<class C I class T> int count (const C& v, T val)
{

typename C:: eonst_iterator i = find (v. begin ( ) , v. end ( ) , val); / / "typename;" see §C. J3.5
int n = 0;
while (i ! =v. end ( )) {

++n;
++i; / / skip past the element we just found
i =find (i I V • end ( ) I val) ;

return n;

This works, so we can say:

void f( !ist<complex>& le, vector<string>& vs, string s)
{

int iJ = count (lc , complex (J , 3) ) ;

int i2 = count (vs, II Diogenes II ) ;

int i3 = count (s, .. x .. ) ;

However, we don't have to define a count template. Counting occurrences of an element is so gen
erally useful that the standard library provides that algorithm. To be fully general, the standard
library count takes a sequence as its argument, rather than a container, so we would say:



Section 3.8.1

void f( list<complex> & Ie, vector<string>& vs, string s)
{

int i 1 =count ( Ie . begin ( ) , Ie . end ( ) , complex (1 , 3) ) i

int i2 =count (vs. begin ( ), vs. end ( ), "Diogenes" );
int i3 = count (s . begin ( ) , s . end ( ), ' x ' ) ;

Use of Iterators 59

The use of a sequence allows us to use count for a built-in array and also to count parts of a con
tainer. For example:

void g (char cs [], int sz)
{

int i1 = count (&cs [0], &cs [sz], ' z' ) i

int i2 = count (&cs [0], &cs [sz/2], ' z') i

/ / 'z's in array
/ / 'z's in first halfofarray

3.8.2 Iterator Types

What are iterators really? Any particular iterator is an object of some type. There are, however,
many different iterator types because an iterator needs to hold the information necessary for doing
its job for a particular container type. These iterator types can be as different as the containers and
the specialized needs they serve. For example, a vector's iterator is most likely an ordinary pointer
because a pointer is quite a reasonable way of referring to an element of a vector:

iterator: p

vector:

Alternatively, a vector iterator could be implemented as a pointer to the vector plus an index:

iterator: (start == p, position == 3)

vector:

Using such an iterator would allow range checking (§19.3).
A list iterator must be something more complicated than a simple pointer to an element because

an element of a list in general does not know where the next element of that list is. Thus, a list iter
ator might be a pointer to a link:



60 A Tour of the Standard Library

iterator: p

Chapter 3

list:

elements: p e

What is common for all iterators is their semantics and the naming of their operations. For exam
ple, applying ++ to any iterator yields an iterator that refers to the next element. Similarly, * yields
the element to which the iterator refers. In fact, any object that obeys a few simple rules like these
is an iterator (§19.2.1). Furthermore, users rarely need to know the type of a specific iterator; each
container "knows" its iterator types and makes them available under the conventional names itera
tor and const_iterator. For example, list<Entry>:: iterator is the general iterator type for
list<Entry>. I rarely have to worry about the details of how that type is defined.

3.8.3 Iterators and 110

Iterators are a general and useful concept for dealing with sequences of elements in containers.
However, containers are not the only place where we find sequences of elements. For example, an
input stream produces a sequence of values and we write a sequence of values to an output stream.
Consequently, the notion of iterators can be usefully applied to input and output.

To make an ostream_iterator, we need to specify which stream will be used and the type of
objects written to it. For example, we can define an iterator that refers to the standard output
stream, cout:

ostream_iterator<string> 00 (cout) ;

The effect of assigning to *00 is to write the assigned value to cout. For example:

int main ()
{

*00 = II Hello I II; / / meaning cout« "Hello, "
++00;

*00 = II world! \n II ; / / meaning cout« "world.f\n"

This is yet another way of writing the canonical message to standard output. The ++00 is done to
mimic writing into an array through a pointer. This way wouldn't be my first choice for that simple
task, but the utility of treating output as a write-only container will soon be obvious - if it isn't
already.

Similarly, an istream_iterator is something that allows us to treat an input stream as a read
only container. Again, we must specify the stream to be used and the type of values expected:

istream_iterator<string> ii (cin ) ;

Because input iterators invariably appear in pairs representing a sequence, we must provide an



Section 3.8.3 Iterators and I/O 61

istream_iterator to indicate the end of input. This is the default istream iterator:

istream_iterator<string> eos;

We could now read Hello, world! from input and write it out again like this:

int main ()
{

string sl = * ii;
++ii;
string s2 =* ii ;

cout« sl « ' , « s2« '\n';

Actually, istream_iterators and ostream_iterators are not meant to be used directly. Instead, they
are typically provided as arguments to algorithms. For example, we can write a simple program to
read a file, sort the words read, eliminate duplicates, and write the result to another file:

int main ()
{

string from I to;
cin »from » to;

ifstream is (from. c_str ( ) ) ;
istream_iterator<string> ii ( is) ;
istream_iterator<string> eos;

vector<string> b (ii I eos) ;
sort (b. begin ( ) lb. end ( ) ) ;

ofstream os (to. c_str ( ) ) ;
ostream_iterator<string> 00 (os I "\n" ) ;

unique_copy (b. begin ( ) lb. end ( ) I 00) ;

return ! is . eof() I I ! os ;

/ / get source and target file names

/ / input stream (c_str(); see §3.5. 1 and §20.3. 7)
/ / input iterator for stream
/ / input sentinel

/ / b is a vector initialized from input
/ / sort the buffer

/ / output stream
/ / output iterator for stream

/ / copy buffer to output,
/ / discard replicated values

/ / return error state (§3.2, §21.3.3)

An ifstream is an istream that can be attached to a file, and an o/stream is an ostream that can be
attached to a file. The ostream_iterator's second argument is used to delimit output values.

3.8.4 Traversals and Predicates

Iterators allow us to write loops to iterate through a sequence. However, writing loops can be
tedious, so the standard library provides ways for a function to be called for each element of a
sequence.

Consider writing a program that reads words from input and records the frequency of their
occurrence. The obvious representation of the strings and their associated frequencies is a map:

map<string I int> histogram;

The obvious action to be taken for each string to record its frequency is:



62 A Tour of the Standard Library

void record (const string& s)
{

Chapter 3

histogram [s] ++; I I record frequency of ·'s"

Once the input has been read, we would like to output the data we have gathered. The map consists
of a sequence of (string,int) pairs. Consequently, we would like to call

void print (const pair<const string, int>& r)
{

cout « r .first« ' , « r. second« '\n';

for each element in the map (the first element of a pair is called first, and the second element is
called second). The first element of the pair is a const string rather than a plain string because all
map keys are constants.

Thus, the main program becomes:

int main ( )
{

istream_iterator<string> ii (cin) ;
istream_iterator<string> eos;

for_each (ii I eos, record) ;
for_each (histogram. begin ( ) , histogram. end ( ) , print) ;

Note that we don't need to sort the map to get the output in order. A map keeps its elements
ordered so that an iteration traverses the map in (increasing) order.

Many programming tasks involve looking for something in a container rather than simply doing
something to every element. For example, the find algorithm (§18.5.2) provides a convenient way
of looking for a specific value. A more general variant of this idea looks for an element that fulfills
a specific requirement. For example, we might want to search a map for the first value larger than
42. A map is a sequence of (key,value) pairs, so we search that list for a pair<const string lint>
where the in! is greater than 42:

bool gt_42 (canst pair<const string, int>& r)
{

return r. second>42 ;

void f(map<string, int>& m)
{

typedef map<string lint> : : const_iterator MJ;
Ml i =find_if(m. begin (), m. end (), gt_42);
II ...

Alternatively, we could count the number of words with a frequency higher than 42:



Section 3.8.4

void g (const map<string, int>& m)
{

int c42 = count_if(m. begin ( ), m. end ( ), gt_42);
/ / ...

Traversals and Predicates 63

A function, such as gt_42 ( ) , that is used to control the algorithm is called a predicate. A predicate
is called for each element and returns a Boolean value, which the algorithm uses to perform its
intended action. For example,jind_if() searches until its predicate returns true to indicate that an
element of interest has been found. Similarly, count_if(} counts the number of times its predicate
is true.

The standard library provides a few useful predicates and some templates that are useful for cre
ating more (§ 18.4.2).

3.8.5 Algorithms Using Member Functions

Many algorithms apply a function to elements of a sequence. For example, in §3.8.4

for_each (ii , eos, record) ;

calls record () for each string read from input.
Often, we deal with containers of pointers and we really would like to call a member function of

the object pointed to, rather than a global function on the pointer. For example, we might want to
call the member function Shape: : draw () for each element of a list<Shape * >. To handle this
specific example, we simply write a nonmember function that invokes the member function. For
example:

void draw (Shape* p)
{

p->draw () i

void f(list<Shape*>& sh)
{

for_each (sh. begin (), sh. end (), draw);

By generalizing this technique, we can write the example like this:

void g (list<Shape* >& sh)
{

for_each (sh. begin ( ), sh. end ( ), memJun (&Shape:: draw) );

The standard library memJun () template (§ 18.4.4.2) takes a pointer to a member function (§ 15.5)
as its argument and produces something that can be called for a pointer to the member's class. The
result of memJun (&Shape : : draw) takes a Shape * argument and returns whatever
Shape: : draw () returns.

The memJun () mechanism is important because it allows the standard algorithms to be used
for containers of polymorphic objects.



64 A Tour of the Standard Library Chapter 3

3.8.6 Standard Library Algorithms

What is an algorithm? A general definition of an algorithm is "a finite set of rules which gives a
sequence of operations for solving a specific set of problems [and] has five important features:
Finiteness ... Definiteness ... Input ... Output ... Effectiveness" [Knuth,1968,§1.1]. In the context of
the C++ standard library, an algorithm is a set of templates operating on sequences of elements.

The standard library provides dozens of algorithms. The algorithms are defined in namespace
std and presented in the <algorithm> header. Here are a few I have found particularly useful:

Selected Standard Algorithms
for_each()
find()
find_iff)
count()
count_iff)
replacer)
replace_iff)
copy()
unique_copy()
sort()
equal_range()
merge()

Invoke function for each element (§18.5.1)
Find first occurrence of arguments (§ 18.5.2)
Find first match of predicate (§ 18.5.2)
Count occurrences of element (§ 18.5.3)
Count matches of predicate (§ 18.5.3)
Replace element with new value (§18.6.4)
Replace element that matches predicate with new value (§ 18.6.4)
Copy elements (§ 18.6.1)
Copy elements that are not duplicates (§ 18.6.1)
Sort elements (§ 18.7.1)
Find all elements with equivalent values (§ 18.7.2)
Merge sorted sequences (§18.7.3)

These algorithms, and many more (see Chapter 18), can be applied to elements of containers,
strings, and built-in arrays.

3.9 Math

Like C, C++ wasn't designed primarily with numerical computation in mind. However, a lot of
numerical work is done in C++, and the standard library reflects that.

3.9.1 Complex Numbers

The standard library supports a family of complex number types along the lines of the complex
class described in §2.5.2. To support complex numbers where the scalars are single-precision,
floating-point numbers (floats), double precision numbers (doubles), etc., the standard library com
plex is a template:

template<class scalar> class complex {
public:

complex (scalar re, scalar im) i

/ / ...
} ;

The usual arithmetic operations and the most common mathematical functions are supported for
complex numbers. For example:



Section 3.9.1

I I standard exponentiation function from <complex>:
template<class C> complex<C> pow (const complex<C>&, int);

void f( complex<jloat> jl, complex<double> db)
{

complex<long double> Id =jl+sqrt (db) ;
db += jl*3;
jl =pow (1 I jl , 2 ) ;
I I ...

For more details, see §22.5.

3.9.2 Vector Arithmetic

Complex Numbers 65

The vector described in §3.7.1 was designed to be a general mechanism for holding values, to be
flexible, and to fit into the architecture of containers, iterators, and algorithms. However, it does
not support mathematical vector operations. Adding such operations to vector would be easy, but
its generality and flexibility precludes optimizations that are often considered essential for serious
numerical work. Consequently, the standard library provides a vector, called valarray, that is less
general and more amenable to optimization for numerical computation:

template<class T> class valarray {
/ / ...
T& operator [] (size_t) ;
II ...

} ;

The type size_t is the unsigned integer type that the implementation uses for array indices.
The usual arithmetic operations and the most comnlon mathematical functions are supported for

valarrays. For example:

I I standard absolute value function from <valarray>:
template<class T> valarray<T> abs (const valarray<T>&);

void f(valarray<double>& al, valarray<double>& a2)
{

valarray<double> a =a1*3 . 14+a21a1 ;
a2 += a1*3 .14;
a = abs (a) i

double d =a2 [7] ;
II ...

For more details, see §22.4.

3.9.3 Basic Numeric Support

Naturally, the standard library contains the most common mathematical functions - such as log ( ) ,
pow ( ), and cos () - for floating-point types; see §22.3. In addition, classes that describe the
properties of built-in types - such as the maximum exponent of aJloat - are provided; see §22.2.



66 A Tour of the Standard Library Chapter 3

3.10 Standard Library Facilities

The facilities provided by the standard library can be classified like this:
[1] Basic run-time language support (e.g., for allocation and run-time type information); see

§I6.1.3.
[2] The C standard library (with very minor modifications to minimize violations of the type

system); see §16.1.2.
[3] Strings and I/O streams (with support for international character sets and localization); see

Chapter 20 and Chapter 21.
[4] A framework of containers (such as vector, list, and map) and algorithms using containers

(such as general traversals, sorts, and merges); see Chapter 16, Chapter 17, Chapter 18, and
Chapter 19.

[5] Support for numerical computation (complex numbers plus vectors with arithmetic opera
tions, BLAS-like and generalized slices, and semantics designed to ease optimization); see
Chapter 22.

The main criterion for including a class in the library was that it would somehow be used by almost
every C++ programmer (both novices and experts), that it could be provided in a general form that
did not add significant overhead compared to a simpler version of the same facility, and that simple
uses should be easy to learn. Essentially, the C++ standard library provides the most common fun
damental data structures together with the fundamental algorithms used on them.

Every algorithm works with every container without the use of conversions. This framework,
conventionally called the STL [Stepanov,1994], is extensible in the sense that users can easily pro
vide containers and algorithms in addition to the ones provided as part of the standard and have
these work directly with the standard containers and algorithms.

3.11 Advice

[1] Don't reinvent the wheel; use libraries.
[2] Don't believe in magic; understand what your libraries do, how they do it, and at what cost

they do it.
[3] When you have a choice, prefer the standard library to other libraries.
[4] Do not think that the standard library is ideal for everything.
[5] Remember to #include the headers for the facilities you use; §3.3.
[6] Remember that standard library facilities are defined in namespace std; §3.3.
[7] Use string rather than char*; §3.5, §3.6.
[8] If in doubt use a range-checked vector (such as Vee); §3.7.2.
[9] Prefer vector<T>, list<T>, and map<key, value> to T[] ; §3.7.1, §3.7.3, §3.7.4.
[10] When adding elements to a container, use push_back () or back_inserter ( ) ; §3.7.3, §3.8.
[11] Use push_back () on a vector rather than realloc () on an array; §3.8.
[12] Catch common exceptions in main ( ) ; §3.7.2.



Part I

Basic Facilities

This part describes C++'s built-in types and the basic facilities for con
structing programs out of them. The C subset of C++ is presented
together with C++'s additional support for traditional styles of program
ming. It also discusses the basic facilities for composing a C++ program
out of logical and physical parts.

Chapters

4 Types and Declarations
5 Pointers, Arrays, and Structures
6 Expressions and Statements
7 Functions
8 Namespaces and Exceptions
9 Source Files and Programs



I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I



4
Types and Declarations

Accept nothing short ofperfection!
- anon

Perfection is achieved
only on the point ofcollapse.

- C. N. Parkinson

Types - fundamental types - Booleans - characters - character literals - integers
- integer literals - floating-point types - floating-point literals - sizes - void 
enumerations - declarations - names - scope - initialization - objects - typedefs
- advice - exercises.

4.1 Types

Consider

x =y+f(2) i

For this to make sense in a C++ program, the names x, y, and/must be suitably declared. T:at is,
the programmer must specify that entities named x, y, and f exist and that they are of types for
which =(assignment), + (addition), and () (function call), respectively, are meaningful.

Every name (identifier) in a C++ program has a type associated with it. This type determines
what operations can be applied to the name (that is, to the entity referred to by the name) and how
such operations are interpreted. For example, the declarations

float Xi

int y = 7;
float f( int) i

/ / x is a floating-point variable
/ / y is an integer variable with the initial value 7
/ / fis afunction taking an argument oftype int and returning afloating-point number



70 Types and Declarations Chapter 4

would make the example meaningful. Because y is declared to be an int, it can be assigned to, used
in arithmetic expressions, etc. On the other hand, f is declared to be a function that takes an int as
its argument, so it can be called given a suitable argument.

This chapter presents fundamental types (§4.1.1) and declarations (§4.9). Its examples just
demonstrate language features; they are not intended to do anything useful. More extensive and
realistic examples are saved for later chapters after more of C++ has been described. This chapter
simply provides the most basic elements from which C++ programs are constructed. You must
know these elements, plus the terminology and simple syntax that goes with them, in order to com
plete a real project in C++ and especially to read code written by others. However, a thorough
understanding of every detail mentioned in this chapter is not a requirement for understanding the
following chapters. Consequently, you may prefer to skim through this chapter, observing the
major concepts, and return later as the need for understanding of more details arises.

4.1.1 Fundamental Types

c++ has a set of fundamental types corresponding to the most common basic storage units of a
computer and the most common ways of using them to hold data:

§4.2 A Boolean type (bool)
§4.3 Character types (such as char)
§4.4 Integer types (such as int)
§4.5 Floating-point types (such as double)

In addition, a user can define
§4.8 Enumeration types for representing specific sets of values (enum)

There also is
§4.7 A type, void, used to signify the absence of information

From these types, we can construct other types:
§5.l Pointer types (such as int*)
§5.2 Array types (such as char [ ] )
§5.5 Reference types (such as double&)
§5.7 Data structures and classes (Chapter 10)

The Boolean, character, and integer types are collectively called integral types. The integral and
floating-point types are collectively called arithmetic types. Enumerations and classes (Chapter 10)
are called user-defined types because they must be defined by users rather than being available for
use without previous declaration, the way fundamental types are. In contrast, other types are called
built-in types.

The integral and floating-point types are provided in a variety of sizes to give the programmer a
choice of the amount of storage consumed, the precision, and the range available for computations
(§4.6). The assumption is that a computer provides bytes for holding characters, words for holding
and computing integer values, some entity most suitable for floating-point computation, and
addresses for referring to those entities. The c++ fundamental types together with pointers and
arrays present these machine-level notions to the programmer in a reasonably implementation
independent manner.

For most applications, one could simply use bool for logical values, char for characters, int for
integer values, and double for floating-point values. The remaining fundamental types are



Section 4.1.1 Fundamental Types 71

variations for optimizations and special needs that are best ignored until such needs arise. They
must be known, however, to read old C and C++ code.

4.2 Booleans

A Boolean, bool, can have one of the two values true or false. A Boolean is used to express the
results of logical operations. For example:

void j(int a, int b)
{

bool bl =a==b;
II ...

/ / = is assignment, == is equality

If a and b have the same value, bl becomes true; otherwise, hI becomesfalse.
A common use of bool is as the type of the result of a function that tests some condition (a

predicate). For example:

bool is_open (File*);

bool greater (int a lint b) {return a>b; }

By definition, true has the value I when converted to an integer and false has the value O. Con
versely, integers can be implicitly converted to bool values: nonzero integers convert to true and 0
converts to false. For example:

bool b = 7;
int i =true;

/ / bool(7) is true, so b becomes true
/ / int(true) is J, so i becomes J

In arithmetic and logical expressions, bools are converted to ints; integer arithmetic and logical
operations are performed on the converted values. If the result is converted back to bool, a 0 is
converted tofalse and a nonzero value is converted to true.

void g ()
{

bool a = true;
bool b =true;

bool x = a+b;
bool y =alb;

/ / a+b is 2, so x becomes true
/ / a Ib is J, so y becomes true

A pointer can be implicitly converted to a bool (§C.6.2.5). A nonzero pointer converts to true;
zero-valued pointers convert tofalse.

4.3 Character Types

A variable of type char can hold a character of the implementation's character set. For example:

char ch = ' a ' ;



72 Types and Declarations Chapter 4

Almost universally, a char has 8 bits so that it can hold one of 256 different values. Typically, the
character set is a variant of ISO-646, for example ASCII, thus providing the characters appearing
on your keyboard. Many problems arise from the fact that this set of characters is only partially
standardized (§C.3).

Serious variations occur between character sets supporting different natural languages and also
between different character sets supporting the same natural language in different ways. However,
here we are interested only in how such differences affect the rules of C++. The larger and more
interesting issue of how to program in a multi-lingual, multi-character-set environment is beyond
the scope of this book, although it is alluded to in several places (§20.2, §21.7, §C.3.3).

It is safe to assume that the implementation character set includes the decimal digits, the 26
alphabetic characters of English, and some of the basic punctuation characters. It is not safe to
assume that there are no more than 127 characters in an 8-bit character set (e.g., some sets provide
255 characters), that there are no more alphabetic characters than English provides (most European
languages provide more), that the alphabetic characters are contiguous (EBCDIC leaves a gap
between ' i' and ' j '), or that every character used to write C++ is available (e.g., some national
character sets do not provide { } [ ] I \; §C.3.1). Whenever possible, we should avoid making
assumptions about the representation of objects. This general rule applies even to characters.

Each character constant has an integer value. For example, the value of ' b' is 98 in the ASCII
character set. Here is a small program that will tell you the integer value of any character you care
to input:

#include <iostream>

int main ()
{

char c;
std: :cin >> c;
std: :cout« "the value of'" «c« " ' is " «int(c) « '\n';

The notation int (c) gives the integer value for a character c. The possibility of converting a char
to an integer raises the question: is a char signed or unsigned? The 256 values represented by an
8-bit byte can be interpreted as the values 0 to 255 or as the values -127 to 127. Unfortunately,
which choice is made for a plain char is implementation-defined (§C.l, §C.3.4). C++ provides two
types for which the answer is definite; signed char, which can hold at least the values -127 to 127,
and unsigned char, which can hold at least the values 0 to 255. Fortunately, the difference matters
only for values outside the 0 to 127 range, and the most common characters are within that range.

Values outside that range stored in a plain char can lead to subtle portability problems. See
§C.3.4 if you need to use more than one type of char or if you store integers in char variables.

A type wchar_t is provided to hold characters of a larger character set such as Unicode. It is a
distinct type. The size of wchar_t is implementation-defined and large enough to hold the largest
character set supported by the implementation's locale (see §21.7, §C.3.3). The strange name is a
leftover from C. In C, wchar_t is a typedeJ (§4.9.7) rather than a built-in type. The suffix _t was
added to distinguish standard typedefs.

Note that the character types are integral types (§4.1.1) so that arithmetic and logical operations
(§6.2) apply.



Section 4.3.1

4.3.1 Character Literals

Character Literals 73

A character literal, often called a character constant, is a character enclosed in single quotes, for
example, ' a' and ' 0 '. The type of a character literal is char. Such character literals are really
symbolic constants for the integer value of the characters in the character set of the machine on
which the c++ program is to run. For example, if you are running on a machine using the ASCII
character set, the value of ' 0' is 48. The use of character literals rather than decimal notation
makes programs more portable. A few characters also have standard names that use the backslash \
as an escape character. For example, \n is a newline and \t is a horizontal tab. See §C.3.2 for
details about escape characters.

Wide character literals are of the form L'ab " where the number of characters between the
quotes and their meanings is implementation-defined to match the wchar_I type. A wide character
literal has type wchar_I.

4.4 Integer Types

Like char, each integer type comes in three forms: "plain" inl, signed int, and unsigned into In
addition, integers come in three sizes: short inl, "plain" inl, and long into A long int can be
referred to as plain long. Similarly, short is a synonym for shorl int, unsigned for unsigned int,
and signed for signed into

The unsigned integer types are ideal for uses that treat storage as a bit array. Using an
unsigned instead of an inl to gain one more bit to represent positive integers is almost never a good
idea. Attempts to ensure that some values are positive by declaring variables unsigned will typi
cally be defeated by the implicit conversion rules (§C.6.1, §C.6.2.1).

Unlike plain chars, plain ints are always signed. The signed lilt types are simply more explicit
synonyms for their plain int counterparts.

4.4.1 Integer Literals

Integer literals come in four guises: decimal, octal, hexadecimal, and character literals (§A.3). Dec
imalliterals are the most commonly used and look as you would expect them to:

7 1234 976 12345678901234567890

The compiler ought to warn about literals that are too long to represent.
A literal starting with zero followed by x (Ox) is a hexadecimal (base 16) number. A literal

starting with zero but not followed by x is an octal (base 8) number. For example:

decimal: 2 63 83
octal: 0 02 077 0123
hexadecimal: OxO Ox2 Ox3! Ox53

The letters a, b, c, d, e, and.t: or their uppercase equivalents, are used to represent 10, 11, 12, 13,
14, and 15, respectively. Octal and hexadecimal notations are most useful for expressing bit pat
terns. Using these notations to express genuine numbers can lead to surprises. For example, on a
machine on which an int is represented as a two's complement 16-bit integer, Oxffffis the negative
decimal number - 1. Had more bits been used to represent an integer, it would have been 65535.



74 Types and Declarations Chapter 4

The suffix U can be used to write explicitly unsigned literals. Similarly, the suffix L can be
used to write explicitly long literals. For example, 3 is an int, 3D is an unsigned int, and 3L is a
long into If no suffix is provided, the compiler gives an integer literal a suitable type based on its
value and the implementation's integer sizes (§C.4).

It is a good idea to limit the use of nonobvious constants to a few well-commented const (§5.4)
or enumerator (§4.8) initializers.

4.5 Floating-Point Types

The floating-point types represent floating-point numbers. Like integers, floating-point types come
in three sizes: float (single-precision), double (double-precision), and long double (extended
precision).

The exact meaning of single-, double-, and extended-precision is implementation-defined.
Choosing the right precision for a problem where the choice matters requires significant under
standing of floating-point computation. If you don't have that understanding, get advice, take the
time to learn, or use double and hope for the best.

4.5.1 Floating-Point Literals

By default, a floating-point literal is of type double. Again, a compiler ought to warn about
floating-point literals that are too large to be represented. Here are some floating-point literals:

1.23 .23 0.23 I. 1.0 1.2e10 1.23e-15

Note that a space cannot occur in the middle of a floating-point literal. For example, 65.43 e-21
is not a floating-point literal but rather four separate lexical tokens (causing a syntax error):

65.43 e - 21

If you want a floating-point literal of type float, you can define one using the suffix!or F:

3.14159265/ 2.0/ 2. 997925F 2. ge-3f

If you want a floating-point literal of type long double, you can define one using the suffix I or L:

3.14159265L 2.0L 2.997925L 2.ge-3L

4.6 Sizes

Some of the aspects of C++'s fundamental types, such as the size of an int, are implementation
defined (§C.2). I point out these dependencies and often recommend avoiding theln or taking steps
to minimize their impact. Why should you bother? People who program on a variety of systems or
use a variety of compilers care a lot because if they don't, they are forced to waste time finding and
fixing obscure bugs. People who claim they don't care about portability usually do so because they
use only a single system and feel they can afford the attitude that "the language is what my com
piler implements." This is a narrow and shortsighted view. If your program. is a success, it is
likely to be ported, so someone will have to find and fix problems related to implementation-



Section 4.6 Sizes 75

dependent features. In addition, programs often need to be compiled with other compilers for the
same system, and even a future release of your favorite compiler may do some things differently
from the current one. It is far easier to know and limit the impact of implementation dependencies
when a program is written than to try to untangle the mess afterwards.

It is relatively easy to limit the impact of implementation-dependent language features. Limit
ing the impact of system-dependent library facilities is far harder. Using standard library facilities
wherever feasible is one approach.

The reason for providing more than one integer type, more than one unsigned type, and" more
than one floating-point type is to allow the programmer to take advantage of hardware characteris
tics. On many machines, there are significant differences in memory requirements, memory access
times, and computation speed between the different varieties of fundamental types. If you know a
machine, it is usually easy to choose, for example, the appropriate integer type for a particular vari
able. Writing truly portable low-level code is harder.

Sizes of C++ objects are expressed in terms of multiples of the size of a char, so by definition
the size of a char is 1. The size of an object or type can be obtained using the sizeo! operator
(§6.2). This is what is guaranteed about sizes of fundamental types:

J == sizeoj(char) ~ sizeof(short) ~ sizeof(int) ~ sizeoj(long)

J ~ sizeoj(bool) ~ sizeof(long)

sizeof(char) ~ sizeof(wchar_t) ~ sizeof(long)

sizeof(j1oat) ~ sizeof(double) ~ sizeof(long double)

sizeoj(N) == sizeoj(signed N) == sizeoj(unsigned N)

where N can be char, short int, int, or long into In addition, it is guaranteed that a char has at least
8 bits, a short at least 16 bits, and a long at least 32 bits. A char can hold a character of the
machine's character set.

Here is a graphical representation of a plausible set of fundamental types and a sample string:

char: 0
bool: [2]
short: ~

int: 100000000 I

int*: &cl

double: 1234567e34

char[14]: Hello, world! \0

On the same scale (.2 inch to a byte), a megabyte of memory would stretch about three miles (five
km) to the right.



76 Types and Declarations Chapter 4

The char type is supposed to be chosen by the implementation to be the most suitable type for
holding and manipulating characters on a given computer; it is typically an 8-bit byte. Similarly,
the int type is supposed to be chosen to be the most suitable for holding and manipulating integers
on a given computer; it is typically a 4-byte (32-bit) word. It is unwise to assume more. For exam
ple, there are machines with 32 bit chars.

Implementation-defined aspects of fundamental types can be found in <limits>. For example:

#include <limits> / / §22.2
#include <iostream>

int main ( )
{

std: : cout« II largest float == II « std: : numeric_limits<jloat> : : max ( )
« II I char is signed == II « std: : numeric_limits<char> : : is_signed« '\n';

The fundamental types can be mixed freely in assignments and expressions. Wherever possible,
values are converted so as not to lose information (§C.6).

If a value v can be represented exactly in a variable of type T, a conversion of v to T is value
preserving and no problem. Conversions that are not value-preserving are best avoided (§C.6.2.6).

You need to understand implicit conversion in some detail in order to complete a major project
and especially to understand real code written by others. However, such understanding is not
required to read the following chapters.

4.7 Void

The type void is syntactically a fundamental type. It can, however, be used only as part of a more
complicated type; there are no objects of type void. It is used either to specify that a function does
not return a value or as the base type for pointers to objects of unknown type. For example:

void Xi

void& r;
void f();

void* pv i

/ / error: there are no void objects
/ / error: there are no references to void
/ / function f does not return a value (§7.3)
/ / pointer to object ofunknown type (§5.6)

When declaring a function, you must specify the type of the value returned. Logically, you would
expect to be able to indicate that a function didn't return a value by omitting the return type. How
ever, that would make the grammar (Appendix A) less regular and clash with C usage. Conse
quently, void is used as a "pseudo return type" to indicate that a function doesn't return a value.

4.8 Enumerations

An enumeration is a type that can hold a set of values specified by the user. Once defined, an enu
meration is used very much like an integer type.

Named integer constants can be defined as members of an enumeration. For example,

enum { ASM, AUTO I BREAK};



Section 4.8 Enumerations 77

defines three integer constants, called enumerators, and assigns values to them, By default, enu
merator values are assigned increasing from 0, so ASM==O, AUTO==], and BREAK==2. An enu
meration can be named. For example:

enum keyword { ASM, AUTO, BREAK};

Each enumeration is a distinct type. The type of an enumerator is its enumeration. For example,
A UTO is of type keyword.

Declaring a variable keyword instead of plain int can give both the user and the compiler a hint
as to the intended use. For example:

void /( keyword key)
{

switch (key) {
case ASM:

/ / do something
break;

case BREAK:
/ / do something
break;

A compiler can issue a warning because only two out of three keyword values are handled.
An enumerator can be initialized by a constant-expression (§C.5) of integral type (§4.1.1). The

range of an enumeration holds all the enumeration's enumerator values rounded up to the nearest
larger binary power minus 1. The range goes down to °if the smallest enumerator is non-negative
and to the nearest lesser negative binary power if the smallest enumerator is negative. This defines
the smallest bit-field capable of holding the enumerator values. For example:

enum e1 { dark, light } ;
enum e2 { a =3 1 b =9 } ;
enum e3 { min = -10 1 max =1000000 };

/ / range 0:1
/ / range 0:15
/ / range -1048576:1048575

A value of integral type may be explicitly converted to an enumeration type. The result of such a
conversion is undefined unless the value is within the range of the enumeration. For example:

enum flag { x=1 I y=2, z=4, e=8 }; / / range 0,·15

flag /1 =5 ; / / type error: 5 is not oftype flag
flag j2 =flag (5) ; / / ok: flag(5) is oftype flag and within the range offlag

flag f3 = flag (z Ie); / / ok: flag(12) is oftype flag and within the range offlag
flag f4 = flag (99) ; / / undefined: 99 is not within the range offlag

The last assignment shows why there is no implicit conversion from an integer to an enumeration;
most integer values do not have a representation in a particular enumeration.

The notion of a range of values for an enumeration differs from the enumeration notion in the
Pascal family of languages. However, bit-manipulation examples that require values outside the set
of enumerators to be well-defined have a long history in C and C++.



78 Types and Declarations Chapter 4

The sizeof an enumeration is the sizeo! some integral type that can hold its range and not larger
than sizeof( int) , unless an enumerator cannot be represented as an int or as an unsigned into For
example, sizeof(el) could be I or maybe 4 but not 8 on a machine where sizeof(int) ==4.

By default, enumerations are converted to integers for arithmetic operations (§6.2). An enumer
ation is a user-defined type, so users can define their own operations, such as ++ and < < for an enu
meration (§ 11.2.3).

4.9 Declarations

Before a name (identifier) can be used in a C++ program, it must be declared. That is, its type must
be specified to inform the compiler to what kind of entity the name refers. Here are some examples
illustrating the diversity of declarations:

char chi
string s;
int count = 1;
const double pi = 3 . 1415926535897932385 ;
extern int error_number;

const char* name = II Njal II ;

const char* season [] = { II spring II, II summer", IIfall", "winter ll
};

struct Date { int d, m, y; };
int day (Date* p) { return p->d; }
double sqrt (double) ;
template<class T> Tabs (T a) { return a<O? -a : a;

typedef complex<short> Point;
struct User;
enum Beer { Carlsberg, Tuborg, Thor};
namespace NS { int a; }

As can be seen from these examples, a declaration can do more than simply associate a type with a
name. Most of these declarations are also definitions; that is, they also define an entity for the
name to which they refer. For ch, that entity is the appropriate amount of memory to be used as a
variable - that memory will be allocated. For day, it is the specified function. For the constant pi,
it is the value 3 . 1415926535897932385. For Date, that entity is a new type. For Point, it is the
type complex<short> so that Point becomes a synonym for complex<short>. Of the declarations
above, only

double sqrt (double);
exlern int error_number i

struct User;

are not also definitions; that is, the entity they refer to must be defined elsewhere. The code (body)
for the function sqrt must be specified by some other declaration, the memory for the int variable
error_number rnust be allocated by some other declaration of error_number, and some other
declaration of the type User must define what that type looks like. For example:



Section 4.9

double sqrt (double d) { / * ... * / }
int error_number = 1 i

struct User { / * ... * / } ;

Declarations 79

There must always be exactly one definition for each name in a C++ program (for the effects of
#include, see §9.2.3). However, there can be many declarations. All declarations of an entity must
agree on the type of the entity referred to. So, this fragment has two errors:

int count;
int count; / / error: redefinition

extern int error_number i

extern short error_number; / / error: type mismatch

and this has none (for the use of extern see §9.2):

extern int error_number i

extern int error_number i

Some definitions specify a "value" for the entities they define. For example:

struct Date { int d, m, Y i } i

typedef complex<short> Point i

int day (Date* p) { return p- >d; }
const double pi =3 . 1415926535897932385 i

For types, templates, functions, and constants, the "value" is permanent. For nonconstant data
types, the initial value may be changed later. For example:

void f()
{

int count = 1 i

const char* name = II Bjarne"; / / nanle is a variable that points to a constant (§5.4. J)
/ / ...
count =2;
name = "Marian" ;

Of the definitions, only

char chi

do not specify values. See §4.9.5 and §10.4.2 for explanations of how and when a variable is
assigned a default value. Any declaration that specifies a value is a definition.

4.9.1 The Structure of a Declaration

A declaration consists of four parts: an optional "specifier," a base type, a declarator, and an
optional initializer. Except for function and namespace definitions, a declaration is terminated by a
semicolon. For example:



80 Types and Declarations

char* kings [] = { II Antigonus ", "Seleucus ", II Ptolemy II } i

Chapter 4

Here, the base type is char, the declarator is *kings [ ], and the initializer is ={... }.
A specifier is an initial keyword, such as virtual (§2.5.5, §12.2.6) and extern (§9.2), that speci

fies some non-type attribute of what is being declared.
A declarator is composed of a name and optionally some declarator operators. The most com

mon declarator operators are (§A.7.1):

* pointer prefix
*const constant pointer prefix
& reference prefix
[] array postfix
() function postfix

Their use would be simple if they were all either prefix or postfix. However, *, [], and () were
designed to mirror their use in expressions (§6.2). Thus, * is prefix and [] and () are postfix.
The postfix declarator operators bind tighter than the prefix ones. Consequently, *kings [] is a
vector of pointers to something, and we have to use parentheses to express types such as "pointer
to function;" see examples in §5.1. For full details, see the grammar in Appendix A.

Note that the type cannot be left out of a declaration. For example:

const c = 7; / / error: no type
gt (int a, int b) {return (a>b) ? a : b i } / / error: no return type

unsigned ui i

long Ii;
/ / ok: 'unsigned' is the type 'unsigned int'
/ / ok: 'long' is the type 'long int'

In this, standard c++ differs from earlier versions of C and C++ that allowed the first two examples
by considering int to be the type when none were specified (§B.2). This "implicit int" rule was a
source of subtle errors and confusion.

4.9.2 Declaring Multiple Names

It is possible to declare several names in a single declaration. The declaration simply contains a list
of comma-separated declarators. For example, we can declare two integers like this:

int x, Yi / / int x; int y;

Note that operators apply to individual names only - and not to any subsequent names in the same
declaration. For example:

int* P, Yi
int x, *q;
int v [ 10], *pv i

/ / int* p; int y; NOT int* y;
/ / int x; int* q;
/ / int v[10}; int* pv;

Such constructs make a program less readable and should be avoided.



Section 4.9.3

4.9.3 Names

Names 81

A name (identifier) consists of a sequence of letters and digits. The first character must be a letter.
The underscore character _ is considered a letter. C++ imposes no limit on the number of charac
ters in a name. However, some parts of an implementation are not under the control of the com
piler writer (in particular, the linker), and those parts, unfortunately, sometimes do impose limits.
Some run-time environments also make it necessary to extend or restrict the set of characters
accepted in an identifier. Extensions (e.g., allowing the character $ in a name) yield nonportable
programs. A C++ keyword (Appendix A), such as new and int, cannot be used as a name of a
user-defined entity. Examples of names are:

hello
DEFINED
varD

this_is_a_most_unusually_long_name
foO bAr u_name
var1 CLASS class

HorseSense

Examples of character sequences that cannot be used as identifiers are:

012
pay. due

a fool
foo-bar

$sys
. name

class

if
3var

Names starting with an underscore are reserved for special facilities in the implementation and the
run-time environment, so such names should not be used in application programs.

When reading a program, the compiler always looks for the longest string of characters that
could make up a name. Hence, var10 is a single name, not the name var followed by the number
10. Also, elseifis a single name, not the keyword else followed by the keyword if

Uppercase and lowercase letters are distinct, so Count and count are different names, but it is
unwise to choose names that differ only by capitalization. In general, it is best to avoid names that
differ only in subtle ways. For example, the uppercase 0 (0) and zero (0) can be hard to tell apart,
as can the lowercase L (I) and one (1). Consequently, 10, 10, 11, and Ii are poor choices for identi
fier names.

Names from a large scope ought to have relatively long and reasonably obvious names, such as
vector, Window_with_border, and Department_number. However, code is clearer if names used
only in a small scope have short, conventional names such as x, i, and p. Classes (Chapter 10) and
namespaces (§8.2) can be used to keep scopes small. It is often useful to keep frequently used
names relatively short and reserve really long names for infrequently used entities. Choose names
to reflect the meaning of an entity rather than its implementation. For example, phone_book is bet
ter than number_list even if the phone numbers happen to be stored in a list (§3.7). Choosing good
names is an art.

Try to maintain a consistent naming style. For example, capitalize nonstandard library user
defined types and start nontypes with a lowercase letter (for example, Shape and current_token).
Also, use all capitals for macros (if you must use macros; for example, HACK) and use underscores
to separate words in an identifier. However, consistency is hard to achieve because programs are
typically composed of fragments from different sources and several different reasonable styles are
in use. Be consistent in your use of abbreviations and acronyms.



82 Types and Declarations Chapter 4

4.9.4 Scope

A declaration introduces a name into a scope; that is, a name can be used only in a specific part of
the program text. For a name declared in a function (often caned a local name), that scope extends
from its point of declaration to the end of the block in which its declaration occurs. A block is a
section of code delimited by a { } pair.

A name is called global if it is defined outside any function, class (Chapter 10), or namespace
(§8.2). The scope of a global name extends from the point of declaration to the end of the file in
which its declaration occurs. A declaration of a name in a block can hide a declaration in an
enclosing block or a global name. That is, a name can be redefined to refer to a different entity
within a block. After exit from the block, the name resumes its previous meaning. For example:

int Xi I I global x

void f()
~ {

int Xi

X =1 i

int Xi

X =2;

x= 3;

int* p =&Xi

I I local x hides global x
I I assign to local x

I I hides first local x
I I assign to second local x

I I assign to first local x

I I take address ofglobal x

Hiding names is unavoidable when writing large programs. However, a human reader can easily
fail to notice that a name has been hidden. Because such errors are relatively rare, they can be very
difficult to find. Consequently, name hiding should be minimized. Using names such as i and x for
global variables or for local variables in a large function is asking for trouble.

A hidden global name can be referred to using the scope resolution operator ::. For example:

int Xi

void f2 ()
{

int X = 1 i I I hide global x
::x = 2 i I I assign to global x

X = 2 i I I assign to local x
II ...

There is no way to use a hidden local name.
The scope of a name starts at its point of declaration; that is, after the complete declarator and

before the initializer. This implies that a name can be used even to specify its own initial value.
For example:

int Xi



Section 4.9.4

void f3 ()
{

int x =x i I I perverse: initialize x with its own (uninitialized) value

Scope 83

This is not illegal, just silly. A good compiler will warn if a variable is used before it has been set
(see also §5.9(9]).

It is possible to use a single name to refer to two different objects in a block without using the
:: operator. For example:

int x = 11 i

void 14 ()
{

int y = Xi

int x = 22 i

y=Xi

I I perverse:

I I use global x: y =11

I I use local x: y =22

Function argument names are considered declared in the outermost block of a function, so

void 15 (int x)
{

int x i I I error

is an error because x is defined twice in the same scope. Having this be an error allows a not
uncommon, subtle mistake to be caught.

4.9.5 Initialization

If an initializer is specified for an object, that initializer determines the initial value of an object. If
no initializer is specified, a global (§4.9.4), namespace (§8.2), or local static object (§7.1.2, §10.2.4)
(collectively called static objects) is initialized to 0 of the appropriate type. For example:

int ai

double di
/ I means ttint a =0;"
/ / means ndouble d = 0.0;"

Local variables (sometimes called automatic objects) and objects created on the free store (some
times called dynamic objects or heap objects) are not initialized by default. For example:

void I()
{

int x; / I x does not have a well-defined value
II ...

Members of arrays and structures are default initialized or not depending on whether the array or
structure is static. User-defined types may have default initialization defined (§ 10.4.2).

More complicated objects require more than one value as an initializer. This is handled by ini
tializer lists delimited by { and} for C-style initialization of arrays (§5.2.1) and structures (§5.7).
For user-defined types with constructors, function-style argument lists are used (§2.5.2, §10.2.3).



84 Types and Declarations Chapter 4

/ / array initializer
/ / function-style initializer (initialization by constructor)
/ / function declaration

Note that an empty pair of parentheses () in a declaration always means "function" (§7.1).
For example:

int a [] = { J, 2 } ;
Point z (J , 2) ;

int f();

4.9.6 Objects and Lvalues

We can allocate and use "variables" that do not have names, and it is possible to assign to
strange-looking expressions (e.g., *p [a+ 10] =7). Consequently, there is a need for a name for
"something in memory." This is the simplest and most fundamental notion of an object. That is,
an object is a contiguous region of storage; an lvalue is an expression that refers to an object. The
word lvalue was originally coined to mean "something that can be on the left-hand side of an
assignment.' , However, not every lvalue may be used on the left-hand side of an assignment; an
lvalue can refer to a constant (§5.5). An lvalue that has not been declared const is often called a
modifiable lvalue. This simple and low-level notion of an object should not be confused with the
notions of class object and object of polymorphic type (§ 15.4.3).

Unless the programmer specifies otherwise (§7.1.2, §10.4.8), an object declared in a function is
created when its definition is encountered and destroyed when its name goes out of scope (§ 10.4.4).
Such objects are called automatic objects. Objects declared in global or namespace scope and stat
ics declared in functions or classes are created and initialized once (only) and "live" until the pro
gram terminates (§ 10.4.9). Such objects are called static objects. Array elements and nonstatic
structure or class members have their lifetimes determined by the object of which they are part.

Using the new and delete operators, you can create objects whose lifetimes are controlled
directly (§6.2.6).

4.9.7 Typedef

A declaration prefixed by the keyword typedeJ declares a new name for the type rather than a new
variable of the given type. For example:

typedej char* Pchar;
Pchar pJ , p2; / / pJ and p2 are char*s
char* p3 = pI;

A name defined like this, usually called a "typedeJ," can be a convenient shorthand for a type with
an unwieldy name. For example, unsigned char is too long for really frequent use, so we could
define a synonym, uchar:

typedeJ unsigned char uchar;

Another use of a typedefis to limit the direct reference to a type to one place. For example:

typedeJ int int32;
typedeJ short int16;

If we now use int32 wherever we need a potentially large integer, we can port our program to a
machine on which sizeof(int) is 2 by redefining the single occurrence of int32 in our code to:



Section 4.9.7

typedef long int32;

Typedef 8S

For good and bad, typedefs are synonyms for other types rather than distinct types. Consequently,
typedefs mix freely with the types for which they are synonyms. People who would like to have
distinct types with identical semantics or identical representation should look at enumerations
(§4.8) or classes (Chapter 10).

4.10 Advice

[1] Keep scopes small; §4.9.4.
[2] Don't use the same name in both a scope and an enclosing scope; §4.9.4.
[3] Declare one name (only) per declaration; §4.9.2.
[4] Keep common and local names short, and keep uncommon and nonlocal names longer; §4.9.3.
[5] Avoid similar-looking names; §4.9.3.
[6] Maintain a consistent naming style; §4.9.3.
[7] Choose names carefully to reflect meaning rather than implementation; §4.9.3.
[8] Use a typedef to define a meaningful name for a built-in type in cases in which the built-in

type used to represent a value might change; §4.9.7.
[9] Use typedefs to define synonyms for types; use enumerations and classes to define new types;

§4.9.7.
[10] Remember that every declaration must specify a type (there is no "implicit int"); §4.9.1.
[11] Avoid unnecessary assumptions about the numeric value of characters; §4.3.1, §C.6.2.1.
[12] Avoid unnecessary assumptions about the size of integers; §4.6.
[13] Avoid unnecessary assumptions about the range of floating-point types; §4.6.
[14] Prefer a plain int over a short int or a long int; §4.6.
[15] Prefer a double over afloat or a long double; §4.5.
[16] Prefer plain char over signed char and unsigned char; §C.3.4.
[17] Avoid making unnecessary assumptions about the sizes of objects; §4.6.
[18] Avoid unsigned arithmetic; §4.4.
[19] View signed to unsigned and unsigned to signed conversions with suspicion; §C.6.2.6.
[20] View floating-point to integer conversions with suspicion; §C.6.2.6.
[21] View conversions to a smaller type, such as int to char, with suspicion; §C.6.2.6.

4.11 Exercises

1. (*2) Get the "Hello, world!" program (§3.2) to run. If that program doesn't compile as writ
ten, look at §B.3.1.

2. (* 1) For each declaration in §4.9, do the following: If the declaration is not a definition, write a
definition for it. If the declaration is a definition, write a declaration for it that is not also a defi
nition.

3. (* 1.5) Write a program that prints the sizes of the fundamental types, a few pointer types, and a
few enumerations of your choice. Use the sizeo!operator.



86 Types and Declarations Chapter 4

4. (* 1.5) Write a program that prints out the letters ' a ' .. ' z' and the digits ' 0 ' .. ' 9' and their
integer values. Do the same for other printable characters. Do the same again but use hexa
decimal notation.

5. (*2) What, on your system, are the largest and the smallest values of the following types: char,
short, int, long,float, double, long double, and unsigned. .

6. (*1) What is the longest local name you can use in a C++ program on your system? What is the
longest external name you can use in a C++ program on your system? Are there any restrictions
on the characters you can use in a name?

7. (*2) Draw a graph of the integer and fundamental types where a type points to another type if
all values of the first can be represented as values of the second on every standards-conforming
implementation. Draw the same graph for the types on your favorite implementation.



5
Pointers, Arrays, and Structures

The sublime and the ridiculous
are often so nearly related that

it is difficult to class them separately.
- Tom Paine

Pointers - zero - arrays - string literals - pointers into arrays - constants - point
ers and constants - references - void* - data structures - advice - exercises.

5.1 Pointers

For a type T, T* is the type "pointer to T." That is, a variable of type T* can hold the address of
an object of type T. For example:

char c = ' a';
char* p =&c;

or graphically:

/ / p holds the address ofc

p:1 &c +
Unfortunately, pointers to arrays and pointers to functions need a more complicated notation:

int* pi;
char** PPCi
int* ap [15] i

int (*fp) (char*);
int* f(char*);

/ / pointer to int
/ / pointer to pointer to char
/ / array of15 pointers to ints
/ / pointer to function taking a char* argument; returns an int
/ / function taking a char* argument; returns a pointer to int

See §4.9.1 for an explanation of the declaration syntax and Appendix A for the complete grammar.



88 Pointers, Arrays, and Structures Chapter 5

The fundamental operation on a pointer is dereferencing, that is, referring to the object pointed
to by the pointer. This operation is also called indirection. The dereferencing operator is (prefix)
unary *. For example:

char c = ' a';
char* p = &Cj

char c2 = *p;
I I p holds the address ofc
II c2 == 'a'

The variable pointed to by p is c, and the value stored in c is ' a', so the value of *p assigned to c2
is ' a'.

It is possible to perform some arithmetic operations on pointers to array elements (§5.3). Point
ers to functions can be extremely useful; they are discussed in §7.7.

The implementation of pointers is intended to map directly to the addressing mechanisms of the
machine on which the program runs. Most machines can address a byte. Those that can't tend to
have hardware to extract bytes from words. On the other hand, few machines can directly address
an individual bit. Consequently, the smallest object that can be independently allocated and
pointed to using a built-in pointer type is a char. Note that a bool occupies at least as much space
as a char (§4.6). To store smaller values more compactly, you can use logical operations (§6.2.4)
or bit fields in structures (§C.8.1).

5.1.1 Zero

Zero (0) is an into Because of standard conversions (§C.6.2.3), 0 can be used as a constant of any
integral (§4.1.1), floating-point, pointer, or pointer-to-member type. The type of zero will be deter
mined by context. Zero will typically (but not necessarily) be represented by the bit pattern all
zeros of the appropriate size.

No object is allocated with the address O. Consequently, 0 acts as a pointer literal, indicating
that a pointer doesn't refer to an object.

In C, it has been popular to define a macro NULL to represent the zero pointer. Because of
C++'s tighter type checking, the use of plain 0, rather than any suggested NULL macro, leads to
fewer problems. If you feel you must define NULL, use

const int NULL = 0;

The const qualifier (§5.4) prevents accidental redefinition of NULL and ensures that NULL can be
used where a constant is required.

5.2 Arrays

For a type T, T[size] is the type "array of size elements of type T." The elements are indexed
from 0 to size -1. For example:

float v [3] i

char* a [32] i

I I an array of three floats: v[O], v[l], v[2]
/ / an array of32 pointers to char: a[D] .. a[3l]



Section 5.2 Arrays 89

The number of elements of the array, the array bound, must be a constant expression (§C.5). If you
need variable bounds, use a vector (§3.7.l, §16.3). For example:

void f(int i)
{

int vI [i];

vector<int> v2 ( i) ;
I I error: array size not a constant expression
II ok

Multidimensional arrays are represented as arrays of arrays. For example:

int d2 [10] [20] i I I d2 is an array of10 arrays of20 integers

Using comma notation as used for array bounds in some other languages gives compile-time errors
because comma (,) is a sequencing operator (§6.2.2) and is not allowed in constant expressions
(§C.5). For example, try this:

int bad[5,2]; I I error: comma not allowed in a constant expression

Multidimensional arrays are described in §C.7. They are best avoided outside low-level code.

5.2.1 Array Initializers

An array can be initialized by a list of values. For example:

int vI [] = { 1, 2, 3, 4 } ;
char v2 [] = { ,a " ,b', ,c' , 0 } ;

When an array is declared without a specific size, but with an initializer list, the size is calculated
by counting the elements of the initializer list. Consequently, v1 and v2 are of type int [4] and
char [4] , respectively. If a size is explicitly specified, it is an error to give surplus elements in an
initializer list. For example:

char v3 [2] = { ,a', ,b ' I 0 } ;
char v4 [3] = { , a ' I ' b ' I 0 } ;

I I error: too many initializers
II ok

If the initializer supplies too few elements, 0 is assumed for the remaining array elements. For
example:

int v5 [8] = {1, 2, 3 I 4 } ;

is equivalent to

int v5 [] = { 1 I 2 I 3 I 4 , 0, 0, 0 I 0 } ;

Note that there is no array assignment to match the initialization:

void f( )
{

v4 = { ,c' I'd' I 0 }; I I error: no array assignment

When you need such assignments, use a vector (§ 16.3) or a valarray (§22.4) instead.
An array of characters can be conveniently initialized by a string literal (§5.2.2).



90 Pointers, Arrays, and Structures

5.2.2 String Literals

A string literal is a character sequence enclosed within double quotes:

"this is a string II

Chapter 5

A string literal contains one more character than it appears to have; it is terminated by the null char
acter /\0", with the value O. For example:

sizeof( "Bohr" ) ==5

The type of a string literal is · 'array of the appropriate number of const characters," so "Bohr" is
of type const char [5] .

A string literal can be assigned to a char*. This is allowed because in previous definitions of C
and C++ , the type of a string literal was char*. Allowing the assignment of a string literal to a
char* ensures that millions of lines of C and C++ remain valid. It is, however, an error to try to
modify a string literal through such a pointer:

void f()

{

char* p = "Plato" ;
p [4] = ' e ' ; I I error: assignment to const; result is undefined

This kind of error cannot in general be caught until run-time, and implementations differ in their
enforcement of this rule. See also §B.2.3. Having string literals constant not only is obvious, but
also allows implementations to do significant optimizations in the way string literals are stored and
accessed.

If we want a string that we are guaranteed to be able to modify, we must copy the characters
into an array:

void f()

{

char p [] = "Zeno" ;
p[O] = 'R";

I I p is an array of5 char
II ok

A string literal is statically allocated so that it is safe to return one from a function. For example:

const char* error_message (int i)

{

I I ...
return II range error";

The memory holding" range error" will not go away after a call of error_message ( ) .
Whether two identical string literals are allocated as one is implementation-defined (§C.l). For

example:

const char* p = II Heraclitus II ;

const char* q = II Heraclitus" ;



Section 5.2.2

void g ()
{

if (p == q) cout < < "one! \n"; / / result is implementation-defined
/ / ...

String Literals 91

Note that == compares addresses (pointer values) when applied to pointers, and not the values
pointed to.

The empty string is written as a pair of adjacent double quotes, "n, (and has the type const
char [1]).

The backslash convention for representing nongraphic characters (§C.3.2) can also be used
within a string. This makes it possible to represent the double quote (") and the escape character
backslash ( \) within a string. The most common such character by far is the newline character,
'\n '. For example:

cout« II beep at end of message\a\n" ;

The escape character '\a' is the ASCII character BEL (also known as alert), which causes some
kind of sound to be emitted.

It is not possible to have a "real" newline in a string:

"this is not a string
but a syntax error"

Long strings can be broken by whitespace to make the program text neater. For example:

char alpha [] = "abcdefghijklmnopqrstuvwxyz"
II ABCDEFGHIJKLMNOPQRSTUVWXYZ" ;

The compiler will concatenate adjacent strings, so alpha could equivalently have been initialized
by the single string:

"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ" ;

It is possible to have the null character in a string, but most programs will not suspect that there
are characters after it. For example, the string "]ens\OOOMunk" will be treated as "lens" by stan
dard library functions such as strcpy () and strlen ( ) ; see §20.4.1.

A string with the prefix L, such as L"angst", is a string of wide characters (§4.3, §C.3.3). Its
type is const wchar_t [ ] .

5.3 Pointers into Arrays

In C++, pointers and arrays are closely related. The name of an array can be used as a pointer to its
initial element. For example:

int v [] = { I, 2, 3, 4 } ;
int* pI = v; / / pointer to initial element (implicit conversion)
int* p2 = &v [0] ; / / pointer to initial element
int* p3 = &v [4]; / / pointer to one beyond last element

or graphically:



92 Pointers, Arrays, and Structures

V:

Chapter 5

/ / implicit conversion ofchar[] to char*
/ / error: cannot assign to array

Taking a pointer to the element one beyond the end of an array is guaranteed to work. This is
important for many algorithms (§2.7.2, §18.3). However, since such a pointer does not in fact point
to an element of the array, it may not be used for reading or writing. The result of taking the
address of the element before the initial element is undefined and should be avoided. On some
machine architectures, arrays are often allocated on machine addressing boundaries, so "one before
the initial element" simply doesn't make sense.

The implicit conversion of an array name to a pointer to the initial element of the array is exten
sively used in function calls in C-style code. For example:

extern It en int strlen (const char*) j / / from <string.h>

void f()
{

char v [] = n Annemarie II ;

char* p =v j / / implicit conversion ofchar[] to char*
strlen (p) j

strlen (v) j

v =pj

The same value is passed to the standard library function strlen () in both calls. The snag is that it
is impossible to avoid the implicit conversion. In other words, there is no way of declaring a func
tion so that the array V is copied when the function is called. Fortunately, there is no implicit or
explicit conversion from a pointer to an array.

The implicit conversion of the array argument to a pointer means that the size of the array is lost
to the called function. However, the called function must somehow determine the size to perform a
meaningful operation. Like other C standard library functions taking pointers to characters,
strlen () relies on zero to indicate end-of-string; strlen (p) returns the number of characters up to
and not including the terminating O. This is all pretty low-level. The standard library vector
(§ 16.3) and string (Chapter 20) don't suffer from this problem.

5.3.1 Navigating Arrays

Efficient and elegant access to arrays (and similar data structures) is the key to many algorithms
(see §3.8, Chapter 18). Access can be achieved either through a pointer to an array plus an index or
through a pointer to an element. For example, traversing a character string using an index,

void fi (char v [] )
{

for (int i =OJ v [i] ! =OJ i++) use (v [i] ) j



Section 5.3.1

is equivalent to a traversal using a pointer:

void fp (char v [] )
{

for (char* p = v; *p!=O; p++) use(*p};

Navigating Arrays 93

The prefix * operator dereferences a pointer so that *p is the character pointed to by p, and ++
increments the pointer so that it refers to the next element of the array.

There is no inherent reason why one version should be faster than the other. With modem com
pilers, identical code should be generated for both examples (see §5.9[8]). Programmers can
choose between the versions on logical and aesthetic grounds.

The result of applying the arithmetic operators +, -, + +, or - - to pointers depends on the type
of the object pointed to. When an arithmetic operator is applied to a pointer p of type T*, p is
assumed to point to an element of an array of objects of type T; p+1 points to the next element of
that array, and p-l points to the previous element. This implies that the integer value of p+1 will
be sizeo!( T) larger than the integer value ofp. For example, executing

#include <iostream>

int main ()
{

int vi [10] i

short vs[10];

std::cout« &vi[O] « ' '« &vi[l] « '\n';
std::cout«&vs[O]«' , «&vs[l] «'\n';

produced

Ox7fffaejfJ Ox7fffaef4
Ox7fffaedc Ox7fffaede

using a default hexadecimal notation for pointer values. This shows that on my implementation,
sizeD!(short) is 2 and sizeD!(int) is 4.

Subtraction of pointers is defined only when both pointers point to elements of the same array
(although the language has no fast way of ensuring that is the case). When subtracting one pointer
from another, the result is the number of array elements between the two pointers (an integer). One
can add an integer to a pointer or subtract an integer from a pointer; in both cases, the result is a
pointer value. If that value does not point to an element of the same array as the original pointer or
one beyond, the result of using that value is undefined. For example:

void I{)
{

int vI [10];
int v2 [10];

int il = &v1 [5] -&vl [3]; / / il = 2
int i2 = &vl [5] -&v2 [3]; / / result undefined



94 Pointers, Arrays, and Structures Chapter 5

int* pi = v2+2;
int* p2 =v2-2;

/ / pl =&v2[2]
/ / *p2 undefined

Complicated pointer arithmetic is usually unnecessary and often best avoided. Addition of pointers
makes no sense and is not allowed.

Arrays are not self-describing because the number of elements of an array is not guaranteed to
be stored with the array. This implies that to traverse an array that does not contain a tenninator the
way character strings do, we must somehow supply the number of elements. For example:

void fp (char v [ ], unsigned int size)
{

for (int i=O; i<size; i++) use (v [i] );

const int N =7;
char v2 [N];
for (int i=O; i<N; i++) use (v2 [i] );

Note that most C++ implementations offer no range checking for arrays. This array concept is
inherently low-level. A more advanced notion of arrays can be provided through the use of classes;
see §3.7.1.

5.4 Constants

C++ offers the concept of a user-defined constant, a const, to express the notion that a value doesn't
change directly. This is useful in several contexts. For example, many objects don't actually have
their values changed after initialization, symbolic constants lead to more maintainable code than do
literals embedded directly in code, pointers are often read through but never written through, and
most function parameters are read but not written to.

The keyword const can be added to the declaration of an object to make the object declared a
constant. Because it cannot be assigned to, a constant must be initialized. For example:

const int model =90;
const int v [] ={1, 2, 3 I 4 };
const int Xi

/ / model is a const
/ / vIi] is a const
/ / error: no initializer

Declaring something const ensures that its value will not change within its scope:

void f()

{

model =200i
V[2]++i

/ / error
/ / error

Note that const modifies a type; that is, it restricts the ways in which an object can be used, rather
than specifying how the constant is to be allocated. For example:



Section 5.4

void g (const x* p)
{

/ / can't modify *p here

void h ()
{

X val; / / val can be modified
g (&val);
/ / ...

Constants 95

Depending on how smart it is, a compiler can take advantage of an object being a constant in sev
eral ways. For example, the initializer for a constant is often (but not always) a constant expression
(§C.5); if it is, it can be evaluated at compile time. Further, if the compiler knows every use of the
const, it need not allocate space to hold it. For example:

const int c1 = 1 ;
const int c2 =2;
const int c3 =myJ(3);
extern const int c4;
const int* p =&c2;

/ / don't know the value ofc3 at compile time
/ / don't know the value ofc4 at compile time
/ / need to allocate space for c2

Given this, the compiler knows the values of cl and c2 so that they can be used in constant expres
sions. Because the values of c3 and c4 are not known at compile time (using only the information
available in this compilation unit; see §9.1), storage must be allocated for c3 and c4. Because the
address of c2 is taken (and presumably used somewhere), storage must be allocated for c2. The
simple and common case is the one in which the value of the constant is known at compile time and
no storage needs to be allocated; cl is an example of that. The keyword extern indicates that c4 is
defined elsewhere (§9.2).

It is typically necessary to allocate store for an array of constants because the compiler cannot,
in general, figure out which elements of the array are referred to in expressions. On many
machines, however, efficiency improvements can be achieved even in this case by placing arrays of
constants in read-only storage.

Common uses for consts are as array bounds and case labels. For example:

const int a = 42 ;
const int b =99 i

const int max = 128;

int v [max] ;

void f{ int i}
{

switch (i)

case a:
/ / ...



96 Pointers, Arrays, and Structures

case b:
II ...

ChapterS

Enumerators (§4.8) are often an alternative to consts in such cases.
The way eonst can be used with class member functions is discussed in §10.2.6 and §10.2.7.
Symbolic constants should be used systematically to avoid "magic numbers" in code. If a

numeric constant, such as an array bound, is repeated in code, it becomes hard to revise that code
because every occurrence of that constant must be changed to make a correct update. Using a sym
bolic constant instead localizes information. Usually, a numeric constant represents an assumption
about the program. For example, 4 may represent the number of bytes in an integer, 128 the num
ber of characters needed to buffer input, and 6 .24 the exchange factor between Danish kroner and
U.S. dollars. Left as numeric constants in the code, these values are hard for a maintainer to spot
and understand. Often, such numeric values go unnoticed and become errors when a program is
ported or when some other change violates the assumptions they represent. Representing assump
tions as well-commented symbolic constants minimizes such maintenance problems.

5.4.1 Pointers and Constants

When using a pointer, two objects are involved: the pointer itself and the object pointed to. "Pre
fixing" a declaration of a pointer with eonst makes the object, but not the pointer, a constant. To
declare a pointer itself, rather than the object pointed to, to be a constant, we use the declarator
operator *const instead of plain *. For example:

void /1 (char* p)
{

char s [] = "Gorm" ;

const char* pc = s;
pc [3] = ' g' ;
pc =p;

char *const cp = s;
cp [3] = ' a';

cp =p;

const char *const cpc = s;
cpc [3] = 'a' ;
cpc = p;

I I pointer to constant
I I error: pc points to constant
II ok

I I constant pointer
II ok
I I error: cp is constant

I I const pointer to const
I I error: cpc points to constant
I I error: cpc is constant

The declarator operator that makes a pointer constant is *const. There is no const* declarator
operator, so a const appearing before the * is taken to be part of the base type. For example:

char *const cp;
char const* pc;
const char* pc2;

I I const pointer to char
I I pointer to const char
I I pointer to const char

Some people find it helpful to read such declarations right-to-Ieft. For example, "cp is a const
pointer to a char" and "pe2 is a pointer to a char const. ' ,



Section 5.4.1 Pointers and Constants 97

An object that is a constant when accessed through one pointer may be variable when accessed
in other ways. This is particularly useful for function arguments. By declaring a pointer argument
const, the function is prohibited from modifying the object pointed to. For example:

char* strcpy (char* p, const char* q); I I cannot modify *q

You can assign the address of a variable to a pointer to constant because no harm can come from
that. However, the address of a constant cannot be assigned to an unrestricted pointer because this
would allow the object's value to be changed. For example:

void f4 ()
{

int a = Ii
const int c = 2 i

const int* pI = &c;
const int* p2 = &a i

int* p3 = &Ci

*p3 = 7;

II ok
II ok
I I error: initialization of int* with const int*
I I try to change the value ofc

It is possible to explicitly remove the restrictions on a pointer to const by explicit type conversion
(§ 10.2.7.1 and §15.4.2.1).

5.5 References

A reference is an alternative name for an object. The main use of references is for specifying argu
ments and return values for functions in general and for overloaded operators (Chapter 11) in par
ticular. The notation X& means reference to X. For example:

void f( )
{

int i = 1 i

int& r = i i

int x = ri

r = 2;

I I rand i now refer to the same int
II x = 1

I I i = 2

To ensure that a reference is a name for something (that is, bound to an object), we must initialize
the reference. For example:

int i = 1 i

int& r1 = i;
int& r2 i

extern int& r3 i

I10k: r1 initialized
I I error: initializer missing
I10k: r3 initialized elsewhere

Initialization of a reference is something quite different from assignment to it. Despite appear
ances, no operator operates on a reference. For example:



98 Pointers, Arrays, and Structures

void g{)
{

Chapter 5

int ii = 0;
int& rr =ii;
rr++;
int* pp =&rr;

I I ii is incremented to 1
I I pp points to ii

This is legal, but rr++ does not increment the reference rr; rather, ++ is applied to an int that hap
pens to be ii. Consequently, the value of a reference cannot be changed after initialization; it
always refers to the object it was initialized to denote. To get a pointer to the object denoted by a
reference rr, we can write &rr.

The obvious implementation of a reference is as a (constant) pointer that is dereferenced each
time it is used. It doesn't do much harm thinking about references that way, as long as one remem
bers that a reference isn't an object that can be manipulated the way a pointer is:

pp:

In some cases, the compiler can optimize away a reference so that there is no object representing
that reference at run-time.

Initialization of a reference is trivial when the initializer is an lvalue (an object whose address
you can take; see §4.9.6). The initializer for a "plain" T& must be an Ivalue of type T.

The initializer for a const T& need not be an Ivalue or even of type T. In such cases, .
[1] first, implicit type conversion to Tis applied if necessary (see §C.6);
[2] then, the resulting value is placed in a temporary variable of type T; and
[3] finally, this temporary variable is used as the value of the initializer.

Consider:

double& dr = 1 ;
const double& cdr = 1;

I I error: lvalue needed
II ok

The interpretation of this last initialization might be:

double temp = double (1 ); I I first create a temporary with the right value
const double& cdr = temp; I I then use the temporary as the initializerfor cdr

A temporary created to hold a reference initializer persists until the end of its reference's scope.
References to variables and references to constants are distinguished because the introduction of

a temporary in the case of the variable is highly error-prone; an assignment to the variable would
become an assignment to the - soon to disappear - temporary. No such problem exists for refer
ences to constants, and references to constants are often important as function arguments (§ 11.6).

A reference can be used to specify a function argument so that the function can change the
value of an object passed to it. For example:



Section 5.5

void increment (int& aa) {aa++; }

void f{}

{

References 99

int x = 1 ;
increment (x); II x = 2

The semantics of argument passing are defined to be those of initialization, so when called,
increment's argument aa became another name for x. To keep a program readable, it is often best
to avoid functions that modify their arguments. Instead, you can return a value from the function
explicitly or require a pointer argument:

int next (int p) { return p+l; }

void incr (int* p) { (*p) ++; }

void g ()
{

int x =1;
increment (x) ;
x =next(x};
incr(&x) ;

II x = 2
II x =3
II x =4

The increment (x) notation doesn't give a clue to the reader that x's value is being modified, the
way x=next(x} and incr(&x} does. Consequently "plain" reference arguments should be used
only where the name of the function gives a strong hint that the reference argument is modified.

References can also be used to define functions that can be used on both the left-hand and
right-hand sides of an assignment. Again, many of the most interesting uses of this are found in the
design of nontrivial user-defined types. As an example, let us define a simple associative array.
First, we define struct Pair like this:

struct Pair {
string name;
double val;

} ;

The basic idea is that a string has a floating-point value associated with it. It is easy to define a
function, value ( ) , that maintains a data structure consisting of one Pair for each different string
that has been presented to it. To shorten the presentation, a very simple (and inefficient) implemen
tation is used:

vector<Pair> pairs;

double& value (const string& s)
1*

maintain a set ofPairs:
search for s, return its value iffound; otherwise make a new Pair and return the default value 0

*1
{



100 Pointers, Arrays, and Structures

for (int i = 0; i < pairs. size ( ); i++}
if (s ==pairs [i] . name) return pairs [i] . val;

Pair p = { s, 0 } ;
pairs . push_back (p); / / add Pair at end (§3.7.3)

return pairs [pairs. size ( ) -1] . val;

Chapter 5

This function can be understood as an array of floating-point values indexed by character strings.
For a given argument string, value () finds the corresponding floating-point object (not the value
of the corresponding floating-point object); it then returns a reference to it. For example:

int main () / / count the number ofoccurrences ofeach word on input
{

string buf;

while (cin»buj) value (buj) ++;

for (vector<Pair>:: const_iterator p =pairs. begin ( ); p! =pairs. end ( ); ++p}
cout « p->name « n: II «p->val« '\n';

Each time around, the while-loop reads one word from the standard input stream cin into the string
buf (§3.6) and then updates the counter associated with it. Finally, the resulting table of different
words in the input, each with its number of occurrences, is printed. For example, given the input

aa bb bb aa aa bb aa aa

this program will produce:

aa: 5
bb: 3

It is easy to refine this into a proper associative array type by using a template class with the sub
script operator [] overloaded (§ 11.8). It is even easier just to use the standard library map
(§ 17.4. I).

5.6 Pointer to Void

A pointer to any type of object can be assigned to a variable of type void* , a void* can be assigned
to another void*, void*s can be compared for equality and inequality, and a void* can be explicitly
converted to another type. Other operations would be unsafe because the compiler cannot know
what kind of object is really pointed to. Consequently, other operations result in compile-time
errors. To use a void*, we must explicitly convert it to a pointer to a specific type. For example:

void f( int* pi}
{

void* pv = pi ;
*pv;
pv++;

/ / ok: implicit conversion of int* to void*
/ / error: can't dereference void*
/ / error: can't increment void* (the size of the object pointed to is unknown)



Section 5.6

int* pi2 =static_cast< int* > (pv) ;

double* pdl = pv;
double* pd2 =pi;
double* pd3 = static_cast<double*> (pv);

Pointer to Void 101

I I explicit conversion back to int*

I I error
I I error
I I unsafe

In general, it is not safe to use a pointer that has been converted (' 'cast' ') to a type that differs from
the type the object pointed to. For example, a machine may assume that every double is allocated
on an 8-byte boundary. If so, strange behavior could arise if pi pointed to an int that wasn't allo
cated that way. This form of explicit type conversion is inherently unsafe and ugly. Consequently,
the notation used, static_cast, was designed to be ugly.

The primary use for void* is for passing pointers to functions that are not allowed to make
assumptions about the type of the object and for returning untyped objects from functions. To use
such an object, we must use explicit type conversion.

Functions using void* pointers typically exist at the very lowest level of the system, where real
hardware resources are manipulated. For example:

void* my_aUoc (size_t n); I I allocate n bytes from my special heap

Occurrences of void*s at higher levels of the system should be viewed with suspicion because they
are likely indicators of design errors. Where used for optimization, void* can be hidden behind a
type-safe interface (§ 13.5, §24.4.2).

Pointers to functions (§7.7) and pointers to members (§ 15.5) cannot be assigned to void*s.

5.7 Structures

An array is an aggregate of elements of the same type. A struct is an aggregate of elements of
(nearly) arbitrary types. For example:

struct address {
char* name;
long int number;
char* street;
char* town;
char state [2] i

long zip;
} ;

I I "Jim Dandy"
I I 61
I I "South St tt

I I "New Providence"
II 'N' 'J'
I I 7974

This defines a new type called address consisting of the items you need in order to send mail to
someone. Note the semicolon at the end. This is one of very few places in C++ where it is neces
sary to have a semicolon after a curly brace, so people are prone to forget it.

Variables of type address can be declared exactly as other variables, and the individual
members can be accessed using the. (dot) operator. For example:



102 Pointers, Arrays, and Structures

void f()

{

address jd;
jd. name = "Jim Dandy";
jd. number = 61;

ChapterS

The notation used for initializing arrays can also be used for initializing variables of structure types.
For example:

address jd = {
"Jim Dandy" I

61 I "South St" I

"New Providence", {'N', 'J'}, 7974
} ;

Using a constructor (§ 10.2.3) is usually better, however. Note thatjd. state could not be initialized
by the string "NJ". Strings are terminated by the character '\0'. Hence, "NJ" has three characters
- one more than will fit into jd . state.

Structure objects are often accessed through pointers using the - > (structure pointer derefer
ence) operator. For example:

void print_addr (address* p)
{

cout «p->name« '\n'
« p->number« ' , «p->street« '\n'
« p->town« '\n'
«p->state [0] «p->state [1] « ' , «p->zip« '\n';

When p is a pointer, p- >m is equivalent to (*p) . m.
Objects of structure types can be assigned, passed as function arguments, and returned as the

result from a function. For example:

address current;

address set_current (address next)
{

address prev = current;
current =next;
return prev;

Other plausible operations, such as comparison (== and! =), are not defined. However, the user
can define such operators (Chapter 11).

The size of an object of a structure type is not necessarily the sum of the sizes of its members.
This is because many machines require objects of certain types to be allocated on architecture
dependent boundaries or handle such objects much more efficiently if they are. For example, inte
gers are often allocated on word boundaries. On such machines, objects are said to have to be
aligned properly. This leads to "holes" in the structures. For example, on many machines,



Section 5.7 Structures 103

sizeo!(address) is 24, and not 22 as might be expected. You can minimize wasted space by sim
ply ordering members by size (largest member first). However, it is usually best to order members
for readability and sort them by size only if there is a demonstrated need to optimize.

The name of a type becomes available for use immediately after it has been encountered and not
just after the complete declaration has been seen. For example:

struct Link {
Link* previous;
Link* successor;

} ;

It is not possible to declare new objects of a structure type until the complete declaration has been
seen. For example:

struct No_good {
No_good member; / / error: recursive definition

} ;

This is an error because the compiler is not able to determine the size of No_good. To allow two
(or more) structure types to refer to each other, we can declare a name to be the name of a structure
type. For example:

struct List; / / to be defined later

struct Link {
Link* pre;
Link* suc;
List* member_0/;

} ;

struct List {
Link* head;

} ;

Without the first declaration of List, use of List in the declaration of Link would have caused a syn
tax error.

The name of a structure type can be used before the type is defined as long as that use does not
require the name of a member or the size of the structure to be known. For example:

class S i / / 's' is the name ofsome type

extern S ai
S /();
void g (S);
S* h (S*) i

However, many such declarations cannot be used unless the type S is defined:

void k(S* p}
{

S Qi / / error: S not defined; size needed to allocate



104 Pointers, Arrays, and Structures ChapterS

f();

g(a);
p->m = 7;

S* q = h (p);

q->m = 7;

/ / error: S not defined; size needed to return value
/ / error: Snot defined; size needed to pass argument
/ / error: S not defined; member name not known

/ / ok: pointers can be allocated and passed
/ / error: S not defined; member name not known

A struct is a simple form of a class (Chapter 10).
For reasons that reach into the pre-history of C, it is possible to declare a struct and a non

structure with the same name in the same scope. For example:

struct stat { / * ... * / };
int stat (char* name I struct stat* buj) ;

In that case, the plain name (stat) is the name of the non-structure, and the structure must be
referred to with the prefix struct. Similarly, the keywords class, union (§C.8.2), and enum (§4.8)
can be used as prefixes for disambiguation. However, it is best not to overload names to make that
necessary.

5.7.1 Type Equivalence

Two structures are different types even when they have the same members. For example,

struct S1 { int ai };
struct S2 { int a; };

are two different types, so

S1 Xi

S2 Y =Xi / / error: type mismatch

Structure types are also different from fundamental types, so

S1 x;

int i = x; / / error: type mismatch

Every struct must have a unique definition in a program (§9.2.3).

5.8 Advice

[1] Avoid nontrivial pointer arithmetic; §5.3.
[2] Take care not to write beyond the bounds of an array; §5.3.I.
[3] Use orather than NULL; §5.I.I.
[4] Use vector and valarray rather than built-in (C-style) arrays; §5.3.1.
[5] Use string rather than zero-terminated arrays of char; §5.3.
[6] Minimize use of plain reference arguments; §5.5.
[7] Avoid void* except in low-level code; §5.6.
[8] Avoid nontrivial literals ("magic numbers") in code. Instead, define and use symbolic con

stants; §4.8, §5.4.



Section 5.9

5.9 Exercises

Exercises 105

1. (* 1) Write declarations for the following: a pointer to a character, an array of 10 integers, a ref
erence to an array of 10 integers, a pointer to an array of character strings, a pointer to a pointer
to a character, a constant integer, a pointer to a constant integer, and a constant pointer to an
integer. Initialize each one.

2. (* 1.5) What, on your system, are the restrictions on the pointer types char*, int*, and void*?
For example, mayan int* have an odd value? Hint: alignment.

3. (*1) Use typedefto define the types unsigned char, const unsigned char, pointer to integer,
pointer to pointer to char, pointer to array of char, array of 7 pointers to int, pointer to an array
of 7 pointers to int, and array of 8 arrays of 7 pointers to into

4. (* 1) Write a function that swaps (exchanges the values of) two integers. Use int* as the argu
ment type. Write another swap function using int& as the argument type.

5. (* 1.5) What is the size of the array str in the following exanlple:

char str [] = II a short string II ;

What is the length of the string "a short string"?
6. (* 1) Define functionsf( char) , g (char&) , and h (const char&). Call them with the arguments

,a " 49, 3300, c, UC, and SC, where c is a char, uc is an unsigned char, and sc is a signed
char. Which calls are legal? Which calls cause the compiler to introduce a temporary variable?

7. (* 1.5) Define a table of the names of months of the year and the number of days in each month.
Write out that table. Do this twice; once using an array of char for the names and an array for
the number of days and once using an array of structures, with each structure holding the name
of a month and the number of days in it.

8. (*2) Run some tests to see if your compiler really generates equivalent code for iteration using
pointers and iteration using indexing (§5.3.I). If different degrees of optimization can be
requested, see if and how that affects the quality of the generated code.

9. (* 1.5) Find an example where it would make sense to use a name in its own initializer.
10. (* 1) Define an array of strings in which the strings contain the names of the months. Print those

strings. Pass the array to a function that prints those strings.
11. (*2) Read a sequence of words from input. Use Quit as a word that terminates the input. Print

the words in the order they were entered. Don't print a word twice. Modify the program to sort
the words before printing them.

12. (*2) Write a function that counts the number of occurrences of a pair of letters in a string and
another that does the same in a zero-terminated array of char (a C-style string). For example,
the pair "ab" appears twice in "xabaacbaxabb".

13. (* 1.5) Define a struct Date to keep track of dates. Provide functions that read Dates from
input, write Dates to output, and initialize a Date with a date.





6
Expressions and Statements

Premature optimization
is the root ofall evil.

- D. Knuth

On the other hand,
we cannot ignore efficiency.

- Jon Bentley

Desk calculator example - input - command line arguments - expression summary
- logical and relational operators - increment and decrement - free store - explicit
type conversion - statement summary - declarations - selection statements - decla
rations in conditions - iteration statements - the infamous goto - comments and
indentation - advice - exercises.

6.1 A Desk Calculator

Statements and expressions are introduced by presenting a desk calculator program that provides
the four standard arithmetic operations as infix operators on floating-point numbers. The user can
also define variables. For example, given the input

r= 2.5
area = pi * r * r

(pi is predefined) the calculator program will write

2.5
19.635

where 2.5 is the result of the first line of input and 19.635 is the result of the second.



108 Expressions and Statements Chapter 6

The calculator consists of four main parts: a parser, an input function, a symbol table, and a
driver. Actually, it is a miniature compiler in which the parser does the syntactic analysis, the input
function handles input and lexical analysis, the symbol table holds permanent information, and the
driver handles initialization, output, and errors. We could add many features to this calculator to
make it more useful (§6.6[20]), but the code is long enough as it is, and most features would just
add code without providing additional insight into the use of C++.

6.1.1 The Parser

Here is a grammar for the language accepted by the calculator:

program:
END
expr_list END

expr_list:
expression PRINT
expression PRINT expr_list

expression:
expression + term
expression - term
term

term:
term / primary
term * primary
primary

primary:
NUMBER
NAME
NAME = expression
- primary
( expression )

/ / END is end-oj-input

/ / PRINT is semicolon

In other words, a program is a sequence of expressions separated by semicolons. The basic units of
an expression are numbers, names, and the operators *, /, +, - (both unary and binary), and =.
Names need not be declared before use.

The style of syntax analysis used is usually called recursive descent; it is a popular and straight
forward top-down technique. In a language such as C++, in which function calls are relatively
cheap, it is also efficient. For each production in the grammar, there is a function that calls other
functions. Terminal symbols (for example, END, NUMBER, +, and -) are recognized by the lexi
cal analyzer, gel_token ( ) ; and nonterminal symbols are recognized by the syntax analyzer func
tions, expr ( ) , term ( ) , and prim ( ). As soon as both operands of a (sub)expression are known, the
expression is evaluated; in a real compiler, code could be generated at this point.

The parser uses a function get_token () to get input. The value of the most recent call of
get_token () can be found in the global variable curT_10k. The type of curr_10k is the enumera
tion Token value:



Section 6.1.1

enum Token_value {
NAME,
PLUS=' +',
PRINT=';' ,

} ;

NUMBER, END,
MINUS= ' - " MUL= ' * ' ,
ASSIGN= ' =" LP=' ( , ,

DIV=' /',
RP=') ,

The Parser 109

Token_value curr_tok = PRINT;

Representing each token by the integer value of its character is convenient and efficient and can be
a help to people using debuggers. This works as long as no character used as input has a value used
as an enumerator - and no current character set I know of has a printing character with a single
digit integer value. I chose PRINT as the initial value for curr_tok because that is the value it will
have after the calculator has evaluated an expression and displayed its value. Thus, I "start the sys
tern" in a normal state to minimize the chance of errors and the need for special startup code.

Each parser function takes a bool (§4.2) argument indicating whether the function needs to call
get_token () to get the next token. Each parser function evaluates' 'its" expression and returns the
value. The function expr () handles addition and subtraction. It consists of a single loop that looks
for terms to add or subtract:

double expr (bool get)
{

/ / add and subtract

double left = term (get) ;

for (; ; ) / / "forever"
switch (curr_tok) {
case PLUS:

left += term (true);
break;

case MINUS:
left - = term (true) ;
break;

default:
return left;

This function really does not do much itself. In a manner typical of higher-level functions in a
large program, it calls other functions to do the work.

The switch-statement tests the value of its condition, which is supplied in parentheses after the
switch keyword, against a set of constants. The break-statements are used to exit the switch
statement. The constants following the case labels must be distinct. If the value tested does not
match any case label, the default is chosen. The programmer need not provide a default.

Note that an expression such as 2-3+4 is evaluated as (2-3) +4, as specified in the grammar.
The curious notation for ( ; ;) is the standard way to specify an infinite loop; you could pro

nounce it "forever." It is a degenerate form of a/or-statement (§6.3.3); while (true) is an alterna
tive. The switch-statement is executed repeatedly until something different from + and - is found,
and then the return-statement in the default case is executed.

The operators += and -= are used to handle the addition and subtraction; left=left+term () and



110 Expressions and Statements Chapter 6

left=left-term () could have been used without changing the meaning of the program. However,
left+=term () and left- =term () not only are shorter but also express the intended operation
directly. Each assignment operator is a separate lexical token, so a + =1; is a syntax error because
of the space between the + and the =.

Assignment operators are provided for the binary operators

+ * / % & « »

so that the foilowing assignment operators are possible

+= *= /= %= &= 1= A= «= »=

The % is the modulo, or remainder, operator; &, I, and A are the bitwise logical operators AND,
OR, and exclusive OR; « and » are the left shift and right shift operators; §6.2 summarizes the
operators and their meanings. For a binary operator @ applied to operands of built-in types, an
expression x@ =y means x=x@y, except that x is evaluated once only.

Chapter 8 and Chapter 9 discuss how to organize a program as a set of modules. With one
exception, the declarations for this calculator example can be ordered so that everything is declared
exactly once and before it is used. The exception is expr ( ), which calls term ( ), which calls
prim ( ) , which in tum calls expr ( ). This loop must be broken somehow. A declaration

double expr (bool) ;

before the definition of prim () will do nicely.
Function term () handles multiplication and division in the same way expr () handles addition

and subtraction:

double term (bool get)
{

/ / multiply and divide

double left = prim (get) ;

for (;;)
switch (curr_tok) {
case MUL:

left *= prim (true) ;
break;

case DIV:
if (double d = prim (true) )

left /= d;
break;

}

return error {IIdivide by 011);
default:

return left;

The result of dividing by zero is undefined and usually disastrous. We therefore test for 0 before
dividing and call error () if we detect a zero divisor. The function error () is described in §6.1.4.

The variable d is introduced into the program exactly where it is needed and initialized immedi
ately. The scope of a name introduced in a condition is the statement controlled by that condition,



Section 6.1.1 The Parser 111

and the resulting value is the value of the condition (§6.3.2.1). Consequently, the division and
assignment left / =d is done if and only if d is nonzero.

The function prim () handling a primary is much like expr () and term ( ) , except that because
we are getting lower in the call hierarchy a bit of real work is being done and no loop is necessary:

double number_value;
string string_value;

double prim (boot get)
{

/ / handle pri/llaries

if (get) get_token ( ) ;

switch (curr_tok) {
case NUMBER: / / f'oating-point constant
{ double v =number_value;

get_token ( ) ;
return v;

case NAME:
double& v = table [string_value] ;
if (get_token () == ASSIGN) v =expr(true);
return v;

case MINUS: / / unllry I1z;nus

return -prim (true) ;
case LP:

double e =expr (true) i

if (curr_tok ! = RP) return error ( II ') , expected ll
) ;

get_token ( ); / / eat ')'
return e i

}

default:
return error ( II primary expected II ) i

When a NUMBER (that is, an integer or floating-point literal) is seen, its value is returned. The
input routine get_token () places the value in the global variable number_value. Use of a global
variable in a program often indicates that the structure is not quite clean - that some sort of opti
mization has been applied. So it is here. Ideally, a lexical token consists of two parts: a value spec
ifying the kind of token (a Token_value in this program) and (when needed) the value of the token.
Here, there is only a single, simple variable, curr_tok, so the global variable number_value is
needed to hold the value of the last NUMBER read. Eliminating this spurious global variable is left
as an exercise (§6.6[21 ]). Saving the value of number_value in the local variable v before calling
get_token () is not really necessary. For every legal input, the calculator always uses one number
in the computation before reading another from input. However, saving the value and displaying it
correctly after an error helps the user.

In the same way that the value of the last NUMBER is kept in number_value, the character
string representation of the last NAME seen is kept in string_value. Before doing anything to a



112 Expressions and Statements Chapter 6

name, the calculator must first look ahead to see if it is being assigned to or simply read. In both
cases, the symbol table is consulted. The symbol table is a map (§3.7.4, §17.4.1):

map<string , double> table;

That is, when table is indexed by a string, the resulting value is the double corresponding to the
string. For example, if the user enters

radius =6378. 388 ;

the calculator will execute

double& v = table [ II radius II ] ;

/ I ... expr() calculates the value to be assigned ...
v =6378.388;

The reference v is used to hold on to the double associated with radius while expr () calculates the
value 6378 . 388 from the input characters.

6.1.2 The Input Function

Reading input is often the messiest part of a program. This is because a program must communi
cate with a person, it must cope with that person's whims, conventions, and seemingly random
errors. Trying to force the person to behave in a manner more suitable for the machine is often
(rightly) considered offensive. The task of a low-level input routine is to read characters and com
pose higher-level tokens from them. These tokens are then the units of input for higher-level rou
tines. Here, low-level input is done by get_token ( ). Writing a low-level input routine need not be
an everyday task. Many systems provide standard functions for this.

I build get_token () in two stages. First, I provide a deceptively simple version that imposes a
burden on the user. Next, I modify it into a slightly less elegant, but much easier to use, version.

The idea is to read a character, use that character to decide what kind of token needs to be com
posed, and then return the Token_value representing the token read.

The initial statements read the first non-whitespace character into ch and check that the read
operation succeeded:

Token_value get_token ( )
{

char ch = 0;
cin»ch;

switch (ch) {

case 0:
return curr_tok=END ; / / assign and return

By default, operator » skips whitespace (that is, spaces, tabs, newlines, etc.) and leaves the value
of ch unchanged if the input operation failed. Consequently, ch==O indicates end of input.

Assignment is an operator, and the result of the assignment is the value of the variable assigned
to. This allows me to assign the value END to curr_tok and return it in the same statement. Hav
ing a single statement rather than two is useful in maintenance. If the assignment and the return
became separated in the code, a programmer might update the one and forget to update the other.



Section 6.1.2 The Input Function 113

Let us look at some of the cases separately before considering the complete function. The
expression terminator' ; " the parentheses, and the operators are handled simply by returning their
values:

case ; :
case' * ' :
case' / ' :
case' +' :
case' - ' :
case' (':
case') ':
case' =' :

return curr_tok=Token_value (ch);

Numbers are handled like this:

case ' 0' : case ' 1 ' : case ' 2 ' : case ' 3 ' : case ' 4 ' :
case ' 5' : case ' 6 ' : case ' 7': case ' 8': case ' 9' :
case . :

cin .putback (ch) ;
cin » number_value;
return curr_tok=NUMBER;

Stacking case labels horizontally rather than vertically is generally not a good idea because this
arrangement is harder to read. However, having one line for each digit is tedious. Because opera
tor » is already defined for reading floating-point constants into a double, the code is trivial. First
the initial character (a digit or a dot) is put back into cin. Then the constant can be read into
number value.

A name is handled similarly:

default: / / NAME, NAME =, or error
if (isalpha (ch)) {

cin .putback (ch ) ;
cin>>string_value;
return curr_tok=NAME;

}

error ( .. bad token II ) ;

return curT_tok=PRINT;

The standard library function isalpha () (§20.4.2) is used to avoid listing every character as a sepa
rate case label. Operator>> applied to a string (in this case, string_value) reads until it hits white
space. Consequently, a user must terminate a name by a space before an operator using the name as
an operand. This is less than ideal, so we will return to this problem in §6.1.3.

Here, finally, is the complete input function:

Token_value get_token ( )
{

char ch =0;
cin»ch;



114 Expressions and Statements

switch (ch)
case 0:

return curr_tok=END ;

case ; :
case "* ' :
case' /' :
case + :
case' -' :
case' ( , :
case') ':
case' =' :

return curr_tok=Token_value (ch ) ;

case ' 0' : case ' 1 ': case ' 2 ' : case ' 3 ' : case ' 4 ' :
case ' 5' : case ' 6 ': case ' 7' : case ' 8' : case ' 9' :
case . :

cin .putback (ch) ;
cin» number_value;
return curr_tok=NUMBER ;

default: / / NAME, NAME =, or error
if (isalpha (ch)) {

cin .putback (ch) ;
cin»string_value;
return curr_tok=NAME ;

}

error ( n bad token n ) i
return curr_tok=PRINTi

Chapter 6

The conversion of an operator to its token value is trivial because the Token_value of an operator
was defined as the integer value of the operator (§4.8).

6.1.3 Low-level Input

Using the calculator as defined so far reveals a few inconveniences. It is tedious to remember to
add a semicolon after an expression in order to get its value printed, and having a name tenninated
by whitespace only is a real nuisance. For example, X= 7 is an identifier - rather than the identifier
x followed by the operator = and the number 7. Both problems are solved by replacing the type
oriented default input operations in get_token () with code that reads individual characters.

First, we'll make a newline equivalent to the semicolon used to mark the end of expression:

Token_value get_token ( )
{

char Chi

do { / / skip whitespace except '\n'
if( !cin . get (ch) ) return curr_tok = END i

} while (ch! ='\n' && isspace (ch) ) ;



Section 6.1.3 Low-level Input 115

switch (ch)
case ; :
case '\n':

return curr_tok=PRINT;

A do-statement is used; it is equivalent to a while-statement except that the controlled statement is
always executed at least once. The call cin. get (ch) reads a single character from the standard
input stream into ch. By default, get () does not skip whitespace the way operator »does. The
test if ( ! cin . get (ch) ) succeeds if no character can be read from cin; in this case, END is returned
to tenninate the calculator session. The operator! (NOT) is used because get () returns true in
case of success.

The standard library function isspace () provides the standard test for whitespace (§20.4.2);
isspace (c) returns a nonzero value if c is a whitespace character and zero otherwise. The test is
implemented as a table lookup, so using isspace () is much faster than testing for the individual
whitespace characters. Similar functions test if a character is a digit - isdigit () - a letter - isal
pha () - or a digit or letter - isalnum ( ) .

After whitespace has been skipped, the next character is used to determine what kind of lexical
token is coming.

The problem caused by» reading into a string until whitespace is encountered is solved by
reading one character at a time until a character that is not a letter or a digit is found:

default: / / NAME, NAME=, or error
if (isalpha (ch)) {

string_value =ch;
while (cin.get(ch) && isalnum(ch)) string_value.push_back(ch);
cin . putback (ch ) ;
return curT_tok=NAME;

}

error ( II bad token II ) ;

return curr_tok=PRINT;

Fortunately, these two improvements could both be implemented by modifying a single local sec
tion of code. Constructing programs so that improvements can be implemented through local mod
ifications only is an important design aim.

6.1.4 Error Handling

Because the program is so simple, error handling is not a major concern. The error function simply
counts the errors, writes out an error message, and returns:

int no_Of_errors i

double error (const string& s)
{

no_of_errors++ i

cerr« II error: " « s« '\n';
return 1 i

The stream cerr is an unbuffered output stream usually used to report errors (§21.2.1).



116 Expressions and Statements Chapter 6

The reason for returning a value is that errors typically occur in the middle of the evaluation of
an expression, so we should either abort that evaluation entirely or return a value that is unlikely to
cause subsequent errors. The latter is adequate for this simple calculator. Had get_token () kept
track of the line numbers, error () could have informed the user approximately where the error
occurred. This would be useful when the calculator is used noninteractively (§6.6[19]).

Often, a program must be terminated after an error has occurred because no sensible way of
continuing has been devised. This can be done by calling exit ( ) , which first cleans up things like
output streams and then terminates the program with its argument as the return value (§9.4.1.1).

More stylized error-handling mechanisms can be implemented using exceptions (see §8.3,
Chapter 14), but what we have here is quite suitable for a 150-line calculator.

6.1.5 The Driver

With all the pieces of the program in place, we need only a driver to start things. In this simple
example, main () can do that:

int main () .
{

table [ "pi"] =3 .1415926535897932385; / / insert predefined names
table [ "e"] = 2 . 7182818284590452354;

while (cin) {
get token ( ) ;
if (curr_tok == END) break;
if (curr_tok == PRINT) continue;
cout«expr(jalse)« '\n';

return no_of_errors;

Conventionally, main () should return zero if the program terminates normally and nonzero other
wise (§3.2). Returning the number of errors accomplishes this nicely. As it happens, the only
initialization needed is to insert the predefined names into the symbol table.

The primary task of the main loop is to read expressions and write out the answer. This is
achieved by the line:

cout << expr (false) << '\n';

The argument false tells expr () that it does not need to call get_token () to get a current token on
which to work.

Testing cin each time around the loop ensures that the program terminates if something goes
wrong with the input stream, and testing for END ensures that the loop is correctly exited when
get_token () encounters end-of-file. A break-statement exits its nearest enclosing switch-statement
or loop (that is, a/or-statement, while-statement, or do-statement). Testing for PRINT (that is, for
'\n' and ' i ') relieves expr () of the responsibility for handling empty expressions. A continue
statement is equivalent to going to the very end of a loop, so in this case



Section 6.1.5

while (cin) {
II ...
If (curr_tok == PRINT) continue;
cout « expr (false) « '\11';

is equivalent to

while (cin)
II ...
If (curr_tok ! = PRINT)

cout« expr (false) « '\11';

6.1.6 Headers

The Driver 117

The calculator uses standard library facilities. Therefore, appropriate headers must be #included to
complete the program:

#include<iostream>
#include<string>
#include<map>
#include<cctype>

II I/O
I I strings
II map
I I isalpha(), etc.

All of these headers provide facilities in the std namespace, so to use the names they provide we
must either use explicit qualification with std:: or bring the names into the global namespace by

using namespace std;

To avoid confusing the discussion of expressions with modularity issues, I did the latter. Chapter 8
and Chapter 9 discuss ways of organizing this calculator into modules using namespaces and how
to organize it into source files. On many systems, standard headers have equivalents with a . h suf
fix that declare the classes, functions, etc., and place them in the global namespace (§9.2.1, §9.2.4,
§B.3.1).

6.1.7 Command-Line Arguments

After the program was written and tested, I found it a bother to first start the program, then type the
expressions, and finally quit. My most common use was to evaluate a single expression. If that
expression could be presented as a command-line argument, a few keystrokes could be avoided.

A program starts by calling main () (§3.2, §9.4). When this is done, main () is given two
arguments specifying the number of arguments, usually called argc, and an array of arguments,
usually called argv. The arguments are character strings, so the type of argv is char* [argc+l] .
The name of the program (as it occurs on the command line) is passed as argv [0], so argc is
always at least 1. The list of arguments is zero-terminated; that is, argv [argc] ==0. For example,
for the command

dc 15011.1934

the arguments have these values:



118 Expressions and Statements

argc: [2:]

Chapter 6

argv:

"150/1.1934"

Because the conventions for calling main () are shared with C, C-style arrays and strings are used.
It is not difficult to get hold of a command-line argument. The problem is how to use it with

minimal reprogramming. The idea is to read from the command string in the same way that we
read from the input stream. A stream that reads from a string is unsurprisingly called an
istringstream. Unfortunately, there is no elegant way of making cin refer to an istringstream.
Therefore, we must find a way of getting the calculator input functions to refer to an istringstream.
Furthermore, we must find a way of getting the calculator input functions to refer to an
istringstream or to cin depending on what kind of command-line argument we supply.

A simple solution is to introduce a global pointer input that points to the input stream to be used
and have every input routine use that:

istream* input; / / pointer to input stream

int main (int argc, char* argv [ ] )
{

switch (argc) {
case 1:

input = &cin;
break;

case 2:
input = new istringstream (argv [1] ) ;

break;
dejault:

error ( II too many arguments");
return 1;

table [ "pi"] =3 .1415926535897932385 ;
table [ II e"] = 2 . 7182818284590452354 ;

while (*input) {
get_token ( ) ;
if (curr_tok == END) break;
if (curr_tok == PRINT) continue;
cout« expr(false) « '\n';

if (input ! =&cin) delete input;
return no_oj_errors;

/ / read from standard input

/ / read argument string

/ / insert predefined names



Section 6.1.7 Command-Line Arguments 119

An istringstream is a kind of istream that reads from its character string argument (§21.5.3).
Upon reaching the end of its string, an istringstream fails exactly like other streams do when they
hit the end of input (§3.6, §21.3.3). To use an istringstream, you must include <sstream>.

It would be easy to modify main () to accept several command-line arguments, but this does
not appear to be necessary, especially as several expressions can be passed as a single argument:

de II rate=1 .1934; 150/ rate; 19.75 Irate; 217 I rate II

I use quotes because ; is the command separator on my UNIX systems. Other systems have differ
ent conventions for supplying arguments to a program on startup.

It was inelegant to modify all of the input routines to use *input rather than cin to gain the flex
ibility to use alternative sources of input. The change could have been avoided had I shown fore
sight by introducing something like input from the start. A more general and useful view is to note
that the source of input really should be the parameter of a calculator module. That is, the funda
mental problem with this calculator example is that what I refer to as "the calculator" is only a col
lection of functions and data. There is no module (§2.4) or object (§2.5.2) that explicitly represents
the calculator. Had I set out to design a calculator module or a calculator type, I would naturally
have considered what its parameters should be (§8.5[3], §10.6[16]).

6.1.8 A Note on Style

T'~ programmers unacquainted with associative arrays, the use of the standard library map as the
symbol table seems almost like cheating. It is not. The standard library and other libraries are
meant to be used. Often, a library has received more care in its design and implementation than a
programmer could afford for a handcrafted piece of code to be used in just one program.

Looking at the code for the calculator, especially at the first version, we can see that there isn't
much traditional C-style, low-level code presented. Many of the traditional tricky details have been
replaced by uses of standard library classes such as ostream, string, and map (§3.4, §3.5, §3.7.4,
Chapter 17).

Note the relative scarcity of arithmetic, loops, and even assignments. This is the way things
ought to be in code that doesn't manipulate hardware directly or implement low-level abstractions.

6.2 Operator Summary

This section presents a summary of expressions and some examples. Each operator is followed by
one or more names commonly used for it and an example of its use. In these tables, a class_name
is the name of a class, a member is a member name, an object is an expression yielding a class
object, a pointer is an expression yielding a pointer, an expr is an expression, and an lvalue is an
expression denoting a nonconstant object. A type can be a fully general type name (with *, (),

etc.) only when it appears in parentheses; elsewhere, there are restrictions (§A.5).
The syntax of expressions is independent of operand types. The meanings presented here apply

when the operands are of built-in types (§4.1.1). In addition, you can define meanings for operators
applied to operands of user-defined types (§2.5.2, Chapter II).



120 Expressions and Statements

Operator Summary
scope resolution class name : : member
scope resolution namespace_name : : member
global :: name
global : : qualified-name

member selection object. member
member selection pointer -> member
subscripting pointer [ expr ]
function call expr ( expr_list )
value construction type ( expr_list )
post increment lvalue ++

post decrement lvalue --
type identification typeid ( type )
run-time type identification typeid ( expr )
run-time checked conversion dynamic_cast < type> ( expr )
compile-time checked conversion static_cast < type> ( expr )
unchecked conversion reinterpret_cast < type> ( expr )

const conversion const_cast < type> ( expr )

size of object sizeoJexpr
size of type sizeoJ ( type )
pre increment ++ lvalue
pre decrement -- lvalue
complement

,.,.
expr

not ! expr
unary minus - expr
unary plus + expr
address of & lvalue
dereference * expr
create (allocate) new type
create (allocate and initialize) new type ( expr-list )
create (place) new ( expr-list ) type
create (place and initialize) new ( expr-list ) type ( expr-list )
destroy (deallocate) delete pointer
destroy array delete [ ] pointer
cast (type conversion) ( type) expr

member selection object . * pointer-to-member
member selection pointer - >* pointer-to-member

multiply expr * expr
divide expr / expr
modulo (remainder) expr %expr

Chapter 6



Section 6.2 Operator Summary 121

Operator Summary (continued)
add (plus) expr + expr
subtract (minus) expr - expr

shift left expr« expr
shift right expr» expr

less than expr < expr
less than or equal expr <= expr
greater than expr> expr
greater than or equal expr >= expr

equal expr == expr
not equal expr ! = expr

bitwise AND expr & expr

bitwise exclusive OR expr "- expr

bitwise inclusive OR expr I expr

logical AND expr && expr

logical inclusive OR expr II expr

conditional expression expr ? expr : expr

simple assignment lvalue = expr
multiply and assign lvalue *= expr
divide and assign lvalue / = expr
modulo and assign lvalue %= expr
add and assign Ivalue += expr
subtract and assign lvalue -= expr
shift left and assign lvalue «= expr
shift right and assign lvalue »= expr
AND and assign Ivalue &= expr
inclusive OR and assign lvalue I= expr
exclusive OR and assign lvalue "= expr

throw exception throwexpr

comma (sequencing) expr, expr

Each box holds operators with the same precedence. Operators in higher boxes have higher prece
dence than operators in lower boxes. For example: a+b*c means a+ (b* c) rather than (a+b) *c
because * has higher precedence than +. Similarly, *p++ means * (P++) , not (*p) ++.

Unary operators and assignment operators are right-associative; all others are left-associative.
For example, a=b=c means a= (b=c) , a+b+c means (a+b) +c.

A few grammar rules cannot be expressed in terms of precedence (also known as binding
strength) and associativity. For example, a=b<c?d=e:f=g means a= ( (b<c)? (d=e) : (f=g) ),
but you need to look at the grammar (§A.5) to determine that.



122 Expressions and Statements

6.2.1 Results

Chapter 6

The result types of arithmetic operators are determined by a set of rules known as "the usual arith
metic conversions" (§C.6.3). The overall aim is to produce a result of the "largest" operand type.
For example, if a binary operator has a floating-point operand, the computation is done using
floating-point arithmetic and the result is a floating-point value. If it has a long operand, the com
putation is done using long integer arithmetic, and the result is a long. Operands that are smaller
than an int (such as bool and char) are converted to int before the operator is applied.

The relational operators, ==, <=, etc., produce Boolean results. The meaning and result type of
user-defined operators are determined by their declarations (§ 11.2).

Where logically feasible, the result of an operator that takes an lvalue operand is an lvalue
denoting that lvalue operand. For example:

void f(int x lint y)
{

in! j = x = y;
int* p =&++X;

int* q = & (x++);

int* pp =& (x>y?x: y);

/ / the value ofx=y is the value ofx after the assignment
/ / p points to x
/ / error: x++ is not an lvalue (it is not the value stored in x)
/ / address ofthe int with the larger value

If both the second and third operands of ?: are Ivalues and have the same type, the result is of that
type and is an Ivalue. Preserving lvalues in this way allows greater flexibility in using operators.
This is particularly useful when writing code that needs to work uniformly and efficiently with both
built-in and user-defined types (e.g., when writing templates or programs that generate C++ code).

The result of sizeo/ is of an unsigned integral type called size_I defined in <csldde/>. The
result of pointer subtraction is of a signed integral type called ptrdiff_t defined in <cstddef>.

Implementations do not have to check for arithmetic overflow and hardly any do. For example:

void f()

{

int i = 1;
while (0 < i) i++;
cout« II i has become negative! II « i« '\n' ;

This will (eventually) try to increase i past the largest integer. What happens then is undefined, but
typically the value "wraps around" to a negative number (on my machine -2147483648). Simi
larly, the effect of dividing by zero is undefined, but doing so usually causes abrupt termination of
the program. In particular, underflow, overflow, and division by zero do not throw standard excep
tions (§ 14.10).

6.2.2 Evaluation Order

The order of evaluation of subexpressions within an expression is undefined. In particular, you
cannot assume that the expression is evaluated left to right. For example:

int x =f (2) +g (3) ; / / undefined whether f() or g() is called first



Section 6.2.2 Evaluation Order 123

Better code can be generated in the absence of restrictions on expression evaluation order. How
ever, the absence of restrictions on evaluation order can lead to undefined results. For example,

int i =1;
v[i] =i++; I I undefined result

may be evaluated as either v [1] =1 or v [2] =1 or may cause some even stranger behavior. Com
pilers can waIn about such ambiguities. Unfortunately, most do not.

The operators, (comma), && (logical and), and I I (logical or) guarantee that their left-hand
operand is evaluated before their right-hand operand. For example, b= (a=2, a+1) assigns 3 to b.
Examples of the use of I I and && can be found in §6.2.3. For built-in types, the second operand of
&& is evaluated only if its first operand is true, and the second operand of I I is evaluated only if its
first operand is false; this is sometimes called short-circuit evaluation. Note that the sequencing
operator, (colnma) is logically different from the comma used to separate arguments in a function
call. Consider:

/1 (v[i],i++);
j2( (v[i],i++) );

I I two arguments
I lone argument

The call of fl has two arguments, v [ l] and i++, and the order of evaluation of the argument
expressions is undefined. Order dependence of argument expressions is very poor style and has
undefined behavior. The call of}2 has one argument, the comma expression (v [iJ, i++), which is
equivalent to i++.

Parentheses can be used to force grouping. For example, a *b / c means (a *b) / c so parenthe
ses must be used to get a * (b / c) ; a* (b Ie) may be evaluated as (a *b) / c only if the user cannot
tell the difference. In particular, for many floating-point computations a* (b / c) and (a* b) / care
significantly different, so a compiler will evaluate such expressions exactly as written.

6.2.3 Operator Precedence

Precedence levels and associativity rules reflect the most common usage. For example,

if (i<=O II max<i) I I ...

means "if i is less than or equal to 0 or if max is less than i." That is, it is equivalent to

if ( (i<=O) II (max<i) ) I I ...

and not the legal but nonsensical

if (i <= (01 Imax) < i) II ...

However, parentheses should be used whenever a programmer is in doubt about those rules. Use of
parentheses becomes more common as the subexpressions become more complicated, but compli
cated subexpressions are a source of errors. Therefore, if you start feeling the need for parentheses,
you might consider breaking up the expression by using an extra variable.

There are cases when the operator precedence does not result in the "obvious" interpretation.
For example:

if (i&mask == 0) I loops! == expression as operandfor &



124 Expressions and Statements Chapter 6

This does not apply a mask to i and then test if the result is zero. Because == has higher prece
dence than &, the expression is interpreted as i& (mask= =0). Fortunately, it is easy enough for a
compiler to warn about most such mistakes. In this case, parentheses are important:

if ( (i&mask) ==0) / / ...

It is worth noting that the following does not work the way a mathematician might expect:

if (0 <=x <= 99) / / ...

This is legal, but it is interpreted as (O<=x) <=99, where the result of the first comparison is either
true or false. This Boolean value is then implicitly converted to 1 or 0, which is then compared to
99, yielding true. To test whether x is in the range o. .99, we might use:

if (o<=x && x<=99) / / ...

A common mistake for novices is to use = (assignment) instead of == (equals) in a condition:

if (a = 7) / / oops! constant assignment in condition

This is natural because =means "equals" in many languages. Again, it is easy for a compiler to
warn about most such mistakes - and many do.

6.2.4 Bitwise Logical Operators

The bitwise logical operators &, I, ", ,.." », and « are applied to objects of integral types and
enumerations - that is, bool, char, short, int, long, their unsigned counterparts, and enums. The
usual arithmetic conversions (§C.6.3) are performed to determine the type of the result.

A typical use of bitwise logical operators is to implement the notion of a small set (a bit vector).
In this case, each bit of an unsigned integer represents one member of the set, and the number of
bits limits the number of members. The binary operator & is interpreted as intersection, I as union,
" as symmetric difference, and ,.., as complement. An enumeration can be used to name the mem
bers of such a set. Here is a small example borrowed from an implementation of ostream:

enum ios_base: : iostate {
goodbit=O, eojbit= J I failbit=2, badbit=4

} ;

The implementation of a stream can set and test its state like this:

state = goodbit;
/ / ...
If (state& (badbit Ifailbit)) / / stream no good

The extra parentheses are necessary because & has higher precedence than I.
A function that reaches the end of input might report it like this:

state I=eojbit;

The I= operator is used to add to the state. A simple assignment, state=eojbit, would have cleared
all other bits.

These stream state flags are observable from outside the stream implementation. For example,
we could see how the states of two streams differ like this:



Section 6.2.4 Bitwise Logical Operators 125

int diff = cin . rdstate ( ) A cout . rdstate ( ) i / / rdstate() returns the state

Computing differences of stream states is not very common. For other similar types, computing
differences is essential. For example, consider comparing a bit vector that represents the set of
interrupts being handled with another that represents the set of interrupts waiting to be handled.

Please note that this bit fiddling is taken from the implementation of iostreams rather than from
the user interface. Convenient bit manipulation can be very important, but for reliability, maintain
ability, portability, etc., it should be kept at low levels of a system. For more general notions of a
set, see the standard library set (§ 17.4.3), bitset (§ 17.5.3), and vector<bool> (§ 16.3.11).

Using fields (§C.8.1) is really a convenient shorthand for shifting and masking to extract bit
fields from a word. This can, of course, also be done using the bitwise logical operators. For
example, one could extract the middle 16 bits of a 32-bit long like this:

unsigned short middle (long a) {return (a> >8) &OXffffi }

Do not confuse the bitwise logical operators with the logical operators: &&, I I, and ! . The latter
return either true or false, and they are primarily useful for writing the test in an if, while, or for
statement (§6.3.2, §6.3.3). For example, ! 0 (not zero) is the value true, whereas --0 (complement
of zero) is the bit pattern all-ones, which in two's complement representation is the value -1.

6.2.5 Increment and Decrement

The ++ operator is used to express incrementing directly, rather than expressing it indirectly using
a combination of an addition and an assignment. By definition, ++lvalue means lvalue+=l, which
again means lvalue=lvalue+1 provided lvalue has no side effects. The expression denoting the
object to be incremented is evaluated once (only). Decrementing is similarly expressed by the -
operator. The operators ++ and - - can be used as both prefix and postfix operators. The value of
++X is the new (that is, incremented) value of x. For example, y=++x is equivalent to y= (x+=l) .
The value of X++, however, is the old value of x. For example, y=x++ is equivalent to
y= (t=x I x+=1 ,t) , where t is a variable of the same type as x.

Like addition and subtraction of pointers, ++ and - - on pointers operate in terms of elements of
the array into which the pointer points; p++ makes p point to the next element (§5.3.1).

The increment operators are particularly useful for incrementing and decrementing variables in
loops. For example, one can copy a zero-terminated string like this:

void cpy (char* p, const char* q)
{

while (*P++ = *q++) i

Like C, C++ is both loved and hated for enabling such terse, expression-oriented coding. Because

while (*p++ = *q++) i

is more than a little obscure to non-C programmers and because the style of coding is not uncom
mon in C and C++, it is worth examining more closely.

Consider first a more traditional way of copying an array of characters:



126 Expressions and Statements Chapter 6

/ / point to next character
/ / point to next character

int length = strlen (q ) j
for (int i = OJ i<=lengthj i++) p [i] =q [i] i

This is wasteful. The length of a zero-terminated string is found by reading the string looking for
the terminating zero. Thus, we read the string twice: once to find its length and once to copy it. So
we try this instead:

int i;
for (i = 0; q[i] ! =0; i++) p[i] = q[i];
p [i] =0 i / / terminating zero

The variable i used for indexing can be eliminated because p and q are pointers:

while (* q ! = 0) {

*p = *q;
p++;
q++;

}

*p = 0; / / terminating zero

Because the post-increment operation allows us first to use the value and then to increment it, we
can rewrite the loop like this:

while (* q ! =0) {
*p++ = *q++;

}

*p = 0; / / terminating zero

The value of *p++ = *q++ is *q. We can therefore rewrite the example like this:

while ((*P++ = *q++) ! = 0) { }

In this case, we don't notice that *q is zero until we already have copied it into *p and incremented
p. Consequently, we can eliminate the final assignment of the terminating zero. Finally, we can
reduce the example further by observing that we don't need the empty block and that the "! =0" is
redundant because the result of a pointer or integral condition is always compared to zero anyway.
Thus, we get the version we set out to discover:

while (*p++ = *q++) ;

Is this version less readable than the previous versions? Not to an experienced C or C++ program
mer. Is this version more efficient in time or space than the previous versions? Except for the first
version that called str/en ( ), not really. Which version is the most efficient will vary among
machine architectures and among compilers.

The most efficient way of copying a zero-terminated character string for your particular
machine ought to be the standard string copy function:

char* strcpy (char* , const char*); / / from <string. h>

For more general copying, the standard copy algorithm (§2.7.2, §18.6.1) can be used. Whenever
possible, use standard library facilities in preference to fiddling with pointers and bytes. Standard
library functions may be inlined (§7.1.1) or even implemented using specialized machine



Section 6.2.5 Increment and Decrement 127

instructions. Therefore, you should measure carefully before believing that some piece of hand
crafted code outperforms library functions.

6.2.6 Free Store

A named object has its lifetime determined by its scope (§4.9.4). However, it is often useful to cre
ate an object that exists independently of the scope in which it was created. In particular, it is com
mon to create objects that can be used after returning from the function in which they were created.
The operator new creates such objects, and the operator delete can be used to destroy them.
Objects allocated by new are said to be "on the free store" (also, to be "heap objects," or Hallo
cated in dynamic memory").

Consider how we might write a compiler in the style used for the desk calculator (§6.1). The
syntax analysis functions might build a tree of the expressions for use by the code generator:

struct Enode {
Token_value oper;
Enode * left;
Enode * right;
1/ ...

} ;

Enode* expr(bool get)
{

Enode* left = term (get);

for (;;)
switch (curr_tok)
case PLUS:
case MINUS:
{ Enode* n =new Enode; / I create an Enode on free ·store

n->oper = curr_tok;
n->left = left;
n->right = term (true) ;
left = n;
break;

}

default:
return left; II return node

A code generator would then use the resulting nodes and delete them:

void generate (Enode* n)
{

switch (n->oper)
case PLUS:

/ / ...
delete n; I / delete an Enode from the free store



128 Expressions and Statements Chapter 6

An object created by new exists until it is explicitly destroyed by delete. Then, the space it occu
pied can be reused by new. A C++ implementation does not guarantee the presence of a "garbage
collector" that looks out for unreferenced objects and makes them available to new for reuse. Con
sequently, I will assume that objects created by new are manually freed using delete. If a garbage
collector is present, the deletes can be omitted in most cases (§C.9.1).

The delete operator may be applied only to a pointer returned by new or to zero. Applying
delete to zero has no effect.

More specialized versions of operator new can also be defined (§ 15.6).

6.2.6.1 Arrays

Arrays of objects can also be created using new. For example:

char* save_string (const char* p)
{

char* s =new char [strlen (p) +1] i

strcpy (s , p ) i / / copy from p to s
return Si

int main (int argc, char* argv [ ] )
{

if (argc < 2) exit (1 ) i

char* p = save_string (argv [1] ) ;

/ / ...
delete [] Pi

The' 'plain" operator delete is used to delete individual objects; delete [] is used to delete arrays.
To deallocate space allocated by new, delete and delete [] must be able to determine the size of

the object allocated. This implies that an object allocated using the standard implementation of
new will occupy slightly more space than a static object. Typically, one word is used to hold the
object's size.

Note that a vector (§3.7.1, §16.3) is a proper object and can therefore be allocated and deallo
cated using plain new and delete. For example:

void f (int n)
{

vector<int>* p =new vector<int> (n) i

int* q = new int [n] i

/ / ...
delete Pi
delete [] qi

/ / individual object
/ / array

The delete [] operator may be applied only to a pointer to an array returned by new or to zero.
Applying delete [] to zero has no effect.



Section 6.2.6.2 Memory Exhaustion 129

6.2.6.2 Memory Exhaustion

The free store operators new, delete, new [ ] , and delete [] are implemented using functions pre
sented in the <new> header (§ 19.4.5):

void* operator new (size_t) ; / / space for individual object
void operator delete (void* ) ;
void* operator new [] (size_t); / / space for array
void operator delete [] (void*);

When operator new needs to allocate space for an object, it calls operator new () to allocate a suit
able number of bytes. Similarly, when operator new needs to allocate space for an array, it calls
operator new [] () .

The standard implementations of operator new () and operator new [] () do not initialize the
memory returned.

What happens when new can find no store to allocate? By default, the allocator throws a
bad_alloe exception (for an alternative, see §19.4.5). For example:

void j()
{

try {
jor(;;) new char[lOOOO];

}

catch (bad_aUoc) {
cerr« IIMemory exhausted!\n";

However much memory we have available, this will eventually invoke the bad_alloe handler.
We can specify what new should do upon memory exhaustion. When new fails, it first calls a

function specified by a call to set_new_handler () declared in <new>, if any. For example:

void out_oj_store ( )
{

cerr« "operator new jailed: out oj store\n II ;

throw bad_aUoe ( ) ;

int main ()
{

set_new_handler (out_oj_store); / / make out_oj_store the new_handler
for (; ; ) new char [10000] ;
cout < < "done\n" ;

This will never get to write done. Instead, it will write

operator new jailed: out oj store

See §14.4.5 for a plausible implementation of an operator new () that checks to see if there is a
new handler to call and that throws bad_alloe if not. A new_handler might do something more
clever than simply terminating the program. If you know how new and delete work - for example,



130 Expressions and Statements Chapter 6

because you provided your own operator new () and operator delete () - the handler might
attempt to find some memory for new to return. In other words, a user might provide a garbage
collector, thus rendering the use of delete optional. Doing this is most definitely not a task for a
beginner, though. For almost everybody who needs an automatic garbage collector, the right thing
to do is to acquire one that has already been written and tested (§C.9.1).

By providing a new_handler, we take care of the check for memory exhaustion for every ordi
nary use of new in the program. Two alternative ways of controlling memory allocation exist. We
can either provide nonstandard allocation and deallocation functions (§ 15.6) for the standard uses
of new or rely on additional allocation information provided by the user (§ 10.4.11, §19.4.5).

6.2.7 Explicit Type Conversion

Sometimes, we have to deal with"raw memory;" that is, memory that holds or will hold objects of
a type not known to the compiler. For example, a memory allocator may return a void* pointing to
newly allocated memory or we might want to state that a given integer value is to be treated as the
address of an I/O device:

void* maUoc (size_t) ;

void f()

{

int* p =static_cast<int*> (maUoc (100) );
IO_device* dl = reinterpret_cast</O_device*> (OXfftJ0);
/ / ...

/ / new allocation used as ints
/ / device at OXfjDO

A- compiler does not know the type of the object pointed to by the void*. Nor can it know whether
the integer OXfjDO is a valid address. Consequently, the correctness of the conversions are com
pletely in the hands of the programmer. Explicit type conversion, often called casting, is occasion
ally essential. However, traditionally it is seriously overused and a major source of errors.

The static_cast operator converts between related types such as one pointer type to another in
the same class hierarchy, an enumeration to an integral type, or a floating-point type to an integral
type. The reinterpret_cast handles conversions between unrelated types such as an integer to a
pointer or a pointer to an unrelated pointer type. This distinction allows the compiler to apply some
minimal type checking for static_cast and makes it easier for a programmer to find the more dan
gerous conversions represented as reinterpret_casts. Some static_casts are portable, but few
reinterpret_casts are. Hardly any guarantees are made for reinterpret_cast, but generally it pro
duces a value of a new type that has the same bit pattern as its argument. If the target has at least as
many bits as the original value, we can reinterpret_cast the result back to its original type and use
it. The result of a reinterpret_cast is guaranteed to be usable only if its result type is the exact type
used to define the value involved.

If you feel tempted to use an explicit type conversion, take the time to consider if it is really
necessary. In C++, explicit type conversion is unnecessary in most cases when C needs it (§ 1.6)
and also in many cases in which earlier versions of C++ needed it (§ 1.6.2, §B.2.3). In many pro
grams, explicit type conversion can be completely avoided; in others, its use can be localized to a
few routines. In this book, explicit type conversion is used in realistic situations in §6.2.7, §7.7,
§13.5, §13.6, §17.6.2.3, §15.4, §25.4.1, and §E.3.1, only.



Section 6.2.7 Explicit Type Conversion 131

A form of run-time checked conversion, dynamic_cast (§ IS .4.1), and a cast for removing const
qualifiers, const_cast (§ 15.4.2.1), are also provided.

From C, C++ inherited the notation (T) e, which performs any conversion that can be expressed
as a combination of static_casts, reinterpret_casts, and const_casts to make a value of type T
from the expression e (§B.2.3). This C-style cast is far more dangerous than the named conversj()n
operators because the notation is harder to spot in a large program and the kind of conversion
intended by the programmer is not explicit. That is, (T) e might be doing a portable conversion
between related types, a nonportable conversion between unrelated types, or removing the const
modifier from a pointer type. Without knowing the exact types of T and e, you cannot tell.

6.2.8 Constructors

The construction of a value of type T from a value e can be expressed by the functional notation
T (e). For example:

void f(double d)
{

int i = int (d) ;

complex z = complex (d);
1/ ...

II truncate d
II nlake a conzplex from d

The T (e) construct is sometimes referred to as a function-style cast. Unfortunately, for a built-in
type T, T (e) is equivalent to (T) e (§6.2.7). This implies that for many built-in types T (e) is not
safe. For example, values of arithmetic types can be truncated. Even explicit conversion of a
longer integer type to a shorter (such as long to char) can result in nonportable itnplementation
defined behavior. I try to use the notation exclusively where the construction of a value is well
defined; that is, for narrowing arithmetic conversions (§C.6), for integer to enumeration conver
sions (§4.8), and for construction of objects of user-defined types (§2.5.2, §10.2.3).

Conversions to pointer types cannot be expressed directly using the T (e) notation. For exam
ple, char* (2) is a syntax error. Unfortunately, the protection that the constructor notation pro
vides against such dangerous conversions can be circumvented by using typedefnames (§4.9.7) for
pointer types.

The constructor notation T () is used to express the default value of type T. For example:

void f(double d)
{

int j = int ( ) ;
complex z =complex ( ) ;
II ...

/ I default int value
II default conlplex value

The value of an explicit use of the constructor for a built-in type is 0 converted to that type (§4.9.5).
Thus, int () is another way of writing O. For a user-defined type T, T () is defined by the default
constructor (§ 10.4.2), if any.

The use of the constructor notation for built-in types is particularly important when writing tem
plates. Then, the programmer does not know whether a template parameter will refer to a built-in
type or a user-defined type (§ 16.3.4, § 17.4.1.2).



132 Expressions and Statements

6.3 Statement Summary

Here are a summary and some examples of C++ statements:

Statement Syntax
statement:

declaration
{ statement-listoPJ }

try { statement-listopt } handler-list
expressionopt ;

if ( condition ) statement
if ( condition ) statement else statement
switch ( condition ) statement

Chapter 6

while ( condition ) statement
do statement while ( expression )
for ( for-init-statement conditionopt expressionopt ) statement

case constant-expression
default : statement
break ;
continue ;

return expressionopt

goto identifier ;
identifier : statement

statement-list:
statement statement-listopt

condition:
expression
type-specifier declarator

statement

expression

handler-list:
catch ( exception-declaration ) { statement-listopt }

handler-list handler-listopr

Note that a declaration is a statement and that there is no assignment statement or procedure call
statement; assignments and function calls are expressions. The statements for handling exceptions,
try-blocks, are described in §8.3.1.



Section 6.3.1

6.3.1 Declarations as Statements

Declarations as Statements 133

A declaration is a statement. Unless a variable is declared static, its initializer is executed when
ever the thread of control passes through the declaration (see also §10.4.8). The reason for allow
ing declarations wherever a statement can be used (and a few other places; §6.3.2.1, §6.3.3.1) is to
enable the programmer to minimize the errors caused by uninitialized variables and to allow better
locality in code. There is rarely a reason to introduce a variable before there is a value for it to
hold. For example:

void f( vector<string>& v lint i I const char* p)
{

if (p==O) return;
if (i<O I I v. size ( ) <=i) error ( II bad index");
string s =v [i];
if (s == p) {

/ / ...
}

/ / ...

The ability to place declarations after executable code is essential for many constants and for
single-assignment styles of programming where a value of an object is not changed after initial
ization. For user-defined types, postponing the definition of a variable until a suitable initializer is
available can also lead to better performance. For example,

string s; / * ... * / s = II The best is the enemy of the good. II ;

can easily be much slower than

string s = II Voltaire" ;

The most common reason to declare a variable without an initializer is that it requires a statement
to initialize it. Examples are input variables and arrays.

6.3.2 Selection Statements

A value can be tested by either an if statement or a switch statement:

if ( condition ) statement
if ( condition ) statement else statement
switch ( condition ) statement

The comparison operators

!= < <= > >=

return the bool true if the comparison is true andfalse otherwise.
In an if statement, the first (or only) statement is executed if the expression is nonzero and the

second statement (if it is specified) is executed otherwise. This implies that any arithmetic or
pointer expression can be used as a condition. For example, if x is an integer, then

if (x) / / ...



134 Expressions and Statements

means

if(x!=O) II ...

For a pointer p,

if (p) /1 ...

Chapter 6

is a direct statement of the test "does p point to a valid object," whereas

if (p ! =0) 1/ ...

states the same question indirectly by comparing to a value known not to point to an object. Note
that the representation of the pointer 0 is not all-zeros on all machines (§5.1.1). Every compiler I
have checked generated the same code for both forms of the test.

The logical operators

&& II
are most commonly used in conditions. The operators && and I I will not evaluate their second
argument unless doing so is necessary. For example,

if (p && l<p->count) I I ...

first tests that p is nonzero. It tests 1<p->count only if p is nonzero.
Some if-statements can conveniently be replaced by conditional-expressions. For example,

ij(a<=b)
max =b;

else
max =a;

is better expressed like this:

max = (a<=b) ? b : a;

The parentheses around the condition are not necessary, but I find the code easier to read when they
are used.

A switch-statement can alternatively be written as a set of if-statements. For example,

switch (val)
case 1:

f();

break;
case 2:

g();

break;
default:

h ();
break;

could alternatively be expressed as



Section 6.3.2

if (val == 1)
f();

else if (val == 2)

g( );

else
h( );

Selection Statements 135

The meaning is the same, but the first (switch) version is preferred because the nature of the opera
tion (testing a value against a set of constants) is explicit. This makes the switch statement easier
to read for nontrivial examples. It can also lead to the generation of better code.

Beware that a case of a switch must be terminated somehow unless you want to carry on execut
ing the next case. Consider:

switch (val) { / / beware
case 1:

cout« II case 1\n II ;

case 2:
cout« II case 2\n II ;

default:
cout << II default: case not found\n II ;

Invoked with val==1, this prints

case 1
case 2
default: case not found

to the great surprise of the uninitiated. It is a good idea to comment the (rare) cases in which a
fall-through is intentional so that an uncommented fall-through can be assumed to be an error. A
break is the most common way of terminating a case, but a return is often useful (§6.1.1).

6.3.2.1 Declarations in Conditions

To avoid accidental misuse of a variable, it is usually a good idea to introduce the variable into the
smallest scope possible. In particular, it is usually best to delay the definition of a local variable
until one can give it an initial value. That way, one cannot get into trouble by using the variable
before its initial value is assigned.

One of the most elegant applications of these two principles is to declare a variable in a condi
tion. Consider:

if (double d =prim (true) )
left /= d;
break;

Here, d is declared and initialized and the value of d after initialization is tested as the value of the
condition. The scope of d extends from its point of declaration to the end of the statement that the
condition controls. For example, had there been an else-branch to the if-statement, d would be in
scope on both branches.



136 Expressions and Statements Chapter 6

The obvious and traditional alternative is to declare d before the condition. However, this
opens the scope (literally) for the use of d before its initialization or after its intended useful life:

double d;
II ...

d2 =d; II oops!
I I ...

if (d =prim (true) )
left 1= d;
break;

}

I I ...

d =2 . 0; I I two unrelated uses ofd

In addition to the logical benefits of declaring variables in conditions, doing so also yields the most
compact source code.

A declaration in a condition must declare and initialize a single variable or const.

6.3.3 Iteration Statements

A loop can be expressed as afor, while, or do statement:

while ( condition) statement
do statement while ( expression ) ;
for (for-init-statement conditionoP1 ; expressionoPI ) statement

Each of these statements executes a statement (called the controlled statement or the body of the
loop) repeatedly until the condition becomes false or the programmer breaks out of the loop some
other way.

The for-statement is intended for expressing fairly regular loops. The loop variable, the termi
nation condition, and the expression that updates the loop variable can be presented "up front" on
a single line. This can greatly increase readability and thereby decrease the frequency of errors. If
no initialization is needed, the initializing statement can be empty. If the condition is omitted, the
for-statement will loop forever unless the user explicitly exits it by a break, return, goto, throw, or
some less obvious way such as a call of exit () (§9.4.1.1). If the expression is omitted, we must
update some form of loop variable in the body of the loop. If the loop isn't of the simple "intro
duce a loop variable, test the condition, update the loop variable" variety, it is often better
expressed as a while-statement. A for-statement is also useful for expressing a loop without an
explicit termination condition:

for ( ; ;) { I I "forever"
1/ ...

A while-statement simply executes its controlled statement until its condition becomes false. I tend
to prefer while-statements over for-statements when there isn't an obvious loop variable or where
the update of a loop variable naturally comes in the middle of the loop body. An input loop is an
example of a loop where there is no obvious loop variable:



Section 6.3.3

while (cin> >ch) / / ...

Iteration Statements 137

In my experience, the do-statement is a source of errors and confusion. The reason is that its body
is always executed once before the condition is evaluated. However, for the body to work cor
rectly, something very much like the condition must hold even the first time through. More often
than I would have guessed, I have found that condition not to hold as expected either when the pro
gram was first written and tested or later after the code preceding it has been modified. I also prefer
the condition "up front where I can see it." Consequently, I tend to avoid do-statements.

6.3.3.1 Declarations in For-Statements

A variable can be declared in the initializer part of a for-statement. If that initializer is a declara
tion, the variable (or variables) it introduces is in scope until the end of the for-statement. For
example:

void f(int v [] I int max)
{

for (int i = 0; i<max; i++) v[i] = i*i;

If the final value of an index needs to be known after exit from afor-Ioop, the index variable must
be declared outside thefor-Ioop (e.g., §6.3.4).

6.3.4 Goto

C++ possesses the infamous goto:

goto identifier;
identifier: statement

The goto has few uses in general high-level programming, but it can be very useful when C++ code
is generated by a program rather than written directly by a person; for example, gotos can be used
in a parser generated from a grammar by a parser generator. The goto can also be important in the
rare cases in which optimal efficiency is essential, for example, in the inner loop of some real-time
application.

The scope of a label is the function it is in. This implies that you can use goto to jump both into
and out of blocks. The only restriction is that you cannot jump past an initializer or into an excep
tion handler (§8.3.1).

One of the few sensible uses of goto in ordinary code is to break out from a nested loop or
switch-statement (a break breaks out of only the innermost enclosing loop or switch-statement).
For example:

void f()

{

int i;
int j;



138 Expressions and Statements

for (i = 0; i<n; i++)
for (j =0; j<m; j++) if (nm[i] [j] == a) goto found;

I I notfound
II ...

found:
II nmfi][j] == a

Chapter 6

There is also a continue statement that, in effect, goes to the end of a loop statement, as explained
in §6.1.5.

6.4 Comments and Indentation

Judicious use of comments and consistent use of indentation can make the task of reading and
understanding a program much more pleasant. Several different consistent styles of indentation are
in use. I see no fundamental reason to prefer one over another (although, like most programmers, I
have my preferences, and this book reflects them). The same applies to styles of comments.

Comments can be misused in ways that seriously affect the readability of a program. The com-
piler does not understand the contents of a comment, so it has no way of ensuring that a comment

[1] is meaningful,
[2] describes the program, and
[3] is up to date.

Most programs contain comments that are incomprehensible, ambiguous, and just plain wrong.
Bad comments can be worse than no comments.

If something can be stated in the language itself, it should be, and not just mentioned in a com
ment. This remark is aimed at comments such as these:

/ I variable "v" must be initialized

/ I variable "v" must be used only by function 'f()"

/ I call function "init()" before calling any other function in this file

/ I callfunction "cleanup()" at the end ofyour program

/ I don't use junction "weird()"

/ I function "f()" takes two arguments

Such comments can often be rendered unnecessary by proper use of C++. For example, one might
utilize the linkage rules (§9.2) and the visibility, initialization, and cleanup rules for classes (see
§10.4.1) to make the preceding examples redundant.

Once something has been stated clearly in the language, it should not be mentioned a second
time in a comment. For example:

a = b+c; I I a becomes b+c
count++; I I increment the counter

Such comments are worse than simply redundant. They increase the amount of text the reader has
to look at, they often obscure the structure of the program, and they may be wrong. Note, however,



Section 6.4 Comments and Indentation 139

that such comments are used extensively for teaching purposes in programming language textbooks
such as this. This is one of the many ways a program in a textbook differs from a real program.

My preference is for:
[1] A comment for each source file stating what the declarations in it have in common, refer

ences to manuals, general hints for maintenance, etc.
[2] A comment for each class, template, and namespace
[3] A comment for each nontrivial function stating its purpose, the algorithm used (unless it is

obvious), and maybe something about the assumptions it makes about its environment
[4] A comment for each global and namespace variable and constant
[5] A few comments where the code is nonobvious and/or nonportable
[6] Very little else

For example:

/ / tbL.c: Implementation ofthe symbol table.

/*
Gaussian elimination with partial pivoting.
See Ralston: 'j:\ first course ... " pg 41 J.

*/

/ / swap() assumes the stack layout ofan SGI R6000.

/***********************************

Copyright (c) 1997 AT&T, Inc.
All rights reserved

************************************/

A well-chosen and well-written set of comments is an essential part of a good program. Writing
good comments can be as difficult as writing the program itself. It is an art well worth cultivating.

Note also that if / / comments are used exclusively in a function, then any part of that function
can be commented out using / * * / style comments, and vice versa.

6.5 Advice

[1] Prefer the standard library to other libraries and to "handcrafted code;" §6.1.8.
[2] Avoid complicated expressions~ §6.2.3.
[3] If in doubt about operator precedence, parenthesize~ §6.2.3.
[4] Avoid explicit type conversion (casts); §6.2.7.
[5] When explicit type conversion is necessary, prefer the more specific cast operators to the C-

style cast; §6.2.7.
[6] Use the T (e) notation exclusively for well-defined construction; §6.2.8.
[7] Avoid expressions with undefined order of evaluation; §6.2.2.
[8] Avoid goto~ §6.3.4.
[9] Avoid do-statements; §6.3.3.
[10] Don't declare a variable until you have a value to initialize it with; §6.3.1, §6.3.2.1, §6.3.3.1.



140 Expressions &nd Statements Chapter 6

[11] Keep comments crisp; §6.4.
[12] Maintain a consistent indentation style; §6.4.
[13] Prefer defining a member operator new () (§15.6) to replacing the global operator new ();

§6.2.6.2.
[14] When reading input, always consider ill-formed input; §6.I.3.

6.6 Exercises

1. (*1) Rewrite the followingfor statement as an equivalent while statement:

for (i=O; i<max_length; i++) if (input_line[;] == '?') quest_count++;

Rewrite it to use a pointer as the controlled variable, that is, so that the test is of the form
*p== '? ' .

2. (* 1) Fully parenthesize the following expressions:

a =b + c * d « 2 & 8
a & 077 != 3
a == b II a == c && c < 5
c=x !=O
0<= i < 7
f(1,2)+3
a = - 1 + + b -- - 5
a =b == c ++
a=b=c=O
a [4] [2] *= * b ? c : * d * 2
a-b,c=d

3. (*2) Read a sequence of possibly whitespace-separated (name,value) pairs, where the name is a
single whitespace-separated word and the value is an integer or a floating-point value. Compute
and print the sum and mean for each name and the sum and mean for all names. Hint: §6.1.8.

4. (* 1) Write a table of values for the bitwise logical operations (§6.2.4) for all possible combina
tions of 0 and 1 operands.

5. (* 1.5) Find 5 different c++ constructs for which the meaning is undefined (§C.2). (* 1.5) Find 5
different c++ constructs for which the meaning is implementation-defined (§C.2).

6. (* 1) Find 10 different examples of nonportable C++ code.
7. (*2) Write 5 expressions for which the order of evaluation is undefined. Execute them to see

what one or - preferably - more implementations do with them.
8. (* 1.5) What happens if you divide by zero on your system? What happens in case of overflow

and underflow?
9. (*1) Fully parenthesize the following expressions:



Section 6.6

*p++
*--p
++a--
(int* )p->m
*p.m
*a [i]

Exercises 141

10. (*2) Write these functions: strlen ( ) , which returns the length of a C-style string; strcpy ( ) ,
which copies a C-style string into another; and strcmp ( ) , which compares two C-style strings.
Consider what the argument types and return types ought to be. Then compare your functions
with the standard library versions as declared in <cstring> «string. h» and as specified in
§20.4.1.

II. (* I) See how your compiler reacts to these errors:

void f(int a, int b)
{

if (a = 3) / / ...

if (a&077 == 0) / / ...
a : = b+l;

Devise more simple errors and see how the compiler reacts.
12. (*2) Modify the program from §6.6[3] to also compute the median.
13. (*2) Write a function cat () that takes two C-style string arguments and returns a string that is

the concatenation of the arguments. Use new to find store for the result.
14. (*2) Write a function rev () that takes a C-style string argument and reverses the characters in

it. That is, after rev (p) the last character of p will be the first, etc.
15. (* 1.5) What does the following example do?

void send (int* to, int* from, int count)
/ / Duff's device. Helpful comment deliberately deleted.

int n = (count+7) /8;
switch (count%8) {
case 0: do { *10++ = *from++;
case 7: *10++ = *from++;
case 6: *10++ = *from++;
case 5: *10++ = *from++;
case 4: *to++ = *from++;
case 3: *to++ = *from++;
case 2: *10++ = *from++;
case J: *10++ = *from++;

} while (--n>O);

Why would anyone write something like that?
16. (*2) Write a function atoi (const char*) that takes a C-style string containing digits and

returns the corresponding into For example, atoi ( II 123 n) is 123. Modify atoi () to handle



142 Expressions and Statements Chapter 6

c++ octal and hexadecimal notation in addition to plain decimal numbers. Modify atoi () to
handle the C++ character constant notation.

17. (*2) Write a function itoa (int i, char b [ ]) that creates a string representation of i in band
returns b.

18. (*2) Type in the calculator example and get it to work. Do not "save time" by using an already
entered text. You'll learn most from finding and correcting "little silly errors."

19. (*2) Modify the calculator to report line numbers for errors.
20. (*3) Allow a user to define functions in the calculator. Hint: Define a function as a sequence of

operations just as a user would have typed them. Such a sequence can be stored either as a
character string or as a list of tokens. Then read and execute those operations when the function
is called. If you want a user-defined function to take arguments, you will have to invent a nota
tion for that.

21. (* 1.5) Convert the desk calculator to use a symbol structure instead of using the static variables
number_value and string_value.

22. (*2.5) Write a program that strips comments out of a C++ program. That is, read from cin,
remove both / / comments and / * * / comments, and write the result to couto Do not worry
about making the layout of the output look nice (that would be another, and much harder, exer
cise). Do not worry about incorrect programs. Beware of / /, / *, and * / in comments, strings,
and character constants.

23. (*2) Look at some programs to get an idea of the variety of indentation, naming, and comment
ing styles actually used.



7
Functions

To iterate is human,
to recurse divine.

- L. Peter Deutsch

Function declarations and definitions - argument passing - return values - function
overloading - ambiguity resolution - default arguments - stdargs - pointers to
functions - macros - advice - exercises.

7.1 Function Declarations

The typical way of getting something done in a C++ program is to call a function to do it. Defining
a function is the way you specify how an operation is to be done. A function cannot be called
unless it has been previously declared.

A function declaration gives the name of the function, the type of the value returned (if any) by
the function, and the number and types of the arguments that must be supplied in a call of the func
tion. For example:

Elem* next_elem ( );
char* strcpy (char* to I const char* from) ;
void exit (in!) ;

The semantics of argument passing are identical to the semantics of initialization. Argument types
are checked and implicit argument type conversion takes place when necessary. For example:

double sqrt (double) ;

double sr2 = sqrt (2);

double sq3 =sqrt ( II three II ) ;

/ / call sqrt() with the argument double(2)
/ / error: sqrt() requires an argument of type double

The value of such checking and type conversion should not be underestimated.



144 Functions Chapter 7

A function declaration may contain argument names. This can be a help to the reader of a pro
gram, but the compiler simply ignores such names. As mentioned in §4.7, void as a return type
means that the function does not return a value.

7.1.1 Function Definitions

Every function that is called in a program must be defined somewhere (once only). A function def
inition is a function declaration in which the body of the function is presented. For example:

extern void swap (int*, int*); / / a declaration

void swap (int* p, int* q) / / a definition
{

int t = *p i
*p =*qi
*q = ti

The type of the definition and all declarations for a function must specify the same type. The argu
ment names, however, are not part of the type and need not be identical.

It is not uncommon to have function definitions with unused arguments:

void search (table * t, const char* key, const char*)
{

/ / no use ofthe third argument

As shown, the fact that an argument is unused can be indicated by not naming it. Typically,
unnamed arguments arise from the simplification of code or from planning ahead for extensions. In
both cases, leaving the argument in place, although unused, ensures that callers are not affected by
the change.

A function can be defined to be inline. For example:

inline int fac (int n)
{

return (n<2) ? J : n*fac(n-J)i

The inline specifier is a hint to the compiler that it should attempt to generate code for a call of
fac () inline rather than laying down the code for the function once and then calling through the
usual function call mechanism. A clever compiler can generate the constant 720 for a call fac (6) .

The possibility of mutually recursive inline functions, inline functions that recurse or not depending
on input, etc., makes it impossible to guarantee that every call of an inline function is actually
inlined. The degree of cleverness of a compiler cannot be legislated, so one compiler might gener
ate 720, another 6*fac (5) ,and yet another an un-inlined callfac (6) .

To make inlining possible in the absence of unusually clever compilation and linking facilities,
the definition - and not just the declaration - of an inline function must be in scope (§9.2). An
inline specifier does not affect the semantics of a function. In particular, an inline function still has
a unique address and so do static variables (§7.1.2) of an inline function.



Section 7.1.2

7.1.2 Static Variables

Static Variables 145

A local variable is initialized when the thread of execution reaches its definition. By default, this
happens in every call of the function and each invocation of the function has its own copy of the
variable. If a local variable is declared static, a single, statically allocated object (§C.9) will be used
to represent that variable in all calls of the function. It will be initialized only the first time the
thread of execution reaches its definition. For example:

void f( int a)
{

while (a--) {
static int n = 0;
int x =0;

/ / initialized once
/ / initialized'a' times in each call off()

cout« II n == II « n++ « II , X == II « x++ « '\n';

int main ( )
{

f(3);

This prints:

n == 0, x == 0
n == J, x == 0
n == 2, x == 0

A static variable provides a function with "a memory" without introducing a global variable that
might be accessed and corrupted by other functions (see also §10.2.4).

7.2 Argument Passing

When a function is called, store is set aside for its formal arguments and each formal argument is
initialized by its corresponding actual argument. The semantics of argument passing are identical
to the semantics of initialization. In particular, the type of an actual argument is checked against
the type of the corresponding formal argument, and all standard and user-defined type conversions
are performed. There are special rules for passing arrays (§7.2.1), a facility for passing unchecked
arguments (§7.6), and a facility for specifying default arguments (§7.5). Consider:

void f( int val, int& ref)
{

val++ ;
ref++ ;

When f(} is called, val++ increments a local copy of the first actual argument, whereas ref++
increments the second actual argument. For example,



146 Functions

void g ()
{

int i = J ;
int j = J;
f(i,j) ;

Chapter 7

will increment j but not i. The first argument, i, is passed by value, the second argument, j, is
passed by re.ference. As mentioned in §5.5, functions that modify call-by-reference arguments can
make programs hard to read and should most often be avoided (but see §21.3.2). It can, however,
be noticeably more efficient to pass a large object by reference than to pass it by value. In that
case, the argument might be declared const to indicate that the reference is used for efficiency rea
sons only and not to enable the called function to change the value of the object:

void f(const Large& arg)
{

/ / the value of "arg" cannot be changed without explicit use of type conversion

The absence of const in the declaration of a reference argument is taken as a statement of intent to
modify the variable:

void g (Large& arg); / / assume that g() nzodijies arg

Similarly, declaring a pointer argument const tells readers that the value of an object pointed to by
that argument is not changed by the function. For example:

int strlen (const char*);
chc1,r* strcpy (char* to, const char* from) ;
int strcmp (const char*, const char*);

/ / nUlnber ofcharacters in a C-style string
/ / copy a C-style string
/ / compare C-style strings

The importance of using const arguments increases with the size of a program.
Note that the semantics of argument passing are different from the semantics of assignment.

This is important for const arguments, reference arguments, and arguments of some user-defined
types (§ 10.4.4.1).

A literal, a constant, and an argument that requires conversion can be passed as a const& argu
ment, but not as a non-const& argument. Allowing conversions for a const T& argument ensures
that such an argument can be given exactly the same set of values as a T argument by passing the
value in a temporary, if necessary. For example:

float fsqrt (consl float&); / / Fortran.-style sqrt taking a referen.ce argument

void g (double d)
{

float r = fsqrt (2. Of);
r = fsqrt ( r) ;
r =fsqrt (d);

/ / pass ref to temp holding 2. Of
/ / pass reflo r
/ / pass ref to temp holding floal(d)

Disallowing conversions for non-const reference arguments (§5.5) avoids the possibility of silly
mistakes arising from the introduction of temporaries. For example:



Section 7.2

void update (float& i);

void g (double d I float r)
{

Argument Passing 147

update (2 . OJ) ;
update (r);
update (d);

I I error: const argument
I I pass ref to r
I I error: type conversion required

Had these calls been allowed, update () would quietly have updated temporaries that immediately
were deleted. Usually, that would come as an unpleasant surprise to the programmer.

7.2.1 Array Arguments

If an array is used as a function argument, a pointer to its initial element is passed. For example:

int strlen (const char*);

void f()
{

char v [] = lIan array II ;

int i =strlen (v) ;
int j =strlen ( II Nicholas II ) ;

That is, an argument of type T [] will be converted to a T* when passed as an argument. This
implies that an assignment to an element of an array argument changes the value of an element of
the argument array. In other words, arrays differ from other types in that an array is not (and can
not be) passed by value.

The size of an array is not available to the called function. This can be a nuisance, but there are
several ways of circumventing this problem. C-style strings are zero-terminated, so their size can
be computed easily. For other arrays, a second argument specifying the size can be passed. For
example:

void compute1 (int* veeytr, int vee_size) ;

struet Vee {
int* ptr;
int size i

II one way

} ;

void compute2 (eonst Vee& v) i / I another way

Alternatively, a type such as vector (§3.7.1, §16.3) can be used instead of an array.
Multidimensional arrays are trickier (see §C.7), but often arrays of pointers can be used instead,

and they need no special treatment. For example:

ehar* day [] = {
IImon n , IItue ll

, IIwed n , IIthu", "fri", "sat", II sun II
} i

Again, vector and similar types are alternatives to the built-in, low-level arrays and pointers.



148 Functions

7.3 Value Return

Chapter 7

A value must be returned from a function that is not declared void (however, main () is special;
§3.2). Conversely, a value cannot be returned from a void function. For example:

int 11 () { } I I error: no value returned
void f2 () { } I I ok

int f3 () { return 1; }
void 14 () {return 1;

int 15 () {return; }
void f6 () {return; }

II ok
I I error: return value in voidfunction

I I error: return value missing
II ok

A return value is specified by a return statement. For example:

int lac (int n) {return (n>l) ? n*lac(n-l) : 1; }

A function that calls itself is said to be recursive.
There can be more than one return statement in a function:

int lac2 (int n)
{

if (n > 1) return n*lac2 (n-l) j
return 1;

Like the semantics of argument passing, the semantics of function value return are identical to the
semantics of initialization. A return statement is considered to initialize an unnamed variable of the
returned type. The type of a return expression is checked against the type of the returned type, and
all standard and user-defined type conversions are performed. For example:

double I () { return I;} I I 1 is implicitly converted to double(1)

Each time a function is called, a new copy of its arguments and local (automatic) variables is cre
ated. The store is reused after the function returns, so a pointer to a local variable should never be
returned. The contents of the location pointed to will change unpredictably:

int* fp () {int local = 1; 1* ... * I return &localj} I I bad

This error is less common than the equivalent error using references:

int&!r() {int local = 1; 1* ... * I return local;} 1/ bad

Fortunately, a compiler can easily warn about returning references to local variables.
A void function cannot return a value. However, a call of a void function doesn't yield a value,

so a void function can use a call of a void function as the expression in a return statement. For
example:

void g (int* p);

void h (int* p) { / * ... * I return g (p);} I10k: return ol"no value"

This form of return is important when writing template functions where the return type is a tem
plate parameter (see §18.4.4.2).



Section 7.4

7.4 Overloaded Function Names

Overloaded Function Names 149

Most often, it is a good idea to give different functions different names, but when some functions
conceptually perform the same task on objects of different types, it can be more convenient to give
them the same name. Using the same name for operations on different types is called overloading.
The technique is already used for the basic operations in C++. That is, there is only one name for
addition, +, yet it can be used to add values of integer, floating-point, and pointer types. This idea
is easily extended to functions defined by the programmer. For example:

void print (int) ; I / print an int
void print (const char*) i I / print a C-style character string

As far as the compiler is concerned, the only thing functions of the same name have in common is
that name. Presumably, the functions are in some sense similar, but the language does not con
strain or aid the programmer. Thus overloaded function names are primarily a notational conve
nience. This convenience is significant for functions with conventional names such as sqrt, print,
and open. When a name is semantically significant, this convenience becomes essential. This hap
pens, for example, with operators such as +, *, and «, in the case of constructors (§ 11.7), and in
generic programming (§2.7.2, Chapter 18). When a function/is called, the compiler must figure
out which of the functions with the name f is to be invoked. This is done by comparing the types of
the actual arguments with the types of the formal arguments of all functions called f The idea is to
invoke the function that is the best match on the arguments and give a compile-time error if no
function is the best match. For example:

void print (double) i

void print (long) ;

void f()

{

print ( lL);
print ( I .0) ;
print (1);

/ / print(long)
/ / print(double)
/ / error, ambiguous: print(long( J)) or print(double(J))?

Finding the right version to call from a set of overloaded functions is done by looking for a best
match between the type of the argument expression and the parameters (formal arguments) of the
functions. To approximate our notions of what is reasonable, a series of criteria are tried in order:

[1] Exact match; that is, match using no or only trivial conversions (for example, array name to
pointer, function name to pointer to function, and T to const T)

[2] Match using promotions; that is, integral promotions (bool to int, char to int, short to int,
and their unsigned counterparts; §C.6.1) and float to double

[3] Match using standard conversions (for example, int to double, double to int, double to long
double, Derived* to Base* (§ 12.2), T* to void* (§5.6), int to unsigned int; §C.6)

[4] Match using user-defined conversions (§ 11.4)
[5] Match using the ellipsis. .. in a function declaration (§7.6)

If two matches are found at the highest level where a match is found, the call is rejected as ambigu
ous. The resolution rules are this elaborate primarily to take into account the elaborate C and C++
rules for built-in numeric types (§C.6). For example:



150 Functions

void print (int) ;
void print (const char*);
void print (double);
void print (long) ;
void print (char) ;

void h (char c,int i I short s I float f)
{

Chapter 7

print (c);
print (i);

print (s);
print (j);

print ( ,a ' ) ;
print (49);

print (0);

print ( II a II ) ;

I I exact match: invoke print(char)
I I exact match: invoke print(int)
I I integral promotion: invoke print(int)
I I float to double promotion: print(double)

I I exact match: invoke print(char)
I I exact match: invoke print(int)
I I exact match: invoke print(int)
I I exact match: invoke print(const char*)

The call print (0) invokes print (int) because 0 is an into The call print ( , a ') invokes
print (char) because ' a' is a char (§4.3.1). The reason to distinguish between conversions and
promotions is that we want to prefer safe promotions, such as char to int, over unsafe conversions,
such as int to char.

The overloading resolution is independent of the order of declaration of the functions consid
ered.

Overloading relies on a relatively complicated set of rules, and occasionally a programmer will
be surprised which function is called. So, why bother? Consider the alternative to overloading.
Often, we need similar operations performed on objects of several types. Without overloading, we
must define several functions with different names:

void print_int (int) ;
void print_char (char) ;
void print_string (const char*); I I C-style string

void g (int i, char c I const char* p I double d)
{

print_int (i) ;
print char (c ) ;
print_string (p) ;

print_int (c) ;

print_char (i) ;
print_string (i) i

print_in! (d) i

II ok
II ok
II ok

I I ok? calls print_int(int(c))
I I ok? calls print_char(char(i))
I I error
I I ok? calls print_int(int(d))

Compared to the overloaded print ( ) , we have to remember several names and remember to use
those correctly. This can be tedious, defeats attempts to do generic programming (§2.7.2), and gen
erally encourages the programmer to focus on relatively low-level type issues. Because there is no
overloading, all standard conversions apply to arguments to these functions. It can also lead to



Section 7.4 Overloaded Function Names 151

errors. In the previous example, this implies that only one of the four calls with a "wrong" argu
ment is caught by the compiler. Thus, overloading can increase the chances that an unsuitable
argument will be rejected by the compiler.

7.4.1 Overloading and Return Type

Return types are not considered in overload resolution. The reason is to keep resolution for an indi
vidual operator (§11.2.1, §11.2.4) or function call context-independent. Consider:

float sqrt (float) i

double sqrt (double) i

void f( double da, float fla)
{

float fl =sqrt (da ) i / / call sqrt(double)
double d =sqrt (da ) i / / call sqrt(double)
fl =sqrt (jla) i / / call sqrt(jloat)
d = sqrt (fla) i / / call sqrt(jloat)

If the return type were taken into account, it would no longer be possible to look at a call of sqrt ( )
in isolation and determine which function was called.

7.4.2 Overloading and Scopes

Functions declared in different non-namespace scopes do not overload. For example:

void I(int) i

void g ()
{

void f(double) i

I( 1) i / / callf(double)

Clearly, f (int) would have been the best match for f (1 ) , but only f (double) IS In scope. In such
cases, local declarations can be added or subtracted to get the desired behavior. As always, inten
tional hiding can be a useful technique, but unintentional hiding is a source of surprises. When
overloading across class scopes (§15.2.2) or namespace scopes (§8.2.9.2) is wanted, using
declarations or using-directives can be used (§8.2.2). See also §8.2.6.

7.4.3 Manual Ambiguity Resolution

Declaring too few (or too many) overloaded versions of a function can lead to ambiguities. For
example:

void 11 (char) i

void /1 (long) i

void fl (char* ) i

void fl (int* ) i



152 Functions

void k (int i)
{

/1 (i);
}2(0);

/ / ambiguous.' jl(char) or/1 (long)
/ / ambiguous.' j2(char*) orp(int*)

Chapter 7

Where possible, the thing to do in such cases is to consider the set of overloaded versions of a func
tion as a whole and see if it makes sense according to the semantics of the function. Often the
problem can be solved by adding a version that resolves ambiguities. For example, adding

inline void /1 (int n) {/1 (long (n) ) i }

would resolve all ambiguities similar to /1 (i) in favor of the larger type long into
One can also add an explicit type conversion to resolve a specific call. For example:

fl (static_cast<int*> (0) );

However, this is most often simply an ugly stopgap. Soon another similar call will be made and
have to be dealt with.

Some C++ novices get irritated by the ambiguity errors reported by the compiler. More experi
enced programmers appreciate these error messages as useful indicators of design errors.

7.4.4 Resolution for Multiple Arguments

Given the overload resolution rules, one can ensure that the simplest algorithm (function) will be
used when the efficiency or precision of computations differs significantly for the types involved.
For example:

int pow (int, int);
double pow (double, double);

complex pow (double, complex);
complex pow (complex, int);
complex pow (complex, double);
complex pow (complex, complex);

void k(complex z)
{

int i=pow(2,2);
double d=pow(2.0,2.0);
complex z2 =pow (2, z) ;
complex z3 =pow (z, 2);
complex z4 =pow (z, z) ;

/ / invoke pow(int, int)
/ / invoke pow(double,double)
/ / invoke pow(double, complex)
/ / invoke pow(complex,int)
/ / invoke pow(complex,complex)

In the process of choosing among overloaded functions with two or more arguments, a best match
is found for each argument using the rules from §7.4. A function that is the best match for one
argument and a better than or equal match for all other arguments is called. If no such function
exists, the call is rejected as ambiguous. For example:



Section 7.4.4

void g()
{

Resolution for Multiple Arguments 153

double d =pow (2.0,2); / / error: pow(int(2.0),2) or pow(2.0,double(2))?

The call is ambiguous because 2.0 is the best match for the first argument of
pow (double I double) and 2 is the best match for the second argument of pow (int , int) .

7.5 Default Arguments

A general function often needs more arguments than are necessary to handle simple cases. In par
ticular, functions that construct objects (§ 10.2.3) often provide several options for flexibility. Con
sider a function for printing an integer. Giving the user an option of what base to print it in seems
reasonable, but in most programs integers will be printed as decimal integer values. For example:

void print (int value, int base =10) i / / default base is 10

void f()
{

print (31) ;
print (31, 10);
print(31,16) ;
print (31,2) i

might produce this output:

31 31 If 11111

The effect of a default argument can alternatively be achieved by overloading:

void print (int value I int base);
inline void print(int value) {print(value,10); }

However, overloading makes it less obvious to the reader that the intent is to have a single print
function plus a shorthand.

A default argument is type checked at the time of the function declaration and evaluated at the
time of the call. Default arguments may be provided for trailing arguments only. For example:

int f( int, int =0, char* =0) i

int g (int =0, int =0, char*) i

int h (int =0, int, char* =0);

II ok
/ / error
/ / error

Note that the space between the * and the = is significant (*= is an assignment operator; §6.2):

int nasty (char*=O); / / syntax error

A default argument cannot be repeated or changed in a subsequent declaration in the same scope.
For example:



154 Functions

void f(int x = 7);
void f(int = 7);

void f(int =8);

void g ()
{

/ / error: cannot repeat default argument
/ / error: different default arguments

Chapter 7

void f(int x =9); / / ok: this declaration hides the outer one
/ / ...

Declaring a name in a nested scope so that the name hides a declaration of the same name in an
outer scope is error prone.

7.6 Unspecified Number of Arguments

For some functions, it is not possible to specify the number and type of all arguments expected in a
call. Such a function is declared by terminating the list of argument declarations with the ellipsis
( ... ), which means' 'and maybe some more arguments." For example:

int print!(const char* . . . ) ;

This specifies that a call of the C standard library function printf() (§21.8) must have at least one
argument, a char*, but mayor may not have others. For example:

printf( II Hello I world! \n II ) ;

printf( nMy name is %s %s\n II I first_name I second_name) i

printf( II %d + %d =%d\n II ,2,3,5) i

Such a function must rely on information not available to the compiler when interpreting its argu
ment list. In the case of print!( ) , the first argument is a fonnat string containing special character
sequences that allow printf() to handle other arguments correctly; %s means "expect a char*
argument" and %d means "expect an int argument." However, the compiler cannot in general
know that, so it cannot ensure that the expected arguments are really there or that an argument is of
the proper type. For example,

#include <stdio. h>

int main ()
{

print!("My name is %s %s\n II I 2) ;

will compile and (at best) cause some strange-looking output (try it!).
Clearly, if an argument has not been declared, the compiler does not have the information

needed to perform the standard type checking and type conversion for it. In that case, a char or a
short is passed as an int and a float is passed as a double. This is not necessarily what the pro
grammer expects.

A well-designed program needs at most a few functions for which the argument types are not
completely specified. Overloaded functions and functions using default arguments can be used to



Section 7.6 Unspecified Number of Arguments 155

take care of type checking in most cases when one would otherwise consider leaving argument
types unspecified. Only when both the number of arguments and the type of arguments vary is the
ellipsis necessary. The most common use of the ellipsis is to specify an interface to C library func
tions that were defined before C++ provided alternatives:

int fprintf(FILE*, const char* ... );
int execl (const char* . . . ) ;

I I from <cstdio>
I I from UNIX. header

A standard set of macros for accessing the unspecified arguments in such functions can be found in
<cstdarg>. Consider writing an error function that takes one integer argument indicating the
severity of the error followed by an arbitrary number of strings. The idea is to compose the error
message by passing each word as a separate string argument. The list of string arguments should
be terminated by a null pointer to char:

extern void error (int . . . ) ;
extern char* itoa (int, char [ ] ) ;

const char* Null_cp =0;

int main (int argc, char* argv [ ] )
{

I I see §6.6[17]

switch (argc) {
case 1:

error (0 , argv [0], Null_cp);
break;

case 2:
error (0 , argv [0], argv [1], Null_cp);
break;

default:
char buffer [8] ;
error(1, argv [0], "with", itoa (argc-1, buffer), "arguments" , Null_cp);

}

II ...

The function itoa () returns the character string representing its integer argument.
Note that using the integer 0 as the terminator would not have been portable: on some imple

mentations, the integer zero and the null pointer do not have the same representation. This illus
trates the subtleties and extra work that face the programmer once type checking has been sup
pressed using the ellipsis.

The error function could be defined like this:

void error (int severity ... ) I I "severity" followed by a zero-terminated list ofchar*s
{

va_list api
va_start (ap , severity) ; I I arg startup



156 Functions

for (;;) {
char* p = va_arg (ap , char* ) ;
if (p == 0) break;
cerr « p« ' ,

Chapter 7

I I arg cleanup

cerr« '\n';
if (severity) exit (severity);

First, a va_list is defined and initialized by a call of va_start ( ). The macro va_start takes the
name of the va_list and the name of the last formal argument as arguments. The macro va_arg ( )
is used to pick the unnamed arguments in order. In each call, the programmer must supply a type;
va_arg () assumes that an actual argument of that type has been passed, but it typically has no way
of ensuring that. Before returning from a function in which va_start () has been used, va_end ( )
must be called. The reason is that va_start () may modify the stack in such a way that a return
cannot successfully be done; va_end () undoes any such modifications.

7.7 Pointer to Function

There are only two things one can do to a function: call it and take its address. The pointer
obtained by taking the address of a function can then be used to call the function. For example:

void error (string s) { 1* ... * / }

void (*efct) (string);

void f()
{

efct =&error;
efct ( n e"or lt

) ;

/ / pointer to function

/ / efct points to error
/ / call error through etct

The compiler will discover that etct is a pointer and call the function pointed to. That is, derefer
encing of a pointer to function using * is optional. Similarly, using & to get the address of a func
tion is optional:

void (*/1) (string) =&error;
void (*12) (string) = error;

void g ()
{

/1 ( It Vasa It );

(*fl) ("Mary Rose");

II ok
I I also ok; same meaning as &error

II ok
I I also ok

Pointers to functions have argument types declared just like the functions themselves. In pointer
assignments, the complete function type must match exactly. For example:



Section 7.7

void (*pf) (string) i I I pointer to void(string)
void f1 (string) i I I void(string)
int }2 (string) i I I int(string)
void f3 (int* ) ; I I void(int*)

void f()

{

Pointer to Function 157

pf= &/1;
pl= &}2;
pf= &f3;

pf( "Rera");

int i:-:. ,~f: "Zeus" );

II ok
II error: bad return type
II error: bad argument type

II ok
I I error: bad argument type

I I error: void assigned to int

The rules for argument passing are the same for calls directly to a function and for calls to a func
tion through a pointer.

It is often convenient to define a name for a pointer-to-function type to avoid using the some-
what nonobvious declaration syntax all the time. Here is an example from a UNIX system header:

typedef void (*SIG_TYP) (int); II from <signal.h>
typedef void (*SIG_ARG_TYP) (int);
SIG_TYP signal (int, SIG_ARG_TYP) ;

An array of pointers to functions is often useful. For example, the menu system for my mouse
based editor is implemented using arrays of pointers to functions to represent operations. The sys
tem cannot be described in detail here, but this is the general idea:

typedef void (*PF) ();

PF edit_ops [] = { I I edit operations
&cut, &paste, &copy I &search

} ;

PF file_ops [] = { I I .i[e management
&open , &append , &close , &write

} ;

We can then define and initialize the pointers that control actions selected from a menu associated
with the mouse buttons:

PF* bunon2 = edit_ops;
PF* button3 = file_ops;

In a complete implementation, more information is needed to define each menu item. For example,
a string specifying the text to be displayed must be stored somewhere. As the system is used, the
meaning of mouse buttons changes frequently with the context. Such changes are performed
(partly) by changing the value of the button pointers. When a user selects a menu item, such as
item 3 for button 2, the associated operation is executed:

button2 [2] (); I I call button2's 3rdfunction



158 Functions Chapter 7

One way to gain appreciation of the expressive power of pointers to functions is to try to write such
code without them - and without using their better-behaved cousins, the virtual functions
(§ 12.2.6). A menu can be modified at run-time by inserting new functions into the operator table.
It is also easy to construct new menus at run-time.

Pointers to functions can be used to provide a simple form of polymorphic routines, that is, rou
tines that can be applied to objects of many different types:

typedef int (* CFT) (const void* I const void*);

void ssort (void* base I size_t n I size_t sz I CFT cmp)
1*

Sort the "n" elements ofvector "base" into increasing order
using the comparison function pointed to by "cmp ".
The elements are ofsize "sz".

Shell sort (Knuth, Vo13, pg84)
*1

for (int gap=nI2; O<gap; gapl=2)
for (int i=gapi i<n; i++)

for (int j=i-gap; O<=j; j-=gap) {
char* b = static_cast<char*> (base); I I necessary cast
char* pj = b+j*s1.; II &base[j}
char* pjg = b+ (j+gap) *S1. ; / I &base[j+gap1

if (cmp (pjg I pj) <0) {
for (int k=Oi k<s1.; k++)

char temp = pj [k];
pj [k] = pjg [k];
pjg [k] = temp;

/ / swap base[j} and base[j+gap}:

The ssort () routine does not know the type of the objects it sorts, only the number of elements (the
array size), the size of each element, and the function to call to perform a comparison. The type of
ssort () was chosen to be the same as the type of the standard C library sort routine, qsort ( ). Real
programs use qsort ( ) , the C++ standard library algorithm sort (§ 18.7.1), or a specialized sort rou
tine. This style of code is common in C, but it is not the most elegant way of expressing this algo
rithm in C++ (see §13.3, §13.5.2).

Such a sort function could be used to sort a table such as this:

struct User {
char* name;
char* id;
int dept;

} ;



Section 7.7

User heads [] = {
"Ritchie D.M. " , "dmr" ,
"Sethi R. " , "ravi" ,
"Szymanski T. G. It, "tgs" ,
"Schryer N. L. " , "nls" ,
"Schryer N.L. ", "nls" ,
"Kernighan B. W.", "bwk" ,

} ;

void print_id (User* v, int n)
{

11271 ,
11272,
11273,
11274,
11275,
11276

Pointer to Function 159

for (int i=O; i<n; i++)
cout« v [i] . name« '\i' « v [i] • id« '\1' « v [i] •dept« '\11';

To be able to sort, we must first define appropriate comparison functions. A comparison function
must return a negative value if its first argument is less than the second, zero if the arguments are
equal, and a positive number otherwise:

int cmpl (const void* p, const void* q) / / Compare name strings
{

return strcmp (static_cast<const User*> (p) ->name, static_cast<const User*> (q) ->name);

int cmp2 (const void* p, const void* q) / / Compare dept numbers
{

return static cast<const User*> (p) ->dept - static_cast<const User*> (q) ->dept;

This program sorts and prints:

int main ()
{

cout << "Heads in alphabetical order: \n" ;
ssort (heads, 6, sizeof( User), cmpl) i

print_id (heads, 6);

cout« '\n';

cout« "Heads in order of department number: \n It i

ssort (heads, 6, sizeof( User), cmp2);
print_id (heads, 6);

You can take the address of an overloaded function by assigning to or initializing a pointer to func
tion. In that case, the type of the target is used to select from the set of overloaded functions. For
example:

void f(int);
int f(char);

void (*pfl) (int) =&fi / / voidf(int)
int (*pj2) (char) = &fi / / intf(char)
void (*pf3) (char) = &fi / / error: no voidf(char)



160 Functions Chapter 7

A function must be called through a pointer to function with exactly the right argument and return
types. There is no implicit conversion of argument or return types when pointers to functions are
assigned or initialized. This means that

int cmp3 (const mytype* ,const mytype* );

is not a suitable argument for ssort ( ). The reason is that accepting cmp3 as an argument to
ssort () would violate the guarantee that cmp3 will be called with arguments of type mytype* (see
also §9.2.5).

7.8 Macros

Macros are very important in C but have far fewer uses in C++. The first rule about macros is:
Don't use them unless you have to. Almost every macro demonstrates a flaw in the programming
language, in the program, or in the programmer. Because they rearrange the program text before
the compiler proper sees it, macros are also a major problem for many programming tools. So
when you use macros, you should expect inferior service from tools such as debuggers, cross
reference tools, and profilers. If you must use macros, please read the reference manual for your
own implementation of the C++ preprocessor carefully and try not to be too clever. Also to warn
readers, follow the convention to name macros using lots of capital letters. The syntax of macros is
presented in §A.II.

A simple macro is defined like this:

#define NAME rest of line

Where NAME is encountered as a token, it is replaced by rest ofline. For example,

named = NAME

will expand into

named =rest of line

A macro can also be defined to take arguments. For example:

#define MAC(x,y) argument]: x argument2: y

When MAC is used, two argument strings must be presented. They will replace x and y when
MAC () is expanded. For example,

expanded = MAC (foo bar, yuk yuk)

will be expanded into

expanded = argument} : foo bar argument2: yuk yuk

Macro names cannot be overloaded, and the macro preprocessor cannot handle recursive calls:

#dejine PRINT (a , b) cout« (a)« (b)
#define PRINT (a , b, c) cout« (a)« (b)« (c) / * trouble?: redefines, does not overload * /

#define FAC(n) (n>}) ?n*FAC(n-l) :1 / * trouble: recursive macro * /



Section 7.8 Macros 161

Macros manipulate character strings and know little about C++ syntax and nothing about C++ types
or scope rules. Only the expanded form of a macro is seen by the compiler, so an error in a macro
will be reported when the macro is expanded, not when it is defined. This leads to very obscure
error messages.

Here are some plausible macros:

#deftne CASE break jcase
#deftne FOREVER for ( j i )

Here are some completely unnecessary macros:

#deftne PI 3.141593
#deftne BEGIN {
#deftne END }

Here are some dangerous macros:

#deftne SQUARE(a) a*a
#deftne INCR_xx (xx) ++

To see why they are dangerous, try expanding this:

int xx = OJ / / global counter

void f()
{

int xx =OJ
int y = SQUARE (xx+2) j
INCR_xxj

/ / local variable
/ / y=xx+2*xx+2; that is y=xx+(2*xx}+2
/ / increments local xx

If you must use a macro, use the scope resolution operator :: when referring to global names
(§4.9.4) and enclose occurrences of a macro argument name in parentheses whenever possible. For
example:

#deftne MIN(a,b) (( (a)< (b))? (a) : (b))

If you must write macros complicated enough to require comments, it is wise to use / * * / com
ments because C preprocessors that do not know about / / comments are sometimes used as part of
C++ tools. For example:

#deftne M2 (a) something (a) / * thoughtful comment * /

Using macros, you can design your own private language. Even if you prefer this "enhanced lan
guage" to plain C++, it will be incomprehensible to most c++ programmers. Furthermore, the C
preprocessor is a very simple macro processor. When you try to do something nontrivial, you are
likely to find it either impossible or unnecessarily hard to do. The const, inline, template, enum,
and namespace mechanisms are intended as alternatives to many traditional uses of preprocessor
constructs. For example:

const int answer = 42 ;
template<class T> inline T min (T a, T b) {retum (a<b) ?a: b; }



162 Functions Chapter 7

When writing a macro, it is not unusual to need a new name for something. A string can be created
by concatenating two strings using the ## macro operator. For example,

#define NAME2(a,b) a##b

int NAME2 (hack, cah) ();

will produce

int hackcah ( ) ;

for the compiler to read.
The directive

#undef X

ensures that no macro called X is defined - whether or not one was before the directive. This
affords some protection against undesired macros. However, it is not always easy to know what the
effects of X on a piece of code were supposed to be.

7.8.1 Conditional CompUation

One use of macros is almost impossible to avoid. The directive #i/def identifier conditionally
causes all input to be ignored until a #endifdirective is seen. For example,

int f(int a
#ifdef arg_two
,int b
#endif
);

produces

int f(int a
) ;

for the compiler to see unless a macro called arg_two has been #defined. This example confuses
tools that assume sane behavior from the programmer.

Most uses of Ii/def are less bizarre, and when used with restraint, ii/defdoes little harm. See
also §9.3.3.

Names of the macros used to control #i/defshould be chosen carefully so that they don't clash
with ordinary identifiers. For example:

struct Call_info {
Node* arg_one;
Node* arg_two;
II ...

} ;

This innocent-looking source text will cause some confusion should someone write:

#define arg_two x

Unfortunately, common and unavoidable headers contain many dangerous and unnecessary macros.



Section 7.9 Advice 163

7.9 Advice

[1] Be suspicious of non-const reference arguments; if you want the function to modify its argu-
ments, use pointers and value return instead; §5.5.

[2] Use const reference arguments when you need to minimize copying of arguments; §5.5.
[3] Use const extensively and consistently; §7.2.
[4] Avoid macros; §7.8.
[5] Avoid unspecified numbers of arguments; §7.6.
[6] Don't return pointers or references to local variables; §7.3.
[7] Use overloading when functions perform conceptually the same task on different types; §7.4.
[8] When overloading on integers, provide functions to eliminate common ambiguities; §7.4.3.
[9] When considering the use of a pointer to function, consider whether a virtual function

(§2.5.5) or a template (§2.7.2) would be a better alternative; §7.7.
[10] If you must use macros, use ugly names with lots of capital letters; §7.8.

7.10 Exercises

1. (*1) Write declarations for the following: a function taking arguments of type pointer to charac
ter and reference to integer and returning no value; a pointer to such a function; a function tak
ing such a pointer as an argument; and a function returning such a pointer. Write the definition
of a function that takes such a pointer as an argument and returns its argument as the return
value. Hint: Use typedef

2. (*1) What does the following mean? What would it be good for?

typedeJ int (&rifii) (int lint);

3. (*1.5) Write a program like "Hello, world!" that takes a name as a command-line argument
and writes "Hello, name! ". Modify this program to take any number of names as arguments
and to say hello to each.

4. (*1.5) Write a program that reads an arbitrary number of files whose names are given as
command-line arguments and writes them one after another on couto Because this program
concatenates its arguments to produce its output, you might call it cat.

5. (*2) Convert a small C program to C++. Modify the header files to declare all functions called
and to declare the type of every argument. Where possible, replace #defines with enum, const,
or inline. Remove extern declarations from. c files and if necessary convert all function defi
nitions to C++ function definition syntax. Replace calls of malloc () and/ree () with new and
delete. Remove unnecessary casts.

6. (*2) Implement ssort () (§7.7) using a more efficient sorting algorithm. Hint: qsort ( ) .
7. (*2.5) Consider:

struct Tnode {
string word;
int count;
Tnode* left;
Tnode* right;

} ;



164 Functions Chapter 7

Write a function for entering new words into a tree of Tnodes. Write a function to write out a
tree of Tnodes. Write a function to write out a tree of Tnodes with the words in alphabetical
order. Modify Tnode so that it stores (only) a pointer to an arbitrarily long word stored as an
array of characters on free store using new. Modify the functions to use the new definition of
Tnode.

8. (*2.5) Write a function to invert a two-dimensional array. Hint: §C.7.
9. (*2) Write an encryption program that reads from cin and writes the encoded characters to couto

You might use this simple encryption scheme: the encrypted form of a character c is c" key [i] ,

where key is a string passed as a command-line argument. The program uses the characters in
key in a cyclic manner until all the input has been read. Re-encrypting encoded text with the
same key produces the original text. If no key (or a null string) is passed, then no encryption is
done.

10. (*3.5) Write a program to help decipher messages encrypted with the method described in
§7.10[9] without knowing the key. Hint: See David Kahn: The Codebreakers, Macmillan,
1967, New York, pp. 207-213.

II. (*3) Write an error function that takes a print/-style format string containing %s, %c, and %d
directives and an arbitrary number of arguments. Don't use printf(). Look at §21.8 if you
don't know the meaning of %s, %c, and %d. Use <cstdarg>.

12. (* 1) How would you choose names for pointer to function types defined using typedeJ?
13. (*2) Look at some programs to get an idea of the diversity of styles of names actually used.

How are uppercase letters used? How is the underscore used? When are short names such as i
and x used?

14. (* 1) What is wrong with these macro definitions?

#define PI =3 .141593;
#define MAX (a, b) a>b?a:b
#define lac (a) (a) *fac ( (a) -1)

15. (*3) Write a macro processor that defines and expands simple macros (like the C preprocessor
does). Read from cin and write to couto At first, don't try to handle macros with arguments.
Hint: The desk calculator (§6.1) contains a symbol table and a lexical analyzer that you could
modify.

16. (*2) Implement print () from §7.5.
17. (*2) Add functions such as sqrt ( ) , log ( ) , and sin () to the desk calculator from §6.1. Hint:

Predefine the names and call the functions through an array of pointers to functions. Don't for
get to check the arguments in a function call.

18. (* 1) Write a factorial function that does not use recursion. See also §11.14[6].
19. (*2) Write functions to add one day, one month, and one year to a Date as defined in §5.9[13].

Write a function that gives the day of the week for a given Date. Write a function that gives the
Date of the first Monday following a given Date.



8
Namespaces and Exceptions

The year is 787!
A.D.?

- Monty Python

No rule is so general,
which admits not some exception.

- Robert Burton

Modularity, interfaces, and exceptions - namespaces - using - using namespace 
avoiding name clashes - name lookup - namespace composition - namespace aliases
- namespaces and C code - exceptions - throw and catch - exceptions and pro
gram structure - advice - exercises.

8.1 Modularization and Interfaces

Any realistic program consists of a number of separate parts. For example, even the simple' 'Hello,
world!" program involves at least two parts: the user code requests Hello, world! to be printed,
and the I/O system does the printing.

Consider the desk calculator example from §6.1. It can be viewed as being composed of five
parts:

[1] The parser, doing syntax analysis
[2] The lexer, composing tokens out of characters
[3] The symbol table, holding (string,value) pairs
[4] The driver, main ( )
[5] The error handler

This can be represented graphically:



166 Namespaces and Exceptions

lerror handlerl

Chapter 8

where an arrow means "using." To simplify the picture, I have not represented the fact that every
part relies on error handling. In fact, the calculator was conceived as three parts, with the driver
and error handler added for completeness.

When one module uses another, it doesn't need to know everything about the module used.
Ideally, most of the details of a module are unknown to its users. Consequently, we make a distinc
tion between a module and its interface. For example, the parser directly relies on the lexer's inter
face (only), rather than on the complete lexer. The lexer simply implements the services advertised
in its interface. This can be presented graphically like this:

parser implementation

lexer interface - - - - - - - - -1lexer implementationl

symbol table interface - - - - 1symbol table implementationI
lerror handlerl

Dashed lines means "implements." I consider this to be the real structure of the program, and our
job as programmers is t9 represent this faithfully in code. That done, the code will be simple, effi
cient, comprehensible, maintainable, etc., because it will directly reflect our fundamental design.

The following sections show how the logical structure of the desk calculator program can be
made clear, and §9.3 shows how the program source text can be physically organized to take advan
tage of it. The calculator is a tiny program, so in "real life" I wouldn't bother using namespaces
and separate compilation (§2.4.1, §9.1) to the extent I do here. It is simply used to present tech
niques useful for larger programs without our drowning in code. In real programs, each "module"
represented by a separate namespace will often have hundreds of functions, classes, templates, etc.

To demonstrate a variety of techniques and language features, I develop the modularization of



Section 8.1 Modularization and Interfaces 167

the calculator in stages. In "real life," a program is unlikely to grow through all of these stages.
An experienced programmer might pick a design that is "about right" from the start. However, as
a program evolves over the years, dramatic structural changes are not uncommon.

Error handling permeates the structure of a program. When breaking up a program into mod
ules or (conversely) when composing a program out of modules, we must take care to minimize
dependencies between modules caused by error handling. C++ provides exceptions to decouple the
detection and reporting of errors from the handling of errors. Therefore, the discussion of how to
represent modules as namespaces (§8.2) is followed by a demonstration of how we can use excep
tions to further improve modularity (§8.3).

There are many more notions of modularity than the ones discussed in this chapter and the next.
For example, we might use concurrently executing and communicating processes to represent
important aspects of modularity. Similarly, the use of separate address spaces and the communica
tion of information between address spaces are important topics not discussed here. I consider
these notions of modularity largely independent and orthogonal. Interestingly, in each case, sepa
rating a system into modules is easy. The hard problem is to provide safe, convenient, and efficient
communication across module boundaries.

8.2 Namespaces

A namespace is a mechanism for expressing logical grouping. That is, if some declarations logi
cally belong together according to some criteria, they can be put in a common namespace to
express that fact. For example, the declarations of the parser from the desk calculator (§6.1.1) may
be placed in a namespace Parser:

namespace Parser {
double expr(bool);
double prim (bool get) { / * * / }
double term (bool get) { / * * / }
double expr(bool get) { / * * / }

DIV=' /' ,
RP=') ,

END,
MUL='*' ,
LP=' (',

NUMBER,
MINUS= "- ' ,
ASSIGN= ' = ' ,

The function expr () must be declared first and then later defined to break the dependency loop
described in §6.1.1.

The input part of the desk calculator could be also placed in its own namespace:

namespace Lexer {
enum Token_value {

NAME,
PLUS='+' ,
PRINT='; "

} ;

Token_value curr_tok ;
double number_value i

string string_value;

Token_value get_token () { / * ... * / }



168 Namespaces and Exceptions Chapter 8

This use of namespaces makes it reasonably obvious what the lexer and the parser provide to a
user. However, had I included the source code for the functions, this structure would have been
obscured. If function bodies are included in the declaration of a realistically-sized namespace, you
typically have to wade through pages or screenfuls of information to find what services are offered,
that is, to find the interface.

An alternative to relying on separately specified interfaces is to provide a tool that extracts an
interface from a module that includes implementation details. I don't consider that a good solution.
Specifying interfaces is a fundamental design activity (see §23.4.3.4), a module can provide differ
ent interfaces to different users, and often an interface is designed long before the implementation
details are made concrete.

Here is a version of the Parser with the interface separated from the implementation:

namespace Parser {
double prim (bool) ;
double term (bool) j

double expr (bool) ;

double Parser:: prim (bool get) { / * * / }
double Parser:: term (bool get) { / * * / }
double Parser:: expr (bool get) { / * * / }

Note that as a result of separating the implementation from the interface, each function now has
exactly one declaration and one definition. Users will see only the interface containing declarations.
The implementation - in this case, the function bodies - will be placed "somewhere else" where a
user need not look.

As shown, a member can be declared within a namespace definition and defined later using the
namespace-name: : member-name notation.

Members of a namespace must be introduced using this notation:

namespace namespace-name {
/ / declaration and definitions

We cannot declare a new member of a namespace outside a namespace definition using the quali
fier syntax. For example:

void Parser:: logical (bool); / / error: no logical() in Parser

The idea is to make it reasonably easy to find all names in a namespace declaration and also to
catch errors such as misspellings and type mismatches. For example:

double Parser:: trem (bool);
double Parser: :prim (int);

/ / error: no trem() in Parser
/ / error: Parser::prim() takes a bool argument

A namespace is a scope. Thus, "namespace" is a very fundamental and relatively simple concept.
The larger a program is, the more useful namespaces are to express logical separations of its parts.
Ordinary local scopes, global scopes, and classes are namespaces (§C.I0.3).

Ideally, every entity in a program belongs to some recognizable logical unit ("module").
Therefore, every declaration in a nontrivial program should ideally be in some namespace named to



Section 8.2 ~ammespaces 169

indicate its logical role in the program. The exception is main ( ) , which must be global in order
for the run-time environment to recognize it as special (§8.3.3).

8.2.1 Qualified Names

A namespace is a scope. The usual scope rules hold for namespaces, so if a name is previously
declared in the namespace or in an enclosing scope, it can be used without further fuss. A name
from another namespace can be used when qualified by the name of its namespace. For example:

double Parser:: term (bool get)
{

double left =prim (get);

for ( ; ; )
switch (Lexer:: curr_tok)
case Lexer:: MUL :

left *= prim (true);
II ...
l

II ...

I I note Parser:: qualification

I I no qualification needed

I I note Lexer:: qualification
II note Lexer:: qualification
II no qualification needed

I I handle primaries

The Parser qualifier is necessary to state that this term () is the one declared in Parser and not
some unrelated global function. Because term () is a member of Parser, it need not use a qualifier
for prim ( ). However, had the Lexer qualifier not been present, curr_tok would have been consid
ered undeclared because the members of namespace Lexer are not in scope from within the Parser
namespace.

8.2.2 Using Declarations

When a name is frequently used outside its namespace, it can be a bother to repeatedly qualify it
with its namespace name. Consider:

double Parser: :prim (bool get)
{

if (get) Lexer:: get_token ( ) ;

switch (Lexer:: curr_tok) {
case Lexer:: NUMBER: I I floating-point constant

Lexer: : get_token ( ) i

return Lexer:: number_value;

case Lexer::NAME:
{ double& v =table [Lexer: :string_value] i

if (Lexer: : get_token () == Lexer: :ASSIGN) v =expr (true) ;
return Vi

case Lexer: : MINUS:
return -prim (true) i

I I unary minus



170 Namespaces and Exceptions

case Lexer: :LP:
{ double e = expr (true) j

if (Lexer: : curr_tok ! =Lexer: : RP) return Error:: error ( ") expected II ) j
Lexer: : get_token () i / / eat ')'
return ej

}

case Lexer:: END:
return 1;

default:
return Error:: error ( II primary expected II ) ;

Chapter 8

The repeated qualification Lexer is tedious and distracting. This redundancy can be eliminated by
a using-declaration to state in one place that the get_token used in this scope is Lexer's get_token.
For example:

double Parser: :prim (bool get)
{

using Lexer:: get_token;
using Lexer:: curr_tok ;
using Error:: error;

/ / handle primaries

/ / use Lexer's get_token
/ / use Lexer's curr_tok
/ / use Error's error

if (get) get_token ( ) j

switch (curr_tok.) {
case Lexer:: NUMBER: / / floating-point constant

get_token ( ) j
return Lexer:: number_value;

case Lexer:: NAME:
{ double& v = table [Lexer: : string_value] ;

if (get_token () == Lexer: :ASSIGN) v =expr(true);
return V;

}

case Lexer:: MINUS: / / unary minus
return -prim (true);

case Lexer:: LP:
{ double e = expr (true) ;

if (curr_tok !=Lexer::RP) return error(") expected");
get_token ( ) j / / eat ')'
return ej

}

case Lexer:: END:
return 1 i

default:
return error ("primary expected");

A using-declaration introduces a local synonym.
It is often a good idea to keep local synonyms as local as possible to avoid confusion.



Section 8.2.2 Using Declarations 171

However, all parser functions use similar sets of names from other modules. We can therefore
place the using-declarations in the Parser's namespace definition:

namespace Parser {
double prim (bool) ;
double term (bool);
double expr(bool);

using Lexer:: get_token;
using Lexer:: curr_tok ;
using Error:: error;

/ / use Lexer's get_token
/ / use Lexer'scurr_tok
/ / use Error's error

/ / multiply and divide

This allows us to simplify the Parser functions almost to our original version (§6.1.1):

double Parser:: term (bool get)
{

double left = prim (get);

for (;;)
switch (curr_tok) {
case Lexer: :MUL:

left *= prim (true);
break;

case Lexer:: DIV:
if (double d = prim (true) )

left /= d;
break;

}

return error ( II divide by 0 II ) ;

default:
return left;

I could have introduced the token names into the Parser's namespace. However, I left them
explicitly qualified as a reminder of Parser's dependency on Lexer.

8.2.3 Using Directives

What if our aim were to simplify the Parser functions to be exactly our original versions? This
would be a reasonable aim for a large program that was being converted to using namespaces from
a previous version with less explicit modularity.

A using-directive makes names from a namespace available almost as if they had been declared
outside their namespace (§8.2.8). For example:

namespace Parser {
double prim (bool) ;
double term (bool) i

double expr (bool) ;



172 Namespaces and Exceptions

using namespace Lexer;
using namespace Error;

I I make all names from Lexer available
II make all names from Error available

ChapterS

This allows us to write Parser's functions exactly as we originally did (§6.1.1):

I I multiply and dividedouble Parser:: term (bool get)
(

double left =prim (get);

for (;;)
switch (curr_tok) {
case MUL:

left *= prim (true) ;
break;

case DW:
if (double d = prim (true) )

left 1= d;
break;

}

return error ( II divide by 0 II ) ;

default:
return left;

II Lexer's curr_tok
II Lexer'sMUL

II Lexer's DIV

II Error's error

Global using-directives are a tool for transition (§8.2.9) and are otherwise best avoided. In a name
space, a using-directive is a tool for namespace composition (§8.2.8). In a function (only), a
using-directive can be safely used as a notational convenience ,(§8.3.3.1).

8.2.4 Multiple Interfaces

It should be clear that the namespace definition we evolved for Parser is not the interface that the
Parser presents to its users. Instead, it is the set of declarations that is needed to write the individ
ual parser functions conveniently. The Parser's interface to its users should be far simpler:

namespace Parser {
double expr(bool) j

Fortunately, the two namespace-definitions for Parser can coexist so that each can be used where it
is most appropriate. We see the namespace Parser used to provide two things:

[1] The common environment for the functions implementing the parser
[2] The external interface offered by the parser to its users

Thus, the driver code, main ( ) , should see only:

namespace Parser {
double expr (bool) i

II interface for users

The functions implementing the parser should see whichever interface we decided on as the best for
expressing those functions' shared environment. That is:



Section 8.2.4

namespace Parser {
double prim (bool);
double term (bool) ;
double expr(bool);

using Lexer:: get_token;
using Lexer:: curr_tok;
using Error:: error;

or graphically:

/ / interface for implementers

/ / use Lexer's get_token
/ / use Lexer's curr_tok
/ / use Error's error

Multiple Interfaces 173

Parser'

I Drter I

Parser

The arrows represent "relies on the interface provided by" relations.
Parser' is the small interface offered to users. The name Parser' (Parser prime) is not a c++

identifier. It was chosen deliberately to indicate that this interface doesn't have a separate name in
the program. The lack of a separate name need not lead to confusion because programmers natu
rally invent different and obvious names for the different interfaces and because the physical layout
of the program (see §9.3.2) naturally provides separate (file) names.

The interface offered to implementers is larger than the interface offered to users. Had this
interface been for a realistically-sized module in a real system, it would change more often than the
interface seen by users. It is important that the users of a module (in this case, main () using
Parser) are insulated from such changes.

We don't need to use two separate namespaces to express the two different interfaces, but if we
wanted to, we could. Designing interfaces is one of the most fundamental design activities and one
in which major benefits can be gained and lost. Consequently, it is worthwhile to consider what we
are really trying to achieve 3Ild to discuss a number of alternatives.

Please keep in mind that the solution presented is the simplest of those we consider, and often
the best. Its main weaknesses are that the two interfaces don't have separate names and that the
compiler doesn't necessarily have sufficient information to check the consistency of the two defini
tions of the namespace. However, even though the compiler doesn't always get the opportunity to
check the consistency, it usually does. Furthermore, the linker catches most errors missed by the
compiler.

The solution presented here is the one I use for the discussion of physical modularity (§9.3) and
the one I recommend in the absence of further logical constraints (see also §8.2.7).

8.2.4.1 Interface Design Alternatives

The purpose of interfaces is to minimize dependencies between different parts of a program. Mini··
mal interfaces lead to systems that are easier to understand, have better data hiding properties, are
easier to modify, and compile faster.



174 Namespaces and Exceptions Chapter 8

When dependencies are considered, it is important to remember that compilers and program
mers tend to take a somewhat simple-minded approach to them: "If a definition is in scope at point
X, then anything written at point X depends on anything stated in that definition." Typically,
things are not really that bad because most definitions are irrelevant to most code. Given the defi
nitions we have used, consider:

namespace Parser { I I interface for implementers
II ...
double expr (bool) ;
II ...

int main ()
{

II ...
Parser: : expr (false) ;
II ...

The function main () depends on Parser: : expr () only, but it takes time, brain power, computa
tion, etc., to figure that out. Consequently, for realistically-sized programs people and compilation
systems often play it safe and assume that where there might be a dependency, there is one. This is
typically a perfectly reasonable approach.

Thus, our aim is to express our program so that the set of potential dependencies is reduced to
the set of actual dependencies.

First, we try the obvious: define a user interface to the parser in terms of the implementer inter
face we already have:

namespace Parser { I I interface for implementers
II ...
double expr (bool) ;
II ...

namespace Parser_interface { I I interface for users
using Parser:: expr;

Clearly, users of Parser_inter/ace depend only, and indirectly, on Parser: : expr ( ). However, a
crude look at the dependency graph gives us this:

Parser

Parser_interface

~ Parser implementation



Section 8.2.4.1 Interface Design Altematives 175

Now the Driver appears vulnerable to any change in the Parser interface from which it was sup
posed to be insulated. Even this appearance of a dependency is undesirable, so we explicitly
restrict Parser_interface's dependency on Parser by having only the relevant part of the imple
menter interface to parser (that was called Parser' earlier) in scope where we define
Parser_interface:

namespace Parser { / / interface for users
double expr (bool) ;

namespace Parser_interface { / / separately named interface for users
using Parser:: expr;

or graphically:

Parser'

i
Parser_interface

~

Parser

Parser implementation

To ensure the consistency of Parser and Parser', we again rely on the compilation system as a
whole, rather than on just the compiler working on a single compilation unit. This solution differs
from the one in §8.2.4 only by the extra namespace Parser_interface. If we wanted to, we could
give Parser_interface a concrete representation by giving it its own expr () function:

namespace Parser_interface {
double expr (bool) ;

Now Parser need not be in scope in order to define Parser_interface. It needs to be in scope only
where Parser_interface: : expr () is defined:

double Parser_interface: : expr (bool get)
{

return Parser::expr(get);

This last variant can be represented graphically like this:



176 Namespaces and Exceptions

Parser_interface

Parser_interface
implementation

Parser

Parser implementation

Chapter 8

Now all dependencies are minimized. Everything is concrete and properly named. However, for
most problems I face, this solution is also massive overkill.

8.2.5 Avoiding Name Clashes

Namespaces are intended to express logical structure. The simplest such structure is the distinction
between code written by one person vs. code written by someone else. This simple distinction can
be of great practical importance.

When we use only a single global scope, it is unnecessarily difficult to compose a program out
of separate parts. The problem is that the supposedly-separate parts each define the same names.
When combined into the same program, these names clash. Consider:

II my.h:
char f(char);
int f(int);
class String { / * ... * I } i

/ / your.h:
char f(char);
double f(double) i

class String { / * ... * / } i

Given these definitions, a third party cannot easily use both my . h and your. h. The obvious solu
tion is to wrap each set of declarations in its own namespace:

namespace My {
char f(char);
int f(int);
class String { / * ... * / } i

namespace Your {
char f(char);
double f(double);
class String { / * ... * I };

Now we can use declarations from My and Your through explicit qualification (§8.2.1), using
declarations (§8.2.2), or using-directives (§8.2.3).



Section 8.2.5.1 Unnamed Namespaces 177

8.2.5.1 Unnamed Namespaces

It is often useful to wrap a set of declarations in a namespace simply to protect against the possibil
ity of name clashes. That is, the aim is to preserve locality of code rather than to present an inter
face to users. For example:

#include II header. h tI

namespace Mine {
int aj
void f() { / * * / }
int g () { / * * / }

Since we don't want the name Mine to be known outside a local context, it simply becomes a
bother to invent a redundant global name that might accidentally clash with someone else's names.
In that case, we can simply leave the namespace without a name:

#include IIheader.h tl

namespace {
int aj
void f() { / * * / }
int g () { / * * / }

Clearly, there has to be some way of accessing members of an unnamed namespace from the out
side. Consequently, an unnamed namespace has an implied using-directive. The previous declara
tion is equivalent to

namespace $$$ {
int aj
void f() { / * * / }
int g () { / * * / }

}

using namespace $$$ j

where $$$ is some name unique to the scope in which the namespace is defined. In particular,
unnamed namespaces in different translation units are different. As desired, there is no way of
naming a member of an unnamed namespace from another translation unit.

8.2.6 Name Lookup

A function taking an argument of type T is more often than not defined in the same namespace as
T. Consequently, if a function isn't found in the context of its use, we look in the namespaces of its
arguments. For example:

namespace Chrono {
class Date { / * ... * / } i

bool operator== (const Date& I const std:: string&) i



178 Namespaces and Exceptions

sId: : string format (const Date&);
II ...

I I make string representation

ChapterS

void f (Chrono : : Date d, int i)
{

std: : string s = format (d) ;
std: : string t =format (i) ;

I I Chrono:.format()
I I error.' no format() in scope

This lookup rule saves the programmer a lot of typing compared to using explicit qualification, yet
it doesn't pollute the namespace the way a using-directive (§8.2.3) can. It is especially useful for
operator operands (§11.2.4) and template arguments (§C.13.8.4), where explicit qualification can
be quite cumbersome.

Note that the namespace itself needs to be in scope and the function must be declared before it
can be found and used.

Naturally, a function can take arguments from more than one namespace. For example:

void f (Chrono : : Date d, std:: string s)
{

ij(d==s)
I I ...

}

else if (d == "August 4, 1914 11
)

II ...

In such cases, we look for the function in the scope of the call (as ever) and in the namespaces of
every argument (including each argument's class and base classes) and do the usual overload reso
lution (§7.4) of all functions we find. In particular, for the call d==s, we look for operator== in
the scope surrounding f( ), in the std namespace (where == is defined for string), and in the
Chrono namespace. There is a std: : operator== ( ), but it doesn't take a Date argument, so we
use Chrono: : operator== ( ) , which does. See also §11.2.4.

When a class member invokes a named function, other members of the same class and its base
classes are preferred over functions potentially found based on the argument types; operators differ
(§11.2.1, §11.2.4).

8.2.7 Namespace Aliases

If users give their namespaces short names, the names of different namespaces will clash:

namespace A { I I short name, will clash (eventually)
II ...

A:: String sl = "Grieg" ;
A : : String s2 = "Nielse~ II ;

However, long namespace names can be impractical in real code:



Section 8.2.7

namespace American_Telephone_and_Telegraph {
I I ...

I I too long

Namespace Aliases 179

American Telephone and Telegraph:: String s3 = II Grieg II i

American=Telephone=and=Telegraph: :String s4 = II Nielsen II i

This dilemma can be resolved by providing a short alias for a longer namespace name:

I I use namespace alias to shorten names:

namespace AIT =American_Telephone_and_Telegraph i

AIT::String s3 = II GriegU i

AIT: : String s4 = II Nielsen II i

Namespace aliases also allow a user to refer to "the library" and have a single declaration defining
what library that really is. For example:

namespace Lib =Foundation_library_v2r}} i

I I ...

Lib: : set Si

Lib: :String s5 = II Sibelius" i

This can immensely simplify the task of replacing one version of a library with another. By using
Lib rather than Foundation_library_v2r11 directly, you can update to version "v3r02" by chang
ing the initialization of the alias Lib and recompiling. The recompile will catch source level incom
patibilities. On the other hand, overuse of aliases (of any kind) can lead to confusion.

8.2.8 Namespace Composition

Often, we want to compose an interface out of existing interfaces. For example:

namespace His_string {
class String { I * ... *I } i

String operator+ (const String&, const String&) i

String operator+ (const String&, const char*) i

void fill (char) ;
II .oo

namespace Her_vector {
template<class T> class Vector { I * .oo * I };
II ...

namespace My_lib {
using namespace His_string i
using namespace Her_vector;
void myJct (String& ) ;



180 Namespaces and Exceptions

Given this, we can now write the program in terms of My_lib:

void f()

{

My_lib: : String s = II Byron II ; I I finds My_lib: :His_string: :String
II ...

using namespace My_lib;

void g (Vector<String>& vs)
{

I I ...
myJct(vs[5] );
I I ...

Chapter 8

If an explicitly qualified name (such as My_lib:: String) isn't declared in the namespace men
tioned, the compiler looks in namespaces mentioned in using-directives (such as His_string).

Only if we need to define something, do we need to know the real namespace of an entity:

void My_lib: :fill (char c)
{

I I ...

I I error: no fill( ) declared in My_lib

void His_string: :fill (char c) I 10k: filiO declared in His_string
{

II ...

void My_lib:: myJct (String& v) I10k; String is My_lib::String meaning His_string::String
{

II ...

Ideally, a namespace should
[1] express a logically coherent set of features,
[2] not give users access to unrelated features, and
[3] not impose a significant notational burden on users.

The composition techniques presented here and in the following subsections - together with the
#include mechanism (§9.2.1) - provide strong support for this.

8.2.8.1 Selection

Occasionally, we want access to only a few names from a namespace. We could do that by writing
a namespace declaration containing only those names we want. For example, we could declare a
version of His_string that provided the String itself and the concatenation operator only:



Section 8.2.8.1

namespace His_string { I I part ofHis_string only
class String { I * ... * I };
String operator+ (const String&, const String&);
String operator+ (const String&, const char*);

Selection 181

However, unless I am the designer or maintainer of His_string, this can easily get messy. A
change to the "real" definition of His_string will not be reflected in this declaration. Selection of
features from a namespace is more explicitly made with using-declarations:

namespace My_string {
using His_string:: String;
using His_string:: operator+; I I use any + from His_string

A using-declaration brings every declaration with a given name into scope. In particular, a single
using-declaration can bring in every variant of an overloaded function.

In this way, if the maintainer of His_string adds a member function to String or an overloaded
version of the concatenation operator, that change will automatically become available to users of
My_string. Conversely, if a feature is removed from His_string or has its interface changed,
affected uses of My_string will be detected by the compiler (see also §15.2.2).

8.2.8.2 Composition and Selection

Combining composition (by using-directives) with selection (by using-declarations) yields the
flexibility needed for most real-world examples. With these mechanisms, we can provide access to
a variety of facilities in such a way that we resolve name clashes and ambiguities arising from their
composition. For example:

namespace His_lib {
class String { I * ... * I } i

template<class T> class Vector { I * ... * I };
II ...

namespace Her_lib {
template<class T> class Vector { I * ... * I };
class String { I * ... * I };
II ...

namespace My_lib {
uling namespace His_lib i I I everything from His_lib
uling namespace Her_lib; I I everything from Her_lib

",ing His_lib:: String; I I resolve potential clash infavor ofHis_lib
",ing Her_lib: : Vector; I I resolve potential clash in favor ofHer_lib

template<class T> class List { I * ... * I }ill additional stuff
II ...



182 Namespaces and Exceptions ChapterS

When looking into a namespace, names explicitly declared there (including names declared by
using-declarations) take priority over names made accessible in another scope by a using-directive
(see also §C.I0.l). Consequently, a user of My_lib will see the name clashes for String and Vector
resolved in favor of His_lib:: String and Her_lib: : Vector. Also, My_lib: : List will be used by
default independently of whether His_lib or Her_lib are providing a List.

Usually, I prefer to leave a name unchanged when including it into a new namespace. In that
way, I don't have to remember two different names for the same entity. However, sometimes a
new name is needed or simply nice to have. For example:

namespace Lib2 {
using namespace His_lib; I I everything from His_lib
using namespace Her_lib; I I everything from Her_lib

using His_lib: : String; I I resolve potential clash in favor ofHis_lib
using Her_lib: : Vector; / / resolve potential clash in favor ofHer_lib

typedef Her_lib: : String Her_string; I I rename

template<class T> class His_vee I I "rename"
: public His_lib:: Vector<T> { 1* ... * I };

template<class T> class List { I * ... * / }; I I additional stuff
II ...

There is no specific language mechanism for renaming. Instead, the general mechanisms for defin
ing new entities are used.

8.2.9 Namespaces and Old Code

Millions of lines of C and C++ code rely on global names and existing libraries. How can we use
namespaces to alleviate problems in such code? Redesigning existing code isn't always a viable
option. Fortunately, it is possible to use C libraries as if they were defined in a namespace. How
ever, this cannot be done for libraries written in C++ (§9.2.4). On the other hand, namespaces are
designed so that they can be introduced with minimal disruption into an older C++ program.

8.2.9.1 Namespaces and C

Consider the canonical first C program:

#include <stdio. h>

int main ()
{

printf( "Hello, world! \n II ) ;

Breaking this program wouldn't be a good idea. Making standard libraries special cases isn't a
good idea either. Consequently, the language rules for namespaces are designed to make it rela
tively easy to take a program written without namespaces and tum it into a more explicitly struc
tured one using namespaces. In fact, the calculator program (§6.1) is an example of this.



Section 8.2.9.1 Namespaces and C 183

The using-directive is the key to achieving this. For example, the declarations of the standard C
110 facilities from the C header stdio . h are wrapped in a namespace like this:

/ / stdio.h:

namespace std {
int printj(const char* . .. ) i
/ / ...

using namespace std i

This achieves backwards compatibility. Also, a new header file cstdio is defined for people who
don't want the names implicitly available:

/ / cstdio:

namespace std {
int printj(const char* ... ) i
/ / ...

C++ standard library implementers who worry about replication of declarations will, of course,
define stdio . h by including cstdio:

/ / stdio.h:

#include<cstdio>
using std:: printji
/ / ...

I consider nonlocal using-directives primarily a transition tool. Most code referring to names from
other namespaces can be expressed more clearly with explicit qualification and using-declarations.

The relationship between namespaces and linkage is described in §9.2.4.

8.2.9.2 Namespaces and Overloading

Overloading (§7.4) works across namespaces. This is essential to allow us to migrate existing
libraries to use namespaces with minimal source code changes. For example:

/ / old A.h:

void f( int) i
1/ ...

/ / old B.h:

void !(char) i
1/ ...

/ / old user.c:

ff:include II A . h II

ff:include II B . h II



184 Namespaces and Exceptions

void g ()
{

f( ,a' ); / / calls thef() from B.h

Chapter 8

This program can be upgraded to a version using namespaces without changing the actual code:

/ / new A.h:

namespace A {
void f( int);
/ / ...

/ I new B.h:

namespace B {
void f(char);
/ / ...

/ / new user.c:

#include "A. h II

#include "B. h "

using namespace A;
using namespace B i

void g ()
{

f( ,a' ) ; / / calls the fO from B.h

Had we wanted to keep user. c completely unchanged, we would have placed the using-directives
in the header files.

8.2.9.3 Namespaces Are Open

A namespace is open; that is, you can add names to it from several namespace declarations. For
example:

namespace A {
int f( ); / / now A has member f()

namespace A {
int g ( ); / / now A has two members, f() and g()

In this way, we can support large program fragments within a single namespace the wayan older
library or application lives within the single global namespace. To do this, we must distribute the
namespace definition over several header and source code files. As shown by the calculator exam
ple (§8.2.4), the openness of namespaces allows us to present different interfaces to different kinds



Section 8.2.9.3 Namespaces Are Open 185

of users by presenting different parts of a namespace. This openness is also an aid to transition.
For example,

/ / my header:
void f ( ); / / my function
/ / ...
#include<stdio . h>
int g ( ); / I my function
/ / ...

can be rewritten without reordering of the declarations:

/ / my header:

namespace Mine {
void f ( ); / / my function
/ / ...

#include<stdio . h>

namespace Mine {
int g ( ); / / my function
/ / ...

When writing new code, I prefer to use many smaller namespaces (see §8.2.8) rather than putting
really major pieces of code into a single namespace. However, that is often impractical when con
verting major pieces of software to use namespaces.

When defining a previously declared member of a namespace, it is safer to use the Mine:: syn
tax than to re-open Mine. For example:

void Mine: :ff( ) / / error: no ff() declared in Mine
{

/ / ...

A compiler catches this error. However, because new functions can be defined within a namespace,
a compiler cannot catch the equivalent error in are-opened namespace:

namespace Mine { / / re-opening Mine to define functions

void ff() / / oops! no ff() declared in Mine; ff() is added to Mine by this definition
{

/ / ...

/ / ...

The compiler has no way of knowing that you didn't want that new ff ().
A namespace alias (§8.2.7) can be used to qualify a name in a definition. However, a name

space alias cannot be used to re-open a namespace.



186 Namespaces and Exceptions Chapter 8

8.3 Exceptions

When a program is composed of separate modules, and especially when those modules come from
separately developed libraries, error handling needs to be separated into two distinct parts:

[1] The reporting of error conditions that cannot be resolved locally
[2] The handling of errors detected elsewhere

The author of a library can detect run-time errors but does not in general have any idea what to do
about them. The user of a library may know how to cope with such errors but cannot detect them 
or else they would be handled in the user's code and not left for the library to find.

In the calculator example, we bypassed this problem by designing the program as a whole. By
doing that, we could fit error handling into our overall framework. However, when we separate the
logical parts of the calculator into separate namespaces, we see that every namespace depends on
namespace Error (§8.2.2) and that the error handling in Error relies on every module behaving
appropriately after an error. Let's assume that we don't have the freedom to design the calculator as
a whole and don't want the tight coupling between Error and all other modules. Instead, assume
that the parser, etc., are written without knowledge of how a driver might like to handle errors.

Even though error () was very simple, it embodied a strategy for error handling:

namespace Error {
int no_of_errors i

double error (const char* s)
{

std:: cerr« "error: II « s« '\n';
no_of_errors++ ;
return 1;

The error () function writes out an error message, supplies a default value that allows its caller to
continue a computation, and keeps track of a simple error state. Importantly, every part of the pro
gram knows that error () exists, how to call it, and what to expect from it. For a program com
posed of separately-developed libraries, that would be too much to assume.

Exceptions are C++'s means of separating error reporting from error handling. In this section,
exceptions are briefly described in the context of their use in the calculator example. Chapter 14
provides a more extensive discussion of exceptions and their uses.

8.3.1 Throw and Catch

The notion of an exception is provided to help deal with error reporting. For example:

struct Range_error {
int i;
Range_error (int ii) { i = ii;} / / constructor (§2.5.2, §lO.2.3)

} ;



Section 8.3.1

char to_char (int i)
{

Throw and Catch 187

if (i<numeric_limits<char> : : min () I I numeric_limits<char> : : max ( ) <i) / / see §22.2
throw Range_error (i) ;

return i;

The to_char () function either returns the char with the numeric value i or throws a Range_error.
The fundamental idea is that a function that finds a problem it cannot cope with throws an excep
tion, hoping that its (direct or indirect) caller can handle the problem. A function that wants to han
dle a problem can indicate that it is willing to catch exceptions of the type used to report the prob
lem. For example, to call to_char () and catch the exception it might throw, we could write:

void g (int i)
{

try {
char c = to_char (i);

/ / ...
}

catch (Range_error)
cerr« 1I00pS\n1l ;

The construct

catch ( / * ... * / )
/ / ...

is called an exception handler. It can be used only immediately after a block prefixed with the key
word try or immediately after another exception handler; catch is also a keyword. The parentheses
contain a declaration that is used in a way similar to how a function argument declaration is used.
That is, it specifies the type of the objects that can be caught by this handler and optionally names
the object caught. For example, if we wanted to know the value of the Range_error thrown, we
would provide a name for the argument to catch exactly the way we name function arguments. For
example:

void h (int i)
{

try {
char c = to_char (i) ;
/ / ...

}

catch (Range_error x) {
cerr« 1I 00pS: to_char(lI «x.i« 1I)\nIl;

If any code in a try-block - or called from it - throws an exception, the try-block's handlers will be



188 Namespaces and Exceptions Chapter 8

examined. If the exception thrown is of a type specified for a handler, that handler is executed. If
not, the exception handlers are ignored and the try-block acts just like an ordinary block. If an
exception is thrown and no try-block catches it, the program terminates (§ 14.7).

Basically, C++ exception handling is a way to transfer control to designated code in a calling
function. Where needed, some information about the error can be passed along to the caller. C
programmers can think of exception handling as a well-behaved mechanism replacing
setjmp/longjmp (§ 16.1.2). The important interaction between exception handling and classes is
described in Chapter 14.

8.3.2 Discrimination of Exceptions

Typically, a program will have several different possible run-time errors. Such errors can be
mapped into exceptions with distinct names. I prefer to define types with no other purpose than
exception handling. This minimizes confusion about their purpose. In particular, I never use a
built-in type, such as int, as an exception. In a large program, I would have no effective way to
find unrelated uses of int exceptions. Thus, I could never be sure that such other uses didn't inter
fere with my use.

Our calculator (§6.1) must handle two kinds of run-time errors: syntax errors and attempts to
divide by zero. No values need to be passed to a handler from the code that detects an attempt to
divide by zero, so zero divide can be represented by a simple empty type:

struct Zero_divide { };

On the other hand, a handler would most likely prefer to get an indication of what kind of syntax
error occurred. Here, we pass a string along:

struct Syntax_error {
const char* p;
Syntax_error (const char* q) {p = q; }

} ;

For notational convenience, I added a constructor (§2.5.2, §10.2.3) to the struct.
A user of the parser can discriminate between the two exceptions by adding handlers for both to

a try block. Where needed, the appropriate handler will be entered. If we "fall through the bot
tom" of a handler, the execution continues at the end of the list of handlers:

try {
/ / ...
expr (false) ;
/ / we get here ifand only if expr() didn't cause an exception
/ / ...

}

catch (Syntax_error) {
/ / handle syntax error



Section 8.3.2

catch (Zero_divide) {
/ / handle divide by zero

Discrimination of Exceptions 189

}

/ / we get here if expr didn't cause an exception or ifa Syntax_error
/ / or Zero_divide exception was caught (and its handler didn't return,
/ / throw an exception, or in some other way alter the flow ofcontrol).

A list of handlers looks a bit like a switch statement, but there is no need for break statements. The
syntax of a list of handlers differs from the syntax of a list of cases partly for that reason and partly
to indicate that each handler is a scope (§4.9.4).

A function need not catch all possible exceptions. For example, the previous try-block didn't
try to catch exceptions potentially generated by the parser's input operations. Those exceptions
simply' 'pass through," searching for a caller with an appropriate handler.

From the language's point of view, an exception is considered handled immediately upon entry
into its handler so that any exceptions thrown while executing a hand16r must be dealt with by the
callers of the try-block. For example, this does not cause an infinite loop:

class Input_overflow { / * ... * / } i

void f()

{

try {
/ / ...

}

catch (Input_overflow)
/ / ...
throw Input_overflow ( ) ;

Exception handlers can be nested. For example:

class XXII { / * ... * / };

void f()

{

/ / ...
try {

/ / ...
}

catch (XXII)
try {

/ / something complicated
}

catch (XXII) {
/ / complicated handler code failed

}

1/ ...



190 Namespaces and Exceptions Chapter 8

However, such nesting is rare in human-written code and is more often than not an indication of
poor style.

8.3.3 Exceptions in the Calculator

Given the basic exception-handling mechanism, we can rework the calculator example from §6.1 to
separate the handling of errors found at run-time from the main logic of the calculator. This will
result in an organization of the program that more realistically matches what is found in programs
built from separate, loosely connected parts.

First, error () can be eliminated. Instead, the parser functions know only the types used to sig
nal errors:

namespace Error {
struct Zero_divide { };

struct Syntax_error {
const char* p;
Syntax_error (const char* q) {p =q; }

} ;

The parser detects three syntax errors:

Lexer: : Token_value Lexer:: get_token ( )
{

using namespace std;

/ / ...

/ / to use input, isalpha(), etc. (§6. J. 7)

default: / / NAME, NAME =, or error
if (isalpha (ch)) {

string_value = ch;
while (input->get (ch) && isalnum (ch) ) string_value . push_back (ch);
input- >putback (ch) ;
return curr_tok=NAME ;

}

throw Error:: Syntax_error ( II bad token II ) ;

double Parser:: prim (boof get)
{

/ / ...

/ / handle primaries

case Lexer:: LP :
{ double e =expr (true) ;

if (curr_tok ! = Lexer: : RP) throw Error:: Syntax_error ( 11 \ ) , expected II ) ;

get_token ( ); / / eat ')'
return e;



Section 8.3.3 Exceptions in the Calculator 191

case Lexer::ENL>:
return 1;

default:
throw Error:: Syntax_error ( "primary expected II ) ;

When a syntax error is detected, throw is used to transfer control to a handler defined in some
(direct or indirect) caller. The throw operator also passes a value to the handler. For example,

throw Syntax_error ( II primary expected");

passes a Syntax_error object containing a pointer to the string primary expected to the handler.
Reporting a divide-by-zero error doesn't require any data to be passed along:

double Parser:: term (bool get) / / multiply and divide
{

/ / ...
case Lexer:: DIV:

if (double d =prim (true) )
left /= d;
break;

}

throw Error:: Zero_divide ( ) ;

1/ ...

The driver can now be defined to handle Zero_divide and Syntax_error exceptions. For example:

int main (int argc, char* argv [ ] )
{

/ / ...
while (* input)

try {
Lexer:: get_token ( );
if (Lexer:: curr_tok == Lexer:: END) break;
if (Lexer: : curr_tok == Lexer: : PRINT) continue;
cout « Parser: : expr (false) « '\n';

}

catch (Error: : Zero_divide) {
cerr« II attempt to divide by zero\n II ;

if (Lexer: : curr_tok ! = Lexer: : PRINT) skip ( ) i

}

catch (Error:: Syntax_error e) {
cerr« II syntax error: II « e. p« "\n II i

if (Lexer: : curr_tok ! =Lexer: : PRINT) skip ( ) i

if (input ! = &cin) delete input i

return no_oj_errors;



192 Namespaces and Exceptions Chapter 8

Unless an error was caused at the end of an expression terminated by a PRINT token (that is, an
end-of-line or a semicolon), main () calls the recovery function skip ( ). The function skip () tries
to bring the parser into a well-defined state by discarding characters until it finds an end-of-line or a
semicolon. The skip () function, no_oj_errors, and input are obvious candidates for a Driver
namespace:

namespace Driver {
int no_of_errors;
std: : istream* input i

void skip ( );

void Driver:: skip ( )
{

while (* input) { / / discard characters until newline or semicolon
char chi
input->get (ch);

switch (ch)
case '\n' :
case ; :

return;

The code for skip () is deliberately written at a lower level of abstraction than the parser code so as
to avoid being caught by exceptions from the parser while handling parser exceptions.

I retained the idea of counting the number of errors and reporting that number as the program's
return value. It is often useful to know if a program encountered an error even if it was able to
recover from it.

I did not put main () in the Driver namespace. The global main () is the initial function of a
program (§3.2); a main () in another namespace has no special meaning. In a realistically-sized
program, most of the code from main () would be moved to a separate function in Driver.

8.3.3.1 Alternative Error-Handling Strategies

The original error-handling code was shorter and more elegant than the version using exceptions.
However, it achieved that elegance by tightly coupling all parts of the program. That approach
doesn't scale well to programs composed of separately developed libraries.

We could consider eliminating the separate error-handling function skip () by introducing a
state variable in main ( ). For example:

int main (int argc, char* argv [] ) / / example ofpoor style
{

/ / ...

boot in_error = false;



Section 8.3.3.1 Alternative Error-Handling Strategies 193

while (* Driver: : input) {
try {

Lexer: : get_token ( ) i

if (Lexer:: curr_tok == Lexer:: END) break;
if (Lexer:: curr_tok == Lexer:: PRINT)

in_error =false;
continue;

}

if (in_error == false) cout« Parser:: expr (false) « "\n" i
}

catch (Error: : Zero_divide) {
cerr << II attempt to divide by zero\n II i

++no_of_errors;
in_error = true;

}

catch (Error:: Syntax_error e)
cerr« II syntax error: II « e. p « "\n II i
++no_of_errorsi
in_error = true;

if (Driver: : input ! = &std: : cin) delete Driver:: input;
return Driver:: no_01_errors;

I consider this a bad idea for several reasons:
[1] State variables are a common source of confusion and errors, especially if they are allowed

to proliferate and affect larger sections of a program. In particular, I consider the version of
main () using in_error less readable than the version using skip ( ) .

[2] It is generally a good strategy to keep error handling and "normal" code separate.
[3] Doing error handling using the same level of abstraction as the code that caused the error is

hazardous; the error-handling code might repeat the same error that triggered the error han
dling in the first place. I leave it as an exercise to find how that can happen for the version
of main () using in_error (§8.5[7]).

[4] It is more work to modify the "normal" code to add error-handling code than to add sepa-
rate error-handling routines.

Exception handling is intended for dealing with nonlocal problems. If an error can be handled
locally, it almost always should be. For example, there is no reason to use an exception to handle
the too-many-arguments error:

int main (int argc I char* argv [ ] )
{

using namespace std;
using namespace Driver i
switch (argc) {
case 1:

input = &cin;
break;

/ / read from standard input



194 Namespaces and Exceptions

case 2: / / read argument string
input = new istringstream (argv [1] ) ;
break;

default:
cerr << II too many arguments\n" i

return 1 i

/ / as before

Exceptions are discussed further in Chapter 14.

8.4 Advice

Chapter 8

[1] Use namespaces to express logical structure; §8.2.
[2] Place every nonlocal name, except main ( ) , in some namespace; §8.2.
[3] Design a namespace so that you can conveniently use it without accidentally gaining access to

unrelated namespaces; §8.2.4.
[4] Avoid very short names for namespaces; §8.2.7.
[5] If necessary, use namespace aliases to abbreviate long namespace names; §8.2.7.
[6] Avoid placing heavy notational burdens on users of your namespaces; §8.2.2, §8.2.3.
[7] Use the Namespace : : member notation when defining namespace members; §8.2.8.
[8] Use using namespace only for transition or within a local scope; §8.2.9.
[9] Use exceptions to decouple the treatment of "errors" from the code dealing with the ordinary

processing; §8.3.3.
[10] Use user-defined rather than built-in types as exceptions; §8.3.2.
[11] Don't use exceptions when local control structures are sufficient; §8.3.3.1.

8.5 Exercises

1. (*2.5) Write a doubly-linked list of string module in the style of the Stack module from §2.4.
Exercise it by creating a list of names of programming languages. Provide a sort () function
for that list, and provide a function that reverses the order of the strings in it.

2. (*2) Take some not-too-Iarge program that uses at least one library that does not use name
spaces and modify it to use a namespace for that library. Hint: §8.2.9.

3. (*2) Modify the desk calculator program into a module in the style of §2.4 using namespaces.
Don't use any global using-directives. Keep a record of the mistakes you made. Suggest ways
of avoiding such mistakes in the future.

4. (*1) Write a program that throws an exception in one function and catches it in another.
5. (*2) Write a program consisting of functions calling each other to a calling depth of 10. Give

each function an argument that determines at which level an exception is thrown. Have
main () catch these exceptions and print out which exception is caught. Don't forget the case
in which an exception is caught in the function that throws it.



Section 8.5 Exercises 195

6. (*2) Modify the program from §8.5[5] to measure if there is a difference in the cost of catching
exceptions depending on where in a class stack the exception is thrown. Add a string object to
each function and measure again. .

7. (*1) Find the error in the first version of main () in §8.3.3.1.
8. (*2) Write a function that either returns a value or that throws that value based on an argument.

Measure the difference in run-time between the two ways.
9. (*2) Modify the calculator version from §8.5[3] to use exceptions. Keep a record of the mis

takes you make. Suggest ways of avoiding such mistakes in the future.
10. (*2.5) Write plus ( ) , minus ( ), multiply ( ), and divide () functions that check for possible

overflow and underflow and that throw exceptions if such errors happen.
11. (*2) Modify the calculator to use the functions from §8.5[10].





9
Source Files and Programs

Form mustfollow function.
- Le Corbusier

Separate compilation - linking - header files - standard library headers - the one
definition rule - linkage to non-C++ code - linkage and pointers to functions - using
headers to express modularity - single-header organization - multiple-header organi
zation - include guards - programs - advice - exercises.

9.1 Separate Compilation

A file is the traditional unit of storage (in a file system) and the traditional unit of compilation.
There are systems that do not store, compile, and present c++ programs to the programmer as sets
of files. However, the discussion here will concentrate on systems that employ the traditional use
of files.

Having a complete program in one file is usually impossible. In particular, the code for the
standard libraries and the operating system is typically not supplied in source form as part of a
user's program. For realistically-sized applications, even having all of the user's own code in a sin
gle file is both impractical and inconvenient. The way a program is organized into files can help
emphasize its logical structure, help a human reader understand the program, and help the compiler
to enforce that logical structure. Where the unit of compilation is a file, all of a file must be recom
piled whenever a change (however small) has been made to it or to something on which it depends.
For even a moderately sized program, the amount of time spent recompiling can be significantly
reduced by partitioning the program into files of suitable size.

A user presents a source file to the compiler. The file is then preprocessed; that is, macro pro
cessing (§7.8) is done and #include directives bring in headers (§2.4.1, §9.2.1). The result of pre
processing is called a translation unit. This unit is what the compiler proper works on and what the
C++ language rules describe. In this book, I differentiate between source file and translation unit



198 Source Files and Programs Chapter 9

only where necessary to distinguish what the programmer sees from what the compiler considers.
To enable separate compilation, the programmer must supply declarations providing the type

information needed to analyze a translation unit in isolation from the rest of the program. The
declarations in a program consisting of many separately compiled parts must be consistent in
exactly the same way the declarations in a program consisting of a single source file must be. Your
system will have tools to help ensure this. In particular, the linker can detect many kinds of incon
sistencies. The linker is the program that binds together the separately compiled parts. A linker is
sometimes (confusingly) called a loader. Linking can be done completely before a program starts
to run. Alternatively, new code can be added to the program ("dynamically linked") later.

The organization of a program into source files is commonly called the physical structure of a
program. The physical separation of a program into separate files should be guided by the logical
structure of the program. The same dependency concerns that guide the composition of programs
out of namespaces guide its composition into source files. However, the logical and physical struc
ture of a program need not be identical. For example, it can be useful to use several source files to
store the functions from a single namespace, to store a collection of namespace definitions in a sin
gle file, and to scatter the definition of a namespace over several files (§8.2.4).

Here, we will first consider some technicalities relating to linking and then discuss two ways of
breaking the desk calculator (§6.1, §8.2) into files.

9.2 Linkage

Names of functions, classes, templates, variables, namespaces, enumerations, and enumerators
must be used consistently across all translation units unless they are explicitly specified to be local.

It is the programmer's task to ensure that every namespace, class, function, etc. is properly
declared in every translation unit in which it appears and that all declarations referring to the same
entity are consistent. For example, consider two files:

/ I file/.c:
int x = J i

int f() { / * do something */ }

/ I file2.c:
extern int Xi

int f() i

void g () {x =f (); }

The x and f() used by g () in file2 . c are the ones defined in file] . c. The keyword extern indi
cates that the declaration of x in file2 . c is (just) a declaration and not a definition (§4.9). Had x
been initialized, extern would simply be ignored because a declaration with an initializer is always
a definition. An object must be defined exactly once in a program. It may be declared many times,
but the types must agree exactly. For example:

/ I file/ .c:
int x = 1 i

int b = J i

extern int Ci



Section 9.2

/ / file2.c:
int Xi

extern double b i

extern int Ci

/ / meaning int x =0;

Linkage 199

. There are three errors here: x is defined twice, b is declared twice with different types, and c is
declared twice but not defined. These kinds of errors (linkage errors) cannot be detected by a com
piler that looks at only one file at a time. Most, however, are detectable by the linker. Note that a
variable defined without an initializer in the global or a namespace scope is initialized by default.
This is not the case for local variables (§4.9.5, §10.4.2) or objects created on the free store (§6.2.6).
For example, the following program fragment contains two errors:

/ / file1.c:
int Xi

int f () { return Xi}

/ / file2.c:
int Xi

int g {} {return f ( ) i }

The call off() in file2 . c is an error because f () has not been declared in file2 . c. Also, the pro
gram will not link because x is defined twice. Note that the call off() is not an error in C (§B.2.2).

A name that can be used in translation units different from the one in which it was defined is
said to have external linkage. All the names in the previous examples have external linkage. A
name that can be referred to only in the translation unit in which it is defined is said to have
internal linkage.

An inline function (§7.1.1, §10.2.9) must be defined - by identical definitions (§9.2.3) - in
every translation unit in which it is used. Consequently, the following example isn't just bad taste;
it is illegal:

/ / filel.c:
inline int f (int i) {return i; }

/ / file2.c:
inline int f(int i) { return i+1;

Unfortunately, this error is hard for an implementation to catch, and the following - otherwise per
fectly logical - combination of external linkage and inlining is banned to make life simpler for
compiler writers:

/ / file1.c:
extern inline int g (int i);

int h (int i) { return g (i); / / error: g() undefined in this translation unit

/ / file2.c:
extern inline int g (int i) { return i+1; }

By default, consts (§5.4) and typedefs (§4.9.7) have internal linkage. Consequently, this example
is legal (although potentially confusing):



200 Source Files and Programs

1/ fileJ.e:
typedef int T;
const int x = 7;

II file2.e:
typedef void T;
const int x = 8;

Chapter 9

Global variables that are local to a single compilation unit are a common source of confusion and
are best avoided. To ensure consistency, you should usually place global consts and inlines in
header files only (§9.2.1).

A const can be given external linkage by an explicit declaration:

II fileJ.e:
extern const int a = 77;

1/ file2.e:
extern const int a i

void g ()
{

cout « a« '\n';

Here, g () will print 77.
An unnamed namespace (§8.2.5) can be used to make names local to a compilation unit. The

effect of an unnamed namespace is very similar to that of internal linkage. For example:

/ I file J.e:
namespace {

class X { I * ... * / } ;
void f();

int i;
/ / ...

II file2.e:
class X { I * ... * I };
void f();

int i;
/ / ...

The function/() infilel. c is not the same function as the/() infile2. c. Having a name local to
a translation unit and also using that same name elsewhere for an entity with external linkage is
asking for trouble.

In C and older C++ programs, the keyword static is (confusingly) used to mean "use internal
linkage" (§B.2.3). Don't use static except inside functions (§7.1.2) and classes (§ 10.2.4).



Section 9.2.1

9.2.1 Header Files

Header Files 201

The types in all declarations of the same object, function, class, etc., must be consistent. Conse
quently, the source code submitted to the compiler and later linked together must be consistent.
One imperfect but simple method of achieving consistency for declarations in different translation
units is to #include header files containing interface information in source files containing exe
cutable code and/or data definitions.

The #include mechanism is a text manipulation facility for gathering source program fragments
together into a single unit (file) for compilation. The directive

#include II to_be_included II

replaces the line in which the #include appears with the contents of the file to_be_included. The
content should be C++ source text because the compiler will proceed to read it.

To include standard library headers, use the angle brackets < and> around the name instead of
quotes. For example:

#include <iostream>
#include II myheader . h II

/ / from standard include directory
/ / from current directory

Unfortunately, spaces are significant within the < > or II n of an include directive:

#include < iostream > / / will not find <iostream>

It may seem extravagant to recompile a file each time it is included somewhere, but the included
files typically contain only declarations and not code needing extensive analysis by the compiler.
Furthermore, most modem C++ implementations provide some form of precompiling of header
files to minimize the work needed to handle repeated compilation of the same header.

As a rule of thumb, a header may contain:

Named namespaces
Type definitions
Template declarations
Template definitions
Function declarations
Inline function definitions
Data declarations
Constant definitions
Enumerations
Name declarations
Include directives
Macro definitions
Conditional compilation directives
Comments

namespace N { / * ... * / }
struct Point { int x, y; };
template<class T> class Z;
template<class T> class V { / * ... * / };
extern int strlen (const char*) ;
inline char get (char* p) { return *p++ ;
extern int a;
const float pi = 3.141593 i

enum Light { red, yellow, green } ;
class Matrix i

#include <algorithm>
#define VERSION 12
#ifdef_cplusplus
/ * check for end offile * /

This rule of thumb for what may be placed in a header is not a language requirement. It is simply a
reasonable way of using the #include mechanism to express the physical structure of a program.
Conversely, a header should never contain:



202 Source Files and Programs Chapter 9

Ordinary function definitions
Data definitions
Aggregate definitions
Unnamed namespaces
Exported template definitions

char get (ehar* p) {return *p++ ;
int a;
short thl [] = { 1, 2, 3 };
namespace { / * ... * / }
export template<class T> f( T t) { / * ... * / }

Header files are conventionally suffixed by . h, and files containing function or data definitions are
suffixed by . c. They are therefore often referred to as ".h files" and ".c files," respectively.
Other conventions, such as . C, . exx, . epp, and . cc, are also found. The manual for your com
piler will be quite specific about this issue.

The reason for recommending that the definition of simple constants, but not the definition of
aggregates, be placed in header files is that it is hard for implementations to avoid replication of
aggregates presented in several translation units. Furthermore, the simple cases are far more com
mon and therefore more important for generating good code.

It is wise not to be too clever about the use of #include. My recommendation is to #inelude
only complete declarations and definitions and to do so only in the global scope, in linkage specifi
cation blocks, and in namespace definitions when converting old code (§9.2.2). As usual, it is wise
to avoid macro magic. One of my least favorite activities is tracking down an error caused by a
name being macro-substituted into something completely different by a macro defined in an indi
rectly #included header that I have never even heard of.

9.2.2 Standard Library Headers

The facilities of the standard library are presented through a set of standard headers (§ 16.1.2). No
suffix is needed for standard library headers; they are known to be headers because they are
included using the #include< ... > syntax rather than #include " ... ". The absence of a . h suf
fix does not imply anything about how the header is stored. A header such as <map> may be
stored as a text file called map. h in a standard directory. On the other hand, standard headers are
not required to be stored in a conventional manner. An implementation is allowed to take advan
tage of knowledge of the standard library definition to optimize the standard library implementation
and the way standard headers are handled. For example, an implementation might have knowledge
of the standard math library (§22.3) built in and treat #include<cmath> as a switch that makes the
standard math functions available without reading any file.

For each C standard-library header <X. h>, there is a corresponding standard c++ header <eX>.
For example, #include<cstdio> provides what #include<stdio. h> does. A typical stdio. h will
look something like this:

I I for c++ compilers only (§9.2.4)
I I the standard library is defined in namespace std (§8.2.9)

I I stdio functions have C linkage (§9.2.4)

iifde! _cplusplus
namespace std {

extern II C"
iendif

II ...
int printf(const char* . . . ) ;
I I ...



Section 9.2.2

#ifdel _cplusplus
}

}

using namespace std;
#endif

Standard Library Headers 203

/ / make stdio available in global namespace

That is, the actual declarations are (most likely) shared, but linkage and namespace issues must be
addressed to allow C and C++ to share a header.

9.2.3 The One-Definition Rule

A given class, enumeration, and template, etc., must be defined exactly once in a program.
From a practical point of view, this means that there must be exactly one definition of, say, a

class residing in a single file somewhere. Unfortunately, the language rule cannot be that simple.
For example, the definition of a class may be composed through macro expansion (ugh!) and a defi
nition of a class may be textually included in two source files by #include directives (§9.2.1).
Worse, a "file" isn't a concept that is part of the C and C++ language definitions; there exist imple
mentations that do not store programs in source files.

Consequently, the rule in the standard that says that there must be a unique definition of a class,
template, etc., is phrased in a somewhat more complicated and subtle manner. This rule is com
monly referred to as "the one-definition rule," the ODR. That is, two definitions of a class, tem
plate, or inline function are accepted as examples of the same unique definition if and only if

[1] they appear in different translation units, and
[2] they are token-for-token identical, and
[3] the meanings of those tokens are the same in both translation units.

For example:

/ / filel.c:
struct S { int a; char b; };
void I(S*) i

/ / file2.c:
struct S { int a; char b; };
void I( S* p) { / * ... * / }

The ODR says that this example is valid and that S refers to the same class in both source files.
However, it is unwise to write out a definition twice like that. Someone maintaining file2 . c will
naturally assume that the definition of S in file2 . c is the only definition of S and so feel free to
change it. This could introduce a hard-to-detect error.

The intent of the ODR is to allow inclusion of a class definition in different translation units
from a common source file. For example:

/ / file s.h:
struct S { int a; char b; };
void /(S*);



204 Source Files and Programs

II filel.c:
#include "s. h II

II useI() here

I I file2.c:
#include "s. h II

void f(S* p) { 1* ... * I }

or graphically:
s.h:

Chapter 9

struct 8 { int a; char b; };
voidf(8*) ;

file2.c:

#include "s.h"
void f(8* p) { /* ... */ }

Here are examples of the three ways of violating the ODR:

I I filel.c:
struct Sl { int a; char b; };

struct Sl { int a; char b; }; I I error: double definition

This is an error because a struct may not be defined twice in a single translation unit.

II filel.c:
struct S2 { int a; char b; };

I I file2.c:
struct S2 { int a; char bb; }; I I error

This is an error because 82 is used to name classes that differ in a member name.

II filel.c:
typedef int X;
struct S3 { X a; char b; };

/ I file2.c:
typedef char X;
struct S3 { X a; char b; }; II error

Here the two definitions of S3 are token-for-token identical, but the example is an error because the
meaning of the name X has sneakily been made to differ in the two files.

Checking against inconsistent class definitions in separate translation units is beyond the ability
of most C++ implementations. Consequently, declarations that violate the ODR can be a source of
subtle errors. Unfortunately, the technique of placing shared definitions in headers and #including
them doesn't protect against this last form of ODR violation. Local typedefs and macros can
change the meaning of #included declarations:



Section 9.2.3

I I file s.h:
struct S { Point a; char b; };

I I filel.c:
#define Point int
#include II s. h II

I I ...

I I file2.c:
class Point { 1* ... * I };
#include liS. h II

1/ ...

The One-Definition Rule 20S

I I declaration

The best defense against this kind of hackery is to make headers as self-contained as possible. For
example, if class Point had been declared in the s . h header the error would have been detected.

A template definition can be #included in several translation units as long as the ODR is
adhered to. In addition, an exported template can be used given only a declaration:

I I filel.c:
export template<class T> T twice (T t) {return t+t; }

I I file2.c:
template<class T> T twice (T t);
int g (int i) { return twice (i); }

The keyword export means "accessible from another translation unit" (§ 13.7).

9.2.4 Linkage to Non-C++ Code

Typically, a c++ program contains parts written in other languages. Similarly, it is common for
C++ code fragments to be used as parts of programs written mainly in some other language.
Cooperation can be difficult between program fragments written in different languages and even
between fragments written in the same language but compiled with different compilers. For exam
ple, different languages and different implementations of the same language may differ in their use
of machine registers to hold arguments, the layout of arguments put on a stack, the layout of built
in types such as strings and integers, the form of names passed by the compiler to the linker, and
the amount of type checking required from the linker. To help, one can specify a linkage conven
tion to be used in an extern declaration. For example, this declares the C and C++ standard library
function strcpy () and specifies that it should be linked according to the C linkage conventions:

extern II e" char* strcpy (char*, const char*);

The effect of this declaration differs from the effect of the "plain" declaration

extern char* strcpy (char*, const char*);

only in the linkage convention used for calling strcpy ( ) .
The extern "C" directive is particularly useful because of the close relationship between C and

C++. Note that the C in extern "c" names a linkage convention and not a language. Often, extern
"C" is used to link to Fortran and assembler routines that happen to conform to the conventions of a
C implementation.



206 Source Files and Programs Chapter 9

An extern "C" directive specifies the linkage convention (only) and does not affect the seman
tics of calls to the function. In particular, a function declared extern "C" still obeys the c++ type
checking and argument conversion rules and not the weaker C rules. For example:

extern" C" int f();

int g ()
{

return f( 1); / / error: no argument expected

Adding extern "C" to a lot of declarations can be a nuisance. Consequently, there is a mechanism
to specify linkage to a group of declarations. For example:

extern" CII {
char* strcpy (char*, const char*);
int strcmp (const char*, const char*) i

int strlen (const char*);
/ / ...

This construct, commonly called a linkage block, can be used to enclose a complete C header to
make a header suitable for C++ use. For example:

extern" C" {
#include <string. h>
}

This technique is commonly used to produce a C++ header from a C header. Alternatively, condi
tional compilation (§7.8.1) can be used to create a common C and C++ header:

#ifdef _cplusplus
extern "CII {
#endif

char* strcpy (char*, const char*);
int strcmp (const char*, const char*) i

int strlen (const char*) i

/ / ...
iifdef _cplusplus
}

#endif

The predefined macro name _cplusplus is used to ensure that the C++ constructs are edited out
when the file is used as a C header.

Any declaration can appear within a linkage block:

extern "C" {
int g1;
extern int g2;

/ / any declaration here, for example:
/ / definition
/ / declaration, not definition

In particular, the scope and storage class of variables are not affected, so g1 is still a global variable



Section 9.2.4 Linkage to Non-C++ Code 207

- and is still defined rather than just declared. To declare but not define a variable, you must apply
the keyword extern directly in the declaration. For example:

extern II CII int g3; / / declaration, not definition

This looks odd at first glance. However, it is a simple consequence of keeping the meaning
unchanged when adding "C" to an extern declaration and the meaning of a file unchanged when
enclosing it in a linkage block.

A name with C linkage can be declared in a namespace. The namespace will affect the way the
name is accessed in the C++ program, but not the way a linker sees it. The printf() from std is a
typical example:

#include<cstdio>

void f()

{

std: : printf( II Hello, II);

printf( "world! \n II ) i

/ / ok
/ / error: no global printf()

Even when called std: :printf, it is still the same old C printf() (§21.8).
Note that this allows us to include libraries with C linkage into a namespace of our choice rather

than polluting the global namespace. Unfortunately, the same flexibility is not available to us for
headers defining functions with C++ linkage in the global namespace. The reason is that linkage of
C++ entities must take namespaces into account so that the object files generated will reflect the use
or lack of use of namespaces.

9.2.5 Linkage and Pointers to Functions

When mixing C and C++ code fragments in one program, we sometimes want to pass pointers to
functions defined in one language to functions defined in the other. If the two implementations of
the two languages share linkage conventions and function-call mechanisms, such passing of point
ers to functions is trivial. However, such commonality cannot in general be assumed, so care must
be taken to ensure that a function is called the way it expects to be called.

When linkage is specified for a declaration, the specified linkage applies to all function types,
function names, and variable names introduced by the declaration(s). This makes all kinds of
strange - and occasionally essential - combinations of linkage possible. For example:

typedef int (* FT) (const void*, const void*) i / / FT has C++ linkage

extern "C" {
typedef int (* CFT) (const void*, const void*);
void qsort (void* p, size_t n, size_t sz, eFT cmp) i

void isort (void* p, size_t n, size_t sz, FT cmp) i

void xsort (void* p, size_t n, size_I sz, CFT cmp);
extern "C II void ysort (void* p, size_t n, size_t sz, FT cmp);

int compare (const void*, const void*);
extern "C II int ccmp (const void*, const void*);

/ / CFT has C linkage
/ / cmp has C linkage

/ / cmp has c++ linkage
/ / cmp has C linkage
/ / cmp has C++ linkage

/ / compare() has C++ linkage
/ / ccmp() has C linkage



208 Source Files and Programs

void f (char* v, int sz)
{

qsort (v , sz, 1, &compare); / / error
qsort (v, sz, 1, &ccmp) ; / / ok

isort (v, sZ,1, &compare); / / ok
isort (v , sz, 1, &ccmp) ; / / error

Chapter 9

An implementation in which C and C++ use the same calling conventions might accept the cases
marked error as a language extension.

9.3 Using Header Files

To illustrate the use of headers, I present a few alternative ways of expressing the physical structure
of the calculator program (§6.1, §8.2).

9.3.1 Single Header File

The simplest solution to the problem of partitioning a program into several files is to put the defini
tions in a suitable number of . c files and to declare the types needed for them to communicate in a
single. h file that each. c file #includes. For the calculator program, we might use five. c files 
lexer. c, parser. c, table. c, error. c, and main. c - to hold function and data definitions, plus the
header dc . h to hold the declarations of every name used in more than one . c file.

The header de . h would look like this:

/ / dc.h:

namespace Error {
struct Zero_divide { };

struct Syntax_error {
const char* p;
Syntax_error(const char* q) {p =q; }

} ;

# include <string>

namespace Lexer {

enum Token_value {
NAME,
PLUS=' +',
PRINT=';' ,

NUMBER, END,
MINUS= ' - " MUL= ' * ' ,
ASSIGN= ' = " LP=' ( , ,

DIV=' /',
RP=') ,

} ;

extern Token_value curr_tok ;
extern double number_value;
extern std:: string string_value;



Section 9.3.1

Token_value get_token ( ) i

namespace Parser {
double prim (bool get);
double term (bool get);
double expr (bool get);

using Lexer:: get_token;
using Lexer:: curr_tok;

/ / handle primaries
/ / multiply and divide
/ / add and subtract

Single Header File 209

#include <map>

extern std:: map<std : : string, double> table;

namespace Driver {
extern int no_01_errors;
extern std:: istream* input;
void skip ( );

The keyword extern is used for every declaration of a variable to ensure that multiple definitions do
not occur as we #inelude de. h in the various. c files. The corresponding definitions are found in
the appropriate. e files.

Leaving out the actual code, lexer. c will look something like this:

/ / lexer.c:

#include II dc . h II

#include <iostream>
#include <cctype>

Lexer: : Token_value Lexer:: curr_tok;
double Lexer:: number_value i

std: : string Lexer:: string_value;

Lexer:: Token_value Lexer: : get_token () { /* ... * / }

Using headers in this manner ensures that every declaration in a header will at some point be
included in the file containing its definition. For example, when compiling lexer. e the compiler
will be presented with:

namespace Lexer { / / from dc.h
/ / ...
Token value get_token ( ) i

/ / ...

Lexer: : Token value Lexer:: get_token () { / * ... * / }

This ensures that the compiler will detect any inconsistencies in the types specified for a name. For
example, had get_token () been declared to return a Token_value, but defined to return an int, the
compilation of lexer. e would have failed with a type-mismatch error. If a definition is missing,



210 Source Files and Programs Chapter 9

the linker will catch the problem. If a declaration is missing, some . c file will fail to compile.
File parser. c will look like this:

/ / parser.e:

#include II de. h II

double Parser:: prim (bool get) { / * * / }
double Parser:: term (bool get) { / * * / }
double Parser:: expr (bool get) { / * * / }

File table. c will look like this:

/ / table.e:

#include II de. h"

std: :map<std : : string I double> table;

The symbol table is simply a variable of the standard library map type. This defines table to be
global. In a realistically-sized program, this kind of minor pollution of the global namespace builds
up and eventually causes problems. I left this sloppiness here simply to get an opportunity to warn
against it.

Finally, file main. c will look like this:

/ / main.e:

#include II de. h II

#include <sstream>

int Driver: :no_of_errors =0;
std: : istream* Driver: : input = 0 i

void Driver: : skip () { /* ... * / }

int main (int argc, char* argv [ ]) { / * ... * / }

To be recognized as the main () of the program, main () must be a global function, so no name
space is used here.

The physical structure of the system can be presented like this:

Note that the headers on the top are all headers for standard library facilities. For many forms of
program analysis, these libraries can be ignored because they are well known and stable. For tiny



Section 9.3.1 Single Header File 211

programs, the structure can be simplified by moving all #inelude directives to the common header.
This single-header style of physical partitioning is most useful when the program is small and

its parts are not intended to be used separately. Note that when namespaces are used, the logical
structure of the program is still represented within de. h. If namespaces are not used, the structure
is obscured, although comments can be a help.

For larger programs, the single header file approach is unworkable in a conventional file-based
development environment. A change to the common header forces recompilation of the whole pro
gram, and updates of that single header by several programmers are error-prone. Unless strong
emphasis is placed on programming styles relying heavily on namespaces and classes, the logical
structure deteriorates as the program grows.

9.3.2 Multiple Header Files

An alternative physical organization lets each logical module have its own header defining the
facilities it provides. Each . e file then has a corresponding . h file specifying what it provides (its
interface). Each . e file includes its own . h file and usually also other . h files that specify what it
needs from other modules in order to implement the services advertised in the interface. This phys
ical organization corresponds to the logical organization of a module. The interface for users is put
into its . h file, the interface for implementers is put into a file suffixed _imp1. h, and the module's
definitions of functions, variables, etc. are placed in . c files. In this way, the parser is represented
by three files. The parser's user interface is provided by parser. h:

/ / parser.h:

namespace Parser { / / interface for users
double expr (bool get);

The shared environment for the functions implementing the parser is presented by parser_impl. h:

/ / parser_impl.h:

#include "parser. h "
#include "error. h II

#include "lexer. h"

namespace Parser { / / interface for implementers
double prim (bool get) i

double term (bool get);
double expr(bool get);

using Lexer: : get_token i

using Lexer:: curr_tok i

The user's header parser. h is #ineluded to give the compiler a chance to check consistency
(§9.3.1).

The functions implementing the parser are stored in parser. c together with #inelude directives
for the headers that the Parser functions need:



212 Source Files and Programs

/ / parser.c:

#include "parser_impl. h II

#include "table. h II

double Parser:: prim (bool get) { / * * / }
double Parser:: term (bool get) { /* * / }
double Parser:: expr (bool get) { / * * / }

Graphically, the parser and the driver's use of it look like this:

Chapter 9

As intended, this is a rather close match to the logical structure described in §8.3.3. To simplify
this structure, we could have #ineluded table. h in parser_impl. h rather than in parser. e. How
ever, table. h is an example of something that is not necessary to express the shared context of the
parser functions; it is needed only by their implementation. In fact, it is used by just one function,
prim ( ) , so if we were really keen on minimizing dependencies we could place prim () in its own
. e file and #inelude table. h there only:

Such elaboration is not appropriate except for larger modules. For realistically-sized modules, it is
common to #inelude extra files where needed for individual functions. Furthermore, it is not
uncommon to have more than one _impl. h, since different subsets of the module's functions need
different shared contexts.

Please note that the _impl . h notation is not a standard or even a common convention; it is sim
ply the way I like to name things.

Why bother with this more complicated scheme of multiple header files? It clearly requires far
less thought simply to throw every declaration into a single header, as was done for de . h.

The multiple-header organization scales to modules several magnitudes larger than our toy
parser and to programs several magnitudes larger than our calculator. The fundamental reason for
using this type of organization is that it provides a better localization of concerns. When analyzing



Section 9.3.2 Multiple Header Files 213

and modifying a large program, it is essential for a programmer to focus on a relatively small chunk
of code. The multiple-header organization makes it easy to determine exactly what the parser code
depends on and to ignore the rest of the program. The single-header approach forces us to look at
every declaration used by any module and decide if it is relevant. The simple fact is that mainte
nance of code is invariably done with incomplete information and from a local perspective. The
multiple-header organization allows us to work successfully "from the inside out" with only a
local perspective. The single-header approach - like every other organization centered around a
global repository of information - requires a top-down approach and will forever leave us wonder
ing exactly what depends on what.

The better localization leads to less information needed to compile a module, and thus to faster
compiles. The effect can be dramatic. I have seen compile times drop by a factor of ten as the
result of a simple dependency analysis leading to a better use of headers.

9.3.2.1 Other Calculator Modules

The remaining calculator modules can be organized similarly to the parser. However, those mod
ules are so small that they don't require their own _impl. h files. Such files are needed only where
a logical module consists of many functions that need a shared context.

The error handler was reduced to the set of exception types so that no error. c was needed:

/ / error.h:

namespace Error {
struct Zero_divide { );

struct Syntax_error {
const char* p;
Syntax_error(const char* q) {p = q; }

} ;

The lexer provides a rather large and messy interface:

/ / lexer.h:

#include <string>

namespace Lexer {

enum Token_value {
NAME,
PLUS='+' ,
PRINT=';' ,

NUMBER, END,
MINUS= ' - " MUL= ' * ' ,
ASSIGN= ' =" LP=' ( , ,

DIV=' /' ,
RP=') ,

} ;

extern Token_value curr_tok;
extern double number_value;
extern std:: string string_value;

Token_value get_token ( );



214 Source Files and Programs Chapter 9

In addition to lexer. h, the implementation of the lexer depends on error. h, <iostream>, and the
functions determining the kinds of characters declared in <cctype>:

1/ lexer.e:

#include "lexer . h II

#include II error. h II

#include <iostream>
#include <cctype>

Lexer: : Token_value Lexer:: curr_tok;
double Lexer:: number_value;
std: : string Lexer:: string_value;

Lexer:: Token_value Lexer:: get_token () { / * ... * / }

We could have factored out the #include directive for error. h as the Lexer's _impl. h file. How
ever, I considered that excessive for this tiny program.

As usual, we #include the interface offered by the module - in this case, lexer. h - in the
module's implementation to give the compiler a chance to check consistency.

The symbol table is essentially self-contained, although the standard library header <map>
could drag in all kinds of interesting stuff to implement an efficient map template class:

/ / table.h:

#include <map>
#include <string>

extern std:: map<std : : string, double> table;

Because we assume that every header may be #included in several . c files, we must separate the
declaration of table from its definition, even though the difference between table. c and table. h is
the single keyword extern:

/ / tab/e.e:

#include "table. h II

std: : map<std : : string, double> table;

Basically, the driver depends on everything:

/ / main.e:

#include "parser. h"
#include "lexer. h II

#include "error. h"
#include II table. h II

namespace Driver {
int no_01_errors;
std: : istream* input;
void skip ( ) ;



Section 9.3.2.1

#include <sstream>

int main (int argc, char* argv [ ]) { / * ... * / }

Other Calculator Modules 215

Because the Driver namespace is used exclusively by main ( ), I placed it in main. c. Alterna
tively, I could have factored it out as driver. hand #included it.

For a larger system, it is usually worthwhile organizing things so that the driver has fewer direct
dependencies. Often, it is also worth minimizing what is done in main () by having main () call a
driver function placed in a separate source file. This is particularly important for code intended to
be used as a library. Then, we cannot rely on code in main () and must be prepared to be called
from a variety of functions (§9.6[8]).

9.3.2.2 Use of Headers

The number of headers to use for a program is a function of many factors. Many of these factors
have more to do with the way files are handled on your system than with C++. For example, if your
editor does not have facilities for looking at several files at the same time, then using many headers
becomes less attractive. Similarly, if opening and reading 20 files of 50 lines each is noticeably
more time-consuming than reading a single file of 1000 lines, you might think twice before using
the multiple-header style for a small project.

A word of caution: a dozen headers plus the standard headers for the program's execution envi
ronment (which can often be counted in the hundreds) are usually manageable. However, if you
partition the declarations of a large program into the logically minimal-sized headers (putting each
structure declaration in its own file, etc.), you can easily get an unmanageable mess of hundreds of
files even for minor projects. I find that excessive.

For large projects, multiple headers are unavoidable. In such projects, hundreds of files (not
counting standard headers) are the norm. The real confusion starts when they start to be counted in
the thousands. At that scale, the basic techniques discussed here still apply, but their management
becomes a Herculean task. Remember that for realistically-sized programs, the single-header style
is not an option. Such programs will have multiple headers. The choice between the two styles of
organization occurs (repeatedly) for the parts that make up the program.

The single-header style and the multiple-header style are not really alternatives to each other.
They are complementary techniques that must be considered whenever a significant module is
designed and must be reconsidered as a system evolves. It's crucial to remember that one interface
doesn't serve all equally well. It is usually worthwhile to distinguish between the implementers'
interface and the users' interface. In addition, many larger systems are structured so that providing
a simple interface for the majority of users and a more extensive interface for expert users is a good
idea. The expert users' interfaces ("complete interfaces") tend to #include many more features
than the average user would ever want to know about. In fact, the average users' interface can
often be identified by eliminating features that require the inclusion of headers that define facilities
that would be unknown to the average user. The term "average user" is not derogatory. In the
fields in which I don't have to be an expert, I strongly prefer to be an average user. In that way, I
minimize hassles.



216 Source Files and Programs

9.3.3 Include Guards

Chapter 9

The idea of the multiple-header approach is to represent each logical module as a consistent, self
contained unit. Viewed from the program as a whole, many of the declarations needed to make
each logical module complete are redundant. For larger programs, such redundancy can lead to
errors, as a header containing class definitions or inline functions gets #included twice in the same
compilation unit (§9.2.3).

We have two choices. We can
[1] reorganize our program to remove the redundancy, or
[2] find a way to allow repeated inclusion of headers.

The first approach - which led to the final version of the calculator - is tedious and impractical for
realistically-sized programs. We also need that redundancy to make the individual parts of the pro
gram comprehensible in isolation.

The benefits of an analysis of redundant #includes and the resulting simplifications of the pro
gram can be significant both from a logical point of view and by reducing compile times. How
ever, it can rarely be complete, so some method of allowing redundant #includes must be applied.
Preferably, it must be applied systematically, since there is no way of knowing how thorough an
analysis a user will find worthwhile.

The traditional solution is to insert include guards in headers. For example:

/ / error.h:

#ifndef CALC_ERROR_H
#define CALC_ERROR_H

namespace Error {
/ / ...

#endif

The contents of the file between the #i/ndef and #endif are ignored by the compiler if
CALC_ERROR_His defined. Thus, the first time error. h is seen during a compilation, its con
tents are read and CALC_ERROR_His given a value. Should the compiler be presented with
error. h again during the compilation, the contents are ignored. This is a piece of macro hackery,
but it works and it is pervasive in the C and c++ worlds.. The standard headers all have include
guards.

Header files are included in essentially arbitrary contexts, and there is no namespace protection
against macro name clashes. Consequently, I choose rather long and ugly names as my include
guards.

Once people get used to headers and include guards, they tend to include lots of headers directly
and indirectly. Even with C++ implementations that optimize the processing of headers, this can be
undesirable. It can cause unnecessarily long compile time, and it can bring lots of declarations and
macros into scope. The latter might affect the meaning of the program in unpredictable and adverse
ways. Headers should be included only when necessary.



Section 9.4 Programs 217

9.4 Programs

A program is a collection of separately compiled units combined by a linker. Every function,
object, type, etc., used in this collection must have a unique definition (§4.9, §9.2.3). The program
must contain exactly one function called main () (§3.2). The main computation performed by the
program starts with the invocation of main () and ends with a return from main ( ). The int
returned by main () is passed to whatever system invoked main () as the result of the program.

This simple story must be elaborated on for programs that contain global variables (§ 10.4.9) or
that throw an uncaught exception (§ 14.7).

9.4.1 Initialization of Nonlocal Variables

In principle, a variable defined outside any function (that is, global, namespace, and class static
variables) is initialized before main () is invoked. Such nonlocal variables in a translation unit are
initialized in their definition order (§ 10.4.9). If such a variable has no explicit initializer, it is by
default initialized to the default for its type (§ 10.4.2). The default initializer value for built-in types
and enumerations is O. For example:

double x = 2 i / / nonloeal variables
double Yi
double sqx = sqrt (x+y) i

Here, x and yare initialized before sqx, so sqrt (2) is called.
There is no guaranteed order of initialization of global variables in different translation units.

Consequently, it is unwise to create order dependencies between initializers of global variables in
different compilation units. In addition, it is not possible to catch an exception thrown by the ini
tializer of a global variable (§ 14.7). It is generally best to minimize the use of global variables and
in particular to limit the use of global variables requiring complicated initialization.

Several techniques exist for enforcing an order of initialization of global variables in different
translation units. However, none are both portable and efficient. In particular, dynamically linked
libraries do not coexist happily with global variables that have complicated dependencies.

Often, a function returning a reference is a good alternative to a global variable. For example:

int& use_count ( )
{

static int uc = 0 i

return ue i

A call use_count () now acts as a global variable except that it is initialized at its first use (§5.5).
For example:

void f()

{

cout« ++use_count ( ) i / / read and increment
/ / ...

The initialization of nonlocal static variables is controlled by whatever mechanism an



218 Source Files and Programs Chapter 9

implementation uses to start up a C++ program. This mechanism is guaranteed to work properly
only if main () is executed. Consequently, one should avoid nonlocal variables that require run
time initialization in C++ code intended for execution as a fragment of a non-C++ program.

Note that variables initialized by constant expressions (§C.5) cannot depend on the value of
objects from other translation units and do not require run-time initialization. Such variables are
therefore safe to use in all cases.

9.4.1.1 Program Termination

A program can terminate in several ways:
- By returning from main ( )
- By calling exit ( )
- By calling abort ( )
- By throwing an uncaught exception

In addition, there are a variety of ill-behaved and implementation-dependent ways of making a pro
gram crash.

If a program is terminated using the standard library function exit ( ) , the destructors for con
structed static objects are called (§ 10.4.9, §10.2.4). However, if the program is terminated using
the standard library function abort ( ) , they are not. Note that this implies that exit () does not ter
minate a program hnmediately. Calling exit () in a destructor may cause an infinite recursion. The
type of exit () is

void exit (int) ;

Like the return value of main () (§3.2), exit ( ) '8 argument is returned to "the system" as the value
of the program. Zero indicates successful completion.

Calling exit () means that the local variables of the calling function and its callers will not have
their destructors invoked. Throwing an exception and catching it ensures that local objects are
properly destroyed (§ 14.4.7). Also, a call of exit () terminates the program without giving the
caller of the function that called exit () a chance to deal with the problem. It is therefore often best
to leave a context by throwing an exception and letting a handler decide what to do next.

The C (and C++) standard library function atexit () offers the possibility to have code executed
at program termination. For example:

void my_cleanup ( ) ;

void somewhere ( )
{

if (atexit (&my_cleanup) ==0 ) {
/ / my_cleanup will be called at normal termination

}

else {
/ / oops: too many atexit functions

This strongly resembles the automatic invocation of destructors for global variables at program ter
mination (§ 10.4.9, §10.2.4). Note that an argument to atexit () cannot take arguments or return a



Section 9.4.1.1 Program Termination 219

result. Also, there is an implementation-defined limit to the number of atexit functions; atexit ( )
indicates when that limit is reached by returning a nonzero value. These limitations make atexit ( )
less useful than it appears at first glance.

The destructor of a constructed statically allocated object (a global, §10.4.9; function static,
§7.1.2; or a class static, §10.2.4) created before a call of atexit (j) will be invoked after f is
invoked. The destructor of such an an object created after a call of atexit (j) will be invoked
beforef is invoked.

The exit ( ) , abort ( ) , and atexit ( ) functions are declared in <cstdlib>.

9.5 Advice

[I] Use header files to represent interfaces and to emphasize logical structure; §9.1, §9.3.2.
[2] #include a header in the source file that implements its functions; §9.3.1.
[3] Don't define global entities with the same name and similar-but-different meanings in differ-

ent translation units; §9.2.
[4] Avoid non-inline function definitions in headers; §9.2.1.
[5] Use #include only at global scope and in namespaces; §9.2.1.
[6] #include only complete declarations; §9.2.1.
[7] Use include guards; §9.3.3.
[8] #include C headers in namespaces to avoid global names; §8.2.9.1, §9.2.2.
[9] Make headers self-contained; §9.2.3.
[10] Distinguish between users' interfaces and implementers' interfaces; §9.3.2.
[II] Distinguish between average users' interfaces and expert users' interfaces; §9.3.2.
[12] Avoid nonlocal objects that require run-time initialization in code intended for use as part of

non-C++ programs; §9.4.1.

9.6 Exercises

I. (*2) Find where the standard library headers are kept on your system. List their names. Are
any nonstandard headers kept together with the standard ones? Can any nonstandard headers be
#included using the <> notation?

2. (*2) Where are the headers for nonstandard' 'foundation" libraries kept?
3. (*2.5) Write a program that reads a source file and writes out the names of files #included.

Indent file names to show files #included by included files. Try this program on some real
source files (to get an idea of the amount of information included).

4. (*3) Modify the program from the previous exercise to print the number of comment lines, the
number of non-comment lines, and the number of non-comment, whitespace-separated words
for each file #included.

5. (*2.5) An external include guard is a construct that tests outside the file it is guarding and
includes only once per compilation. Define such a construct, devise a way of testing it, and dis
cuss its advantages and disadvantages compared to the include guards described in §9.3.3. Is
there any significant run-time advantage to external include guards on your system?



220 Source Files and Programs Chapter 9

6. (*3) How is dynamic linking achieved on your system? What restrictions are placed on dynam
ically linked code? What requirements are placed on code for it to be dynamically linked?

7. (*3) Open and read 100 files containing 1500 characters each. Open and read one file contain
ing 150,000 characters. Hint: See example in §21.5.1. Is there a performance difference?
What is the highest number of files that can be simultaneously open on your system? Consider
these questions in relation to the use of #include files.

8. (*2) Modify the desk calculator so that it can be invoked from main () or from other functions
as a simple function call.

9. (*2) Draw the "module dependency diagrams" (§9.3.2) for the version of the calculator that
used error () instead of exceptions (§8.2.2).



Part II

Abstraction Mechanisms

This part describes C++'s facilities for defining and using new types.
Techniques commonly called object-oriented programming and generic
programming are presented.

Chapters

10 Classes
11 Operator Overloading
12 Derived Classes
13 Templates
14 Exception Handling
15 Class Hierarchies



222 Abstraction Mechanisms Part II

" ... there is nothing more difficult to carry out, nor more doubtful of success, nor more
dangerous to handle, than to initiate a new order of things. For the reformer makes
enemies of all those who profit by the old order, and only lukewann defenders in all
those who would profit by the new order... "

- Niccolo Machiavelli ("The Prince" §vi)



10
Classes

Those types are not "abstract";
they are as real as int and float.

- Doug McIlroy

Concepts and classes - class members - access control - constructors - static
members - default copy - const member functions - this - structs - in-class func
tion definition - concrete classes - member functions and helper functions - over
loaded operators - use of concrete classes - destructors - default construction 
local variables - user-defined copy - new and delete - member objects - arrays 
static storage - temporary variables - unions - advice - exercises.

10.1 Introduction

The aim of the C++ class concept is to provide the programmer with a tool for creating new types
that can be used as conveniently as the built-in types. In addition, derived classes (Chapter 12) and
templates (Chapter 13) provide ways of organizing related classes that allow the programmer to
take advantage of their relationships.

A type is a concrete representation of a concept. For example, the C++ built-in type float with
its operations +, -, *, etc., provides a concrete approximation of the mathematical concept of a real
number. A class is a user-defined type. We design a new type to provide a definition of a concept
that has no direct counterpart among the built-in types. For example, we might provide a type
Trunk_line in a program dealing with telephony, a type Explosion for a videogame, or a type
list<Paragraph> for a text-processing program. A program that provides types that closely match
the concepts of the application tends to be easier to understand and easier to modify than a program
that does not. A well-chosen set of user-defined types makes a program more concise. In addition,
it makes many sorts of code analysis feasible. In particular, it .enables the compiler to detect illegal
uses of objects that would otherwise remain undetected until the program is thoroughly tested.



224 Classes Chapter 10

The fundamental idea in defining a new type is to separate the incidental details of the imple
mentation (e.g., the layout of the data used to store an object of the type) from the properties essen
tial to the correct use of it (e.g., the complete list of functions that can access the data). Such a sep
aration is best expressed by channeling all uses of the data structure and internal housekeeping rou
tines through a specific interface.

This chapter focuses on relatively simple "concrete" user-defined types that logically don't dif
fer much from built-in types. Ideally, such types should not differ from built-in types in the way
they are used, only in the way they are created.

10.2 Classes

A class is a user-defined type. This section introduces the basic facilities for defining a class, creat
ing objects of a class, and manipulating such objects.

10.2.1 Member Functions

Consider implementing the concept of a date using a struct to define the representation of a Date
and a set of functions for manipulating variables of this type:

struct Date { I I representation
int d, m, Yi

} ;

void init_date (Date& d, int, int, int) i

void addyear (Date& d, int n) i

void add_month (Date& d, int n) i

void add_day (Date& d, int n) i

I I initialize d
I I add n years to d
I I add n months to d
I I add n days to d

There is no explicit connection between the data type and these functions. Such a connection can
be established by declaring the functions as members:

struct Date {
int d, m, Yi

void init (int dd, int mm, int YY) i

void addyear (int n) i

void add_month (int n) i

void add_day (int n);

} ;

I I initialize
I I add n years
I I add n months
II add n days

Functions declared within a class definition (a struct is a kind of class; §10.2.8) are called member
functions and can be invoked only for a specific variable of the appropriate type using the standard
syntax for structure member access. For example:

Date my_birthday;

void f()

{

Date today;



Section 10.2.1

today. init (16 , 10, 1996) i

my_birthday. init (30,12,1950) i

Date tomorrow = today i

tomorrow. add_day (1) i

1/ ...

Member Functions 225

/ / initialize

Because different structures can have member functions with the same name, we must specify the
structure name when defining a member function:

void Date:: init (int dd, int mm, int yy)
{

d= ddi
m=mmi
y =yy;

In a member function, member names can be used without explicit reference to an object. In that
case, the name refers to that member of the object for which the function was invoked. For exam
ple, when Date: : init () is invoked for today, m=mm assigns to today. m. On the other hand,
when Date::init() is invoked for my_birthday, m=mm assigns to my_birthday.m. A class
member function always' 'knows" for which object it was invoked.

The construct

class X { ... } i

is called a class definition because it defines a new type. For historical reasons, a class definition is
often referred to as a class declaration. Also, like declarations that are not definitions, a class defi
nition can be replicated in different source files using #include without violating the one-definition
rule (§9.2.3).

10.2.2 Access Control

The declaration of Date in the previous subsection provides a set of functions for manipulating a
Date. However, it does not specify that those functions should be the only ones to depend directly
on Date's representation and the only ones to directly access objects of class Date. This restriction
can be expressed by using a class instead of a struct:

class Date {
int d, m, Yi

public:
void init (int dd, int mm, int yy) i

} ;

void addyear (int n) i

void add_month (int n) i

void add_day (int n);

/ / add n years
/ / add n months
/ / add n days

The public label separates the class body into two parts. The names in the first, private, part can be
used only by member functions. The second, public, part constitutes the public interface to objects



226 Classes Chapter 10

of the class. A struct is simply a class whose members are public by default (§ 10.2.8); member
functions can be defined and used exactly as before. For example:

inline void Date:: addyear (int n)
{

y += n;

However, nonmember functions are barred from using private members. For example:

void timewarp (Date& d)
{

d.y -= 200; / / error: Date::y is private

/ / constructor

There are several benefits to be obtained from restricting access to a data structure to an explicitly
declared list of functions. For example, any error causing a Date to take on an illegal value (for
example, December 36, 1985) must be caused by code in a member function. This implies that the
first stage of debugging - localization - is completed before the program is even run. This is a spe
cial case of the general observation that any change to the behavior of the type Date can and must
be effected by changes to its members. In particular, if we change the representation of a class, we
need only change the member functions to take advantage of the new representation. User code
directly depends only on the public interface and need not be rewritten (although it may need to be
recompiled). Another advantage is that a potential user need examine only the definition of the
member functions in order to learn to use a class.

The protection of private data relies on restriction of the use of the class member names. It can
therefore be circumvented by address manipulation and explicit type conversion. But this, of
course, is cheating. C++ protects against accident rather than deliberate circumvention (fraud).
Only hardware can protect against malicious use of a general-purpose language, and even that is
hard to do in realistic systems.

The init () function was added partially because it is generally useful to have a function that
sets the value of an object and partly because making the data private forces us to provide it.

10.2.3 Constructors

The use of functions such as init () to provide initialization for class objects is inelegant and error
prone. Because it is nowhere stated that an object must be initialized, a programmer can forget to
do so - or do so twice (often with equally disastrous results). A better approach is to allow the pro
grammer to declare a function with the explicit purpose of initializing objects. Because such a
function constructs values of a given type, it is called a constructor. A constructor is recognized by
having the same name as the class itself. For example:

class Date {
/ / ...
Date (int I int ,int) ;

} ;

When a class has a constructor, alJ objects of that class will be initialized by a constructor call
(§ 10.4.3). If the constructor requires arguments, these arguments must be supplied:



Section 10.2.3 Constructors 227

/ / day, month, year
/ / day, month, today's year
/ / day, today's month and year
/ / default Date: today
/ / date in string representation

Date today =Date (23,6,1983);
Date xmas (25, 12,1990); / / abbreviatedform
Date my_birthday; / / error: initializer missing
Date release1_0 (10, 12) ; / / error: 3rd argument missing

It is often nice to provide several ways of initializing a class object. This can be done by providing
several constructors. For example:

class Date {
int d, m, y;

public:
/ / ...
Date (int, int, int);
Date (int, int);
Date (int);
Date ( );
Date (const char*);

} ;

Constructors obey the same overloading rules as do other functions (§7.4). As long as the construc
tors differ sufficiently in their argument types, the compiler can select the correct one for each use:

Date today (4 ) ;
Date july4 ( n July 4, 1983 11

);

Date guy ( "5 Nov n ) ;

Date now; / / default initialized as today

The proliferation of constructors in the Date example is typical. When designing a class, a pro
grammer is always tempted to add features just because somebody might want them. It takes more
thought to carefully decide what features are really needed and to include only those. However,
that extra thought typically leads to smaller and more comprehensible programs. One way of
reducing the number of related functions is to use default arguments (§7.5). In the Date, each argu
ment can be given a default value interpreted as "pick the default: today."

class Date {
int d, m, y;

public:
Date (int dd =0, int mm =0, int yy =0) ;
/ / ...

} ;

Date: : Date (int dd, int mm, int yy)
{

d =dd ? dd : today. d i

m =mm ? mm : today.m;
y =yy ? yy : today. y ;

/ / check that the Date is valid

When an argument value is used to indicate "pick the default," the value chosen must be outside
the set of possible values for the argument. For day and month, this is clearly so, but for year, zero



228 Classes Chapter 10

/ / set default_date to Date(dd,mm,yy)

may not be an obvious choice. Fortunately, there is no year zero on the European calendar; lAD
(year==]) comes immediately after IBC (year==-l).

10.2.4 Static Members

The convenience of a default value for Dates was bought at the cost of a significant hidden prob
lem. Our Date class became dependent on the global variable today. This Date class can be used
only in a context in which today is defined and correctly used by every piece of code. This is the
kind of constraint that causes a class to be useless outside the context in which it was first written.
Users get too many unpleasant surprises trying to use such context-dependent classes, and mainte
nance becomes messy. Maybe "just one little global variable" isn't too unmanageable, but that
style leads to code that is useless except to its original programmer. It should be avoided.

Fortunately, we can get the convenience without the encumbrance of a publicly accessible glo
bal variable. A variable that is part of a class, yet is not part of an object of that class, is called a
static member. There is exactly one copy of a static member instead of one copy per object, as for
ordinary non-static members (§C.9). Similarly, a function that needs access to members of a class,
yet doesn't need to be invoked for a particular object, is called a static member function.

Here is a redesign that preserves the semantics of default constructor values for Date without
the problems stemming from reliance on a global:

class Date {
int d, m, y;
static Date default_date;

public:
Date (int dd =0, int mm =0, int yy =0);
/ I ...
static void set_default (int dd, int mm, int yy);

} ;

We can now define the Date constructor to use default_date like this:

Date: : Date (int dd, int mm lint yy)
{

d =dd ? dd : default_date. d;
m = mm ? mm : default_date. m;

y = yy ? yy : default_date.y;

/ / check that the Date is valid

Using set_default ( ) , we can change the default date when appropriate. A static member can be
referred to like any other member. In addition, a static member can be referred to without mention
ing an object. Instead, its name is qualified by the name of its class. For example:

void f()
{

Date: : set_default (4 I 5 , 1945) ; / / call Date's static member set_defauIt( )

Static nlembers - both function and data members - must be defined somewhere. The keyword



Section 10.2.4 Static Membe:rs 229

static is not be repeated in the definition of a static member. For example:

Date Date:: default_date ( J6, J2 , J770) i / / definition ofDate::default_date

void Date:: set_default (int d, int m, int y)
{

/ / definition ofDate::set_default

default_date = Date (d, m , y) i / / assign new value to default_date

Now the default value is Beethoven's birth date - until someone decides otherwise.
Note that Date () serves as a notation for the value of Date:: default_date. For example:

Date copy_of_default_date =Date ( ) ;

Consequently, we don't need a separate function for reading the default date.

10.2.5 Copying Class Objects

By default, objects can be copied. In particular, a class object can be initialized with a copy of an
object of its class. This can be done even where constructors have been declared. For example:

Date d = today; / / initialization by copy

By default, the copy of a class object is a copy of each member. If that default is not the behavior
wanted for a class X, a more appropriate behavior can be provided by defining a copy constructor,
X: :X (const X& ). This is discussed further in §10.4.4.1.

Similarly, class objects can by default be copied by assignment. For example:

void !(Date& d)
{

d = today;

Again, the default semantics is memberwise copy. If that is not the right choice for a class X, the
user can define an appropriate assignment operator (§ 10.4.4.1).

10.2.6 Constant Member Functions

The Date defined so far provides member functions for giving a Date a value and changing it.
Unfortunately, we didn't provide a way of examining the value of a Date. This problem can easily
be remedied by adding functions for reading the day, month, and year:

class Date {
int d, m, Yi

public:
int day () const { return d;
int month () const { return m i

int year () const;
/ / ...

} i

Note the const after the (empty) argument list in the function declarations. It indicates that these
functions do not modify the state of a Date.



230 Classes Chapter 10

Naturally, the compiler will catch accidental attempts to violate this promise. For example:

inline int Date:: year () const
{

return Y++ i I I error: attempt to change member value in const function

When a const member function is defined outside its class, the const suffix is required:

inline int Date:: year () const
{

return Yi

I I correct

inline int Date:: year ( ) I I error: const missing in memberfunction type
{

return Yi

In other words, the cons! is part of the type of Date: : day () and Date: : year ( ) .
A const member function can be invoked for both const and non-const objects, whereas a non

const member function can be invoked only for non-const objects. For example:

void !(Date& d, const Date& cd)
{

int i = d . year ( ) i

d . addyear (1 ) i

int j =cd . year ( ) i

cd. addyear (1 ) i

II ok
II ok

II ok
I I error: cannot change value ofconst cd

10.2.7 Self-Reference

The state update functions addyear ( ) , add_month ( ) , and add_day () were defined not to return
values. For such a set of related update functions, it is often useful to return a reference to the
updated object so that the operations can be chained. For example, we would like to write

void !(Date& d)
{

I I ...
d .add_day (1) . add_month (l) . addyear(l) i

I I ...

to add a day, a month, and a year to d. To do this, each function must be declared to return a refer
ence to a Date:

class Date {
I I ...



Section 10.2.7

Date& addyear (int n); / / add n years
Date& add_month (int n); / / add n months
Date& add_day (int n); / / add n days

} ;

Self-Reference 231

Each (nonstatic) member function knows what object it was invoked for and can explictly refer to
it. For example:

Date& Date: : addyear (int n)
{

if (d==29 && m==2 && ! leapyear (y+n)) { / / beware of February 29
d = J;
m =3;

Y += n;

return *this;

The expression *this refers to the object for which a member function is invoked. It is equivalent
to Simula's THIS and Smalltalk's self.

In a nonstatic member function, the keyword this is a pointer to the object for which the func
tion was invoked. In a non-const member function of class X, the type of this is X*. However,
this is not an ordinary variable; it is not possible to take the address of this or to assign to this. In a
const member function of class X, the type of this is const x* to prevent modification of the object
itself (see also §5.4.1).

Most uses of this are implicit. In particular, every reference to a nonstatic member from within
a class relies on an implicit use of this to get the member of the appropriate object. For example,
the addyear function could equivalently, but tediously, have been defined like this:

Date& Date: : addyear (int n)
{

if (this->d==29 && this->m==2 && ! leapyear(this->y+n) )
this->d = J ;
this->m =3;

}

this->y += n;
return *this;

One common explicit use of this is in linked-list manipulation (e.g., §24.3.7.4).

10.2.7.1 Physical and Logical Constness

Occasionally, a member function is logically const, but it still needs to change the value of a mem
ber. To a user, the function appears not to change the state of its object. However, some detail that
the user cannot directly observe is updated. This is often called logical constness. For example,
the Date class might have a function returning a string representation that a user could use for out
put. Constructing this representation could be a relatively expensive operation. Therefore, it would
make sense to keep a copy so that repeated requests would simply return the copy, unless the



232 Classes Chapter 10

Date's value had been changed. Caching values like that is more common for more complicated
data structures, but let's see how it can be achieved for a Date:

class Date {
bool cache_valid;
string cache;
void compute_cache_value ( ) ; / / fill cache
/ / ...

public:
/ / ...
string string_rep ( ) const; / / string representation

} ;

From a user's point of view, string_rep doesn't change the state of its Date, so it clearly should be
a const member function. On the other hand, the cache needs to be filled before it can be used.
This can be achieved through brute force:

string Date:: string_rep () const
{

if (cache_valid ==false) {
Date* th =const_cast<Date*> (this); / / cast away const
th- >compute_cache_value ( ) ;
th->cache_valid = true;

}

return cache;

That is, the const_cast operator (§15.4.2.1) is used to obtain a pointer of type Date* to this. This
is hardly elegant, and it is not guaranteed to work when applied to an object that was originally
declared as a const. For example:

Date dl;
const Date d2;
string s1 =dl . string_rep ( ) ;
string s2 =d2. string_rep ( ); / / undefined behavior

In the case of dl, string_rep () simply casts back to dl' s original type so that the call will work.
However, d2 was defined as a const and the implementation could have applied some form of
memory protection to ensure that its value wasn't corrupted. Consequently, d2 . string_rep () is
not guaranteed to give a single predictable result on all implementations.

10.2.7.2 Mutable

The explicit type conversion "casting away const" and its consequent implementation-dependent
behavior can be avoided by declaring the data involved in the cache management to be mutable:



Section 10.2.7.2

class Date {
mutable bool cache_valid;
mutable string cache;
void compute_cache_value () const; I I fill (mutable) cache
I I ...

public:
II ...
string string_rep () const; I I string representation

} ;

Mutable 233

The storage specifier mutable specifies that a member should be stored in a way that allows updat
ing - even when it is a member of a const object. In other words, mutable means "can never be
const." This can be used to simplify the definition of string_rep ( ) :

string Date:: string_rep () const
{

if ( !cache_valid) {
compute_cache_value ( ) ;
cache_valid = true;

}

return cache;

and makes reasonable uses of string_rep () valid. For example:

Date d3;
const Date d4;
string s3 = d3 . string_rep ( ) ;
string s4 = d4 . string_rep ( ) ; I 10k!

Declaring members mutable is most appropriate when (only) part of a representation is allowed to
change. If most of an object changes while the object remains logically const, it is often better to
place the changing data in a separate object and access it indirectly. If that technique is used, the
string-with-cache example becomes:

struct cache {
bool valid;
string rep;

} ;

class Date {
cache* c;

void compute_cache_value () const;
/ / ...

public:
/ I ...
string string_rep () const;

} ;

I I initialize in constructor (§lO.4.6)
I I fill what cache refers to

I / string representation



234 Classes

string Date:: string_rep () const
{

if ( ! c->valid) {
compute_cache_value ( ) ;
c->valid = true;

return c->rep;

Chapter 10

The programming techniques that support a cache generalize to various forms of lazy evaluation.

10.2.8 Structures and Classes

By definition, a struct is a class in which members are by default public; that is,

struct s { ...

is simply shorthand for

class s { public: ...

The access specifier private: can be used to say that the members following are private, just as
public: says that the members following are public. Except for the different names, the following
declarations are equivalent:

class Date} {
int d, m, y;

public:
Date} (int dd, int mm, int yy);

} ;

void addyear (int n); / / add n years

struct Date2 {
private:

int d, m, y;
public:

Date2 (int dd, int mm, int yy);

} ;

void addyear (int n); / / add n years

Which style you use depends on circumstances and taste. I usually prefer to use struct for classes
that have all data public. I think of such classes as "not quite proper types, just data structures."
Constructors and access functions can be quite useful even for such structures, but as a shorthand
rather than guarantors of properties of the type (invariants, see §24.3.7.1).

It is not a requirement to declare data first in a class. In fact, it often makes sense to place data
members last to emphasize the functions providing the public user interface. For example:

class Date3 {
public:

Date3 (int dd, int mm, int yy);



Section 10.2.8

void addyear (int n) i

private:
int d, m, Yi

} i

/ / add n years

Structures and Classes 235

In real code, where both the public interface and the implementation details typically are more
extensive than in tutorial examples, I usually prefer the style used for Date3.

Access specifiers can be used many times in a single class declaration. For example:

class Date4 {
public:

Date4 (int dd, int mm, int yy) i

private:
int d, m, Yi

public:
void addyear (int n) i / / add n years

} ;

Having more than one public section, as in Date4, tends to be messy. So does having more than
one private section. However, allowing many access specifiers in a class is useful for machine
generated code.

10.2.9 In-Class Function Definitions

A member function defined within the class definition - rather than simply declared there - is
taken to be an inline member function. That is, in-class definition of member functions is for small,
frequently-used functions. Like the class definition it is part of, a member function defined in-class
can be replicated in several translation units using #include. Like the class itself, its meaning must
be the same wherever it is used (§9.2.3).

The style of placing the definition of data members last in a class can lead to a minor problem
with public inline functions that refer to the representation. Consider:

class Date { / / potentially confusing
public:

int day () const { return d; / / return Date::d
/ / ...

private:
int d, m, Yi

} i

This is perfectly good c++ code because a member function declared within a class can refer to
every member of the class as if the class were completely defined before the member function bod
ies were considered. However, this can confuse human readers.

Consequently, I usually either place the data first or define the inline member functions after the
class itself. For example:



236 Classes

class Date {
public:

int day () const;
/ / ...

private:
int d, m, y;

} ;

inline int Date:: day () const { return d;

10.3 Efficient User-Defined Types

Chapter 10

The previous section discussed bits and pieces of the design of a Date class in the context of intro
ducing the basic language features for defining classes. Here, I reverse the emphasis and discuss
the design of a simple and efficient Date class and show how the language features support this
design.

Small, heavily-used abstractions are common in many applications. Examples are Latin charac
ters, Chinese characters, integers, floating-point numbers, complex numbers, points, pointers, coor
dinates, transforms, (pointer, offset) pairs, dates, times, ranges, links, associations, nodes,
(value, unit) pairs, disk locations, source code locations, BCD characters, currencies, lines, rectan
gles, scaled fixed-point numbers, numbers with fractions, character strings, vectors, and arrays.
Every application uses several of these. Often, a few of these simple concrete types are used heav
ily. A typical application uses a few directly and many more indirectly from libraries.

C++ and other programming languages directly support a few of these abstractions. However,
most are not, and cannot be, supported directly because there are too many of them. Furthermore,
the designer of a general-purpose programming language cannot foresee the detailed needs of every
application. Consequently, mechanisms must be provided for the user to define small concrete
types. Such types are called concrete types or concrete classes to distinguish them from abstract
classes (§12.3) and classes in class hierarchies (§12.2.4, §12.4).

It was an explicit aim of C++ to support the definition and efficient use of such user-defined
data types very well. They are a foundation of elegant programming. As usual, the simple and
mundane is statistically far more significant than the complicated and sophisticated.

In this light, let us build a better date class:

class Date {
public: / / public inteiface:

enum Month {jan=] , feb, mar, apr I may, jun, jul, aug, sep, oct, nov, dec } ;

class Bad_date { }; / / exception class

Date (int dd =0, Month mm =Month (0), int yy =0); II 0 means "pick a default"

/ / functions for examining the Date:
int day () canst;
Month month () const;
int year () const;



Section 10.3

string string_rep () const i

void char_rep (char s [ ] ) const;

Efficient User-Defined Types 237

I I string representation
I I C-style string representation

I I representation

I I add n years
I I add n months
II add n days

static void set_default (int , Month, int) i

I I functions for changing the Date:
Date& addyear (int n) i

Date& add_month (int n);
Date& add_day (int n) i

private:
int d, m, Yi
static Date default_date;

} i

This set of operations is fairly typical for a user-defined type:
[1] A constructor specifying how objects/variables of the type are to be initialized.
[2] A set of functions allowing a user to examine a Date. These functions are marked const to

indicate that they don't modify the state of the object/variable for which they are called.
[3] A set of functions allowing the user to manipulate Dates without actually having to know

the details of the representation or fiddle with the intricacies of the semantics.
[4] A set of implicitly defined operations to allow Dates to be freely copied.
[5] A class, Bad_date, to be used for reporting errors as exceptions.

I defined a Month type to cope with the problem of remembering, for example, whether the 7th of
June is written Date (6, 7) (American style) or Date (7,6) (European style). I also added a
mechanism for dealing with default arguments.

I considered introducing separate types Day and Year to cope with possible confusion of
Date (1995 ,jul, 27) and Date (27 ,jul, 1995). However, these types would not be as useful as
the Month type. Almost all such errors are caught at run-time anyway - the 26th of July year 27 is
not a common date in my work. How to deal with historical dates before year 1800 or so is a tricky
issue best left to expert historians. Furthermore, the day of the month can't be properly checked in
isolation from its month and year. See §11.7.1 for a way of defining a convenient Year type.

The default date must be defined as a valid Date somewhere. For example:

Date Date:: default_date (22 ,jan, 1901);

I omitted the cache technique from §10.2.7.1 as unnecessary for a type this simple. If needed, it
can be added as an implementation detail without affecting the user interface.

Here is a small - and contrived - example of how Dates can be used:

void !(Date& d)
{

Date lvb_day =Date {16 , Date: : dec, d . year ( ) ) ;

if (d . day () ==29 && d . month () ==Date: :feb)
/ I ...

if (midnight ( ) ) d. add_day (1);

cout« "day after: II « d+1 « '\n';



238 Classes Chapter 10

This assumes that the output operator « and the addition operator + have been declared for Dates.
I do that in §10.3.3.

Note the Date: :feb notation. The functionf(} is not a member of Date, so it must specify that
it is referring to Date'sfeb and not to some other entity.

Why is it worthwhile to define a specific type for something as simple as a date? After all, we
could define a structure:

struct Date {
int day, month, year;

} ;

and let programmers decide what to do with it. If we did that, though, every user would either have
to manipulate the components of Dates directly or provide separate functions for doing so. In
effect, the notion of a date would be scattered throughout the system, which would make it hard to
understand, document, or change. Inevitably, providing a concept as only a simple structure causes
extra work for every user of the structure.

Also, even though the Date type seems simple, it takes some thought to get right. For example,
incrementing a Date must deal with leap years, with the fact that months are of different lengths,
and so on (note: §10.6[ 1]). Also, the day-month-and-year representation is rather poor for many
applications. If we decided to change it, we would need to modify only a designated set of func
tions. For example, to represent a Date as the number of days before or after January 1, 1970, we
would need to change only Date's member functions (§ 10.6[2]).

10.3.1 Member Functions

Naturally, an implementation for each member function must be provided somewhere. For exam
ple, here is the definition of Date's constructor:

Date: :Date (int dd , Month mm, int yy)
{

if (yy == 0) yy =default_date.year();
if (mm == 0) mm =default_date. month ( );
if (dd == 0) dd = default_date. day ( );

int max;

switch (mm)
case feb:

max =28+leapyear (yy) i

break;
case apr: case jun: case sep: case nov:

max =30;
break;

case jan: case mar: case may: case jut: case aug: case oct: case dec:
max = 3/;
break;

default:
throw Bad_date ( ) ; / / someone cheated



Section 10.3.1

if (dd<l II max<dd) throw Bad_date ( );

y =yy;
m=mm;
d= dd;

Member Functions 239

The constructor checks that the data supplied denotes a valid Date. If not, say for
Date (30, Date::!eb, 1994), it throws an exception (§8.3, Chapter 14), which indicates that
something went wrong in a way that cannot be ignored. If the data supplied is acceptable, the obvi
ous initialization is done. Initialization is a relatively complicated operation because it involves
data validation. This is fairly typical. On the other hand, once a Date has been created, it can be
used and copied without further checking. In other words, the constructor establishes the invariant
for the class (in this case, that it denotes a valid date). Other member functions can rely on that
invariant and must maintain it. This design technique can simplify code immensely (see §24.3.7.1).

I'm using the value Month (0) - which doesn't represent a month - to represent "pick the
default month." I could have defined an enumerator in Month specifically to represent that. But I
decided that it was better to use an obviously anomalous value to represent "pick the default
month" rather than give the appearance that there were 13 months in a year. Note that 0 can be
used because it is within the range guaranteed for the enumeration Month (§4.8).

I considered factoring out the data validation in a separate function is_date ( ). However, I
found the resulting user code more complicated and less robust than code relying on catching the
exception. For example, assuming that>> is defined for Date:

void fill (vector<Date>& aa)
{

while (cin) {
Date d;
try {

cin» d;

catch (Date:: Bad_date) {
/ / my error handling
continue;

}

aa . push_back (d); / / see §3.7.3

As is common for such simple concrete types, the definitions of member functions vary between
the trivial and the not-too-complicated. For example:

inline int Date:: day () const
{

return d;



240 Classes

Date& Date: :add_month (int n)
{

if (n==O) return *this ;

if (n>O) {
int deltay =n/12 i

int mm =m+n%12;
if (12 < mm) ( / / note: int(dec)==12

deltay++;
mm -= 12;

/ / handle the cases where Month(mm) doesn't have day d

y += deltay;
m =Month (mm) i

return *this;

/ / handle negative n

return *this;

Chapter 10

10.3.2 Helper Functions

Typically, a class has a number of functions associated with it that need not be defined in the class
itself because they don't need direct access to the representation. For example:

int diff(Date a, Date b); / / number ofdays in the range [a,b) or [b,a)
bool leapyear (int y) i

Date next_weekday (Date d);
Date next_saturday (Date d);

Defining such functions in the class itself would complicate the class interface and increase the
number of functions that would potentially need to be examined when a change to the representa
tion was considered.

How are such functions "associated" with class Date? Traditionally, their declarations were
simply placed in the same file as the declaration of class Date, and users who needed Dates would
make them all available by including the file that defined the interface (§9.2.1). For example:

#include n Date. h II

In addition to using a specific Date. h header, or as an alternative, we can make the association
explicit by enclosing the class and its helper functions in a namespace (§8.2):

namespace Chrono { / / facilities for dealing with time

class Date { / * ... * / } ;



Section 10.3.2

int diff (Date a, Date b) i
boof leapyear (int y);
Date next_weekday (Date d) i
Date next_saturday (Date d) i
I I ...

Helper Functions 241

The Chrono namespace would naturally also contain related classes, such as Time and Stopwatch,
and their helper functions. Using a namespace to hold a single class is usually an over-elaboration
that leads to inconvenience.

10.3.3 Overloaded Operators

It is often useful to add functions to enable conventional notation. For example, the operator==
function defines the equality operator == to work for Dates:

inline boof operator= =(Date a, Date b) I I equality
{

return a. day ( ) ==b. day () && a. month ( ) ==b. month () && a . year ( ) ==b. year ( ) i

Other obvious candidates are:

bool operator! =(Date, Date) i
boof operator< (Date, Date) i
bool operator> (Date, Date);
I I ...

Date& operator++ (Date& d);
Date& operator-- (Date& d) i

Date& operator+= (Date& d, int n);
Date& operator-= (Date& d, int n);

Date operator+ (Date d, int n);
Date operator-(Date d, int n)i

I I inequality
I I less than
I I greater than

I I increase Date by one day
I I decrease Date by one day

I I add n days
I I subtract n days

II add n days
I I subtract n days

ostream& operator« (ostream&, Date d); I I output d
istream& operator» (istream&, Date& d) i I I read into d

For Date, these operators can be seen as mere conveniences. However, for many types - such as
complex numbers (§11.3), vectors (§3.7.1), and function-like objects (§18.4) - the use ofconven
tional operators is so firmly entrenched in people's minds that their definition is almost mandatory.
Operator overloading is discussed in Chapter 11.

10.3.4 The Significance of Concrete Classes

I call simple user-defined types, such as Date, concrete types to distinguish them from abstract
classes (§2.5.4) and class hierarchies (§ 12.3) and also to emphasize their similarity to built-in types
such as int and char. They have also been called value types, and their use value-oriented
programming. Their model of use and the "philosophy" behind their design are quite different
from what is often advertised as object-oriented programming (§2.6.2).



242 Classes Chapter 10

The intent of a concrete type is to do a single, relatively small thing well and efficiently. It is
not usually the aim to provide the user with facilities to modify the behavior of a concrete type. In
particular, concrete types are not intended to display polymorphic behavior (see §2.5.5, §12.2.6).

If you don't like some detail of a concrete type, you build a new one with the desired behavior.
If you want to "reuse" a concrete type, you use it in the implementation of your new type exactly
as you would have used an into For example:

class Date_and_time {
private:

Date d;
Time ti

public:
Date_and_time (Date d, Time t);

Date_and_time(int d, Date::Month m, int y, Time t);
/ / ...

} ;

The derived class mechanism discussed in Chapter 12 can be used to define new types from a con
crete class by describing the desired differences. The definition of Vee from vector (§3.7.2) is an
example of this.

With a reasonably good compiler, a concrete class such as Date incurs no hidden overhead in
time or space. The size of a concrete type is known at compile time so that objects can be allocated
on the run-time stack (that is, without free-store operations). The layout of each object is known at
compile time so that inlining of operations is trivially achieved. Similarly, layout compatibility
with other languages, such as C and Fortran, comes without special effort.

A good set of such types can provide a foundation for applications. Lack of suitable "small
efficient types" in an application can lead to gross run-time and space inefficiencies when overly
general and expensive classes are used. Alternatively, lack of concrete types can lead to obscure
programs and time wasted when each programmer writes code to directly manipulate "simple and
frequently used" data structures.

10.4 Objects

Objects can be created in several ways. Some are local variables, some are global variables, some
are members of classes, etc. This section discusses these alternatives, the rules that govern them,
the constructors used to initialize objects, and the destructors used to clean up objects before they
become unusable.

10.4.1 Destructors

A constructor initializes an object. In other words, it creates the environment in which the member
functions operate. Sometimes, creating that environment involves acquiring a resource - such as a
file, a lock, or some memory - that must be released after use (§ 14.4.7). Thus, some classes need a
function that is guaranteed to be invoked when an object is destroyed in a manner similar to the
way a constructor is guaranteed to be invoked when an object is created. Inevitably, such functions
are called destructors. They typically clean up and release resources. Destructors are called



Section 10.4.1 Destructors 243

implicitly when an automatic variable goes out of scope, an object on the free store is deleted, etc.
Only in very unusual circumstances does the user need to call a destructor explicitly (§ 10.4.11).

The most common use of a destructor is to release memory acquired in a constructor. Consider
a simple table of elements of some type Name. The constructor for Table must allocate memory to
hold the elements. When the table is somehow deleted, we must ensure that this memory is
reclaimed for further use elsewhere. We do this by providing a special function to complement the
constructor:

class Name {
const char* s;
/ / ...

} i

class Table {
Name* Pi
size_t SZi

public:
Table (size_t s =15) {p =new Name [sz =s]; }/ / constructor

} i

-Table () {delete [] Pi }

Name* lookup (const char * );
bool insert (Name*) i

/ / destructor

The destructor notation -Table () uses the complement symbol - to hint at the destructor's rela
tion to the Table () constructor.

A matching constructor/destructor pair is the usual mechanism for implementing the notion of a
variably-sized object in c++. Standard library containers, such as map, use a variant of this tech
nique for providing storage for their elements, so the following discussion illustrates techniques
you rely on every time you use a standard container (including a standard string). The discussion
applies to types without a destructor, also. Such types are seen simply as having a destructor that
does nothing.

10.4.2 Default Constructors

Similarly, most types can be considered to have a default constructor. A default constructor is a
constructor that can be called without supplying an argument. Because of the default argument 15,
Table:: Table (size_I) is a default constructor. If a user has declared a default constructor, that
one will be used; otherwise, the compiler will try to generate one if needed and if the user hasn't
declared other constructors. A compiler-generated default constructor implicitly calls the default
constructors for a class' members of class type and bases (§12.2.2). For example:

strucl Tables {
inl i;
int vi [10];

Table 11 i

Table vI [10] i

} i



144 Classes

Tables tt;

Chapter 10

Here, tt will be initialized using a generated default constructor that calls Table (15) for tt. t1 and
each element of tt . vt. On the other hand, tt . i and the elements of tt . vi are not initialized because
those objects are not of a class type. The reasons for the dissimilar treatment of classes and built-in
types are C compatibility and fear of run-time overhead.

Because consts and references must be initialized (§5.5, §5.4), a class containing const or refer
ence members cannot be default-constructed unless the programmer explicitly supplies a construc
tor (§10.4.6.1). For example:

struct X {
const int ai
const int& r;

} ;

X x; / / error: no default constructorfor X

Default constructors can be invoked explicitly (§ 10.4.10). Built-in types also have default con
structors (§6.2.8).

10.4.3 Construction and Destruction

Consider the different ways an object can be created and how it gets destroyed afterwards. An
object can be created as:

§10.4.4 A named automatic object, which is created each time its declaration is encountered
in the execution of the program and destroyed each time the program exits the block
in which it occurs

§10.4.5 A free-store object, which is created using the new operator and destroyed using the
delete operator

§10.4.6 A nonstatic member object, which is created as a member of another class object and
created and destroyed when the object of which it is a member is created and
destroyed

§10.4.7 An array element, which is created and destroyed when the array of which it is an ele
ment is created and destroyed

§10.4.8 A local static object, which is created the first time its declaration is encountered in
the execution of the program and destroyed once at the termination of the program

§10.4.9 A global, namespace, or class static object, which is created once "at the start of the
program" and destroyed once at the termination of the program

§10.4.10 A temporary object, which is created as part of the evaluation of an expression and
destroyed at the end of the full expression in which it occurs

§10.4.11 An object placed in memory obtained from a user-supplied function guided by argu
ments supplied in the allocation operation

§10.4.12 A union member, which may not have a constructor or a destructor
This list is roughly sorted in order of importance. The following subsections explain these various
ways of creating objects and their uses.



Section 10.4.4

10.4.4 Local Variables

Local Variables 245

The constructor for a local variable is executed each time the thread of control passes through the
declaration of the local variable. The destructor for a local variable is executed each time the local
variable's block is exited. Destructors for local variables are executed in reverse order of their con
struction. For example:

void f( int i)
{

Table aai
Table bb;
if (;>0) {

Table cc;
/ / ...

}

Table dd;
/ / ...

Here, aa, bb, and dd are constructed (in that order) each timef() is called, and dd, bb, and aa are
destroyed (in that order) each time we return fromf( ). If i>O for a call, cc will be constructed after
bb and destroyed before dd is constructed.

10.4.4.1 Copying Objects

If t1 and t2 are objects of a class Table, t2=t1 by default means a memberwise copy of t1 into t2
(§ 10.2.5). Having assignment interpreted this way can cause a surprising (and usually undesired)
effect when used on objects of a class with pointer members. Memberwise copy is usually the
wrong semantics for copying objects containing resources managed by a constructor/destructor
pair. For example:

void h()
{

Table t1;
Table t2 = t1 ; / / copy initialization: trouble
Table t3;

t3 = t2 ; / / copy assignment: trouble

Here, the Table default constructor is called twice: once each for t1 and t3. It is not called for t2
because that variable was initialized by copying t1. However, the Table destructor is called three
times: once each for t1, t2, and t3! The default interpretation of assignment is memberwise copy, so
t1, t2, and t3 will, at the end of h ( ) , each contain a pointer to the array of names allocated on the
free store when t1 was created. No pointer to the array of names allocated when t3 was created
remains because it was overwritten by the t3=t2 assignment. Thus, in the absence of automatic
garbage collection (§ 10.4.5), its storage will be lost to the program forever. On th~ other hand, the
array created for t1 appears in t1, t2, and t3, so it will be deleted thrice. The result of that is unde
fined and probably disastrous.



/ / copy constructor
/ / copy assignment

246 Classes

Such anomalies can be avoided by defining what it means to copy a Table:

class Table {
/ / ...
Table (const Table&);
Table& operator= (const Table&);

} ;

Chapter 10

The programmer can define any suitable meaning for these copy operations, but the traditional one
for this kind of container is to copy the contained elements (or at least to give the user of the con
tainer the appearance that a copy has been done; see §11 .12). For example:

Table:: Table (const Table& t)
{

/ / copy constructor

p = new Name [sz=t. sz];
for (int i =0; i<sz; i++) p[i] =t.p[i];

Table& Table: : operator= (const Table& t)
{

/ / assignment

if (this ! = &t) { / / beware ofself-assignment: t = t
delete [] p;
p =new Name [sz=t. sz];
for (int i =0; i<sz; i++) P [i] =t.p [i];

}

return *this;

As is almost always the case, the copy constructor and the copy assignment differ considerably.
The fundamental reason is that a copy constructor initializes uninitialized memory, whereas the
copy assignment operator must correctly deal with a well-constructed object.

Assignment can be optimized in some cases, but the general strategy for an assignment operator
is simple: protect against self-assignment, delete old elements, initialize, and copy in new elements.
Usually every nonstatic member must be copied (§10.4.6.3). Exceptions can be used to report fail
ure to copy (Appendix E).

10.4.5 Free Store

An object created on the free store has its constructor invoked by the new operator and exists until
the delete operator is applied to a pointer to it. Consider:

int main ( )
{

Table* p =new Table;
Table* q = new Table;

delete p;
delete p; / / probably causes run-time error

The constructor Table:: Table () is called twice. So is the destructor Table:: ""Table ( ) .



Section 10.4.5 Free Store 247

Unfortunately, the news and the deletes in this example don't match, so the object pointed to by p
is deleted twice and the object pointed to by q not at all. Not deleting an object is typically not an
error as far as the language is concerned; it is only a waste of space. However, in a program that is
meant to run for a long time, such a memory leak is a serious and hard-to-find error. There are
tools available for detecting such leaks. Deleting p twice is a serious error; the behavior is unde
fined and most likely disastrous.

Some c++ implementations automatically recycle the storage occupied by unreachable objects
(garbage collecting implementations), but their behavior is not standardized. Even when a garbage
collector is running, delete will invoke a destructor if one is defined, so it is still a serious error to
delete an object twice. In many cases, that is only a minor inconvenience. In particular, where a
garbage collector is known to exist, destructors that do memory management only can be elimi
nated. This simplification comes at the cost of portability and for some programs, a possible
increase in run time and a loss of predictability of run-time behavior (§C.9.1).

After delete has been applied to an object, it is an error to access that object in any way. Unfor
tunately, implementations cannot reliably detect such errors.

The user can specify how new does allocation and how delete does deallocation (see §6.2.6.2
and §15.6). It is also possible to specify the wayan allocation, initialization (construction), and
exceptions interact (see §14.4.5 and §19.4.5). Arrays on the free store are discussed in §10.4.7.

10.4.6 Class Objects as Members

Consider a class that might be used to hold information for a small organization:

class Club {
string name;
Table members;
Table officers;
Date founded;
/ I ...
Club (const string& n, Date fd);

} ;

The Club's constructor takes the name of the club and its founding date as arguments. Arguments
for a member's constructor are specified in a member initializer list in the definition of the con
structor of the containing class. For example:

Club: : Club (const string& n, Date fd)
: name (n) I members (), officers (), founded (fd)

/ / ...

The member initializers are preceded by a colon and separated by commas.
The members' constructors are called before the body of the containing class' own constructor

is executed. The constructors are called in the order in which the members are declared in the class
rather than the order in which the members appear in the initializer list. To avoid confusion, it is
best to specify the initializers in the member declaration order. The member destructors are called
in the reverse order of construction.



248 Classes Chapter 10

If a member constructor needs no arguments, the member need not be mentioned in the member
initializer list, so

Club: : Club (const string& n, Date fd)
: name (n ) , founded (fd)

/ / ...

is equivalent to the previous version. In each case, Club: : officers is constructed by Table: : Table
with the default argument 15.

When a class object containing class objects is destroyed, the body of that object's own
destructor (if one is specified) is executed first and then the members' destructors are executed in
reverse order of declaration. A constructor assembles the execution environment for the member
functions for a class from the bottom up (members first). The destructor disassembles it from the
top down (members last).

10.4.6.1 Necessary Member Initialization

Member initializers are essential for types for which initialization differs from assignment - that is,
for member objects of classes without default constructors, for const members, and for reference
members. For example:

class X {
const int i;
Club c;
Club& pc;
/ / ...
X (int ii, const string& n, Date d, Club& c) : i (ii), c (n, d), pc (c) { }

} i

There isn't any other way to initialize such members, and it is an error not to initialize objects of
those types. For most types, however, the programmer has a choice between using an initializer
and using an assignment. In that case, I usually prefer to use the member initializer syntax, thus
making explicit the fact that initialization is being done. Often, there also is an efficiency advan
tage to using the initializer syntax. For example:

class Person {
string name;
string address;
/ / ...
Person (const Person&);
Person (const string& n, const string& a) ;

} ;

Person: : Person (const string& n, const string& a)
: name(n)

address =a;



Section 10.4.6.1 Necessary Member Initialization 249

I10k, but remember definition
I I error: not const
I I error: not static
I I error: in-class initializer not constant
I I error: in-class not integral

Here name is initialized with a copy of n. On the other hand, address is first initialized to the
empty string and then a copy of a is assigned.

10.4.6.2 Member Constants

It is also possible to initialize a static integral constant member by adding a constant-expression ini
tializer to its member declaration. For example:

class Curious {
public:

static const int c1 = 7;
static int c2 = 11 ;
const int c3 =13;
static const int c4 = f (17) ;
static const float c5 = 7. 0 ;
II ...

} ;

If (and only if) you use an initialized member in a way that requires it to be stored as an object in
memory, the member must be (uniquely) defined somewhere. The initializer may not be repeated:

const int Curious:: c1;

const int* p = &Curious:: c1;

/ I necessary, but don't repeat initializer here

I10k: Curious::c1 has been defined

Alternatively, you can use an enumerator (§4.8, §14.4.6, §15.3) as a symbolic constant within a
class declaration. For example:

class X {
enum { c1 =7, c2 = 11, c3 = 13, c4 =17 } ;
II ...

} ;

In that way, you are not tempted to initialize variables, floating-point numbers, etc. within a class.

10.4.6.3 Copying Members

A default copy constructor or default copy assignment (§ 10.4.4.1) copies all elements of a class. If
this copy cannot be done, it is an error to try to copy an object of such a class. For example:

class Unique_handle {
private: / I copy operations are private to prevent copying (§11.2.2)

Unique_handle (const Unique_handle& ) i

Unique_handle& operator= (const Unique_handle& ) ;
public:

1/ ...
} ;

struct Y {
II ...
Unique_handle a;

} ;
/ / requires explicit initialization



250 Classes

Y yJ;
Y y2 =yJ; / / error: cannot copy Y::a

Chapter 10

[n addition, a default assignment cannot be generated if a nonstatic member is a reference, a const,
or a user-defined type without a copy assignment.

Note that the default copy constructor leaves a reference member referring to the same object in
both the original and the copied object. This can be a problem if the object referred to is supposed
to be deleted.

When writing a copy constructor, we must take care to copy every element that needs to be
copied. By default, elements are default-initialized, but that is often not what is desired in a copy
constructor. For example:

Person: : Person (const Person& a) : name (a . name) {} JJ beware!

Here, I forgot to copy the address, so address is initialized to the empty string by default. When
adding a new member to a class, always check if there are user-defined constructors that need to be
updated in order to initialize and copy the new member.

10.4.7 Arrays

If an object of a class can be constructed without supplying an explicit initializer, then arrays of that
class can be defined. For example:

Table tbl [10] ;

This will create an array of 10 Tables and initialize each Table by a call of Table: : Table () with
the default argument 15.

Except by using an initializer list (§5.2.1, §18.6.7), there is no way to specify explicit arguments
for a constructor in an array declaration. If you absolutely must initialize members of an array with
different values, you can write a default constructor that generates the desired values. For example:

class [buffer {
string buf;

public:
[buffer () {cin»buf;
J/ ...

} ;

void f()
{

[buffer words [100]; I J each word initializedfrom cin
II ...

It is usually best to avoid such subtleties.
The destructor for each constructed element of an array is invoked when that array is destroyed.

This is done implicitly for arrays that are not allocated using new. Like C, C++ doesn't distinguish
between a pointer to an individual object and a pointer to the initial element of an array (§5.3).
Consequently, the programmer must state whether an array or an individual object is being deleted.
For example:



Section 10.4.7

void f(int sz)
{

Table* t1 = new Tablf1;
Table* t2 = new Table [sz];
Table* t3 = new Table;
Table* t4 = new Table [sz];

Arrays 251

delete t1;
delete [] t2;
delete [] t3;
delete t4;

/ / right
/ / right
/ / wrong: trouble
/ / wrong: trouble

Exactly how arrays and individual objects are allocated is implementation-dependent. Therefore,
different implementations will react differently to incorrect uses of the delete and delete [] opera
tors. In simple and uninteresting cases like the previous one, a compiler can detect the problem, but
generally something nasty will happen at run time.

The special destruction operator for arrays, delete [ ] , isn't logically necessary. However, sup
pose the implementation of the free store had been required to hold sufficient information for every
object to tell if it was an individual or an array. The user could have been relieved of a burden, but
that obligation would have imposed significant time and space overheads on some C++ implemen
tations.

As always, if you find C-style arrays too cumbersome, use a class such as vector (§3.7.l, §16.3)
instead. For example:

void g ()
{

vector<Table>* p1 = new vector<Table> (10);
Table* p2 =new Table;

delete p1;
delete p2;

10.4.8 Local Static Store

The constructor for a local static object (§7.1.2) is called the first time the thread of control passes
through the object's definition. Consider this:

void f( int i)
{

static Table tbl;
/ / ...
if (0 {

static Table tbl2;
/ / ...



252 Classes

int main ( )
{

/(0);

/(J) ;
/(2);

/ / ...

Chapter 10

Here, the constructor is called for tbl once the first time f() is called. Because tbl is declared
static, it does not get destroyed on return from f() and it does not get constructed a second time
whenf() is called again. Because the block containing the declaration of tbl2 doesn't get executed
for the call f (0) , tbl2 doesn't get constructed until the call f (1 ). It does not get constructed again
when its block is entered a second time.

The destructors for local static objects are invoked in the reverse order of their construction
when the program terminates (§9.4.1.1). Exactly when is unspecified.

10.4.9 Nonlocal Store

A variable defined outside any function (that is, global, namespace, and class static variables;
§C.9) is initialized (constructed) before main () is invoked, and any such variable that has been
constructed will have its destructor invoked after exit from main ( ). Dynamic linking complicates
this picture slightly by delaying the initialization until the code is linked into the running program.

Constructors for nonlocal objects in a translation unit are executed in the order their definitions
occur. Consider:

class X {
/ / ...
static Table memtbl;

} ;

Table tbl i

Table X:: memtbl ;

namespace Z {
Table tbl2;

The order of construction is Ibl, then X:: memtbl, and then Z: : tbl2. Note that a declaration (as
opposed to a definition), such as the declaration of memtbl in X, doesn't affect the order of con
struction. The destructors are called in the reverse order of construction: Z:: tbl2, then
X : : memtbl, and then tbl.

No implementation-independent guarantees are made about the order of construction of nonlo
cal objects in different compilation units. For example:

/ / file J.e:
Table tblJ;

/ / file2.e:
Table tbl2;



Section 10.4.9 Nonlocal Store 253

/ / get Zlib ready for use
/ / clean up after Zlib

Whether tbl] is constructed before tbl2 or vice versa is implementation-dependent. The order isn't
even guaranteed to be fixed in every particular implementation. Dynamic linking, or even a small
change in the compilation process, can alter the sequence. The order of destruction is similarly
implementation-dependent.

Sometimes when you design a library, it is necessary, or simply convenient, to invent a type
with a constructor and a destructor with the sole purpose of initialization and cleanup. Such a type
would be used once only: to allocate a static object so that the constructor and the destructor are
called. For example:

class Zlib_init {
Zlib_init ( ) ;
-Zlib_init ( ) ;

} ;

class Zlib {
static Zlib_init x;
/ / ...

} ;

Unfortunately, it is not guaranteed that such an object is initialized before its first use and destroyed
after its last use in a program consisting of separately compiled units. A particular c++ implemen
tation may provide such a guarantee, but most don't. A programmer may ensure proper initial
ization by implementing the strategy that the implementations usually employ for local static
objects: a first-time switch. For example:

class Zlib {
static bool initialized;
static void initialize () { / * initialize * / initialized = true; }

public:
/ / no constructor

void f()
{

if (initialized == false) initialize ( ) ;
/ / ...

}

/ / ...
} ;

If there are many functions that need to test the first-time switch, this can be tedious, but it is often
manageable. This technique relies on the fact that statically allocated objects without constructors
are initialized to O. The really difficult case is the one in which the first operation may be time
critical so that the overhead of testing and possible initialization can be serious. In that case, further
trickery is required (§21.5.2).

An alternative approach for a simple object is to present it as a function (§9.4.1):

int& obj () {static int x = 0; return x;} / / initialized upon first use

First-time switches do not handle every conceivable situation. For example, it is possible to create
objects that refer to each other during construction. Such examples are best avoided. If such



254 Classes Chapter 10

objects are necessary, they must be constructed carefully in stages. Also, there is no similarly sim
ple last-time switch construct. Instead, see §9.4.1.1 and §21.5.2.

10.4.10 Temporary Objects

Temporary objects most often are the result of arithmetic expressions. For example, at some point
in the evaluation of x*y+z the partial result x*y must exist somewhere. Except when performance
is the issue (§ 11.6), temporary objects rarely become the concern of the programmer. However, it
happens (§ 11.6, §22.4.7).

Unless bound to a reference or used to initialize a named object, a temporary object is destroyed
at the end of the full expression in which it was created. A full expression is an expression that is
not a subexpression of some other expression.

The standard string class has a member function c_str () that returns a C-style, zero-terminated
array of characters (§3.5.1, §20.4.1). Also, the operator + is defined to mean string concatenation.
These are very useful facilities for strings. However, in combination they can cause obscure prob
lems. For example:

void f( string& sI , string& s2, s1ring& s3)
{

const char* cs = (sl +s2) . c_s1r ( ) ;
cout « cs;

if (strlen (cs= (s2+s3) . c_s1r ( ) ) <8 && cs [0] == 'a' )
/ / cs used here

Probably, your first reaction is "but don't do that," and I agree. However, such code does get writ
ten, so it is worth knowing how it is interpreted.

A temporary object of class string is created to hold sJ +s2. Next, a pointer to a C-style string
is extracted from that object. Then - at the end of the expression - the temporary object is deleted.
Now, where was the C-style string returned by c_str () allocated? Probably as part of the tempo
rary object holding sJ+s2, and that storage is not guaranteed to exist after that temporary is
destroyed. Consequently, cs points to deallocated storage. The output operation cout«cs might
work as expected, but that would be sheer luck. A compiler can detect and warn against many vari
ants of this problem.

The example with the if-statement is a bit more subtle. The condition will work as expected
because the full expression in which the temporary holding s2+s3 is created is the condition itself.
However, that temporary is destroyed before the controlled statement is entered, so any use of cs
there is not guaranteed to work.

Please note that in this case, as in many others, the problems with temporaries arose from using
a high-level data type in a low-level way. A cleaner programming style would have not only
yielded a more understandable program fragment, but also avoided the problems with temporaries
completely. For example:



Section 10.4.10

void f(string& sJ, string& s2, string& s3)
{

cout « sJ +s2;
string s = s2+s3;

if (s . length ( ) <8 && s [0] == 'a')
/ / use shere

Temporary Objects 255

A temporary can be used as an initializer for a const reference or a named object. For example:

void g (const string& , const string&) i

void h (string& s J, string& s2)
{

const string& s = s J+s2 i

string ss = sJ+s2 i

g (s , ss) ; I / we can use sand ss here

This is fine. The temporary is destroyed when "its" reference or named object goes out of scope.
Remember that returning a reference to a local variable is an error (§7.3) and that a temporary
object cannot be bound to a non-const reference (§5.5).

A temporary object can also be created by explicitly invoking a constructor. For example:

void f(Shape& s, int x, in! y)
{

s.move(Point(x,y) );
/ / ...

/ / construct Point to pass to Shape:: Inove( )

Such temporaries are destroyed in exactly the same way as the implicitly generated temporaries.

10.4.11 Placement of Objects

Operator new creates its object on the free store by default. What if we wanted the object allocated
elsewhere? Consider a simple class:

class X {
public:

X(int) i

/ / ...
} i

We can place objects anywhere by providing an allocator function with extra arguments and then
supplying such extra arguments when using new:

void* operator new (size_t, void* p) { return pi} / / explicit placement operator

void* buf = reinterpret_cast<void* > (OxFOOF) i / / significant address
X* p2 =new (buf) X; / / construct an X at 'buj:" invokes: operator new(sizeojfX).bu.fJ



256 Classes Chapter 10

Because of this usage, the new (buj) X syntax for supplying extra arguments to operator new () is
known as the placement syntax. Note that every operator new () takes a size as its first argument
and that the size of the object allocated is implicitly supplied (§15.6). The operator new () used
by the new operator is chosen by the usual argument matching rules (§7.4); every operator new ( )
has a size_t as its first argument.

The' 'placement" operator new () is the simplest such allocator. It is defined in the standard
header <new>.

The reinterpret_cast is the crudest and potentially nastiest of the type conversion operators
(§6.2.7). In most cases, it simply yields a value with the same bit pattern as its argument with the
type required. Thus, it can be used for the inherently implementation-dependent, dangerous, and
occasionally absolutely necessary activity of converting integer values to pointers and vice versa.

The placement new construct can also be used to allocate memory from a specific arena:

class Arena {
public:

virtual void* aUoc (size_t) =0 i
virtual void free (void*) =0 i
/ / ...

} ;

void* operator new (size_t sz, Arena* a)
{

return a->alIoc (sz) i

Now objects of arbitrary types can be allocated from different Arenas as needed. For example:

extern Arena* Persistent i
extern Arena* Shared;

void g (int i)
{

X* p =new (Persistent) X(i)i
X* q =new (Shared) X(i)i
/ / ...

/ / X in persistent storage
/ / X in shared memory

Placing an object in an area that is not (directly) controlled by the standard free-store manager
implies that some care is required when destroying the object. The basic mechanism for that is an
explicit call of a destructor:

void destroy(X* p, Arena* a)
{

p->-X()i
a->!ree(p)i

/ / call destructor
/ / free memory

Note that explicit calls of destructors, like the use of special-purpose global allocators, should be
avoided wherever possible. Occasionally, they are essential. For example, it would be hard to
implement an efficient general container along the lines of the standard library vector (§3.7.1,
§16.3.8) without using explicit destructor calls. However, a novice should think thrice before



Section 10.4.11 Placement of Objects 257

calling a destructor explicitly and also should ask a more experienced colleague before doing so.
See §14.4.4 for an explanation of how placement new interacts with exception handling.
There is no special syntax for placement of arrays. Nor need there be, since arbitrary types can

be allocated by placement new. However, a special operator delete () can be defined for arrays
(§ 19.4.5).

10.4.12 Unions

A named union is defined as a struct, where every member has the same address (see §C.8.2). A
union can have member functions but not static members.

In general, a compiler cannot know what member of a union is used; that is, the type of the
object stored in a union is unknown. Consequently, a union may not have members with construc
tors or destructors. It wouldn't be possible to protect that object against corruption or to guarantee
that the right destructor is called when the union goes out of scope.

Unions are best used in low-level code, or as part of the implementation of classes that keep
track of what is stored in the union (see §10.6[20]).

10.5 Advice

[1] Represent concepts as classes; §10.1.
[2] Use public data (structs) only when it really is just data and no invariant is meaningful for the

data members; §10.2.8.
[3] A concrete type is the simplest kind of class. Where applicable, prefer a concrete type over

more complicated classes and over plain data structures; §10.3.
[4] Make a function a member only if it needs direct access to the representation of a class;

§10.3.2.
[5] Use a namespace to make the association between a class and its helper functions explicit;

§10.3.2.
[6] Make a member function that doesn't modify the value of its object a const member function;

§10.2.6.
[7] Make a function that needs access to the representation of a class but needn't be called for a

specific object a static member function; §10.2.4.
[8] Use a constructor to establish an invariant for a class; §10.3.1.
[9] If a constructor acquires a resource, its class needs a destructor to release the resource;

§10.4.1.
[10] If a class has a pointer member, it needs copy operations (copy constructor and copy assign

ment); §10.4.4.1.
[11] If a class has a reference member, it probably needs copy operations (copy constructor and

copy assignment); §10.4.6.3.
[12] If a class needs a copy operation or a destructor, it probably needs a constructor, a destructor, a

copy assignment, and a copy constructor; §10.4.4.1.
[13] Check for self-assignment in copy assignments; §10.4.4.1.
[14] When writing a copy constructor, be careful to copy every element that needs to be copied

(beware of default initializers); §10.4.4.1.



258 Classes Chapter 10

[15] When adding a new member to a class, always check to see if there are user-defined construc
tors that need to be updated to initialize the member; §10.4.6.3.

[16] Use enumerators when you need to define integer constants in class declarations; §10.4.6.2
Avoid order dependencies when constructing global and namespace objects; §10.4.9.

[18] Use first-time switches to minimize order dependencies; §10.4.9.
[19] Remember that temporary objects are destroyed at the end of the full expression in which they

are created; §10.4.10.

10.6 Exercises

1. (* 1) Find the error in Date: :addyear () in §10.2.2. Then find two additional errors in the
version in §10.2.7.

2. (*2.5) Complete and test Date. Reimplement it with "number of days after 1/1/1970" repre
sentation.

3. (*2) Find a Date class that is in commercial use. Critique the facilities it offers. If possible,
then discuss that Date with a real user.

4. (* 1) How do you access set_default from class Date from namespace Chrono (§ 10.3.2)? Give
at least three different ways.

5. (*2) Define a class Histogram that keeps count of numbers in some intervals specified as argu
ments to Histogram's constructor. Provide functions to print out the histogram. Handle out
of-range values.

6. (*2) Define some classes for providing random numbers of certain distributions (for example,
uniform and exponential). Each class has a constructor specifying parameters for the distribu
tion and a function draw that returns the next value.

7. (*2.5) Complete class Table to hold (name,value) pairs. Then modify the desk calculator pro
gram from §6.1 to use class Table instead of map. Compare and contrast the two versions.

8. (*2) Rewrite Tnode from §7.1 0[7] as a class with constructors, destructors, etc. Define a tree of
Tnodes as a class with constructors, destructors, etc.

9. (*3) Define, implement, and test a set of integers, class Intset. Provide union, intersection, and
symmetric difference operations.

10. (* 1.5) Modify class Intset into a set of nodes, where Node is a structure you define.
11. (*3) Define a class for analyzing, storing, evaluating, and printing simple arithmetic expressions

consisting of integer constants and the operators +, -, *, and /. The public interface should
look like this:

class Expr {
/ / ...

public:
Expr (const char*);
int eval ( );
void print ( ) ;

} ;

The string argument for the constructor Expr:: Expr () is the expression. The function
Expr: : eval () returns the value of the expression, and Expr: :print () prints a representation



Section 10.6 Exercises 259

of the expression on couto A program might look like this:

Expr x( II 123/4+123*4-3 11
);

cout << II X = II << X • eval () << II \n II ;

x .print ();

Define class Expr twice: once using a linked list of nodes as the representation and once using a
character string as the representation. Experiment with different ways of printing the expres
sion: fully parenthesized, postfix notation, assembly code, etc.

12. (*2) Define a class Char_queue so that the public interface does not depend on the representa
tion. Implement Char_queue (a) as a linked list and (b) as a vector. Do not worry about con
currency.

13. (*3) Design a symbol table class and a symbol table entry class for some language. Have a look
at a compiler for that language to see what the symbol table really looks like.

14. (*2) Modify the expression class from §10.6[11] to handle variables and the assignment opera
tor =. Use the symbol table class from §10.6[13].

15. (* 1) Given this program:

#include <iostream>

int main ()
{

std: : cout« II Hello, world! \n II ;

modify it to produce this output:

Initialize
Hello, world!
Clean up

Do not change main () in any way.
16. (*2) Define a Calculator class for which the calculator functions from §6.1 provide most of the

implementation. Create Calculators and invoke them for input from cin, from command-line
arguments, and for strings in the program. Allow output to be delivered to a variety of targets
similar to the way input can be obtained from a variety of sources.

17. (*2) Define two classes, each with a static member, so that the construction of each static
member involves a reference to the other. Where might such constructs appear in real code?
How can these classes be modified to eliminate the order dependence in the constructors?

18. (*2.5) Compare class Date (§ 10.3) with your solution to §5.9[13] and §7.l0[19]. Discuss errors
found and likely differences in maintenance of the two solutions.

19. (*3) Write a function that, given an istream and a vector<string>, produces a
map<string I vector<int» holding each string and the numbers of the lines on which the string
appears. Run the program on a text-file with no fewer than 1,000 lines looking for no fewer
than 1°words.

20. (*2) Take class Entry from §C.8.2 and modify it so that each union member is always used
according to its type.





11
Operator Overloading

When I use a word it means just what
I choose it to mean - neither more nor less.

- Humpty Dumpty

Notation - operator functions - binary and unary operators - predefined meanings
for operators - user-defined meanings for operators - operators and namespaces - a
complex type - member and nonmember operators - mixed-mode arithmetic 
initialization - copying - conversions - literals - helper functions - conversion
operators - ambiguity resolution - friends - members and friends - large objects 
assignment and initialization - subscripting - function call - dereferencing - incre
ment and decrement - a string class - advice - exercises.

11.1 Introduction

Every technical field - and most nontechnical fields - have developed conventional shorthand
notation to make convenient the presentation and discussion involving frequently-used concepts.
For example, because of long acquaintance

x+y*z

is clearer to us than

multiply y by z and add the result to x

It is hard to overestimate the importance of concise notation for common operations.
Like most languages, C++ supports a set of operators for its built-in types. However, most con

cepts for which operators are conventionally used are not built-in types in C++, so they must be rep
resented as user-defined types. For example, if you need complex arithmetic, matrix algebra, logic
signals, or character strings in C++, you use classes to represent these notions. Defining operators



262 Operator Overloading Chapter 11

for such classes sometimes allows a programmer to provide a more conventional and convenient
notation for manipulating objects than could be achieved using only the basic functional notation.
For example,

class complex { / / very simplified complex
double re, im;

public:
complex (double r, double i) : re (r), im (i) { }
complex operator+ (complex);
complex operator* (complex) i

} ;

defines a simple implementation of the concept of complex numbers. A complex is represented by
a pair of double-precision floating-point numbers manipulated by the operators + and *. The pro
grammer defines complex: : operator+ () and complex: : operator* () to provide meanings for +

and *, respectively. For example, if band c are of type complex, b+c means b. operator+ (c) .
We can now approximate the conventional interpretation of complex expressions:

void f()

{

complex a = complex (1, 3. 1) ;
complex b = complex (1 . 2, 2);
complex c = b;

a = b+Ci

b =b+c*a;
c = a*b+complex (1 ,2);

The usual precedence rules hold, so the second statement means b=b+ (c*a) , not b= (b+c) *a.
Many of the most obvious uses of operator overloading are for concrete types (§10.3). How

ever, the usefulness of user-defined operators is not restricted to concrete types. For example, the
design of general and abstract interfaces often leads to the use of operators such as - >, [], and ().

11.2 Operator Functions

Functions defining meanings for the following operators (§6.2) can be declared:

+ * / % &
< > +=

*= /= %= "= &= 1=
« » »= «= != <=
>= && II ++ ->*
-> [] ( ) new new[] delete delete []

The following operators cannot be defined by a user:
: : (scope resolution; §4.9.4, §10.2.4),
. (member selection; §5.7), and
. * (member selection through pointer to member; §15.5).



Section 11.2 Operator Functions 263

They take a name, rather than a value, as their second operand and provide the primary means of
referring to members. Allowing them to be overloaded would lead to subtleties [Stroustrup,1994].
The ternary conditional expression operator, ?: (§6.3.2) cannot be overloaded. Neither can the
named operators sizeof(§4.6) and typeid (§ 15.4.4).

It is not possible to define new operator tokens, but you can use the function-call notation when
this set of operators is not adequate. For example, use pow ( ) , not * *. These restrictions may
seem Draconian, but more flexible rules can easily lead to ambiguities. For example, defining an
operator * * to mean exponentiation may seem an obvious and easy task at first glance, but think
again. Should * * bind to the left (as in Fortran) or to the right (as in Algol)? Should the expres
siona**pbeinterpretedasa* (*p) or as (a) ** (p)?

The name of an operator function is the keyword operator followed by the operator itself; for
example, operator«. An operator function is declared and can be called like any other function.
A use of the operator is only a shorthand for an explicit call of the operator function. For example:

void f (complex a, complex b)
{

complex c = a + b;
complex d = a . operator+ (b) ;

/ / shorthand
/ / explicit call

Given the previous definition of complex, the two initializers are synonymous.

11.2.1 Binary and Unary Operators

A binary operator can be defined by either a nonstatic member function taking one argunlent or a
nonmember function taking two arguments. For any binary operator @, aa@bb can be interpreted as
either aa .operator@ (bb) or operator@ (aa, bb). If both are defined, overload resolution (§7.4)
determines which, if any, interpretation is used. For example:

class X {
public:

void operator+ (int);
X(int) ;

} ;

void operator+ (X, X);

void operator+ (X, double) ;

void !(X a)
{

a+/;
J+a;
a+/.O;

/ / a.operator+( I )
/ / ::operator+(X( J),a)
/ / : :operator+(a, 1.0)

A unary operator, whether prefix or postfix, can be defined by either a nonstatic nlember function
taking no arguments or a nonmember function taking one argument. For any prefix unary operator
@t @aa can be interpreted as either aa . operator@ () or operator@ (aa). If both are defined, over
load resolution (§7.4) determines which, if any, interpretation is used. For any postfix unary



264 Operator Overloading Chapter 11

operator @, aa@ can be interpreted as either aa .operator@ (int) or operator@ (aa, int). This is
explained further in §11.11. If both are defined, overload resolution (§7.4) determines which, if
any, interpretation is used. An operator can be declared only for the syntax defined for it in the
grammar (§A.5). For example, a user cannot define a unary %or a ternary +. Consider:

class X {
/ / members (with implicit 'this' pointer):

X* operator& ( ) ; / / prefix unary & (address of)
X operator& (X); / / binary & (and)
X operator++ (int) ; / / postfix increment (see §11.11)
X operator& (X, X) ; / / error: ternary
X operator/ ( ) ; / / error: unary /

} ;

/ / nonmember functions:

X operator- (X) ;
X operator- (X,X);
X operator-- (X& lint);
X operator- ( ) ;
X operator- (X, X I X) ;
X operator% (X) ;

/ / prefix unary minus
/ / binary tninus
/ / postfix decrement
/ / error: no operand
/ / error: ternary
/ / error: unary %

Operator [] is described in § 11 .8, operator () in § 11.9, operator - > in §11.10, operators ++ and
- - in §11.11, and the allocation and deallocation operators in §6.2.6.2, §10.4.11, and §15.6.

11.2.2 Predefined Meanings for Operators

Only a few assumptions are made about the meaning of a user-defined operator. In particular,
operator=, operator [ ] , operator ( ) , and operator-> must be nonstatic member functions; this
ensures that their first operands will be lvalues (§4.9.6).

The meanings of some built-in operators are defined to be equivalent to some combination of
other operators on the same arguments. For example, if a is an int, ++a means a+=l, which in tum
means a=a+1. Such relations do not hold for user-defined operators unless the user happens to
define them that way. For example, a compiler will not generate a definition of Z: :operator+= ( )
from the definitions of Z: : operator+ () and Z: :operator= ( ) .

Because of historical accident, the operators =(assignment), & (address-ot), and, (sequencing;
§6.2.2) have predefined meanings when applied to class objects. These predefined meanings can
be made inaccessible to general users by making them private:

class X {
private:

void operator= (const X&);
void operator& ( );
void operator, (const X&);
/ / ...

} ;



Section 11.2.2

void j(X a, X b)
{

Predefined Meanings for Operators 265

a =b;
&a;
a,b;

/ / error: operator= private
II error: operator& private
I / error: operator, private

Alternatively, they can be given new meanings by suitable definitions.

11.2.3 Operators and User-Defined Types

An operator function must either be a member or take at least one argument of a user-defined type
(functions redefining the new and delete operators need not). This rule ensures that a user cannot
change the meaning of an expression unless the expression contains an object of a user-defined
type. In particular, it is not possible to define an operator function that operates exclusively on
pointers. This ensures that C++ is extensible but not mutable (with the exception of operators =, &,

and, for class objects).
An operator function intended to accept a basic type as its first operand cannot be a member

function. For example, consider adding a complex variable aa to the integer 2: aa+2 can, with a
suitably declared member function, be interpreted as aa. operator+ (2) , but 2+aa cannot because
there is no class int for which to define + to mean 2 .operator+ (aa). Even if there were, two dif
ferent member functions would be needed to cope with 2+aa and aa+2. Because the compiler does
not know the meaning of a user-defined +, it cannot assume that it is commutative and so interpret
2+aa as aa+2. This example is trivially handled using nonmember functions (§11.3.2, §11.5).

Enumerations are user-defined types so that we can define operators for them. For example:

enum Day { sun, mon, tue, wed, thu, jri, sat } ;

Day& operator++ (Day& d)
{

return d= (sat==d) ? sun: Day(d+l);

Every expression is checked for ambiguities. Where a user-defined operator provides a possible
interpretation, the expression is checked according to the rules in §7.4.

11.2.4 Operators in Namespaces

An operator is either a member of a class or defined in some namespace (possibly the global name
space). Consider this simplified version of string I/O from the standard library:

namespace std { / / simplified std

class ostream {
/ / ...
ostream& operator« (const char*);

} ;

extern ostream cout;



266 Operator Overloading

class string {
/ / ...

} ;

ostream& operator« (ostream&, const string&);

int main ()
{

char* p = II Hello II ;

sId: : string s = II world II ;

std::cout«p« II, II «s« U!\n";

Chapter 11

Naturally, this writes out Hello, world! But why? Note that I didn't make everything from std
accessible by writing:

using namespace std;

Instead, I used the std:: prefix for string and couto In other words, I was at my best behavior and
didn't pollute the global namespace or in other ways introduce unnecessary dependencies.

The output operator for C-style strings (char*) is a member of std: : ostream, so by definition

std: : cout « p

means

std: : cout . operator« (p)

However, std: : ostream doesn't have a member function to output a std: : string, so

std: :cout« s

means

operator<< (std: :cout, s)

Operators defined in namespaces can be found based on their operand types just like functions can
be found based on their argument types (§8.2.6). In particular, cout is in namespace std, so std is
considered when looking for a suitable definition of «. In that way, the compiler finds and uses:

std: : operator<< (std: : ostream&, const std:: string& )

Consider a binary operator @. If x is of type X and y is of type Y, x@y is resolved like this:
- If X is a class, look for operator@ as a member of X or as a member of a base of X; and
- look for declarations of operator@ in the context surrounding x@y; and
- if X is defined in namespace N, look for declarations of operator@ in N; and
- if Y is defined in namespace M, look for declarations of operator@ in M.

Declarations for several operator@s may be found and overload resolution rules (§7.4) are used to
find the best match, if any. This lookup mechanism is applied only if the operator has at least one
operand of a user-defined type. Therefore, user-defined conversions (§11.3.2, §11.4) will be con
sidered. Note that a typedefname is just a synonym and not a user-defined type (§4.9.7).

Unary operators are resolved analogously.



Section 11.2.4 Operators in Namespaces 267

Note that in operator lookup no preference is given to members over non-members. This differs
from lookup of named functions (§8.2.6). The lack of hiding of operators ensures that built-in
operators are never inaccessible and that users can supply new meanings for an operator without
modifying existing class declarations. For example, the standard iostream library defines « mem
ber functions to output built-in types. A user can define « to output user-defined types without
modifying class ostream (§21.2.1).

11.3 A Complex Number Type

The implementation of complex numbers presented in the introduction is too restrictive to please
anyone. For example, from looking at a math textbook we would expect this to work:

void f()

{

complex a = complex (1 I 2) i

complex b = 3 i

complex c = a+2 . 3 i

complex d = 2+b i

complex e = -b-c i

b=c*2*Ci

In addition, we would expect to be provided with a few additional operators, such as == for com
parison and « for output, and a suitable set of mathematical functions, such as sin () and sqrt ( ) .

Class complex is a concrete type, so its design follows the guidelines from §10.3. In addition,
users of complex arithmetic rely so heavily on operators that the definition of complex brings into
play most of the basic rules for operator overloading.

11.3.1 Member and Nonmember Operators

I prefer to minimize the number of functions that directly manipulate the representation of an
object. This can be achieved by defining only operators that inherently modify the value of their
first argument, such as +=, in the class itself. Operators that simply produce a new value based on
the values of its arguments, such as +, are then defined outside the class and use the essential opera
tors in their implementation:

class complex {
double re I im i

public:
complex& operator+= (complex a); / / needs access to representation
/ / ...

} i

complex operator+ (complex a I complex b)
{

complex r = a ;
return r += b i / / access representation through +=



268 Operator Overloading

Given these declarations, we can write:

void f( complex x, complex y, complex z)

{

complex rJ =X+Y+Zi / / rJ =operator+(operator+(x,y),z)
complex r2 = x; / / r2 = x
r2 + = y; / / r2.operator+ =(y)
r2 += z; / / r2.operator+=(z)

Chapter 11

Except for possible efficiency differences, the computations of rI and r2 are equivalent.
Composite assignment operators such as += and *= tend to be simpler to define than their

"simple" counterparts + and *. This surprises most people at first, but it follows from the fact that
three objects are involved in a + operation (the two operands and the result), whereas only two
objects are involved in a += operation. In the latter case, run-time efficiency is improved by elimi
nating the need for temporary variables. For example:

inline complex& complex: : operator+= (complex a)

{

re += a. re;
im += a.im;
return *this ;

does not require a temporary variable to hold the result of the addition and is simple for a compiler
to inline perfectly.

A good optimizer will generate close to optimal code for uses of the plain + operator also.
However, we don't always have a good optimizer and not all types are as simple as complex, so
§11.5 discusses ways of defining operators with direct access to the representation of classes.

11.3.2 Mixed-Mode Arithmetic

To cope with

complex d = 2+b;

we need to define operator + to accept operands of different types. In Fortran terminology, we
need mixed-mode arithmetic. We can achieve that simply by adding appropriate versions of the
operators:

class complex {
double re, im;

public:
complex& operator+ =(complex a)

re += a. re i
im += a .im;
return * this;



Section 11.3.2

complex& operator+= (double a) {
re += ai

return * this;

/ / ...
} i

complex operator+ (complex a, complex b)
{

complex r =a;
return r += b i / / calls complex::operator+=(complex)

complex operator+ (complex a, double b)
{

complex r = a i

return r += b; / / calls complex::operator+=(double)

complex operator+ (double a, complex b)
{

complex r = b i

return r += a; / / calls complex::operator+=(double)

Mixed-Mode Arithmetic 269

Adding a double to a complex number is a simpler operation than adding a complex. This is
reflected in these definitions. The operations taking double operands do not touch the imaginary
part of a complex number and thus will be Inore efficient.

Given these declarations, we can write:

void j(complex x, complex y)

{

complex r1 = x+y;
complex r2 = x+2;
complex r3 = 2+x;

11.3.3 Initialization

/ / calls operator+(complex,complex)
/ / calls operator+(complex,double)
/ / calls operator+(double,complex)

To cope with assignments and initialization of complex variables with scalars, we need a conver
sion of a scalar (integer or floating-point number) to a complex. For example:

complex b = 3 i / / should mean b.re=3, b.im=O

A constructor taking a single argument specifies a conversion from its argument type to the
constructor's type. For example:



270 Operator Overloading

class complex {
double re, im;

public:
complex (double r) : re (r), im (0) { }
/ / ...

} ;

Chapter 11

The constructor specifies the traditional embedding of the real line in the complex plane.
A constructor is a prescription for creating a value of a given type. The constructor is used

when a value of a type is expected and when such a value can be created by a constructor from the
value supplied as an initializer or assigned value. Thus, a constructor requiring a single argument
need not be called explicitly. For example,

complex b =3 ;

means

complex b = complex (3) ;

A user-defined conversion is implicitly applied only if it is unique (§7.4). See §11.7.1 for a way of
specifying constructors that can only be explicitly invoked.

Naturally, we still need the constructor that takes two doubles, and a default constructor initial
izing a complex to (0 I 0) is also useful:

class complex {
double re, im;

public:
complex() : re(O), im(O) {}
complex (double r) : re (r), im (0) { }
complex (double r, double i) : re (r), im (i) { }

/ / ...
} ;

Using default arguments, we can abbreviate:

class complex {
double re, im;

public:
complex(double r =0, double i =0) : re (r), im (i) { }

/ / ...
} ;

When a constructor is explicitly declared for a type, it is not possible to use an initializer list (§5.7,
§4.9.5) as the initializer. For example:

complex zl ={3 } ;
complex z2 = { 3, 4 } ;

/ / error: complex has a constructor
/ / error: complex has a constructor



Section 11.3.4 Copying 271

11.3.4 Copying

In addition to the explicitly declared constructors, complex by default gets a copy constructor
defined (§ 10.2.5). A default copy constructor simply copies all members. To be explicit, we could
equivalently have written:

class complex {
double re, im;

public:
complex (cons! complex& c) : re (c. re), im (c. im) { }
I I ...

} ;

However, for types where the default copy constructor has the right semantics, I prefer to rely on
that default. It is less verbose than anything I can write, and people should understand the default.
Also, compilers know about the default and its possible optimization opportunities. Furthermore,
writing out the memberwise copy by hand is tedious and error-prone for classes with many data
members (§ 10.4.6.3).

I use a reference argument for the copy constructor because I must. The copy constructor
defines what copying means - including what copying an argument means - so writing

complex::complex(complex c) : re(c.re), im(c.im) {} II error

is an error because any call would have involved an infinite recursion.
For other functions taking complex arguments, I use value arguments rather than reference

arguments. Here, the designer has a choice. From a user's point of view, there is little difference
between a function that takes a complex argument and one that takes a const complex& argument.
This issue is discussed further in §11.6.

In principle, copy constructors are used in simple initializations such as

complex x = 2 ;
complex y = complex (2 , 0) ;

I I create complex(2); then initialize x with it
I I create complex(2,O); then initialize y with it

However, the calls to the copy constructor are trivially optimized away. We could equivalently
have written:

complex x (2) i

complex y (2,0) i

I I initialize x with 2
I I initialize y with (2,0)

For arithmetic types, such as complex, I like the look of the version using =better. It is possible to
restrict the set of values accepted by the = style of initialization compared to the () style by making
the copy constructor private (§ 11.2.2) or by declaring a constructor explicit (§ 11.7.1).

Similar to initialization, assignment of two objects of the same class is by default defined as
memberwise assignment (§ 10.2.5). We could explicitly define complex:: operator= to do that.
However, for a simple type like complex there is no reason to do so. The default is just right.

The copy constructor - whether user-defined or compiler-generated - is used not only for the
initialization of variables, but also for argument passing, value return, and exception handling (see
§ 11.7). The semantics of these operations is defined to be the semantics of initialization (§7.1,
§7.3, §14.2.l).



272 Operator Overloading

11.3.5 Constructors and Conversions

We defined three versions of each of the four standard arithmetic operators:

complex operator+ (complex, complex) i
complex operator+ (complex, double) i
complex operator+ (double, complex) i
/ / ...

Chapter 11

This can get tedious, and what is tedious easily becomes error-prone. What if we had three alterna
tives for the type of each argument for each function? We would need three versions of each
single-argument function, nine versions of each two-argument function, twenty-seven versions of
each three-argument function, etc. Often these variants are very similar. In fact, almost all variants
involve a simple conversion of arguments to a common type followed by a standard algorithm.

The alternative to providing different versions of a function for each combination of arguments
is to rely on conversions. For example, our complex class provides a constructor that converts a
double to a complex. Consequently, we could simply declare only one version of the equality
operator for complex:

bool operator== (complex, complex) ;

void f(complex x, complex y)
{

X==Yi
X==3i
3==Yi

/ / means operator==(x,y)
/ / means operator==(x,complex(3))
/ / means operator==(complex(3),y)

There can be reasons for preferring to define separate functions. For example, in some cases the
conversion can impose overheads, and in other cases, a simpler algorithm can be used for specific
argument types. Where such issues ~re not significant, relying on conversions and providing only
the most general variant of a function - plus possibly a few critical variants - contains the combina
torial explosion of variants that can arise from mixed-mode arithmetic.

Where several variants of a function or an operator exist, the compiler must pick "the right"
variant based on the argument types and the available (standard and user-defined) conversions.
Unless a best match exists, an expression is ambiguous and is an error (see §7.4).

An object constructed by explicit or implicit use of a constructor in an expression is automatic
and will be destroyed at the first opportunity (see §10.4.10).

No implicit user-defined conversions are applied to the left-hand side of a. (or a - ». This is
the case even when the. is implicit. For example:

void g (complex z)
{

3+Zi
3. operator+= (z) i
3+=Zi

/ / ok: compLex(3)+z
/ / error: 3 is not a cLass object
/ / error: 3 is not a cLass object

Thus, you can express the notion that an operator requires an Ivalue as its left-hand operand by
making that operator a member.



Section 11.3.6

11.3.6 Literals

Literals 273

It is not possible to define literals of a class type in the sense that 1 . 2 and 12e3 are literals of type
double. However, literals of the basic types can often be used instead if class member functions are
used to provide an interpretation for them. Constructors taking a single argument provide a general
mechanism for this. When constructors are simple and inline, it is quite reasonable to think of con
structor invocations with literal arguments as literals. For example, I think of complex (3) as a lit
eral of type complex, even though technically it isn't.

11.3.7 Additional Member Functions

So far, we have provided class complex with constructors and arithmetic operators only. That is
not quite sufficient for real use. In particular, we often need to be able to examine the value of the
real and imaginary parts:

class complex {
double re, im;

public:
double real () const { return re; }
double imag () const { return im; }
/ / ...

} ;

Unlike the other members of complex, real () and imag () do not modify the value of a complex,
so they can be declared const.

Given real () and imag ( ) , we can define all kinds of useful operations without granting them
direct access to the representation of complex. For example:

inline booI operator== (complex a, complex b)
{

return a. real ( ) ==b. real () && a. imag ( ) ==b. imag ( );

Note that we need only to be able to read the real and imaginary parts; writing them is less often
needed. If we must do a "partial update," we can:

void f(complex& z, double d)
{

/ / ...
z = complex (z. real ( ), d); / / assign d to z.im

A good optimizer generates a single assignment for that statement.

11.3.8 Helper Functions

If we put all the bits and pieces together, the complex class becomes:



274 Operator Overloading

class complex {
double re, im;

public:
complex (double r =0, double i =0) : re (r), im (i) { )

double real () const { return re; }
double imag () const { return im; }

complex& operator+= (complex);
complex& operator+= (double);
II -=, *=, and/=

} ;

In addition, we must provide a number of helper functions:

complex operator+ (complex, complex);
complex operator+ (complex, double) ;
complex operator+ (double, complex) ;

II -, *, and/

Chapter 11

complex operator- (complex);
complex operator+ (complex);

I I unary minus
I / unary plus

I I for notational convenience
/ I for notational convenience

booI operator== (complex, complex);
bool operator 1= (complex, complex);

istream& operator>> (istream& , complex& ); / / input
ostream& operator<< (ostream&, complex); I / output

Note that the members real () and imag () are essential for defining the comparisons. The defini
tion of most of the following helper functions similarly relies on real () and imag ( ) .

We might provide functions to allow users to think in terms of polar coordinates:

complex polar (double rho, double theta);
complex conj (complex) ;

double abs (complex) ;
double arg (complex) ;
double norm (complex) ;

double real (complex) ;
double imag (complex) ;

Finally, we must provide an appropriate set of standard mathematical functions:

complex acos (complex) ;
complex asin (complex);
complex atan (complex) ;
I I ...

From a user's point of view, the complex type presented here is almost identical to the
complex<double> found in <complex> in the standard library (§22.5).



Section 11.4 Conversion Operators 275

11.4 Conversion Operators

Using a constructor to specify type conversion is convenient but has implications that can be unde
sirable. A constructor cannot specify

[1] an implicit conversion from a user-defined type to a basic type (because the basic types are
not classes), or

[2] a conversion from a new class to a previously defined class (without modifying the decla-
ration for the old class).

These problems can be handled by defining a conversion operator for the source type. A member
function X : : operator T ( ) , where T is a type name, defines a conversion from X to T. For exam
ple, one could define a 6-bit non-negative integer, Tiny, that can mix freely with integers in arith
metic operations:

class Tiny {
char v;
void assign (int i) {if (i&-077) throw Bad_range ( ); v=i;

public:
class Bad_range { };

Tiny (int i) {assign (i); }
Tiny& operator= (int i) {assign (i); return *this;

operator int () const { return v;} I I conversion to intfunction
} ;

The range is checked whenever a Tiny is initialized by an int and whenever an int is assigned to
one. No range check is needed when we copy a Tiny, so the default copy constructor and assign
ment are just right.

To enable the usual integer operations on Tiny variables, we define the implicit conversion from
Tiny to int, Tiny: : operator int ( ). Note that the type being converted to is part of the name of the
operator and cannot be repeated as the return value of the conversion function:

Tiny:: operator int () const { return v; }
int Tiny:: operator int () eonst { return v; }

I I right
I I error

In this respect also, a conversion operator resembles a constructor.
Whenever a Tiny appears where an int is needed, the appropriate int is used. For example:

int main ()
{

Tiny cl =2;
Tiny c2 =62;
Tiny c3 =e2-cl ;
Tiny c4 =e3;
int i =cl+c2;

cl = cl+c2;
i=c3-64;
c2 =c3-64;
c3 =c4;

I I c3 = 60
I I no range check (not necessary)
II i = 64

I I range error: cl can't be 64
I I i =-4
I I range error: c2 can't be -4
I I no range check (not necessary)



276 Operator Overloading Chapter 11

Conversion functions appear to be particularly useful for handling data structures when reading
(implemented by a conversion operator) is trivial, while assignment and initialization are distinctly
less trivial.

The istream and ostream types rely on a conversion function to enable statements such as

while (cin»x) cout«Xi

The input operation cin»x returns an istream&. That value is implicitly converted to a value indi
cating the state of cin. This value can then be tested by the while (see §21.3.3). However, it is typ
ically not a good idea to define an implicit conversion from one type to another in such a way that
information is lost in the conversion.

In general, it is wise to be sparing in the introduction of conversion operators. When used in
excess, they lead to ambiguities. Such ambiguities are caught by the compiler, but they can be a
nuisance to resolve. Probably the best idea is initially to do conversions by named functions, such
as X : :make_int ( ). If such a function becomes popular enough to make explicit use inelegant, it
can be replaced by a conversion operator X : : operator int ( ) .

If both user-defined conversions and user-defined operators are defined, it is possible to get
ambiguities between the user-defined operators and the built-in operators. For example:

int operator+ (Tiny I Tiny) i

void f( Tiny t I int i)
{

t+i; / / error, ambiguous: operator+(t,Tiny(i)) or int(t)+i ?

It is therefore often best to rely on user-defined conversions or user-defined operators for a given
type, but not both.

11.4.1 Ambiguities

An assignment of a value of type V to an object of class X is legal if there is an assignment operator
X : : operator= (Z) so that V is Z or there is a unique conversion of V to Z. Initialization is treated
equivalently.

In some cases, a value of the desired type can be constructed by repeated use of constructors or
conversion operators. This must be handled by explicit conversions; only one level of user-defined
implicit conversion is legal. In some cases, a value of the desired type can be constructed in more
than one way; such cases are illegal. For example:

class X { / * * / X (int) i X (char* ) i } i
class Y { / * * / Y (int) i } i
class Z { / * * / Z (X) i } i

X !(X)i

Y I(Y)i

Z g(Z)i



Section 11.4.1

void kJ ( )
{

f(1) ;
f(X(1) );
f(Y(1) );

I I error: ambiguousj(X( J)) orf(Y( J))?

II ok
II ok

Ambiguities 277

g ( II Mack II ); I I error: two user-defined conversions needed; g(Z(X("Mack"))) not tried
g (X ( II Doc II ) ); I 10k: g(Z(X("Doc")))
g(Z( II Suzy II ) ); II ok: g(Z(X("Suzy")))

User-defined conversions are considered only if they are necessary to resolve a call. For example:

class XX { I * ... * I XX ( in!); };

void h (double) ;
void h (XX);

void k2 ()
{

h (1); I I h(double( J)) or h(XX( J))? h(double( J))!

The call h (1) means h (double (1)) because that alternative uses only a standard conversion
rather than a user-defined conversion (§7.4).

The rules for conversion are neither the simplest to implement, the simplest to document, nor
the most general that could be devised. They are, however, considerably safer, and the resulting
resolutions are less surprising. It is far easier to manually resolve an ambiguity than to find an error
caused by an unsuspected conversion.

The insistence on strict bottom-up analysis implies that the return type is not used in overload
ing resolution. For example:

class Quad {
public:

Quad (double) ;
I I ...

} ;

Quad operator+ (Quad, Quad) ;

void f(double a1, double a2)
{

Quad r1 = al +a2 ; / / double-precision add
Quad r2 = Quad (al ) +a2; I I force quad arithmetic

The reason for this design choice is partly that strict bottom-u? analysis is more comprehensible
and partly that it is not considered the compiler's job to decide which precision the programmer
might want for the addition.

Once the types of both sides of an initialization or assignment have been detennined, both types
are used to resolve the initialization or assignment. For example:



278 Operator Overloading

class Real {
public:

operator double ( ) ;
operator int ();
/ / ...

} ;

Chapter 11

void g (Real a)
{

double d = ai
int ; = a i

d= ai
; = a;

/ / d = a.double();
/ / i = a.int();

/ / d =a.double();
/ / i =a.int(),.

In these cases, the type analysis is still bottom-up, with only a single operator and its argument
types considered at anyone time.

11.5 Friends

An ordinary member function declaration specifies three logically distinct things:
[1] The function can access the private part of the class declaration, and
[2] the function is in the scope of the class, and
[3] the function must be invoked on an object (has a this pointer).

By declaring a member function static (§10.2.4), we can give it the first two properties only. By
declaring a function aj~riend, we can give it the first property only.

For example, we could define an operator that multiplies a Matrix by a Vector. Naturally,
Vector and Matrix each hide their representation and provide a complete set of operations for
manipulating objects of their type. However, our multiplication routine cannot be a member of
both. Also, we don't really want to provide low-level access functions to allow every user to both
read and write the complete representation of both Matrix and Vector. To avoid this, we declare
the operator* a friend of both:

class Matrix i

class Vector {
float v [4] i

/ / ...
friend Vector operator* (const Matrix&, const Vector&) i

} ;

class Matrix {
Vector v [4] i

/ / ...
friend Vector operator* (const Matrix&, const Vector&);

} ;



Section 11.5

Vector operator* (const Matrix& m, const Vector& v)
{

Vector r;
for (int i =0; i<4; i++) I I r[i] =m[i] *v;

r.v[i] =0;
for (int j= 0; j<4; j++) r.v[i] +=m.v[i] .v[j] * v.v[j];

return ri

Friends 279

A friend declaration can be placed in either the private or the public part of a class declaration; it
does not matter where. Like a member function, a friend function is explicitly declared in the
declaration of the class of which it is a friend. It is therefore as much a part of that interface as is a
member function.

A member function of one class can be the friend of another. For example:

class List_iterator {
I I ...
int* next ( );

} ;

class List {
friend int* List_iterator: : next ( ) i

I I ...
} i

It is not unusual for all functions of one class to be friends of another. There is a shorthand for this:

class List {
friend class List_iterator i

II ...
} i

This friend declaration makes all of List iterator's member functions friends of List.
Clearly, friend classes should be used only to express closely connected concepts. Often, there

is a choice between making a class a member (a nested class) or a nonmember friend (§24.4).

11.5.1 Finding Friends

Like a member declaration, afriend declaration does not introduce a name into an enclosing scope.
For example:

class Matrix {
friend class Xform;
friend Matrix invert (const Matrix&) i
II ...

} i

Xform Xi

Matrix (*p) (const Matrix&) = &invert i
I I error: no X/orm in scope
I I error: no invert() in scope

For large programs and large classes, it is nice that a class doesn't "quietly" add names to its



280 Operator Overloading Chapter 11

enclosing scope. For a template class that can be instantiated in many different contexts (Chapter
13), this is very important.

A friend class must be previously declared in an enclosing scope or defined in the non-class
scope immediately enclosing the class that is declaring it a friend. Scopes outside the innermost
enclosing namespace scope are not considered. For example:

class AE { I * ... * I };

namespace N {
class X { I * ... * I } ;

class Y {
friend class X;
friend class Z;
friend class AE;

} ;

class Z { I * ... * I } i

I I not a friend of Y

II y'sfriend

II y'sfriend

A friend function can be explicitly declared just like friend classes, or it can be found through its
arguments (§8.2.6) even if it was not declared in the immediately enclosing scope. For example:

void f(Matrix& m)

{

invert (m); I I Matrix's friend invert()

It follows that a friend function should either be explicitly declared in an enclosing scope or take an
argument of its class. If not, the friend cannot be called. For example:

/ I no f() in this scope

class X {
friend void f( ) ; I I useless
friend void h (const X&); I I can be found through its argunlent

} ;

void g(const X&x)
{

f();

h(X)i

I I no f() in scope
I I X'sfriend he)

11.5.2 Friends and Members

When should we use a friend function, and when is a member function the better choice for specify
ing an operation? First, we try to minimize the number of functions that access the representation
of a class and try to make the set of access functions as appropriate as possible. Therefore, the first
question is not, "Should it be a member, a static member, or a friend?" but rather, "Does it really
need access?" Typically, the set of functions that need access is smaller than we are willing to
believe at first. Some operations must be members - for example, constructors, destructors, and



Section 11.5.2 Friends and Members 281

virtual functions (§ 12.2.6) - but typically there is a choice. Because member names are local to the
class, a function that requires direct access to the representation should be a member unless there is
a specific reason for it to be a nonmember.

Consider a class X supplying alternative ways of presenting an operation:

class X {
/ / ...
X(int) ;

int ml ();
int m2 () const;

friend int fl (X&);
friend int 12 (const X&);
friend int f3 (X);

} ;

Member functions can be invoked for objects of their class only; no user-defined conversions are
applied to leftmost operand of a. or - > (but see §11.10). For example:

void g()
{

99. ml ( ); / / error: X(99).mJ() not tried
99. m2 ( ); / / error: X(99).m2() not tried

The global function f1 () has a similar property because implicit conversions are not used for non
const reference arguments (§5.5, §11.3.5). However, conversions may be applied to the arguments
ofj2 () andf3 ( ) :

void h ()
{

f1 (99);
12(99);
j3(99);

/ / error: jJ(X(99») not tried
/ / ok: j2(X(99»;
/ / ok: j3(X(99»;

An operation modifying the state of a class object should therefore be a member or a global func
tion taking a non-const reference argument (or a non-const pointer argument). Operators that
require lvalue operands for the fundamental types (=, *=, ++, etc.) are most naturally defined as
members for user-defined types.

Conversely, if implicit type conversion is desired for all operands of an operation, the function
implementing it must be a nonmember function taking a const reference argument or a non
reference argument. This is often the case for the functions implementing operators that do not
require lvalue operands when applied to fundamental types (+, -, I I, etc.). Such operators often
need access to the representations of their operand class. Consequently, binary operators are the
most common source of friend functions.

If no type conversions are defined, there appears to be no compelling reason to choose a mem
ber over a friend taking a reference argument, or vice versa. In some cases, the programmer may
have a preference for one call syntax over another. For example, most people seem to prefer the



282 Operator Overloading Chapter 11

notation inv (m) for inverting a Matrix m to the alternative m. inv ( ). Naturally, if inv () really
does invert m itself, rather than return a new Matrix that is the inverse of m, it should be a member.

All other things considered equal, choose a member. It is not possible to know if someone
someday will define a conversion operator. It is not always possible to predict if a future change
may require changes to the state of the object involved. The member function call syntax makes it
clear to the user that the object may be modified; a reference argument is far less obvious. Further
more, expressions in the body of a member can be noticeably shorter than the equivalent expres
sions in a global function; a nonmember function must use an explicit argument, whereas the mem
ber can use this implicitly. Also, because member names are local to the class they tend to be
shorter than the names of nonmember functions.

11.6 Large Objects

We defined the complex operators to take arguments of type complex. This implies that for each
use of a complex operator, each operand is copied. The overhead of copying two doubles can be
noticeable but often less than what a pair of pointers impose (access through a pointer can be rela
tively expensive). Unfortunately, not all classes have a conveniently small representation. To
avoid excessive copying, one can declare functions to take reference arguments. For example:

class Matrix {
double m [4] [4];

public:
Matrix ( );
friend Matrix operator+ (const Matrix& I const Matrix&);
friend Matrix operator* (const Matrix& I const Matrix&);

) ;

References allow the use of expressions involving the usual arithnletic operators for large objects
without excessive copying. Pointers cannot be used because it is not possible to redefine the mean
ing of an operator applied to a pointer. Addition could be defined like this:

Matrix operator+ (const Matrix& argJ I const Matrix& arg2)
{

Matrix sum;
for (int i=O; i<4; i++)

for (int j=O; j<4; j++)
sum.m[i] [j] =argJ.m[i] [j] +arg2.m[i] [j];

return sum;

This operator+ () accesses the operands of + through references but returns an object value.
Returning a reference would appear to be more efficient:

class Matrix {
/ I ...

friend Matrix& operator+ (const Matrix& I const Matrix&);
friend Matrix& operator* (const Matrix& I const Matrix&);

} ;



Section 11.6 Large Objects 283

This is legal, but it causes a memory allocation problem. Because a reference to the result will be
passed out of the function as a reference to the return value, the return vaiue cannot be an automatic
variable (§7.3). Since an operator is often used more than once in an expression, the result cannot
be a static local variable. The result would typically be allocated on the free store. Copying the
return value is often cheaper (in execution time, code space, and data space) than allocating and
(eventually) deallocating an object on the free store. It is also much simpler to program.

There are techniques you can use to avoid copying the result. The simplest is to use a buffer of
static objects. For example:

const int max_matrix_temp =7;

Matrix& get_matrix_temp ( )
{

static int nbuf =0;
static Matrix buf[ max_matrix_temp] ;

if (nbuf== max_matrix_temp) nbuf= 0;
return buf[nbuf++];

Matrix& operator+ (const Matrix& argJ, const Matrix& arg2)
{

Matrix& res =get_matrix_temp ();
/ / ...
return res;

Now a Matrix is copied only when the result of an expression is assigned. However, heaven help
you if you write an expression that involves more than max_matrix_temp temporaries!

A less error-prone technique involves defining the matrix type as a handle (§25.7) to a represen
tation type that really holds the data. In that way, the matrix handles can manage the representation
objects in such a way that allocation and copying are minimized (see §11.12 and § 11.14[ 18]).
However, that strategy relies on operators returning objects rather than references or pointers.
Another technique is to define ternary operations and have them automatically invoked for expres
sions such as a=b+c and a+b* i (§21.4.6.3, §22.4.7).

11.7 Essential Operators

In general, for a type X, the copy constructor X (const X&) takes care of initialization by an object
of the same type X. It cannot be overemphasized that assignment and initialization are different
operations (§ 10.4.4.1). This is especially important when a destructor is declared. If a class X has
a destructor that performs a nontrivial task, such as free-store deallocation, the class is likely to
need the full complement of functions that control construction, destruction, and copying:



284 Operator Overloading

class X {
/ / ...
X (Sometype) i / / constructor: create objects
X (cons! X&) i / / copy constructor
X& operator= (const X&); / / copy assignment: cleanup and copy
,."X ( ) ; / / destructor: cleanup

} ;

Chapter 11

There are three more cases in which an object is copied: as a function argument, as a function
return value, and as an exception. When an argument is passed, a hitherto uninitialized variable 
the formal parameter - is initialized. The semantics are identical to those of other initializations.
The same is the case for function return values and exceptions, although that is less obvious. In
such cases~ the copy constructor will be applied. For example:

string g (string arg)
{

return arg;

int main ()
{

string s = "Newton II ;

s =g (s);

/ / string passed by value (using copy constructor)

/ / string returned (using copy constructor)

/ / string initialized (using copy constructor)

Clearly, the value of s ought to be "Newton" after the call of g ( ). Getting a copy of the value of s
into the argument arg is not difficult; a call of string's copy constructor does that. Getting a copy
of that value out of g () takes another call of string (const string& ) ; this time, the variable initial
ized is a temporary one (§ 10.4.10), which is then assigned to s. Often one, but not both, of these
copy operations can be optimized away.

For a class for which the copy assignment and the copy constructor are not explicitly declared
by the programmer, the missing operation or operations will be generated by the compiler
(§ 10.2.5). This implies that copy operations are not inherited (§ 12.2.3).

11.7.1 Explicit Constructors

By default, a single argument constructor also defines an implicit conversion. For some types, that
is ideal. For example, a complex can be initialized with an int:

complex z =2; / / initialize z with complex(2)

In other cases, the implicit conversion is undesirable and error-prone. For example, if we could ini
tialize a string with an int size someone would write:

string s = 'a'; / / make s a string with int('a') elements

It is quite unlikely that this was what the person defining s meant.
Implicit conversion can be suppressed by declaring a constructor explicit. That is, an explicit

constructor will be invoked only explicitly. In particular, where a copy constructor is in principle
needed (§ 11.3.4), an explicit constructor will not be implicitly invoked. For example:



Section 11.7.1

class String {
1/ ...
explicit String (int n) i

String (const char* p) i

} i

String s1 = ' a ' i

String s2 (10);
String s3 =String (10) i

String s4 = II Brian II ;

String s5 ( II Fawlty II ) ;

void f (String) ;

String g ()
{

Explicit Constructors 285

I I preallocate n bytes
I I initial value is the C-style string p

I I error: no implicit cha,->String conversion
I 10k: String with space for 10 characters
I10k: String with space for 10 characters
I 10k: s4 = String( "Brian")

/(10);
f(String(10) );
/( II Arthur II );

/(sl);

I I error: no implicit int->String conversion

I10k: j(String("Arthur"))

String* pI = new String ( "Eric" );
String* p2 = new String (10);

return 10;

The distinction between

String s1 = ' a ' ;

and

String s2 (10) i

I I error: no implicit int->String conversion

I I error: no implicit cha,->String conversion

I10k: string with space for 10 characters

I I construct Year from int
I I conversion: Year to int

may seem subtle, but it is less so in real code than in contrived examples.
In Date, we used a plain int to represent a year (§10.3). Had Date been critical in our design,

we might have introduced a Year type to allow stronger compile-time checking. For example:

class Year {
int y;

public:
explicit Year (int i) : y (i) { }
operator int () const { return y;

} i

class Date {
public:

Date (int d, Month m, Year y);

II ...
} i

Date d3 (1978 ,feb, 21); I I error: 21 is not a Year
Date d4(21,feb,Year(1978))i II ok



286 Operator Overloading Chapter 11

/ / private to prevent copying
/ / private to prevent copying

The Year class is a simple "wrapper" around an into Thanks to the operator int ( ), a Year is
implicitly converted into an int wherever needed. By declaring the constructor explicit, we make
sure that the in! to Year happens only when we ask for it and that "accidental" assignments are
caught at compile time. Because Year's member functions are easily inlined, no run-time or space
costs are added.

A similar technique can be used to define range types (§25.6.1).

11.8 Subscripting

An operator [] function can be used to give subscripts a meaning for class objects. The second
argument (the subscript) of an operator [] function may be of any type. This makes it possible to
define vectors, associative arrays, etc.

As an example, let us recode the example from §5.5 in which an associative array is used to
write a small program for counting the number of occurrences of words in a file. There, a function
is used. Here, an associative array type is defined:

class Assoc {
struct Pair {

string name;
double val;
Pair (string n =II II , double v =0) : name (n ), val (v) { }

} ;

vector<Pair> vec;

Assoc (const Assoc&);
Assoc& operator= (const Assoc&);

public:
Assoc () {}
const double& operator [] (const string&);
double& operator [] (string&);
void print_all () const;

} ;

An Assoc keeps a vector of Pairs. The implementation uses the same trivial and inefficient search
method as in §5.5:

double& Assoc: : operator [] (string& s)
/ / search for s; return its value ~ffound; otherwise, make a nel1t' Pair and return the default value 0

for (vector<Pair>:: consl_iterator p = vec. begin ( ); p! =vec. end ( ); ++p)
if (s == p->name) return p->val;

vec. push_back (Pair (s, 0) ) i

return vec. back ( ) . val i

/ / initial value: 0

/ / return last element (§16.3.3)

Because the representation of an Assoc is hidden, we need a way of printing it:



Section 11.8

void Assoe:: print_all () eonst
{

Subscripting 287

for (vector<Pair>:: eonst_iterator p = vee. begin ( ); p! =vee . end ( ); + +p)
eout « p->name« II: II «p->val« '\n';

Finally, we can write the trivial main program:

int main ( )
{

/ / count the occurrences ofeach word on input

string buf;
Assoe vee;
while (ein»buj) vee [buf] ++;

vee . print_all ( );

A further development of the idea of an associative array can be found in § 17.4.1.
An operator [] () must be a member function.

11.9 Function Call

Function call, that is, the notation expression(expression-list), can be interpreted as a binary opera
tion with the expression as the left-hand operand and the expression-list as the right-hand operand.
The call operator () can be overloaded in the same way as other operators can. An argument list
for an operator () () is evaluated and checked according to the usual argument-passing rules.
Overloading function call seems to be useful primarily for defining types that have only a single
operation and for types for which one operation is predominant. The call operator is also known as
the application operator.

The most obvious, and probably also the most important, use of the () operator is to provide
the usual function call syntax for objects that in some 'Nay behave like functions. An object that
acts like a function is often called a/unction-like object or simply a/unction object (§ 18.4). Such
function objects are important because they allow us to write code that takes nontrivial operations
as parameters. For example, the standard library provides many algorithms that invoke a function
for each element of a container. Consider:

void negate (eomplex& e) {e = - e; }

void f( veetor<eomplex> & aa, list<eomplex>& ll)
{

for_eaeh (aa . begin ( ) , aa . end ( ) , negate); / / negate all vector elements
for_each (ll . begin ( ) , II . end ( ) , negate) ; / / negate all list elelnents

This negates every element in the vector and the list.
What if we wanted to add complex (2 , 3) to every element? That is easily done like this:



288 Operator Overloading

void add23 (complex& c)
{

c + = complex (2 , 3) ;

void g (vector<complex>& aa, list<complex>& Il)
{

for_each (aa. begin ( ), aa. end ( ), add23);
for_each (ll. begin (), ll. end ( ), add23);

Chapter 11

/ / save value

How would we write a function to repeatedly add an arbitrary complex value? We need something
to which we can pass that arbitrary value and which can then use that value each time it is called.
That does not come naturally for functions. Typically, we end up "passing" the arbitrary value by
leaving it in the function's surrounding context. That's messy. However, we can write a class that
behaves in the desired way:

class Add {
complex val;

public:
Add (complex c) {val = c; }

Add (double r, double i) { val = complex (r , i) ;

} ;

void operator () (complex& c) const { c += val; } / / add value to argulnent

An object of class Add is initialized with a complex number, and when invoked using (), it adds
that number to its argument. For example:

void h (vector<complex>& aa, list<complex>& Il, complex z)

{

for_each (aa . begin (), aa. end () ,Add (2,3) );
for_each (ll. begin (), ll. end ( ) ,Add (z) );

This will add complex (2 , 3) to every element of the array and z to every element on the list. Note
that Add (z) constructs an object that is used repeatedly by for_each ( ). It is not simply a function
that is called once or even called repeatedly. The function that is called repeatedly is Add (z) 's
operator () ( ) .

This all works because for_each is a template that applies () to its third argument without car
ing exactly what that third argument really is:

template<class Iter, class Fct> Fct for_each (Iter b, Iter e, Fct j)
{

while (b ! =e) f( *b++);
return f;

At first glance, this technique may look esoteric, but it is simple, efficient, and extremely useful
(see §3.8.5, § 18.4).



Section 11.9 Function Call 289

Other popular uses of operator () () are as a substring operator and as a subscripting operator
for multidimensional arrays (§22.4.5).

An operator () () must be a member function.

11.10 Dereferencing

The dereferencing operator -> can be defined as a unary postfix operator. That is, given a class

class Ptr {
/ / ...
X* operator- > ( ) ;

} ;

objects of class Ptr can be used to access members of class X in a very similar manner to the way
pointers are used. For example:

void f(Ptr p)
{

p->m = 7; / / (p.operator->())->m =7

The transformation of the object p into the pointer p. operator-> () does not depend on the mem
ber m pointed to. That is the sense in which operator- > () is a unary postfix operator. However,
there is no new syntax introduced, so a member name is still required after the - >. For example:

void g (Ptr p)
{

x* ql = p->; / / syntax error
x* q2 = p. operator-> ( ); / / ok

Overloading - > is primarily useful for creating "smart pointers," that is, objects that act like point
ers and in addition perform some action whenever an object is accessed through them. For exam
ple, one could define a class Recytr for accessing objects of class Rec stored on disk. Recytr' s
constructor takes a name that can be used to find the object on disk, Recytr: :operator- > ( )
brings the object into main memory when accessed through its Recytr, and Recytr's destructor
eventually writes the updated object back out to disk:

class Recytr {
const char* identifier;
Rec* in_core_address;
/ / ...

public:
Recytr (const char* p) : identifier (p), in_core_address (0) { }
-Recytr () { write_to_disk (in_core_address, identifier) ;
Rec* operator-> ( );

} ;



290 Operator Overloading

Rec* Recytr:: operator-> ( )
{

if (in_core_address == 0) in_core_address = readJrom_disk (identifier) i
return in_core_address i

Recytr might be used like this:

struct Rec { / / the Rec that a Recytr points to
string name i
/ / ...

} i

Chapter 11

void update (const char* s)
{

Recytr p (s) i

p->name = II Roscoe II i
/ / ...

/ / get Recytrfor s

/ / update s; ifnecessary, first retrieve from disk

Naturally, a real Recytr would be a template so that the Rec type is a parameter. Also, a realistic
program would contain error-handling code and use a less naive way of interacting with the disk.

For ordinary pointers, use of -> is synonymous with some uses of unary * and []. Given

y* Pi

it holds that

p->m== (*p) .m==p[O].m

As usual, no such guarantee is provided for user-defined operators. The equivalence can be pro
vided where desired:

class Ptr_to_Y {
y* Pi

public:
y* operator-> () {return pi}
Y& operator* () { return *Pi}
Y& operator [ ] (int i) { return p [i] i

} i

If you provide more than one of these operators, it might be wise to provide the equivalence, just as
it is wise to ensure that ++x and x+=l have the same effect as x=x+J for a simple variable x of
some class if ++, +=, =, and + are provided.

The overloading of -> is important to a class of interesting programs and not just a minor
curiosity. The reason is that indirection is a key concept and that overloading - > provides a clean,
direct, and efficient way of representing indirection in a program. Iterators (Chapter 19) provide an
important example of this. Another way of looking at operator - > is to consider it as a way of pro
viding C++ with a limited, but useful, form of delegation (§24.3.6).

Operator -> must be a member function. If used, its return type must be a pointer or an object
of a class to which you can apply ->. When declared for a template class, operator-> () is



Section 11.10 Dereferencing 291

frequently unused, so it makes sense to postpone checking the constraint on the return type until
actual use.

11.11 Increment and Decrement

Once people invent "smart pointers," they often decide to provide the increment operator ++ and
the decrement operator - - to mirror these operators' use for built-in types. This is especially obvi
ous and necessary where the aim is to replace an ordinary pointer type with a "smart pointer" type
that has the same semantics, except that it adds a bit of run-time error checking. For example, con
sider a troublesome traditional program:

void /1 (T a)
{

/ / traditional use

T v[200];
T*p=&V[OJi
P--i
*p = a; / / Oops: 'p' out of range, uncaught
++Pi
*p = ai / / ok

We might want to replace the pointer p with an object of a class Ptr_to_T that can be dereferenced
only provided it actually points to an object. We would also like to ensure that p can be incre
mented and decremented, only provided it points to an object within an array and the increment and
decrement operations yield an object within the array. That is we would like something like this:

class Ptr_to_T {
/ / ...

} i

void 12 (T a)
{

/ / checked

T V[200]i
Ptr_to_T p(&v[O],V,200)i
P--i
*P = a i / / run-time error: 'p' out of range
++Pi
*p = ai / / ok

The increment and decrement operators are unique among C++ operators in that they can be used as
both prefix and postfix operators. Consequently, we must define prefix and postfix increment and
decrement Ptr to T. For example:



292 Operator Overloading

class Ptr_to_T {
T* p;
T* array;
int size;

public:

Ptr_to_T( T* p, T* v, int s);

Ptr_to_T (T* p) ;

Ptr_to_T& operator++ ( ) ;
Ptr_to_T operator++ (int) ;

Ptr_to_T& operator- - ( ) ;
Ptr_to_T operator- - (int) ;

/ / bind to array v ofsize s, initial value p
/ / bind to single object, initial value p

/ / prefix
/ / postfix

/ / prefix
/ / postfix

Chapter 11

} ;

T& operator* ( ) ; / / prefix

The int argument is used to indicate that the function is to be invoked for postfix application of ++.
This int is never used; the argument is simply a dummy used to distinguish between prefix and
postfix application. The way to remember which version of an operator++ is prefix is to note that
the version without the dummy argument is prefix, exactly like all the other unary arithmetic and
logical operators. The dummy argument is used only for the "odd" postfix ++ and --.

Using Ptr_to_T, the example is equivalent to:

void f3 (T a) / / checked
{

T v[200];
Ptr_to_T p(&v[O],V,200)i
p. operator-- (0);
p.operator* () = a i / / run-time error: 'p' out ofrange
p. operator++ ( ) i
P . operator* () =a; / / ok

Completing class Ptr_to_Tis left as an exercise (§11.14[19]). Its elaboration into a template using
exceptions to report the run-time errors is another exercise (§ 14.12[2]). An example of operators
++ and -- for iteration can be found in §19.3. A pointer template that behaves correctly with
respect to inheritance is presented in §13.6.3.

11.12 A String Class

Here is a more realistic version of class String. I designed it as the minimal string that served my
needs. This string provides value semantics, character read and write operations, checked and
unchecked access, stream I/O, literal strings as literals, and equality and concatenation operators. It
represents strings as C-style, zero-terminated arrays of characters and uses reference counts to mini
mize copying. Writing a better string class and/or one that provides more facilities is a good exer
cise (§11.14[7-12]). That done, we can throwaway our exercises and use the standard library
string (Chapter 20).



Section 11.12 A String Class 293

My almost-real String employs three auxiliary classes: Srep, to allow an actual representation
to be shared between several Strings with the same value; Range, to be thrown in case of range
errors, and ere/, to help implement a subscript operator that distinguishes between reading and
writing:

class String {
struct Srep;
Srep *repi

public:
class ere/;

class Range { };

/ / 000

} ;

/ / representation

/ / reference to char

/ / for exceptions

Like other members, a member class (often called a nested class) can be declared in the class itself
and defined later:

struct String:: Srep {
char* s i / / pointer to elements
int sz; / / number ofcharacters
int n i / / reference count

Srep (int nsz, const char* p)
{

n =];

sz = nSZi
s = new char [SZ+] ] i / / add space for terminator
strcpy (s , p ) i

-Srep () {delete [] s;

Srep* get_own_copy ( )
{

/ / clone ifnecessary

if (n= =]) return this;
n--i
return new Srep (sz, s);

void assign (int nsz, const char* p)
{

if (sz ! =nsz) {
delete [] Si
SZ = nSZi
s = new char [sz+]];

}

strcpy (s, p) i



294 Operator Overloading

private: / / prevent copying:
Srep (const Srep&);
Srep& operator= (const Srep&);

} ;

Chapter 11

Class String provides the usual set of constructors, destructor, and assignment operations:

class String {
/ / ...
String ( ) ; / / x =""
Stri~g (const char*); / / x ="abc"
String (const String&); / / x = other_string
String& operator= (const char * );
String& operator= (const String&);
-String ( );

/ / ...
} ;

This String has value semantics. That is, after an assignment s1=s2, the two strings s1 and s2 are
fully distinct and subsequent changes to the one have no effect on the other. The alternative would
be to give String pointer semantics. That would be to let changes to s2 after s1=s2 also affect the
value of s1. For types with conventional arithmetic operations, such as complex, vector, matrix,
and string, I prefer value semantics. However, for the value semantics to be affordable, a String is
implemented as a handle to its representation and the representation is copied only when necessary:

String: :String ( )
{

/ / the empty string is the default value

rep =new Srep(O, "");

String: :String (const String& x) / / copy constructor
{

x. rep->n++ ;
rep =x . rep; / / share representation

String: : -String ( )
{

if (--rep->n == 0) delete rep;

String& String: : operator= (const String& x)
{

/ / copy assignment

x. rep->n++; / / protects against "st =sf'
if (--rep->n == 0) delete rep;
rep =x . rep; / / share representation
return * this;

Pseudo-copy operations taking const char* arguments are provided to allow string literals:



Section 11.12

String: :String (const char* s)
{

rep = new Srep (strlen (s) IS) i

String& String: : operator= (const char* s)
{

if (rep- >n == 1) / / recycle Srep
rep- >assign (strlen (s) IS) i

else { / / use new Srep
rep->n-- i
rep = new Srep (strlen (s) ,s) i

}

return * this;

A String Class 295

The design of access operators for a string is a difficult topic because ideally access is by conven
tional notation (that is, using []), maximally efficient, and range checked. Unfortunately, you can
not have all of these properties simultaneously. My choice here has been to provide efficient
unchecked operations with a slightly inconvenient notation plus slightly less efficient checked oper
ators with the conventional notation:

class String {
/ / ...
void check (int i) const { if (;<0 I I rep->sz<=i) throw Range ( ) i }

char read (int i) const { return rep- >s [i] i }
void write (int i I char c) { rep=rep->get_own_copy ( ) i rep->s [;] =c;

eref operator [] (int i) {check (i) i return eref( * this I ;) i }
char operator [] (int ;) const { check (;) i return rep- >s [;] i }

int size () const { return rep- >sz i }

/ / ...
} i

The idea is to use [] to get checked access for ordinary use, but to allow the user to optimize by
checking the range once for a set of accesses. For example:

int hash (const String& s)
{

int h = s . read (0) i
const int max = s . size ( ) i
for (int i = 1 i i<maxi i++) h "= s. read (i) »1 i / / unchecked access to s
return hi

Defining an operator, such as [], to be used for both reading and writing is difficult where it is not
acceptable simply to return a reference and let the user decide what to do with it. Here, that is not a
reasonable alternative because I have defined String so that the representation is shared between
Strings that have been assigned, passed as value arguments, etc., until someone actually writes to a



296 Operator Overloading Chapter 11

I / yield value
/ / change value

String. Then, and only then, is the representation copied. This technique is usually called copy
on-write. The actual copy is done by String:: Srep:: get_own_copy ( ) .

To get these access functions inlined, their definitions must be placed so that the definition of
Srep is in scope. This implies that either Srep is defined within String or the access functions are
defined inline outside String and after String: :Srep (§11.14[2]).

To distinguish between a read and a write, String: : operator [] () returns a ere! when called
for a non-const object. A Cre! behaves like a char&, except that it calls
String: : Srep : : get_own_copy () when written to:

class String:: eref { / / reference to sfi]
friend class String;

String& s;
int i i

Cref(String& ss lint ii) : s (ss) I i (ii) { }

public:
operator char () const { return s. read (i) ;
void operator= (char c) {s. write (i ,e); }

} ;

For example:

void f(String s I const String& r)
{

char c1 =s [1] ;
s[l] = 'c' i

char c2 =r [1] ;
r[l] = 'd';

/ / cl =s.operator{](1).operator char()
/ I s.operator{](J).operator=('c')

/ / c2 = r.operator{](1)
/ / error: assignment to char, r.operator{](J) = 'd'

Note that for a non-const object s . operator [] (J) is Cre!(s I 1) .
To complete class String, I provide a set of useful functions:

class String {
/ / ...

String& operator+= (const String&);
String& operator+= (const char*);

friend ostream& operator« (ostream& I const String&);
friend istream& operator» (istream& I String&);

friend bool operator== (const String& x, const char* s)
{ return strcmp (x. rep->s, S) == 0; }

friend bool operator== (const String& X I const String& y)

{ return strcmp (x. rep->s I y. rep->s) == 0 i }

friend bool operator! = (const String& X I const char* s)
{return strcmp (x. rep->s, s) != 0; }



Section 11.12

friend bool operator! =(const String& x, const String& y)

{ return strcmp(x.rep->s, y.rep->s) != 0; }
} ;

String operator+ (const String&, const String&);
String operator+ (const String&, const char*);

To save space, I have left the I/O and concatenation operations as exercises.
The main program simply exercises the String operators a bit:

String f (String a, String b)
{

a[2] = 'x';

char c = b [3] ;
cout« II in /: II « a« ' , « b« ' '« c« '\n';

return b;

int main ()
{

String x, y;
cout << "Please enter two strings\n";
cin »x» y;
cout << "input: II << X << ' , << y << '\n';
String Z = x;
y =f(x,y);
if (x ! = z) cout« "X corrupted!\n";
x[O] = '!';

if (x == z) cout« II write failed! \n II ;

cout << II exit: II << X << ' , << y << ' , << z << '\n';

A String Class 297

This String lacks many features that you might consider important or even essential. For example,
it offers no operation of producing a C-string representation of its value (§ 11.14[10], Chapter 20).

11.13 Advice

[1] Define operators primarily to mimic conventional usage; §11.1.
[2] For large operands, use const reference argument types; §11.6.
[3] For large results, consider optimizing the return; §11.6.
[4] Prefer the default copy operations if appropriate for a class; §11.3.4.
[5] Redefine or prohibit copying if the default is not appropriate for a type; §11.2.2.
[6] Prefer member functions over nonmembers for operations that need access to the representa

tion; §11.5.2.
[7] Prefer nonmember functions over members for operations that do not need access to the repre-

sentation; §11.5.2.
[8] Use namespaces to associate helper functions with' 'their" class; §11.2.4.
[9] Use nonmember functions for symmetric operators; §11.3.2.
[1 0] Use () for subscripting multidimensional arrays; §11.9.



298 Operator Overloading Chapter 11

[II] Make constructors that take a single ~ ~size argument" explicit; §11.7.1.
[12] For non-specialized uses, prefer the standard string (Chapter 20) to the result of your own

exercises; § 11.12.
[13] Be cautious about introducing implicit conversions; § 11.4.
[14] Use member functions to express operators that require an Ivalue as its left-hand operand;

§11.3.5.

11.14 Exercises

I. (*2) In the following program, which conversions are used in each expression?

struct X {
int i;
X(int) ;
X operator+ (int) ;

} ;

struct Y {
int i;
Y(X);

Y operator+ (X) ;

operator int ( ) ;
} ;

extern X operator* (X I Y);

extern int !(X);

X x= 1;
Y y=x;
int i = 2;

int main ()
{

i + 10;
x + y + i;
!(y);

y + 10;
x*x+i;
y + y;

y+10*y;
!(7);

106 + y;

Modify the program so that it will run and print the values of each legal expression.
2. (*2) Complete and test class String from §11.12.
3. (*2) Define a class INTthat behaves exactly like an into Hint: Define INT:: operator int ( ) .
4. (* 1) Define a class RINT that behaves like an int except that the only operations allowed are +

(unary and binary), - (unary and binary), *, /, and %. Hint: Do not define RINT: :operator
int () .

5. (*3) Define a class UNT that behaves like a RINT, except that it has at least 64 bits of preci
sion.

6. (*4) Define a class implementing arbitrary precision arithmetic. Test it by calculating the facto
rial of 1000. Hint: You will need to manage storage in a way similar to what was done for class
String.



/ / iterlltorfor s
/ / reference to next elenlent

Section 11.14

7. (*2) Define an external iterator for class String:

class String_iter {
/ / refer to string and string element

public:
String_iter (String& s) ;

char& next ( ) ;

/ / nlore operations ofyour choice
} ;

Exercises 299

Compare this in utility, programming style, and efficiency to having an internal iterator for
String (that is, a notion of a current element for the String and operations relating to that ele
ment).

8. (* 1.5) Provide a substring operator for a string class by overloading (). What other operations
would you like to be able to do on a string?

9. (*3) Design class String so that the substring operator can be used on the left-hand side of an
assignment. First, write a version in which a string can be assigned to a substring of the same
length. Then, write a version in which the lengths may differ.

10. (*2) Define an operation for String that produces a C-string representation of its value. Discuss
the pros and cons of having that operation as a conversion operator. Discuss alternatives for
allocating the memory for that C-string representation.

II. (*2.5) Define and implement a simple regular expression pattern match facility for class String.
12. (* 1.5) Modify the pattern match facility from § 1I. 14[ 11] to work on the standard library string.

Note that you cannot modify the definition of string.
13. (*2) Write a program that has been rendered unreadable through use of operator overloading

and macros. An idea: Define + to mean - and vice versa for INTs. Then, use a macro to define
int to mean INT. Redefine popular functions using reference type arguments. Writing a few
misleading comments can also create great confusion.

14. (*3) Swap the result of § 11.14[ 13] with a friend. Without running it, figure out what your
friend's program does. When you have completed this exercise, you'll know what to avoid.

15. (*2) Define a type Vec4 as a vector of four floats. Define operator [] for Vec4. Define opera
tors .I., -, *, /, =, +=, -=, *=, and / = for combinations of vectors and floating-point numbers.

16. (*3) Define a class Mat4 as a vector of four Vec4s. Define operator [] to return a Vec4 for
Mat4. Define the usual matrix operations for this type. Define a function doing Gaussian elim
ination for a Mat4.

17. (*2) Define a class Vector similar to Vec4 but with the size given as an argument to the con
structor Vector: : Vector (int) .

18. (*3) Define a class Matrix similar to Mat4 but with the dimensions given as arguments to the
constructor Matrix: : Matrix (int , int) .

19. (*2) Complete class Ptr_to_T from §11.11 and test it. To be complete, Plr_to_T must have at
least the operators *, ->, =, ++, and - - defined. Do not cause a run-time error until a wild
pointer is actually dereferenced.



300 Operator Overloading

20. (* I) Given two structures:

struet S { int x, y; };
struet T { char* p; char* q; };

Chapter 11

write a class C that allows the use of x and p from some Sand T, much as if x and p had been
members of C.

21. (* 1.5) Define a class Index to hold the index for an exponentiation function
mypow (double, Index). Find a way to have 2* *I call mypow (2, I) .

22. (*2) Define a class Imaginary to represent imaginary numbers. Define class Complex based on
that. Implement the fundamental arithmetic operators.



12
Derived Classes

Do not multiply objects without necessity.
- W Occam

Concepts and classes - derived classes - member functions - construction and
destruction - class hierarchies - type fields - virtual functions - abstract classes 
traditional class hierarchies - abstract classes as interfaces - localizing object creation
- abstract classes and class hierarchies - advice - exercises.

12.1 Introduction

From Simula, C++ borrowed the concept of a class as a user-defined type and the concept of class
hierarchies. In addition, it borrowed the idea for system design that classes should be used to
model concepts in the programmer's and the application's world. C++ provides language con
structs that directly support these design notions. Conversely, using the language features in sup
port of design concepts distinguishes effective use of C++. Using language constructs only as nota
tional props for more traditional types of programming is to miss key strengths of C++.

A concept does not exist in isolation. It coexists with related concepts and derives much of its
power from relationships with related concepts. For example, try to explain what a car is. Soon
you'll have introduced the notions of wheels, engines, drivers, pedestrians, trucks, ambulances,
roads, oil, speeding tickets, motels, etc. Since we use classes to represent concepts, the issue
becomes how to represent relationships between concepts. However, we can't express arbitrary
relationships directly in a programming language. Even if we could, we wouldn't want to. Our
classes should be more narrowly defined than our everyday concepts - and more precise. The
notion of a derived class and its associated language mechanisms are provided to express hierarchi
cal relationships, that is, to express commonality between classes. For example, the concepts of a
circle and a triangle are related in that they are both shapes; that is, they have the concept of a shape
in common. Thus, we must explicitly define class Circle and class Triangle to have class Shape in



302 Derived Classes Chapter 12

common. Representing a circle and a triangle in a program without involving the notion of a shape
would be to lose something essential. This chapter is an exploration of the implications of this sim
ple idea, which is the basis for what is commonly called object-oriented programming.

The presentation of language features and techniques progress from the simple and concrete to
the more sophisticated and abstract. For many programmers, this will also be a progression from
the familiar towards the less well known. This is not a simple journey from "bad old techniques"
towards "the one right way." When I point out limitations of one technique as a motivation for
another, I do so in the context of specific problems; for different problems or in other contexts, the
first technique may indeed be the better choice. Useful software has been constructed using all of
the techniques presented here. The aim is to help you attain sufficient understanding of the tech
niques to be able to make intelligent and balanced choices among them for real problems.

In this chapter, I first introduce the basic language features supporting object-oriented program
ming. Next, the use of those features to develop well-structured programs is discussed in the con
text of a larger example. Further facilities supporting object-oriented programming, such as multi
ple inheritance and run-time type identification, are discussed in Chapter 15.

12.2 Derived Classes

Consider building a program dealing with people employed by a firm. Such a program might have
a data structure like this:

struct Employee {
string first_name, family_name;
char middle_initial;
Date hiring_date;
short department;
/ / .0.

} ;

Next, we might try to define a manager:

struct Manager {
Employee emp;
list<Employee* > group;
short level;
/ / ...

} ;

/ / manager's employee record
/ / people managed

A manager is also an employee; the Employee data is stored in the emp member of a Manager
object. This may be obvious to a human reader - especially a careful reader - but there is nothing
that tells the compiler and other tools that Manager is also an Employee. A Manager* is not an
Employee*, so one cannot simply use one where the other is required. In particular, one cannot put
a Manager onto a list of Employees without writing special code. We could either use explicit
type conversion on a Manager* or put the address of the emp member onto a list of employees.
However, both solutions are inelegant and can be quite obscure. The correct approach is to explic
itly state that a Manager is an Employee, with a few pieces of information added:



Section 12.2

struct Manager : public Employee {
list<Employee* > group;
short level;
/ I ...

} ;

Derived Classes 303

The Manager is derived from Employee, and conversely, Employee is a base class for Manager.
The class Manager has the members of class Employee (first_name, department, etc.) in addition
to its own members (group, level, etc.).

Derivation is often represented graphically by a pointer from the derived class to its base class
indicating that the derived class refers to its base (rather than the other way around):

Employee

f
Manager

A derived class is often said to inherit properties from its base, so the relationship is also called
inheritance. A base class is sometimes called a superclass and a derived class a subclass. This ter
minology, however, is confusing to people who observe that the data in a derived class object is a
superset of the data of an object of its base class. A derived class is larger than its base class in the
sense that it holds more data and provides more functions.

A popular and efficient implementation of the notion of derived classes has an object of the
derived class represented as an object of the base class, with the information belonging specifically
to the derived class added at the end. For example:

Employee:

first name
family_name

Manager:

first_name
family_name

group
level

Deriving Manager from Employee in this way makes Manager a subtype of Employee so that a
Manager can be used wherever an Employee is acceptable. For example, we can now create a list
of Employees, some of whom are Managers:

void j(Manager mJ 1 Employee eJ)
{

list<Employee * > ellst;

ellst . pushJront (&mJ ) ;
elist . pushJront (&e J ) ;
/ / ...



304 Derived Classes Chapter 12

A Manager is (also) an Employee, so a Manager* can be used as an Employee*. However, an
Employee is not necessarily a Manager, so an Employee* cannot be used as a Manager*. In gen
eral, if a class Derived has a public base class (§ 15.3) Base, then a Derived* can be assigned to a
variable of type Base* without the use of explicit type conversion. The opposite conversion, from
Base* to Derived*, must be explicit. For example:

void g(Manager mm, Employee ee)
{

pm =static_cast<Manager*> (pe);

Employee* pe = &mm;
Manager* pm = &ee;

pm->level =2;

pm->level =2;

/ / ok: every Manager is an Enzployee
/ / error: not every Employee is a Manager

/ / disaster: ee doesn't have a 'level'

/ / brute force: works because pe points
/ / to the Manager mm

/ / fine: pm points to the Manager mm that has a 'level'

In other words, an object of a derived class can be treated as an object of its base class when manip
ulated through pointers and references. The opposite is not true. The use of static_cast and
dynamic_cast is discussed in §15.4.2.

Using a class as a base is equivalent to declaring an (unnamed) object of that class. Conse
quently, a class must be defined in order to be used as a base (§5.7):

class Employee; / / declaration only, no definition

class Manager : public Employee { / / error: Employee not defined
/ / ...

} ;

12.2.1 Member Functions

Simple data structures, such as Employee and Manager, are really not that interesting and often not
particularly useful. We need to give the information as a proper type that provides a suitable set of
operations that present the concept, and we need to do this without tying us to the details of a par
ticular representation. For example:

class Employee {
string first_name, family_name;
char middle_initial i

/ / ...
public:

void print () const;
string full_name () const

{ return first_name + ' , + middle initial + ' , + family_name; }
/ / ...

} ;



Section 12.2.1

class Manager : public Employee {
/ / ...

public:
void print () const;
/ / ...

} ;

Member Functions 305

A member of a derived class can use the public - and protected (see §15.3) - members of its base
class as if they were declared in the derived class itself. For example:

void Manager:: print () const
{

cout« nname is" «full_name()« '\n';
/ I ...

However, a derived class cannot use a base class' private names:

void Manager: :print () const
{

cout« II name is II «family_name« '\n' i / / error!
/ I ...

This second version of Manager: :print () will not compile. A member of a derived class has no
special permission to access private members of its base class, so family_name is not accessible to
Manager: :print ( ) .

This comes as a surprise to some, but consider the alternative: that a member function of a
derived class could access the private members of its base class. The concept of a private member
would be rendered meaningless by allowing a programmer to gain access to the private part of a
class simply by deriving a new class from it. Furthermore, one could no longer find all uses of a
private name by looking at the functions declared as members and friends of that class. One would
have to examine every source file of the complete program for derived classes, then examine every
function of those classes, then find every class derived from those classes, etc. This is, at best,
tedious and often impractical. Where it is acceptable, protected - rather than private - members
can be used. A protected member is like a public member to a member of a derived class, yet it is
like a private member to other functions (see §15.3).

Typically, the cleanest solution is for the derived class to use only the public members of its
base class. For example:

void Manager: :print () const
{

Employee: :print ( ) i / / print Employee information

cout « level i

/ / ...
/ / print Manager-specific information

Note that :: must be used because print () has been redefined in Manager. Such reuse of names
is typical. The unwary might write this:



306 Derived Classes

void Manager:: print () const
{

print ( ) ; / / oops!

/ / print Mal1ager-spec~fic ;,~forlnati()n

and find the program involved in an unexpected sequence of recursive calls.

Chapter 12

/ / initialize melnbers

12.2.2 Constructors and Destructors

Some derived classes need constructors. If a base class has constructors, then a constructor must be
invoked. Default constructors can be invoked implicitly. However, if all constructors for a base
require arguments, then a constructor for that base must be explicitly called. Consider:

class Employee {
string first_name, family_name;
short department;
/ / ...

public:
Employee (const string& n, int d);
/ / ...

} ;

class Manager : public Employee {
list<Employee* > group; / / people managed
short level;
/ / ...

public:
Manager (const string& n, int d, int lvl);
/ / ...

} ;

Arguments for the base class' constructor are specified in the definition of a derived class' con
structor. In this respect, the base class acts exactly like a member of the derived class (§ 10.4.6).
For example:

Employee:: Employee (const string& n, int d)
: family_name (n ), department (d)

/ / ...

Manager: : Manager (const string& n lint d, int LvL)
: Employee (n , d) , / / initialize base

level (Iv/) / / initialize lnembers

/ / ...

A derived class constructor can specify initializers for its own members and immediate bases only;
it cannot directly initialize members of a base. For example:



Section 12.2.2 Constructors and Destructors 307

Manager: : Manager (const string& n lint d lint LvL)
: family_name (n) I / / error: family_name not declared in manager

department (d) I / / error: department not declared in manager
LeveL (LvL)

/ / ...

This definition contains three errors: it fails to invoke Employee's constructor, and twice it
attempts to initialize members of Employee directly.

Class objects are constructed from the bottom up: first the base, then the members, and then the
derived class itself. They are destroyed in the opposite order: first the derived class itself, then the
members, and then the base. Members and bases are constructed in order of declaration in the class
and destroyed in the reverse order. See also §10.4.6 and §15.2.4.1.

12.2.3 Copying

Copying of class objects is defined by the copy constructor and assignments (§ 10.4.4.1). Consider:

cLass EmpLoyee {
/ / ...
EmpLoyee& operator= (const EmpLoyee&) i

EmpLoyee (const Employee&) i

} i

void f(const Manager& m)

{

EmpLoyee e = m i

e = mi

/ / construct e froln Employee part of 111

/ / assign Enlployee part ofm to e

Because the Employee copy functions do not know anything about Managers, only the Employee
part of a Manager is copied. This is commonly referred to as slicing and can be a source of sur
prises and errors. One reason to pass pointers and references to objects of classes in a hierarchy is
to avoid slicing. Other reasons are to preserve polymorphic behavior (§2.5.4, §12.2.6) and to gain
efficiency.

Note that if you don't define a copy assignment operator, the compiler will generate one
(§ 11.7). This implies that assignment operators are not inherited. Constructors are never inherited.

12.2.4 Class Hierarchies

A derived class can itself be a base class. For example:

class Employee { / * ... * / } ;
class Manager : public Employee { / * * / };
class Director : public Manager { / * * / } i

Such a set of related classes is traditionally called a class hierarchy. Such a hierarchy is most often
a tree, but it can also be a more general graph structure. For example:



308 Derived Classes Chapter 12

class Temporary { / * ... * / };
class Secretary : public Employee { / * ... * / };
class Tsec : public Temporary, public Secretary { / * ... * / };
class Consultant : public Temporary, public Manager { / * ... * / };

Or graphically:

DirectorConsultant

Temporary Employee

\ secrta~anager
fie~ 1

Thus, as is explained in detail in §15.2, c++ can express a directed acyclic graph of classes.

12.2.5 Type Fields

To use derived classes as more than a convenient shorthand in declarations, we must solve the fol
lowing problem: Given a pointer of type Base*, to which derived type does the object pointed to
really belong? There are four fundamental solutions to the problem:

[1] Ensure that only objects of a single type are pointed to (§2.7, Chapter 13).
[2] Place a type field in the base class for the functions to inspect.
[3] Use dynamic_cast (§15.4.2, §15.4.5).
[4] Use virtual functions (§2.5.5, §12.2.6).

Pointers to base classes are commonly used in the design of container classes such as set, vector,
and list. In this case, solution 1 yields homogeneous lists, that is, lists of objects of the same type.
Solutions 2, 3, and 4 can be used to build heterogeneous lists, that is, lists of (pointers to) objects of
several different types. Solution 3 is a language-supported variant of solution 2. Solution 4 is a
special type-safe variation of solution 2. Combinations of solutions 1 and 4 are particularly inter
esting and powerful; in almost all situations, they yield cleaner code than do solutions 2 and 3.

Let us first examine the simple type-field solution to see why it is most often best avoided. The
manager/employee example could be redefined like this:

struct Employee {
enum Empl_type { M, E };
Empl_type type;

Employee () : type (E) { }

string first_name, family_name;
char middle_initial;

Date hiring_date;
short department;
/ / ...

} ;



Section 12.2.5

struct Manager : public Employee {
Manager ( ) { type =M; }

Type Fields 309

} ;

list<Employee* > group;
short level;
/ / ...

/ / people managed

Given this, we can now write a function that prints information about each Employee:

void print_employee (const Employee* e)
{

switch (e- >type) {
case Employee:: E:

cout« e->jamily_name« '\1' «e->department« '\n';

/ / ...
break;

case Employee:: M :
{ cout«e->jamily_name« '\1' «e->department« '\n';

/ / ...
const Manager* p = static_cast<const Manager*> (e);
cout« II level II «p->level« '\11';

/ / ...
break;

and use it to print a list of Employees, like this:

void print_list(const list<Employee*>& elist)
{

for (list<Employee*>:: const_iterator p = elist. begin (); p! =elist. end (); ++p)
print_employee (*p) ;

This works fine, especially in a small program maintained by a single person. However, it has the
fundamental weakness in that it depends on the programmer manipulating types in a way that can
not be checked by the compiler. This problem is usually made worse because functions such as
print_employee () are organized to take advantage of the commonality of the classes involved:

void print_employee (const Employee* e)
{

cout« e->jamily_name« '\1' « e->department« '\n' i

/ / ...
if (e->type == Employee: : M) {

const Manager* p =static_cast<const Manager*> (e);
cout« II level II «p->level« '\n';

/ / ...



310 Derived Classes Chapter 12

Finding all such tests on the type field buried in a large function that handles many derived classes
can be difficult. Even when they have been found, understanding what is going on can be difficult.
Furthermore, any addition of a new kind of Employee involves a change to all the key functions in
the system - the ones containing the tests on the type field. The programmer must consider every
function that could conceivably need a test on the type field after a change. This implies the need
to access critical source code and the resulting necessary overhead of testing the affected code. The
use of an explicit type conversion is a strong hint that improvement is possible.

In other words, use of a type field is an error-prone technique that leads to maintenance prob
lems. The problems increase in severity as the size of the program increases because the use of a
type field causes a violation of the ideals of modularity and data hiding. Each function using a type
field must know about the representation and other details of the implementation of every class
derived from the one containing the type field.

It also seems that the existence of any common data accessible from every derived class, such
as a type field, tempts people to add more such data. The common base thus becomes the reposi
tory of all kinds of "useful information." This, in tum, gets the implementation of the base and
derived classes intertwined in ways that are most undesirable. For clean design and simpler main
tenance, we want to keep separate issues separate and avoid mutual dependencies.

12.2.6 Virtual Functions

Virtual functions overcome the problems with the type-field solution by allowing the programmer
to declare functions in a base class that can be redefined in each derived class. The compiler and
loader will guarantee the correct correspondence between objects and the functions applied to them.
For example:

class Employee {
string first_name, family_name;
short department;
/ I ...

public:
Employee (const string& name, int dept);
virtual void print () const;
II ...

} ;

The keyword virtual indicates that print () can act as an interface to the print () function defined
in this class and the print () functions defined in classes derived from it. Where such print ( )
functions are defined in derived classes, the compiler ensures that the right print () for the given
Employee object is invoked in each case.

To allow a virtual function declaration to act as an interface to functions defined in derived
classes, the argument types specified for a function in a derived class cannot differ from the argu
ment types declared in the base, and only very slight changes are allowed for the return type
(§ 15.6.2). A virtual member function is sometimes called a method.

A virtual function must be defined for the class in which it is first declared (unless it is declared
to be a pure virtual function; see §12.3). For example:



Section 12.2.6

void Employee:: print () const
{

cout «family_name« '\1' « department « '\n';

/ I ...

Virtual Functions 311

A virtual function can be used even if no class is derived from its class, and a derived class that
does not need its own version of a virtual function need not provide one. When deriving a class,
simply provide an appropriate function, if it is needed. For example:

class Manager: public Employee {
list<Employee* > group;
short level;
/ I ...

public:
Manager(const string& name, int dept, int lvl);
void print () const;
/ / ...

} ;

void Manager: :print () const
{

Employee: :print ( ) ;
cout« "\1level n « level« '\n';
/ / ...

A function from a derived class with the same name and the same set of argument types as a virtual
function in a base is said to override the base class version of the virtual function. Except where
we explicitly say which version of a virtual function is called (as in the call Employee: :print ( ) ),
the overriding function is chosen as the most appropriate for the object for which it is called.

The global function print_employee() (§12.2.5) is now unnecessary because the print()
member functions have taken its place. A list of Employees can be printed like this:

void print_list (const list<Employee*>& s)
{

for (list<Employee* > : : const_iterator p = s . begin ( ); p! =s. end ( ); ++p) / / see §2.7.2
(*p) ->print ( );

or even

void print_list (const list<Employee* >& s)
{

for_each (s . begin ( ) , s. end ( ) , memJun (&Employee: :print) ); / / see §3.8.5

Each Employee will be written out according to its type. For example:



312 Derived Classes

int main ()
{

Employee e ( II Brown II , 1234) ;
Manager m ( II Smith II , 1234 , 2) ;
list<Employee* > empl;
empl.pushJront (&e); / / see §2.5.4
empl .pushJront (&m) ;
print_list (empl) ;

produced:

Smith 1234
level 2

Brown 1234

Chapter 12

Note that this will work even if print_list () was written and compiled before the specific derived
class Manager was even conceived of! This is a key aspect of classes. When used properly, it
becomes the cornerstone of object-oriented designs and provides a degree of stability to an evolv
ing program.

Getting "the right" behavior from Employee's functions independently of exactly what kind of
Employee is actually used is called polymorphism. A type with virtual functions is called a
polymorphic type. To get polymorphic behavior in C++, the member functions called must be vir
tual and objects must be manipulated through pointers or references. When manipulating an object
directly (rather than through a pointer or reference), its exact type is known by the compiler so that
run-time polymorphism is not needed.

Clearly, to implement polymorphism, the compiler must store some kind of type information in
each object of class Employee and use it to call the right version of the virtual function print ( ). In
a typical implementation, the space taken is just enough to hold a pointer (§2.5.5). This space is
taken only in objects of a class with virtual functions - not in every object, or even in every object
of a derived class. You pay this overhead only for classes for which you declare virtual functions.
Had you chosen to use the alternative type-field solution, a comparable amount of space would
have been needed for the type field.

Calling a function using the scope resolution operator :: as is done in Manager: :print ( )
ensures that the virtual mechanism is not used. Otherwise, Manager: :print () would suffer an
infinite recursion. The use of a qualified name has another desirable effect. That is, if a virtual
function is also inline (as is not uncommon), then inUne substitution can be used for calls specified
using ::. This provides the programmer with an efficient way to handle some important special
cases in which one virtual function calls another for the same object. The Manager: :print ( )
function is an example of this. Because the type of the object is determined in the call of
Manager: :print ( ), it need not be dynamically determined again for the resulting call of
Employee: :print ( ) .

It is worth remembering that the traditional and obvious implementation of a virtual function
call is simply an indirect function call (§2.5.5), so efficiency concerns should not deter anyone from
using a virtual function where an ordinary function call would be acceptably efficient.



Section 12.3

12.3 Abstract Classes

Abstract Classes 313

I I pure virtual function
I I pure virtual function
I I pure virtual function

Many classes resemble class Employee in that they are useful both as themselves and also as bases
for derived classes. For such classes, the techniques described in the previous section suffice.
However, not all classes follow that pattern. Some classes, such as class Shape, represent abstract
concepts for which objects cannot exist. A Shape makes sense only as the base of some class
derived from it. This can be seen from the fact that it is not possible to provide sensible definitions
for its virtual functions:

class Shape {
public:

virtual void rotate (int) {error ( fl Shape: : rotate fl ) i } I I inelegant
virtual void draw () {error ( II Shape: :draw fl ); }

II ...
} ;

Trying to make a shape of this unspecified kind is silly but legal:

Shape s; I I silly: "shapeless shape"

It is silly because every operation on s will result in an error.
A better alternative is to declare the virtual functions of class Shape to be pure virtual/unctions.

A virtual function is "made pure" by the initializer =0:

class Shape { I I abstract class
public:

virtual void rotate (int) = 0;
virtual void draw () =0;
virtual bool is_closed () = 0;
II ...

} ;

A class with one or more pure virtual functions is an abstract class, and no objects of that abstract
class can be created:

Shape s; II error: variable ofabstract class Shape

An abstract class can be used only as an interface and as a base for other classes. For example:

class Point { I * ... * I };

class Circle : public Shape {
public:

void rotate (int) { }
void draw ( ) ;
bool is_closed () { return true;

Circle (Point p, int r);
private:

Point center;
int radius;

} ;

1/ override Shape::rotate
I I override Shape::draw
II override Shape::is_closed



314 Derived Classes Chapter 12

A pure virtual function that is not defined in a derived class remains a pure virtual function, so the
derived class is also an abstract class. This allows us to build implementations in stages:

class Polygon : public Shape { / / abstract class
public:

bool is_closed () {return true j} / / override Shape::is_closed
/ / ... draw and rotate not overridden ...

} ;

Polygon b; / / error: declaration ofobject ofabstract class Polygon

/ / override Shape::draw
/ / override Shape::rotate

class Irregularyolygon : public Polygon {
list<Point> lp j

public:
void draw ( ) ;
void rotate (int) ;
/ / ...

} ;

Irregularyolygon poly {someyoints} ; / / fine (assume suitable constructor)

An important use of abstract classes is to provide an interface without exposing any implementation
details. For example, an operating system might hide the details of its device drivers behind an
abstract class:

class Character_device {
public:

virtual int open (int opt) = 0;
virtual int close (int opt) =0;
virtual int read (char* P, int n) = OJ
virtual int write (const char* P, int n) = 0;
virtual int ioctl (int ... ) = 0 i

virtual -Character_device () { } / / virtual destructor
} ;

We can then specify drivers as classes derived from Character_device, and manipulate a variety of
drivers through that interface. The importance of virtual destructors is explained in §12.4.2.

With the introduction of abstract classes, we have the basic facilities for writing a complete pro
gram in a modular fashion using classes as building blocks.

12.4 Design of Class Hierarchies

Consider a simple design problem: provide a way for a program to get an integer value from a user
interface. This can be done in a bewildering number of ways. To insulate our program from this
variety, and also to get a chance to explore the possible design choices, let us start by defining our
program's model of this simple input operation. We will leave until later the details of implement
ing it using a real user-interface system.

The idea is to have a class Ivai_box that knows what range of input values it will accept. A
program can ask an Ival_box for its value and ask it to prompt the user if necessary. In addition, a
program can ask an Ivai_box if a user changed the value since the program last looked at it.



Section 12.4 Design of Class Hierarchies 315

/ / for user
/ / for application

Because there are many ways of implementing this basic idea, we must assume that there will
be many different kinds of Ival_boxes, such as sliders, plain boxes in which a user can type a num
ber, dials, and voice interaction.

The general approach is to build a "virtual user-interface system" for the application to use.
This system provides some of the services provided by existing user-interface systems. It can be
implemented on a wide variety of systems to ensure the portability of application code. Naturally,
there are other ways of insulating an application from a user-interface system. I chose this
approach because it is general, because it allows me to demonstrate a variety of techniques and
design tradeoffs, because those techniques are also the ones used to build' 'real" user-interface sys
tems, and - most important - because these techniques are applicable to problems far beyond the
narrow domain of interface systems.

12.4.1 A Traditional Class Hierarchy

Our first solution is a traditional class hierarchy as is commonly found in Simula, Smalltalk, and
older C++ programs.

Class Ival_box defines the basic interface to all Ival_boxes and specifies a default implementa
tion that more specific kinds of Ival_boxes can override with their own versions. In addition, we
declare the data needed to implement the basic notion:

class Ivai_box {
protected:

int val;
int low, high;
hool changed; / / changed by user using set_value()

public:
Ival_box (int ll, int hh) {changed = false; val = low = ll; high = hh;

virtual int get_value () {changed =false; return val; }
virtual void set_value (int i) {changed = true; val = i; }
virtual void reset_value (int i) {changed = false; val = i;
virtual void prompt () { }
virtual bool was_changed () const { return changed; }

} ;

The default implementation of the functions is pretty sloppy and is provided here primarily to illus
trate the intended semantics. A realistic class would, for example, provide some range checking.

A programmer might use these "ival classes" like this:

void interact (lval_box* ph)
{

pb- >prompt ( ); / / alert user
/ / ...
int i = pb->get_value ( );
if (pb->was_changed()) {

/ / new value; do something



316 Derived Classes

else {
/ / old value was fine; do something else

}

/ / ...

void someJct ( )
{

Ival_box* p1 = new Ival_slider{O,5);
interact (p1);

Ival_box* p2 =new IvaI_dial (1, 12);
interact (p2 ) ;

/ / Ival_slider derived/rom Ival_box

Chapter 12

Most application code is written in terms of (pointers to) plain Ival_boxes the way interact () is.
That way, the application doesn't have to know about the potentially large number of variants of
the Ival_box concept. The knowledge of such specialized classes is isolated in the relatively few
functions that create such objects. This isolates users from changes in the implementations of the
derived classes. Most code can be oblivious to the fact that there are different kinds of Ival boxes.

To simplify the discussion, I do not address issues of how a program waits for input. Maybe the
program really does wait for the user in get_value ( ), maybe the program associates the Ival_box
with an event and prepares to respond to a callback, or maybe the program spawns a thread for the
Ival_box and later inquires about the state of that thread. Such decisions are crucial in the design
of user-interface systems. However, discussing them here in any realistic detail would simply dis
tract from the presentation of programming techniques and language facilities. The design tech
niques described here and the language facilities that support them are not specific to user inter
faces. They apply to a far greater range of problems.

The different kinds of Ival_boxes are defined as classes derived from Ival_box. For example:

class Ivai_slider: public IvaI_box {
/ / graphics stuff to define what the slider looks like, etc.

public:
Ivai_slider (int, int);

int get_value ();
void prompt ( ) ;

} ;

The data members of Iva1_box were declared protected to allow access from derived classes.
Thus, Ivai_slider: : get_value () can deposit a value in Ival_box:: val. A protected member is
accessible from a class' own members and from members of derived classes, but not to general
users (see §15.3).

In addition to Ival_slider, we would define other variants of the Ival_box concept. These could
include Ivai_dial, which lets you select a value by turning a knob; Flashing_ival_slider, which
flashes when you ask it to prompt ( ) ; and Popup_ivai_slider, which responds to prompt () by
appearing in some prominent place, thus making it hard for the user to ignore.

From where would we get the graphics stuff? Most user-interface systems provide a class
defining the basic properties of being an entity on the screen. So, if we use the system from "Big



Section 12.4.1 A Traditional Class Hierarchy 317

Bucks Inc.," we would have to make each of our Ivai_slider, Ivai_dial, etc., classes a kind of
BBwindow. This would most simply be achieved by rewriting our Ivai_box so that it derives from
BBwindow. In that way, all our classes inherit all the properties of a BBwindow. For example,
every lval_box can be placed on the screen, obey the graphical style rules, be resized, be dragged
around, etc., according to the standard set by the BBwindow system. Our class hierarchy would
look like this:

class Ival_box : public BBwindow { / * * / }; / / rewritten to use BBwindow
class Ivai_slider : public Ivai_box { / * * / };
class Ivai_dial : public Ival_box { / * ... * / };
class Flashing_ival_slider : public Ival_slider { / * ... * / };
class Popup_ivai_slider : public Ival_slider { / * ... * / };

or graphically:

BBwindow

f
Ivai box

"Ivai dial
/

Ivai slider

~
Flashing_ivaI_slider

/
Popup_ivai_slider

12.4.1.1 Critique

This design works well in many ways, and for many problems this kind of hierarchy is a good solu
tion. However, there are some awkward details that could lead us to look for alternative designs.

We retrofitted BBwindow as the base of Ivai_box. This is not quite right. The use of BBwin
dow isn't part of our basic notion of an Ivai_box; it is an implementation detail. Deriving Iva1_box
from BBwindow elevated an implementation detail to a first-level design decision. That can be
right. For example, using the environment defined by "Big Bucks Inc." may be a key decision of
how our organization conducts its business. However, what if we also wanted to have implementa
tions of our Ivai_boxes for systems from "Imperial Bananas," "Liberated Software," and "Com
piler Whizzes?" We would have to maintain four distinct versions of our program:

class Ival_box : public BBwindow { /* * / };
class Ival_box : public CWwindow { / * * / };
class Ivai_box : public IBwindow { / * * / };
class Ivai_box: public LSwindow { /* * / };

/ / BB version
/ / CW version
/ / IB version
/ / LS version

Having many versions could result in a version-control nightmare.
Another problem is that every derived class shares the basic data declared in Ivai_box. That

data is, of course, an implementation detail that also crept into our Ivai_bOX interface. From a
practical point of view, it is also the wrong data in many cases. For example, an Ivai_slider
doesn't need the value stored specifically. It can easily be calculated from the position of the slider
when someone executes get_value ( ). In general, keeping two related, but different, sets of data is



318 Derived Classes Chapter 12

asking for trouble. Sooner or later someone will get them out of sync. Also, experience shows that
novice programmers tend to mess with protected data in ways that are unnecessary and that cause
maintenance problems. Data members are better kept private so that writers of derived classes can
not mess with them. Better still, data should be in the derived classes, where it can be defined to
match requirements exactly and cannot complicate the life of unrelated derived classes. In almost
all cases, a protected interface should contain only functions, types, and constants.

Deriving from BBwindow gives the benefit of making the facilities provided by BBwindow
available to users of Ival_box. Unfortunately, it also means that changes to class BBwindow may
force users to recompile or even rewrite their code to recover from such changes. In particular, the
way most C++ implementations work implies that a change in the size of a base class requires a
recompilation of all derived classes.

Finally, our program may have to run in a mixed environment in which windows of different
user-interface systems coexist. This could happen either because two systems somehow share a
screen or because our program needs to communicate with users on different systems. Having our
user-interface systems "wired in" as the one and only base of our one and only Ival_box interface
just isn't flexible enough to handle those situations.

12.4.2 Abstract Classes

So, let's start again and build a new class hierarchy that solves the problems presented in the cri
tique of the traditional hierarchy:

[ I ] The user-interface system should be an implementation detail that is hidden from users who
don't want to know about it.

[2] The Ival_box class should contain no data.
[3] No recompilation of code using the Ival_box family of classes should be required after a

change of the user-interface system.
[4] Ival_boxes for different interface systems should be able to coexist in our program.

Several alternative approaches can be taken to achieve this. Here, I present one that maps cleanly
into the C++ language.

First, I specify class Ival_box as a pure interface:

class Ivai_box {
public:

virtual int get_value () = 0;
virtual void set_value (int i) =0;
virtual void reset_value (int i) =0;
virtual void prompt () =0;
virtual bool was_changed () const =0;
virtual ,." Ival_box () { }

} ;

This is much cleaner than the original declaration of Ival_box. The data is gone and so are the sim
plistic implementations of the member functions. Gone, too, is the constructor, since there is no
data for it to initialize. Instead, I added a virtual destructor to ensure proper cleanup of the data that
will be defined in the derived classes.

The definition of Ival_slider might look like this:



Section 12.4.2

class Ival_slider : public Ival_box, protected BBwindow {
public:

!val_slider(int,int);
....Ival_slider ( ) ;

int get_value ( ) ;
void set_value (int i);
II ...

protected:
I I functions overriding BBwindow virtual functions
II e.g. BBwindow::draw(), BBwindow::mouselhit()

private:
I I data neededfor slider

} ;

Abstract Classes 319

The derived class Ivai_slider inherits from an abstract class (Iva1_box) that requires it to imple
ment the base class' pure virtual functions. It also inherits from BBwindow that provides it with
the means of doing so. Since Ivai_box provides the interface for the derived class, it is derived
using public. Since BBwindow is only an implementation aid, it is derived using protected
(§15.3.2). This implies that a programmer using Ivai_slider cannot directly use facilities defined
by BBwindow. The interface provided by Ivai_slider is the one inherited from Ivai_box, plus what
Ivai_slider explicitly declares. I used protected derivation instead of the more restrictive (and usu
ally safer) private derivation to make BBwindow available to classes derived from Ivai_slider.

Deriving directly from more than one class is usually called multiple inheritance (§ 15.2). Note
that Ivai_slider must override functions from both Ivai_box and BBwindow. Therefore, it must be
derived directly or indirectly from both. As shown in §12.4.1.1, deriving IvaI_slider indirectly
from BBwindow by making BBwindow a base of Ivai_box is possible, but doing so has undesirable
side effects. Similarly, making the "implementation class" BBwindow a member of Ivai_box is
not a solution because a class cannot override virtual functions of its members (§24.3.4). Repre
senting the window by a BBwindow* member in Ivai_box leads to a completely different design
with a separate set of tradeoffs (§ 12.7[14], §25.7).

Interestingly, this declaration of Ivai_slider allows application code to be written exactly as
before. All we have done is to restructure the implementation details in a more logical way.

Many classes require some form of cleanup for an object before it goes away. Since the abstract
class Ivai_box cannot know if a derived class requires such cleanup, it must assume that it does
require some. We ensure proper cleanup by defining a virtual destructor Iva1_box: : - Iva1_box ( )
in the base and overriding it suitably in derived classes. For example:

void f(lval_box* p)
{

II ...
delete p;

The delete operator explicitly destroys the object pointed to by p. We have no way of knowing
exactly to which class the object pointed to by p belongs, but thanks to Iva1_box's virtual
destructor, proper cleanup as (optionally) defined by that class' destructor will be called.



320 Derived Classes

The Ivai_box hierarchy can now be defined like this:

class Ivai box { / * ... * / } i

class Iva1-slider : public Ival box, protected BBwindow { / * ... * / } i

class Ivai=dial : public Ivai_box, protected BBwindow { / * ... * / } i

class Flashing_ivai_slider : public Ival_slider { I * ... * / } i

class Popup_ivai_slider: public IvaI_slider { / * ... * / } i

or graphically using obvious abbreviations:

BBwindow Ivai box BBwindow

~"" /-~ //~
Iva! sader Ivai dial

Chapter 12

"Flashing_slider

I used a dashed line to represent protected inheritance. As far as general users are concerned, doing
that is simply an implementation detail.

12.4.3 Alternative Implementations

This design is cleaner and more easily maintainable than the traditional one - and no less efficient.
However, it still fails to solve the version control problem:

class Ival_box { / * ... * / } i / / common
class Ival_slider : public Ival_box, protected BBwindow { / * * / } i / / for BB
class Ival_slider : public Ivai_box, protected CWwindow { / * * / }; / / for CW
/ / ...

In addition, there is no way of having an Ivai_slider for BBwindows coexist with an Ivai_slider
for CWwindows, even if the two user-interface systems could themselves coexist.

The obvious solution is to define several different Ivai_slider classes with separate names:

class Ival_box { / * ... * / };
class BB_ival_slider : public Ival_box, protected BBwindow { / * * / };
class CW_ival_slider : public Ivai_box, protected CWwindow { / * * / };
/ / ...

or graphically:

BBwindow Ivai box CWwindow
~ ~-~ //~

B~'ival ~er' C~arrlider
To further insulate our application-oriented Ivai_box classes from implementation details, we can
derive an abstract Ivai_slider class from Ivai_box and then derive the system-specific Ivai_sliders
from that:

class Ival_box { / * ... * / } i

class Ival_slider : public Ival_box { / * ... * / };



Section 12.4.3 Alternative Implementations 321

class BB_ivai_slider : public Ivai_slider, protected BBwindow { / * * / };
class CW_ivai_slider : public IvaI_slider, protected CWwindow { / * * / } ;
/ / ...

or graphically:

BBwindow

Ivai box

f
Ivai slider CWwindow

/
BB ivai slider "CW ivai slider

Usually, we can do better yet by utilizing more-specific classes in the implementation hierarchy.
For example, if the "Big Bucks Inc." system has a slider class, we can derive our Ivai_slider
directly from the BBslider:

class BB_ivai_slider : public IvaI_slider I protected BBslider { / * * / };
class CW_ivai_slider : public Ivai_slider I protected CWslider { / * * / };

or graphically:

BBwindow

f
BBslider

Ivai box

f
Ivai slider

CWwindow

t
CWslider

/
BB ivai slider "CW ivai slider

This improvement becomes significant where - as is not uncommon - our abstractions are not too
different from the ones provided by the system used for implementation. In that case, program
ming is reduced to mapping between similar concepts. Derivation from general base classes, such
as BBwindow, is then done only rarely.

The complete hierarchy will consist of our original application-oriented conceptual hierarchy of
interfaces expressed as derived classes:

class IvaI_box { / * ... * / };
class Ivai_slider: public IvaI_box { / * ... * / } ;
class Ivai_dial : public Ivai_box { / * ... * / };
class Flashing_ivaI_slider: public Ivai_slider { / * ... * / };
class Popup_ivaI_slider : public Ivai_slider { / * ... * / };

followed by the implementations of this hierarchy for various graphical user-interface systems,
expressed as derived classes:

class BB_ivai_slider : public Ival_slider, protected BBslider { / * ... * / };
class BB.flashing_ivaI_slider : public Flashing_ivaI_slider,

protected BBwindow_with_bells_and_whistles { / * ... * / };
class BByopup_ivai_slider : public Popup_iva1_slider, protected BBslider { / * ... * / };
class CW_ivai_slider : public IvaI_slider I protected CWslider { / * ... * / };
,I / .••



322 Derived Classes

Using obvious abbreviations, this hierarchy can be represented graphically l~ke this:

Ivai box
/'-~

Ivai sader Ivai dial1 -

Chapter 12

ipopup iflash

BBslider BBslider CWsl CWsl CWsl

* *
{1 ~

*I I I \ I
I I I \ I
J J I \ I

BBislider BBipop CWipop CWifl CWislider

The original Ivai_box class hierarchy appears unchanged surrounded by implementation classes.

12.4.3.1 Critique

The abstract class design is flexible and almost as simple to deal with as the equivalent design that
relies on a common base defining the user-interface system. In the latter design, the windows class
is the root of a tree. In the former, the original application class hierarchy appears unchanged as the
root of classes that supply its implementations. From the application's point of view, these designs
are equivalent in the strong sense that almost all code works unchanged and in the same way in the
two cases. In either case, you can look at the Ivai_box family of classes without bothering with the
window-related implementation details most of the time. For example, we would not need to
rewrite interact () from §12.4.1 if we switched from the one class hierarchy to the other.

In either case, the implementation of each Ivai_box class must be rewritten when the public
interface of the user-interface system changes. However, in the abstract class design, almost all
user code is protected against changes to the implementation hierarchy and requires no recompila
tion after such a change. This is especially important when the supplier of the implementation hier
archy issues a new "almost compatible" release. In addition, users of the abstract class hierarchy
are in less danger of being locked into a proprietary implementation than are users of a classical
hierarchy. Users of the Ivai_box abstract class application hierarchy cannot accidentally use facili
ties from the implementation because only facilities explicitly specified in the Ivai_box hierarchy
are accessible; nothing is implicitly inherited from an implementation-specific base class.

12.4.4 Localizing Object Creation

Most of an application can be written using the Ivai_box interface. Further, should the derived
interfaces evolve to provide more facilities than plain Ivai_box, then most of an application can be
written using the Ivai_box, Ivai_slider, etc., interfaces. However, the creation of objects must be



Section 12.4.4 Localizing Object Creation 323

done using implementation-specific names such as CW_iva1_dial and BB.flashing_ivai_slider.
We would like to minimize the number of places where such specific names occur, and object cre
ation is hard to localize unless it is done systematically.

As usual, the solution is to introduce an indirection. This can be done in many ways. A simple
one is to introduce an abstract class to represent the set of creation operations:

class IvaI_maker {
public:

virtual Ival_dial* dial (int, int) =0; I I make dial
virtual Popup_iva1_slider* popup_slider (int, int) =0; I I make popup slider
/ / ...

} ;

For each interface from the Ivai_box family of classes that a user should know about, class
Ivai_maker provides a function that makes an object. Such a class is sometimes called a!actory,
and its functions are (somewhat misleadingly) sometimes called virtual constructors (§ 15.6.2).

We now represent each user-interface system by a class derived from Ivai_maker:

class BB_maker: public Ivai_maker { I I make BB versions
public:

Ival_dial* dial (int, int);
Popup_ivai_slider* popup_slider (int, int);
II ...

} ;

class LS_maker : public Ivai_maker { I I make LS versions
public:

IvaI_dial* dial (int, int);
Popup_ivai_slider* popup_slider (int, int);
II ...

} ;

Each function creates an object of the desired interface and implementation type. For example:

Ival_dial* BB_maker: : dial (int a, int b)
{

return new BB_ivai_dial (a, b) ;

Ival_dial* LS_maker:: dial (int a, int b)
{

return new LS_iva1_dial (a, b) i

Given a pointer to an Ivai maker, a user can now create objects without having to know exactly
which user-interface syste~ is used. For example: .

void user (Ival_maker* pim)
{

lval_box* pb = pim->dial (0,99);
II ...

I I create appropriate dial



324 Derived Classes

BB_maker BB_impl i I I for BB users
LS_maker LS_impl i I I for LS users

void driver ( )
{

Chapter 12

user (&BB_impl) i

user (&LS_impl) i

II use BB
I I use LS

12.5 Class Hierarchies and Abstract Classes

An abstract class is an interface. A class hierarchy is a means of building classes incrementally.
Naturally, every class provides an interface to users and some abstract classes provide significant
functionality to build from, but "interface" and "building block" are the primary roles of abstract
classes and class hierarchies.

A classical hierarchy is a hierarchy in which the individual classes both provide useful function
ality for users and act as building blocks for the implementation of more advanced or specialized
classes. Such hierarchies are ideal for supporting programming by incremental refinement. They
provide the maximum support for the implementation of new classes as long as the new class
relates strongly to the existing hierarchy.

Classical hierarchies do tend to couple implementation concerns rather strongly with the inter
faces provided to users. Abstract classes can help here. Hierarchies of abstract classes provide a
clean and powerful way of expressing concepts without encumbering them with implementation
concerns or significant run-time overheads. After all, a virtual function call is cheap and indepen
dent of the kind of abstraction barrier it crosses. It costs no more to call a member of an abstract
class than to call any other virtual function.

The logical conclusion of this line of thought is a system represented to users as a hierarchy of
abstract classes and implemented by a classical hierarchy.

12.6 Advice

[1] Avoid type fields; §12.2.5.
[2] Use pointers and references to avoid slicing; §12.2.3.
[3] Use abstract classes to focus design on the provision of clean interfaces; §12.3.
[4] Use abstract classes to minimize interfaces; §12.4.2.
[5] Use abstract classes to keep implementation details out of interfaces; §12.4.2.
[6] Use virtual functions to allow new implementations to be added without affecting user code;

§12.4.1.
[7] Use abstract classes to minimize recompilation of user code; §12.4.2.
[8] Use abstract classes to allow alternative implementations to coexist; §12.4.3.
[9] A class with a virtual function should have a virtual destructor; §12.4.2.
[10] An abstract class typically doesn't need a constructor; §12.4.2.
[11] Keep the representations of distinct concepts distinct; §12.4.1.1.



Section 12.7

12.7 Exercises

1. (* I) Define

class Base {
public:

virtual void iam () {cout << II Base\n "; }

Exercises 325

} ;

Derive two classes from Base, and for each define iam () to write out the name of the class.
Create objects of these classes and call iam () for them. Assign pointers to objects of the
derived classes to Base* pointers and call iam () through those pointers.

2. (*3.5) Implement a simple graphics system using whatever graphics facilities are available on
your system (if you don't have a good graphics system or have no experience with one, you
might consider a simple "huge bit ASCII implementation" where a point is a character position
and you write by placing a suitable character, such as * in a position): Window (n , m) creates
an area of size n times m on the screen. Points on the screen are addressed using (x,y) coordi
nates (Cartesian). A Window w has a current position w. current ( ). Initially, current is
Point (0, 0). The current position can be set by w . current (p) where p is a Point. A Point is
specified by a coordinate pair: Point (x, y). A Line is specified by a pair of Points:
Line (w . current ( ) , p2); class Shape is the common interface to Dots, Lines, Rectangles,
Circles, etc. A Point is not a Shape. A Dot, Dot (p) can be used to represent a Point p on the
screen. A Shape is invisible unless draw ( ) n. For example:
w. draw (Circle (w. current ( ) , 10) ). Every Shape has 9 contact points: e (east), w (west), n
(north), s (south), ne, nw, se, SW, and c (center). For example, Line (x. c ( ), y. nw ( ) ) creates
a line from x's center to y's top left corner. After draw ( ) ing a Shape the current position is the
Shape's se (). A Rectangle is specified by its bottom left and top right corner:
Rectangle (w . current ( ) , Point (10, 10) ). As a simple test, display a simple "child's draw
ing of a house" with a roof, two windows, and a door.

3. (*2) Important aspects of a Shape appear on the screen as a set of line segments. Implement
operations to vary the appearance of these segments: s. thickness (n) sets the line thickness to
0, 1, 2, or 3, where 2 is the default and 0 means invisible. In addition, a line segment can be
solid, dashed, or dotted. This is set by the function Shape: : outline ( ) .

4. (*2.5) Provide a function Line: : arrowhead () that adds arrow heads to an end of a line. A
line has two ends and an arrowhead can point in two directions relative to the line, so the argu
ment or arguments to arrowhead () must be able to express at least four alternatives.

5. (*3.5) Make sure that points and line segments that fall outside the Window do not appear on
the screen. This is often called "clipping." As an exercise only, do not rely on the implemen
tation graphics system for this.

6. (*2.5) Add a Text type to the graphics system. A Text is a rectangular Shape displaying charac
ters. By default, a character takes up one coordinate unit along each coordinate axis.

7. (*2) Define a function that draws a line connecting two shapes by finding the two closest "con
tact points" and connecting them.

8. (*3) Add a notion of color to the simple graphics system. Three things can be colored: the
background, the inside of a closed shape, and the outlines of shapes.

9. (*2) Consider:



326 Derived Classes

class Char_vec {
int SZi

char element [ J ] i

public:
static Char_vec* new_char_vec (int s);
char& operator [] (int i) {return element [i] ;
/ / ...

} ;

Chapter 12

Define new_char_vec () to allocate contiguous memory for a Char_vec object so that the ele
ments can be indexed through element as shown. Under what circumstances does this trick
cause serious problems?

10. (*2.5) Given classes Circle, Square, and Triangle derived from a class Shape, define a func
tion intersect () that takes two Shape* arguments and calls suitable functions to determine if
the two shapes overlap. It will be necessary to add suitable (virtual) functions to the classes to
achieve this. Don't bother to write the code that checks for overlap; just make sure the right
functions are called. This is commonly referred to as double dispatch or a multi-method.

II. (*5) Design and implement a library for writing event-driven simulations. Hint: <task. h>.
However, that is an old program, and you can do better. There should be a class task. An
object of class task should be able to save its state and to have that state restored (you might
define task: : save () and task: : restore ( ) ) so that it can operate as a coroutine. Specific tasks
can be defined as objects of classes derived from class task. The program to be executed by a
task might be specified as a virtual function. It should be possible to pass arguments to a new
task as arguments to its constructor(s). There should be a scheduler implementing a concept of
virtual time. Provide a function task: : delay (long) that "consumes" virtual time. Whether
the scheduler is part of class task or separate will be one of the major design decisions. The
tasks will need to communicate. Design a class queue for that. Devise a way for a task to wait
for input from several queues. Handle run-time errors in a uniform way. How would you
debug programs written using such a library?

12. (*2) Define interfaces for Warrior, Monster, and Object (that is a thing you can pick up, drop,
use, etc.) classes for an adventure-style game.

13.(*1.5) Why is there both a Point and a Dot class in §12.7[2]? Under which circumstances
would it be a good idea to augment the Shape classes with concrete versions of key classes such
as Line?

14. (*3) Outline a different implementation strategy for the Ivai_box example (§12.4) based on the
idea that every class seen by an application is an interface containing a single pointer to the
implementation. Thus, each "interface class" will be a handle to an "implementation class," and
there will be an interface hierarchy and an implementation hierarchy. Write code fragments that
are detailed enough to illustrate possible problems with type conversion. Consider ease of use,
ease of programming, ease of reusing implementations and interfaces when adding a new con
cept to the hierarchy, ease of making changes to interfaces and implementations, and need for
recompilation after change in the implementation.



13
Templates

Your quote here.
- B. Stroustrup

Templates - a string template - instantiation - template parameters - type checking
- function templates - template argument deduction - specifying template arguments
- function template overloading - policy as template arguments - default template
arguments - specialization - derivation and templates - member templates - con
versions - source code organization - advice - exercises.

13.1 Introduction

Independent concepts should be independently represented and should be combined only when
needed. Where this principle is violated, you either bundle unrelated concepts together or create
unnecessary dependencies. Either way, you get a less flexible set of components out of which to
compose systems. Templates provide a simple way to represent a wide range of general concepts
and simple ways to combine them. The resulting classes and functions can match hand-written,
more-specialized code in run-time and space efficiency.

Templates provide direct support for generic programming (§2.7), that is, programming using
types as parameters. The C++ template mechanism allows a type to be a parameter in the definition
of a class or a function. A template depends only on the properties that it actually uses from its
parameter types and does not require different types used as arguments to be explicitly related. In
particular, the argument types used for a template need not be from a single inheritance hierarchy.

Here, templates are introduced with the primary focus on techniques needed for the design,
implementation, and use of the standard library. The standard library requires a greater degree of
generality, flexibility, and efficiency than does most software. Consequently, techniques that can
be used in the design and implementation of the standard library are effective and efficient in the
design of solutions to a wide variety of problems. These techniques enable an implementer to hide



328 Templates Chapter 13

sophisticated implementations behind simple interfaces and to expose complexity to the user only
when the user has a specific need for it. For example, sort (v) can be the interface to a variety of
sort algorithms for elements of a variety of types held in a variety of containers. The sort function
that is most appropriate for the particular v will be automatically chosen.

Every major standard library abstraction is represented as a template (for example, string,
ostream, complex, list, and map) and so are the key operations (for example, string compare, the
output operator «, complex addition, getting the next element from a list, and sort ( )). This
makes the library chapters (Part III) of this book a rich source of examples of templates and pro
gramming techniques relying on them. Consequently, this chapter concentrates on smaller exam
ples illustrating technical aspects of templates and fundamental techniques for using them:

§13.2: The basic mechanisms for defining and using class templates
§13.3: Function templates, function overloading, and type deduction
§13.4: Template parameters used to specify policies for generic algorithms
§13.5: Multiple definitions providing alternative implementations for a template
§13.6: Derivation and templates (run-time and compile-time polymorphism)
§13.7: Source code organization

Templates were introduced in §2.7.1 and §3.8. Detailed rules for template name resolution, tem
plate syntax, etc., can be found in §C.13.

13.2 A Simple String Template

Consider a string of characters. A string is a class that holds characters and provides operations
such as subscripting, concatenation, and comparison that we usually associate with the notion of a
"string." We would like to provide that behavior for many different kinds of characters. For
example, strings of signed characters, of unsigned characters, of Chinese characters, of Greek char
acters, etc., are useful in various contexts. Thus, we want to represent the notion of "string" with
minimal dependence on a specific kind of character. The definition of a string relies on the fact that
a character can be copied, and little else. Thus, we can make a more general string type by taking
the string of char from §11.12 and making the character type a parameter:

template<class C> class String {
struct Srep;
Srep *repi

public:
String ();
String (const C*) i

String (const String&) i

C read (int i) const i
/ I ...

} i

The template <class C> prefix specifies that a template is being declared and that a type argument
C will be used in the declaration. After its introduction, C is used exactly like other type names.
The scope of C extends to the end of the declaration prefixed by template <class C>. Note that
template<class C> says that C is a type name; it need not be the name of a class.



Section 13.2 A Simple String Template 329

The name of a class template followed by a type bracketed by < > is the name of a class (as
defined by the template) and can be used exactly like other class names. For example:

String<char> cs;
String<unsigned char> us;
String<wchar_t> ws;

class Jchar {
/ / Japanese character

} ;

String<Jchar> js;

Except for the special syntax of its name, String<char> works exactly as if it had been defined
using the definition of class String in §11.12. Making String a template allows us to provide the
facilities we had for String of char for Strings of any kind of character. For example, if we use the
standard library map and the String template, the word-counting example from §11.8 becomes:

int main ()
{

/ / count the occurrences ofeach word on input

String<char> buf;
map<String<char> , int> m;

while (cin»buj) m [buf] ++;

/ / write out result

The version for our Japanese-character type Jchar would be:

int main ()
{

/ / count the occurrences ofeach word on input

String<Jchar> buf;
map<String<Jchar> , int> m;

while (cin»buj) m[buf]++;
/ / write out result

The standard library provides the template class basic_string that is similar to the templatized
String (§11.12, §20.3). In the standard library, string is defined as a synonym for
basic_string<char> :

typedef basic_string<char> string;

This allows us to write the word-counting program like this:

int main ()
{

/ / count the occurrences ofeach word on input

string buj;
map<string , int> m i

while (cin»buj) m [buf] ++;

/ / write out result

In general, typedefs are useful for shortening the long names of classes generated from templates.



330 Templates Chapter 13

Also, we often prefer not to know the details of how a type is defined, and a typedeJ allows us to
hide the fact that a type is generated from a template.

13.2.1 Defining a Template

A class generated from a class template is a perfectly ordinary class. Thus, use of a template does
not imply any run-time mechanisms beyond what is used for an equivalent "hand-written" class.
Nor does it necessarily imply any reduction in the amount of code generated.

It is usually a good idea to debug a particular class, such as String, before turning it into a tem
plate such as String<C>. By doing so, we handle many design problems and most of the code
errors in the context of a concrete example. This kind of debugging is familiar to all programmers,
and most people cope better with a concrete example than with an abstract concept. Later, we can
deal with any problems that might arise from generalization without being distracted by more con
ventional errors. Similarly, when trying to understand a template, it is often useful to imagine its
behavior for a particular type argument such as char before trying to comprehend the template in
its full generality.

Members of a template class are declared and defined exactly as they would have been for a
non-template class. A template member need not be defined within the template class itself. In
that case, its definition must be provided somewhere else, as for non-template class members
(§C.13.7). Members of a template class are themselves templates parameterized by the parameters
of their template class. When such a member is defined outside its class, it must explicitly be
declared a template. For example:

template<class C> struct String<C>:: Srep {
C* s i / / pointer to elements
int sz; / / number ofelements
int n; / / reference count
/ / ...

} ;

template<class C> C String< C> : : read (int i) const { return rep- >s [i] ;

template<class C> String<C> : :String ( )
{

rep =new Srep (0, C ( ) ) ;

Template parameters, such as C, are parameters rather than names of types defined externally to the
template. However, that doesn't affect the way we write the template code using them. Within the
scope of String<C>, qualification with <C> is redundant for the name of the template itself, so
String<C> : : String is the name for the constructor. If you prefer, you can be explicit:

template<class C> String<C> : :String<C> ( )
{

rep = new Srep (0 , C ( ) ) ;

Just as there can be only one function defining a class member function in a program, there can be
only one function template defining a class template member function in a program. However,



Section 13.2.1 Defining a Template 331

overloading is a possibility for functions only (§ 13.3.2), while specialization (§ 13.5) enables us to
provide alternative implementations for a template.

It is not possible to overload a class template name, so if a class template is declared in a scope,
no other entity can be declared there with the same name (see also §13.5). For example:

template<class T> class String { / * ... * / } i

class String { / * ... * / } i / / error: double definition

A type used as a template argument must provide the interface expected by the template. For
example, a type used as an argument to String must provide the usual copy operations (§ 10.4.4.1,
§20.2.1). Note that there is no requirement that different arguments for the same template parame
ter should be related by inheritance.

13.2.2 Template Instantiation

The process of generating a class declaration from a template class and a template argument is often
called template instantiation (§C.13.7). Similarly, a function is generated ("instantiated") from a
template function plus a template argument. A version of a template for a particular template argu
ment is called a specialization.

In general, it is the implementation's job - not the programmer's - to ensure that versions of a
template function are generated for each set of template arguments used (§C.13.7). For example:

String<char> cs i

void f()
{

String<Jchar> js i

CS = II It's the implementation's job to figure out what code needs to be generated II i

For this, the implementation generates declarations for String<char> and String<Jchar>, for their
corresponding Srep types, for their destructors and default constructors, and for the assignment
String<char> : : operator= (char* ). Other member functions are not used and should not be gen
erated. The generated classes are perfectly ordinary classes that obey all the usual rules for classes.
Similarly, generated functions are ordinary functions that obey all the usual rules for functions.

Obviously, templates provide a powerful way of generating code from relatively short defini
tions. Consequently, a certain amount of caution is in order to avoid flooding memory with almost
identical function definitions (§13.5).

13.2.3 Template Parameters

A template can take type parameters, parameters of ordinary types such as ints, and template
parameters (§C.13.3). Naturally, a template can take several parameters. For example:

template<class T, T def_val> class Cont { / * ... * / } i

As shown, a template parameter can be used in the definition of subsequent template parameters.
Integer arguments come in handy for supplying sizes and limits. For example:



332 Templates

template<class T lint i> class Buffer {
T v[i];

int sz;
public:

Buffer () : SZ ( i) {}
/ I ...

} ;

Chapter 13

Buffer<char I 127> cbuf;
Buffer<Record I 8> rbuf;

Simple and constrained containers such as Buffer can be important where run-time efficiency and
compactness are paramount (thus preventing the use of a more general string or vector). Passing a
size as a template argument allows Buffer's implementer to avoid free store use. Another example
is the Range type in §25.6.1.

A template argument can be a constant expression (§C.5), the address of an object or function
with external linkage (§9.2), or a non-overloaded pointer to member (§ 15.5). A pointer used as a
template argument must be of the form &of, where of is the name of an object or a function, or of
the form f, where f is the name of a function. A pointer to member must be of the form &X: : of,
where of is the name of a member. In particular, a string literal is not acceptable as a template
argument.

An integer template argument must be a constant:

void f( int i)
{

Buffer<int I i> bx; 1/ error: constant expression expected

Conversely, a non-type template parameter is a constant within the template so that an attempt to
change the value of a parameter is an error.

13.2.4 Type Equivalence

Given a template, we can generate types by supplying template arguments. For example:

String<char> sl ;
String<unsigned char> s2 ;
String<int> s3;

typedeJ unsigned char Uchar;
String< Uchar> s4;
String<char> s5 ;

Buf!er<String<char> 110> bl i

Buf!er<char I 10> b2 i

Buf!er<char I 20-10> b3 ;

When using the same set of template arguments for a template, we always refer to the same gener
ated type. However, what does "the same" mean in this context? As usual, typedeJs do not intro
duce new types, so String<Uchar> is the same type as String<unsigned char>. Conversely,



Section 13.2.4 Type Equivalence 333

because char and unsigned char are different types (§4.3), String<char> and String<unsigned
char> are different types.

The compiler can evaluate constant expressions (§C.5), so Buffer<char, 20- 10> is recognized
to be the same type as Buffer<char, 10>.

13.2.5 Type Checking

A template is defined and then later used in combination with a set of template arguments. When
the template is defined, the definition is checked for syntax errors and possibly also for other errors
that can be detected in isolation from a particular set of template arguments. For example:

template<class T> class List {
struct Link {

Link* pre i

Link* sue i

T val;
Link (Link* P, Link* s I const T& v) : pre (p) I sue (s) I val (v) { }

} / / syntax error: missing semicolon
Link* head;

public:
List () : head (7) { } / / error: pointer initialized with int
List (eonst T& t) : head (new Link (0 I 0 ,t)) { } / / error: undefined identifier '0'

/ / ...
void print_all () const {for (Link* p = head; Pi p=p->sue) cout« p->val« '\n' i

} ;

A compiler can catch simple semantic errors at the point of definition or later at the point of use.
Users generally prefer early detection, but not all "simple" errors are easy to detect. Here, I made
three' 'mistakes." Independently of what the template parameter is, a pointer Link* cannot be ini
tialized by the integer 7. Similarly, the identifier 0 (a mistyped 0, of course) cannot be an argument
to List<T> :: Link's constructor because there is no such name in scope.

A name used in a template definition must either be in scope or in some reasonably obvious
way depend on a template parameter (§C.13.8.1). The most common and obvious way of depend
ing on a template parameter T is to use a member of a T or to take an argument of type T. In
List<T>: :print_all (), cout«p->val is a slightly more subtle example.

Errors that relate to the use of template parameters cannot be detected until the template is used.
For example:

class Rec { / * ... * / } i

void f( const List<int>& Ii, const List<Rec>& ir)
{

Ii . print_all ( ) ;
lr . print_aLL ( ) i

The li . print_all () checks out fine, but lr . print_all () gives a type error because there is no <<
output operator defined for Rec. The earliest that errors relating to a template parameter can be
detected is at the first point of use of the template for a particular template argument. That point is



334 Templates Chapter 13

usually called the first point of instantiation, or simply the point of instantiation (see §C.13.7). The
implementation is allowed to postpone this checking until the program is linked. If we had only a
declaration of print_all () available in this translation unit, rather than its definition, the implemen
tation might have had to delay type checking (see §13.7). Independently of when checking is done,
the same set of rules is checked. Again, users prefer early checking. It is possible to express con
straints on template arguments in terms of member functions (see §13.9[16]).

13.3 Function Templates

For most people, the first and most obvious use of templates is to define and use container classes
such as basic_string (§20.3), vector (§ 16.3), list (§ 17.2.2), and map (§ 17.4.1). Soon after, the
need for template functions arises. Sorting an array is a simple example:

template<class T> void sort (vector<T>&) ;

void f(vector<int>& vi I vector<string>& vs)
{

sort (vi); / / sort(vector<int>&);
sort (vs); / / sort(vector<string>&);

/ / declaration

When a template function is called, the types of the function arguments determine which version of
the template is used; that is, the template arguments are deduced from the function arguments
(§13.3.1).

Naturally, the template function must be defined somewhere (§C.13.7):

template<class T> void sort (vector<T>& v)
/ / Shell sort (Knuth, Vol. 3, pg. 84).

const size_t n = v. size ( ) ;

/ / definition

for (int gap=n / 2; O<gap; gap / =2 )
for (int i=gap; i<n i i++)

for (int j=i-gap; O<=j; j-=gap)
if (v [j+gap] <v [j]) { / / swap v[)] and v[j+gap]

T temp =v [j] ;
v[j] = v[j+gap];
v[j+gap] = temp;

Please compare this definition to the sort () defined in §7.7. This templatized version is cleaner
and shorter because it can rely on more information about the type of the elements it sorts. Most
likely, it is also faster because it doesn't rely on a pointer to function for the comparison. This
implies that no indirect function calls are needed and that inlining of a simple < is easy.

A further simplification is to use the standard library template swap () (§ 18.6.8) to reduce the
action to its natural form:

if (v [j+gap] <v [j] ) swap (v [j] I V [j+gap] );



Section 13.3 Function Templates 335

This does not introduce any new overheads.
In this example, operator < is used for comparison. However, not every type has a < operator.

This limits the use of this version of sort ( ) , but the limitation is easily avoided (see §13.4).

13.3.1 Function Template Arguments

Function templates are essential for writing generic algorithms to be applied to a wide variety of
container types (§2.7.2, §3.8, Chapter 18). The ability to deduce the template arguments for a call
from the function arguments is crucial.

A compiler can deduce type and non-type arguments from a call, provided the function argu
ment list uniquely identifies the set of template arguments (§C.13.4). For example:

template<class T, int i> T& lookup (Buffer< T, i>& b, const char* p) ;

class Record {
const char [J2] ;

/ / ...
} ;

Record&f(Buffer<Record, /28>& buf, const char* p)
{

return lookup (buj, p); / / use the lookup() where T is Record and i is /28

Here, T is deduced to be Record and i is deduced to be 128.
Note that class template parameters are never deduced. The reason is that the flexibility pro

vided by several constructors for a class would make such deduction impossible in many cases and
obscure in many more. Specialization provides a mechanism for implicitly choosing between dif
ferent implementations of a class (§ 13.5). If we need to create an object of a deduced type, we can
often do that by calling a function to do the creation; see makeyair () in §17.4.1.2.

If a template argument cannot be deduced from the template function arguments (§C.13.4), we
must specify it explicitly. This is done in the same way template arguments are explicitly specified
for a template class. For example:

template<class T> class vector { / * ... * / };
template<class T> T* create ( ); / / make a T and return a pointer to it

void f()
{

vector<int> v;
int* p =create<int> ( );

/ / class, template argument 'int'
/ / function, template argument 'int'

One common use of explicit specification is to provide a return type for a template function:

template<class T, class U> T implicit_cast (U u) { return u; }

void g (int i)
{

implicit_cast ( i) ;

implicit_cast<double> (i);
/ / error: can't deduce T
/ / T is double; U is int



336 Templates Chapter 13

implicit_cast<char , double> (i); / / T is char; U is double
implicit_cast<char* , int> (i) ; / / T is char*; U is int; error: cannot convert int to char*

As with default function arguments (§7.5), only trailing arguments can be left out of a list of
explicit template arguments.

Explicit specification of template arguments allows the definition of families of conversion
functions and object creation functions (§ 13.3.2, §C.13.1, §C.13.5). An explicit version of the
implicit conversions (§C.6), such as implicit_cast ( ), is frequently useful. The syntax for
dynamic_cast, static_cast, etc., (§6.2.7, §15.4.1) matches the explicitly qualified template function
syntax. However, the built-in type conversion operators supply operations that cannot be expressed
by other language features.

13.3.2 Function Template Overloading

One can declare several function templates with the same name and even declare a combination of
function templates and ordinary functions with the same name. When an overloaded function is
called, overload resolution is necessary to find the right function or template function to invoke.
For example:

template<class T> T sqrt (T) ;
template<class T> complex<T> sqrt (complex<T> );
double sqrt (double) ;

void j(complex<double> z)

{

sqrt (2);

sqrt(2 .0);
sqrt(z) ;

/ / sqrt<int>(int)
/ / sqrt(double)
/ / sqrt<double>(complex<double»

In the same way that a template function is a generalization of the notion of a function, the rules for
resolution in the presence of function templates are generalizations of the function overload resolu
tion rules. Basically, for each template we find the specialization that is best for the set of function
arguments. Then, we apply the usual function overload resolution rules to t~ese specializations and
all ordinary functions:

[1] Find the set of function template specializations (§ 13.2.2) that will take part in overload res
olution. Do this by considering each function template and deciding which template argu
ments, if any, would be used if no other function templates or functions of the same name
were in scope. For the call sqrt (z), this makes sqrt<double> (complex<double» and
sqrt< complex<double> > (complex<double» candidates.

[2] If two template functions can be called and one is more specialized than the other (§ 13.5.1),
consider only the most specialized template function in the following steps. For the call
sqrt (z), this means that sqrt<double> (complex<double> ) is preferred over sqrt<
complex<double> > (complex<double»: any call that matches sqrt<T> (complex<T»
also matches sqrt<T> (T) .



Section 13.3.2 Function Template Overloading 337

[3] Do overload resolution for this set of functions, plus any ordinary functions as for ordinary
functions (§7.4). If a template function argument has been determined by template argu
ment deduction (§ 13.3.1), that argument cannot also have promotions, standard conversions,
or user-defined conversions applied. For sqrt (2), sqrt<int> (int) is an exact match, so it
is preferred over sqrt (double) .

[4] If a function and a specialization are equally good matches, the function is preferred. Con
sequently, sqrt (double) is preferred over sqrt<double> (double) for sqrt (2 .0) .

[5] If no match is found, the call is an error. If we end up with two or more equally good
matches, the call is ambiguous and is an error.

For example:

template<class T> T max (T, T) ;

const int s = 7;

void k{)
{

max{1,2);
max ( 'a', 'b');
max (2 .7,4.9);
max{s,7);

max('a',l);
max(2.7,4);

/ / max<int>(1,2)
/ / max<char>('a', 'b')
/ / max<double>(2.7,4.9)
/ / max<int>(int(s), 7) (trivial conversion used)

/ / error: ambiguous (no standard conversion)
/ / error: ambiguous (no standard conversion)

We could resolve the two ambiguities either by explicit qualification:

void f()

{

max<int> ( ,a' , 1);
max<double> (2 . 7, 4) ;

/ / max<int>(int( 'a '), 1)
/ / max<double>(2. 7,double(4))

or by adding suitable declarations:

inline int max (int i, int j) { return max<int> (i ,j); }

inline double max (int i, double d) { return max<double> (i , d) ;
inline double max (double d, int i) { return max<double> (d , i); }
inline double max (double dl, double d2) {return max<double> (dl , d2) ;

void g ()
{

max { 'a' ,1);
max(2.7,4);

/ / max(int('a '),1)
/ / max(2.7,double(4))

For ordinary functions, ordinary overloading rules (§7.4) apply, and the use of inline ensures that
no extra overhead is imposed.

The definition of max () is trivial, so we could have written it explicitly. However, using a spe
cialization of the template is an easy and general way of defining such resolution functions.

The overload resolution rules ensure that template functions interact properly with inheritance:



338 Templates

template<class T> class B { / * ... * / };
template<class T> class D : public B<T> { / * .,. * / };

template<class T> void f(B<T>*);

void g{B<int>* ph, D<int> * pd)
{

Chapter 13

f{pb);
f{pd);

/ / f<int>(pb)
/ / f<int>(static_cast<B<int>*>(pd)); standard conversion D<int>* to B<int>* used

In this example, the template function/() accepts a B<T>* for any type T. We have an argument
of type D<int> *, so the compiler easily deduces that by choosing T to be int, the call can be
uniquely resolved to a call off(B<int> * ).

A function argument that is not involved in the deduction of a template parameter is treated
exactly as an argument of a non-template function. In particular, the usual conversion rules hold.
Consider:

template<class T, class C> T get_nth (C& p, int n); / / get n-th element

This function presumably returns the value of the n-th element of a container of type C. Because C
has to be deduced from an actual argument of get_nth () in a call, conversions are not applicable to
the first argument. However, the second argument is perfectly ordinary, so the full range of possi
ble conversions is considered. For example:

class Index {
public:

operator int ();
/ / ...

} ;

void f( vector<int>& v, short s, Index i)
{

int i1 = get_nth<int> (v, 2);

int i2 = get_nth<int> (v, s);
int i3 = get_nth<int> (v, i);

/ / exact match
/ / standard conversion: short to int
/ / user-defined conversion: Index to int

13.4 Using Template Arguments to Specify Policy

Consider how to sort strings. Three concepts are involved: the string, the element type, and the cri
teria used by the sort algorithm for comparing string elements.

We can't hardwire the sorting criteria into the container because the container can't (in general)
impose its needs on the element types. We can't hardwire the sorting criteria into the element type
because there are many different ways of sorting elements.

Consequently, the sorting criteria are built neither into the container nor into the element type.
Instead, the criteria must be supplied when a specific operation needs to be performed. For exam
ple, if I have strings of characters representing names of Swedes, what collating criteria would I



Section 13.4 Using Template Arguments to Specify Policy 339

like to use for a comparison? Two different collating sequences (numerical orderings of the charac
ters) are commonly used for sorting Swedish names. Naturally, neither a general string type nor a
general sort algorithm should know about the conventions for sorting names in Sweden. Therefore,
any general solution requires that the sorting algorithm be expressed in general terms that can be
defined not just for a specific type but also for a specific use of a specific type. For example, let us
generalize the standard C library function strcmp () for Strings of any type T (§ 13.2):

template<class T, class C>
int compare (const String<T>& str), const String<T>& str2)
{

for (int i=O; i<strJ . length () && i< str2 . length ( ); i++)
if ( ! C : : eq (str1 [i] , str2 [i] ) ) return C:: It (str) [i] , str2 [i]) ? -1 : 1;

return str1 . length ( ) -str2 . length ( ) ;

If someone wants compare () to ignore case, to reflect locale, etc., that can be done by defining
suitable C:: eq () and C: : It ( ). This allows any (comparison, sorting, etc.) algorithm that can be
described in terms of the operations supplied by the "C-operations" and the container to be
expressed. For example:

template<class T> class Cmp { / / normal, default compare
public:

static int eq (T a, T b) { return a==b;
static int It (T a, T b) { return a<b; }

} ;

class Literate { / / compare Swedish names according to literary conventions
public:

static int eq (char a, char b) { return a==b; }
static int It (char, char); / / a table lookup based on character value (§13.9[14J)

} ;

We can now choose the rules for comparison by explicit specification of the template arguments:

void f(String<char> swede}, String<char> swede2)
{

compare< char, Cmp<char> > (swede1 , swede2) ;
compare< char, Literate> (swede] ,swede2);

Passing the comparison operations as a template parameter has two significant benefits compared to
alternatives such as passing pointers to functions. Several operations can be passed as a single
argument with no run-time cost. In addition, the comparison operators eq () and It () are trivial to
inline, whereas inlining a call through a pointer to function requires exceptional attention from a
compiler.

Naturally, comparison operations can be provided for user-defined types as well as built-in
types. This is essential to allow general algorithms to be applied to types with nontrivial compari
son criteria (see §18.4).

Each class generated from a class template gets a copy of each static member of the class tem
plate (see §C.13.1).



340 Templates Chapter 13

13.4.1 Default Template Parameters

Explicitly specifying the comparison criteria for each call is tedious. Fortunately, it is easy to pick
a default so that only uncommon comparison criteria have to be explicitly specified. This can be
implemented through overloading:

template<class T, class C>
int compare (const String<T>& str), const String<T>& str2); / / compare using C

template<class T>
int compare (const String<T>& str), const String<T>& str2); / / compare using Cmp<T>

Alternatively, we can supply the normal convention as a default template argument:

template<class T, class C = Cmp<T> >
int compare (const String<T>& str) , const String<T>& str2)
{

for (int i=O; i<str) . length () && i< str2 . length ( ) i i++)
if ( ! C: :eq (str) [i] , str2 [i] ) ) return C:: It (str) [i] , str2 [i]) ? -1 : };

return str}. length ( ) - str2 . length ( ) ;

Given that, we can write:

void f(String<char> swede}, String<char> swede2)
{

compare (swede), swede2);
compare<char, Literate> (swede) , swede2) ;

/ / use Cmp<char>
/ / use Literate

A less esoteric example (for non-Swedes) is comparing with and without taking case into account:

class No_case { /* ... * / };

void f(String<char> s1, String<char> s2)
{

compare (s) ,s2) ;
compare<char, No_case> (s) , s2) ;

/ / case sensitive
/ / not sensitive to case

The technique of supplying a policy through a template argument and then defaulting that argument
to supply the most common policy is widely used in the standard library (e.g., §18.4). Curiously
enough, it is not used for basic_string (§13.2, Chapter 20) comparisons. Template parameters
used to express policies are often called "traits." For example, the standard library string relies on
char_traits (§20.2.1), the standard algorithms on iterator traits (§19.2.2), and the standard library
containers on allocators (§ 19.4).

The semantic checking of a default argument for a template parameter is done if and (only)
when that default argument is actually used. In particular, as long as we refrain from using the
default template argument Cmp<T> we can compare () strings of a type X for which Cmp<X>
wouldn't compile (say, because < wasn't defined for an X). This point is crucial in the design of
the standard containers, which rely on a template argument to specify default values (§ 16.3.4).



Section 13.5 Specialization 341

13.5 Specialization

By default, a template gives a single definition to be used for every template argument (or combina
tion of template arguments) that a user can think of. This doesn't always make sense for someone
writing a template. I might want to say, "if the template argument is a pointer, use this implemen
tation; if it is not, use that implementation" or "give an error unless the template argument is a
pointer derived from class My_base." Many such design concerns can be addressed by providing
alternative definitions of the template and having the compiler choose between them based on the
template arguments provided where they are used. Such alternative definitions of a template are
called user-defined specializations, or simply, user specializations.

Consider likely uses of a Vector template:

template<class T> class Vector {
T* Vi

int SZ i

public:
Vector ( ) i

explicit Vector (int) i

T& elem (int i) { return V [i] i }

T& operator [ ] (int i) i

void swap (Vector&) i

/ / ...
} i

Vector<int> vi i

Vector<Shape*> vps i

Vector<string> vs i

Vector<char* > vpc i

Vector<Node * > vpn;

/ / general vector type

Most Vectors will be Vectors of some pointer type. There are several reasons for this, but the pri
mary reason is that to preserve run-time polymorphic behavior, we must use pointers (§2.5.4,
§ 12.2.6). That is, anyone who practices object-oriented programming and also uses type-safe con
tainers (such as the standard library containers) will end up with a lot of containers of pointers.

The default behavior of most C++ implementations is to replicate the code for template func
tions. This is good for run-time performance, but unless care is taken it leads to code bloat in criti
cal cases such as the Vector example.

Fortunately, there is an obvious solution. Containers of pointers can share a single implementa
tion. This can be expressed through specialization. First, we define a version (a specialization) of
Vector for pointers to void:

template<> class Vector<void*> {
void* * p;
/ / ...
void* & operator [] (int i) i

} ;

This specialization can then be used as the common implementation for all Vectors of pointers.



342 Templates Chapter 13

The template<> prefix says that this is a specialization that can be specified without a template
parameter. The template arguments for which the specialization is to be used are specified in < >

brackets after the name. That is, the <void* > says that this definition is to be used as the imple
mentation of every Vector for which Tis void* .

The Vector<void*> is a complete specialization. That is, there is no template parameter to
specify or deduce when we use the specialization; Vector<void*> is used for Vectors declared like
this:

Vector<void*> vpv;

To define a specialization that is used for every Vector of pointers and only for Vectors of pointers,
we need a partial specialization:

template<class T> class Vector<T*> : private Vector<void*> {
public:

typede! Vector<void*> Base;

Vector () : Base () {}
explicit Vector (int i) : Base (i) {}

T* & elem (int i) { return static_cast<T* &> (Base: : elem (i) ) i }

T*& operator [ ] (int i) {return static_cast<T*&> (Base: : operator [ ] (i) );

/ / ...
} ;

The specialization pattern <T* > after the name says that this specialization is to be used for every
pointer type; that is, this definition is to be used for every Vector with a template argument that can
be expressed as T*. For example:

Vector<Shape* > vps; / / <T*> is <Shape*> so T is Shape
Vector<int* *> vppi; / / <T*> is <int**> so Tis int*

Note that when a partial specialization is used, a template parameter is deduced from the specializa
tion pattern; the template parameter is not simply the actual template argument. In particular, for
Vector<Shape* >, T is Shape and not Shape*.

Given this partial specialization of Vector, we have a shared implementation for all Vectors of
pointers. The Vector<T*> class is simply an interface to Vector<void*> implemented exclusively
through derivation and inline expansion.

It is important that this refinement of the implementation of Vector is achieved without affect
ing the interface presented to users. Specialization is a way of specifying alternative implementa
tions for different uses of a common interface. Naturally, we could have given the general Vector
and the Vector of pointers different names. However, when I tried that, many people who should
have known better forgot to use the pointer classes and found their code much larger than expected.
In this case, it is much better to hide the crucial implementation details behind a common interface.

This technique proved successful in curbing code bloat in real use. People who do not use a
technique like this (in c++ or in other languages with similar facilities for type parameterization)
have found that replicated code can cost megabytes of code space even in moderately-sized pro
grams. By eliminating the time needed to compile those additional versions of the vector opera
tions, this technique can also cut compile and link times dramatically. Using a single specialization



Section 13.5 Specialization 343

to implement all lists of pointers is an example of the general technique of minimizing code bloat
by maximizing the amount of shared code.

The general template must be declared before any specialization. For example:

template<class T> class List<T* > { / * ... * / };

template<class T> class List { / * ... * / }; / / error: general template after specialization

The critical information supplied by the general template is the set of template parameters that the
user must supply to use it or any of its specializations. Consequently, a declaration of the genera]
case is sufficient to allow the declaration or definition of a specialization:

template<class T> class List;

template<class T> class List<T* > { / * ... * / };

If used, the general template needs to be defined somewhere (§13.7).
If a user specializes a template somewhere, that specialization must be in scope for every use of

the template with the type for which it was specialized. For example:

template<class T> class List { / * ... * / };

List<int* > Ii;

template<class T> class List<T* > { / * ... * / }; /i error

Here, List was specialized for int* after List<int* > had been used.
All specializations of a template must be declared in the same namespace as the template itself.

If used, a specialization that is explicitly declared (as opposed to generated from a more general
template) must also be explicitly defined somewhere (§ 13.7). In other words, explicitly specializ
ing a template implies that no definition is generated for that specialization.

13.5.1 Order of Specializations

One specialization is more specialized than another if every argument list that matches its special
ization pattern also matches the other, but not vice versa. For example:

template<class T> class Vector;
template<class T> class Vector<T*>;
template<> class VectoT<void* > ;

/ / general
/ / specializedfor any pointer
/ / specializedfor void*

Every type can be used as a template argument for the most general Vector, but only pointers can
be used for Vector<T*> and only void*s can be used for Vector<void*>.

The most specialized version will be preferred over the others in declarations of objects, point
ers, etc., (§ 13.5) and in overload resolution (§ 13.3.2).

A specialization pattern can be specified in terms of types composed using the constructs
allowed for template parameter deduction (§ 13.3.1, §C.13.4).



344 Templates Chapter 13

13.5.2 Template Function Specialization

Naturally, specialization is also useful for template functions. Consider the Shell sort from §7.7
and §13.3. It compares elements using < and swaps elements using detailed code. A better defini
tion would be:

template<class T> bool less (T a, T b) { return a<b;

template<class T> void sort (Vector<T>& v)
{

const size_t n =v. size ( );

for (int gap=n /2; O<gap; gap / =2 )
for (int i=gap; i<n; i++)

for (int j=i-gap; O<=j; j-=gap)
if (less (v [j+gap] , v [j] ) ) swap (v [j], v [j+gap] );

This does not improve the algorithm itself, but it allows improvements to its implementation. As
written, sort ( ) will not sort a Vector<char*> correctly because < will compare the two char*s.
That is, it will compare the addresses of the first char in each string. Instead, we would like it to
compare the characters pointed to. A simple specialization of less () for const char* will take care
of that:

template<> bool less<const char* > (const char* a, const char* b)
{

return strcmp (a, b) <0 ;

As for classes (§ 13.5), the template<> prefix says that this is a specialization that can be specified
without a template parameter. The <const char* > after the template function name means that this
specialization is to be used in cases where the template argument is const char*. Because the tem
plate argument can be deduced from the function argument list, we need not specify it explicitly.
So, we could simplify the definition of the specialization:

template<> bool less< > (const char* a, const char* b)
{

return strcmp (a, b) <0 ;

Given the template<> prefix, the second empty <> is redundant, so we would typically simply
write:

template< > bool less (const char* a, const char* b)
{

return strcmp (a, b) <0 ;

I prefer this shorter form of declaration.
Consider the obvious definition of swap ( ) :



Section 13.5.2

template<class T> void swap (T& x I T& y)

{

Template Function Specialization 345

T t =x;

x = y;
y =t;

I I copy x to temporary
II copy y tox
I I copy temporary to y

This is rather inefficient when invoked for Vectors of Vectors; it swaps Vectors by copying all ele
ments. This problem can also be solved by appropriate specialization. A Vector object will itself
hold only sufficient data to give indirect access to the elements (like String; §11.12, §13.2). Thus,
a swap can be done by swapping those representations. To be able to manipulate that representa
tion, I provided Vector with a member function swap () (§ 13.5):

template<class T> void Vector<T>: :swap (Vector & a)
{

swap (v I a . v) ;
swap (sz I a . sz) ;

I I swap representations

This member swap () can now be used to define a specialization of the general swap ( ) :

template<class T> void swap (Vector<T>& a I Vector<T>& b)
{

a.swap (b);

These specializations of less () and swap () are used in the standard library (§ 16.3.9, §20.3.16).
In addition.. they are examples of widely applicable techniques. Specialization is useful when there
is a more efficient alternative to a general algorithm for a set of template arguments (here,
swap ( )). In addition, specialization comes in handy when an irregularity of an argument type
causes the general algorithm to give an undesired result (here, less ( )). These "irregular types"
are often the built-in pointer and array types.

13.6 Derivation and Templates

Templates and derivation are mechanisms for building new types out of existing ones, and gener
ally for wIiting useful code that exploits various forms of commonality. As shown in §3.7.1,
§3.8.5, and §13.5, combinations of the two mechanisms are the basis for many useful techniques.

Deriving a template class from a non-template class is a way of providing a common implemen
tation for a set of templates. The vector from § 13.5 is a good example of this:

template<class T> class Vector<T* > : private Vector<void* > { / * ... * / };

Another way of looking at such examples is that a template is used to provide an elegant and type
safe interface to an otherwise unsafe and inconvenient-to-use facility.

Naturally, it is often useful to derive one template class from another. One use of a base class is
as a building block in the implementation of further classes. If members of a base class depend on a



346 Templates Chapter 13

template parameter of a derived class, the base itself must be parameterized; Vec from §3.7.2 is an
example of this:

template<class T> class vector { / * ... * / };
template<class T> class Vec : public vector<T> { / * ... * / };

The overload resolution rules for template functions ensure that functions work "correctly" for
such derived types (§ 13.3.2).

Having the same template parameter for the base and derived class is the most common case,
but it is not a requirement. Interesting, although less frequently used, techniques rely on passing
the derived type itself to the base class. For example:

template <class C> class Basic_ops { / / basic operators on containers
public:

bool operator== (const C&) const; / / compare all elements
bool operator! =(const C&) const;
1/ ...
I I give access to C's operations:
const C& derived () const { return static_cast<const C&> ( *this); }

} ;

template<class T> class Math_container: public Basic_ops< Math_container<T> > {
public:

size_t size () const;
T& operator [] (size_t);
const T& operator [ ] (size_t) const;
1/ ...

} ;

This allows the definition of the basic operations on containers to be separate from the definition of
the containers themselves and defined once only. However, the definition of operations such as ==
and ! = must be expressed in terms of both the container and its elements, so the base class needs to
be passed to the container template.

Assuming that a Math_container is similar to a traditional vector, the definitions of a
Basic_ops member would look something like this:

template <class C> bool Basic_ops<C>: :operator== (const C& a) const
{

if (derived ( ) . size () ! = a . size ( ) ) return false;
for (int i = 0; i<derived () . size ( ); ++i)

if (derived () [i] ! = a [i] ) return false;
return true;

An alternative technique for keeping the containers and operations separate would be to combine
them from template arguments rather than use derivation:

template<class T I class C> class Mcontainer {
C elements;



Section 13.6 Derivation and Templates 347

public:
T& operator [] (size_t i) { return elements [i]; }

friend bool operator==<> (const Mcontainer&, const Mcontainer&); I I compare elements
friend bool operator! =<> (const Mcontainer&, const Mcontainer&) i
II ...

} i

template<class T> class My_array { I * ... * I };

Mcontainer< double I My_array<double> > mc;

A class generated from a class template is a perfectly ordinary class. Consequently, it can have
friend functions (§C.13.2). In this case, I used friends to achieve the conventional symmetric argu
ment style for == and! = (§ 11.3.2). One might also consider passing a template rather than a con
tainer as the C argument in such cases (§C.13.3).

13.6.1 Parameterization and Inheritance

A template parameterizes the definition of a type or a function with another type. Source code
implementing the template is identical for all parameter types, as is most code using the template.
Where added flexibility is needed, specialization can be used. An abstract class defines an inter
face. Much code for different implementations of the abstract class can be shared in class hierar
chies, and most code using the abstract class doesn't depend on its implementation. From a design
perspective, the two approaches are so close that they deserve a common name. Since both allow
an algorithm to be expressed once and applied to a variety of types, people sometimes refer to both
as polymorphic. To distinguish them, what virtual functions provide is called run-time
polymorphism, and what templates offer is called compile-time polymorphism or parametric
polymorphism.

So when do we choose to use a template and when do we rely on an abstract class? In either
case, we manipulate objects that share a common set of operations. If no hierarchical relationship
is required between these objects, they are best used as template arguments. If the actual types of
these objects cannot be known at compile-time, they are best represented as classes derived from a
common abstract class. If run-time efficiency is at a premium, that is, if inlining of operations is
essential, a template should be used. This issue is discussed in greater detail in §24.4.1.

13.6.2 Member Templates

A class or a class template can have members that are themselves templates. For example:

template<class Scalar> class complex {
Scalar re, im;

public:
template<class T> complex (const complex<T>& c) : re (c. real ( ) ) I im (c. imag ( )) { }
II ...

} ;

complex<float> cf(0 I 0) ;
complex<double> cd =cfi I10k: usesfloat to double conversion



348 Templates

class Quad {
/ / no conversion to in!

} ;

compLex<Quad> cq;
compLex<int> ci = cq; / / error: no Quad to int conversion

Chapter 13

In other words, you can construct a complex<TJ> from a complex<T2> if and only if you can ini
tialize a TJ by a T2. That seems reasonable.

Unfortunately, C++ accepts some unreasonable conversions between built-in types, such as
from double to into Truncation problems could be caught at run time using a checked conversion in
the style of implicit_cast (§ 13.3.1) and checked (§C.6.2.6):

template<class Scalar> class complex {
Scalar re, im;

public:
complex() : re(O), im(O) {}
complex (const complex<Scalar>& c) : re (c. real ( ) ), im (c. imag ( )) { }

tempLate<class T2> compLex (const complex<T2>& c)

: re (checked_cast<ScaLar> (c . reaL ( ) ) ), im (checked_cast<Scalar> (c . imag ( ) )) { }
/ / ...

} ;

For completeness, I added a default constructor and a copy constructor. Curiously enough, a tem
plate constructor is never used to generate a copy constructor, so without the explicitly declared
copy constructor, a default copy constructor would have been generated. In that case, that gener
ated copy constructor would have been identical to the one I explicitly specified. Similarly, copy
assignment (§ 10.4.4.1, §11.7) must be defined as a non-template operator.

A member template cannot be virtual. For example:

class Shape {
/ / ...
tempLate<cLass T> virtuaL hooL intersect (const T&) const =0; / / error: virtual template

} ;

This must be illegal. If it were allowed, the traditi~nal virtual function table technique for imple
menting virtual functions (§2.5.5) could not be used. The linker would have to add a new entry to
the virtual table for class Shape each time someone called intersect () with a new argument type.

13.6.3 Inheritance Relationships

A class template is usefully understood as a specification of how particular types are to be created.
In other words, the template implementation is a mechanism that generates types when needed
based on the user's specification. Consequently, a class template is sometimes called a type
generator.

As far as the C++ language rules are concerned, there is no relationship between two classes
generated from a single class template. For example:



Section 13.6.3 Inheritance Relationships 349

class Shape { I * ... * I };
class Circle : public Shape { I * ... * I };

Given these declarations, people sometimes try to treat a set<Circle*> as a set<Shape*>. This is
a serious logical error based on a flawed argument: "A Circle is a Shape, so a set of Circles is also
a set of Shapes; therefore, I should be able to use a set of Circles as a set of Shapes." The' 'there
fore" part of this argument doesn't hold. The reason is that a set of Circles guarantees that the
member of the set are Circles; a set of Shapes does not provide that guarantee. For example:

class Triangle : public Shape { I * ... * I };

void !(set<Shape*>& s)
{

I I ...
s. insert (new Triangle ( ) ) ;
I I ...

void g (set<Circle*>& s)
{

!(s); I I error. type mismatch: s is a set<Circle*>. not a set<Shape*>

This won't compile because there is no built-in conversion from set<Circle*>& to set<Shape*>&.
Nor should there be. The guarantee that the members of a set<Circle*> are Circles allows us to
safely and efficiently apply Circle-specific operations, such as determining the radius, to members
of the set. If we allowed a set<Circle*> to be treated as a set<Shape*>, we could no longer main
tain that guarantee. For example, f() inserts a Triangle* into its set<Shape* > argument. If the
set<Shape*> could have been a set<Circle*>, the fundamental guarantee that a set<Circle*>
contains Circle*s only would have been violated.

13.6.3.1 Template Conversions

The example in the previous section demonstrates that there cannot be any default relationship
between classes generated from the same templates. However, for some templates we would like to
express such a relationship. For example, when we define a pointer template, we would like to
reflect inheritance relationships among the objects pointed to. Member templates (§ 13.6.2) allow
us to specify many such relationships where desired. Consider:

template<class T> class Ptr { I I pointer to T
T* Pi

public:
Ptr(T*) ;
Ptr (const Ptr&); I I copy constructor
template<class T2> operator Ptr<T2> (); I I convert Ptr<T> to Ptr<T2>
II ...

} i

We would like to define the conversion operators to provide the inheritance relationships we are
accustomed to for built-in pointers for these user-defined Ptrs. For example:



350 Templates

void !(Ptr<Circle> pc)
{

Ptr<Shape> ps = pc;
Ptr< Circle> pc2 = ps ;

/ / should work
/ / should give error

Chapter 13

We want to allow the first initialization if and only if Shape really is a direct or indirect public base
class of Circle. In general, we need to define the conversion operator so that the Ptr<T> to
Ptr<T2> conversion is accepted if and only if a T* can be assigned to a T2*. That can be done
like this:

template<class T>
temp[ate<class T2>

Ptr<T> : : operator Ptr<T2> () {return Ptr<T2> (p); }

The return statement will compile if and only if p (which is a T*) can be an argument to the
Ptr<T2> (T2*) constructor. Therefore, if T* can be implicitly converted into a T2*, the Ptr<T>
to Ptr<T2> conversion will work. For example

void !(Ptr<Circle> pc)
{

Ptr<Shape> ps =pc ;
Ptr<Circle> pc2 = ps;

/ / ok: can convert Circle* to Shape*
/ / error: cannot convert Shape* to Circle*

Be careful to define logically meaningful conversions only.
Note that the template parameter lists of a template and its template member cannot be com

bined. For example:

template<class T I class T2> / / error
Ptr<T> : : operator Ptr<T2> () { return Ptr<T2> (p); }

13.7 Source Code Organization

There are two obvious ways of organizing code using templates:
[1] Include template definitions before their use in a translation unit.
[2] Include template declarations (only) before their use in a translation unit, and compile their

definitions separately.
In addition, template functions are sometimes first declared, then used, and finally defined in a sin
gle translation unit.

To see the differences between the two main approaches, consider a simple template:

#include<iostream>

template<class T> void out (const T& t) {std:: eerr << t; }

We could call this out. c and #include it wherever out () was needed. For example:



Section 13.7 Source Code Organization 351

/ / userl.c:
#include II out. c II

/ / use out()

/ / user2.c:
#include It out. ell
/ / use out()

That is, the definition of out () and all declarations it depends on are #included in several different
compilation units. It is up to the compiler to generate code when needed (only) and to optimize the
process of reading redundant definitions. This strategy treats template functions the same way as
inline functions.

One obvious problem with this is that everything on which the definition of out () depends is
added to each file using out ( ) , thus increasing the amount of information that the compiler must
process. Another problem is that users may accidentally come to depend on declarations included
only for the benefit of the definition of out ( ). This danger can be minimized by using name
spaces, by avoiding macros, and generally by reducing the amount of infonnation included.

The separate compilation strategy is the logical conclusion of this line of thinking: if the tem
plate definition isn't included in the user code, none of its dependencies can affect that code. Thus
we split the original out. c into two files:

/ / out.h:
template<class T> void out (const T& t) ;

/ / out.c:
#include< iostream>
#include II out. h II

export template<class T> void out (cons! T& t) {std:: cerr« t; }

The file out. c now holds all of the infonnation needed to define out ( ) , and out. h holds only what
is needed to call it. A user #includes only the declaration (the interface):

/ / userl.c:
#include II out. h II

/ / use out()

/ / user2.c:
#include II out. h II

/ / use ouf()

This strategy treats template functions the same way it does non-inline functions. The definition (in
out. c) is compiled separately, and it is up to the implementation to find the definition of out ( )
when needed. This strategy also puts a burden on the implementation. Instead of having to filter
out redundant copies of a template definition, the implementation must find the unique definition
when needed.

Note that to be accessible from other compilation units, a template definition must be explicitly
declared export (§9.2.3). This can be done by adding export to the definition or to a preceding
declaration. Otherwise, the definition must be in scope wherever the template is used.

Which strategy or combination of strategies is best depends on the compilation and linkage



352 Templates Chapter 13

system used, the kind of application you are building, and the external constraints on the way you
build systems. Generally, inline functions and small template functions that primarily call other
template functions are candidates for inclusion into every compilation unit in which they are used.
On an implementation with average support from the linker for template instantiation, doing this
can speed up compilation and improve error messages.

Including a definition makes it vulnerable to having its meaning affected by macros and decla
rations in the context into which it is included. Consequently, larger template functions and tem
plate functions with nontrivial context dependencies are better compiled separately. Also, if the
definition of a template requires a large number of declarations, these declarations can have unde
sirable side effects if they are included into the context in which the template is used.

I consider the approach of separately compiling template definitions and including declarations
only in user code ideal. However, the application of ideals must be tempered by practical con
straints, and separate compilation of templates is expensive on some implementations.

Whichever strategy is used, non-inline static members (§C.13.1) must have a unique definition
in some compilation unit. This implies that such members are best not used for templates that are
otherwise included in many translation units.

One ideal is for code to work the same whether it is compiled as a single unit or separated into
several separately translated units. That ideal should be approached by restricting a template
definition's dependency on its environment rather than by trying to carry as much as possible of its
definition context with it into the instantiation process.

13.8 Advice

[1] Use templates to express algorithms that apply to many argument types; § 13.3.
[2] Use templates to express containers; §13.2.
[3] Provide specializations for containers of pointers to minimize code size; § 13.5.
[4] Always declare the general form of a template before specializations; § 13.5.
[5] Declare a specialization before its use; §13.5.
[6] Minimize a template definition's dependence on its instantiation contexts; § 13.2.5, §C.13.8.
[7] Define every specialization you declare; § 13.5.
[8] Consider if a template needs specializations for C-style strings and arrays; §13.5.2.
[9] Parameterize with a policy object; §13.4.
[ I0] Use specialization and overloading to provide a single interface to implementations of the

same concept for different types; §13.5.
[11] Provide a simple interface for simple cases and use overloading and default arguments to

express less common cases; §13.5, §13.4.
[12] Debug concrete examples before generalizing to a template; §13.2.1.
[13] Remember to export template definitions that need to be accessible from other translation

units; §13.7.
[14] Separately compile large templates and templates with nontrivial context dependencies; §13.7.
[15] Use templates to express conversions but define those conversions very carefully; § 13.6.3.1.
[16] Where necessary, constrain template arguments using a constraint () member function;

§13.9[16], §C.13.IO.



Section 13.8 Advice 353

[17] Use explicit instantiation to minimize compile time and link time; §C.13.1 O.
[18] Prefer a template over derived classes when run-time efficiency is at a premium; §13.6.1.
[19] Prefer derived classes over a template if adding new variants without recompilation is impor

tant; §13.6.1.
[20] Prefer a template over derived classes when no common base can be defined; §13.6.1.
[21] Prefer a template over derived classes when built-in types and structures with compatibility

constraints are important; §13.6.1.

13.9 Exercises

1. (*2) Fix the errors in the definition of List from §13.2.5 and write out c++ code equivalent to
what the compiler must generate for the definition of List and the function f( ). Run a small
test case using your hand-generated code and the code generated by the compiler from the tem
plate version. If possible on your system given your knowledge, compare the generated code.

2. (*3) Write a singly-linked list class template that accepts elements of any type derived from a
class Link that holds the information necessary to link elements. This is called an intrusive list.
Using this list, write a singly-linked list that accepts elements of any type (a non-intrusive list).
Compare the performance of the two list classes and discuss the tradeoffs between them.

3. (*2.5) Write intrusive and non-intrusive doubly-linked lists. What operations should be pro
vided in addition to the ones you found necessary to supply for a singly-linked list?

4. (*2) Complete the String template from §13.2 based on the String class from §11.12.
5. (*2) Define a sort () that takes its comparison criterion as a template argument. Define a class

Record with two data members count and price. Sort a vector<Record> on each data member.
6. (*2) Implement a qsort () template.
7. (*2) Write a program that reads (key, value) pairs and prints out the sum of the values corre

sponding to each distinct key. Specify what is required for a type to be a key and a value.
8. (*2.5) Implement a simple Map class based on the Assoc class from §11.8. Make sure Map

works correctly using both C-style strings and strings as keys. Make sure Map works correctly
for types with and without default constructors. Provide a way of iterating over the elements of
a Map.

9. (*3) Compare the performance of the word count program from §11.8 against a program not
using an associative array. Use the same style of I/O in both cases.

10. (*3) Re-implement Map from §13.9[8] using a more suitable data structure (e.g., a red-black
tree or a Splay tree).

11. (*2.5) Use Map to implement a topological sort function. Topological sort is described in
[Knuth,1968] vol. 1 (second edition), pg 262.

12. (*1.5) Make the sum program from §13.9[7] work correctly for names containing spaces; for
example, "thumb tack.' ,

13. (*2) Write readline () templates for different kinds of lines. For example (item,count,price).
14. (*2) Use the technique outlined for Literate in §13.4 to sort strings in reverse lexicographical

order. Make sure the technique works both for C++ implementations where char is signed and
for C++ implementations where it is unsigned. Use a variant of that technique to provide a sort
that is not case-sensitive.



354 Templates Chapter 13

15. (*1.5) Construct an example that demonstrates at least three differences between a function tem
plate and a macro (not counting the differences in definition syntax).

16. (*2) Devise a scheme that ensures that the compiler tests general constraints on the template
arguments for every template for which an object is constructed. It is not sufficient just to test
constraints of the form "the argument T must be a class derived from My_base."



14
Exception Handling

Don ~t interrupt nze
while I ~m interrupting.
- Winston S. Churchill

Error handling - grouping of exceptions - catching exceptions - catch all - re
throw - resource management - autoytr - exceptions and new - resource exhaus
tion - exceptions in constructors - exceptions in destructors - exceptions that are not
errors - exception specifications - unexpected exceptions - uncaught exceptions 
exceptions and efficiency - error-handling alternatives - standard exceptions 
advice - exercises.

14.1 Error Handling

As pointed out in §8.3, the author of a library can detect run-time errors but does not in genera]
have any idea what to do about them. The user of a library may know how to cope with such errors
but cannot detect them - or else they would have been handled in the user's code and not left for
the library to find. The notion of an exception is provided to help deal with such problems. The
fundamental idea is that a function that finds a problem it cannot cope with throws an exception,
hoping that its (direct or indirect) caller can handle the problem. A function that wants to handle
that kind of problem can indicate that it is willing to catch that exception (§2.4.2, §8.3).

This style of error handling compares favorably with more traditional techniques. Consider the
alternatives. Upon detecting a problem that cannot be handled locally, a function could:

[1] terminate the program,
[2] return a value representing "error,"
[3] return a legal value and leave the program in an illegal state, or
[4] call a function supplied to be called in case of "error."



356 Exception Handling Chapter 14

Case [1], "terminate the program," is what happens by default when an exception isn't caught.
For most errors, we can and must do better. In particular, a library that doesn't know about the pur
pose and general strategy of the program in which it is embedded cannot simply exit () or
abort ( ). A library that unconditionally terminates cannot be used in a program that cannot afford
to crash. One way of viewing exceptions is as a way of giving control to a caller when no meaning
ful action can be taken locally.

Case [2], "return an error value," isn't always feasible because there is often no acceptable
"error value." For example, if a function returns an int, every int might be a plausible result.
Even where this approach is feasible, it is often inconvenient because every call must be checked
for the error value. This can easily double the size of a program (§ 14.8). Consequently, this
approach is rarely used systematically enough to detect all errors.

Case [3], "return a legal value and leave the program in an illegal state," has the problem that
the calling function may not notice that the program has been put in an illegal state. For example,
many standard C library functions set the global variable errno to indicate an error (§20.4. t,
§22.3). However, programs typically fail to test errno consistently enough to avoid consequential
errors caused by values returned from failed calls. Furthermore, the use of global variables for
recording error conditions doesn't work well in the presence of concurrency.

Exception handling is not meant to handle problems for which case [4], "call an error-handler
function," is relevant. However, in the absence of exceptions, an error-handler function has
exactly the three other cases as alternatives for how it handles the error. For a further discussion of
error-handling functions and exceptions, see §14.4.5.

The exception-handling mechanism provides an alternative to the traditional techniques when
they are insufficient, inelegant, and error-prone. It provides a way of explicitly separating error
handling code from "ordinary" code, thus making the program more readable and more amenable
to tools. The exception-handling mechanism provides a more regular style of error handling, thus
simplifying cooperation between separately written program fragments.

One aspect of the exception-handling scheme that will appear novel to C and Pascal program
mers is that the default response to an error (especially to an error in a library) is to terminate the
program. The traditional response has been to muddle through and hope for the best. Thus, excep
tion handling makes programs more "brittle" in the sense that more care and effort must be taken
to get a program to run acceptably. This seems preferable, though, to getting wrong results later in
the development process - or after the development process is considered complete and the pro
gram is handed over to innocent users. Where termination is unacceptable, we can catch all excep
tions (§ 14.3.2) or catch all exceptions of a specific kind (§ 14.6.2). Thus, an exception terminates a
program only if a programmer allows it to terminate. This is preferable to the unconditional termi
nation that happens when a traditional incomplete recovery leads to a catastrophic error.

Sometimes people have tried to alleviate the unattractive aspects of "muddling through" by
writing out error messages, putting up dialog boxes asking the user for help, etc. Such approaches
are primarily useful in debugging situations in which the user is a programmer familiar with the
structure of the program. In the hands of nondevelopers, a library that asks the (possibly absent)
user/operator for help is unacceptable. Also, in many cases error messages have no place to go
(say, if the program runs in an environment in which cerr doesn't connect to anything a user
notices); they would be incomprehensible to an end user anyway. At a minimum, the error mes
sage might be in the wrong natural language (say, in Finnish to a English user). Worse, the error



Section 14.1 Error Handling 357

message would typically refer to library concepts completely unknown to a user (say, "bad argu
ment to atan2," caused by bad input to a graphics system). A good library doesn't "blabber" in
this way. Exceptions provide a way for code that detects a problem from which it cannot recover to
pass the problem on to some part of the system that might be able to recover. Only a part of the
system that has some idea of the context in which the program runs has any chance of composing a
meaningful error message.

The exception-handling mechanism can be seen as a run-time analog to the compile-time type
checking and ambiguity control mechanisms. It makes the design process more important and can
increase the work needed to get an initial and buggy version of a program running. However, the
result is code that has a much better chance to run as expected, to run as an acceptable part of a
larger program, to be comprehensible to other programmers, and to be amenable to manipulation by
tools. Similarly, exception handling provides specific language features to support "good style" in
the same way other C++ features support "good style" that can be practiced only informally and
incompletely in languages such as C and Pascal.

It should be recognized that error handling will remain a difficult task and that the exception
handling mechanism - although more formalized than the techniques it replaces - is still relatively
unstructured compared with language features involving only local control flow. The C++
exception-handling mechanism provides the programmer with a way of handling errors where they
are most naturally handled, given the structure of a system. Exceptions make the complexity of
error handling visible. However, exceptions are not the cause of that complexity. Be careful not to
blame the messenger for bad news.

This may be a good time to review §8.3, where the basic syntax, semantics, and style-of-use
aspects of exception handling are presented.

14.1.1 Alternative Views on Exceptions

"Exception" is one of those words that means different things to different people. The C++
exception-handling mechanism is designed to support handling of errors and other exceptional con
ditions (hence the name). In particular, it is intended to support error handling in programs com
posed of independently developed components.

The mechanism is designed to handle only synchronous exceptions, such as array range checks
and I/O errors. Asynchronous events, such as keyboard interrupts and certain arithmetic errors, are
not necessarily exceptional and are not handled directly by this mechanism. Asynchronous events
require mechanisms fundamentally different from exceptions (as defined here) to handle them
cleanly and efficiently. Many systems offer mechanisms, such as signals, to deal with asynchrony,
but because these tend to be system-dependent, they are not described here.

The exception-handling mechanism is a nonlocal control structure based on stack unwinding
(§ 14.4) that can be seen as an alternative return mechanism. There are therefore legitimate uses of
exceptions that have nothing to do with errors (§ 14.5). However, the primary aim of the
exception-handling mechanism and the focus of this chapter is error handling and the support of
fault tolerance.

Standard C++ doesn't have the notion of a thread or a process. Consequently, exceptional cir
cumstances relating to concurrency are not discussed here. The concurrency facilities available on
your system are described in its documentation. Here, I'll just note that the C++ exception-



358 Exception Handling Chapter 14

handling mechanism was designed to be effective in a concurrent program as long as the program
mer (or system) enforces basic concurrency rules, such as properly locking a shared data structure
while using it.

The C++ exception-handling mechanisms are provided to report and handle errors and excep
tional events. However, the programmer must decide what it means to be exceptional in a given
program. This is not always easy (§14.5). Can an event that happens most times a program is run
be considered exceptional? Can an event that is planned for and handled be considered an error?
The answer to both questions is yes. "Exceptional" does not mean "almost never happens" or
"disastrous." It is better to think of an exception as meaning "some part of the system couldn't do
what it was asked to do." Usually, we can then try something else. Exception throws should be
infrequent compared to function calls or the structure of the system has been obscured. However,
we should expect most large programs to throw and catch at least some exceptions in the course of
a normal and successful run.

14.2 Grouping of Exceptions

An exception is an object of some class representing an exceptional occurrence. Code that detects
an error (often a library) throws an object (§8.3). A piece of code expresses desire to handle an
exception by a catch clause. The effect of a throw is to unwind the stack until a suitable catch is
found (in a function that directly or indirectly invoked the function that threw the exception).

Often, exceptions fall naturally into families. This implies that inheritance can be useful to
structure exceptions and to help exception handling. For example, the exceptions for a mathemati
cal library might be organized like this:

class Matherr { };
class Overflow: public Matherr { };
class Underflow: public Matherr { };
class Zerodivide: public Matherr { };
II ...

This allows us to handle any MatherT without caring precisely which kind it is. For example:

void f()
{

try {
I I ...

}

catch (Overflow) {
I I handle Overflow or anything derived from Overflow

}

catch (MatherT) {
I I handle any Matherr that is not Overflow

Here, an Overflow is handled specifically. All other Matherr exceptions will be handled by the
general case.



Section 14.2 Grouping of Exceptions 359

Organizing exceptions into hierarchies can be important for robustness of code. For example,
consider how you would handle all exceptions from a library of mathematical functions without
such a grouping mechanism. This would have to be done by exhaustively listing the exceptions:

void g ()
{

try {
II ...

}

catch (Overflow) { 1* * I }
catch (Underflow) { I * * I }
catch (Zerodivide) { 1* * I }

This is not only tedious, but a programmer can easily forget to add an exception to the list. Con
sider what would be needed if we didn't group math exceptions. When we added a new exception
to the math library, every piece of code that tried to handle every math exception would have to be
modified. In general, such universal update is not feasible after the initial release of the library.
Often, there is no way of finding every relevant piece of code. Even when there is, we cannot in
general assume that every piece of source code is available or that we would be willing to make
changes if it were. These recompilation and maintenance problems would lead to a policy that no
new exceptions can be added to a library after its first release; that would be unacceptable for
almost all libraries. This reasoning leads exceptions to be defined as per-library or per-subsystem
class hierarchies (§ 14.6.2).

Please note that neither the built-in mathematical operations nor the basic math library (shared
with C) reports arithmetic errors as exceptions. One reason for this is that detection of some arith
metic errors, such as divide-by-zero, are asynchronous on many pipelined machine architectures.
The Matherr hierarchy described here is only an illustration. The standard library exceptions are
described in §14.10.

14.2.1 Derived Exceptions

The use of class hierarchies for exception handling naturally leads to handlers that are interested
only in a subset of the information carried by exceptions. In other words, an exception is typically
caught by a handler for its base class rather than by a handler for its exact class. The semantics for
catching and naming an exception are identical to those of a function accepting an argument. That
is, the formal argument is initialized with the argument value (§7.2). This implies that the excep
tion thrown is "sliced" to the exception caught (§ 12.2.3). For example:

class Matherr {
/ / ...
virtual void debugyrint () const { cerr« "Math error" i

} ;

class Int_overflow: public Matherr {
const char* op;
int ai, a2 i



360 Exception Handling Chapter 14

public:
Int_overflow (const char* p, int a, int b) { op =Pial =a i a2 =b i }
virtual void debugyrint () const { cerr « op« ' ( , « al « " ' « a2« ') , i
/ / ...

} i

void f{)

{

try {
g{);

}

catch (Matherr m)

/ / ...

When the Matherr handler is entered, m is a Matherr object - even if the call to g () threw
[nt_overflow. This implies that the extra information found in an [nt_overflow is inaccessible.

As always, pointers or references can be used to avoid losing information permanently. For
example, we might write:

int add (int x, int y)
{

if ( (x>O && y>O && x>INT_MAX-y) II (x<O && y<O && x<INT_MIN-y) )
throw Int_overflow( n+n ,x,y) i

return X+Yi

void f{)

{

/ / x+Y will not overflow

try {
int i I = add ( I , 2) ;

int i2 =add {INT_MAX, -2);

int i3 =add (lNT_MAX, 2) i
}

catch (Matherr& m) {

/ / ...
m. debugyrint ( ) ;

/ / here we go!

The last call of add () triggers an exception that causes Int_overflow: :debugyrint () to be
invoked. Had the exception been caught by value rather than by reference,
Matherr: : debugyrint () would have been invoked instead.

14.2.~ Composite Exceptions

Not every grouping of exceptions is a tree structure. Often, an exception belongs to two groups.
For example:

class Netfile_err: public Network_err, public File_system_err { /* ... */ };



Section 14.2.2 Composite Exceptions 361

Such a Netfile_err can be caught by functions dealing with network exceptions:

void f()

{

try {
/ / something

}

catch (Network_err& e)
/ / ...

and also by functions dealing with file system exceptions:

void g()

{

try {
/ / something else

}

catch (File_system_err& e)
/ / ...

This nonhierarchical organization of error handling is important where services, such as network
ing' are transparent to users. In this case, the writer of g () might not even be aware that a network
is involved (see also §14.6).

14.3 Catching Exceptions

Consider:

void f()

{

try {
throw E();

}

catch (H) {
/ / when do we get here?

The handler is invoked:
[1] If H is the same type as E.
[2] If H is an unambiguous public base of E.
[3] If Hand E are pointer types and [1] or [2] holds for the types to which they refer.
[4] If H is a reference and [1] or [2] holds for the type to which H refers.

In addition, we can add const to the type used to catch an exception in the same way that we can
add it to a function parameter. This doesn't change the set of exceptions we can catch; it only
restricts us from modifying the exception caught.



362 Exception Handling Chapter 14

In principle, an exception is copied when it is thrown, so the handler gets hold of a copy of the
original exception. In fact, an exception may be copied several times before it is caught. Conse
quently, we cannot throw an exception that cannot be copied. The implementation may apply a
wide variety of strategies for storing and transmitting exceptions. It is guaranteed, however, that
there is sufficient memory to allow new to throw the standard out-of-memory exception, bad_alloc
(§ 14.4.5).

14.3.1 Re-Throw

Having caught an exception, it is common for a handler to decide that it can't completely handle
the error. In that case, the handler typically does what can be done locally and then throws the
exception again. Thus, an error can be handled where it is most appropriate. This is the case even
when the information needed to best handle the error is not available in a single place, so that the
recovery action is best distributed over several handlers. For example:

void h()
{

try {
/ / code that might throw Math errors

}

catch (Matherr) {
if (can_handle_it_completely)

/ / handle the Matherr

return;
}

else {
/ / do what can be done here

throw; / / re-throw the exception

A re-throw is indicated by a throw without an operand. If a re-throw is attempted when there is no
exception to re-throw, terminate () (§ 14.7) will be called. A compiler can detect and warn about
some, but not all, such cases.

The exception re-thrown is the original exception caught and not just the part of it that was
accessible as a Matherr. In other words, had an [nt_overflow been thrown, a caller of h () could
still catch an [nt_overflow that h () had caught as a Matherr and decided to re-throw.

14.3.2 Catch Every Exception

A degenerate version of this catch-and-rethrow technique can be important. As for functions, the
ellipsis . .. indicates "any argument" (§7.6), so catch ( ... ) means "catch any exception."
For example:



Section 14.3.2

void m()
{

try {
/ / something

}

catch ( ... ) {
/ / cleanup
throw;

/ / handle every exception

Catch Every Exception 363

That is, if any exception occurs as the result of executing the main part of m ( ) , the cleanup action
in the handler is invoked. Once the local cleanup is done, the exception that caused the cleanup is
re-thrown to trigger further error handling. See §14.6.3.2 for a technique to gain information about
an exception caught by a . .. handler.

One important aspect of error handling in general and exception handling in particular is to
maintain invariants assumed by the program (§24.3.7.1). For example, if m () is supposed to leave
certain pointers in the state in which it found them, then we can write code in the handler to give
them acceptable values. Thus, a "catch every exception" handler can be used to maintain arbitrary
invariants. However, for many important cases such a handler is not the most elegant solution to
this problem (see §14.4).

14.3.2.1 Order of Handlers

Because a derived exception can be caught by handlers for more than one exception type, the order
in which the handlers are written in a try statement is significant. The handlers are tried in order.
For example:

void f()
{

try {
/ / ...

}

catch (std:: ios_base: :failure) {
/ / handle any stream io error (§14.10)

}

catch (std:: exception& e) {
/ / handle any standard library exception (§14.10)

}

catch ( ... ) {
/ / handle any other exception (§14.3.2)

Because the compiler knows the class hierarchy, it can catch many logical mistakes. For example:



364 Exception Handling

void g ()
{

try {
I I ...

}

catch ( ... ) {
I I handle every exception (§J4.3.2)

}

catch (std:: exception& e) {
I I handle any standard library exception (§J4.JO)

}

catch (std:: bad_cast) {
I I handle dynamic_cast failure (§J5.4.2)

Chapter 14

Here, the exception will never be considered. Even if we removed the "catch-all" handler,
bad_cast wouldn't be considered because it is derived from exception.

14.4 Resource Management

When a function acquires a resource - that is, it opens a file, allocates some memory from the free
store, sets an access control lock, etc., - it is often essential for the future running of the system that
the resource be properly released. Often that "proper release" is achieved by having the function
that acquired it release it before returning to its caller. For example:

void useJile (const char* jn)
{

FILE* f=fopen{jn, "rll)i

/ / use!

fclose (f);

This looks plausible until you realize that if something goes wrong after the call of fopen () and
before the call of fclose ( ) , an exception may cause useJile () to be exited without fclose ( )
being called. Exactly the same problem can occur in languages that do not support exception han
dling. For example, the standard C library function longjmp () can cause the same problem. Even
an ordinary return-statement could exit useJile without closing!

A first attempt to make useJile () to be fault-tolerant looks like this:

void useJile (const char* fn)
{

FILE* f=fopen(fn, tlrn)i

try {
II use!



Section 14.4

catch ( ... ) {
fclose (j) i

throw;
}

fclose (f) i

Resource Management 365

The code using the file is enclosed in a try block that catches every exception, closes the file, and
re-throws the exception.

The problem with this solution is that it is verbose, tedious, and potentially expensive. Further
more, any verbose and tedious solution is error-prone because programmers get bored. Fortunately,
there is a more elegant solution. The general form of the problem looks like this:

void acquire ( )
{

/ / acquire resource J
/ / ...
/ / acquire resource n

/ / use resources

/ / release resource n
/ / ...
/ / release resource J

It is typically important that resources are released in the reverse order of their acquisition. This
strongly resembles the behavior of local objects created by constructors and destroyed by
destructors. Thus, we can handle such resource acquisition and release problems by a suitable use
of objects of classes with constructors and destructors. For example, we can define a class Fileytr
that acts like a FILE*:

class Fileytr {
FILE* Pi

public:
Fileytr (const char* n, const char* a) {p = fopen (n, a) i }

Fileytr(FILE* pp) {p = PPi }
/ / suitable copy operations
-Fileytr() { if (p) fclose (p) i }

operator FILE* () {return p; )
} ;

We can construct a Fileytr given either a FILE* or the arguments required for jopen ( ). In either
case, a Fileylr will be destroyed at the end of its scope and its destructor will close the file. Our
program now shrinks to this minimum:

void useJile (const char* In)
{

Fileytr f(fn, II r ll);

/ / usef



366 Exception Handling Chapter 14

The destructor will be called independently of whether the function is exited normally or exited
because an exception is thrown. That is, the exception-handling mechanisms enable us to remove
the error-handling code from the main algorithm. The resulting code is simpler and less error
prone than its traditional counterpart.

The process of searching "up through the stack" to find a handler for an exception is com
monly called "stack unwinding." As the call stack is unwound, the destructors for constructed
local objects are invoked.

14.4.1 Using Constructors and Destructors

The technique for managing resources using local objects is usually referred to as "resource acqui
sition is initialization." This is a general technique that relies on the properties of constructors and
destructors and their interaction with exception handling.

An object is not considered constructed until its constructor has completed. Then and only then
will stack unwinding call the destructor for the object. An object composed of sub-objects is con
structed to the extent that its sub-objects have been constructed. An array is constructed to the
extent that its elements have been constructed (and only fully constructed elements are destroyed
during unwinding).

A constructor tries to ensure that its object is completely and correctly constructed. When that
cannot be achieved, a well-written constructor restores - as far as possible - the state of the system
to what it was before creation. Ideally, naively written constructors always achieve one of these
alternatives and don't leave their objects in some "half-constructed" state. This can be achieved
by applying the' 'resource acquisition is initialization" technique to the members.

Consider a class X for which a constructor needs to acquire two resources: a file x and a lock y.
This acquisition might fail and throw an exception. Class X's constructor must never return having
acquired the file but not the lock. Furthermore, this should be achieved without imposing a burden
of complexity on the programmer. We use objects of two classes, Fileytr and Lockytr, to repre
sent the acquired resources. The acquisition of a resource is represented by the initialization of the
local object that represents the resource:

class X {
Fileytr aa i

Lockytr bb i

public:
X (const char* x I const char* y)

: aa (x, If rw lf
) I / / acquire 4X '

bb (y) / / acquire 'y'
{ }

/ / ...
} i

Now, as in the local object case, the implementation can take care of all of the bookkeeping. The
user doesn't have to keep track at all. For example, if an exception occurs after aa has been con
structed but before bb has been, then the destructor for aa but not for bb will be invoked.

This implies that where this simple model for acquisition of resources is adhered to, the author
of the constructor need not write explicit exception-handling code.



Section 14.4.1 Using Constructors and Destructors 367

The most common resource acquired in an ad-hoc manner is memory. For example:

class Y {
int* p;
void init ( ) ;

public:
Y (int s) {p = new int [s]; init ( ) ;
- Y () {delete [] p; }
/ / ...

} ;

This practice is common and can lead to "memory leaks." If an exception is thrown by init ( ),
then the store acquired will not be freed; the destructor will not be called because the object wasn't
completely constructed. A safe variant is:

class Z {
vector<int> p;
void init ( ) i

public:
Z (int s) : p (s) { init ( ); }
/ / ...

} ;

The memory used by p is now managed by vector. If init () throws an exception, the memory
acquired will be freed when the destructor for p is (implicitly) invoked.

14.4.2 Auto_ptr

The standard library provides the template class autoytr, which supports the' 'resource acquisition
is initialization" technique. Basically, an autoytr is initialized by a pointer and can be derefer
enced in the way that a pointer can. Also, the object pointed to will be implicitly deleted at the end
of the autoytr' s scope. For example:

void f( Point pJ I Point p2 I autoytr<Circle> pc I Shape* pb) / / refnember to delete ph on exit
{

autoytr<Shape> p (new Rectangle (p J I p2) ) ; / / p points to a rectangle
autoytr<Shape> pbox (pb) i

p->rotate (45) i / / use autoytr<Shape> exactly as a Shape*
/ / ...
If (in_a_mess) throw Mess () i

/ / ...

Here the Rectangle I the Shape pointed to by ph, and the Circle pointed to by pc are deleted
whether or not an exception is thrown.

To achieve this ownership semantics (also called destructive copy semantics), autoytrs have a
copy selnantics that differs radically from that of ordinary pointers: When one autoytr is copied
into another, the source no longer points to anything. Because copying an autoytr modifies it, a
const autoytr cannot be copied.

The autoytr template is declared in <memory>. It can be described by an implementation:



368 Exception Handling Chapter 14

/ / copy, then a.ptr=O
/ / copy, then a.ptr=O
/ / copy, then a.ptr=O
/ / copy, then a.ptr=O

template<class x> class std:: autoytr {
template <class Y> struct autoytr_ref { / * ... * / }; / / helper class
X* ptr;

public:
typedef X element_type;

explicit autoytr (X* p =0) throw () {ptr=p; } / / throw() means "throws nothing;" see §J4.6
~autoytr () throw () {delete ptr; }

/ / note copy constructors and assignments take non-const arguments:
autoytr (autoytr& a) throw ( ) ;
template<class Y> autoytr (autoytr< Y>& a) throw ( ) ;
autoytr& operator= (autoytr& a) throw ( ) ;
template<class Y> autoytr& operator= (autoytr< Y>& a) throw ( ) ;

X& operator* () const throw () { return *plr ; }
x* operator- > () const throw () { return ptr; }
x* get () const throw () {return ptr; } / / extract pointer
x* release () throw () {X* t =ptr; ptr=O; return t; } / / relinquish ownership
void reset (X* p =0) throw () {if (p! =ptr) {delete ptr; ptr=p; } }

} ;

autoytr (autoytr_ref<X» throw ( ) ;
template<class Y> operator autoytr_ref< Y> () throw ( ) ;
template<class Y> operator autoytr< Y> () throw ( ) ;

/ / copy from autoytr_ref
/ / copy to autoytr_ref
/ / destructive copy from autoytr

The purpose of autoytr_ref is to implement the destructive copy &emantics for ordinary autoytrs
while making it impossible to copy a const autoytr. If a D* can be converted to a B* then the
template constructor and template assignment can (explicitly or implicitly) convert an
autoytr<D> to an autoytr<B>. For example:

void g (Circle* pc)
{

autoytr<Circle> p2 (pc) i / / now p2 is responsible for deletion
autoytr<Circle> p3 (p2); / / now p3 is responsible for deletion (and p2 isn'l)
p2->m = 7; / / programmer error: p2.get()==O
Shape* ps = p3 . get ( ) ; / / extract the pointer from an autoytr
autoytr<Shape> aps (p3); / / transfer ofownership and convert type
autoytr<Circle> p4 (pc) i / / programmer error: now p4 is also responsible for deletion

The effect of having more than one autoytr own an object is undefined; most likely, the object
will be deleted twice (with bad effects).

Note that autoytr's destructive copy semantics means that it does not meet the requirements
for elements of a standard container or for standard algorithms such as sort ( ). For example:

vector< autoytr<Shape> >& v; / / dangerous: use ofautoytr in container
/ / ...
sort (v. begin ( ) , v . end ( ) ) ; / / Don't do this: The sort will probably mess up v

Clearly, autoytr isn't a general smart pointer. However, it provides the service for which it was
designed - exception safety for automatic pointers - with essentially no overhead.



Section 14.4.3

14.4.3 Caveat

Caveat 369

Not all programs need to be resilient against all forms of failure, and not all resources are critical
enough to warrant the effort to protect them using "resource acquisition is initialization,"
autoytr, and catch ( . . . ). For example, for many programs that simply read an input and run to
completion, the most suitable response to a serious run-time error is to abort the process (after pro
ducing a suitable diagnostic). That is, let the system release all acquired resources and let the user
re-run the program with a more suitable input. The strategy discussed here is intended for applica
tions for which such a simplistic response to a run-time error is unacceptable. In particular, a
library designer usually cannot make assumptions about the fault tolerance requirements of a pro
gram using the library and is thus forced to avoid all unconditional run-time failures and to release
all resources before a library function returns to the calling program. The "resource acquisition is
initialization" strategy, together with the use of exceptions to signal failure, is suitable for many
such libraries.

14.4.4 Exceptions and New

Consider:

void f(Arena& a, x* buffer)
{

X* pI =new X;
x* p2 = new X[IO];

x* p3 = new (bu/fer[IO] ) X;
X* p4 =new (bu/fer[ll] ) X[lO];

X* p5 =new (a) X;
x* p6 = new (a) X[lO];

/ / place X in buffer (no deallocation needed)

/ / allocation/rom Arena a (deallocate/rom a)

What happens if X' s constructor throws an exception? Is the memory allocated by the operator
new () freed? For the ordinary case, the answer is yes, so the initializations of pI and p2 don't
cause memory leaks.

When the placement syntax (§ 10.4.11) is used, the answer cannot be that simple. Some uses of
that syntax allocate memory, which then ought to be released; however, some don't. Furthermore,
the point of using the placement syntax is to achieve nonstandard allocation, so nonstandard freeing
is typically required. Consequently, the action taken depends on the allocator used. If an allocator
Z: : operator new () is used, Z:: operator delete () is invoked if it exists; otherwise, no
deallocation is attempted. Arrays are handled equivalently (§ 15.6.1). This strategy correctly han
dles the standard library placement new operator (§ 10.4.11), as well as any case in which the pro
grammer has provided a matching pair of allocation and deallocation functions.

14.4.5 Resource Exhaustion

A recurring programming problem is what to do when an attempt to acquire a resource fails. For
example, previously we blithely opened files (using/open ( ) ) and requested memory from the free
store (using operator new) without worrying about what happened if the file wasn't there or if we



370 Exception Handling Chapter 14

had run out of free store. When confronted with such problems, programmers come up with two
styles of solutions:

Resumption: Ask some caller to fix the problem and carry on.
Termination: Abandon the computation and return to some caller.

In the former case, a caller must be prepared to help out with resource acquisition problems in
unknown pieces of code. In the latter, a caller must be prepared to cope with failure of the attempt
to acquire the resource. The latter is in most cases far simpler and allows a system to maintain a
better separation of levels of abstraction. Note that it is not the program that terminates when one
uses the termination strategy; only an individual computation terminates. "Termination" is the tra
ditional term for a strategy that returns from a "failed" computation to an error handler associated
with a caller (which may re-try the failed computation), rather than trying to repair a bad situation
and resume from the point at which the problem was detected.

In C++, the resumption model is supported by the function-call mechanism and the termination
model is supported by the exception-handling mechanism. Both can be illustrated by a simple
implementation and use of the standard library operator new ( ) :

void* operator new (size_t size)
{

for (;;) {
if (void* p = maUoc (size) ) return p;
ij(_new_handler==O) throw bad_alloc();
_new_handler ( ) ;

I I try to find memory
I I no handler: give up
II ask for help

Here, I use the standard C library malloc () to do the real search for memory; other implementa
tions of operator new () may choose other ways. If memory is found, operator new () can return
a pointer to it. Otherwise, operator new () calls the _new_handler. If the _new_handler can find
more memory for malloc () to allocate, all is fine. If it can't, the handler cannot return to operator
new () without causing an infinite loop. The _new_handler () might then choose to throw an
exception, thus leaving the mess for some caller to handle:

void my_new_handler()
{

int no_of_bytesJound =find_some_memory() ;
if (no_of_bytesJound < min_allocation) throw bad_aUoc () ;

Somewhere, there ought to be a try_block with a suitable handler:

try {
I I ...

}

catch (bad_aUoe) {
I I somehow respond to memory exhaustion

/ I give up

The _new_handler used in the implementation of operator new () is a pointer to a function main
tained by the standard function set_new_handler ( ). If I want my_new_handler () to be used as



Section 14.4.5

the _new_handler, I say:

set_new_handler (&my_new_handler) ;

If I also want to catch bad_alloc, I might say:

void f()

{

void (*oldnh) () = set_new_handler(&my_new_handler);

try {
/ / ...

}

catch (bad_alloc )
/ / ...

}

catch ( ... ) {
set_new_handler (oldnh) ; / / re-set handler
throw; / / re-throw

Resource Exhaustion 371

set_new_handler (oldnh ) ; / / re-set handler

Even better, avoid the catch ( ... ) handler by applying the "resource acquisition is initial
ization" technique described in §14.4 to the _new_handler (§ 14.12[1]).

With the _new_handler, no extra information is passed along from where the error is detected
to the helper function. It is easy to pass more infonnation. However, the more information that is
passed between the code detecting a run-time error and a function helping correct that error, the
more the two pieces of code become dependent on each other. This implies that changes to the one
piece of code require understanding of and maybe even changes to the other. To keep separate
pieces of software separate, it is usually a good idea to minimize such dependencies. The
exception-handling mechanism supports such separation better than do function calls to helper rou
tines provided by a caller.

In general, it is wise to organize resource allocation in layers (levels of abstraction) and avoid
having one layer depend on help from the layer that called it. Experience with larger systems
shows that successful systems evolve in this direction.

Throwing an exception requires an object to throw. A C++ implementation is required to have
enough spare memory to be able to throw bad_alloc in case of memory exhaustion. However, it is
possible that throwing some other exception will cause memory exhaustion.

14.4.6 Exceptions in Constructors

Exceptions provide a solution to the problem of how to report errors from a constructor. Because a
constructor does not return a separate value for a caller to test, the traditional (that is, non
exception-handling) alternatives are:

[1] Return an object in a bad state, and trust the user to test the state.
[2] Set a nonlocal variable (e.g., ermo) to indicate that the creation failed, and trust the user to

test that variable.



372 Exception Handling Chapter 14

[3] Don't do any initialization in the constructor, and rely on the user to call an initialization
function before the first use (§E.3.5).

[4] Mark the object "uninitialized" and have the first member function called for the object do
the real initialization, and that function can then report an error if initialization fails.

Exception handling allows the information that a construction failed to be transmitted out of the
constructor. For example, a simple Vector class might protect itself from excessive demands on
memory like this:

class Vector {
public:

class Size { };

enum { max = 32000 } ;

Vector (int sz)
{

if (sz<O I I max<sz) throw Size ( ) ;
/ / ...

/ / ...
} ;

Code creating Vectors can now catch Vector: :Size errors, and we can try to do something sensible
with them:

Vector* f( int i)
{

try {
Vector* p = new Vector(i);
/ / ...
return p;

}

catch (Vector: : Size) {
/ / deal with size error

As always, the error handler itself can use the standard set of fundamental techniques for error
reporting and recovery. Each time an exception is passed along to a caller, the view of what went
wrong changes. If suitable information is passed along in the exception, the amount of information
available to deal with the problem could increase. In other words, the fundamental aim of the
error-handling techniques is to pass information about an error from the original point of detection
to a point where there is sufficient information available to recover from the problem, and to do so
reliably and conveniently.

The "resource acquisition is initialization" technique is the safest and most elegant way of han
dling constructors that acquire more than one resource (§ 14.4). In essence, the technique reduces
the problem of handling many resources to repeated application of the (simple) technique for han
dling one resource.



Section 14.4.6.1 Exceptions and Member Initialization 373

14.4.6.1 Exceptions and Member Initialization

What happens if a member initializer (directly or indirectly) throws an exception? By default, the
exception is passed on to whatever invoked the constructor for the member's class. However, the
constructor itself can catch such exceptions by enclosing the complete function body - including
the member initializer list - in a try-block. For example:

class X {
Vector Vi

/ / ...
public:

X (int) i

/ / ...
} i

X: :X(int s)

try
: V (s) / / initialize v by s

/ / ...
}

catch (Vector:: Size) { / / exceptions thrown for v are caught here
/ / ...

14.4.6.2 Exceptions and Copying

Like other constructors, a copy constructor can signal a failure by throwing an exception. In that
case, no object is constructed. For example, vector's copy constructor often need to allocate mem
ory and copy elements (§ 16.3.4, §E.3.2) and that can cause exceptions to be thrown. Before throw
ing an exception, a copy constructor need to release any resources that it acquired. See §E.2 and
§E.3 for a detailed discussion of exception handling and resource management for containers.

A copy assignment resembles a copy constructor in that it may have to acquire resources and
may have to exit by throwing an exception. Before throwing an exception, an assignment must
ensure that both of its operands are left in valid states. Otherwise, standard library requirements
may be violated and undefined behavior might result (§E.2, §E.3.3).

14.4.7 Exceptions in Destructors

From the point of view of exception handling, a destructor can be called in one of two ways:
[1] Normal call: As the result of a normal exit from a scope (§ 10.4.3), a delete (§ 10.4.5), etc.
[2] Call during exception handling: During stack unwinding (§ 14.4), the exception-handling

mechanism exits a scope containing an object with a destructor.
In the latter case, an exception may not escape from the destructor itself. If it does, it is considered
a failure of the exception-handling mechanism and std: : terminate () (§ 14.7) is called. After all,
there is no general way for the exception-handling mechanism or the destructor to determine
whether it is acceptable to ignore one of the exceptions in favor of handling the other. Exiting from
a destructor by throwing an exception is also a violation of the standard library requirements (§E.2).



374 Exception Handling Chapter 14

/ / throws 'Empty' ifqueue is empty

If a destructor calls functions that may throw exceptions, it can protect itself. For example:

x:: ....X()

try {
f( ); II Inight thro~v

}

catch ( ... ) {
II do .wJ1nethillg

The standard library function uncaught_exception () returns true if an exception has been thrown
but hasn't yet been caught. This allows the programmer to specify different actions in a destructor
depending on whether an object is destroyed normally or as part of stack unwinding.

14.5 Exceptions That Are Not Errors

If an exception is expected and caught so that it has no bad effects on the behavior of the program,
then how can it be an error? Only because the programmer thinks of it as an error and of the
exception-handling mechanisms as tools for handling errors. Alternatively, one might think of the
exception-handling mechanisms as simply another control structure. For example:

void f(Queue<X>& q)
try {

for (; ;) {
X m = q . get ( ) ;
1/ ...

}

catch (Queue<X>:: Empty)
return;

This actually has some charm, so it is a case in which it is not entirely clear what should be consid
ered an error and what should not.

Exception handling is a less structured mechanism than local control structures such as if and
for and is often less efficient when an exception is actually thrown. Therefore, exceptions should
be used only where the more traditional control structures are inelegant or impossible to use. Note
that the standard library offers a queue of arbitrary elements without using exceptions (§ 17.3.2).

Using exceptions as alternate returns can be an elegant technique for terminating search func
tions - especially highly recursive search functions such as a lookup in a tree. For example:

void fnd (Tree * p, const string& s)
{

if (s == p->str) throw p; / / found s
if (p->left) fnd (p->leji, s);
if (p->right) fnd (p->right, s);



Section 14.5

Tree * find (Tree* p, const string& s)
{

Exceptions That Are Not Errors 375

try {
fnd(p,s);

}

catch (Tree* q)
return q;

}

return 0;

/ / q->str==s

However, such use of exceptions can easily be overused and lead to obscure code. Whenever rea
sonable, one should stick to the "exception handling is error handling" view. When this is done,
code is clearly separated into two categories: ordinary code and error-handling code. This makes
code more comprehensible. Unfortunately, the real world isn't so clear cut. Program organization
will (and to some extent should) reflect that.

Error handling is inherently difficult. Anything that helps preserve a clear model of what is an
error and how it is handled should be treasured.

14.6 Exception Specifications

Throwing or catching an exception affects the way a function relates to other functions. It can
therefore be worthwhile to specify the set of exceptions that might be thrown as part of the function
declaration. For example:

void f( int a) throw (x2, x3);

This specifies thatf() may throw only exceptions x2, x3, and exceptions derived from these types,
but no others. When a function specifies what exceptions it might throw, it effectively offers a
guarantee to its callers. If during execution that function does something that tries to abrogate the
guarantee, the attempt will be transformed into a call of std: : unexpected ( ). The default meaning
of unexpected () is std:: terminate ( ), which in tum normally calls abort ( ); see §9.4.I.l for
details.

In effect,

void f() throw (x2, x3)
{

/ / stuff

is equivalent to:

void f()

try
{

/ / stuff



376 Exception Handling

catch (x2) {throw;
catch (x3) {throw;
catch ( ... ) {

std : : unexpected ( ) ;

/ / re-throw
/ / re-throw

/ / unexpected() will not return

Chapter 14

The most important advantage is that the function declaration belongs to an interface that is visible
to its callers. Function definitions, on the other hand, are not universally available. Even when we
do have access to the source code of all our libraries, we strongly prefer not to have to look at it
very often. In addition, a function with an exception-specification is shorter and clearer than the
equivalent hand-written version.

A function declared without an exception-specification is assumed to throw every exception.
For example:

int f (); / / can throw any exception

A function that will throw no exceptions can be declared with an empty list:

int g () throw (); / / no exception thrown

One might think that the default should be that a function throws no exceptions. However, that
would require exception specifications for essentially every function, would be a significant cause
for recompilation, and would inhibit cooperation with software written in other languages. This
would encourage programmers to subvert the exception-handling mechanisms and to write spurious
code to suppress exceptions. It would provide a false sense of security to people who failed to
notice the subversion.

14.6.1 Checking Exception Specifications

It is not possible to catch every violation of an interface specification at compile time. However,
much compile-time checking is done. The way to think about exception-specifications is to assume
that a function will throw any exception it can. The rules for compile-time checking exception
specifications outlaw easily detected absurdities.

If any declaration of a function has an exception-specification, every declaration of that function
(including the definition) must have an exception-specification with exactly the same set of excep
tion types. For example:

int f() throw (std::bad_alloc);

int f( ) / / error: exception-specification missing
{

/ / ...

Importantly, exception-specifications are not required to be checked exactly across compilation-unit
boundaries. Naturally, an implementation can check. However, for many large and long-lived sys
tems, it is important that the implementation does not - Of, if it does, that it carefully gives hard
errors only where violations will not be caught at run time.

The point is to ensure that adding an exception somewhere doesn't force a complete update of
related exception specifications and a recompilation of all potentially affected code. A system can



Section 14.6.1 Checking Exception Specifications 377

then function in a partially updated state relying on the dynamic (run-time) detection of unexpected
exceptions. This is essential for the maintenance of large systems in which major updates are
expensive and not all source code is accessible.

A virtual function may be overridden only by a function that has an exception-specification at
least as restrictive as its own (explicit or implicit) exception-specification. For example:

class B {
public:

virtual void f ( )i I I can throw anything
virtual void g () throw (X I Y) ;
virtual void h () throw (X) i

} i

class D : public B {
public:

void f() throw (X) i
void g () throw (X) i

void h () throw (X, Y) i

} i

II ok
I10k: D::g() is more restrictive than B::g()
I I error: D::h() is less restrictive than B::h()

II ok
I I error: ft.) is less restrictive than pj2

This rule is really only common sense. If a derived class threw an exception that the original func
tion didn't advertise, a caller couldn't be expected to catch it. On the other hand, an overriding
function that throws fewer exceptions clearly obeys the rule set out by the overridden function's
exception-specification.

Similarly, you can assign a pointer to function that has a more restrictive exception
specification to a pointer to function that has a less restrictive exception-specification, but not vice
versa. For example:

void f() throw (X) i

void (*pfl) () throw (X, Y) = &fi

void (*pf2) () throw () = &fi

In particular, you cannot assign a pointer to a function without an exception-specification to a
pointer to function that has one:

void g ( ); I I might throw anything

void (*pf3) () throw (X) = &g i I I error: g() less restrictive than pf3

An exception-specification is not part of the type of a function and a typedef may not contain one.
For example:

typedef void (*PF) () throw (X) ; / / error

14.6.2 Unexpected Exceptions

An exception-specification can lead to calls to unexpected ( ). Such calls are typically undesirable
except during testing. Such calls can be avoided through careful organization of exceptions and
specification of interfaces. Alternatively, calls to unexpected () can be intercepted and rendered
harmless.



378 Exception Handling Chapter 14

A well-defined subsystem Y will often have all its exceptions derived from a class Yerr. For
example, given

class Some_Yerr : public Yerr { / * ... * / } i

a function declared

void f() throw (Xerr, Yerr, exception) i

will pass any YeTr on to its caller. In particular,/() would handle a Some_Yerr by passing it on to
its caller. Thus, no Yerr in/() will trigger unexpected ( ) .

All exceptions thrown by the standard library are derived from class exception (§ 14.10).

14.6.3 Mapping Exceptions

Occasionally, the policy of terminating a program upon encountering an unexpected exception is
too Draconian. In such cases, the behavior of unexpected () must be modified into something
acceptable.

The simplest way of achieving that is to add the standard library exception std: : bad_exception
to an exception-specification. In that case, unexpected () will simply throw bad_exception instead
of invoking a function to try to cope. For example:

class X { };
class Y{ } i

void f () throw (X, std : : bad_exception)
{

/ / ...
throw Y(); / / throw r rbad" exception

The exception-specification will catch the unacceptable exception Yand throw an exception of type
bad_exception instead.

There is actually nothing particularly bad about bad_exception; it simply provides a mecha
nism that is less drastic than calling terminate ( ). However, it is still rather crude. In particular,
information about which exception caused the problem is lost.

14.6.3.1 User Mapping of Exceptions

Consider a function g () written for a non-networked environment. Assume further that g () has
been declared with an exception-specification so that it will throw only exceptions related to its
"subsystem V:"~

void g () throw (Yerr) i

Now assume that we need to call g () in a networked environment.
Naturally, g () will not know about network exceptions and will invoke unexpected () when it

encounters one. To use g () in a distributed environment, we must either provide code that handles
network exceptions or rewrite g ( ). Assuming a rewrite is infeasible or undesirable, we can handle
the problem by redefining the meaning of unexpected ( ) .



Section 14.6.3.1 User Mapping of Exceptions 379

Memory exhaustion is dealt with by the _new_handler determined by set_new_handler ( ) .
Similarly, the response to an unexpected exception is determined by an _unexpected_handler set
by std: : set_unexpected () from <exception>:

typedej void (*unexpected_handler) () i

unexpected_handler set_unexpected (unexpected_handler) i

To handle unexpected exceptions well, we first define a class to allow us to use the "resource
acquisition is initialization" technique for unexpected () functions:

class STC { II store and reset class
unexpected_handler old i

public:
STC (unexpected_handler f) {old = set_unexpected (j) i

- STC () {set_unexpected (old); }
} ;

Then, we define a function with the meaning we want for unexpected () in this case:

class Yunexpected : public Yerr { } i

void throwY () throw (Yunexpected) { throw Yunexpected ( ) i }

Used as an unexpected () function, throwY() maps any unexpected exception into Yunexpected.
Finally, we provide a version of g () to be used in the networked environment:

void networked_g () throw (Yerr)
{

STC xx (&throwY) ; II now unexpected() throws Yunexpected
g()i

Because Yunexpected is derived from Yerr, the exception-specification is not violated. Had
throwY() thrown an exception that did violate the exception-specification, terminate () would
have been called.

By saving and restoring the _unexpected_handler, we make it possible for several subsystems
to control the handling of unexpected exceptions without interfering with each other. Basically,
this technique for mapping an unexpected exception into an expected one is a more flexible variant
of what the system offers in the form of bad_exception.

14.6.3.2 Recovering the Type of an Exception

Mapping unexpected exceptions to Yunexpected would allow a user of networked_g () to know
that an unexpected exception had been mapped into Yunexpected. However, such a user wouldn't
know which exception had been mapped. That information was lost in throwY( ). A simple tech
nique allows that information to be recorded and passed on. For example, we might collect infor
mation about Network_exceptions like this:



380 Exception Handling

class Yunexpected: public Yerr {
public:

Network_exception* pe;
Yunexpected (Network_exception* p) :pe (p?p->clone () : 0) { }
.... Yunexpected () {delete pe; }

} ;

void throwY () throw (Yunexpected)
{

try {
throw; / / re-throw to be caught immediately!

}

catch (Network_exception& p) {
throw Yunexpected (&p ) ; / / throw mapped exception

}

catch ( ... ) {
throw Yunexpected (0) ;

Chapter 14

Re-throwing an exception and catching it allows us to get a handle on any exception of a type we
can name. The throwY() function is called from unexpected ( ), which is conceptually called
from a catch ( ... ) handler. There therefore is definitely an exception to re-throw. It is not pos
sible for an unexpected () function to ignore the exception and return. If it tries to, unexpected ( )
itself will throw a bad_exception (§14.6.3).

14.7 Uncaught Exceptions

If an exception is thrown but not caught, the function std: : terminate () will be called. The termi
nate () function will also be called when the exception-handling mechanism finds the stack cor
rupted and when a destructor called during stack unwinding caused by an exception tries to exit
using an exception.

An unexpected exception is dealt with by the _unexpected_handler determined by
set_unexpected (). Similarly, the response to an uncaught exception is determined by an
_uncaught_handler set by std: : set_terminate () from <exception>:

typedef void (* terminate_handler) ();
terminate_handler set_terminate (terminate_handler) ;

The return value is the previous function given to set_terminate ( ) .
The reason for terminate () is that exception handling must occasionally be abandoned for less

subtle error-handling techniques. For example, terminate () could be used to abort a process or
maybe to re-initialize a system. The intent is for terminate () to be a drastic measure to be applied
when the error-recovery strategy implemented by the exception-handling mechanism has failed and
it is time to go to another level of a fault tolerance strategy.

By default, terminate () will call abort () (§9.4.1.1). This default is the correct choice for
most users - especially during debugging.



Section 14.7 Uncaught Exceptions 381

An _uncaught_handler is assumed not to return to its caller. If it tries to, terminate () will
call abort ( ) .

Note that abort () indicates abnormal exit from the program. The function exit () can be used
to exit a program with a return value that indicates to the surrounding system whether the exit is
normal or abnormal (§9.4.1.1).

It is implementation-defined whether destructors are invoked when a program is tenninated
because of an uncaught exception. On some systems, it is essential that the destructors are not
called so that the program can be resumed from the debugger. On other systems, it is architec
turally close to impossible not to invoke the destructors while searching for a handler.

If you want to ensure cleanup when an uncaught exception happens, you can add a catch-all
handler (§ 14.3.2) to main () in addition to handlers for exceptions you really care about. For
example:

int main ()
try {

II ...
}

catch (std:: range_error)
{

cerr << "range error: Not again! \n II ;

}

catch (std:: bad_alloc)
{

cerr« "new ran out of memory\n" ;
}

catch ( )
II .

This will catch every exception, except those thrown by construction and destruction of global vari
ables. There is no way of catching exceptions thrown during initialization of global variables. The
only way of gaining control in case of throw from an initializer of a nonlocal static object is
set_unexpected () (§ 14.6.2). This is another reason to avoid global variables whenever possible.

When an exception is caught, the exact point where it was thrown is generally not known. This
represents a loss of information compared to what a debugger might know about the state of a pro
gram. In some C++ development environments, for some programs, and for some people, it might
therefore be preferable not to catch exceptions from which the program isn't designed to recover.

14.8 Exceptions and Efficiency

In principle, exception handling can be implemented so that there is no run-time overhead when no
exception is thrown. In addition, this can be done so that throwing an exception isn't all that
expensive compared to calling a function. Doing so without adding significant memory overhead
while maintaining compatibility with C calling sequences, debugger conventions, etc., is possible,
but hard. However, please remember that the alternatives to exceptions are not free either. It is not
unusual to find traditional systems in which half of the code is devoted to error handling.



382 Exception Handling Chapter 14

Consider a simple functionf() that appears to have nothing to do with exception handling:

void g (int) ;

void f()
{

string s;
/ / ...
g(1) ;

g(2);

However, g () may throw an exception, so f() must contain code ensuring that s is destroyed cor
rectly in case of an exception. However, had g () not thrown an exception it would have had to
report its error some other way. Consequently, the comparable code using ordinary code to handle
errors instead of exceptions isn't the plain code above, but something like:

bool g (in!) ;

bool f()
{

string s;
/ / ...
if (g (1))

if (g (2))

return true;
else

return false;
else

return false;

People don't usually handle errors this systematically, though, and it is not always critical to do so.
However, when careful and systematic handling of errors is necessary, such housekeeping is best
left to a computer, that is, to the exception-handling mechanisms.

Exception-specifications (§ 14.6) can be most helpful in improving generated code. Had we
stated that g () didn't throw an exception:

void g (int) throw ();

the code generation for f() could have been improved. It is worth observing that no traditional C
function throws an exception, so in most programs every C function can be declared with the empty
throw specification throw ( ). In particular, an implementation knows that only a few standard C
library functions (such as atexit () and qsort ( ) ) can throw exceptions, and it can take advantage of
that fact to generate better code.

Before giving a "C function" an empty exception-specification, throw ( ), take a minute to
consider if it could possibly throw an exception. For example, it might have been converted to use
the C++ operator new, which can throw bad_alloc, or it might call a C++ library that throws an
exception.



Section 14.9 Error-Handling Alternatives 383

14.9 Error-Handling Alternatives

The purpose of the exception-handling mechanisms is to provide a means for one part of a program
to inform another part of a program that an "exceptional circumstance" has been detected. The
assumption is that the two parts of the program are written independently and that the part of the
program that handles the exception often can do something sensible about the error.

To use handlers effectively in a progratTI, we need an overall strategy. That is, the various parts
of the program must agree on how exceptions are used and where errors are dealt with. The
exception-handling mechanisms are inherently nonlocal, so adherence to an overall strategy is
essential. This implies that the error-handling strategy is best considered in the earliest phases of a
design. It also implies that the strategy must be simple (relative to the complexity of the total pro
gram) and explicit. Something complicated would not be consistently adhered to in an area as
inherently tricky as error recovery.

First of all, the idea that a single mechanism or technique can handle all errors must be dis
pelled; it would lead to complexity. Successful fault-tolerant systems are multilevel. Each level
copes with as many errors as it can without getting too contorted and leaves the rest to higher lev
els. The notion of terminate () is intended to support this view by providing an escape if the
exception-handling mechanism itself is corrupted or if it has been incompletely used, thus leaving
exceptions uncaught. Similarly, the notion of unexpected () is intended to provide an escape when
the strategy using exception-specifications to provide firewalls fails.

Not every function should be a firewall. In most systems, it is not feasible to write every func
tion to do sufficient checking to ensure that it either completes successfully or fails in a well
defined manner. The reasons that this will not work varies from program to program and from pro
grammer to programmer. However, for larger programs:

[1] The amount of work needed to ensure this notion of "reliability" is too great to be done
consistently.

[2] The overheads in time and space are too great for the system to run acceptably (there will be
a tendency to check for the same errors, such as invalid arguments, over and over again).

[3] Functions written in other languages won't obey the rules.
[4] This purely local notion of "reliability" leads to complexities that actually become a burden

to overall system reliability.
However, separating the program into distinct subsystems that either complete successfully or fail
in well-defined ways is essential, feasible, and economical. Thus, a major library, subsystem, or
key function should be designed in this way. Exception specifications are intended for interfaces to
such libraries and subsystems.

Usually, we don't have the luxury of designing all of the code of a system from scratch. There
fore, to impose a general error-handling strategy on all parts of a program, we must take into
account program fragments implemented using strategies different from ours. To do this we must
address a variety of concerns relating to the way a program fragment manages resources and the
state in which it leaves the system after an error. The aim is to have the program fragment appear
to follow the general error-handling strategy even if it internally follows a different strategy.

Occasionally, it is necessary to convert from one style of error reporting to another. For exam
ple, we might check errno and possibly throw an exception after a call to a C library or, conversely,
catch an exception and set errno before returning to a C program from a C++ library:



384 Exception Handling

void callC () throw (C_blewit)
{

ermo =0;
cJunction ( ) ;
if (errno) {

/ / cleanup, ifpossible and necessary
throw C_blewit (errno ) ;

extern II C" void callJrom_C () throw ( )
{

try {
cylusylusJunction ( ) ;

}

catch ( ... ) {
/ / cleanup, ifpossible and necessary
errno =E_CPLPLFCTBLEWIT;

Chapter 14

In such cases, it is important to be systematic enough to ensure that the conversion of error report
ing styles is complete.

Error handling should be - as far as possible - hierarchical. If a function detects a run-time
error, it should not ask its caller for help with recovery or resource acquisition. Such requests set
up cycles in the system dependencies. That in tum makes the program hard to understand and
introduces the possibility of infinite loops in the error-handling and recovery code.

Simplifying techniques such as "resource acquisition is initialization" and simplifying assump
tions such as "exceptions represent errors" should be used to make the error-handling code more
regular. See also §24.3.7.l for ideas about how to use invariants and assertions to make the trigger
ing of exceptions more regular.

14.10 Standard Exceptions

Here is a table of standard exceptions and the functions, operators, and general facilities that throw
them:

Standard Exceptions (thrown by the language)
Name Thrown by Reference Header

bad aUoc new §6.2.6.2, §19.4.5 <new>
bad cast dynamic_cast §15.4.1.1 <typeinfo>
bad_typeid typeid §15.4.4 <typeinfo>
bad exception exception specification §14.6.3 <exception>



Section 14.10 Standard Exceptions 385

Standard Exceptions (thrown by the standard library)
Name Thrown by Reference Header

out_of_range at() §3.7.2, §16.3.3, §20.3.3 <stdexcept>
bitset<>::operator[]() §17.5.3 <stdexcept>

invalid_argument bitset constructor §17.5.3.1 <stdexcept>
overflow_error bitset<>::to_ulong() §17.5.3.3 <stdexcept>
ios_base:.failure ios_base::clear() §21.3.6 <ios>

The library exceptions are part of a class hierarchy rooted in the standard library exception class
exception presented in <exception>:

class exception {
public:

exception () throw ( ) ;
exception (const exception&) throw ( ) ;
exception& operator= (const exception&) throw ( ) i

virtual -exception () throw ( ) i

virtual const char* what () const throw ( ) i

private:
II ...

} i

The hierarchy looks like this:

logic_error

length_error

domain error

out_oj_range

invalid_argument

runtime error

~ range error

bad alloc bad_cast \ "overflow_error
bad_exception bad_typeid underflow_error

ios_base: .failure

This seems rather elaborate for organizing the eight standard exceptions. This hierarchy attempts to
provide a framework for exceptions beyond the ones defined by the standard library. Logic errors
are errors that in principle could be caught either before the program starts executing or by tests of
arguments to functions and constructors. Run-time errors are all other errors. Some people view
this as a useful framework for all errors and exceptions; I don't.

The standard library exception classes don't add functions to the set provided by exception;
they simply define the required virtual functions appropriately. Thus, we can write:

void f()

try {
I I use standard library



386 Exception Handling

catch (exception& e) {
cout << II standard library exception n << e. what () << '\n' i

II ...
}

catch ( ... ) {
cout« "other exception\n" ;
II ...

Chapter 14

I / well, maybe

The standard exceptions are derived from exception. However, not every exception is, so it would
be a mistake to try to catch every exception by catching exception. Similarly, it would be a mis
take to assume that every exception derived from exception is a standard library exception: pro
grammers can add their own exceptions to the exception hierarchy .

Note that exception operations do not themselves throw exceptions. In particular, this implies
that throwing a standard library exception doesn't cause a bad_alloc exception. The exception
handling mechanism keeps a bit of memory to itself for holding exceptions (possibly on the stack).
Naturally, it is possible to write code that eventually consumes all memory in the system, thus forc
ing a failure. For example, here is a function that - if called - tests whether the function call or the
exception-handling mechanism runs out of memory first:

void perverted ( )
{

try {
throw exception ( ) ; I I recursive exception throw

}

catch (exception& e) {
perverted ( ); I I recursive function call
cout << e . what ( ) ;

The purpose of the output statement is simply to prevent the compiler from re-using the memory
occupied by the exception named e.

14.11 Advice

[I] Use exceptions for error handling; §14.1, §14.5, §14.9.
[2] Don't use exceptions where more local control structures will suffice; § 14.1.
[3] Use the "resource allocation is initialization" technique to manage resources; § 14.4.
[4] Not every program needs to be exception safe; §14.4.3.
[5] Use "resource acquisition is initialization" and exception handlers to maintain invariants;

§14.3.2.
[6] Minimize the use of try-blocks. Use' 'resource acquisition is initialization" instead of explicit

handler code; § 14.4.
[7] Not every function needs to handle every possible error; §14.9.
[8] Throw an exception to indicate failure in a constructor; § 14.4.6.



Section 14.11 Advice 387

[9] Leave operands in valid states before throwing an exception from an assignment; §14.4.6.2.
[10] Avoid throwing exceptions from destructors; §14.4.7.
[11] Have main () catch and report all exceptions; §14.7.
[12] Keep ordinary code and error-handling code separate; §14.4.5, §14.5.
[13] Be sure that every resource acquired in a constructor is released when throwing an exception

in that constructor; §14.4.
[14] Keep resource management hierarchical; §14.4.
[15] Use exception-specifications for major interfaces; §14.9.
[16] Beware of memory leaks caused by memory allocated by new not being released in case of an

exception; §14.4.1, §14.4.2, § 14.4.4.
[17] Assume that every exception that can be thrown by a function will be thrown; §14.6.
[18] Don't assume that every exception is derived from class exception; §14.10.
[19] A library shouldn't unilaterally terminate a program. Instead, throw an exception and let a

caller decide; §14.1.
[20] A library shouldn't produce diagnostic output aimed at an end user. Instead, throw an excep

tion and let a caller decide; §14.1.
[21] Develop an error-handling strategy early in a design; §14.9.

14.12 Exercises

1. (*2) Generalize the STC class (§ 14.6.3.1) to a template that can use the "resource acquisition is
initialization" technique to store and reset functions of a variety of types.

2. (*3) Complete the Ptr_to_T class from §11.11 as a template that uses exceptions to signal run
time errors.

3. (*3) Write a function that searches a binary tree of nodes based on a char* field for a match. If
a node containing hello is found, find ( "hello") will return a pointer to that node. Use an
exception to indicate "not found."

4. (*3) Define a class Int that acts exactly like the built-in type int, except that it throws exceptions
rather than overflowing or underflowing.

5. (*2.5) Take the basic operations for opening, closing, reading, and writing from the C interface
to your operating system and provide equivalent C++ functions that call the C functions but
throw exceptions in case of errors.

6. (*2.5) Write a complete Vector template with Range and Size exceptions.
7. (* 1) Write a loop that computes the sum of a Vector as defined in §14.12[6] without examining

the size of the Vector. Why is this a bad idea?
8. (*2.5) Consider using a class Exception as the base of all classes used as exceptions. What

should it look like? How should it be used? What good might it do? What disadvantages
might result from a requirement to use such a class?

9. (* 1) Given a

int main () { / * ... * / }

change it so that it catches all exceptions, turns them into error messages, and abort ( ) s. Hint:
callJrom_C () in §14.9 doesn't quite handle all cases.



388 Exception Handling

10. (*2) Write a class or template suitable for implementing callbacks.
11. (*2.5) Write a Lock class for some system supporting concurrency.

Chapter 14



15
Class Hierarchies

Abstraction is selective ignorance.
- Andrew Koenig

Multiple inheritance - ambiguity resolution - inheritance and using-declarations 
replicated base classes - virtual base classes - uses of multiple inheritance - access
control - protected - access to base classes - run-time type information 
dynamic_cast - static and dynamic casts - casting from virtual bases - typeid 
extended type information - uses and misuses of run-time type information - pointers
to members - free store - virtual constructors - advice - exercises.

15.1 Introduction and Overview

This chapter discusses how derived classes and virtual functions interact with other language facili
ties such as access control, name lookup, free store management, constructors, pointers, and type
conversions. It has five main parts:

§15.2 Multiple Inheritance
§15.3 Access Control
§15.4 Run-time Type Identification
§15.5 Pointers to Members
§15.6 Free Store Use

In general, a class is constructed from a lattice of base classes. Because most such lattices histori
cally have been trees, a class lattice is often called a class hierarchy. We try to design classes so
that users need not be unduly concerned about the way a class is composed out of other classes. In
particular, the virtual call mechanism ensures that when we call a function f() on an object, the
same function is called whichever class in the hierarchy provided the declaration of f() used for
the call. This chapter focuses on ways to compose class lattices and to control access to parts of
classes and on facilities for navigating class lattices at compile time and run time.



390 Class Hierarchies Chapter 15

15.2 Multiple Inheritance

As shown in §2.5.4 and §12.3, a class can have more than one direct base class, that is, more than
one class specified after the : in the class declaration. Consider a simulation in which concurrent
activities are represented by a class Task and data gathering and display is achieved through a class
Displayed. We can then define a class of simulated entities, class Satellite:

class Satellite: public Task, public Displayed {
II ...

} i

The use of more than one immediate base class is usually called multiple inheritance. In contrast,
having just one direct base class is called single inheritance.

In addition to whatever operations are defined specifically for a Satellite, the union of opera
tions on Tasks and Displayeds can be applied. For example:

void f (Satellite& s)
{

s.draw() i

s .delay (10) i

S • transmit ( ) i

I I Displayed::draw()
I I Task::delay()
I I Satellite::transmit()

Similarly, a Satellite can be passed to functions that expect a Task or a Displayed. For example:

void highlight (Displayed* ) ;
void suspend (Task* ) ;

void g (Satellite* p)
{

highlight (p ) ;
suspend (p ) ;

I I pass a pointer to the Displayed part ofthe Satellite
I I pass a pointer to the Task part ofthe Satellite

The implementation of this clearly involves some (simple) compiler technique to ensure that func
tions expecting a Task see a different part of a Satellite than do functions expecting a Displayed.
Virtual functions work as usual. For example:

class Task {
1/ ...
virtual void pending () = 0 i

} ;

class Displayed {
1/ ...
virtual void draw () = 0;

} i



I I override Task::pending()
I I override Displayed::draw()

Section 15.2

class Satellite : public Task I public Displayed {
1/ ...
void pending ( ) ;
void draw ( ) ;

} ;

Multiple Inheritance 391

This ensures that Satellite:: draw () and Satellite:: pending () will be called for a Satellite
treated as a Displayed and a Task, respectively.

Note that with single inheritance (only), the programmer's choices for implementing the classes
Displayed, Task, and Satellite would be limited. A Satellite could be a Task or a Displayed, but
not both (unless Task was derived from Displayed or vice versa). Either alternative involves a loss
of flexibility.

Why would anyone want a class Satellite? Contrary to some people's conjectures, the Satellite
example is real. There really was - and maybe there still is - a program constructed along the
lines used to describe multiple inheritance here. It was used to study the design of communication
systems involving satellites, ground stations, etc. Given such a simulation, we can answer ques
tions about traffic flow, determine proper responses to a ground station that is being blocked by a
rainstorm, consider tradeoffs between satellite connections and Earth-bound connections, etc. Such
simulations do involve a variety of display and debugging operations. Also, we do need to store
the state of objects such as Satellites and their subcomponents for analysis, debugging, and error
recovery.

15.2.1 Ambiguity Resolution

Two base classes may have member functions with the same name. For example:

class Task {
II ...
virtual debug_info* get_debug ();

} ;

class Displayed {
II ...
virtual debug_info* get_debug ( );

} ;

When a Satellite is used, these functions must be disambiguated:

void !(Satellite* sp)
{

debug_info* dip = sp->get_debug ( ); I I error: ambiguous
dip =sp->Task: : get_debug (); I I ok
dip = sp - >Displayed: : get_debug ( ) ; / / ok

However, explicit disambiguation is messy, so it is usually best to resolve such problems by defin
ing a new function in the derived class:



392 Class Hierarchies Chapter 15

I loops!: recursive call
I I finds Displayed::draw

class Satellite : public Task, public Displayed {
II ...

debug_info* get_debug ( ) I I override Task::get_debug() and Displayed::get_debug()
{

debug_info* dipJ =Task::get_debug();
debug_info* dip2 = Displayed: : get_debug ( );
return dipJ->merge (dip2);

} ;

This localizes the information about Satellite's base classes. Because Satellite:: get_debug ( )
overrides the get_debug () functions from both of its base classes, Satellite:: get_debug () is
called wherever get_debug () is called for a Satellite object.

A qualified name Telstar: : draw can refer to a draw declared either in Telstar or in one of its
base classes. For example:

class Telstar : public Satellite {
II ...
void draw ( )
{

draW()i
Satellite: : draw ( ) ;
Displayed: : draw ( ) i

Satellite: : Displayed: : draw ( ) ; I I redundant double qualification

} ;

In other words, if a Satellite: :draw doesn't resolve to a draw declared in Satellite, the compiler
recursively looks in its base classes; that is, it looks for Task: :draw and Displayed: : draw. If
exactly one match is found, that name will be used. Otherwise, Satellite: : draw is either not found
or is ambiguous.

15.2.2 Inheritance and Using-Declarations

Overload resolution is not applied across different class scopes (§7.4). In particular, ambiguities
between functions from different base classes are not resolved based on argument types.

When combining essentially unrelated classes, such as Task and Displayed in the Satellite
example, similarity in naming typically does not indicate a common purpose. When such name
clashes occur, they often come as quite a surprise to the programmer. For example:

class Task {
II ...
void debug (double p); I I print info only ifpriority is lower than p

} ;



Section 15.2.2 Inheritance and Using-Declarations 393

class Displayed {
II ...
void debug (int v); I I the higher the 'v, , the more debug information is printed

} ;

class Satellite : public Task, public Displayed {
I I ...

} ;

void g (Satellite * p)
{

p->debug (1 ) ; / I error: ambiguous. Displayed::debug(int) or Task::debug(double) ?
p->Task::debug(]); II ok
p->Displayed: :debug (]); I I ok

What if the use of the same name in different base classes was the result of a deliberate design deci
sion and the user wanted selection based on the argument types? In that case, a using-declaration
(§8.2.2) can bring the functions into a common scope. For example:

class A {
public:

int f(int);
char fechar);
II ...

} ;

class B {
public:

double f(double);
I I ...

} ;

class AB: public A, public B {
public:

using A: :/;
using B: :f;
char f(char); 1/ hides A::f(char)
AB f(AB);

} ;

void g (AB& ab)
{

ab./e});
ab./e ' a');
ab./e2 .0);
ab·f(ab) ;

/ / A:.j(int)
1/ AB::f(char)
/ / B.·:f(double)
1/ AB:.:f(AB)

Using-declarations allow a programmer to compose a set of overloaded functions from base classes
and the derived class. Functions declared in the derived class hide functions that would otherwise
be available from a base. Virtual functions from bases can be overridden as ever (§ 15.2.3.1).



394 Class Hierarchies Chapter 15

A using-declaration (§8.2.2) in a class definition must refer to members of a base class. A
using-declaration may not be used for a member of a class from outside that class, its derived
classes, and their member functions. A using-directive (§8.2.3) may not appear in a class definition
and may not be used for a class.

A using-declaration cannot be used to gain access to additional information. It is simply a
mechanism for making accessible information more convenient to use (§ 15.3.2.2).

15.2.3 Replicated Base Classes

With the ability of specifying more than one base class comes the possibility of having a class as a
base twice. For example, had Task and Displayed each been derived from a Link class, a Satellite
would have two Links:

struct Link {
Link* next;

} ;

class Task : public Link {
/ I the Link is used to maintain a list ofall Tasks (the scheduler list)
II ...

} ;

class Displayed : public Link {
/ I the Link is used to maintain a list ofall Displayed objects (the display list)
/1 ...

} i

This causes no problems. Two separate Link objects are used to represent the links, and the two
lists do not interfere with each other. Naturally, one cannot refer to members of the Link class
without risking an ambiguity (§15.2.3.1). A Satellite object could be drawn like this:

Link Link

t t
Task ~layed

~eln;;
Examples of where the common base class shouldn't be represented by two separate objects can be
handled using a virtual base class (§15.2.4).

Usually, a base class that is replicated the way Link is here is an implementation detail that
shouldn't be used from outside its immediate derived class. If such a base must be referred to from
a point where more than one copy of the base is visible, the reference must be explicitly qualified to
resolve the ambiguity. For example:

void mess_with_linlcs (Satellite* p)
{

p->next =0;
p->Link: : next =0;

/ / error: ambiguous (which Link?)
/ / error: ambiguous (which Link?)



Section 15.2.3

p->Task::next=Oi II ok
p- >Displayed: : next =0 i I I ok

1/ ...

Replicated Base Classes 395

This is exactly the mechanism used to resolve ambiguous references to members (§ 15.2.1).

15.2.3.1 Overriding

A virtual function of a replicated base class can be overridden by a (single) function in a derived
class. For example, one might represent the ability of an object to read itself from a file and write
itself back to a file like this:

class Storable {
public:

virtual const char* getJile () =0;
virtual void read () =0 i
virtual void write () =0 i
virtual .... Storable () { }

} i

Naturally, several programmers might rely on this to develop classes that can be used indepen
dently or in combination to build more elaborate classes. For example, one way of stopping and
restarting a simulation is to store components of a simulation and then restore them later. That idea
might be implemented like this:

class Transmitter: public Storable {
public:

void write () i
I I ...

} i

class Receiver: public Storable {
public:

void write () i
II ...

} i

class Radio : public Transmitter, public Receiver {
public:

const char* getJile ( ) i
void read ( ) i
void write () i
II ...

} i

Typically, an overriding function calls its base class versions and then does the work specific to the
derived class:



396 Class Hierarchies

void Radio:: write ( )
{

Transmitter: : write ( ) ;
Receiver: : write ( ) ;
II write radio-specific information

Chapter 15

Casting from a replicated base class to a derived class is discussed in §15.4.2. For a technique for
overriding each of the write () functions with separate functions from derived classes, see §25.6.

15.2.4 Virtual Base Classes

The Radio example in the previous subsection works because class Storable can be safely, conve
niently, and efficiently replicated. Often, that is not the case for the kind of class that makes a good
building block for other classes. For example, we might define Storable to hold the name of the
file to be used for storing the object:

class Storable {
public:

Storable (const char* s) ;
virtual void read () = 0;
virtual void write () = 0;
virtual -Storable ( ) ;

private:
const char* store;

Storable (const Storable&);
Storable& operator= (const Storable&);

} ;

Given this apparently minor change to Storable, we must change the design of Radio. All parts of
an object must share a single copy of Storable; otherwise, it becomes unnecessarily hard to avoid
storing multiple copies of the object. One mechanism for specifying such sharing is a virtual base
class. Every virtual base of a derived class is represented by the same (shared) object. For exam
ple:

class Transmitter : public virtual Storable {
public:

void write ( ) ;
II ...

} ;

class Receiver : public virtual Storable {
public:

void write ( ) i

II ...
} ;



Section 15.2.4

class Radio : public Transmitter I public Receiver {
public:

void write ( ) ;
II ...

} ;

Or graphically:

Virtual Base Classes 397

Storable

Recei~ ~smitter
~ /

Radio

Compare this diagram with the drawing of the Satellite object in §15.2.3 to see the difference
between ordinary inheritance and virtual inheritance. In an inheritance graph, every base class of a
given name that is specified to be virtual will be represented by a single object of that class. On the
other hand, each base class not specified virtual will have its own sub-object representing it.

15.2.4.1 Programming Virtual Bases

When defining the functions for a class with a virtual base, the programmer in general cannot know
whether the base will be shared with other derived classes. This can be a problem when imple
menting a service that requires a base class function to be called exactly once. For example, the
language ensures that a constructor of a virtual base is called exactly once. The constructor of a
virtual base is invoked (implicitly or explicitly) from the constructor for the complete object (the
constructor for the most derived class). For example:

class A { I I no constructor
I I ...

} ;

class B {
public:

B ( ); I I default constructor
/ I ...

} ;

class C {
public:

C (int) ; I I no default constructor
} ;

class D : virtual public A I virtual public B I virtual public C
{

D () { 1* ... * I } I I error: no default constructor for C
D (int i) : C ( i) { I * ... * I }; I I ok
II ...

} ;



398 Class Hierarchies Chapter 15

The constructor for a virtual base is called before the constructors for its derived classes.
Where needed, the programmer can simulate this scheme by calling a virtual base class function

only from the most derived class. For example, assume we have a basic Window class that knows
how to draw its contents:

class Window {
/ / basic stuff
virtual void draw ( ) ;

} i

In addition, we have various ways of decorating a window and adding facilities:

class Window_with_border: public virtual Window {
/ / border stuff
void own_draw ( ) ; / / display the border
void draw ( ) ;

} ;

class Window_with_menu : public virtual Window {
/ / menu stuff
void own_draw ( ) ; / / display the menu
void draw ( ) ;

} i

The own_draw () functions need not be virtual because they are meant to be called from within a
virtual draw () function that "knows" the type of the object for which it was called.

From this, we can compose a plausible Clock class:

class Clock: public Window_with_border, public Window_with_menu {
/ / clock stuff
void own_draw ( ) i / / display the clock face and hands
void draw ( ) i

} ;

Or graphically:

Window

Window Wi~ ~ with menu

~ /
Clock

The draw () functions can now be written using the own_draw () functions so that a caller of any
draw () gets Window:: draw () invoked exactly once. This is done independently of the kind of
Window for which draw () is invoked:



Section 15.2.4.1

void Window_with_border: : draw ( )
{

Window: :draw ( ) ;
own_draw (); / / display the border

void Window_with_menu: :draw ( )
{

Window: : draw ( ) ;
own_draw ( ) ; / / display the menu

void Clock:: draw ( )
{

Window: :draw ( ) ;
Window_with_border:: own_draw ( );
Window_with_menu: :own_draw ( ) ;
own_draw ( ) ; / / display the clock face and hands

Programming Virtual Bases 399

Casting from a virtual base class to a derived class is discussed in §15.4.2.

15.2.5 Using Multiple Inheritance

The simplest and most obvious use of multiple inheritance is to "glue" two otherwise unrelated
classes together as part of the implementation of a third class. The Satellite class built out of the
Task and Displayed classes in §15.2 is an example of this. This use of multiple inheritance is
crude, effective, and important, but not very interesting. Basically, it saves the programmer from
writing a lot of forwarding functions. This technique does not affect the overall design of a pro
gram significantly and can occasionally clash with the wish to keep implementation details hidden.
However, a technique doesn't have to be clever to be useful.

Using multiple inheritance to provide implementations for abstract classes is more fundamental
in that it affects the way a program is designed. Class BB_ivai_slider (§ 12.4.3) is an example:

class BB ivaI slider
: public IvaI_slider / / interface
, protected BBslider / / inzplementation

/ / implementation offunctions required by 'Ivai_slider' and 'BBslider'
/ / using the facilities provided by 'BBslider'

} ;

In this example, the two base classes play logically distinct roles. One base is a public abstract
class providing the interface and the other is a protected concrete class providing implementation
"details." These roles are reflected in both the style of the classes and in the access control pro
vided. The use of multiple inheritance is close to essential here because the derived class needs to
override virtual functions from both the interface and the implementation.

Multiple inheritance allows sibling classes to share information without introducing a depen
dence on a unique common base class in a program. This is the case in which the so-called



400 Class Hierarchies Chapter 15

diamond-shaped inheritance occurs (for example, the Radio (§15.2.4) and Clock (§15.2.4.1)). A
virtual base class, as opposed to an ordinary base class, is needed if the base class cannot be repli
cated.

I find that a diamond-shaped inheritance lattice is most manageable if either the virtual base
class or the classes directly derived from it are abstract classes. For example, consider again the
Ivai_bOX classes from §12.4. In the end, I made all the Ivai_box classes abstract to reflect their
role as pure interfaces. Doing that allowed me to place all implementation details in specific imple
mentation classes. Also, all sharing of implementation details was done in the classical hierarchy
of the windows system used for the implementation.

It would make sense for the class implementing a Popup_ivai_slider to share most of the
implementation of the class implementing a plain Ivai_slider. After all, these implementation
classes would share everything except the handling of prompts. However, it would then seem natu
ral to avoid replication of Ivai_slider objects within the resulting slider implementation objects.
Therefore, we could make Ivai_slider a virtual base:

class BB_ivai_slider : public virtual Ivai_slider, protected BBslider { / * ... * / };
class Popup_ivai_slider : public virtual Ivai_slider { / * ... * / };
class BByopup_iva1_slider

: public virtual Popup_ivai_slider I protected BB_ivai_slider { / * ... * / };

or graphically:

BBslider
....-"7

It is easy to imagine further interfaces derived from Popup_ivai_slider and further implementation
classes derived from such classes and BBJJopuP_ivaI_slider.

If we take this idea to its logical conclusion, all of the derivations from the abstract classes that
constitute our application's interfaces would become virtual. This does indeed seem to be the most
logical, general, and flexible approach. The reason I didn't do that was partly historical and partly
because the most obvious and common techniques for implementing virtual bases impose time and
space overhead that make their extensive use within a class unattractive. Should this overhead
become an issue for an otherwise attractive design, note that an object representing an IvaI_slider
usually holds only a virtual table pointer. As noted in §15.2.4, such an abstract class holding no
variable data can be replicated without ill effects. Thus, we can eliminate the virtual base in favor
of ordinary ones:

class BB_ivai_slider : public Ivai_slider I protected BBslider { / * ... * / };
class Popup_ivai_slider : public Ivai_slider { / * ... * / } ;
class BByopup_ivai_slider

: public Popup_ivai_slider I protected BB_iva1_slider { / * ... * / };

or graphically:



Section 15.2.5 Using Multiple Inheritance 401

BBsliderIvai slider

~ ~
BB ival slider

,:'7

Ival slider

~
Popup ival slider

- -~ ~

BBJJopuP_ivai_slider

This is most likely a viable optimization to the admittedly cleaner alternative presented previously.

15.2.5.1 Overriding Virtual Base Functions

A derived class can override a virtual function of its direct or indirect virtual base class. In particu
lar, two different classes might override different virtual functions from the virtual base. In that
way, several derived classes can contribute implementations to the interface presented by a virtual
base class. For example, the Window class might have functions set_color () and prompt ( ). In
that case, Window_with_border might override set_color ( ) as part of controlling the color
scheme and Window_with_menu might override prompt () as part of its control of user interac
tions:

class Window {
/ I ...
virtual void set_color (Color) =0; / / set background color
virtual void prompt () =0;

} ;

class Window_with_border: public virtual Window {
/ I ...
void set_color (Color) ; / / control background color

} ;

class Window_with_menu : public virtual Window {
/1 ...
void prompt ( ); / / control user interactions

} ;

class My_window: public Window_with_menu, public Window_with_border {
II ...

} ;

What if different derived classes override the same function? This is allowed if and only if some
overriding class is derived from every other class that overrides the function. That is, one function
must override all others. For example, My_window could override prompt () to improve on what
Window_with_menu provides:

class My_window: public Window_with_menu, public Window_with_border {
/1 ...
void prompt ( ); / / don't leave user interactions to base

} ;

or graphically:



402 Class Hierarchies Chapter 15

Window { set_color ( ) I prompt () }

~ ~
Window_with_border { set_color ()} Window_with_menu { prompt ( )

~ ~
My_window { prompt () }

If two classes override a base class function, but neither overrides the other, the class hierarchy is
an error. No virtual function table can be constructed because a call to that function on the com
plete object would have been ambiguous. For example, had Radio in §15.2.4 not declared
write ( ), the declarations of write () in Receiver and Transmitter would have caused an error
when defining Radio. As with Radio, such a conflict is resolved by adding an overriding function
to the most derived class.

A class that provides some - but not all - of the implementation for a virtual base class is often
called a "mixin."

15.3 Access Control

A member of a class can be private, protected, or public:
- If it is private, its name can be used only by member functions and friends of the class in

which it is declared.
- If it is protected, its name can be used only by member functions and friends of the class in

which it is declared and by member functions and friends of classes derived from this class
(see §11.5).

- If it is public, its name can be used by any function.
This reflects the view that there are three kinds of functions accessing a class: functions implement
ing the class (its friends and members), functions implementing a derived class (the derived class'
friends and members), and other functions. This can be presented graphically:

general users

derived class' member functions and friends

; ~ ~ ~ p~bji£:~'~'~'~' _.~.~.~.~.~J~..~.~ ~l~~l~~~~~~~c:~ns and friends
J protected: I

private:

The access control is applied uniformly to names. What a name refers to does not affect the control
of its use. This means that we can have private member functions, types, constants, etc., as well as
private data members. For example, an efficient non-intrusive (§16.2.l) list class often requires
data structures to keep track of elements. Such information is best kept private:



Section 15.3

template<class T> class List {
private:

struct Link { T val; Link* next; };
struct Chunk {

enum { chunk_size =15 } ;
Link v [chunk_size];
Chunk* next;

} ;

Chunk* allocated;
Link* free;
Link* getJree ( );
Link* head;

public:
class Underflow { }; / / exception class

void insert (T);
T get ( );
/ / ...

} ;

template<class T> void List<T>:: insert (T val)
{

Link* lnk =getJree ( );
lnk->val = val;
lnk- >next = head;
head = Ink;

template<class T> List<T> : : Link* List<T> : : getJree ( )
{

if (free == 0) {
/ / allocate a new chunk and place its links on the free list

}

Link* p = free;
free = free- >next ;
return p;

template<class T> T List<T>:: get ( )
{

if (head == 0) throw Underflow ( );

Link* p= head;
head =p->next;
p- >next = free;
free = p;
return p->val ;

Access Control 403

The List<T> scope is entered by saying List<T> :: in a member function definition. Because the
return type of getJree () is mentioned before the name List<T> : : getJree () is mentioned, the
full name List<T> : : Link must be used instead of the abbreviation Link.



404 Class Hierarchies

Nonmember functions (except friends) do not have such access:

void would_be_meddler(List<T>* p)
{

Chapter 15

List<T> : : Link* q =0;
q = p->freei
/ / ...
If (List<T>: : Chunk: : chunk_size > 31)

/ / ...

/ / error: List<T>::Link is private
/ / error: List<T>::free is private

/ / error: List<T>::Chunk::chunk_size is private

In a class, a member is by default private; in a struct, a member is by default public (§ t0.2.8).

15.3.1 Protected Members

Consider the Window example from § 15.2.4.1. The own_draw () functions were designed as
building blocks for use by derived classes and are not safe for general use. The draw () operations,
on the other hand, were designed for general use. This distinction can be expressed by separating
the interface of the Window classes in two, the protected interface and the public interface:

class Window_with_border {
public:

virtual void draw ( ) ;
/ / ...

protected:
void own_draw ( ) ;
/ / other tool-building stuff

private:
/ / representation, etc.

} ;

A derived class can access a base class' protected members only for objects of its own type:

class Buffer {
protected:

char a [128] j

/ / ...
} ;

class Linked_buffer : public Buffer { / * ... * / };

class Cyclic_buffer: public Buffer {
/ / ...
void f(Linked_buffer* p) {

a [0] = 0; / / ok: access to cyclic_buffer's own protected member
p- >a [0] = 0 i / / error: access to protected member ofdifferent type

} ;

This prevents subtle errors that would otherwise occur when one derived class corrupts data
belonging to other derived classes.



Section 15.3.1.1 Use of Protected Members 405

15.3.1.1 Use of Protected Members

The simple private/public model of data hiding serves the notion of concrete types (§ 10.3) well.
However, when derived classes are used, there are two kinds of users of a class: derived classes and
"the general public." The members and friends that implement the operations on the class operate
on the class objects on behalf of these users. The private/public model allows the programmer to
distinguish clearly between the implementers and the general public, but it does not provide a way
of catering specifically to derived classes.

Members declared protected are far more open to abuse than members declared private. In
particular, declaring data members protected is usually a design error. Placing significant amounts
of data in a common class for all derived classes to use leaves that data open to corruption. Worse,
protected data, like public data, cannot easily be restructured because there is no good way of find
ing every use. Thus, protected data becomes a software maintenance problem.

Fortunately, you don't have to use protected data; private is the default in classes and is usually
the better choice. In my experience, there have always been alternatives to placing significant
amounts of information in a common base class for derived classes to use directly.

Note that none of these objections are significant for protected member functions; protected is a
fine way of specifying operations for use in derived classes. The Ival_slider in §12.4.2 is an exam
ple of this. Had the implementation class been private in this example, further derivation would
have been infeasible.

Technical examples illustrating access to members can be found in §C.ll.l.

15.3.2 Access to Base Classes

Like a member, a base class can be declared private, protected, or public. For example:

class X : public B { / * ... * / };
class Y: protected B { /* ... * / };
class Z : private B { / * ... * / };

Public derivation makes the derived class a subtype of its base; this is the most common form of
derivation. Protected and private derivation are used to represent implementation details. Protected
bases are useful in class hierarchies in which further derivation is the norm; the Ival_slider from
§12.4.2 is a good example of that. Private bases are most useful when defining a class by restrict
ing the interface to a base so that stronger guarantees can be provided. For example, the Vector of
pointers template adds type checking to its Vector<void* > base (§ 13.5). Also, if we wanted to
make sure that every access to a Vee (§3.7.2) was checked, we would declare Vec's base class pri
vate (to prevent conversion of a Vec to its unchecked vector base):

template<class T> class Vec : private vector<T> { / * ... * / } i / / range-checked vector

The access specifier for a base class can be left out. In that case, the base defaults to a private base
for a class and a public base for a struct. For example:

class XX : B { / * * / } i

struct YY : B { / * * / } i

/ / B is a private base
/ / B is a public base

For readability, it is best always to use an explicit access specifier.



406 Class Hierarchies Chapter 15

I10k: accessible through D1
I 10k: accessible through D1

I I error, ambiguous: XX::X1::B::m or XX::X2::B::m
I10k: there is only one B::sm in an XX

The access specifier for a base class controls the access to members of the base class and the
conversion of pointers and references from the derived class type to the base class type. Consider a
class D derived from a base class B:

- If B is a private base, its public and protected members can be used only by member func
tions and friends of D. Only friends and members of D can convert a D* to a B*.

- If B is a protected base, its public and protected members can be used only by member
functions and friends of D and by member functions and friends of classes derived from D.
Only friends and members of D and friends and members of classes derived from D can
convert a D* to a B*.

- If B is a public base, its public members can be used by any function. In addition, its pro
tected members can be used by members and friends of D and members and friends of
classes derived from D. Any function can convert a D* to a B*.

This basically restates the rules for member access (§ 15.3). We choose access for bases in the same
way as for members. For example, I chose to make BBwindow a protected base of Ivai_slider
(§12.4.2) because BBwindow was part of the implementation of Ivai_slider rather than part of its
interface. However, I couldn't completely hide BBwindow by making it a private base because I
wanted to be able to derive further classes from Ivai_slider, and those derived classes would need
access to the implementation.

Technical examples illustrating access to bases can be found in §C.l1.2.

15.3.2.1 Multiple Inheritance and Access Control

If a name or a base class can be reached through multiple paths in a multiple inheritance lattice, it is
accessible if it is accessible through any path. For example:

struct B {
int m;

static int sm;
II ...

} ;

class D1 : public virtual B { I * * I }
class D2 : public virtual B { I * * I }
class DD : public D1, private D2 { 1* ... * I };

DD* pd = new DD;
B* pb =pd;
int i1 = pd->m;

If a single entity is reachable through several paths, we can still refer to it without ambiguity. For
example:

class Xl: public B { I * * I } ;
class X2 : public B { I * * I } i

class XX : public Xl, public X2 { / * ... * I };

Xx* pxx =new XX;
int i1 =pxx->m;
int i2 = pxx->sm;



Section 15.3.2.1 Multiple Inheritance and Access Control 407

15.3.2.2 Using-Declarations and Access Control

A using-declaration cannot be used to gain access to additional information. It is simply a mecha
nism for making accessible information more convenient to use. On the other hand, once access is
available, it can be granted to other users. For example:

class B {
private:

int a;
protected:

int b;
public:

int c;
} j

class D : public B {
public:

using B: :aj
using B: :bj

} ;

/ / error: B::a is private
/ / make B::b publicly available through D

When a using-declaration is combined with private or protected derivation, it can be used to spec
ify interfaces to some, but not all, of the facilities usually offered by a class. For example:

class BB : private B {
public:

using B: :b;
using B: :c;

} ;

See also §15.2.2.

/ / give access to B::b and B::c, but not B::a

15.4 Run-Time Type Information

A plausible use of the Ival_boxes defined in §12.4 would be to hand them to a system that con
trolled a screen and have that system hand objects back to the application program whenever some
activity had occurred. This is how many user-interfaces work. However, a user-interface system
will not know about our Ival_boxes. The system's interfaces will be specified in terms of the
system's own classes and objects rather than our application's classes. This is necessary and
proper. However, it does have the unpleasant effect that we lose information about the type of
objects passed to the system and later returned to us.

Recovering the "lost" type of an object requires us to somehow ask the object to reveal its
type. Any operation on an object requires us to have a pointer or reference of a suitable type for the
object. Consequently, the most obvious and useful operation for inspecting the type of an object at
run time is a type conversion operation that returns a valid pointer if the object is of the expected
type and a null pointer if it isn't. The dynamic_cast operator does exactly that. For example,
assume that "the system" invokes my_event_handler () with a pointer to a BBwindow, where an
activity has occurred. I then might invoke my application code using Ival_box's do_something ():



408 Class Hierarchies

void my_event_handler(BBwindow* pw)
{

if (/val_box* pb = dynamic_cast</val_box*> (pw) )
pb->do_something ();

else {
/ / Oops! unexpected event

Chapter 15

/ / does pw point to an IvaI_box?

One way of explaining what is going on is that dynamic_cast translates from the implementation
oriented language of the user-interface system to the language of the application. It is important to
note what is not mentioned in this example: the actual type of the object. The object will be a par
ticular kind of Ivai_box, sayan Ivai_slider, implemented by a particular kind of BBwindow, say a
BBslider. It is neither necessary nor desirable to make the actual type of the object explicit in this
interaction between "the system" and the application. An interface exists to represent the essen
tials of an interaction. In particular, a well-designed interface hides inessential details.

Graphically, the action of

pb =dynamic_cast</val_box*> (pw)

can be represented like this:

pw· ::> BBwindow Ival_box <: pb

t t
BBslider Ivai slider

" /
B~'ival ~er

The arrows from pw and pb represent the pointers into the object passed, whereas the rest of the
arrows represent the inheritance relationships between the different parts of the object passed.

The use of type information at run time is conventionally referred to as "run-time type informa
tion" and often abbreviated to RTTI.

Casting from a base class to a derived class is often called a downcast because of the convention
of drawing inheritance trees growing from the root down. Similarly, a cast from a derived class to
a base is called an upcast. A cast that goes from a base to a sibling class, like the cast from BBwin
dow to IvaI_box, is called a crosscast.

15.4.1 Dynamic_cast

The dynamic_cast operator takes two operands, a type bracketed by < and>, and a pointer or refer
ence bracketed by ( and ) .

Consider first the pointer case:

dynamic_cast<T*> (p)

Ifp is of type T* or an accessible base class of T, the result is exactly as if we had simply assigned
p to a T*. For example:



Section 15.4.1

class BB_ivai_slider : public Ivai_slider I protected BBslider {
I I ...

} ;

void f(BB_ivai_slider* p)
{

Dynamic_cast 409

Ivai_slider* pil = Pi II ok
Ivai_slider* pi2 =dynamic_cast<lvai_slider*> (p)ill ok

BBslider* pbbl = Pi II error: BBslider is a protected base
BBslider* pbb2 =dynamic_cast<BBslider*> (p) i I 10k: pbb2 becomes 0

That is the uninteresting case. However, it is reassuring to know that dynamic_cast doesn't allow
accidental violation of the protection of private and protected base classes.

The purpose of dynamic_cast is to deal with the case in which the correctness of the conversion
cannot be determined by the compiler. In that case,

dynamic_cast<T*> (p)

looks at the object pointed to by p (if any). If that object is of class T or has a unique base class of
type T, then dynamic_cast returns a pointer of type T* to that object; otherwise, 0 is returned. If
the value of p is 0, dynamic_cast<T* > (p) returns O. Note the requirement that the conversion
must be to a uniquely identified object. It is possible to construct examples where the conversion
fails and 0 is returned because the object pointed to by p has more than one sub-object representing
bases of type T (see §15.4.2).

A dynamic_cast requires a pointer or a reference to a polymorphic type in order to do a down
cast or a crosscast. For example:

class My_slider: public Ivai_slider { I I polymorphic base (IvaI_slider has virtual/unctions)
1/ ...

} ;

class My_date: public Date { I I base not polymorphic (Date has no virtual/unctions)
1/ ...

} ;

void g (Ival_box* pb, Date* pd)
{

My_slider* pdl = dynamic_cast<My_slider*> (ph);
My_date* pd2 = dynamic_cast<My_date*> (pd);

II ok
I I error: Date not polymorphic

Requiring the pointer's type to be polymorphic simplifies the implementation of dynamic_cast
because it makes it easy to find a place to hold the necessary information about the object's type. A
typical implementation will attach a "type information object" to an object by placing a pointer to
the type information in the object's virtual function table (§2.5.5). For example:



410 Class Hierarchies

My_slider:

Chapter 15

vptr
':--,

..... " vtbl:
"~ , type_info:

..~ "My_slider"

bases .,
type_info:

"Ival slider"

The dashed arrow represents an offset that allows the start of the complete object to be found given
only a pointer to a polymorphic sub-object. It is clear that dynamic_cast can be efficiently imple
mented. All that is involved are a few comparisons of type_info objects representing base classes;
no expensive lookups or string comparisons are needed.

Restricting dynamic_cast to polymorphic types also makes sense from a logical point of view.
This is, if an object has no virtual functions, it cannot safely be manipulated without knowledge of
its exact type. Consequently, care should be taken not to get such an object into a context in which
its type isn't known. If its type is known, we don't need to use dynamic_cast.

The target type of dynamic_cast need not be polymorphic. This allows us to wrap a concrete
type in a polymorphic type, say for transmission through an object I/O system (see §25.4.1), and
then "unwrap" the concrete type later. For example:

class 10_obj { I I base class for object I/O system
virtual 10_obj* clone () = 0;

} ;

class 10_date : public Date, public 10_obj { };

void f(lo_obj* pio)
{

Date* pd = dynamic_cast<Date*> (pio);
/ / ...

A dynamic_cast to void* can be used to determine the address of the beginning of an object of
polymorphic type. For example:

void g(lval_box* pb, Date* pd)
{

void* pdl = dynamic_cast<void*> (ph);
void* pd2 =dynamic_cast<void*> (pd);

II ok
I I error: Date not polymorphic

This is only useful for interaction with very low-level functions.

15.4.1.1 Dynamic_cast of References

To get polymorphic behavior, an object must be manipulated through a pointer or a reference.
When a dynamic_cast is used for a pointer type, a 0 indicates failure. That is neither feasible nor
desirable for references.



Section 15.4.1.1 Dynamic_cast of References 411

Given a pointer result, we must consider the possibility that the result is 0; that is, that the
pointer doesn't point to an object. Consequently, the result of a dynamic_cast of a pointer should
always be explicitly tested. For a pointer p, dynamic_cast<T*> (p) can be seen as the question,
"Is the object pointed to by p of type Tl"

On the other hand, we may legitimately assume that a reference refers to an object. Conse
quently, dynamic_cast<T&> (r) of a reference r is not a question but an assertion: "The object
referred to by r is of type T." The result of a dynamic_cast for a reference is implicitly tested by
the implementation of dynamic_cast itself. If the operand of a dynamic_cast to a reference isn't of
the expected type, a bad_cast exception is thrown. For example:

void f(lval_box* p, lval_box& r)
{

if (lval_slider* is = dynamic_cast<lval_slider*> (p) )

/ / use 'is'
}

else {
/ / *p not a slider

lval_slider& is =dynamic_cast<lval_slider&> (r);
/ / use 'is'

/ / does p point to an IvaI_slider?

/ / r references an IvaI_slider!

The difference in results of a failed dynamic pointer cast and a failed dynamic reference cast
reflects a fundamental difference between references and pointers. If a user wants to protect against
bad casts to references, a suitable handler must be provided. For example:

void g ()
{

try {
f(new BB_ival_slider, *new BB_ival_slider);
f(new BBdial, *new BBdial);

/ / arguments passed as Ival_boxs
/ / arguments passed as Ival_boxs

}

catch (bad_cast)
/ / ...

/ / §14.10

The first call to f () will return normally, while the second will cause a bad_cast exception that
will be caught by g ( ) .

Explicit tests against 0 can be - and therefore occasionally will be - accidentally omitted. If
that worries you, you can write a conversion function that throws an exception instead of returning
o(§ 15.8[1]) in case of failure.

15.4.2 Navigating Class Hierarchies

When only single inheritance is used, a class and its base classes constitute a tree rooted in a single
base class. This is simple but often constraining. When multiple inheritance is used, there is no
single root. This in itself doesn't complicate matters much. However, if a class appears more than



412 Class Hierarchies Chapter 15

once in a hierarchy, we must be a bit careful when we refer to the object or objects that represent
that class.

Naturally, we try to keep hierarchies as simple as our application allows (and no simpler).
However, once a nontrivial hierarchy has been made we soon need to navigate it to find an appro
priate class to use as an interface. This need occurs in two variants. That is, sometimes, we want to
explicitly name an object of a base class or a member of a base class; §15.2.3 and §15.2.4.1 are
examples of this. At other times, we want to get a pointer to the object representing a base or
derived class of an object given a pointer to a complete object or some sub-object; §15.4 and
§15.4.1 are examples of this.

Here, we consider how to navigate a class hierarchy using type conversions (casts) to gain a
pointer of the desired type. To illustrate the mechanisms available and the rules that guide them,
consider a lattice containing both a replicated base and a virtual base:

class Component : public virtual Storable { I * ... * I };
class Receiver : public Component { I * ... * I };
class Transmitter : public Component { I * ... * / };
class Radio : public Receiver I public Transmitter { 1* ... * / };

Or graphically:

Storable

/~
Component Component

t t
Receiver Transmitter

~ad/
Here, a Radio object has two sub-objects of class Component. Consequently, a dynamic_cast
from Storable to Component within a Radio will be ambiguous and return a O. There is simply no
way of knowing which Component the programmer wanted:

void hI (Radio& r)
{

Storable* ps = &r;
II ...
Component* pc =dynamic_cast<Component*> (ps); I I pc =0

This ambiguity is not in general detectable at compile time:

void h2 (Storable* ps)
{

I I ps might or might not point to a Component

Component* pc = dynamic_cast<Component*> (ps);
II ...

This kind of run-time ambiguity detection is needed only for virtual bases. For ordinary bases,



Section 15.4.2 Navigating Class Hierarchies 413

there is always a unique sub-object of a given cast (or none) when downcasting (that is, towards a
derived class; §15.4). The equivalent ambiguity occurs when upcasting (that is, towards a base;
§15.4) and such ambiguities are caught at compile time.

15.4.2.1 Static and Dynamic Casts

A dynamic_cast can cast from a polymorphic virtual base class to a derived class or a sibling class
(§15.4.1). A static_cast (§6.2.7) does not examine the object it casts from, so it cannot:

void g (Radio& r)
{

Receiver* prec =&r;
Radio* pr = static_cast<Radio*> (prec);
pr = dynamic_cast<Radio*> (prec);

Storable* ps = &r;
pr =static_cast<Radio*> (ps);
pr =dynamic_cast<Radio*> (ps);

/ / Receiver is ordinary base ofRadio
/ / ok, unchecked
/ / ok, run-time checked

/ / Storable is virtual base ofRadio
/ / error: cannot cast from virtual base
/ / ok, run-time checked

The dynamic_cast requires a polymorphic operand because there is no infonnation stored in a non
polymorphic object that can be used to find the objects for which it represents a base. In particular,
an object of a type with layout constraints determined by some other language - such as Fortran or
C - may be used as a virtual base class. For objects of such types, only static type information will
be available. However, the infonnation needed to provide run-time type identification includes the
information needed to implement the dynamic_cast.

Why would anyone want to use a static_cast for class hierarchy navigation? There is a small
run-time cost associated with the use of a dynamic_cast (§15.4.1). More significantly, there are
millions of lines of code that were written before dynamic_cast became available. This code relies
on alternative ways of making sure that a cast is valid, so the checking done by dynamic_cast is
seen as redundant. However, such code is typically written using the C-style cast (§6.2.7); often
obscure errors remain. Where possible, use the safer dynamic_cast.

The compiler cannot assume anything about the memory pointed to by a void*. This implies
that dynamic_cast - which must look into an object to determine its type - cannot cast from a
void*. For that, a static_cast is needed. For example:

Radio* f(void* p)
{

Storable* ps = static_cast<Storable*> (p); / / trust the programmer
return dynamic_cast<Radio*> (ps);

Both dynamic_cast and static_cast respect const and access controls. For example:

class Users : private set<Person> { / * ... * / };



414 Class Hierarchies

void f( Users * pu, const Reeeiver* pcr)
{

static_cast<set<Person> *> (pu);
dynamic_cast<set<Person> *> (pu) ;

static_cast<Receiver*> (per);
dynamic_cast<Receiver*> (pcr);

/ / error: access violation
/ / error: access violation

/ / error: can't cast away const
/ / error: can't cast away const

Chapter 15

/ / pseudo declaration
/ / pseudo declaration

Receiver* pr =const_cast<Receiver*> (per); / / ok
1/ ...

It is not possible to cast to a private base class, and "casting away canst" requires a const_cast
(§6.2.7). Even then, using the result is safe only provided the object wasn't originally declared
const (§ 10.2.7. 1) .

15.4.3 Class Object Construction and Destruction

A class object is more than simply a region of memory (§4.9.6). A class object is built from "raw
memory" by its constructors and it reverts to "raw memory" as its destructors are executed. Con
struction is bottom up, destruction is top down, and a class object is an object to the extent that it
has been constructed or destroyed. This is reflected in the rules for RTTI, exception handling
(§ 14.4.7), and virtual functions.

It is extremely unwise to rely on details of the order of construction and destruction, but that
order can be observed by calling virtual functions, dynamic_cast, or typeid (§15.4.4) at a point
where the object isn't complete. For example, if the constructor for Component in the hierarchy
from §15.4.2 calls a virtual function, it will invoke a version defined for Storable or Component,
but not one from Receiver, Transmitter, or Radio. At that point of construction, the object isn't
yet a Radio; it is merely a partially constructed object. It is best to avoid calling virtual functions
during construction and destruction.

15.4.4 Typeid and Extended Type Information

The dynamic_cast operator serves most needs for information about the type of an object at run
time. Importantly, it ensures that code written using it works correctly with classes derived from
those explicitly mentioned by the programmer. Thus, dynamic_cast preserves flexibility and
extensibility in a manner similar to virtual functions.

However, it is occasionally essential to know the exact type of an object. For example, we
might like to know the name of the object's class or its layout. The typeid operator serves this pur
pose by yielding an object representing the type of its operand. Had typeid () been a function, its
declaration would have looked something like this:

class type_info;
const type_info& typeid (type_name) throw ( ) ;
const type_info& typeid (expression) throw (bad_typeid) ;

That is, typeid () returns a reference to a standard library type called type_info defined in
<typeinfo>. Given a type-name as its operand, typeid () returns a reference to a type_info that
represents the type-name. Given an expression as its operand, typeid () returns a reference to a



Section 15.4.4 Typeid and Extended Type Information 415

type_info that represents the type of the object denoted by the expression. A typeid () is most
commonly used to find the type of an object referred to by a reference or a pointer:

void f(Shape& r, Shape* p)
{

typeid (r);
typeid (*p);
typeid (p);

/ / type ofobject referred to by r
/ / type ofobject pointed to by p
/ / type ofpointer, that is, Shape* (uncommon, except as a mistake)

If the value of a pointer or a reference operand is 0, typeid () throws a bad_typeid exception.
The implementation-independent part of type_info looks like this:

cLass type_info {
public:

virtual -type_info ( ) ; / / is polymorphic

booL operator= = (const type_info& ) const; / / can be compared
booL operator! = (const type_info& ) const;
bool before (const type_info&) const; / / ordering

const char* name () const;
private:

type_info (const type_info&);
type_info& operator= (const type_info& ) ;

/ / ...
} ;

/ / name of type

/ / prevent copying
/ / prevent copying

The before () function allows type_infos to be sorted. There is no relation between the relation
ships defined by before and inheritance relationships.

It is not guaranteed that there is only one type_info object for each type in the system. In fact,
where dynamically linked libraries are used it can be hard for an implementation to avoid duplicate
type_info objects. Consequently, we should use == on type_info objects to test equality, rather
than == on pointers to such objects.

We sometimes want to know the exact type of an object so as to perform some standard service
on the whole object (and not just on some base of the object). Ideally, such services are presented
as virtual functions so that the exact type needn't be known. In some cases, no common interface
can be assumed for every object manipulated, so the detour through the exact type becomes neces
sary (§ 15.4.4.1). Another, much simpler, use has been to obtain the name of a class for diagnostic
output:

#incLude<typeinfo>

void g (Component* p)
{

cout << typeid ( *p) . name ( ) ;

The character representation of a class' name is implementation-defined. This C-style string
resides in memory owned by the system, so the programmer should not attempt to delete [] it.



416 Class Hierarchies Chapter 15

15.4.4.1 Extended Type Information

Typically, finding the exact type of an object is simply the first step to acquiring and using more
detailed information about that type.

Consider how an implementation or a tool could make information about types available to
users at run time. Suppose I have a tool that generates descriptions of object layouts for each class
used. I can put these descriptors into a map to allow user code to find the layout information:

map<const char*, Layout> layout_table;

void f(B* p)
{

Layout& x =layout_table [typeid (*p) . name ( ) ] ;
/ / use x

Someone else might provide a completely different kind of information:

struct TI_eq {
boof operator () (const type_info* p, const type_info* q) { return *p== *q;

} ;

struct TI_hash {
int operator () (const type_info* p); / / compute hash value (§J7.6.2.2)

} ;

hash_map<type_info* , leon, hashJet, Tl_hash, TI_eq> icon_table;

void g(B* p)
{

lcon& i = icon_table [&typeid (*p) ];
/ / use i

/ / §J7.6

This way of associating typeids with information allows several people or tools to associate differ
ent information with types totally independently of each other:

layout_table:

"T" '" :>

icon table:

I &typeid(T) D······ .. ·······~ icon
representation

of
type

This is most important because the likelihood is zero that someone can come up with a single set of
information that satisfies every user.



Section 15.4.5 Uses and Misuses of RTTI 417

15.4.5 Uses and Misuses of RTTI

One should use explicit run-time type information only when necessary. Static (compile-time)
checking is safer, implies less overhead, and - where applicable - leads to better-structured pro
grams. For example, RTfI can be used to write thinly disguised switch-statements:

/ / misuse ofrun-time type information:

void rotate (const Shape& r)
{

if (typeid (r) ==typeid (Circle) )
/ / do nothing

}

else if (typeid (r) == typeid (Triangle) )
/ / rotate triangle

}

else if (typeid (r) == typeid (Square) )
/ / rotate square

}

/ I ...

Using dynamic_cast rather than typeid would improve this code only marginally.
Unfortunately, this is not a strawman example; such code really does get written. For many

people trained in languages such as C, Pascal, Modula-2, and Ada, there is an almost irresistible
urge to organize software as a set of switch-statements. This urge should usually be resisted. Use
virtual functions (§2.5.5, §12.2.6) rather than RTTI to handle most cases when run-time discrimina
tion based on type is needed.

Many examples of proper use of RTTI arise when some service code is expressed in terms of
one class and a user wants to add functionality through derivation. The use of Ivai_box in §15.4 is
an example of this. If the user is willing and able to modify the definitions of the library classes,
say BBwindow, then the use of RTTI can be avoided; otherwise, it is needed. Even if the user is
willing to modify the base classes, such modification may cause its own problems. For example, it
may be necessary to introduce dummy implementations of virtual functions in classes for which
those functions are not needed or not meaningful. This problem is discussed in some detail in
§24.4.3. A use of RTTI to implement a simple object I/O system can be found in §25.4.1.

For people with a background in languages that rely heavily on dynamic type checking, such as
Smalltalk or Lisp, it is tempting to use RTTI in conjunction with overly general types. Consider:

/ / misuse of run-time type information:

class Object { / * ... * / }; / / polymorphic

class Container : public Object {
public:

void put (Object* ) ;
Object* get ( ) ;
/ / ...

} ;



418 Class Hierarchies

class Ship : public Object { 1* ... * / };

Ship * f(Ship* ps, Container* c)
{

c->put(ps) ;
II ...
Object* p = c->get();
if (Ship* q = dynamic_cast<Ship*> (p)) { /1 run-time check

return q;
}

else {
1/ do something else (typically, error handling)

Chapter 15

Here, class Object is an unnecessary implementation artifact. It is overly general because it does
not correspond to an abstraction in the application domain and forces the application programmer
to use an implementation-level abstraction. Problems of this kind are often better solved by using
container templates that hold only a single kind of pointer:

Ship* f(Ship* ps I list<Ship*>& c)
{

c .pushJront (ps) ;
1/ ...
return c. popJront ( ) ;

Combined with the use of virtual functions, this technique handles most cases.

15.5 Pointers to Members

Many classes provide simple, very general interfaces intended to be invoked in several different
ways. For example, many' 'object-oriented" user-interfaces define a set of requests to which every
object represented on the screen should be prepared to respond. In addition, such requests can be
presented directly or indirectly from programs. Consider a simple variant of this idea:

class Std_interface {
public:

virtual void start () = 0;
virtual void suspend () = 0;
virtual void resume () = 0;
virtual void quit () =0;
virtual void full_size () = 0;
virtual void small () = 0 i

virtual -Std_interface () {}
} ;

The exact meaning of each operation is defined by the object on which it is invoked. Often, there is
a layer of software between the person or program issuing the request and the object receiving it.



Section 15.5 Pointers to Members 419

Ideally, such intermediate layers of software should not have to know anything about the individual
operations such as resume () and full_size ( ). If they did, the intermediate layers would have to
be updated each time the set of operations changed. Consequently, such intermediate layers simply
transmit some data representing the operation to be invoked from the source of the request to its
recipient.

One simple way of doing that is to send a string representing the operation to be invoked. For
example, to invoke suspend () we could send the string "suspend". However, someone has to cre
ate that string and someone has to decode it to determine to which operation it corresponds - if
any. Often, that seems indirect and tedious. Instead, we might simply send an integer representing
the operation. For example, 2 might be used to mean suspend ( ). However, while an integer may
be convenient for machines to deal with, it can get pretty obscure for people. We still have to write
code to determine that 2 means suspend () and to invoke suspend ( ) .

C++ offers a facility for indirectly referring to a member of a class. A pointer to a member is a
value that identifies a member of a class. You can think of it as the position of the member in an
object of the class, but of course an implementation takes into account the differences between data
members, virtual functions, non-virtual functions, etc.

Consider Std_interface. If I want to invoke suspend () for some object without mentioning
suspend () directly, I need a pointer to member referring to Std_interface: : suspend ( ). I also
need a pointer or reference to the object I want to suspend. Consider a trivial example:

typedej void (Std_interface: : * Pstd_mem) ( ) i / / pointer to member type

void f(Std_interface* p}
{

Pstd_mem s = &Std_interface: : suspend i

p->suspend ( ) i

(p->*s) ();

/ / direct call

/ / call through pointer to member

A pointer to member can be obtained by applying the address-of operator & to a fully qualified
class member name, for example, &Std_interface: :suspend. A variable of type' 'pointer to mem
ber of class X" is declared using a declarator of the form X : : *.

The use of typedef to compensate for the lack of readability of the C declarator syntax is typi
cal. However, please note how the X : : * declarator matches the traditional * declarator exactly.

A pointer to member m can be used in combination with an object. The operators - > * and . *
allow the programmer to express such combinations. For example, p->*m binds m to the object
pointed to by p, and obj. *m binds m to the object obj. The result can be used in accordance with
m's type. It is not possible to store the result of a - > * or a . * operation for later use.

Naturally, if we knew which member we wanted to call we would invoke it directly rather than
mess with pointers to members. Just like ordinary pointers to functions, pointers to member func
tions are used when we need to refer to a function without having to know its name. However, a
pointer to member isn't a pointer to a piece of memory the way a pointer to a variable or a pointer
to a function is. It is more like an offset into a structure or an index into an array. When a pointer
to member is combined with a pointer to an object of the right type, it yields something that identi
fies a particular member of a particular object.



420 Class Hierarchies

This can be represented graphically like this:

X::start

X::suspend

Chapter 15

Because a pointer to a virtual member (s in this example) is a kind of offset, it does not depend on
an object's location in memory. A pointer to a virtual member can therefore safely be passed
between different address spaces as long as the same object layout is used in both. Like pointers to
ordinary functions, pointers to non-virtual member functions cannot be exchanged between address
spaces.

Note that the function i~voked through the pointer to function can be virtual. For example,
when we call suspend () through a pointer to function, we get the right suspend () for the object to
which the pointer to function is applied. This is an essential aspect of pointers to functions.

An interpreter might use pointers to members to invoke functions presented as strings:

map<string, Std_interface*> variable;
map<string, Pstd_mem> operation;

void call_member (string var, string oper)
{

(variable [var] ->*operation [oper] ) (); I I var.oper()

A critical use of pointers to member functions is found in memJun () (§3.8.5, §18.4).
A static member isn't associated with a particular object, so a pointer to a static member is sim

ply an ordinary pointer. For example:

class Task {
II ...
static void schedule ( ) ;

} ;

void (*p) () = &Task::schedule; II ok
void (Task:: * pm) () = &Task: : schedule; / / error: ordinary pointer assigned

I I to pointer to member

Pointers to data members are described in §C.12.

15.5.1 Base and Derived Classes

A derived class has at least the members that it inherits from its base classes. Often it has more.
This implies that we can safely assign a pointer to a member of a base class to a pointer to a mem
ber of a derived class, but not the other way around. This property is often called contravariance.
For example:



Section 15.5.1

class text : public Std_interface {
public:

void start ( ) ;
void suspend ( ) ;
II ...
virtual void print ( ) ;

private:
vector s;

} ;

void (Std_interface: : * pmi) () = &text: :print;
void (text:: *pmt) () = &Std_interface: : start ;

I I error
II ok

Base and Derived Classes 421

This contravariance rule appears to be the opposite of the rule that says we can assign a pointer to a
derived class to a pointer to its base class. In fact, both rules exist to preserve the fundamental
guarantee that a pointer may never point to an object that doesn't at least have the properties that
the pointer promises. In this case, Std_interface: : * can be applied to any Std_interface, and most
such objects presumably are not of type text. Consequently, they do not have the member
text: :print with which we tried to initialize pmi. By refusing the initialization, the compiler saves
us from a run-time error.

15.6 Free Store

It is possible to take over memory management for a class by defining operator new () and opera
tor delete () (§6.2.6.2). However, replacing the global operator new () and operator delete () is
not for the fainthearted. After all, someone else might rely on some aspect of the default behavior
or might even have supplied other versions of these functions.

A more selective, and often better, approach is to supply these operations for a specific class.
This class might be the base for many derived classes. For example, we might like to have the
Employee class from §12.2.6 provide a specialized allocator and deallocator for itself and all of its
derived classes:

class Employee {
II ...

public:
I I ...
void* operator new (size_t) ;
void operator delete (void*, size_t) ;

} ;

Member operator new ( ) s and operator delete ( )s are implicitly static members. Consequently,
they don't have a this pointer and do not modify an object. They provide storage that a constructor
can initialize and a destructor can clean up.

void* Employee:: operator new (size_t s)
{

II allocate's' bytes ofmemory and return a pointer to it



422 Class Hierarchies

void Employee:: operator delete (void* p, size_t s)
{

/ / assume 'p' points to IS' bytes ofmemory allocated by Employee::operator new()
/ / andfree that memory for reuse

Chapter 15

The use of the hitherto mysterious size_t argument now becomes obvious. It is the size of the
object actually deleted. Deleting a "plain" Employee gives an argument value of
sizeoj(Employee); deleting a Manager gives an argument value of sizeoj(Manager). This
allows a class-specific allocator to avoid storing size information with each allocation. Naturally, a
class-specific allocator can store such information (like a general-purpose allocator must) and
ignore the size_t argument to operator delete ( ). However, that makes it harder to improve signif
icantly on the speed and memory consumption of a general-purpose allocator.

How does a compiler know how to supply the right size to operator delete ( )? As long as the
type specified in the delete operation matches the actual type of the object, this is easy. However,
that is not always the case:

class Manager : public Employee {
int level;
/ / ...

} ;

void f()
{

Employee* p = new Manager; / / trouble (the exact type is lost)
delete Pi

In this case, the compiler will not get the size right. As when an array is deleted, the user must help.
This is done by adding a virtual destructor to the base class, Employee:

class Employee {
public:

void* operator new (size_t) i

void operator delete (void*, size_t) i

virtual -Employee ( ) i

/ / ...
} ;

Even an empty destructor will do:

Employee: : -Employee () { }

In principle, deallocation is then done from within the destructor (which knows the size). Further
more, the presence of a destructor in Employee ensures that every class derived from it will be sup
plied with a destructor (thus getting the size right), even if the derived class doesn't have a user
defined destructor. For example:



Section 15.6

void j()
{

Employee* p = new Manager;
delete p; / / now fine (Employee is polymorphic)

Allocation is done by a (compiler-generated) call:

Employee:: operator new (sizeo!(Manager) )

and deallocation by a (compiler-generated) call:

Employee:: operator delete (p, sizeoj(Manager) )

Free Store 423

In other words, if you want to supply an allocator/deallocator pair that works correctly for derived
classes, you must either supply a virtual destructor in the base class or refrain from using the size_t
argument in the deallocator. Naturally, the language could have been designed to save you from
such concerns. However, that can be done only by also' 'saving" you from the benefits of the opti
mizations possible in the less safe system.

15.6.1 Array Allocation

The operator new () and operator delete () functions allow a user to take over allocation and
deallocation of individual objects; operator new [] () and operator delete [] () serve exactly the
same role for the allocation and deallocation of arrays. For example:

class Employee {
public:

void* operator new [] (size_t);
void operator delete [] (void*);
/ / ...

} ;

void j(int s)
{

Employee* p = new Employee [s] i

/ / ...
delete [] Pi

Here, the memory needed will be obtained by a call,

Employee:: operator new [] (sizeoj(Employee) *s+delta)

where delta is some minimal implementation-defined overhead, and released by a call:

Employee: : operator delete [] (p); / / release s*sizeoj(Employee)+delta bytes

The number of elements, s and the delta are "remembered" by the system. Had the two-argument
form of delete [] () been declared instead of the one-argument form, it would have been called
with s*sizeoj(Employee) +delta as its second argument.



424 Class Hierarchies

15.6.2 "Virtual Constructors"

Chapter 15

I I default constructor
I I copy constructor

After hearing about virtual destructors, the obvious question is, "Can constructors be virtual?"
The short answer is no; a slightly longer one is, no, but you can easily get the effect you are looking
for.

To construct an object, a constructor needs the exact type of the object it is to create. Conse
quently, a constructor cannot be virtual. Furthermore, a constructor is not quite an ordinary func
tion. In particular, it interacts with memory management routines in ways ordinary member func
tions don't. Consequently, you cannot have a pointer to a constructor.

Both of these restrictions can be circumvented by defining a function that calls a constructor
and returns a constructed object. This is fortunate because creating a new object without knowing
its exact type is often useful. The Ival_box_maker (§12.4.4) is an example of a class designed
specifically to do that. Here, I present a different variant of that idea, where objects of a class can
provide users with a clone (copy) of themselves or a new object of their type. Consider:

class Expr {
public:

Expr();
Expr (const Expr&);

virtual Expr* new_expr () { return new Expr ( ); }
virtual Expr* clone () { return new Expr (*this); }
II ...

} ;

Because functions such as new_expr () and clone () are virtual and they (indirectly) construct
objects, they are often called "virtual constructors" - by a strange misuse of the English language.
Each simply uses a constructor to create a suitable object.

A derived class can override new_expr () and/or clone () to return an object of its own type:

class Cond : public Expr {
public:

Cond();
Cond (const Cond&);

Cond* new_expr () { return new Cond ( ); }
Cond* clone () { return new Cond (*this); }
I I ...

} ;

This means that given an object of class Expr, a user can create a new object of "just the same
type. " For example:

void user (Expr* p)
{

Expr* p2 = p->new_expr ( ) ;
II ...

The pointer assigned to p2 is of an appropriate, but unknown, type.
The return type of Cond: : new_expr () and Cond: : clone () was Cond* rather than Expr*.



Section 15.6.2 "Virtual Constmctors" 425

This allows a Cond to be cloned without loss of type information. For example:

void user2 (Cond* pc I Expr* pe)
{

Cond* p2 =pc->clone ();
Cond* p3 =pe->clone (); / / error
/ / ...

The type of an overriding function must be the same as the type of the virtual function it overrides,
except that the return type may be relaxed. That is, if the original return type was B*, then the
return type of the overriding function may be D *, provided B is a public base of D. Similarly, a
return type of B& may be relaxed to D&.

Note that a similar relaxation of the rules for argument types would lead to type violations (see
§15.8 [12]).

15.7 Advice

[1] Use ordinary multiple inheritance to express a union of features; §15.2, §15.2.5.
[2] Use multiple inheritance to separate implementation details from an interface; §15.2.5.
[3] Use a virtual base to represent something common to some, but not all, classes in a hierarchy;

§15.2.5.
[4] Avoid explicit type conversion (casts); §15.4.5.
[5] Use dynamic_cast where class hierarchy navigation is unavoidable; §15.4.1.
[6] Prefer dynamic_cast over typeid; §15.4.4.
[7] Prefer private to protected; §15.3.1.1.
[8] Don't declare data members protected; §15.3.1.1.
[9] If a class defines operator delete ( ) , it should have a virtual destructor; §15.6.
[10] Don't call virtual functions during construction or destruction; §15.4.3.
[11] Use explicit qualification for resolution of member names sparingly and preferably use it in

overriding functions; §15.2.1

15.8 Exercises

1. (*1) Write a template ptr_cast that works like dynamic_cast, except that it throws bad_cast
rather than returning O.

2. (*2) Write a program that illustrates the sequence of constructor calls at the state of an object
relative to RTTI during construction. Similarly illustrate destruction.

3. (*3.5) Implement a version of a Reversi/Othello board game. Each player can be either a
human or the computer. Focus on getting the program correct and (then) getting the computer
player' 'smart" enough to be worth playing against.

4. (*3) Improve the user interface of the game from §15.8[3].
5. (*3) Define a graphical object class with a plausible set of operations to serve as a common base

class for a library of graphical objects; look at a graphics library to see what operations were



426 Class Hierarchies Chapter 15

supplied there. Define a database object class with a plausible set of operations to serve as a
common base class for objects stored as sequences of fields in a database; look at a database
library to see what operations were supplied there. Define a graphical database object with and
without the use of multiple inheritance and discuss the relative merits of the two solutions.

6. (*2) Write a version of the clone () operation from §15.6.2 that can place its cloned object in
an Arena (see §10.4.11) passed as an argument. Implement a simple Arena as a class derived
from Arena.

7. (*2) Without looking in the book, write down as many c++ keywords as you can.
8. (*2) Write a standards-conforming c++ program containing a sequence of at least ten different

consecutive keywords not separated by identifiers, operators, punctuation characters, etc.
9. (*2.5) Draw a plausible memory layout for a Radio as defined in §15.2.3.1. Explain how a vir

tual function call could be implemented.
10. (*2) Draw a plausible memory layout for a Radio as defined in §15.2.4. Explain how a virtual

function call could be implemented.
11. (*3) Consider how dynamic_cast might be implemented. Define and implement a dcast tem

plate that behaves like dynamic_cast but relies on functions and data you define only. Make
sure that you can add new classes to the system without having to change the definitions of
dcast or previously-written classes.

12. (*2) Assume that the type-checking rules for arguments were relaxed in a way similar to the
relaxation for return types so that a function taking a Derived* could override a Base*. Then
write a program that would corrupt an object of class Derived without using a cast. Describe a
safe relaxation of the overriding rules for argument types.



Part III

The Standard Library

This part describes the C++ standard library. It presents the design of the
library and key techniques used in its implementation. The aim is to pro
vide understanding of how to use the library, to demonstrate generally
useful design and programming techniques, and to show how to extend
the library in the ways in which it was intended to be extended.

Chapters

16 Library Organization and Containers
17 Standard Containers
18 Algorithms and Function Objects
19 Iterators and Allocators
20 Strings
21 Streams
22 Numerics



I
I
I

I
I

I
I

I
I
I

I
I

I
I

I
I
I

I
I

I
I

I
I
I

I

I

I
I
I

I
I

I
I

I
I
I

I

I

I
I

I
I
I

I
I

I
I

I
I
I

I
I

I
I

I
I
I

I
I

I
I
I

I

I

I
I

I
I
I

I
I

I
I

I
I
I

I
I
I



16
Library Organization and Containers

It was new. It was singular.
It was simple. It must succeed!

- H. Nelson

Design criteria for the standard library - library organization - standard headers 
language support - container design - iterators - based containers - STL containers
- vector - iterators - element access - constructors - modifiers - list operations
- size and capacity - vector<bool>- advice - exercises.

16.1 Standard Library Design

What ought to be in the standard c++ library? One ideal is for a programmer to be able to find
every interesting, significant, and reasonably general class, function, template, etc., in a library.
However, the question here is not, "What ought to be in some library?" but "What ought to be in
the standard library?" The answer "Everything!" is a reasonable first approximation to an answer
to the former question but not to the latter. A standard library is something that every implementer
must supply so that every programmer can rely on it.

The C++ standard library:
[I] Provides support for language features, such as memory management (§6.2.6) and run

time type information (§ 15.4).
[2] Supplies information about implementation-defined aspects of the language, such as the

largestfloat value (§22.2).
[3] Supplies functions that cannot be implemented optimally in the language itself for every

system, such as sqrt () (§22.3) and memmove () (§ 19.4.6).
[4] Supplies nonprimitive facilities that a programmer can rely on for portability, such as lists

(§17.2.2), maps (§17.4.l), sort functions (§t8.7.1), and I/O streams (Chapter 21).
[5] Provides a framework for extending the facilities it provides, such as conventions and



430 Library Organization and Containers Chapter 16

support facilities that allow a user to provide I/O of a user-defined type in the style of I/O
for built-in types.

[61 Provides the common foundation for other libraries.
In addition, a few facilities - such as random-number generators (§22.7) - are provided by the
standard lihrary simply because it is conventional and useful to do so.

The design of the lihrary is primarily determined by the last three roles. These roles are closely
related. For example, portahility is commonly an important dc'\ign criterion for a specialized
library, and common container types such as lists and maps are essential for convenient communi
cation between separately developed libraries.

The last role is especially important from a design perspecti ve because it helps limit the scope
of the standard library and places constraints on its facilities. For example, string and list facilities
are provided in the standard library. If they were not, separately developed libraries could commu
nicate only by using built-in types. However, pattern matching and graphics facilities are not pro
vided. Such facilities are obviously widely llseful, but they are rarely directly involved in commu
nication between separately developed libraries.

Unless a facility is somehow needed to support these roles. it can be left to some library outside
the standard. For good and bad.. leaving sOlnething out of the standard library opens the opportu
nity for different lihraries to offer competing realizations of an idea.

16.1.1 Design Constraints

The roles of a standard library impose several constraints on its design. The facilities offered by
the C++ standard library are designed to be:

rI] Invaluable and affordable to essentially every student and professional programmer,
including the builders of other libraries.

[2] Used directly or indirectly by every programmer for everything within the scope of the
library.

[3] Efficient enough to provide genuine alternatives to hand-coded functions, classes, and tem
plates in the implementation of further libraries.

r4] Either policy-free or give the user the option to supply policies as arguments.
[5] Primitive in the mathematical sense. That is, a component that serves two weakly related

roles will almost certainly suffer overheads compared to individual components designed
to perform only a single role.

[6] Convenient, efficient, and reasonably safe for common uses.
[7] Complete at what they do. The standard library may leave major functions to other

libraries, but if it takes on a task, it must provide enough functionality so that individual
users or implementers need not replace it to get the basic job done.

[8] Blend well with and augment built-in types and operations.
[9] Type safe by default.
[101 Supportive of commonly accepted programming styles.
[11] Extensible to deal with user-defined types in ways similar to the way built-in types and

standard-library types are handled.
For example, building the comparison criteria into a sort function is unacceptable because the same
data can be sorted according to different criteria. This is why the C standard library qsort () takes



Section 16.1.1 Design Constraints 431

a comparison function as an argument rather than relying on something fixed, say, the < operator
(§7.7). On the other hand, the overhead imposed by a function call for each comparison compro
mises qsort () as a building block for further library building. For almost every data type, it is
easy to do a comparison without imposing the overhead of a function call.

Is that overhead serious? In most cases, probably not. However, the function call overhead can
dominate the execution time for some algorithms and cause users to seek alternatives. The tech
nique of supplying comparison criteria through a template argument described in §13.4 solves that
problem. The example illustrates the tension between efficiency and generality. A standard library
is not just required to perform its tasks. It must also perform them efficiently enough not to tempt
users to supply their own mechanisms. Otherwise, implementers of more advanced features are
forced to bypass the standard library in order to remain competitive. This would add a burden to
the library developer and seriously complicate the lives of users wanting to stay platform
independent or to use several separately developed libraries.

The requirements of "primitiveness" and "convenience of common uses" appear to conflict.
The former requirement precludes exclusively optimizing the standard library for common cases.
However, components serving common, but nonprimitive, needs can be included in the standard
library in addition to the primitive facilities, rather than as replacements. The cult of orthogonality
must not prevent us from making life convenient for the novice and the casual user. Nor should it
cause us to leave the default behavior of a component obscure or dangerous.

16.1.2 Standard Library Organization
The facilities of the standard library are defined in the std namespace and presented as a set of
headers. The headers identify the major parts of the library. Thus, listing them gives an overview
of the library and provides a guide to the description of the library in this and subsequent chapters.

The rest of this subsection is a list of headers grouped by function, accompanied by brief expla
nations and annotated by references to where they are discussed. The grouping is chosen to match
the organization of the standard. A reference to the standard (such as §s.18.1) means that the facil
ity is not discussed here.

A standard header with a name starting with the letter c is equivalent to a header in the C stan
dard library. For every header <X. h> defining part of the C standard library in the global name
space, there is a header <eX> defining the same names in the std namespace (see §9.2.2).

Containers
<vector> one-dimensional array ofT §16.3
<list> doubly-linked list ofT §17.2.2
<deque> double-ended queue ofT §17.2.3
<queue> queue ofT §17.3.2
<stack> stack ofT §17.3.1
<map> associative array ofT §17.4.1
<set> set ofT §17.4.3
<hitset> array ofbooleans §17.5.3

The associative containers multimap and multiset can be found in <map> and <set>, respectively.
The priority_queue is declared in <queue>.



432 Library Organization and Containers

General Utilities

Chapter 16

<utility>
<functional>
<memory>
<ctime>

operators and pairs
function objects
allocators for containers
C-style date and time

§17.1.4, §17.4.1.2
§18.4
§19.4.4
§s.20.5

The <memory> header also contains the autoytr template that is primarily used to smooth the
interaction between pointers and exceptions (§ 14.4.2).

Iterators
<iterator> iterators and iterator support Chapter 19

Iterators provide the mechanism to make standard algorithms generic over the standard containers
and similar types (§2.7.2, §19.2.1).

Algorithms
<algorithm>
<cstdlib>

general algorithms
bsearch () qsort ( )

Chapter 18
§18.11

A typical general algorithm can be applied to any sequence (§3.8, §18.3) of any type of elements.
The C standard library functions bsearch () and qsort () apply to built-in arrays with elements of
types without user-defined copy constructors and destructors only (§7.7).

Diagnostics

<exception>
<stdexcept>
<cassert>
<cerrno>

exception class
standard exceptions
assert macro
C-style error handling

§14.10
§14.10
§24.3.7.2
§20.4.1

Assertions relying on exceptions are described in §24.3.7.1.

Strings

<string>
<cctype>
<cwctype>
<cstring>
<cwchar>
<cstdlib>

string ofT
character classification
wide-character classification
C-styLe string functions
C-style wide-character string functions
C-style string functions

Chapter 20
§20.4.2
§20.4.2
§20.4.1
§20.4
§20.4.1

The <cstring> header declares the strlen ( ) , strcpy ( ) , etc., family of functions. The <cstdlib>
declares atof() and atoi () that convert C-style strings to numeric values.



Section 16.1.2 Standard Library Organization 433

InpuUOutput

<iosfwd>
<iostream>
<ios>
<streambuf>
<istream>
<ostream>
<iomanip>
<sstream>
<cstdlib>
<fstream>
<cstdio>
<cwchar>

.fOl1vard declarations (~f l/O.facilities
standard iostrealn objects and operations
iostrealn bases
streal11 b£~ffers

input streall1 te111plate
output streanl tenlplate
111anipulators
sfreanlS to(frol11 strings
character class{fication.functions
strea111S to(froI11.files
printf( ) .fellnily (~f I/O
printf( ) -s~vle I/O (~f "vide characters

§21.l
§21.2.l
§21.2.l
§21.6
§21.3.l
§21.2.l
§21.4.6.2
§21.5.3
§20.4.2
§21.5.l
§21.8
§21.8

Manipulators are objects used to manipulate the state of a stream (e.g., changing the format of
floating-point output) by applying them to the stream (*21.4.6).

Localization
<locale>
<clocale>

represent cultural d{tl'erellces
represent cultural d{tl'erellces C-style

§21.7
§21.7

A locale localizes differences such as the output format for dates, the symbol used to represent cur
rency ~ and string collation criteria that vary among different natural languages and cultures.

Language Support
<limits>
<climits>
<cfloat>
<new>
<typeinfo>
<exception>
<cstddef>
<cstdarg>
<csetjmp>
<cstdlib>
<ctime>
<csignal>

nU111eric Ii/nits
C-style IlUl11er;c scalar-Ibnit macros
C-style lluI11eric.f7oatillg-jJoint limit 111acros
dYlllUl1ic l11eI11(1)' l11anagel11ellt
rUIl-tinle type ident{ficatiol1 support
exceptioll-handling support
C library language support
variable-length .function lIrgulnent lists
C-s(vle stack ulll1'inding
prograln tennination
syste111 clock
C-style signal handling

§22.2
§22.2.1
§22.2.1
§ 16.1.3
§15.4.1
§14.10
§6.2.1
§7.6
§s.18.7
§9.4. 1. I
§D.4.4.1
§s.18.7

The <cstddef> header defines the type of values returned by sizeof{ ) , size_t, the type of the result
of pointer subtraction and of array subscripts, ptrdiff_l (§6.2.1), and the infamous NULL macro
(§5.1.1).

The C-style stack unwinding (using setjmp and longjmp from <csetjmp» is incompatible with
exception handling (§8.3, Chapter 14, Appendix E) and is best avoided.



434 Library Organization and Containers

Numerics

Chapter 16

<complex>
<valarray>
<numeric>
<cmath>
<cstdlib>

complex numbers and operations
numeric vectors and operations
generalized numeric operations
standard mathematical functions
C-style random numbers

§22.5
§22.4
§22.6
§22.3
§22.7

For historical reasons, abs ( ) , fabs ( ) , and div () are found in <cstdlib> rather than in <cmath>
with the rest of the mathematical functions (§22.3).

A user or a library implementer is not allowed to add or subtract declarations from the standard
headers. Nor is it acceptable to try to change the contents of headers by defining macros before
they are included or to try to change the meaning of the declarations in the headers by declarations
in their context (§9.2.3). Any program or implementation that plays such games does not conform
to the standard, and programs that rely on such tricks are not portable. Even if they work today, the
next release of any part of an implementation may break them. Avoid such trickery.

For a standard library facility to be used its header must be included. Writing out the relevant
declarations yourself is not a standards-conforming alternative. The reason is that some implemen
tations optimize compilation based on standard header inclusion and others provide optimized
implementations of standard library facilities triggered by the headers. In general, implementers
use standard headers in ways programmers cannot predict and shouldn't have to know about.

A programmer can, however, specialize utility templates, such as swap () (§16.3.9), for
nonstandard-library, user-defined types.

16.1.3 Language Support

A small part of the standard library is language support; that is, facilities that must be present for a
program to run because language features depend on them.

The library functions supporting operators new and delete are discussed in §6.2.6, §10.4.11,
§14.4.4, and §15.6; they are presented in <new>.

Run-time type identification relies on class type_info, which is described in §15.4.4 and pre
sented in <typeinfo>.

The standard exception classes are discussed in §14.10 and presented in <new>, <typeinfo>,
<ios>, <exception>, and <stdexcept>.

Program start and termination are discussed in §3.2, §9.4, and §10.4.9.

16.2 Container Design

A container is an object that holds other objects. Examples are lists, vectors, and associative arrays.
In general, you can add objects to a container and remove objects from it.

Naturally, this idea can be presented to users in many different ways. The C++ standard library
containers were designed to meet two criteria: to provide the maximum freedom in the design of an
individual container, while at the same time allowing containers to present a common interface to
users. This allows optimal efficiency in the implementation of containers and enables users to
write code that is independent of the particular container used.



Section 16.2 Container Design 435

Container designs typically meet just one or the other of these two design criteria. The con
tainer and algorithms part of the standard library (often called the STL) can be seen as a solution to
the problem of simultaneously providing generality and efficiency. The following sections present
the strengths and weaknesses of two traditional styles of containers as a way of approaching the
design of the standard containers.

16.2.1 Specialized Containers and Iterators

The obvious approach to providing a vector and a list is to define each in the way that makes the
most sense for its intended use:

template<class T> class Vector { / / optimal
public:

explicit Vector (size_' n); / / initialize to hold n objects with value T()

} ;

T& operator [] (size_t) ;
/ / ...

/ / subscripting

template<class T> class List { / / optimal
public:

class Link { / * ... * / } ;

List ( ) ; / / initially empty
void put (T* ) ; / / put before current element
T* get ( ) ; / / get current element

/ / ...
} ;

Each class provides operations that are close to ideal for their use, and for each class we can choose
a suitable representation without worrying about other kinds of containers. This allows the imple
mentations of operations to be close to optimal. In particulart the most common operations such as
put () for a List and operator [] () for a Vector are small and easily inlined.

A common use of most kinds of containers is to iterate through the container looking at the ele
ments one after the other. This is typically done by defining an iterator class appropriate to the
kind of container (see §11.5 and §11.14[7]).

However, a user iterating over a container often doesn't care whether data is stored in a List or a
Vector. In that case, the code iterating should not depend on whether a List or a Vector was used.
Ideally, the same piece of code should work in both cases.

A solution is to define an iterator class that provides a get-next-element operation that can be
implemented for any container. For example:

template<class T> class ltor { / / common inteiface (abstract class §2.5.4, §12.3)
public:

/ / return 0 to indicate no-more-elements

} ;

virtual T* first () =0;
virtual T* next () =0 i

/ / pointer to first element
/ / pointer to next element



436 Library Organization and Containers Chapter 16

We can now provide implementations for Vectors and Lists:

template<class T> class Vector_itor : public Itor<T> { / / Vector implementation
Vector<T>& v;
size_t index; / / index ofcurrent element

public:
Vector_itor( Vector<T>& vv) : v (vv), index(O) { }
T* first () { return (v. size ( )) ? &v [index=O] : 0; }
T* next() {return (++index<v.size()) ? &v[index] : OJ

} ;

template<class T> class List_itor : public Itor<T> {
List<T>& 1st;
List<T> : : Link p i / / points to current element

public:
List_itor (List<T>&) ;
T* first ( );
T* next();

} ;

/ / List implementation

Or graphically, using dashed lines to represent "implemented using:"

Vector List

~ ltor ~
:. /, :
1"/ ~I

Vector itor List itor

The internal structure of the two iterators is quite different, but that doesn't matter to users. We can
now write code that iterates over anything for which \\'e can implement an ftor. For example:

int count (ltor<char>& ii, char term)
{

int c = 0;
for (char* p = ii .first ( ) i p; p=ii. next ( ) ) if (*p==term) c++ i

return c;

There is a snag, however. The operations on an ltor iterator are simple, yet they incur the overhead
of a (virtual) function call. In many situations, this overhead is minor compared to what else is
being done. However, iterating through a simple container is the critical operation in many high
performance systems and a function call is many times more expensive than the integer addition or
pointer dereferencing that implements next () for a Vector and a List. Consequently, this model is
unsuitable, or at least not ideal, for a standard library.

However, this container-and-iterator model has been successfully used in many systems. For
years, it was my favorite for most applications. Its strengths and weaknesses can be summarized
like this:

+ Individual containers are simple and efficient.
+ Little commonality is required of containers. Iterators and wrapper classes (§25.7.1) can be

used to fit independently developed containers into a common framework.



Section 16.2.1 Specialized Containers and Iterators 437

+ Commonality of use is provided through iterators (rather than through a general container
type; §16.2.2).

+ Different iterators can be defined to serve different needs for the same container.
+ Containers are by default type safe and homogeneous (that is, all elements in a container are

of the same type). A heterogeneous container can be provided as a homogeneous container
of pointers to a common base.

+ The containers are non-intrusive (that is, an object need not have a special base class or link
field to be a member of a container). Non-intrusive containers work well with built-in types
and with structs with externally-imposed layouts.

- Each iterator access incurs the overhead of a virtual function call. The time overhead can be
serious compared to simple inlined access functions.

- A hierarchy of iterator classes tends to get complicated.
- There is nothing in common for every container and nothing in common for every object in

every container. This complicates the provision of universal services such as persistence
and object 110.

A + indicates an advantage and a - indicates a disadvantage.
I consider the flexibility provided by iterators especially important. A common interface, such

as ltor, can be provided long after the design and implementation of containers (here, Vector and
List). When we design, we typically first invent something fairly concrete. For example, we
design an array and invent a list. Only later do we discover an abstraction that covers both arrays
and lists in a given context.

As a matter of fact, we can do this' 'late abstraction" several times. Suppose we want to repre
sent a set. A set is a very different abstraction from ltor, yet we can provide a Set interface to
Vector and List in much the same way that I provided ltor as an interface to Vector and List:

Vector List

;1~ ~'"
/ \ I \

/ / \ Set ltor I \ \

/.1' ~ X 'I \\

/~,~_~.~~~/ ~ I \
Vector set Vector itor List set Ll t itor

Thus, late abstraction using abstract classes allows us to provide different implementations of a
concept even when there is no significant similarity between the implementations. For example,
lists and vectors have some obvious commonality, but we could easily implement an ltor for an
istream.

Logically, the last two points on the list are the main weaknesses of the approach. That is, even
if the function call overhead for iterators and similar interfaces to containers were eliminated (as is
possible in some contexts), this approach would not be ideal for a standard library.

Non-intrusive containers incur a small overhead in time and space for some containers com
pared with intrusive containers. I have not found this a problem. Should it become a problem, an
iterator such as ltor can be provided for an intrusive container (§16.5[11]).



438 Library Organization and Containers

16.2.2 Based Containers

Chapter 16

One can define an intrusive container without relying on templates or any other way of parameter
izing a type declaration. For example:

struct Link {
Link* pre;
Link* suc;
1/ ...

} ;

class List {
Link* head;
Link* curr;

public:
Link* get ( ) ;
void put (Link* ) ;
1/ ...

} ;

/ / current element

/ / remove and return current element
/ / insert before current element

A List is now a list of Links, and it can hold objects of any type derived from Link. For example:

class Ship : public Link { / * ... * / };

void f (List* 1st)
{

while (Link* po = lst->get ( )) {
if (Ship* ps = dynamic_cast<Ship*> (po) )

/ I use ship
}

else {
/ / Oops, do something else

/ / Ship must be polymorphic (§15.4.1)

Simula defined its standard containers in this style, so this approach can be considered the original
for languages supporting object-oriented programming. These days, a common class for all objects
is usually called Object or something similar. An Object class typically provides other common
services in addition to serving as a link for containers.

Often, but not necessarily, this approach is extended to provide a common container type:

class Container: public Object {
public:

virtual Object* get ( ) ; / / remove and return current element
virtual void put (Object* ) i / / insert before current element
virtual Object*& operator [] (size_t); / / subscripting
/ / '0'

} ;

Note that the operations provided by Container are virtual so that individual containers can over
ride them appropriately:



Section 16.2.2

class List: public Container {
public:

Object* get ( ) ;
void put (Object* ) ;
I I ...

} ;

class Vector: public Container {
public:

Object* & operator [] (size_t) ;
II ...

} i

Based Containers 439

One problem arises immediately. What operations do we want Container to provide? We could
provide only the operations that every container can support. However, the intersection of the sets
of operations on all containers is a ridiculously narrow interface. In fact, in many interesting cases
that intersection is empty. So, realistically, we must provide the union of essential operations on
the variety of containers we intend to support. Such a union of interfaces to a set of concepts is
called afat interface (§24.4.3).

We can either provide default implementations of the functions in the fat interface or force
every derived class to implement every function by making them pure virtual functions. In either
case, we end up with a lot of functions that simply report a run-time error. For example:

class Container : public Object {
public:

struct Bad_op { I I exception class
const char* p;
Bad_op (const char* pp) :p (pp) { }

} ;

virtual void put (Object*) {throw Bad_op ( If put If ) ;

virtual Object* get () {throw Bad_op ( II get II ); }

virtual Object*& operator [] (int) {throw Bad_op ( II [ ] " ) ;

I I ...
} ;

If we want to protect against the possibility of a container that does not support get ( ) , we must
catch Container: : Bad_op somewhere. We could now write the Ship example like this:

class Ship : public Object { I * ... * I };

void /1 (Container* pc)
{

try {
while (Object* po =pc->get ( )) {

if (Ship* ps =dynamic_cast<Ship*> (po) )
I I use ship



440 Library Organization and Containers

else {
/ / Oops, do something else

}

catch (Container: : Bad_op& bad) {
/ / Oops, do something else

Chapter 16

This is tedious, so the checking for Bad_op will typically be elsewhere. By relying on exceptions
caught elsewhere, we can reduce the example to:

void 12 (Container* pc)
{

while (Object* po =pc->get()) {
Ship& s =dynamic_cast<Ship&> (*po) i

/ / use ship

However, I find unnecessary reliance on run-time checking distasteful and inefficient. In this kind
of case, I prefer the statically-checked alternative:

void f3 (Itor<Ship> * i)
{

while (Ship* ps =i->next ( ) )
/ / use ship

The strengths and weakness of the "based object" approach to container design can be summarized
like this (see also §16.5[10]):

- Operations on individual containers incur virtual function overhead.
All containers must be derived from Container. This implies the use of fat interfaces,
requires a large degree of foresight, and relies on run-time type checking. Fitting an inde
pendently developed container into the common framework is awkward at best (see
§16.5[12]).

+ The common base Container makes it easy to use containers that supply similar sets of
operations interchangeably.
Containers are heterogeneous and not type safe by default (all we can rely on is that ele
ments are of type Object*). When desired, type-safe and homogeneous containers can be
defined using templates.
The containers are intrusive (that is, every element must be of a type derived from Object).
Objects of built-in types and structs with externally imposed layouts cannot be placed
directly in containers.
An element retrieved from a container must be given a proper type using explicit type con
version before it can be used.

+ Class Container and class Object are handles for implementing services for every object or



Section 16.2.2 Based Containers 441

every container. This greatly eases the provision of universal services such as persistence
and object I/O.

As before (§ 16.2.1), + indicates an advantage and - indicates a disadvantage.
Compared to the approach using unrelated containers and iterators, the based-object approach

unnecessarily pushes complexity onto the user, imposes significant run-time overheads, and
restricts the kinds of objects that can be placed in a container. In addition, for many classes, to
derive from Object is to expose an implementation detail. Thus, this approach is far from ideal for
a standard library.

However, the generality and flexibility of this approach should not be underestimated. Like its
alternatives, it has been used successfully in many applications. Its strengths lie in areas in which
efficiency is less important than the simplicity afforded by a single Container interface and ser
vices such as object I/O.

16.2.3 STL Containers

The standard library containers and iterators (often called the STL framework, §3.10) can be under
stood as an approach to gain the best of the two traditional models described previously. That
wasn't the way the STL was designed, though. The STL was the result of a single-minded search
for uncompromisingly efficient and generic algorithms.

The aim of efficiency rules out hard-to-inline virtual functions for small, frequently-used access
functions. Therefore, we cannot present a standard interface to containers or a standard iterator
interface as an abstract class. Instead, each kind of container supports a standard set of basic opera
tions. To avoid the problems of fat interfaces (§ 16.2.2, §24.4.3), operations that cannot be effi
ciently implemented for all containers are not included in the set of common operations. For exam
ple, subscripting is provided for vector but not for list. In addition, each kind of container provides
its own iterators that support a standard set of iterator operations.

The standard containers are not derived from a common base. Instead, every container imple
ments all of the standard container interface. Similarly, there is no common iterator base class. No
explicit or implicit run-time type checking is involved in using the standard containers and itera
tors.

The important and difficult issue of providing common services for all containers is handled
through "allocators" passed as template arguments (§ 19.4.3) rather than through a common base.

Before I go into details and code examples, the strengths and weaknesses of the STL approach
can be summarized:

+ Individual containers are simple and efficient (not quite as simple as truly independent con
tainers can be, but just as efficient).

+ Each container provides a set of standard operations with standard names and semantics.
Additional operations are provided for a particular container type as needed. Furthermore,
wrapper classes (§25.7.1) can be used to fit independently developed containers into a com
mon framework (§16.5[14]).

+ Additional commonality of use is provided through standard iterators. Each container pro
vides iterators that support a set of standard operations with standard names and semantics.
An iterator type is defined for each particular container type so that -these iterators are as
simple and efficient as possible.



442 Library Organization and Containers Chapter 16

+ To serve different needs for containers, different iterators and other generalized interfaces
can be defined in addition to the standard iterators.

+ Containers are by default type-safe and homogeneous (that is, all elements in a container are
of the same type). A heterogeneous container can be provided as a homogeneous container
of pointers to a common base.

+ The containers are non-intrusive (that is, an object need not have a special base class or link
field to be a member of a container). Non-intrusive containers work well with built-in types
and with structs with externally imposed layouts.

+ Intrusive containers can be fitted into the general framework. Naturally, an intrusive con
tainer will impose constraints on its element types.

+ Each container takes an argument, called an allocator, which can be used as a handle for
implementing services for every container. This greatly eases the provision of universal ser
vices such as persistence and object I/O (§ 19.4.3).

- There is no standard run-time representation of containers or iterators that can be passed as a
function argument (although it is easy to define such representations for the standard con
tainers and iterators where needed for a particular application; §19.3).

As before (§ 16.2.1), + indicates an advantage and - indicates a disadvantage.
In other words, containers and iterators do not have fixed standard representations. Instead,

each container provides a standard interface in the form of a set of operations so that containers can
be used interchangeably. Iterators are handled similarly. This implies minimal overheads in time
and space while allowing users to exploit commonality both at the level of containers (as with the
based-object approach) and at the level of iterators (as with the specialized container approach).

The STL approach relies heavily on templates. To avoid excessive code replication, partial spe
cialization to provide shared implementations for containers of pointers is usually required (§ 13.5).

16.3 Vector

Here, vector is described as an example of a complete standard container. Unless otherwise stated,
what is said about vector holds for every standard container. Chapter 17 describes features peculiar
to lists, sets, maps, etc. The facilities offered by vector - and similar containers - are described in
some detail. The aim is to give an understanding both of the possible uses of vector and of its role
in the overall design of the standard library.

An overview of the standard containers and the facilities they offer can be found in §17.1.
Below, vector is introduced in stages: member types, iterators, element access, constructors, stack
operations, list operations, size and capacity, helper functions, and vector<bool>.

16.3.1 Types

The standard vector is a template defined in namespace std and presented in <vector>. It first
defines a set of standard names of types:

template <class T, class A =allocator<T> > class std:: vector {
public:

/ / types:



/ / type ofelement
/ / type ofmemory manager

Section 16.3.1

typedef T value_type;
typedef A allocator_type;
typedef typename A:: size_type size_type;
typedef typename A:: difference_type difference_type;

typedef implementation_dependentl iterator; / / T*
typedef implementation_dependent2 const_iterator; / / const T*
typedef std: : reverse_iterator<iterator> reverse_iterator ;
typedef std:: reverse_iterator<const_iterator> const_reverse_iterator;

Types 443

/ / start at the beginning
/ / continue until the end

typedef typename A:: pointer pointer; / / pointer to element
typedef typename A:: constyointer constyointer;
typedef typename A:: reference reference; / / reference to element
typedef typename A:: const_reference const_reference;
/ I ...

} ;

Every standard container defines these typenames as members. Each defines them in the way most
appropriate to its implementation.

The type of the container's elements is passed as the first template argument and is known as its
value_type. The allocator_type, which is optionally supplied as the second template argument,
defines how the value_type interacts with various memory management mechanisms. In particular,
an allocator supplies the functions that a container uses to allocate and deallocate memory for its
elements. Allocators are discussed in §19.4. In general, size_type specifies the type used for
indexing into the container, and difference_type is the type of the result of subtracting two iterators
for a container. For most containers, they correspond to size_t and ptrdiff_t (§6.2.1).

Appendix E discusses how vector behaves if allocators or element operations throw exceptions.
Iterators were introduced in §2.7.2 and are described in detail in Chapter 19. They can be

thought of as pointers to elements of the container. Every container provides a type called iterator
for pointing to elements. It also provides a const_iterator type for use when elements don't need
to be modified. As with pointers, we use the safer const version unless there is a reason to do oth
erwise. The actual types of vector's iterators are implementation-defined. The obvious definitions
for a conventionally-defined vector would be T* and const T*, respectively.

The reverse iterator types for vector are constructed from the standard reverse_iterator tem
plates (§ 19.2.5). They present a sequence in the reverse order.

As shown in §3.8.1, these member typenames allow a user to write code using a container with
out having to know about the actual types involved. In particular, they allow a user to write code
that will work for any standard container. For example:

template<class C> typename C:: value_type sum (const C& c)
{

typename C:: value_type s = 0;
typename C:: const_iterator p =c. begin ( ) ;
while (p! =c . end ( )) {

s += *P i / / get value ofelement
++p; / / make p point to next element

return s;



444 Library Organization and Containers Chapter 16

I I points to first element

I I points to one-past-Iast element

end()

....~
~

~ .....

Having to add typename before the names of member types of a template parameter is a nuisance.
However, the compiler isn't psychic. There is no general way for it to know whether a member of
a template argument type is a typename (§C.13.5).

As for pointers, prefix * means dereference the iterator (§2.7.2, §19.2.1) and ++ means incre
ment the iterator.

16.3.2 Iterators

As shown in the previous subsection, iterators can be used to navigate containers without the pro
grammer having to know the actual type used to identify elements. A few key member functions
allow the programmer to get hold of the ends of the sequence of elements:

template <class T I class A =aliocator<T> > class vector {
public:

I I ...
1/ iterators:

iterator begin ( ) ;
const_iterator begin () const;
iterator end ( ) ;
const_iterator end () const;

reverse_iterator rbegin ( ) ; I I points to first element ofreverse sequence
const_reverse_iterator rbegin () const;
reverse_iterator rend ( ) ; I I points to one-past-Iast element of reverse sequence
const_reverse_iterator rend () const;

1/ ...
} ;

The begin ( ) / end () pair gives the elements of the container in the ordinary element order. That
is, element 0 is followed by element J, element 2, etc. The rbegin ( ) / rend () pair gives the ele
ments in the reverse order. That is, element n-J is followed by element n-2, element n-3, etc.
For example, a sequence seen like this using an iterator:

begin()

~

0~[!]~[£]

can be viewed like this using a reverse_iterator (§ 19.2.5):

rbegin() rend()

~ ....~
[£]~[!]~0~

This allows us to use algorithms in a way that views a sequence in the reverse order. For example:



Section 16.3.2 Iterators 445

template<class C> typename C:: iterator find_last (C& c, typename C:: value_type v)
{

typename C:: reverse_iterator ri = find (c. rbegin ( ) , c . rend ( ) , v) ;
if (ri == c. rend ( ) ) return c. end (); / / use c.end() to indicate "notfound"
typename C:: iterator i = ri. base ( ) ;
return --i;

For a reverse_iterator, ri . base () returns an iterator pointing one beyond the position pointed to
by ri (§19.2.5). Without reverse iterators, we could have had to write an explicit loop:

template<class C> typename C:: iterator find_last (C& c, typename C:: value_type v)
{

typename C:: iterator p = c . end ( ) ; / / search backwards from end
while (p! =c •begin ( ) )

if (*--p==v) return p;
return c. end ( ); / / use c.end() to indicate "not!ound"

A reverse iterator is a perfectly ordinary iterator, so we could have written:

template<class C> typename C:: iterator find_last (C& c, typename C:: value_type v)
{

typename C:: reverse_iterator p = c. rbegin (); /1 view sequence in reverse order
while (p! =c . rend ( )) {

if (*p==v) {
typename C:: iterator i =P . base ( ) ;
return --i;

++p;
}

return c. end ( ) i

I I note: increment, not decrement (--)

1/ use c.end() to indicate "notfound"

Note that C: : reverse_iterator is not the same type as C: : iterator.

16.3.3 Element Access

One important aspect of a vector compared with other containers is that one can easily and effi
ciently access individual elements in any order:

template <class T, class A = aliocator<T> > class vector {
public:

I I ...
II element access:

reference operator [] (size_type n); / / unchecked access
const_reference operator [ ] (size_type n) const;

reference at (size_type n);
const_reference at (size_type n) const;

/ / checked access



446 Library Organization and Containers

reference front ( ) ;
const_reference front () const;
reference back ( ) ;
const_reference back () const;

/ I ...
} ;

/ / first element

/ / last element

Chapter 16

Indexing is done by operator [] () and at ( ) ; operator [] () provides unchecked access, whereas
at () does a range check and throws out_of_range if an index is out of range. For example:

void f( vector<int>& v, int i1, int i2)
try {

for (int i = 0; i < v. size ( ); i++) {
II range already checked: use unchecked v[i] here

v. at (i1) = v. at (i2 ); / / check range on access

/ I ...
}

catch (out_of_range) {
/ loops: out-oj-range error

This illustrates one idea for use. That is, if the range has already been checked, the unchecked sub
scripting operator can be used safely; otherwise, it is wise to use the range-checked at () function.
This distinction is important when efficiency is at a premium. When that is not the case or when it
is not perfectly obvious whether a range has been correctly checked, it is safer to use a vector with a
checked [] operator (such as Vec from §3.7.2) or a checked iterator (§ 19.3).

The default access is unchecked to match arrays. Also, you can build a safe (checked) facility
on top of a fast one but not a faster facility on top of a slower one.

The access operations return values of type reference or const_reference depending on
whether or not they are applied to a const object. A reference is some suitable type for accessing
elements. For the simple and obvious implementation of vector<X>, reference is simply X& and
const_reference is simply const X&. The effect of trying to create an out-of-range reference is
undefined. For example:

void f(vector<double>& v)
{

double d =v [v . size ( ) ] ; / / undefined: bad index

list<char> 1st;
char c = 1st .front ( ); 1/ undefined: list is empty

Of the standard sequences, only vector and deque (§ 17.2.3) support subscripting. The reason is the
desire not to confuse users by providing fundamentally inefficient operations. For example, sub
scripting could have been provided for list (§ 17.2.2), but doing that would have been dangerously
inefficient (that is, 0 (n) ).

The members front () and back () return references to the first and last element, respectively.



Section 16.3.3 Element Access 447

They are most useful where these elements are known to exist and in code where these elements are
of particular interest. A vector used as a stack (§ 16.3.5) is an obvious example. Note that front ( )
returns a reference to the element to which begin () returns an iterator. I often think of front () as
the first element and begin () as a pointer to the first element. The correspondence between
back () and end () is less simple: back () is the last element and end () points to the last-plus-one
element position.

16.3.4 Constructors

Naturally, vector provides a complete set (§ 11.7) of constructors, destructor, and copy operations:

template <class T, class A = allocator< T> > class vector {
public:

1/ ...
I / constructors, etc.:

explicit vector (const A& = A ( ) ) ;
explicit vector (size_type n, const T& val =T ( ), const A& =A ( ) ) ; / I n copies ofval
template <class In> I I In must be an input iterator (§19.2.J)

vector (In first, In last, const A& = A ( ) ); I I copy from [first:last[
vector (const vector& x);

-vector ( );

} ;

vector& operator= (const vector& x);

template <class In>
void assign (In first, In last);

void assign (size_type n, const T& val) ;

II ...

I I In must be an input iterator (§19.2.1)
I I copy from [first:last[
I I n copies ofval

A vector provides fast access to arbitrary elements, but changing its size is relatively expensive.
Consequently, we typically give an initial size when we create a vector. For example:

vector<Record> vr (10000);

void f( int s1, int s2)
{

vector<int> vi (s1) ;

vector<double> * p =new vector<double> (s2 ) ;

Elements of a vector allocated this way are initialized by the default constructor for the element
type. That is, each of vr's 10000 elements is initialized by Record () and each of vi's s1 elements
is initialized by int ( ). Note that the default constructor for a built-in type performs initialization to
oof the appropriate type (§4.9.5, §10.4.2).

If a type does not have a default constructor, it is not possible to create a vector with elements
of that type without explicitly providing the value of each element. For example:



448 Library Organization and Containers

class Num { I I infinite precision
public:

Hum (long) i

I I no default constructor
II ...

} i

Chapter 16

vector<Num> v1 (1000) i

vector<Num> v2 (1000, Num (O) ) ;
/ I error: no default Num
II ok

Since a vector cannot have a negative number of elements, its size must be non-negative. This is
reflected in the requirement that vector's size_type must be an unsigned type. This allows a
greater range of vector sizes on some architectures. However, it can also lead to surprises:

void f (int i)
{

vector<char> vcO ( -1 ) ;
vector<char> vc1 (i);

void g ()
{

I I fairly easy for compiler to warn against

f(-1); I I trick f() into accepting a large positive number!

In the call f (-1 ) , -1 is converted into a (rather large) positive integer (§C.6.3). If we are lucky,
the compiler will find a way of complaining.

The size of a vector can also be provided implicitly by giving the initial set of elements. This is
done by supplying the constructor with a sequence of values from which to construct the vector.
For example:

void f( const list<X>& 1st)
{

vector<X> v1 (1st. begin ( ) ,1st. end {} );

char p [] = "despair ll
;

vector<char> v2 (p, &p [sizeof(p) -1] };

I I copy elements from list

I I copy characters from C-style string

In each case, the vector constructor adjusts the size of the vector as it copies elements from its
input sequence.

The vector constructors that can be invoked with a single argument are declared explicit to pre
vent accidental conversions (§11.7.1). For example:

vector<int> vI (10);
vector<int> v2 = vector<int> (10) i

vector<int> v3 = v2;
vector<int> v4 = 10;

I10k: vector of10 ints
I10k: vector of10 ints
I 10k: v3 is a copy ofv2
I I error: attempted implicit conversion of10 to vector<int>

The copy constructor and the copy-assignment operators copy the elements of a vector. For a
vector with many elements, that can be an expensive operation, so vectors are typically passed by
reference. For example:



Section 16.3.4

void fl (vector<int>&);
void 12 (const vector<int>&);
void f3 (vector<int> ) ;

void h{)
{

vector<int> v ( 10000) ;

/ / common style
/ / common style
/ / rare style

Constructors 449

/ / ...
fl (v);
12(v);

j3(v);

/ / pass a reference
/ / pass a reference
/ / copy the 10000 elements into a new vector for f3() to use

The assign functions exist to provide counterparts to the multi-argument constructors. They are
needed because =takes a single right-hand operand, so assign () is used where a default argument
value or a range of values is needed. For example:

class Book {
/ / ...

} ;

void f(vector<Num>& vn, vector<char>& vc, vector<Book>& vb, list<Book>& lb)
{

vn. assign (10, Num (0) ) ; / / assign vector of 10 copies ofNum(O) to vn

char s [] = II literal" ;
vc. assign (s, &s [sizeo!(s) -1] ); / / assign "literal" to vc

vb . assign (lb . begin ( ) , lb . end ( ) ) ; / / assign list elements

/ / ...

Thus, we can initialize a vector with any sequence of its element type and similarly assign any such
sequence. Importantly, this is done without explicitly introducing a multitude of constructors and
conversion functions. Note that assignment completely changes the elements of a vector. Concep
tually, all old elements are erased and the new ones are inserted. After assignment, the size of a
vector is the number of elements assigned. For example:

void f(}

{

vector<char> v (10, 'x') ;
v. assign (5, ' a ' ) ;
/ / ...

/ / v.size()==lO, each element has the value 'x'
/ / v.size()==5, each element has the value 'a'

Naturally, what assign () does could be done indirectly by first creating a suitable vector and then
assigning that. For example:



450 Library Organization and Containers

void 12 (vector<Book>& vh, list<Book>& lb)
{

vector<Book> vt (lb . begin ( ) , lb. end ( ) ) ;
vh =vti
II ...

Chapter 16

However, this can be both ugly and inefficient.
Constructing a vector with two arguments of the same type can lead to an apparent ambiguity:

vector<int> v (10, 50) ; I I vector(size, value) or vector(iterator1,iterator2)? vector(size, value)/

II add to end
I I remove last element

However, an int isn't an iterator and the implementation must ensure that this actually invokes

vector (vector<int> : : size_type, const int&, const vector<int>:: allocator_type& ) ;

rather than

vector (vector<int> : : iterator, vector<int>:: iterator, const vector<int>:: allocator_type& ) ;

The library achieves this by suitable overloading of the constructors and handles the equivalent
ambiguities for assign () and insert () (§16.3.6) similarly.

16.3.5 Stack Operations

Most often, we think of a vector as a compact data structure that we can index to access elements.
However, we can ignore this concrete notion and view vector as an example of the more abstract
notion of a sequence. Looking at a vector this way, and observing common uses of arrays and
vectors, it becomes obvious that stack operations make sense for a vector:

template <class T, class A = allocator<T> > class vector {
public:

I I ...
I I stack operations:

void push_back (const T& x) ;
void pop_back ( ) ;
I I ...

} ;

These functions treat a vector as a stack by manipulating its end. For example:

void !(vector<char>& s)
{

s .push_back ( ,a' );
s .push_back ( ,b' ) ;
s .push_back ( ,c');
s .pop_back ();
if (s [s . size ( ) -1] ! = ' b ') error ( "impossible! " ) ;
s.pop_back( );
if (s. back () ! = ' a'} error ( "should never happen! " );



Section 16.3.5 Stack Operators 451

Each time push_back () is called, the vector s grows by one element and that element is added at
the end. So s [s. size ( ) -1], also known as s. back () (§ 16.3.3), is the element most recently
pushed onto the vector.

Except for the word vector instead of stack, there is nothing unusual in this. The suffix _back
is used to emphasize that elements are added to the end of the vector rather than to the beginning.
Adding an element to the end of a vector could be an expensive operation because extra memory
needs to be allocated to hold it. However, an implementation must ensure that repeated stack oper
ations incur growth-related overhead only infrequently.

Note that pop_back () does not return a value. It just pops, and if we want to know what was
on the top of the stack before the pop, we must look. This happens not to be my favorite style of
stack (§2.5.3, §2.5.4), but it's arguably more efficient and it's the standard.

Why would one do stack-like operations on a vector? An obvious reason is to implement a
stack (§17.3.1), but a more common reason is to construct a vector incrementally. For example,
we might want to read a vector of points from input. However, we don't know how many points
will be read, so we can't allocate a vector of the right size and then read into it. Instead, we might
write:

vector<Point> cities;

void addJJoints (Point sentinel)
{

Point buf;

while (cin >> buf) {
if (buf == sentinel) return;
/ / check new point
cities. push_back (buf) ;

This ensures that the vector expands as needed. If all we needed to do with a new point were to put
it into the vector, we might have initialized cities directly from input in a constructor (§ 16.3.4).
However, it is common to do a bit of processing on input and expand a data structure gradually as a
program progresses; push_back () supports that.

In C programs, this is one of the most common uses of the C standard library function real
IDe ( ). Thus, vector - and, in general, any standard container - provides a more general, more
elegant, and no less efficient alternative to realloc ( ) .

The size () of a vector is implicitly increased by push_back () so the vector cannot overflow
(as long as there is memory available to acquire; see §19.4.1). However, a vector can underflow:

void f()
{

vector<int> v;

v . pop_back ( );
v.push_back(7) ;

/ / undefined effect: the state ofv becomes undefined
/ / undefined effect (the state o/v is undefined), probably bad

The effect of underflow is undefined, but the obvious implementation of pop_back () causes mem
ory not owned by the vector to be overwritten. Like overflow, underflow must be avoided.



452 Library Organization and Containers Chapter 16

/ I add x before pos
/ I add n copies ofx before pos
/ I In must be an input iterator (§J9.2.J)
/ I insert elements from sequence

16.3.6 List Operations

The push_back ( ) , pop_back ( ) , and back () operations (§ 16.3.5) allow a vector to be used effec
tively as a stack. However, it is sometimes also useful to add elements in the middle of a vector
and to remove elements from a vector:

template <class T, class A = aliocator<T> > class vector {
public:

II ...
I I list operations:

iterator insert (iterator pos, const T& x) ;

void insert (iterator pos, size_type n, const T& x) ;

template <class In>
void insert (iterator pos, In first, In last);

} ;

iterator erase (iterator pos);
iterator erase (iterator first, iterator last);
void clear ( ) i

/ / ...

/ / remove element at pos
/ I erase sequence
/ I erase all elements

An iterator returned by insert () points to the newly inserted element. An iterator returned by
erase () points to the element after the last element erased.

To see how these operations work, let's do some (nonsensical) manipulation of a vector of
names of fruit. First, we define the vector and populate it with some names:

vector<string> fruit;

fruit. push_back ( II peach II ) ;

fruit. push_back ( fI apple II ) ;

fruit .push_back ( II kiwifruit II );

fruit .push_back ( IIpear" );
fruit. push_back ( II starfruit II ) ;

fruit .push_back ( II grape fl
);

If I take a dislike to fruits whose names start with the letter p, I can remove those names like this:

sort {fruit. begin ( ) ,fruit. end ( ) ) ;
vector<string> : : iterator p J =find_if{fruit. begin ( ) ,fruit. end ( ) , initial ( ,p , ) );
vector<string> : : iterator p2 = find_if{p1 ,fruit. end ( ) , initial_not ( ,p , ) ) ;
fruit. erase (pJ ,p2) ;

In other words, sort the vector, find the first and the last fruit with a name that starts with the letter
p, and erase those elements from/ruit. How to write predicate functions such as initial (x) (is the
initial letter x?) and initia1_not () (is the initial letter different from p?) is explained in §18.4.2.

The erase (pI ,p2) operation removes elements starting from pI up to and not including p2.
This can be illustrated graphically:

fruit [ ] :
pJ

I
p2

I
v v

apple grape kiwifruit peach pear starfruit



Section 16.3.6

The erase (pl ,p2) removes peach and pear, yielding:

fruit [ ] :

apple grape kiwifruit starfruit

List Operations 453

As usual, the sequence specified by the user is from the beginning to one-past-the-end of the
sequence affected by the operation.

It would be tempting to write:

vector<string> : : iterator pI = find_if(fruit. begin ( ) , fruit. end ( ) , initial ( ,p , ) ) ;
vector<string>:: reverse_iterator p2 = find_if (jruit . rbegin () ,fruit. rend (), initial ( 'p') );
fruit. erase (pI, p2+I); / / oops!: type error

However, vector</ruit>:: iterator and vector</ruit>:: reverse_iterator need not be the same
type, so we couldn't rely on the call of erase () to compile. To be used with an iterator, a
reverse_iterator must be explicitly converted:

fruit. erase (pI, p2. base () ); / / extract iterator from reverse_iterator (§I9.2.5)

Erasing an element from a vector changes the size of the vector, and the elements after the erased
elements are copied into the freed positions. In this example, fruit . size () becomes 4 and the star
fruit that used to be fruit [5] is now fruit [3] .

Naturally, it is also possible to erase () a single element. In that case, only an iterator for that
element is needed (rather than a pair of iterators). For example,

fruit. erase (find (fruit. begin ( ) ,fruit. end ( ) , "starfruit" ) ) ;
fruit. erase (fruit. begin ( ) +I ) ;

gets rid of the starfruit and the grape, thus leavingfruit with two elements:

fruit [] :

apple kiwifruit

It is also possible to insert elements into a vector. For example:

fruit. insert (fruit. begin ( ) +I , "cherry" ) ;
fruit. insert (fruit. end ( ), II cranberry" );

The new element is inserted before the position mentioned, and the elements from there to the end
are moved to make space. We get:

fruit [ ] :

apple cherry kiwifruit cranberry

Note thatf. insert (/. end ( ) ,x) is equivalent tof.push_back (x) .
We can also insert whole sequences:

fruit. insert (fruit. begin ( ) +2 , citrus. begin ( ) , citrus. end ( ) );



454 Library Organization and Containers

If citrus is a container

citrus [] :
lemon grapefruit orange lime

we get:

fruit [ ] :
apple cherry lemon grapefruit orange lime kiwifruit cranberry

Chapter 16

The elements of citrus are copied into fruit by insert ( ). The value of citrus is unchanged.
Clearly, insert () and erase () are more general than are operations that affect only the tail end

of a vector (§ 16.3.5). They can also be more expensive. For example, to make room for a new ele
ment, insert () may have to reallocate every element to a new part of memory. If insertions into
and deletions from a container are common, maybe that container should be a list rather than a
vector. A list is optimized for insert () and erase () rather than for subscripting (§16.3.3).

Insertion into and erasure from a vector (but not a list or an associative container such as map)
potentially move elements around. Consequently, an iterator pointing to an element of a vector
may after an insert () or erase () point to another element or to no element at all. Never access an
element through an invalid iterator; the effect is undefined and quite likely disastrous. In particular,
beware of using the iterator that was used to indicate where an insertion took place; insert ( )
makes its first argument invalid. For example:

void duplicate_elements (vector<string>& j)
{

for (vector<string> : : iterator p = f. begin ( ); p! =I. end ( ); ++p) f. insert (p, *p) ; / / No!

Just think of it (§ 16.5[15]). A vector implementation would move all elements - or at least all ele
ments after p - to make room for the new element.

The operation clear () erases all elements of a container. Thus, c. clear () is a shorthand for
c . erase (c . begin ( ) , c . end ( ) ). After c . clear ( ) , c. size () is O.

16.3.7 Addressing Elements

Most often, the target of an erase () or insert () is a well-known place (such as begin () or
end ( ) ), the result of a search operation (such as find ( ) ), or a location found during an iteration.
In such cases, we have an iterator pointing to the relevant element. However, we often refer to ele
ments of a vector by subscripting. How do we get an iterator suitable as an argument for erase ( )
or insert () for the element with index 7 of a vector (or a vector-like) container c? Since that ele
ment is the 7th element after the beginning, c . begin ( ) + 7 is a good answer. Other alternatives that
may seem plausible by analogy to arrays should be avoided. Consider:

template<class C> void f( C& c)
{

c. erase (c. begin () +7);

c. erase (&c [7] );
c. erase (c+7);

/ / ok (ife's iterators support + (see §19.2.1))
/ / not general
/ / error: adding 7 to a container makes no sensp



Section 16.3.7 Addressing Elements 455

I I number ofelements

I I size of the largest possible vector
I I added elements initialized by val

c . erase (c. back ( ) ) ; I I error: c.back() is a reference, not an iterator
c . erase (c. end ( ) -2); I I ok (second to last element)
c . erase (c. rbegin ( ) +2) ; I I error: vector's reverse_iterator and iterator are different types
c. erase ( (c. rbegin ( ) +2) . base ( ) ); I I obscure, but ok (see §19.2.5)

The most tempting alternative, &c [ 7] , actually works with the obvious implementation of vector,
where c [7] refers to an element and its address is a valid iterator. However, c might be a container
where the iterator isn't a simple pointer to an element. For example, map's subscripting operator
(§ 17.4.1.3) returns a mapped_type& rather than a reference to an element (a value_type& ) .

Not all containers support + for their iterators. For example, a list does not support even
c. begin ( ) +7. If you really want to add 7 to a list:: iterator, you'll have to use ++ repeatedly or
use advance () (§ 19.2.1).

The alternatives c+ 7 and c . back () are simple type errors. A container is not a numeric vari
able to which we can add 7, and c. back () is an element with a value like "pear" that does not
identify the pear's location in the container c.

16.3.8 Size and Capacity

So far, vector has been described with minimal reference to memory management. A vector grows
as needed. Usually, that is all that matters. However, it is possible to ask directly about the way a
vector uses memory, and occasionally it is worthwhile to affect it directly. The operations are:

template <class T, class A =allocator<T> > class vector {
public:

I I ...
I I capacity:

size_type size () const;
bool empty () const { return size ( ) ==0 ;
size_type max_size () const;
void resize (size_type sz, T val = T ( ) );

} ;

size_type capacity () const;
void reserve (size_type n);

1/ ...

I I size ofthe memory (in number ofelements) allocated
I I make room for a total ofn elements; don't initialize
I I throw a length_error ijn>max_size()

At any given time, a vector holds a number of elements. This number can be obtained by calling
size () and can be changed using resize ( ). Thus, a user can determine the size of a vector and
change it if it seems insufficient or excessive. For example:

class Histogram (
vector<int> count;

public:
Histogram(int h) : count (max(h, 8) ) {}

void record (int i);
1/ ...

} ;



456 Library Organization and Containers

void Histogram:: record (int i)
{

if (i<O) i =0;
if (count. size ( ) <=i) count. resize (i+i) ; I I make lots ofroom
count [i) ++;

Chapter 16

Using resize () on a vector is very similar to using the C standard library function realloc () on a
C array allocated on the free store.

When a vector is resized to accommodate more (or fewer) elements, all of its elements may be
moved to new locations. Consequently, it is a bad idea to keep pointers to elements in a vector that
might be resized; after resize ( ) , such pointers could point to deallocated memory. Instead, we can
keep indices. Note that push_back ( ) , insert ( ) , and erase () implicitly resize a vector.

In addition to the elements held, an application may keep some space for potential expansion.
A programmer who knows that expansion is likely can tell the vector implementation to reserve ( )
space for future expansion. For example:

struct Link {
Link* next;
Link (Link* n =0) : next (n) {}
II ...

} ;

vector<Link> v;

void chain (size_t n) I I fill v with n Links so that each Link points to its predecessor
{

v. reserve (n);
v .push_back (Link (0) );
for (int i =1; i<n; i++) v.push_back (Link (&v [i-I] ));
1/ ...

A call v. reserve (n) ensures that no allocation will be needed when the size of v is increased until
v . size () exceeds n.

Reserving space in advance has two advantages. First, even a simple-minded implementation
can then allocate sufficient space in one operation rather than slowly acquiring enough memory
along the way. However, in many cases there is a logical advantage that outweighs the potential
efficiency gain. The elements of a container are potentially relocated when a vector grows. Thus,
the links built between the elements of v in the previous example are guaranteed only because the
call of reserve () ensures that there are no allocations while the vector is being built. That is, in
some cases reserve () provides a guarantee of correctness in addition to whatever efficiency
advantages it gives.

That same guarantee can be used to ensure that potential memory exhaustion and potentially
expensive reallocation of elements take place at predictable times. For programs with stringent
real-time constraints, this can be of great importance.

Note that reserve () doesn't change the size of a vector. Thus, it does not have to initialize any
new elements. In both respects, it differs from resize ( ) .



Section 16.3.8 Size and Capacity 457

In the same way as size () gives the current number of elements, capacity () gives the current
number of reserved memory slots; c. capacity ( ) -c . size () is the number of elements that can be
inserted without causing reallocation.

Decreasing the size of a vector doesn't decrease its capacity. It simply leaves room for the
vector to grow into later. To give memory back to the system, a small trick is needed:

vector<int> tmp =v; / / copy ofv with default capacity
v . swap (tmp); / / now v has the default capacity (see §16.3.9)

A vector gets the memory it needs for its elements by calling member functions of its allocator
(supplied as a template parameter). The default allocator, called allocator (§ 19.4.1), uses new to
obtain storage so that it will throw bad_alloc if no more storage is obtainable. Other allocators can
use different strategies (see §19.4.2).

The reserve () and capacity () functions are unique to vector and similar compact containers.
Containers such as list do not provide equivalents.

16.3.9 Other Member Functions

Many algorithms - including important sort algorithms - involve swapping elements. The obvious
way of swapping (§ 13.5.2) simply copies elements. However, a vector is typically implemented
with a structure that acts as a handle (§ 13.5, §17. 1.3) to the elements. Thus, two vectors can be
swapped much more efficiently by interchanging the handles; vector:: swap () does that. The
time difference between this and the default swap () is orders of magnitude in important cases:

template <class T, class A =aliocator<T> > class vector {
public:

/ / ...
void swap (vector& ) ;

allocator_type get_allocator () const;
} ;

The get_allocator () function gives the programmer a chance to get hold of a vector's allocator
(§ 16.3.1, §16.3.4). Typically, the reason for this is to ensure that data from an application that is
related to a vector is allocated similarly to the vector itself (§ 19.4.1).

16.3.10 Helper Functions

Two vectors can be compared using == and <:

template <class T, class A>
bool std:: operator== (const vector<T, A>& X, const vector<T, A>& y);

template <class T, class A>
bool std::operator«const vector<T,A>&x, const vector<T,A>&Y)i

Two vectors vI and v2 compare equal if v1 . size ( ) ==v2 . size () and v1 [n] ==v2 [n] for every
valid index n. Similarly, < is a lexicographical ordering. In other words, < for vectors could be
defined like this:



458 Library Organization and Containers

template <class T, class A>
inline bool std:: operator< (const vector<T, A>& x, const vector<T, A>& y)
{

Chapter 16

return lexicographical_compare (x. begin ( ), x. end ( ), y. begin ( ), y. end () ); / / see §18.9

This means that x is less than y if the first element x [i] that is not equal to the corresponding ele
ment y [i] is less than y [ i], or x . size ( ) <y . size () with every x [i] equal to its corresponding
y [i] .

The standard library also provides ! =, <=, >, and >=, with definitions that correspond to those
of == and <.

Because swap () is a member, it is called using the v1 . swap (v2) syntax. However, not every
type has a swap () member, so generic algorithms use the conventional swap (a, b) syntax. To
make that work for vectors also, the standard library provides the specialization:

template <class T, class A> void std: : swap (vector<T,A>& x, vector<T,A>& y)
{

x.swap(y);

16.3.11 Vector<bool>

The specialization (§13.5) vector<bool> is provided as a compact vector of bool. A booI variable
is addressable, so it takes up at least one byte. However, it is easy to implement vector<bool> so
that each element takes up only a bit.

The usual vector operations work for vector<bool> and retain their usual meanings. In particu
lar, subscripting and iteration work as expected. For example:

void f{vector<bool>& v)
{

for (int i =0; i<v . size ( ); ++i) cin » v [i];

typedef vector<bool> : : const_iterator VI;
for (VI p=v.begin(); pl=v.end(); ++p) cout«*p;

/ / iterate using subscripting

/ / iterate using iterators

To achieve this, an implementation must simulate addressing of a single bit. Since a pointer cannot
address a unit of memory smaller than a byte, vector<bool> : : iterator cannot be a pointer. In par- .
ticular, one cannot rely on bool* as an iterator for a vector<bool>:

void f(vector<bool>& v)
{

bool* p = v. begin ( ); / / error: type mismatch
/ / ...

A technique for addressing a single bit is outlined in §17.5.3.
The library also provides bitset as a set of Boolean values with Boolean set operations

(§17.5.3).



Section 16.4

16.4 Advice

Advice 459

[1] Use standard library facilities to maintain portability; §16.1.
[2] Don't try to redefine standard library facilities; §16.1.2.
[3] Don't believe that the standard library is best for everything.
[4] When building a new facility, consider whether it can be presented within the framework

offered by the standard library; §16.3.
[5] Remember that standard library facilities are defined in namespace std; §16.1.2.
[6] Declare standard library facilities by including its header, not by explicit declaration; §16.1.2.
[7] Take advantage of late abstraction; §16.2.1.
[8] Avoid fat interfaces; §16.2.2.
[9] Prefer algorithms with reverse iterators over explicit loops dealing with reverse order; §16.3.2.
[10] Use base () to extract an iterator from a reverse_iterator; §16.3.2.
[11] Pass containers by reference; §16.3.4.
[12] Use iterator types, such as list<char>:: iterator, rather than pointers to refer to elements of a

container; §16.3.1.
[13] Use const iterators where you don't need to modify the elements of a container; §16.3.1.
[14] Use at ( ) , directly or indirectly, if you want range checking; §16.3.3.
[15] Use push_back () or resize () on a container rather than realloc () on an array; §16.3.5.
[16] Don't use iterators into a resized vector; §16.3.8.
[17] Use reserve () to avoid invalidating iterators; §16.3.8.
[18] When necessary, use reserve () to make performance predictable; §16.3.8.

16.5 Exercises

The solutions to several exercises for this chapter can be found by looking at the source text of an
implementation of the standard library. Do yourself a favor: try to find your own solutions before
looking to see how your library implementer approached the problems.
1. (*1.5) Create a vector<char> containing the letters of the alphabet in order. Print the elements

of that vector in order and in reverse order.
2. (*1.5) Create a vector<string> and read a list of names of fruits from cin into it. Sort the list

and print it.
3. (*1.5) Using the vector from §16.5[2], write a loop to print the names of all fruits with the ini-

tialletter a.
4. (*1) Using the vector from §16.5[2], write a loop to delete all fruits with the initial letter a.
5. (*1) Using the vector from §16.5[2], write a loop to delete all citrus fruits.
6. (*1.5) Using the vector from §16.5[2], write a loop to delete all fruits that you don't like.
7. (*2) Complete the Vector, List, and ltor classes from §16.2.1.
8. (*2.5) Given an ltor class, consider how to provide iterators for forwards iteration, backwards

iteration, iteration over a container that might change during an iteration, and iteration over an
immutable container. Organize this set of containers so that a user can interchangeably use iter
ators that provide sufficient functionality for an algorithm. Minimize replication of effort in the
implementation of the containers. What other kinds of iterators might a user need? List the
strengths and weaknesses of your approach.



460 Library Organization and Containers Chapter 16

9. (*2) Complete the Container, Vector, and List classes from §16.2.2.
10. (*2.5) Generate 10,000 uniformly distributed random numbers in the range °to 1,023 and store

them in (a) an standard library vector, (b) a Vector from §16.5[7], and (c) a Vector from
§16.5[9]. In each case, calculate the arithmetic mean of the elements of the vector (as if you
didn't know it already). Time the resulting loops. Estimate, m~asure, and compare the memory
consumption for the three styles of vectors.

11. (* 1.5) Write an iterator to allow Vector from §16.2.2 to be used as a container in the style of
§16.2.1.

12. (*1.5) Write a class derived from Container to allow Vector from §16.2.1 to be used as a con
tainer in the style of §16.2.2.

13. (*2) Write classes to allow Vector from §16.2.1 and Vector from §16.2.2 to be used as standard
containers.

14. (*2) Write a template that implements a container with the same member functions and member
types as the standard vector for an existing (nonstandard, non-student-exercise) container type.
Do not modify the (pre)existing container type. How would you deal with functionality offered
by the nonstandard vector but not by the standard vector?

15.(*1.5) Outline the possible behavior of duplicate_elements() from §16.3.6 for a
vector<string> with the three elements don't do this.



17
Standard Containers

Now is a good time to put your work
on a firm theoretical foundation.

- Sam Morgan

Standard containers - container and operation summaries - efficiency - representa
tion - element requirements - sequences - vector - list - deque - adapters 
stack - queue - priority_queue - associative containers - map - comparisons
multimap - set - multiset - "almost containers" - bitset - arrays - hash tables
- implementing a hash_map - advice - exercises.

17.1 Standard Containers

The standard library defines two kinds of containers: sequences and associative containers. The
sequences are all much like vector (§ 16.3). Except where otherwise stated, the member types and
functions mentioned for vector can also be used for any other container and produce the same
effect. In addition, associative containers provide element access based on keys (§3.7.4).

Built-in arrays (§5.2), strings (Chapter 20), valarrays (§22.4), and bitsets (§ 17.5.3) hold ele
ments and can therefore be considered containers. However, these types are not fully-developed
standard containers. If they were, that would interfere with their primary purpose. For example, a
built-in array cannot both hold its own size and remain layout-compatible with C arrays.

A key idea for the standard containers is that they should be logically interchangeable wherever
reasonable. The user can then choose between them based on efficiency concerns and the need for
specialized operations. For example, if lookup based on a key is common, a map (§ 17.4.1) can be
used. On the other hand, if general list operations dominate, a list (§ 17.2.2) can be used. If many
additions and removals of elements occur at the ends of the container, a deque (double-ended
queue, §17.2.3), a stack (§17.3.1), or a queue (§17.3.2) should be considered. In addition, a user
can design additional containers to fit into the framework provided by the standard containers



462 Standard Containers Chapter 17

(§ 17.6). By default, a vector (§ 16.3) should be used; it will be implemented to perform well over a
wide range of uses.

The idea of treating different kinds of containers - and more generally all kinds of information
sources - in uniform ways leads to the notion of generic programming (§2.7.2, §3.8). The standard
library provides many generic algorithms to support this idea (Chapter 18). Such algorithms can
save the programmer from having to deal directly with details of individual containers.

17.1.1 Operations Summary

This section lists the common and almost common members of the standard containers. For more
details, read your standard headers «vector>, <list>, <map>, etc.; §16.1.2).

Member Types (§16.3.1)

value_type
allocator_type
size_type
difference_type
iterator
const iterator
reverse iterator
const reverse iterator- -
reference
const_reference
key_type
mapped_type
key_compare

Type of element.
Type of memory manager.
Type of subscripts, element counts, etc.
Type of difference between iterators.
Behaves like value_type*.
Behaves like const value_type*.
View container in reverse order; like value_type*.
View container in reverse order; like const value_type * .
Behaves like value_type&.
Behaves like const value_type&.
Type of key (for associative containers only).
Type of mapped_value (for associative containers only).
Type of comparison criterion (for associative containers only).

A container can be viewed as a sequence either in the order defined by the container's iterator or in
reverse order. For an associative container, the order is based on the container's comparison crite
rion (by default <):

Iterators (§16.3.2)

begin()
end()
rbegin()
rend()

Points to first element.
Points to one-past-last element.
Points to first element of reverse sequence.
Points to one-past-Iast element of reverse sequence.

Some elements can be accessed directly:

Element Access (§16.3.3)
front()
back()
I]
at()

First element.
Last element.
Subscripting, unchecked access (not for list).
Subscripting, checked access (for vector and deque only).



Section 17.1.1 Operations Summary 463

Vectors and deques provide efficient operations at the end (back) of their sequence of elements. In
addition, lists and deques provide the equivalent operations on the start (front) of their sequences:

Stack and Queue Operations (§16.3.5, §17.2.2.2)
push_back() Add to end.
pop_back() Remove last element.
pushJront() Add new first element (for list and deque only).
popJront() Remove first element (for list and deque only).

Containers provide list operations:

List Operations (§16.3.6)
insert(p,x)
insert(p,n,x)
insert(p,first,last)
erase(p)
erase(first, last)
clear()

Add x before p.
Add n copies of x before p.
Add elements from [first:last[ before p.
Remove element at p.
Erase ffirst: last[.
Erase all elements.

Appendix E discusses how containers behave if allocators or element operations throw exceptions.
All containers provide operations related to the number of elements and a few other operations:

Other Operations (§16.3.8, §16.3.9, §16.3.10)
size()
empty()
max_size()
capacity()
reserve()
resize()
swap()
get_allocator()

1=
<

Number of elements.
Is the container empty?
Size of the largest possible container.
Space allocated for vector (for vector only).
Reserve space for future expansion (for vector only).
Change size of container (for vector, list, and deque only).
Swap elements of two containers.
Get a copy of the container's allocator.
Is the content of two containers the same?
Is the content of two containers different?
Is one container lexicographically before another?

Containers provide a variety of constructors and assignment operations:

Constructors, etc. (§16.3.4)

container()
container(n)
container(n,x)
container(first, last)
container(x)
-container()

Empty container.
n elements default value (not for associative containers).
n copies of x (not for associative containers).
Initial elements from [first:last[.
Copy constructor; initial elements from container x.
Destroy the container and all of its elements.



464 Standard Containers

Assignments (§16.3.4)

Chapter 17

operator=(x)
assign(n,x)
assign(first, last)

Copy assignment; elements from container x.
Assign n copies ofx (not for associative containers).
Assign from [first:last[.

Associative containers provide lookup based on keys:

Associative Operations (§17.4.1)
operator[l(k)
find(k)
lower_bound(k)
upper_bound(k)
equal_range(k)
key_comp()
value_comp()

Access the element with key k (for containers with unique keys).
Find the element with key k.
Find the first element with key k.
Find the first element with key greater than k.
Find the lower_bound and upper_bound of elements with key k.
Copy of the key comparison object.
Copy of the mapped_value comparison object.

In addition to these common operations, most containers provide a few specialized operations.

17.1.2 Container Summary

The standard containers can be summarized like this:

Standard Container Operations
[] List Front Back (Stack) Iterators

Operations Operations Operations
§16.3.3 §16.3.6 §17.2.2.2 §16.3.5 §19.2.1
§17.4.1.3 §20.3.9 §20.3.9 §20.3.12

vector const O(n)+ const+ Ran
list const const const Bi
deque const O(n) const const Ran

stack const
queue const const
priority_queue O(1og(n» O(log(n)

map O(1og(n» O(1og(n»+ Bi
multimap O(1og(n»+ Bi
set O(log(n»+ Bi
multiset O(log(n»+ Bi

string const O(n)+ O(n)+ const+ Ran
array const Ran
valarray const Ran
bitset const

In the iterators column, Ran means random-access iterator and Bi means bidirectional iterator; the
operations for a bidirectional operator are a subset of those of a random-access iterator (§ 19.2.1).



Section 17.1.2 Container Summary 465

Other entries are measures of the efficiency of the operations. A const entry means the operation
takes an amount of time that does not depend on the number of elements in the container; another
conventional notation for constant time is 0 (1). 0 (n) means the operation takes time propor
tional to the number of elements involved. A + suffix indicates that occasionally a significant extra
cost is incurred. For example, inserting an element into a list has a fixed cost (so it is listed as
const), whereas the same operation on a vector involves moving the elements following the inser
tion point (so it is listed as 0 (n). Occasionally, all elements must be relocated (so I added a +).
The "big 0" notation is conventional. I added the + for the benefit of programmers who care
about predictability in addition to average performance. A conventional term for 0 (n) + is
amortized linear time.

Naturally, if a constant is large it can dwarf a small cost proportional to the number of elements.
However, for large data structures const tends to mean "cheap," 0 (n) to mean "expensive," and
o (log (n) ) to mean "fairly cheap." For even moderately large values of n, 0 (log (n) ) is closer
to constant time than to 0 (n). People who care about cost must take a closer look. In particular,
they must understand what elements are counted to get the n. No basic operation is "very expen
sive," that is, 0 (n*n) or worse.

Except for string, the measures of costs listed here reflect requirements in the standard. The
string estimates are my assumptions. The entries for stack and queue reflect the cost for the
default implementation using a deque (§ 17.3.1, §17.3.2).

These measures of complexity and cost are upper bounds. The measures exist to give users
some guidance as to what they can expect from implementations. Naturally, implementers will try
to do better in important cases.

17.1.3 Representation

The standard doesn't prescribe a particular representation for each standard container. Instead, the
standard specifies the container interfaces and some complexity requirements. Implementers will
choose appropriate and often cleverly optimized implementations to meet the general requirements.
A container will almost certainly be represented by a data structure holding the elements accessed
through a handle holding size and capacity information. For a vector, the element data structure is
most likely an array:

vector: ITJize
rep

~ 1L...--_e_Ie_m_e_n_t_s__r:~~~~~: ~~:~~e: :
Similarly, a list is most likely represented by a set of links pointing to the elements:

list: __re_p_1

elem~ D D D



466 Standard Containers Chapter 17

A map is most likely implemented as a (balanced) tree of nodes pointing to (key,value) pairs:

map:

(key,value) pairs:

I
OJ

A string might be implemented as outlined in §11.12 or maybe as a sequence of arrays holding a
few characters each:

string: rep I
---~ Isegment descriptors I

~~
string segments: 0 0

17.1.4 Element Requirements

Elements in a container are copies of the objects inserted. Thus, to be an element of a container, an
object must be of a type that allows the container implementation to copy it. The container may
copy elements using a copy constructor or an assignment; in either case, the result of the copy must
be an equivalent object. This roughly means that any test for equality that you can devise on the
value of the objects must deem the copy equal to the original. In other words, copying an element
must work much like an ordinary copy of built-in types (including pointers). For example,

x& X : : operator= (const X& a) / / proper assignment operator
{

/ / copy all ofa's members to *this
return * this;

makes X acceptable as an element type for a standard container, but

void Y:: operator= (const Y& a) / / improper assignment operator
{

/ / zero out all ofa's members

renders Y unsuitable because Y's assignment has neither the conventional return type nor the con
ventional semantics.



Section 17.1.4 Element Requirements 467

Some violations of the rules for standard containers can be detected by a compiler, but others
cannot and might then cause unexpected behavior. For example, an assignment operation that
throws an exception might leave a partially copied element behind. It could even leave an element
in an invalid state that could cause trouble lat.er. Such copy operations are themselves bad design
(§14.4.6.1, Appendix E).

When copying elements isn't right, the alternative is to put pointers to objects into containers
instead of the objects themselves. The most obvious example is polymorphic types (§2.5.4,
§12.2.6). For example, we use vector<Shape* > rather than vector<Shape> to preserve polymor
phic behavior.

17.1.4.1 Comparisons

Associative containers require that their elements can be ordered. So do many operations that can
be applied to containers (for example sort ( )). By default, the < operator is used to define the
order. If < is not suitable, the programmer must provide an alternative (§17.4.1.5, §18.4.2). The
ordering criterion must define a strict weak ordering. Informally, this means that both less-than
and equality must be transitive. That is, for an ordering criterion cmp:

[I] cmp (x,x) is false.
[2] If cmp (x, y) and cmp (y, z) , then cmp (x, z) .

[3]Defineequiv(x,y) to be ! (cmp(x,y) Ilcmp(y,x)). Ifequiv(x,y) and equiv(y,z) ,
then equiv (x, z) .

Consider:

template<class Ran> void sort (Ran first, Ran last); / / use <for comparison
template<class Ran, class Cmp> void sort (Ran first, Ran last, Cmp cmp) i / / use cmp

The first version uses < and the second uses a user-supplied comparison cmp. For example, we
might decide to sort fruit using a comparison that isn't case-sensitive. We do that by defining a
function object (§ 11.9, §18.4) that does the comparison when invoked for a pair of strings:

class Nocase { / / case-insensitive string compare
public:

bool operator () (const string&, const string&) const i

} ;

bool Nocase:: operator () (const string& x, const string& y) const
/ / return true ifx is lexicographically less than y, not taking case into account

string: : const_iterator p =x . begin ( ) i

string: : const_iterator q = y . begin ( ) ;

while (p! =x. end () && q! =y. end () && toupper (*p) ==toupper (*q) )
++Pi
++qi

}

if (p == x. end ( ) ) return q ! = y. end ( ) i

if (q == y. end ( ) ) return false;
return toupper ( *p) < toupper (*q) ;



468 Standard Containers

We can call sort () using that comparison criterion. For example, given:

fruit:
apple pear Apple Pear lemon

Chapter 17

sorting using sort (fruit. begin ( ) ,fruit. end ( ), Nocase ( ) ) would yield something like:

fruit:
Apple apple lemon Pear pear

whereas plain sort (fruit. begin ( ) ,fruit. end ( ) ) would give:

fruit:
Apple Pear apple lemon pear

assuming a character set in which uppercase letters precede lowercase letters.
Beware that < on C-style strings (that is, char*) does not define lexicographical order

(§ 13.5.2). Thus, associative containers will not work as most people would expect them to when
C-style strings are used as keys. To make them work properly, a less-than operation that compares
based on lexicographical order must be used. For example:

struct Cstring_less {
bool operator () (const char* P, const char* q) const { return strcmp (p , q) <0; }

} ;

map<char* I int I Cstring_less> m; / / map that uses strcmp() to compare const char* keys

17.1.4.2 Other Relational Operators

By default, containers and algorithms use < when they need to do a less-than comparison. When
the default isn't right, a programmer can supply a comparison criterion. However, no mechanism is
provided for also passing an equality test. Instead, when a programmer supplies a comparison cmp,
equality is tested using two comparisons. For example:

if (x == y) / / not done where the user supplied a comparison

if ( ! cmp (x I Y) && ! cmp (y I x)) / / done where the user supplied a comparison cmp

This saves us from having to add an equality parameter to every associative container and most
algorithms. It may look expensive, but the library doesn't check for equality very often, and in
50% of the cases, only a single call of cmp () is needed.

Using an equivalence relationship defined by less-than (by default <) rather than equality (by
default ==) also has practical uses. For example, associative containers (§ 17.4) compare keys
using an equivalence test! (cmp (x, y) I Icmp (y, x) ). This implies that equivalent keys need not
be equal. For example, a multimap (§ 17.4.2) that uses case-insensitive comparison as its compari
son criteria will consider the strings Last, last, lAst, laSt, and lasT equivalent, even though == for
strings deems them different. This allows us to ignore differences we consider insignificant when
sorting.

Given < and ==, we can easily construct the rest of the usual comparisons. The standard library
defines them in the namespace std: : rel_ops and presents them in <utility>:



Section 17.1.4.2 Other Relational Operators 469

template<class T>bool rel_ops::operator!=(const T&x , const T&y) {return! (X==y)i }
template<class T> bool rel_ops : : operator> (const T& x I const T& y) {return y<x i }
template<class T> bool rel_ops:: operator<= (const T& x, const T& y) {return! (y<x) i
template<class T> bool rel_ops:: operator>= (const T& x, const T& y) {return! (x<y) i

Placing these operations in rel_ops ensures that they are easy to use when needed, yet they don't
get created implicitly unless extracted from that namespace:

void f()
{

using namespace std;
/ / 1=, >, etc., not generated by default

void g ()
{

using namespace std;
using namespace std:: rel_ops i
/ / 1=, >, etc., generated by default

The ! =, etc., operations are not defined directly in std because they are not always needed and
sometimes their definition would interfere with user code. For example, if I were writing a general
ized math library, I would want my relational operators and not the standard library versions.

17.2 Sequences

Sequences follow the pattern described for vector (§16.3). The fundamental sequences provided by
the standard library are:

vector list deque

From these,

stack queue priority_queue

are created by providing suitable interfaces. These sequences are called container adapters,
sequence adapters, or simply adapters (§ 17.3).

17.2.1 Vector

The standard vector is described in detail in §16.3. The facilities for reserving space (§ 16.3.8) are
unique to vector. By default, subscripting using [] is not range checked. If a check is needed, use
at () (§16.3.3), a checked vector (§3.7.2), or a checked iterator (§19.3). A vector provides
random-access iterators (§19.2.1).



470 Standard Containers

17.2.2 List

Chapter 17

A list is a sequence optimized for insertion and deletion of elements. Compared to vector (and
deque; §17.2.3), subscripting would be painfully slow, so subscripting is not provided for list.
Consequently, list provides bidirectional iterators (§19.2.1) rather than random-access iterators.
This implies that a list will typically be implemented using some form of a doubly-linked list (see
§17.8[16]).

A list provides all of the member types and operations offered by vector (§ 16.3), with the
exceptions of subscripting, capacity ( ) , and reserve ( ) :

template <class T I class A =allocator<T> > class std:: list {
public:

I I types and operations like vector's, except [], at(), capacity(), and reserve()
II ...

} ;

17.2.2.1 Splice, Sort, and Merge

In addition to the general sequence operations, list provides several operations specially suited for
list manipulation:

template <class T I class A =allocator<T> > class list {
public:

II ...
I I list-specific operations:

void splice (iterator pos I list& x) ; I I move all elements from x to before
I I pos in this list without copying.

void splice (iterator pos I list& x I iterator p); I I move *p from x to before
/ I pos in this list without copying.

void splice (iterator pos I list& x I iterator first I iterator last) i

void merge (list& )ill merge sorted lists
template <class Cmp> void merge (list& I Cmp) i

void sort ( );
template <class Cmp> void sort (Cmp) i

/ I ...
} ;

These list operations are all stable; that is, they preserve the relative order of elements that have
equivalent values.

The fruit examples from §16.3.6 work with fruit defined to be a list. In addition, we can
extract elements from one list and insert them into another by a single "splice" operation. Given:

fruit:
apple pear

citrus:
orange grapefruit lemon



Section 17.2.2.1 Splice, Sort, and Merge 471

we can splice the orange from citrus into fruit like this:

list<string> : : iterator p = find_if (fruit. begin ( ) ,fruit. end ( ) , initial ( ,p , ) ) i

fruit. splice (p, citrus, citrus. begin ( ) ) i

The effect is to remove the first element from citrus (citrus. begin ( ) ) and place it just before the
first element of fruit with the initial letter p, thereby giving:

fruit:
apple orange pear

citrus:
grapefruit lemon

Note that splice () doesn't copy elements the way insert () does (§ 16.3.6). It simply modifies the
list data structures that refer to the element.

In addition to splicing individual elements and ranges, we can splice () all elements of a list:

fruit. splice (fruit. begin ( ) , citrus) i

This yields:

fruit:
grapefruit lemon apple orange pear

citrus:
<empty>

Each version of splice () takes as its second argument the list from which elements are taken. This
allows elements to be removed from their original list. An iterator alone wouldn't allow that
because there is no general way to determine the container holding an element given only an itera
tor to that element (§ 18.6).

Naturally, an iterator argument must be a valid iterator for the list into which it is supposed to
point. That is, it must point to an element of that list or be the list's end ( ). If not, the result is
undefined and possibly disastrous. For example:

list<string> : : iterator p =find_if(fruit. begin ( ) ,fruit. end ( ) , initial ( ,p , ) ) i

fruit. splice (p , citrus, citrus. begin ( ) ) i / / ok
fruit. splice (p, citrus ,fruit. begin ( ) ); / / error.' fruit.begin() doesn't point into citrus
citrus. splice (p ,fruit ,fruit. begin ( ) ) i / / error.' p doesn't point into citrus

The first splice () is ok even though citrus is empty.
A merge () combines two sorted lists by removing the elements from one list and entering

them into the other while preserving order. For example,

f1:
apple quince pear

j2:
lemon grapefruit orange lime

can be sorted and merged like this:



472 Standard Containers

f1.sort() ;
j2 . sort ( ) ;
f1 · merge (12) ;

This yields:

Chapter 17

f1:

j2:
apple grapefruit lemon lime orange pear quince

<empty>

II reference to first element

If one of the lists being merged is not sorted, merge () will still produce a list containing the union
of elements of the two lists. However, there are no guarantees made about the order of the result.

Like splice ( ) , merge () refrains from copying elements. Instead, it removes elements from
the source list and splices them into the target list. After an x . merge (y) , the y list is empty.

17.2.2.2 Front Operations

Operations that refer to the first element of a list are provided to complement the operations refer
ring to the last element provided by every sequence (§ 16.3.6):

template <class T I class A =allocator<T> > class list {
public:

II ...
II element access:

reference front ( ) ;
const_reference front () consti

} ;

void pushJront (const T&) ;
void popJront ( ) ;

II ...

II add newfirst element
II remove first element

The first element of a container is called its front. For a list, front operations are as efficient and
convenient as back operations (§16.3.5). When there is a choice, back operations should be pre
ferred over 'front operations. Code written using back operations ~an be used for a vector as well as
for a list. So if there is a chance that the code written using a list will ever evolve into a generic
algorithm applicable to a variety of containers, it is best to prefer the more widely available back
operations. This is a special case of the rule that to achieve maximal flexibility, it is usually wise to
use the minimal set of operations to do a task (§17.1.4.1).

17.2.2.3 Other Operations

Insertion and removal of elements are particularly efficient for lists. This, of course, leads people
to prefer lists when these operations are frequent. That, in tum, makes it worthwhile to support
common ways of removing elements directly:



Section 17.2.2.3

template <class T, class A = allocator<T> > class list {
public:

/ / ...
void remove (const T& val) ;
template <class Pred> void remove_if(Pred p);

void unique ( ) ;
template <class BinPred> void unique (BinPred b);

void reverse ( ) ;
} ;

Other Operations 473

/ / remove duplicates using ==
/ / remove duplicates using b

/ / reverse order ofelements

For example, given

fruit:
apple orange grapefruit lemon orange lime pear quince

we can remove all elements with the value II orange II like this:

fruit. remove ( "orange" ) ;

yielding:

fruit:
apple grapefruit lemon lime pear quince

Often, it is more interesting to remove all elements that meet some criterion rather than simply all
elements with a given value. The remove_if() operation does that. For example,

fruit. remove_if(initial ( ,1') ) ;

removes every element with the initial ' I' fromlruit giving:

fruit:
apple grapefruit pear quince

A common reason for removing elements is to eliminate duplicates. The unique () operation is
provided for that. For example:

fruit. sort ( ) ;
fruit. unique ( ) ;

The reason for sorting is that unique removes only duplicates that appear consecutively. For exam
ple, had fruit contained:

apple pear apple apple pear

a simple fruit. unique () would have produced

apple pear apple pear

whereas sorting first gives:

apple pear

If only certain duplicates should be eliminated, we can provide a predicate to specify which



474 Standard Containers Chapter 17

duplicates we want to remove. For example, we might define a binary predicate (§ 18.4.2)
initial2 (x) to compare strings that have the initial x but yield false for every string that doesn't.
Given:

pear pear apple apple

we can remove consecutive duplicates of every fruit with the initial p by a call

fruit. unique (initial2 ( ,p , ) ) ;

This would give

pear apple apple

As noted in §16.3.2, we sometimes want to view a container in reverse order. For a list, it is possi
ble to reverse the elements so that the first becomes the last, etc., without copying the elements.
The reverse () operation is provided to do that. Given:

fruit:
banana cherry lime strawberry

fruit. reverse () produces:

fruit:
strawberry lime cherry banana

An element that is removed from a list is destroyed. However, note that destroying a pointer does
not imply that the object it points to is deleted. If you want a container of pointers that deletes ele
ments pointed to when the pointer is removed from the container or the container is destroyed, you
must write one yourself (§ 17.8[ 13]).

17.2.3 Deque

A deque (it rhymes with check) is a double-ended queue. That is, a deque is a sequence optimized
so that operations at both ends are about as efficient as for a list, whereas subscripting approaches
the efficiency of a vector:

template <class T I class A = aliocator<T> > class sId:: deque {
/ I types and operations like vector (§J6.3.3, §J6.3.5, §J6.3.6) except capacity() and reserve()
/ I plus front operations (§J7.2.2.2) like list

} ;

Insertion and deletion of elements "in the middle" have vector-like (in)efficiencies rather than
list-like efficiencies. Consequently, a deque is used where additions and deletions take place' 'at
the ends." For example, we might use a deque to model a section of a railroad or to represent a
deck of cards in a game:

deque<car> siding_no_3 ;
deque<Card> bonus;



Section 17.3 Sequence Adapters 475

17.3 Sequence Adapters

The vector, list, and deque sequences cannot be built from each other without loss of efficiency.
On the other hand, stacks and queues can be elegantly and efficiently implemented using those
three basic sequences. Therefore, stack and queue are defined not as separate containers, but as
adaptors of basic containers.

A container adapter provides a restricted interface to a container. In particular, adapters do not
provide iterators; they are intended to be used only through their specialized interfaces.

The techniques used to create a container adapter from a container are generally useful for non
intrusively adapting the interface of a class to the needs of its users.

17.3.1 Stack

The stack container adapter is defined in <stack>. It is so simple that the best way to describe it is
to present an implementation:

template <class T, class C =deque< T> > class std:: stack {
protected:

C c;

public:
typedef typename c:: value_type value_type i
typedef typename C:: size_type size_type i
typedef C container_type;

explicit stack (const C& a = C ()) : C (a) { }

bool empty () const { return c. empty ( ) i }
size_type size () const { return c. size ( ); }

value_type& top () {return c. back ( ) i }
const value_type& top () const { return c. back ( ) ;

void push (const value_type& x) {c.push_back(x)i }
void pop() {c.pop_back(); }

} ;

That is, a stack is simply an interface to a container of the type passed to it as a template argument.
All stack does is to eliminate the non-stack operations on its container from the interface and give
back ( ) , push_back ( ) , and pop_back () their conventional names: top ( ) , push ( ) , and pop ( ) .

By default, a stack makes a deque to hold its elements, but any sequence that provides back ( ) ,
push_back ( ) , and pop_back () can be used. For example:

stack<char> sl i
stack< int, vector<int> > s2;

/ / uses a deque<char> to store elements oftype char
/ / uses a vector<;nt> to store elements oftype int

It is possible to supply an existing container to initialize a stack. For example:



476 Standard Containers

void print_backwards (vector<int>& v)
{

stack< int, vector<int> > state (v);
while (state. size ( )) {

cout« state. top ( );
state .pop ();

I I initialize state from v

Chapter 17

However, the elements of a container argument are copied, so supplying an existing container can
be expensive.

Elements are added to a stack using push_back () on the container that is used to store the ele
ments. Consequently, a stack cannot overflow as long as there is memory available on the machine
for the container to acquire (using its allocator; see §19.4).

On the other hand, a stack can underflow:

void f()
{

stack<int> s ;
s.push (2);

if (s. empty ( )) { / I underflow is preventable
II don'tpop

}

else { II but not impossible
s .pop ( ); / I fine: s.size() becomes 0
s .pop ( ); I I undefined effect, probably bad

Note that one does not pop () an element to use it. Instead, the top () is accessed and then
pop ( ) 'd when it is no longer needed. This is not too inconvenient, and it is more efficient when
the pop () isn't necessary:

void f(stack<char>& s)
{

if (s. top ( ) =='c') s .pop ( ); / I remove optional initial 'e'
/ / ...

Unlike fully developed containers, stack (like other container adapters) doesn't have an allocator
template parameter. Instead, the stack and its users rely on the allocator from the container used to
implement the stack.

17.3.2 Queue

Defined in <queue>, a queue is an interface to a container that allows the insertion of elements at
the back () and the extraction of elements at the front ( ) :



Section 17.3.2

template <class T, class C =deque<T> > class std:: queue {
protected:

C c;

public:
typedef typename C:: value_type value_type;
typedef typename C:: size_type size_type;
typedef C container_type;

explicit queue (const C& a = C ()) : c (a) { }

booI empty () const { return c. empty ( ); }
size_type size () const { return c. size ( ); }

value_type&front () {return c .front (); }
const value_type& front () const { return c .front ( ) i

value_type& back () {return c. back ( ); }
const value_type& back () const { return c. back ( ); }

void push (const value_type& x) {c.push_back(x)i }
void pop () {c. popJront ( ); }

} ;

Queue 477

By default, a queue makes a deque to hold its elements, but any sequence that provides front ( ) ,
back ( ), push_back ( ), and popJront () can be used. Because a vector does not provide
popJront ( ) , a vector cannot be used as the underlying container for a queue.

Queues seem to pop up somewhere in every system. One might define a server for a simple
message-based system like this:

struct Message {
/1 ....

} ;

void server (queue<Message>& q)
{

while ( ! q . empty ( )) {
Message& m = q .front ( ) ; / / get hold ofmessage
m . service ( ) ; / / call function to serve request
q .pop ( ) ; / / destroy message

Messages would be put on the queue using push ( ) .
If the requester and the server are running in different processes or threads, some form of syn

chronization of the queue access would be necessary. For example:

void server2 (queue<Message>& q, Lock& lck)
{

while ( ! q . empty ( )) {
Message mj
{ LockPtr h (lck) j

if (q. empty () ) return;
/ / hold lock only while extracting message (see §14.4.1)
/ / somebody else got the message



478 Standard Containers

m =q .front ( ) i

q.pop();
}

m. service (); / / call function to serve request

Chapter 17

There is no standard definition of concurrency or locking in C++ or in the world in general. Have a
look to see what your system has to offer and how to access it from C++ (§17.8[8]).

17.3.3 Priority Queue

A priority_queue is a queue in which each element is given a priority that controls the order in
which the elements get to be top ( ) :

template <class T, class C = vector<T>, class Cmp = less<typename C:: value_type> >
class std:: priority_queue {
protected:

C Ci

Cmp cmpi
public:

typedef typename C:: value_type value_type;
typedef typename C:: size_type size_type;
typedef C container_type;

explicit priority_queue (const Cmp& al = Cmp ( ), const C& al = C ( ) )
: c(a2), cmp(al) {make_heap(c.begin(),c.end(),cmp);} //see§18.8

template <class In>
priority_queue (In first, In last, const Cmp& =Cmp ( ), const C& =C ( ) ) ;

bool empty () const { return c. empty ( ); }
size_type size () const { return c. size ( ); }

const value_type& top () const { return c .front ( );

void push (const value_type& ) ;

void pop ();
} ;

The declaration of priority_queue is found in <queue>.
By default, the priority_queue simply compares elements using the < operator and top ( )

returns the largest element:

struct Message {
int priority;
bool operator< (const Message& x) const { return priority < x .priority ;
/ / ...

} ;



Section 17.3.3

void server (priority_queue<Message>& q I Lock& lck)
{

Priority Queue 479

while ( ! q . empty ( )) {
Message m;
{ LockPtr h (lek) ;

if (q . empty ( ) ) return;
m = q.top{);
q.pop();

I I hold lock only while extracting message (see §14.4.1)
I I somebody else got the message

}

m . service ( ) ; I I call function to serve request

This example differs from the queue example (§ 17.3.2) in that messages with higher priority will
get served first. The order in which elements with equal priority come to the head of the queue is
not defined. Two elements are considered of equal priority if neither has higher priority than the
other (§ 17.4.1.5).

An alternative to < for comparison can be provided as a template argument. For example, we
could sort strings in a case-insensitive manner by placing them in

priority_queue<string I vector<string> I Nocase> pq; I I use Nocasefor comparisons (§17.1.4.1)

using pq .push () and then retrieving them using pq . top () and pq .pop ( ) .
Objects defined by templates given different template arguments are of different types

(§13.6.3.1). For example:

priority_queue<string>& pql = pq; I I error: type mismatch

We can supply a comparison criterion without affecting the type of a priority_queue by providing
a comparison object of the appropriate type as a constructor argument. For example:

struct String_cmp { I I type used to express comparison criteria at run time
String_cmp (int n = 0); I I use comparison criteria n
II ...

} ;

typedef priority_queue<string I vector<string> I String_cmp> Pqueue;

void g (Pqueue& pq) I I pq uses String_cmp() for comparisons
{

Pqueue pq2 (String_cmp (nocase) ) ;
pq =pq2; I10k: pq and pq2 are ofthe same type, pq now also uses String_cmp(nocase)

Keeping elements in order isn't free, but it needn't be expensive either. One useful way of imple
menting a priority_queue is to use a tree structure to keep track of the relative positions of ele
ments. This gives an 0 (log (n) ) cost of both push () and pop ( ) .

By default, a priority_queue makes a vector to hold its elements, but any sequence that pro
vides front ( ) , push_back ( ) , pop_back ( ) , and random iterators can be used. A priority_queue
is most likely implemented using a heap (§ 18.8).



480 Standard Containers

17.4 Associative Containers

Chapter 17

An associative array is one of the most useful general, user-defined types. In fact, it is often a
built-in type in languages primarily concerned with text processing and symbolic processing. An
associative array, often called a map and sometimes called a dictionary, keeps pairs of values.
Given one value, called the key, we can access the other, called the mapped value. An associative
array can be thought of as an array for which the index need not be an integer:

template<class K, class v> class Assoc {
public:

V& operator [] (const K&); / / return a reference to the V corresponding to K
/ / ...

} ;

Thus, a key of type K names a mapped value of type V.
Associative containers are a generalization of the notion of an associative array. The map is a

traditional associative array, where a single value is associated with each unique key. A multimap
is an associative array that allows duplicate elements for a given key, and set and multiset can be
seen as degenerate associative arrays in which no value is associated with a key.

17.4.1 Map

A map is a sequence of (key,value) pairs that provides for fast retrieval based on the key. At most
one value is held for each key; in other words, each key in a map is unique. A map provides bidi
rectional iterators (§19.2.1).

The map requires that a less-than operation exist for its key types (§ 17.1.4.1) and keeps its ele
ments sorted so that iteration over a map occurs in order. For elements for which there is no obvi
ous order or when there is no need to keep the container sorted, we might consider using a
hash_map (§17.6).

17.4.1.1 Types

A map has the usual container member types (§16.3.1) plus a few relating to its specific function:

template <class Key, class T, class Cmp = less<Key> I

class A =allocator< pair<const Key, T> > >
class std:: map {
public:

/ / types:

typedef Key key_type;
typedef T mapped_type;

typedef pair<const Key, T> value_type;

typedef Cmp key_compare;
typedef A allocator_type;

typedef typename A:: reference reference;
typedef typename A:: const_reference const_reference;



Section 17.4.1.1

typedef implementation_definedl iterator i

typedef implementation_defined2 const_iterator i

typedef typename A:: size_type size_type i

typedef typename A:: difference_type difference_type i

typedef std:: reverse_iterator<iterator> reverse_iterator i

typedef std: : reverse_iterator<const_iterator> const_reverse_iterator i

I I ...
} i

Types 481

Note that the value_type of a map is a (key,value) pair. The type of the mapped values is referred
to as the mapped_type. Thus, a map is a sequence of pair'<const Key, mapped_type> elements.

As usual, the actual iterator types are implementati >n-defined. Since a map most likely is
implemented using some form of a tree, these iterators USl ally provide some form of tree traversal.

The reverse iterators are constructed from the standard reverse_iterator templates (§19.2.5).

17.4.1.2 Iterators and Pairs

A map provides the usual set of functions that return iteralors (§ 16.3.2):

template <class Key, class T, class Cmp = less<Key > ,

class A = allocator< pair<const Key, T> > > class map {
public:

II ...
I I iterators:

iterator begin ( ) i

const_iterator begin () const i

iterator end ( ) i

const_iterator end () const i

reverse_iterator rbegin ( ) i

const_reverse_iterator rbegin () const i

reverse_iterator rend ( ) i

const_reverse_iterator rend () const i

II ...
} ;

Iteration over a map is simply an iteration over a sequence of pair<const Key, mapped_type> ele
ments. For example, we might print out the entries of a phone book like this:

void f(map<string, number>& phone_book)
{

typedef map<string , number> : :const_iterator CI i

for (CI p = phone_book. begin ( ) i p! =phone_book. end ( ) i ++p)
cout« p->first« '\1' «p->second« '\n' i

A map iterator presents the elements in ascending order of its keys (§ 17.4.1.5). Therefore, the
phone_book entries will be output in lexicographical order.



482 Standard Containers Chapter 17

We refer to the first element of any pair as first and the second as second independently of
what types they actually are:

template <class T1, class T2> struct std:: pair {
typedef T1 first_type;
typedef T2 second_type;

T1 first;
T2 second;

pair ( ) :first(T1 () ), second(T2 ()) { }
pair(const T/& X, const T2& y) :first (x) , second(y) { }
template<class U, class v>

pair(const pair<U, V>&p) :first (p.first) , second(p.second) { }
} ;

The last constructor exists to allow conversion of pairs (§ 13.6.2). For example:

pair<int, double> f( char c,int i)
{

pair<char I int> X (c Ii) ;
/ / ...
return x; / / pair<char,int> to pair<int,double> conversion required

In a map, the key is the first element of the pair and the mapped value is the second.
The usefulness of pair is not limited to the implementation of map, so it is a standard library

class in its own right. The definition of pair is found in <utility>. A function to make it conve
nient to create pairs is also provided:

template <class T1 I class T2> pair<T1, T2> std: :makeyair(const T1& t1, const T2& t2)
{

return pair<T1 IT2> (t1 I t2) i

A pair is by default initialized to the default values of its element types. In particular, this implies
that elements of built-in types are initialized to 0 (§5.1.1) and strings are initialized to the empty
string (§20.3.4). A type without a default constructor can be an element of a pair only provided the
pair is explicitly initialized.

17.4.1.3 Subscripting

The characteristic map operation is the associative lookup provided by the subscript operator:

template <class Key I class T, class Cmp =less<Key> ,
class A =allocator< pair<const Key, T> > >

class map {
public:

/ / ...
mapped_type& operator [] (const key_type& k) ; / / access element with key k
/ / ...

} i



Section 17.4.1.3 Subscripting 483

The subscript operator performs a lookup on the key given as an index and returns the correspond
ing value. If the key isn't found, an element with the key and the default value of the mapped_type
is inserted into the map. For example:

void f()
{

map<string , int> m; / / map starting out empty
int x = m [ "Henry" ] ; / / create new entry for "Henry", initialize to 0, return°
m [" Harry"] =7; / / create new entry for "Harry", initialize to 0, and assign 7
int y =m [ II Henry" ]; / / return the value from "Henry'" sentry
m [ II Harry II] =9; / / change the value from "Harry'" s entry to 9

As a slightly more realistic example, consider a program that calculates sums of items presented as
input in the form of (item-name,value) pairs such as

nail 100 hammer 2 saw 3 saw 4 hammer 7 nail 1000 nail 250

and also calculates the sum for each item. The main work can be done while reading the (item
name,value) pairs into a map:

void readitems (map<string , int>& m)
{

string word;
int val =0;
while (cin » word» val) m [word] += val;

The subscript operation m [word] identifies the appropriate (string, int) pair and returns a refer
ence to its int part. This code takes advantage of the fact that a new element gets its int value set to
oby default.

A map constructed by readitems () can then be output using a conventional loop:

int main ()
{

map<string , int> tbl;
readitems (tbl) ;

int total =0;
typedef map<string, int> : : const_iterator CI;

for (CI p = tbl. begin ( ); p! =tbl. end ( ); ++p)
total += p->second;
cout« p->first« '\1' «p->second« '\11';

cout« II ----------------\ntotal\t" « total« '\11';

return ! cin;

Given the input above, the output is:



484 Standard Containers

hammer 9
nail 1350
saw 7

Chapter 17

total 1366

Note that the items are printed in lexical order (§17.4.1, §17.4.1.5).
A subscripting operation must find the key in the map. This, of course, is not as cheap as sub

scripting an array with an integer. The cost is 0 (log (size_o/_map) ), which is acceptable for
many applications. For applications for which this is too expensive, a hashed container is often the
answer (§17.6).

Subscripting a map adds a default element when the key is not found. Therefore, there is no
version of operator [] () for const maps. Furthermore, subscripting can be used only if the
mapped_type (value type) has a default value. If the programmer simply wants to see if a key is
present, the find () operation (§ 17.4.1.6) can be used to locate a key without modifying the map.

17.4.1.4 Constructors

A map provides the usual complement of constructors, etc. (§ 16.3.4) :

template <class Key, class T, class Cmp =less<Key> ,
class A =allocator<pair<const Key, T> > >

class map {
public:

II ...
I I construct/copy/destroy:

explicit map (const Cmp& =Cmp ( ), const A& =A ( ) ) ;
template <class In> map (In first, In last, const Cmp& = Cmp ( ), const A& =A ( ) ) i

map (const map&) i

-map ();

map& operator= (const map&) ;

II ...
} ;

Copying a container implies allocating space for its elements and making copies of each element
(§16.3.4). This can be very expensive and should be done only when necessary. Consequently,
containers such as maps tend to be passed by reference.

The member template constructor takes a sequence of pair<const Key, T>s described by a pair
of input iterators. It insert ( ) s (§ 17.4.1.7) the elements from the sequence into the map.

17.4.1.5 Comparisons

To find an element in a map given a key, the map operations must compare keys. Also, iterators
traverse a map in order of increasing key values, so insertion will typically also compare keys (to
r~ace an element into a tree structure representing the map).

By default, the comparison used for keys is < (less than), but an alternative can be provided as a



Section 17.4.1.5 Comparisons 485

template parameter or as a constructor argument (see §17.3.3). The comparison given is a compari
son of keys, but the value_type of a map is a (key,value) pair. Consequently, value_comp () is
provided to compare such pairs using the key comparison function:

template <class Key, class T, class Cmp = less<Key> ,
class A = allocator< pair<const Key, T> > >

class map {
public:

I I ...

typedef Cmp key_compare;

class value_compare : public binaryJunction<value_type, value_type, bool> {
friend class map;
protected:

Cmp cmpi
value_compare (Cmp c) : cmp (c) {}

public:
bool operator () (const value_type& x, const value_type& y) const

{ return cmp (x .first , y .first); }
} ;

key_compare key_comp () const;
value_compare value_comp () const i

II ...
} i

For example:

map<string , int> ml i

map<string , int, Nocase> m2 ;
map<string, int, String_cmp> m3 i

map<string , int, String_cmp> m4 (String_cmp (literary) ) i

I / specify comparison type (§17.1.4.1)
I I specify comparison type (§17.1.4.1)
I I pass comparison object

The key_comp () and value_comp () member functions make it possible to query a map for the
kind of comparisons used for keys and values. This is usually done to supply the same comparison
criterion to some other container or algorithm. For example:

void f(map<string, int>& m)
{

map<string lint> mm;
map<string , int> mmm (m . key_comp ( ) ) i

II ...

I I compare using < by default
I I compare the way m does

See §17.1.4.1 for an example of how to define a particular comparison and §18.4 for an explanation
of function objects in general.

17.4.1.6 Map Operations

The crucial idea for maps and indeed for all associative containers is to gain information based on a
key. Several specialized operations are provided for that:



486 Standard Containers Chapter 17

template <class Key, class T, class Cmp =less<Key> ,
class A =allocator< pair<const Key, T> > >

class map {
public:

II ...
I / map operations:

iterator find (const key_type& k) ; / / find element with key k
const_iterator find (const key_type& k) const;

size_type count (const key_type& k) const; / / find number ofelements with key k

iterator lower_bound (const key_type& k); / / findfirst element with key k
const_iterator lower_bound(const key_type& k) const;
iterator upper_bound (const key_type& k) ; II find first element with key greater than k
const_iterator upper_bound (const key_type& k) const;

pair<iterator, iterator> equal_range (const key_type& k) ;
pair<const_iterator I const_iterator> equal_range (const key_type& k) const;

/1 ...
} ;

A m .find (k) operation simply yields an iterator to an element with the key k. If there is no such
element, the iterator returned is m . end ( ). For a container with unique keys, such as map and set,
the resulting iterator will point to the unique element with the key k. For a container with non
unique keys, such as multimap and multiset, the resulting iterator will point to the first element that
has that key. For example:

void f(map<string, int>& m)
{

map<string , int> : : iterator p = m .find ( "Gold" ) ;
if (p ! =m . end ( )) { / I if "Gold" was found

/1 ...
}

else if (m .find ( II Silver" ) ! =m . end ( ) )
/ I ...

}

/ / ...

I / look for "Silver"

For a multimap (§ 17.4.2), finding the first match is rarely as useful as finding all matches;
m.lower_bound(k) and m.upper_bound(k) give the beginning and the end of the subsequence
of elements of m with the key k. As usual, the end of a sequence is an iterator to the one-past-the
last element of the sequence. For example:

void f(multimap<string I int>& m)
{

multimap<string lint>: : iterator lb =m . lower_bound ( II Gold" );
multimap<string, int> : : iterator ub = m. upper_bound ( "Gold ll

) ;



Section 17.4.1.6

for (multimap<string, int>: : iterator p =lb i p! =ub; ++p)
I I ...

Map Operations 487

Finding the upper bound and lower bound by two separate operations is neither elegant nor effi
cient. Consequently, the operation equal_range () is provided to deliver both. For example:

void f(multimap<string, int>& m)
{

typedef multimap<string, int> : : iterator MI i

pair<MI, MI> g =m. equal_range ( II Gold" ) i

for (MI p = g .first; p! =g. second; ++p)
II ...

If lower_bound(k) doesn't find k, it returns an iterator to the first element that has a key greater
than k, or end () if no such greater element exists. This way of reporting failure is also used by
upper_bound () and equal_range ( ) .

17.4.1.7 List Operations

The conventional way of entering a value into an associative array is simply to assign to it using
subscripting. For example:

phone_book [ II Order department"] = 8226339;

This will make sure that the Order department has the desired entry in the phone_book indepen
dently of whether it had a prior entry. It is also possible to insert () entries directly and to remove
entries using erase ( ) :

template <class Key, class T, class Cmp =less<Key> ,
class A = allocator< pair<const Key, T> > >

class map {
public:

II ...
I I list operations:

pair<iterator, bool> insert (const value_type& val) ; I I insert (key, value) pair
iterator insert (iterator pos, const value_type& val) i I I pos is just a hint
template <class In> void insert (In first, In last); I I insert elements from sequence

} ;

void erase (iterator pos);
size_type erase (const key_type& k);
void erase (iterator first, iterator last);
void clear ( ) ;

I I ...

I I erase the element po.inted to
I I erase element with key k (ifpresent)
I I erase range
I I Erase all elements

The operation m. insert (val) attempts to add a (Key, T) pair val to m. Since maps rely on



488 Standard Containers Chapter 17

unique keys, insertion takes place only if there is not already an element in the m with that key.
The return value of m . insert (val) is a pair<iterator , bool>. The bool is true if val was actually
inserted. The iterator refers to the element of m holding val's key (val .first). For example:

void f (map<string , int>& m)
{

pair<string, int> p99 ( II Paul" , 99) ;

pair<map<string, int> : : iterator, bool> p = m. insert (p99) ;
if (p. second) {

/ / "Pau[" was inserted
}

else {
/ / "Paur' was there already

}

map<string, int>:: iterator i =P .first;
/ / ...

/ / points to m{"Paul"]

Usually, we do not care whether a key is newly inserted or was present in the map before the
insert ( ). When we are interested, it is often because we want to register the fact that a value is in
a map somewhere else (outside the map). The other two versions of insert () do not return an indi
cation of whether a value was actually inserted.

Specifying a position, insert (pos I val), is simply a hint to the implementation to start the
search for the key val at pos. If the hint is good, significant performance improvements can result.
If the hint is bad, you'd have done better without it both notationally and efficiency-wise. For
example:

void f (map<string lint>& m)
{

m [ II Dilbert ll
] = 3; / / neat, possibly less efficient

m. insert (m . begin ( ) I makeyair (const string ( II Dogbert II ) , 99) ); / / ugly

In fact, [] is little more than a convenient notation for insert ( ). The result of m [k] is equivalent
to the result of {* {m. insert {makeyair {k I V ( ) ) ) .first) ) . second, where V () is the default
value for the mapped type. When you understand that equivalence, you probably understand asso
ciative containers.

Because [] always uses V ( ) , you cannot use subscripting on a map with a value type that does
not have a default value. This is an unfortunate limitation of the standard associative containers.
However, the requirement of a default value is not a fundamental property of associative containers
(see §17.6.2).

You can erase elements specified by a key. For example:

void f(map<string, int>& m)
{

int count = m. erase ( II Ratbert" );
/ / ...



Section 17.4.1.7 List Operations 489

The integer returned is the number of erased elements. In particular, count is 0 if there was no ele
ment with the key II Ratbert II to erase. For a multimap or multiset, the value can be larger than 1.
Alternatively, one can erase an element given an iterator pointing to it or a range of elements given
a sequence. For example:

void g (map<string, int>& m)
{

m. erase (m .find ( "Catbert" ) );
m.erase(m.find( "Alice" ),m.find( "Wally"));

Naturally, it is faster to erase an element for which you already have an iterator than to first find the
element given its key and then erase it. After erase ( ) , the iterator cannot be used again because
the element to which it pointed is no longer there. Iterators to other map elements are not affected
and still valid. A call m . erase (b , e) where e is m. end () is harmless (provided b refers to an ele
ment of m or is m . end ( )). However, a call m. erase (p) where p is m. end () is a serious error
that could corrupt the container.

17.4.1.8 Other Functions

Finally, a map provides the usual functions dealing with the number of elements and a swap ( ) :

template <class Key, class T, class Cmp = less<Key> ,
class A =allocator< pair<const Key, T> > >

class map {
public:

I I ...
II capacity:

size_type size () const; / I number ofelements
size_type max_size () const; I I size of largest possible map
hool empty () const { return size ( ) ==0; }

void swap (map& ) ;
} ;

As usual, a value returned by size () or max_size () is a number of elements.
In addition, map provides ==, ! =, <, >, <=, >=, and swap () as nonmember functions:

template <class Key, class T, class Cmp, class A>
booI operator== (const map<Key , T, Cmp, A>&, const map<Key ,T, Cmp, A>&);

1/ similarly 1=, <, >, <=, and >=

template <class Key, class T, class Cmp, class A>
void swap (map<Key, T, Cmp,A>&, map<Key, T, Cmp,A>&);

Why would anyone want to compare two maps? When we specifically compare two maps, we usu
ally want to know not just if the maps differ, but also how they differ if they do. In such cases, we
don't use == or ! =. However, by providing ==, <, and swap () for every container, we make it
possible to write algorithms that can be applied to every container. For example, these functions
allow us to sort () a vector of maps and to have a set of maps.



490 Standard Containers

17.4.2 Multimap

A multimap is like a map, except that it allows duplicate keys:

template <class Key, class T, class Cmp =less<Key>,
class A = allocator< pair<const Key, T> > >

class std:: multimap {
public:

/ / like map, except:

iterator insert (const value_type&) ; / / returns iterator, not pair

/ / no subscript operator [1
} ;

For example (using Cstring_Iess from §17.1.4.1 to compare C-style strings):

Chapter 17

void f(map<char* , int, Cstring_Iess>& m, multimap<char*, int, Cstring_less>& mm)
{

m.insert(makeyair( Ux
ll ,4»;

m. insert (makeyair( IIX" , 5) ); / / no effect.· there already is an entry/or 'x" (§17.4.1.7)
/ / now m['x"} == 4

mm.insert(makeyair( "x" ,4);
mm.insert(makeyair( "XII ,5»;
/ / mm now holds both ('x",4) and ('x",5)

This implies that multimap cannot support subscripting by key values in the way map does. The
equal_range ( ), lower_bound ( ), and upper_bound () operations (§ 17.4.1.6) are the primary
means of accessing multiple values with the same key.

Naturally, where several values can exist for a single key, a multimap is preferred over a map.
That happens far more often than people first think when they hear about multimap. In some ways,
a multimap is even cleaner and more elegant than a map.

Because a person can easily have several phone numbers, a phone book is a good example of a
multimap. I might print my phone numbers like this:

void print_numbers (const multimap<string, int>& phone_book)
{

typedef multimap<string, int> : :const_iterator I;
pair<l, I> b = phone_book. equal_range ( .. Stroustrup II ) ;

for (I i =b .first; i ! =b. second; ++i) coul« i->second« '\n';

For a multimap, the argument to insert ( ) is always inserted. Consequently, the
multimap: : insert () returns an iterator rather than a pair<iterator , bool> like map does. For uni
formity, the library could have provided the general form of insert () for both map and multimap
even though the bool would have been redundant for a multimap. Yet another design alternative
would have been to provide a simple insert () that didn't return a bool in either case and then sup
ply users of map with some other way of figuring out whether a key was newly inserted. This is a
case in which different interface design ideas clash.



Section 17.4.3

17.4.3 Set

Set 491

A set can be seen as a map (§ 17.4.1), where the values are irrelevant, so we keep track of only the
keys. This leads to only minor changes to the user interface:

template <class Key, class Cmp = less<Key>, class A = allocator<Key> >
class sId:: set {
public:

/ / like map except:

typedef Key value_type i / / the key itself is the value
typedef Cmp value_compare i

/ / no subscript operator [J
} i

Defining value_type as the Key type (key_type; §17.4.1.1) is a trick to allow code that uses maps
and sets to be identical in many cases.

Note that set relies on a comparison operation (by default <) rather than equality (= =). This
implies that equivalence of elements is defined by inequality (§ 17.1.4.1) and that iteration through
a set has a well-defined order.

Like map, set provides ==, ! =, <, >, <=, >=, and swap ( ) .

17.4.4 Multiset

A multiset is a set that allows duplicate keys:

template <class Key, class Cmp = less<Key>, class A = aliocator<Key> >
class std:: multiset {
public:

/ / like set, except:
iterator insert (const value_type&) i / / returns iterator, not pair

} i

The equal_range ( ) , lower_bound ( ) , and upper_bound () operations (§ 17.4.1.6) are the primary
means of accessing multiple occurrences of a key.

17.5 Almost Containers

Built-in arrays (§5.2), strings (Chapter 20), valarrays (§22.4), and bitsets (§ 17.5.3) hold elements
and can therefore be considered containers for many purposes. However, each lacks some aspect or
other of the standard container interface, so these "almost containers" are not completely inter
changeable with fully developed containers such as vector and list.

17.5.1 String

A basic_string provides subscripting, random-access iterators, and most of the notational conve
niences of a container (Chapter 20). However, basic_string does not provide as wide a selection of
types as elements. It also is optimized for use as a string of characters and is typically used in ways
that differ significantly from a container.



492 Standard Containers Chapter 17

17.5.2 Valarray

A valarray (§22.4) is a vector for optimized numeric computation. Consequently, a valarray
doesn't attempt to be a general container. A valarray provides many useful numeric operations.
However, of the standard container operations (§ 17.1.1), it offers only size () and a subscript oper
ator (§22.4.2). A pointer to an element of a valarray is a random-access iterator (§ 19.2.1).

17.5.3 Bitset

Often, aspects of a system, such as the state of an input stream (§21.3.3), are represented as a set of
flags indicating binary conditions such as goodlbad, true/false, and on/off. C++ supports the notion
of small sets of flags efficiently through bitwise operations on integers (§6.2.4). These operations
include & (and), I (or), " (exclusive or), « (shift left), and » (shift right). Class bitset<N> gen
eralizes this notion and offers greater convenience by providing operations on a set of N bits
indexed from 0 through N-l, where N is known at compile time. For sets of bits that don't fit into
a long int, using a bitset is much more convenient than using integers directly. For smaller sets,
there may be an efficiency tradeoff. If you want to name the bits, rather than numbering them,
using a set (§ 17.4.3), an enumeration (§4.8), or a bitfield (§C.8.1) are alternatives.

A bitset<N> is an array of N bits. A bitset differs from a vector<bool> (§ 16.3.11) by being of
fixed size, from set (§ 17.4.3) by having its bits indexed by integers rather than associatively by
value, and from both vector<bool> and set by providing operations to manipulate the bits.

It is not possible to address a single bit directly using a built-in pointer (§5.1). Consequently,
bitset provides a reference-to-bit type. This is actually a generally useful technique for addressing
objects for which a built-in pointer for some reason is unsuitable:

template<size_t N> class std:: bitset {
public:

I I reference to a single bit:

I I b[i] refers to the 0+1 )'th bit:

class reference {
friend class bitset;
reference ( );

public:
..... reference ( );
reference& operator= (bool x);
reference& operator= (const reference&);
bool operator..... () const;
operator bool () const;
reference& flip ( ) ;

Ilforb[i]=x;
I I for b[i] =b[j];
I I return -bli]
II for x =b[i];
I I b[i}.flip();

} ;

II ...
} ;

The bitset template is defined in namespace std and presented in <bitset>.
For historical reasons, bitset differs somewhat in style from other standard library classes. For

example, if an index (also known as a bit position) is out of range, an out_o/_range exception is
thrown. No iterators are provided. Bit positions are numbered right to left in the same way bits
often are in a word, so the value of b [i] is pow (2, i). Thus, a bitset can be thought of as an N-bit
binary number:



Section 17.5.3

position:

bitset< I0>(989):

17.5.3.1 Constructors

Bitset 493

A bitset can be constructed with default values, from the bits in an unsigned long int, or from a
string:

template<size_t N> class bitset {
public:

I I ...
I / constructors:

bitset ( ) i

bitset (unsigned long val) i

I I N zero-bits
I I bits from val

template<class Ch, class Tr, class A> I I Tr is a character trait (§20.2)
explicit bitset (const basic_string<Ch, Tr, A>& str, I I bits from string str

typename basic_string<Ch, Tr,A>: :size_type pos =0,
typename basic_string<Ch, Tr,A>: :size_type n = basic_string<Ch, Tr,A>: :npos);

1/ ...
} ;

The default value of a bit is o. When an unsigned long int argument is supplied, each bit in the
integer is used to initialize the corresponding bit in the bitset (if any). A basic_string (Chapter 20)
argument does the same, except that the character'0' gives the bitvalue 0, the character' 1 ' gives
the bitvalue 1, and other characters cause an invalid_argument exception to be thrown. By default,
a complete string is used for initialization. However, in the style of a basic_string constructor
(§20.3.4), a user can specify that only the range of characters from pos to the end of the string or to
pos+n are to be used. For example:

void f()
{

bitset<10> bl i I I all 0

bitset<16> b2 = Oxaaaa;
bitset<32> b3 = Oxaaaa;

bitset<10> b4 ( "1010101010" ) ;
bitset<10> b5 ( "10110111011110" ,4);

bitset<10> b6 ( .. 10110111011110" ,2,8) i

bitset< 10> b7 ( "nOgOOd" ) i

bitset<10> b8 = "nOgOOd" i

I I 1010101010101010
II 00000000000000001010101010101010

I I 1010101010
110111011110
110011011101

I I invalid_argument thrown
I I error: no char* to bitset conversion

A key idea in the design of bitset is that an optimized implementation can be provided for bitsets
that fit in a single word. The interface reflects this assumption.



494 Standard Containers Chapter 17

17.5.3.2 Bit Manipulation Operations

A bitset provides the operators for accessing individual bits and for manipulating all bits in the set:

template<size_t N> class std:: bitset {
public:

II ...
I I bitset operations:

reference operator [] (size_t pos);

bitset& operator&= (const bitset& s) ;
bitset& operator I=(const bitset& s) ;
bitset& operator" = (const bitset& s) ;

bitset& operator<<=(size_t n);
bitset& operator»= (size_t n);

bitset& set ( ) ;
bitset& set (size_t pos, int val =1) ;

bitset& reset ( ) ;
bitset& reset (size_t pos);

I I h[i]

II and
II or
I I exclusive or

I I logical left shift (fill with zeros)
I I logical right shift (fill with zeros)

I I set every bit to 1
I I b[pos]=val

I I set every bit to 0
I I b[pos]=O

bitset& flip ( ) ; I I change the value ofevery bit
bitset& flip (size_t pos); I I change the value ofb[pos]

bitset operator- () const { return bitset<N> (*this) .flip ( );} I I make complement set
bitset operator<< (size_t n) const { return bitset<N> (*this) <<=n; } I I make shifted set
bitset operator» (size_t n) const { return bitset<N> (*this) »=n; } I I make shifted set

I I ...
} ;

The subscript operator throws out_of_range if the subscript is out of range. There is no unchecked
subscript operation.

The bitset& returned by these operations is * this. An operator returning a bitset (rather than a
bitset&) makes a copy of *this, applies its operation to that copy, and returns the result. In particu
lar, » and « really are shift operations rather than I/O operations. The output operator for a bit
set is a« that takes an ostream and a bitset (§17.5.3.3).

When bits are shifted, a logical (rather than cyclic) shift is used. That implies that some bits
"fall off the end" and that some positions get the default value O. Note that because size_t is an
unsigned type, it is not possible to shift by a negative number. It does, however, imply that b«-l
shifts by a very large positive value, thus leaving every bit of the bitset b with the value O. Your
compiler should warn against this.

17.5.3.3 Other Operations

A bitset also supports common operations such as size ( ) , ==, I/O , etc.:



Section 17.5.3.3

template<size_t N> class bitset {
public:

/ / ...

Other Operations 495

unsigned long to_ulong () const;

template <class Ch I class Tr I class A> basic_string<Ch I Tr I A> to_string () const;

size_t count () const;
size_t size () const { return N; }

/ / number ofbits with value 1
/ / number ofbits

bool operator==(const bitset& s) const;
bool operator! =(const bitset& s) const;

} ;

bool test (size_t pos) const;
booI any () const;
booI none () const;

/ / true ifb[pos] is 1
/ / true ifany bit is 1
/ / true ifno bit is 1

The operations to_ulong () and to_string () provide the inverse operations to the constructors. To
avoid nonobvious conversions, named operations were preferred over conversion operations. If the
value of the bitset has so many significant bits that it cannot be represented as an unsigned long,
to_ulong () throws overflow_error.

The to_string () operation produces a string of the desired type holding a sequence of ' 0' and
, 1 ' characters; basic_string is the template used to implement strings (Chapter 20). We could use
to_string to write out the binary representation of an int:

void binary (int i)
{

bitset<8*sizeo!(int) > b = i; / / assume 8-bit byte (see also §22.2)
cout « b. template to_string< char I char_traits<char> I allocator<char> > () « '\n';

Unfortunately, invoking an explicitly qualified member template requires a rather elaborate and
rare syntax (§C.13.6).

In addition to the member functions, bitset provides binary & (and), I (or), " (exclusive or), and
the usual I/O operators:

template<size t N> bitset<N> std: : operator& (const bitset<N>& I const bitset<N>&);
template<size=t N> bitset<N> std: : operator I (const bitset<N>& I const bitset<N>&);
template<size_t N> bitset<N> std: : operator" (const bitset<N>& I const bitset<N>&);

template <class charT I class Tr / size_t N>
basic_istream<charT I Tr>& std: : operator» (basic_istream<charT I Tr>& I bitset<N>& ) ;

template <class charT I class Tr I size_t N>
basic_ostream<charT I Tr>& std: : operator« (basic_ostream<charT, Tr>& I const bitset<N>& ) ;

We can therefore write out a bitset without first converting it to a string. For example:



496 Standard Containers

void binary (int i)
{

bitset<8*sizeof (int) > b = i;
cout « b« '\n';

/ / assunze 8-hit hyte (see also §22.2)

Chapter 17

This prints the bits represented as Js and Os left-to-right, with the most significant bit leftmost.

17.5.4 Built-In Arrays

A built-in array supplies subscripting and random-access iterators in the form of ordinary pointers
(§2.7.2). However, an array doesn't know its own size, so users must keep track of that size. In
general, an array doesn't provide the standard member operations and types.

It is possible, and sometimes useful, to provide an ordinary array in a guise that provides the
notational convenience of a standard container without changing its low-level nature:

template<class T, int max> struct c_array {
typedef T value_type;

typedef T* iterator;
typedef const T* const_iterator;

typedef T& reference;
typedef const T& const_reference;

T v[max];
operator T* () { return v; }

reference operator [ ] (ptrdiff_t i) { return v [i]; }
const_reference operator [] (ptrdiff_t i) const { return v [ i]; }

iterator begin () {return v; } .

const_iterator begin () const { return v; }

iterator end () { return v+max; }
const_iterator end () const { return v+max;

size_t size () const { return max; }
} ;

For compatibility with arrays, I use the signed ptrdiff_t (§ 16. 1.2) rather than the unsigned size_t as
the subscript type. Using size_1 could lead to subtle ambiguities when using [] on a c_array.

The c_array template is not part of the standard library. It is presented here as a simple exam
ple of how to fit a "foreign" container into the standard container framework. It can be used with
standard algorithms (Chapter 18) using begin ( ) , end ( ) ,etc. It can be allocated on the stack with
out any indirect use of dynamic memory. Also, it can be passed to a C-style function that expects a
pointer. For example:

void f( int* p, int sz);

void g ()
{

c_array<int, J0> a;

/ / C-style



Section 17.5.4 Built-In Arrays 497

f(a, a. size ( ) ) ; / / C-style use
c_array<int, 10>:: iterator p =find (a. begin ( ), a. end ( ),777); / / C++/STL style use
/ / ...

17.6 Defining a New Container

The standard containers provide a framework to which a user can add. Here, I show how to provide
a container in such a way that it can be used interchangeably with the standard containers wherever
reasonable. The implementation is meant to be realistic, but it is not optimal. The interface is cho
sen to be very close to that of existing, widely-available, and high-quality implementations of the
notion of a hash_map. Use the hash_map provided here to study the general issues. Then, use a
supported hash_map for production use.

17.6.1 Hash_map

A map is an associative container that accepts almost any type as its element type. It does that by
relying only on a less-than operation for comparing elements (§ 17.4.1.5). However, if we know
more about a key type we can often reduce the time needed to find an element by providing a hash
function and implementing a container as a hash table.

A hash function is a function that quickly maps a value to an index in such a way that two dis
tinct values rarely end up with the same index. Basically, a hash table is implemented by placing a
value at its index, unless another value is already placed there, and' 'nearby" if one is. Finding an
element placed at its index is fast, and finding one "nearby" is not slow, provided equality testing
is reasonably fast. Consequently, it is not uncommon for a hash_map to provide five to ten times
faster lookup than a map for larger containers, where the speed of lookup matters most. On the
other hand, a hash_map with an ill-chosen hash function can be much slower than a map.

There are many ways of implementing a hash table. The interface of hash_map is designed to
differ from that of the standard associative containers only where necessary to gain performance
through hashing. The most fundamental difference between a map and a hash_map is that a map
requires a < for its element type, while a hash_map requires an ==and a hash function. Thus, a
hash_map must differ from a map in the non-default ways of creating one. For example:

map<string , int> m1 ;
map<string , int, Nocase> m2;

/ / compare strings using <
/ / compare strings using Nocase() (§17.1.4.1)

hash_map<string , int> hml; / / hash using Hash<string>() (§17.6.2.3), compare using ==
hash_map<string , int, hfct> hm2; / / hash using hfct(), compare using = = .
hash_map<string , int, hfct, eql> hm3; / / hash using hfct(), compare using eql

A container using hashed lookup is implemented using one or more tables. In addition to holding
its elements, the container needs to keep track of which values have been associated with each
hashed value ("index" in the prior explanation); this is done using a "hash table." Most hash
table implementations seriously degrade in performance if that table gets "too full," say 75% full.
Consequently, the hash_map defined next is automatically resized when it gets too full. However,
resizing can be expensive, so it is useful to be able to specify an initial size.



498 Standard Containers

Thus, a first approximation of a hash_map looks like this:

Chapter 17

template<class Key, class T, class H =Hash<Key> ,
class EQ =equal_to<Key>, class A =allocator< pair<const Key, T> > >

class hash_map {
/ / like map, except.'

typedef H Hasher;
typedef EQ key_equal;

hash_map(const T&dv=T(), size_type n=101, const H&hf=H(), const EQ&=EQ());
template<class In> hash_map (In first, In last,

const T& dv =T(), size_type n =101, const H& hf=H (), const EQ& =EQ () ) i

} ;

Basically, this is the map interface (§ 17.4.1.4), with < replaced by == and a hash function.
The uses of a map in this book so far (§3.7.4, §6.1, §17.4.1) can be converted to use a

hash_map simply by changing the name map to hash_map. Often, a change between a map and a
hash_map can be eased by using typedef For example:

typedef hash_map<string , record> Map;
Map dictionary;

The typedefis also useful to further hide the actual type of the dictionary from its users.
Though not strictly correct, I think of the tradeoff between a map and a hash_map as simply a

space/time tradeoff. If efficiency isn't an issue, it isn't worth wasting time choosing between them:
either will do well. For large and heavily used tables, hash_map has a definite speed advantage
and should be used unless space is a premium. Even then, I might consider other ways of saving
space before choosing a "plain" map. Actual measurement is essential to avoid optimizing the
wrong code.

The key to efficient hashing is the quality of the hash function. If a good hash function isn't
available, a map can easily outperform a hash_map. Hashing based on a C-style string, a string, or
an integer is usually very effective. However, it is worth remembering that the effectiveness of a
hash function critically depends on the actual values being hashed (§17.8[35]). A hash_map must
be used where < is not defined or is un~~.:~:~tab]e for the intended key. Conversely, a hash function
does not define an ordering the way < does, so a map must be used when it is important to keep the
elements sorted.

Like map, hash_map provides find () to allow a programmer to determine whether a key has
been inserted.

17.6.2 Representation and Construction

Many different implementations of a hash_map are possible. Here, I use one that is reasonably fast
and whose most important operations are fairly simple. The key operations are the constructors, the
lookup (operator []), the resize operation, and the operation removing an element (erase ( ) ).

The simple implementation chosen here relies on a hash table that is a vector of pointers to
entries. Each Entry holds a key, a value, a pointer to the next Entry (if any) with the same hash
value, and an erased bit :



Section 17.6.2 Representation and Construction 499

key

key

val

val

erased

erased

next

next

Expressed as declarations, it looks like this:

template<class Key, class T, class H = Hash<Key> ,
class EQ = equal_to<Key>, class A = allocator< pair<const Key, T> > >

class hash_map {
/ / ...

private: / / representation
struct Entry {

key_type key;
mapped_type val;
bool erased;
Entry* next; / / hash overflow link
Entry (key_type k, mapped_type v, Entry* n)

: key (k), val (v), erased (false), next (n) { }
} ;

} ;

vector<Entry> v;
vector<Entry*> b;

/ / ...

/ / the actual entries
/ / the hash table: pointers into v

Note the erased bit. The way several values with the same hash value are handled here makes it
hard to remove an element. So instead of actually removing an element when erase () is called, I
simply mark the element erased and ignore it until the table is resized.

In addition to the main data structure, a hash_map needs a few pieces of administrative data.
Naturally, each constructor needs to set up all of this. For example:

template<class Key, class T, class H =Hash<Key> ,
class EQ =equal_to<Key>, class A =allocator< pair<const Key, T> > >

class hash_map {
/ / ...
hash_map (const T& dv =T(), size_type n =101, const H& h =H (), const EQ& e =EQ () )

: default_value (dv), b (n), no_of_erased (0), hash (h), eq (e)

set_load ( ) ;
v . reserve (max_load*b . size ( ) ) i

/ / defaults
/ / reserve space for growth

void set_Ioad(float m=0.7,jloat g=/.6) {max_load=mi grow=gi

/ / ...



500 Standard Containers

private:
float max_load;
float grow;
size_type no_of_erased;
Hasher hash;
key_equal eqi

const T default_value i
} i

I I keep v.size()<=b.size()*max_load
I I when necessary, resize(bucket_count()*grow)
I I number ofentries in v occupied by erased elements
I I hash function
I I equality

I I default value used by [J

Chapter 17

The standard associative containers require that a mapped type have a default value (§ 17.4.1.7).
This restriction is not logically necessary and can be inconvenient. Making the default value an
argument allows us to write:

hash_map<string, Number> phone_book} i I I default.' Number()
hash_map<string, Number> phone_book2 (Number (41)) ); II default.' Number(41 I)

17.6.2.1 Lookup

Finally, we can provide the crucial lookup operations:

template<class Key, class T, class H = Hash<Key> ,
class EQ =equal_to<Key>, class A =allocator< pair<const Key, T> > >

class hash_map {
I I ...
mapped_type& operator [] (const key_type& ) ;

iterator find (const key_type&) i
const_iterator find (const key_type& ) const;
II ...

} i

To find a value, operator [] () uses a hash function to find an index in the hash table for the key.
It then searches through the entries until it finds a matching key. The value in that Entry is the
one we are seeking. If it is not found, a default value is entered:

template<class Key, class T, class H = Hash<Key> ,
class EQ = equal_to<Key>, class A = allocator< pair<const Key, T> > >

hash_map<Key, T, H, EQ, A> : :mapped_type&

hash_map<Key , T, H, EQ,A>: : operator [ ] (const key_type& k)

size_type i =hash (k) %b . size ( ) ; II hash

for (Entry* p =b [i]; p; p =p->next) I I search among entries hashed to i
if (eq (k, p->key)) { I I found

if (p->erased) { I Ire-insert
p- >erased = false;
no_of_erased-- ;
return p->val =default_value;

}

return p->val;



Section 17.6.2.1

/ / not found:

if (size_type (b. size ( ) *max_Ioad) <= v. size ( ) )
resize (b. size ( ) *grow) ; / / grow
return operator [] (k); / / rehash

v .push_back (Entry (k, default_value, b [i] ) );
b[i] =&v.back();

return b [i] ->val;

/ / if"too full "

/ / add Entry
/ / point to new element

Lookup 501

Unlike map~ hash_map doesn't rely on an equality test synthesized from a less-than operation
(§ 17.1.4.1). This is because of the call of eq () in the loop that looks through elements with the
same hash value. This loop is crucial to the performance of the lookup, and for common and obvi
ous key types such as string and C-style strings, the overhead of an extra comparison could be sig
nificant.

I could have used a set<Entry> to represent the set of values that have the same hash value.
However, if we have a good hash function (hash ( ) ) and an appropriately-sized hash table (b), most
such sets will have exactly one element. Consequently, I linked the elements of that set together
using the next field of Entry (§ 17.8[27]).

Note that b keeps pointers to elements of v and that elements are added to v. In general,
push_back () can cause reallocation and thus invalidate pointers to elements (§ 16.3.5). However,
in this case constructors (§ 17.6.2) and resize () carefully reserve () enough space so that no unex
pected reallocation happens.

17.6.2.2 Erase and Resize

Hashed lookup becomes inefficient when the table gets too full. To lower the chance of that hap
pening, the table is automatically resize ( ) d by the subscript operator. The set_load () (§ 17.6.2)
provides a way of controlling when and how resizing happens. Other functions are provided to
allow a programmer to observe the state of a hash_map:

template<class Key, class T I class H = Hash<Key> ,
class EQ =equal_to<Key> I class A =allocator< pair<const Key I T> > >

class hash_map {
/ / ...
void resize (size_type n);

void erase (iterator position);

/ / make the size ofthe hash table n

/ / erase the element pointed to

size_type size () const { return v. size () -no_oj_erased;

size_type bucket_count () const { return b. size ( ) ;

Hasher hashJun () const { return hash; }
key_equal key_eq () const { return eq; }

/ / number ofelements

/ / size ofhash table

/ / hash function used
/ / equality used



502 Standard Containers

/ / ...
} ;

Chapter 17

The resize () operation is essential, reasonably simple, and potentially expensive:

template<class Key, class T, class H = Hash<Key> ,
class EQ =equal_to<Key>, class A =allocator< pair<const Key, T> > >

void hash_map<Key , T, H, EQ, A>:: resize (size_type s)
{

size_type i =v. size ( );
while (no_oJ_erased) {

if (v [--i] . erased) {
v . erase (&v [i] ) ;
--no_oj_erased;

if (s <= b. size ( ) ) return;
b. resize (s);
fill (b. begin (), b. end ( ),0);
v. reserve (s*max_Ioad);

/ / really remove erased elements

/ / add s-b.size() pointers
/ / zero out the entries (§J8.6.6)
/ / ifv needs to reallocate, let it happen now

for (size_type i =0; i<v.size(); i++) {
size_type ii =hash (v [i] . key) %b. size ( );
v [i] • next =b [ii] ;
b[ii] =&V[i]i

/ / rehash:
/ / hash
/ / link

If necessary, a user can' 'manually" call resize () to ensure that the cost is incurred at a predictable
time. I have found a resize () operation important in some applications, but it is not fundamental
to the notion of hash tables. Some implementation strategies don't need it.

All of the real work is done elsewhere (and only if a hash_map is resized) , so erase () is triv
ial:

template<class Key, class T, class H =Hash<Key> ,
class EQ = equal_to<Key>, class A = allocator< pair<const Key, T> > >

void hash_map<Key, T, H, EQ, A>:: erase (iterator p) / / erase the element pointed to
{

if (p->erased==Jalse) no_oJ_erased++;
p- >erased = true;

17.6.2.3 Hashing

To complete hash_map: : operator [] (), we need to define hash () and eq ( ). For reasons that
will become clear in §18.4, a hash function is best defined as operator () () for a function object:

template <class T> struct Hash : unaryJunction<T, size_t> {
size_t operator () (const T& key) const;

} ;



Section 17.6.2.3 Hashing 503

A good hash function takes a key and returns an integer so that different keys yield different inte
gers with high probability. Choosing a good hash function is an art. However, exclusive-or'ing the
bits of the key's representation into an integer is often acceptable:

template <class T> size_t Hash<T>:: operator () (const T& key) const
{

size_t res = 0;

size_t len = sizeof(T) ;

const char* p = reinterpret_cast<const char* > (&key); / / access object as sequence ofbytes

while (len--) res = (res«l) "*p++; / / use bytes olkey's representation
return res;

The use of reinterpret_cast (§6.2.7) is a good indication that something unsavory is going on and
that we can do better in cases when we know more about the object being hashed. In particular, if
an object contains a pointer, if the object is large, or if the alignment requirements on members
have left unused space ("holes") in the representation, we can usually do better (see §17.8[29]).

A C-style string is a pointer (to the characters), and a string contains a pointer. Consequently,
specializations are in order:

typedej char* Pchar;

template<> size_t Hash<Pchar>:: operator ( ) (const Pchar& key) const
{

size_t res =0;
Pchar p =key;
while (*p) res = (res«l) " *p++;
return res;

/ / use int value ofcharacters

template <class C>
size_t Hash< basic_string<C> >:: operator () (const basic_string<C>& key) const
{

typedef typename basic_string<C> : : const_iterator Cl;
Cl P = key. begin ( ) ;
Cl end =key. end ( ) ;

while (p! =end) res = (res«l) " *p++;
return res;

/ / use int value ofcharacters

An implementation of hash_map will include hash functions for at least integer and string keys.
For more adventurous key types, the user may have to help out with suitable specializations.
Experimentation supported by good measurement is essential when choosing a hash function. Intu
ition tends to work poorly in this area.

To complete the hash_map, we need to define the iterators and a minor host of trivial functions;
this is left as an exercise (§ 17.8[34]).



504 Standard Containers

17.6.3 Other Hashed Associative Containers

Chapter 17

For consistency and completeness, the hash_map should have matching hash_set,
hash_multimap, and hash_multiset. Their definitions are obvious from those of hash_map, map,
multimap, set, and multiset, so I leave these as an exercise (§ 17.8[34]). Good public domain and
commercial implementations of these hashed associative containers are available. For real pro
grams, these should be preferred to locally concocted versions, such as mine.

17.7 Advice

[1] By default, use vector when you need a container; §17.1.
[2] Know the cost (complexity, big-O measure) of every operation you use frequently; §17.1.2.
[3] The interface, implementation, and representation of a container are distinct concepts. Don't

confuse them; §17.1.3.
[4] You can sort and search according to a variety of criteria; §17.1.4.1.
[5] Do not use a C-style string as a key unless you supply a suitable comparison criterion;

§17.1.4.1.
[6] You can define comparison criteria so that equivalent, yet different, key values map to the

same key; §17.1.4.1.
[7] Prefer operations on the end of a sequence (back-operations) when inserting and deleting ele

ments; §17.1.4.1.
[8] Use list when you need to do many insertions and deletions from the front or the middle of a

container; §17.2.2.
[9] Use map or multimap when you primarily access elements by key; §17.4.1.
[10] Use the minimal set of operations to gain maximum flexibility; § 17.1.1
[II] Prefer a map to a hash_map if the elements need to be kept in order; §17.6.1.
[12] Prefer a hash_map to a map when speed of lookup is essential; §17.6.1.
[13] Prefer a hash_map to a map if no less-than operation can be defined for the elements; §17.6.1.
[14] Usefind () when you need to check if a key is in an associative container; §17.4.1.6.
[15] Use equal_range () to find all elements of a given key in an associative container; §17.4.1.6.
[16] Use multimap when several values need to be kept ordered for a single key; §17.4.2.
[17] Use set or multiset when the key itself is the only value you need to keep; §17.4.3.

17.8 Exercises

The solutions to several exercises for this chapter can be found by looking at the source text of an
implementation of the standard library. Do yourself a favor: try to find your own solutions before
looking to see how your library implementer approached the problems. Then, look at your
implementation's version of the containers and their operations.
1. (*2.5) Understand the 0 () notation (§17.1.2). Do some measurements of operations on stan

dard containers to determine the constant factors involved.
2. (*2) Many phone numbers don't fit into a long. Write a phone_number type and a class that

provides a set of useful operations on a container of phone_numbers.



Section 17.8 Exercises 50S

3. (*2) Write a program that lists the distinct words in a file in alphabetical order. Make two ver
sions: one in which a word is simply a whitespace-separated sequence of characters and one in
which a word is a sequence of letters separated by any sequence of non-letters.

4. (*2.5) Implement a simple solitaire card game.
5. (*1.5) Implement a simple test of whether a word is a palindrome (that is, if its representation is

symmetric; examples are ada, otto, and tut). Implement a simple test of whether an integer is a
palindrome. Implement a simple test of a whether sentence is a palindrome. Generalize.

6. (*1.5) Define a queue using (only) two stacks.
7. (*1.5) Define a stack similar to stack (§17.3.1), except that it doesn't copy its underlying con

tainer and that it allows iteration over its elements.
8. (*3) Your computer will have support for concurrent activities through the concept of a thread,

task, or process. F~gure out how that is done. The concurrency mechanism will have a concept
of locking to prevent two tasks accessing the same memory simultaneously. Use the machine's
locking mechanism to implement a lock class.

9. (*2.5) Read a sequence of dates such as Dec85, Dec50, Jan76, etc., from input and then output
them so that later dates come first. The format of a date is a three-letter month followed by a
two-digit year. Assume that all the years are from the same century.

10. (*2.5) Generalize the input format for dates to allow dates such as Dec1985, 12/3/1990,
(Dec, 30, 1950) , 3/6/2001, etc. Modify exercise §17.8[9] to cope with the new formats.

11. (* 1.5) Use a bitset to print the binary values of some numbers, including 0, 1, -1, 18, -18, and
the largest positive into

12. (*1.5) Use bitset to represent which students in a class were present on a given day. Read the
bitsets for a series of 12 days and determine who was present every day. Determine which stu
dents were present at least 8 days.

13. (* 1.5) Write a List of pointers that deletes the objects pointed to when it itself is destroyed or if
the element is removed from the List.

14. (*1.5) Given a stack object, print its elements in order (without changing the value of the stack).
15. (*2.5) Complete hash_map (§17.6.1). This involves implementingfind () and equal_range ()

and devising a way of testing the completed template. Test hash_map with at least one key
type for which the default hash function would be unsuitable.

16. (*2.5) Implement and test a list in the style of the standard list.
17. (*2) Sometimes, the space overhead of a list can be a problem. Write and test a singly-linked

list in the style of a standard container.
18. (*2.5) Implement a list that is like a standard list, except that it supports subscripting. Compare

the cost of subscripting for a variety of lists to the cost of subscripting a vector of the same
length.

19. (*2) Implement a template function that merges two containers.
20. (*1.5) Given a C-style string, determine whether it is a palindrome. Determine whether an ini

tial sequence of at least three words in the string is a palindrome.
21. (*2) Read a sequence of (name, value) pairs and produce a sorted list of

(name, total, mean, median) 4-tuples. Print that list.
22. (*2.5) Determine the space overhead of each of the standard containers on your implementation.
23. (*3.5) Consider what would be a reasonable implementation strategy for a hash_m.ap that

needed to use minimal space. Consider what would be a reasonable implementation strategy for



506 Standard Containers Chapter 17

II point to size characters
II allocate and fill buf

a hash_map that needed to use minimal lookup time. In each case, consider what operations
you might omit so as to get closer to the ideal (no space overhead and no lookup overhead,
respectively). Hint: There is an enormous literature on hash tables.

24. (*2) Devise a strategy for dealing with overflow in hash_map (different values hashing to the
same hash value) that makes equal_range () trivial to implement.

25. (*2.5) Estimate the space overhead of a hash_map and then measure it. Compare the estimate
to the measurements. Compare the space overhead of your hash_map and your
implementation's map.

26. (*2.5) Profile your hash_map to see where the time is spent. Do the same for your
implementation's map and a widely-distributed hash_map.

27. (*2.5) Implement a hash_map based on a vector<map<K, V>*> so that each map holds all
keys that have the same hash value.

28. (*3) Implement a hash_map using Splay trees (see D. Sleator and R. E. Tarjan: Self-Adjusting
Binary Search Trees, JACM, Vol. 32. 1985).

29. (*2) Given a data structure describing a string-like entity:

struct St {
int size i

char type_indicator i

char* bufi
St (const char* p) i

} ;

Create 1000 Sts and use them as keys for a hash_map. Devise a program to measure the per
formance of the hash_map. Write a hash function (a Hash; §17.6.2.3) specifically for St keys.

30. (*2) Give at least four different ways of removing the erased elements from a hash_map. You
should use a standard library algorithm (§3.8, Chapter 18) to avoid an explicit loop.

31. (*3) Implement a hash_map that erases elements immediately.
32. (*2) The hash function presented in §17.6.2.3 doesn't always consider all of the representation

of a key. When will part of a representation be ignored? Write a hash function that always con
siders all of the representations of a key. Give an example of when it might be wise to ignore
part of a key and write a hash function that computes its value based only on the part of a key
considered relevant.

33. (*2.5) The code of hash functions tends to be similar: a loop gets more data and then hashes it.
Define a Hash (§ 17.6.2.3) that gets its data by repeatedly calling a function that a user can
define on a per-type basis. For example:

size_t res =0 i

while (size_t v = hash (key) ) res = (res«3) "v;

Here, a user can define hash (K) for each type K that needs to be hashed.
34. (*3) Given SOlne implementation of hash_map, implement hash_multimap, hash_set, and

hash multiset.
35. (*2.5) Write a hash function intended to map uniformly distributed int values into hash values

intended for a table size of about 1024. Given that function, devise a set of 1024 key values, all
of which map to the same value.



18
Algorithms and Function Objects

Form is liberating.
- engineers"proverb

Introduction - overview of standard algorithms - sequences - function objects 
predicates - arithmetic objects - binders - member function objects - for_each 
finding elements - count - comparing sequences - searching - copying - trans-
form - replacing and removing elements - filling a sequence - reordering - swap
- sorted sequences - binary_search - merge - set operations - min and max
heaps - permutations - C-style algorithms - advice - exercises.

18.1 Introduction

A container by itself is really not that interesting. To be genuinely useful, a container must be sup
ported by basic operations such as finding its size, iterating, copying, sorting, and searching for ele
ments. Fortunately, the standard library provides algorithms to serve the most common and basic
needs that users have of containers.

This chapter summarizes the standard algorithms and gives a few examples of their uses, a pre
sentation of the key principles and techniques used to express the algorithms in C++, and a more
detailed explanation of a few key algorithms.

Function objects provide a mechanism through which a user can customize the behavior of the
standard algorithms. Function objects supply key information that an algorithm needs in order to
operate on a user's data. Consequently, emphasis is placed on how function objects can be defined
and used.



508 Algorithms and Function Objects Chapter 18

18.2 Overview of Standard Library Algorithms

At first glimpse, the standard library algorithms can appear overwhelming. However, there are just
60 of them. I have seen classes with more member functions. Furthermore, many algorithms share
a common basic behavior and a common interface style that eases understanding. As with lan
guage features, a programmer should use the algorithms actually needed and understood - and only
those. There are no awards for using the highest number of standard algorithms in a program. Nor
are there awards for using standard algorithms in the most clever and obscure way. Remember, a
primary aim of writing code is to make its meaning clear to the next person reading it - and that
person just might be yourself a few years hence. On the other hand, when doing something with
elements of a container, consider whether that action could be expressed as an algorithm in the style
of the standard library. That algorithm might already exist. If you don't consider work in terms of
general algorithms, you will reinvent the wheel.

Each algorithm is expressed as a template function (§ 13.3) or a set of template functions. In
that way, an algorithm can operate on many kinds of sequences containing elements of a variety of
types. Algorithms that return an iterator (§19.1) as a result generally use the end of an input
sequence to indicate failure. For example:

void f(list<string>& Is)
{

list<string> : : const_iterator p =find (Is. begin ( ) , is. end ( ) , "Fred" };

if (p == Is. end ( )) {
/ / didn'tfind "Fred"

}

else {
/ / here, p points to "Fred"

The algorithms do not perform range checking on their input or output. Range errors must be pre
vented by other means (§18.3.1, §19.3). When an algorithm returns an iterator, that iterator is of
the same type as one of its inputs. In particular, an algorithm's arguments control whether it
returns a const iterator or a non-const iterator. For example:

void f(list<int>& li, const list<string>& Is)
{

list<int> : : iterator p =find (li . begin ( ) , li . end ( ) , 42) i

list<string> : : const_iterator q =find (Is . begin ( ) , Is . end ( ), "Ring" ) i

The algorithms in the standard library cover the most common general operations on containers
such as traversals, sorting, searching, and inserting and removing elements. The standard algo
rithms are all in the std namespace and their declarations are found in <algorithm>. Interestingly,
most of the really common algorithms are so simple that the template functions are typically inline.
This implies that the loops expressed by the algorithms benefit from aggressive per-function opti
mization.

The standard function objects are also in namespace std, but their declarations are found in
<functional>. The function objects are designed to be easy to inline.



Section 18.2 Overview of Standard Library Algorithms 509

Nonmodifying sequence operations are used to extract information from a sequence or to find
the positions of elements in a sequence:

Nonmodifying Sequence Operations (§18.5) <algorithm>

for_each()
find()
find_iff)
findJirst_off)
adjacentJind()
count()
count_iff)
mismatch()
equal()
search()
find_end()
search_n()

Do operation for each element in a sequence.
Find first occurrence of a value in a sequence.
Find first match of a predicate in a sequence.
Find a value from one sequence in another.
Find an adjacent pair of values.
Count occurrences of a value in a sequence.
Count matches of a predicate in a sequence.
Find the first elements for which two sequences differ.
True if the elements of two sequences are pairwise equal.
Find the first occurrence of a sequence as a subsequence.
Find the last occurrence of a sequence as a subsequence.
Find the nth occurrence of a value in a sequence.

Most algorithms allow a user to specify the actual action performed for each element or pair of ele
ments. This makes the algorithms much more general and useful than they appear at first glance.
In particular, a user can supply the criteria used for equality and difference (§ 18.4.2). Where rea
sonable, the most common and useful action is provided as a default.

Modifying sequence operations have little in common beyond the obvious fact that they might
change the values of elements of a sequence:

Modifying Sequence Operations (§18.6) <algorithm>

transform()
copy()
copy_backward()
swap()
iter_swap()
swap_ranges()
replacer)
replace_if()
replace_copy()
replace_copy_iff)
fill( )
fill_n()
generate()
generate_n()
remove()
remove_if()

Apply an operation to every element in a sequence.
Copy a sequence starting with its first element.
Copy a sequence starting with its last element.
Swap two elements.
Swap two elements pointed to by iterators.
Swap elements of two sequences.
Replace elements with a given value.
Replace elements matching a predicate.
Copy sequence replacing elements with a given value.
Copy sequence replacing elements matching a predicate.
Replace every element with a given value.
Replace first n elements with a given value.
Replace every element with the result of an operation.
Replace first n elements with the result of an operation.
Remove elements with a given value.
Remove elements matching a predicate.



510 Algorithms and Function Objects

Modifying Sequence Operations (continued) (§18.6) <algorithm>

Chapter 18

remove_copy()
remove_copy_iff)
unique()
unique_copy()
reverse()
reverse_copy()
rotate()
rotate_copy()
random_shuffler)

Copy a sequence removing elements with a given value.
Copy a sequence removing elements matching a predicate.
Remove equal adjacent elements.
Copy a sequence removing equal adjacent elements.
Reverse the order of elements.
Copy a sequence into reverse order.
Rotate elements.
Copy a sequence into a rotated sequence.
Move elements into a uniform distribution.

Every good design shows traces of the personal traits and interests of its designer. The containers
and algorithms in the standard library clearly reflect a strong concern for classical data structures
and the design of algorithms. The standard library provides not only the bare minimum of contain
ers and algorithms needed by essentially every programmer. It also includes many of the tools used
to provide those algorithms and needed to extend the library beyond that minimum.

The emphasis here is not on the design of algorithms or even on the use of any but the simplest
and most obvious algorithms. For information on the design and analysis of algorithms, you
should look elsewhere (for example, [Knuth,1968] and [Tarjan,1983]). Instead, this chapter lists
the algorithms offered by the standard library and explains how they are expressed in C++. This
focus allows someone who understands algorithms to use the library well and to extend it in the
spirit in which it was built.

The standard library provides a variety of operations for sorting, searching, and manipulating
sequences based on an ordering:

Sorted Sequences (§18.7) <algorithm>

sort()
stable_sort()
partial_sort()
partial_sort_copy()
nth_element()
lower_bound()
upper_bound()
equal_range()
binary_search()
rnerge()
inplace_merge()
partition()
stableyartition()

Sort with good average efficiency.
Sort maintaining order of equal elements.
Get the first part of sequence into order.
Copy getting the first part of output into order.
Put the nth element in its proper place.
Find the first occurrence of a value.
Find the first element larger than a value.
Find a subsequence with a given value.
Is a given value in a sorted sequence?
Merge two sorted sequences.
Merge two consecutive sorted subsequences.
Place elements matching a predicate first.
Place elements matching a predicate first,
preserving relative order.



Section 18.2 Overview of Standard Library Algorithms 511

Set Algorithms (§18.7.5) <algorithm>

includes()
set_union()
set_intersection()
set_difference()

True if a sequence is a subsequence of another.
Construct a sorted union.
Construct a sorted intersection.
Construct a sorted sequence of elements
in the first but not the second sequence.

set_symmetric_difference() Construct a sorted sequence of elements
in one but not both sequences.

Heap operations keep a sequence in a state that makes it easy to sort when necessary:

Heap Operations (§18.8) <algorithm>

make_heap() Make sequence ready to be used as a heap.
push_heap() Add element to heap.
pop_heap() Remove element from heap.
sort_heap() Sort the heap.

The library provides a few algorithms for selecting elements based on a comparison:

Minimum and Maximum (§18.9) <algorithm>

mine)
max()
min_element()
max_element()
lexicographical_compare()

Smaller of two values.
Larger of two values.
Smallest value in sequence.
Largest value in sequence.
Lexicographically first of two sequences.

Finally, the library provides ways of permuting a sequence:

Permutations (§18.10) <algorithm>

nextyermutation() Next permutation in lexicographical order.
prevyermutation() Previous permutation in lexicographical order.

In addition, a few generalized numerical algorithms are provided in <numeric> (§22.6).
In the description of algorithms, the template parameter names are significant. In, Out, For, Bi,

and Ran mean input iterator, output iterator, forward iterator, bidirectional iterator, and random
access iterator, respectively (§ 19.2.1). Pred means unary predicate, BinPred means binary predi
cate (§18.4.2), Cmp means a comparison function (§17.1.4.1, §18.7.1), Op means unary operation,
and BinOp means binary operation (§ 18.4). Conventionally, much longer names have been used
for template parameters. However, I find that after only a brief acquaintance with the standard
library, those long names decrease readability rather than enhancing it.

A random-access iterator can be used as a bidirectional iterator, a bidirectional iterator as a for
ward iterator, and a forward iterator as an input or an output iterator (§ 19.2.1). Passing a type that
doesn't provide the required operations will cause template-instantiation-time errors (§C.13.7).
Providing a type that has the right operations with the wrong semantics will cause unpredictable
run-time behavior (§ 17.1.4).



512 Algorithms and Function Objects Chapter 18

18.3 Sequences and Containers

It is a good general principle that the most common use of something should also be the shortest,
the easiest to express, and the safest. The standard library violates this principle in the name of
generality. For a standard library, generality is essential. For example, we can find the first two
occurrences of 42 in a list like this:

void f(list<int>& Ii)
{

list<int> : : iterator p = find (Ii . begin ( ) I Ii . end ( ) ,42) ;
if (p ! =Ii. end ( » {

list<int> : : iterator q = find (++p I Ii. end ( ) I 42) ;
/ / ...

}

/ / ...

/ / first occurrence

/ / second occurrence

Had find () been expressed as an operation on a container, we would have needed some additional
mechanism for finding the second occurrence. Importantly, generalizing such an ' 'additional
mechanism" for every container and every algorithm is hard. Instead, standard library algorithms
work on sequences of elements. That is, the input of an algorithm is expressed as a pair of iterators
that delineate a sequence. The first iterator refers to the first element of the sequence, and the sec
ond refers to a point one-beyond-the-last element (§3.8, §19.2). Such a sequence is called "half
open" because it includes the first value mentioned and not the second. A half-open sequence
allows many algorithms to be expressed without making the empty sequence a special case.

A sequence - especially a sequence in which random access is possible - is often called a
range. Traditional mathematical notations for a half-open range are [first, last) and [first, last [ .
Importantly, a sequence can be the elements of a container or a subsequence of a container. Fur
ther, some sequences, such as I/O streams, are not containers. However, algorithms expressed in
terms of sequences work just fine.

18.3.1 Input Sequences

Writing x . begin ( ) I X • end () to express "all the elements of x" is common, tedious, and can even
be error-prone. For example, when several iterators are used, it is too easy to provide an algorithm
with a pair of arguments that does not constitute a sequence:

void f (list<string>& fruit I list<string>& citrus)
{

typedef list<string>:: const_iterator LI;

LI pl =find (fruit. begin ( ) I citrus. end ( ) I II apple II ) ; / / wrong! (different sequences)
LI p2 = find (fruit. begin ( ) , fruit. end ( ) I II apple II ) ; / I ok
LI p3 = find (citrus. begin ( ) I citrus. end ( ), IIpear" }; /1 ok
LI p4 =find (p2 I p3, "peach" ); / I wrong! (different sequences)
/ / ...

In this example there are two errors. The first is obvious (once you suspect an error), but it isn't



Section 18.3.1 Input Sequences 513

easily detected by a compiler. The second is hard to spot in real code even for an experienced pro
grammer. Cutting down on the number of explicit iterators used alleviates this problem. Here, I
outline an approach to dealing with this problem by making the notion of an input sequence
explicit. However, to keep the discussion of standard algorithms strictly within the bounds of the
standard library, I do not use explicit input sequences when presenting algorithms in this chapter.

The key idea is to be explicit about taking a sequence as input. For example:

template<class In, class T> In find (In first, In last, const T& v)
{

while (first! =last && *first! =v) ++first;
return first;

template<class In, class T> In find (/seq<ln> r, const T& v)
{

return find (r .first , r. second, v) i

/ / standard

/ / extension

In general, overloading (§ 13.3.2) allows the input-sequence version of an algorithm to be preferred
when an [seq argument is used.

Naturally, an input sequence is implemented as a pair (§ 17.4.1.2) of iterators:

template<class In> struct Iseq : public pair<ln, In> {
Iseq (In i1, In i2) : pair<ln, In> (i1 , i2) { }

} ;

We can explicitly make the [seq needed to invoke the second version ofjind ( ) :

Ll p =find (lseq<LI> (fruit. begin ( ) ,fruit. end ( ) ) , II apple II ) i

However, that is even more tedious than calling the original find () directly. Simple helper func
tions relieve the tedium. In particular, the [seq of a container is the sequence of elements from its
begin () to its end ( ) :

template<class C> Iseq<typename C:: iterator> iseq (C& c)
{

return Iseq<typename C:: iterator> (c. begin ( ) , c . end ( ) ) ;

/ / for container

This allows us to express algorithms on containers compactly and without repetition. For example:

void f( list<string>& Is)
{

list<string> : : iterator p =find (Is. begin ( ) , Is . end ( ), II standard" ) ;
list<string> : : iterator q = find (iseq (ls) , II extension II ) i

/ / ..

It is easy to define versions of iseq () that produce Iseqs for arrays, input streams, etc. (§ 18.13[6]).
The key benefit of [seq is that it makes the notion of an input sequence explicit. The immediate

practical effect is that use of iseq () eliminates much of the tedious and error-prone repetition
needed to express every input sequence as a pair of iterators.



514 Algorithms and Function Objects Chapter 18

The notion of an output sequence is also useful. However, it is less simple and less immedi
ately useful than the notion of an input sequence (§ 18.13[7]; see also §19.2.4).

18.4 Function Objects

Many algorithms operate on sequences using iterators and values only. For example, we can
find () the first element with the value 7 in a sequence like this:

void f(list<int>& c)
{

list<int> : : iterator p = find (c . begin ( ), c. end ( ) , 7) ;

/ / ...

To do more interesting things we want the algorithms to execute code that we supply (§3.8.4). For
example, we can find the first element in a sequence with a value of less than 7 like this:

hool less_than_7 (int v)
{

return v<7;

void f(list<int>& c)
{

list<int>:: iterator p = find_if(c. begin (), c. end (), less_than_7);
/ / ...

There are many obvious uses for functions passed as arguments: logical predicates, arithmetic oper
ations, operations for extracting information from elements, etc. It is neither convenient nor effi
cient to write a separate function for each use. Nor is a function logically sufficient to express all
that we would like to express. Often, the function called for each element needs to keep data
between invocations and to return the result of many applications. A member function of a class
serves such needs better than a free-standing function does because its object can hold data. In
addition, the class can provide operations for initializing and extracting such data.

Consider how to write a function - or rather a function-like class - to calculate a sum:

template<class T> class Sum {
T res;

public:
Sum (T i = 0) : res (i) { )
void operator ( ) (T x) {res += X;

T result () const { return res; }
} ;

/ / initialize
/ / accumulate
/ / return sum

Clearly, Sum is designed for arithmetic types for which initialization by 0 and += are defined. For
example:



Section 18.4

void f( list<double>& ld)
{

Sum<double> s i

s =for_each (ld . begin ( ) , ld . end ( ) , s) i

cout« If the sum is II « s. result () « '\n';

Function Objects 515

/ / invoke s() for each element of ld

Here, for_each () (§ 18.5.1) invokes Sum<double>: : operator () (double) for each element of ld
and returns the object passed as its third argument.

The key reason this works is thatfor_each () doesn't actually assume its third argument to be a
function. It simply assumes that its third argument is something that can be called with an appro
priate argument. A suitably-defined object serves as well as - and often better than - a function.
For example, it is easier to inline the application operator of a class than to inline a function passed
as a pointer to function. Consequently, function objects often execute faster than do ordinary func
tions. An object of a class with an application operator (§ 11.9) is called a function-like object, a
functor, or simply afunction object.

18.4.1 Function Object Bases

The standard library provides many useful function objects. To aid the writing of function objects,
in <functional> the library provides a couple of base classes:

template <class Arg, class Res> struct unaryJunction {
typedef Arg argument_type i

typedef Res result_type i

} ;

template <class Arg, class Arg2, class Res> struct binaryJunction {
typedef Arg first_argument_type i

typedef Arg2 second_argument_type i

typedef Res result_type;
} i

The purpose of these classes is to provide standard names for the argument and return types for use
by users of classes derived from unaryJunction and binaryJunction. Using these bases consis
tently the way the standard library does will save the programmer from discovering the hard way
why they are useful (§18.4.4.1).

18.4.2 Predicates

A predicate is a function object (or a function) that returns a bool. For example, <functional>
defines:

template <class T> struct logical_not: public unaryJunction<T, bool> {
booI operator () (const T& x) const { return ! Xi}

} i

template <class T> struct less : public binaryJunction<T, T, bool> {
bool operator () (const T& x, const T& y) const { return x<y i }

} i



516 Algorithms and Function Objects Chapter 18

Unary and binary predicates are often useful in combination with algorithms. For example, we can
compare two sequences, looking for the first element of one that is not less than its corresponding
element in the other:

void f(vector<int>& vi, list<int>& Ii)
{

typedef list<int>:: iterator Ll;
typedef vector<int>: : iterator VI;
pair<VI, LI> pI =mismatch (vi . begin ( ) , vi . end ( ) , Ii . begin ( ) I less<int> ( ) ) ;
/ / ...

The mismatch () algorithm applies its binary predicate repeatedly to pairs of corresponding ele
ments until it fails (§ 18.5.4). It then returns the iterators for the elements that failed the compari
son. Because an object is needed rather than a type, less<int> () (with the parentheses) is used
rather than the tempting less<int> .

Instead of finding the first element not less than its corresponding element in the other
sequence, we might like to find the first element less than its corresponding element. We can do
this by looking for the first pair that fails the complementary predicate greater_equal:

pI = mismatch (vi . begin ( ) , vi . end ( ) , Ii . begin ( ) , greater_equal<int> ( ) ) ;

Alternatively, we could present the sequences in the opposite order and use less_equal:

pair<LI, VI> p2 =mismatch (Ii .begin ( ) I Ii . end ( ) , vi . begin ( ) , less_equal<int> ( ) );

In §18.4.4.4, I show how to express the predicate "not less."

18.4.2.1 Overview of Predicates

In <functional> I the standard library supplies a few common predicates:

Predicates <functional>
equal_to Binary argl==arg2
not_equal_to Binary argl !=arg2
greater Binary argl>arg2
less Binary argl<arg2
greater_equal Binary argl>=arg2
less_equal Binary arg 1<=arg2
logical_and Binary argl&&arg2
logical_or Binary arglll arg2
logical_not Unary !arg

The definitions of less and logical_not are presented in §18.4.2.
In addition to the library-provided predicates, users can write their own. Such user-supplied

predicates are essential for simple and elegant use of the standard libraries and algorithms. The
ability to define predicates is particularly important when we want to use algorithms for classes
designed without thought of the standard library and its algorithms. For example, consider a vari
ant of the Club class from §10.4.6:



Section 18.4.2.1

class Person { / * ... * / };

struct Club {
string name;
list<Person*> members;
list<Person*> officers;
/ / ...

Club (const string& n);
} ;

Overview of Predicates 517

Looking for a Club with a given name in a list<Club> is clearly a reasonable thing to do. How
ever, the standard library algorithm find_if{) doesn't know about Clubs. The library algorithms
know how to test for equality, but we don't want to find a Club based on its complete value.
Rather, we want to use Club: : name as the key. So we write a predicate to reflect that:

class Club_eq : public unaryJunction<Club, bool> {
string s;

public:
explicit Club_eq (const string& ss) : s (ss) { }
booI operator () (const Club& c) const { return c. name==s ;

} ;

Defining useful predicates is simple. Once suitable predicates have been defined for user-defined
types, their use with the standard algorithms is as simple and efficient as examples involving con
tainers of simple types. For example:

void f(list<Club>& Ic)
{

typedef list<Club>: : iterator LCI;
LCI p =find_if (Ie. begin ( ) , Ic . end ( ) , Club_eq ( II Dining Philosophers II ) ) ;

/ / ...

18.4.3 Arithmetic Function Objects

When dealing with numeric classes, it is sometimes useful to have the standard arithmetic functions
available as function objects. Consequently, in <functional> the standard library provides:

Arithmetic Operations <functional>

plus Binary argl+arg2
minus Binary argl-arg2
multiplies Binary argl *arg2
divides Binary argl/arg2
modulus Binary argl%arg2
negate Unary -arg

We might use multiplies to multiply elements in two vectors, thereby producing a third:



518 Algorithms and Function Objects Chapter 18

void discount (vector<double>& a, vector<double>& b, vector<double>& res)
{

transform (a .begin ( ), a. end (), b. begin ( ), back_inserter (res), multiplies<double> ( ) );

The back_inserter () is described in §19.2.4. A few numerical algorithms can be found in §22.6.

18.4.4 Binders, Adapters, and Negaters

We can use predicates and arithmetic function objects we have written ourselves and rely on the
ones provided by the standard library. However, when we need a new predicate we often find that
the new predicate is a minor variation of an existing one. The standard library supports the compo
sition of function objects:

§18.4.4.1 A binder allows a two-argument function object to be used as a single-argument
function by binding one argument to a value.

§18.4.4.2 A member function adapter allows a member function to be used as an argument to
algorithms.

§18.4.4.3 A pointer to function adapter allows a pointer to function to be used as an argument
to algorithms.

§18.4.4.4 A negater allows us to express the opposite of a predicate.
Collectively, these function objects are referred to as adapters. These adapters all have a common
structure relying on the function object bases unaryJunction and binaryJunction (§18.4.1). For
each of these adapters, a helper function is provided to take a function object as an argument and
return a suitable function object. When invoked by its operator () (), that function object will
perform the desired action. That is, an adapter is a simple form of a higher-order function: it takes
a function argument and produces a new function from it:

Binders, Adapters, and Negaters <functional>
bind2nd(y)
bindlst(x)
memJun()

mem.Jun_ref()

ptrJun()
ptrJun()
notl()
not2()

binder2nd
binder/st
memJun_t
memJunl_t
const_memJun_t
const_memJunl_t
memJun_ref_t
memJunl_ref_t
const_memJun_ref_t
const_memJunl_ref_t
pointer_to_unaryJunction
pointer_to_binaryJunction
unary_negate
binary_negate

Call binary function with y as 2nd argument.
Call binary function with x as 1st argument.
Call O-arg member through pointer.
Call unary member through pointer.
Call O-arg const member through pointer.
Call unary const member through pointer.
Call O-arg member through reference.
Call unary member through reference.
Call O-arg const member through reference.
Call unary const member through reference.
Call unary pointer to function.
Call binary pointer to function.
Negate unary predicate.
Negate binary predicate.



Section 18.4.4.1

18.4.4.1 Binders

Binders 519

Binary predicates such as less (§ 18.4.2) are useful and flexible. However, we soon discover that
the most useful kind of predicate is one that compares a fixed argument repeatedly against a con
tainer element. The less_than_7() function (§18.4) is a typical example. The less operation
needs two arguments explicitly provided in each call, so it is not immediately useful. Instead, we
might define:

template <class T> class less_than : public unaryJunction<T I bool> {
T arg2i

public:
explicit less_than (const T& x) : arg2 (x) { }
bool operator () (const T& x) const { return x<arg2 i

} i

We can now write:

void f(list<int>& c)
{

list<int>:: const_iterator p = find_if(c. begin ( ) I c. end ( ) I less_than<int> (7) ) i
/ / ...

We must write less_than<int> (7) rather than less_than (7) because the template argument <int>
cannot be deduced from the type of the constructor argument (7) (§ 13.3.1).

The less_than predicate is generally useful. Importantly, we defined it by fixing or binding the
second argument of less. Such composition by binding an argument is so common, useful, and
occasionally tedious that the standard library provides a standard class for doing it:

template <class BinOp>
class binder2nd

: public unaryJunction<typename BinOp: :first_argument_type I

typename BinOp:: result_type> {
protected:

BinOp 0Pi
typename BinOp:: second_argument_type arg2 i

public:
binder2nd (const BinOp& x I const typename BinOp:: second_argument_type& v)

: 0P(X), arg2(v) { }
result_type operator ( ) (const argument_type& x) const { return op (x, arg2); }

} i

template <class BinOp I class T> binder2nd<BinOp> bind2nd (const BinOp& op I const T& v)
{

return binder2nd<BinOp> (op I v) i

For example, we can use bind2nd () to create the unary predicate "less than 7" from the binary
predicate "less" and the value 7:



520 Algorithms and Function Objects

void f( list<int>& c)

{

Chapter 18

list<int>:: const_iterator p =find_if(c. begin ( ) Ie. end ( ) I bind2nd (less<int> ( ),7) );

/ / ...

Is this readable? Is this efficient? Given an average C++ implementation, this version is actually
more efficient in time and space than is the original version using the function less_than_7 () from
§18.4! The comparison is easily inlined.

The notation is logical, but it does take some getting used to. Often, the definition of a named
operation with a bound argument is worthwhile after all:

template <class T> struct less_than: public binder2nd< less<T> > {
explicit less_than (const T& x) : binder2nd< less<T> > (less<T> ( ) ,x) { }

} ;

void f(list<int>& c)
{

list<int>:: const_iterator p =find_if(c. begin ( ) Ie. end () I less_than<int> (7) );

/ / ...

It is important to define less_than in terms of less rather than using < directly. That way,
less_than benefits from any specializations that less might have (§ 13.5, §19.2.2).

In parallel to bind2nd () and binder2nd, <functional> provides bind]st () and binder]st for
binding the first argument of a binary function.

By binding an argument, bind]st () and bind2nd () perform a service very similar to what is
commonly referred to as Currying.

18.4.4.2 Member Function Adapters

Most algorithms invoke a standard or user-defined operation. Naturally, users often want to invoke
a member function. For example (§3.8.5):

void draw_all (list<Shape* >& c)
{

for_each (c. begin ( ) I c. end ( ) I &Shape: :draw); 1/ oops! error

The problem is that a member function mf() needs to be invoked for an object: p->mf( ). How
ever, algorithms such as for_each () invoke their function operands by simple application: f( ) .
Consequently, we need a convenient and efficient way of creating something that allows an algo
rithm to invoke a member function. The alternative would be to duplicate the set of algorithms:
one version for member functions plus one for ordinary functions. Worse, we'd need additional
versions of algorithms for containers of objects (rather than pointers to objects). As for the binders
(§ 18.4.4.1), this problem is solved by a class plus a function. First, consider the common case in
which we want to call a member function taking no arguments for the elements of a container of
pointers:



Section 18.4.4.2 Member Function Adapters 521

template<class R, class T> class memJun_t : public unaryJunction<T* ,R> {
R (T:: *pm/) ();

public:
explicit memJun_t(R (T::*p) ()) :pmf(p) {}
R operator () (T* p) const { return (p- > *pmj) (); } / / call through pointer

} ;

template<class R, class T> memJun_t<R , T> memJun (R (T:: *j) ( ) )
{

return memJun_t<R , T> (j) ;

This handles the Shape: : draw () example:

void draw_all (list<Shape* >& lsp)
{

/ / call O-argument member through pointer to object

for_each (lsp . begin ( ) , lsp . end ( ) , memJun (&Shape : : draw) ); / / draw all shapes

In addition, we need a class and a memJun () function for handling a member function taking an
argument. We also need versions to be called directly for an object rather than through a pointer;
these are named memJun_ref( ). Finally, we need versions for const member functions:

template<class R, class T> memJun_t<R, T> memJun (R (T:: *j) ( ) ) ;
j j and versionsfor unary member, for const member, and const unary member (see table in §18.4.4)

template<class R, class T> memJun_ref_t<R, T> memJun_ref(R (T:: *j) () ) ;
/ / and versions for unary member, for const member, and const unary member (see table in §18.4.4)

Given these member function adapters from <functional>, we can write:

void f (list<string>& ls)
{

/ / use member function that takes no argument for object

typedef list<string>: : iterator LSI;
LSI P =find_if( ls . begin ( ) , ls . end ( ) , memJun_ref(&string : : empty) );

void rotate_all (list<Shape*>& ls, int angle)
"j I use memberfunction that takes one argument through pointer to object

/ / find ""

for_each (Is . begin ( ) , ls . end ( ) , bind2nd (memJun (&Shape : : rotate) , angle) ) ;

The standard library need not deal with member functions taking more than one argument because
no standard library algorithm takes a function with more than two arguments as operands.

18.4.4.3 Pointer to Function Adapters

An algorithm doesn't care whether a "function argument" is a function, a pointer to function, or a
function object. However, a binder (§ 18.4.4.1) does care because it needs to store a copy for later
use. Consequently, in <functional> the standard library supplies two adapters to allow pointers to
functions to be used together with the standard algorithms. The definition and implementation



522 Algorithms and Function Objects Chapter 18

closely follows that of the member function adapters (§ 18.4.4.2). Again, a pair of functions and a
pair of classes are used:

template <class A I class R> pointer_to_unaryJunction<A IR> ptrJun (R (*j) (A) ) ;

template <class A I class A2 I class R>
pointer_to_binaryJunction<A , A2 , R> ptrJun (R (*j) (A, A2));

Given these pointer to function adapters, we can use ordinary functions together with binders:

class Record { / * ... * / };

bool name_key_eq (const Record& I const char*); / / compare based on names
bool ssn_key_eq (const Record& I long); / / compare based on number

void f( list<Record>& lr) / / use pointer to function
{

typedef list<Record> : : iterator LI;
Ll p = find_if(lr. begin ( ) I lr. end ( ), bind2nd (ptrJun (name_key_eq) I "John Brown") );
Ll q = find_if(lr. begin ( ) I lr. end ( ) Ibind2nd (ptrJun (ssn_key_eq) ,1234567890) );
/ I ...

This looks for elements of the list IT that match the keys John Brown and 1234567890.

18.4.4.4 Negaters

The predicate negaters are related to the binders in that they take an operation and produce a related
operation from it. The definition and implementation of negaters follow the pattern of the member
function adapters (§ 18.4.4.2). Their definitions are trivial, but their simplicity is obscured by the
use of long standard names:

template <class Pred>
class unary_negate : public unaryJunction<typename Pred:: argument_type Ibool> {

Pred op;
public:

explicit unary_negate (const Pred& p) : op (p ) { }
bool operator {) {const argument_type& x} const { return! op (x);

} ;

template <class Pred>
class binary_negate: public binaryJunction<typename Pred: :first_argument_typeI

typename Pred:: second_argument_type I bool> {

typedef first_argument_type Arg;
typedef second_argument_type Arg2;

Pred 0Pi

public:
explicit binary_negate (const Pred& p) : op (p) { }
booI operator () (const Arg& x I const Arg2& y) const { return ! 0P (x Iy) ;

} i



Section 18.4.4.4

template<class Pred> unary_negate<Pred> notl (const Pred& p);
template<class Pred> binary_negate<Pred> not2 (const Pred& p) ;

Negaters 523

/ / negate unary
/ / negate binary

These classes and functions are declared in <functional>. The names first_argument_type,
second_argument_type, etc., come from the standard base classes unaryJunction and
binaryJunction.

Like the binders, the negaters are most conveniently used indirectly through their helper func
tions. For example, we can express the binary predicate "not less than" and use it to find the first
corresponding pair of elements whose first element is less than its second:

void f( vector<int>& vi, list<int>& Ii) / / revised example from §18.4.2
{

/ / ...
pi = mismatch (vi. begin ( ) , vi . end ( ) , Ii . begin ( ) , not2 (less<int> ( ) ) ); / / not not < means <
/ / ...

That is, pI identifies the first pair of elements for which the predicate not less than failed.
Predicates deal with Boolean conditions, so there are no equivalents to the bitwise operators I,

&, ",and-.
Naturally, binders, adapters, and negaters are useful in combination. For example:

extern lie" int strcmp (const char*, const char*); / / from <cstdlib>

void f(list<char*>& Is)
{

/ / use pointer to function

typedef list<char* > : : const_iterator Ll;
Ll p =find_if(Is. begin ( ) , Is. end ( ) , notl (bind2nd (ptrJun (strcmp) , "funny" ) ) ) ;

This finds an element of the list Is that contains the C-styIe string "funny". The negater is needed
because strcmp () returns 0 when strings compare equal.

18.5 Nonmodifying Sequence Algorithms

Nonmodifying sequence algorithms are the basic means for finding something in a sequence with
out writing a loop. In addition, they allow us to find out things about elements. These algorithms
can take const-iterators (§ 19.2.1) and - with the exception of for_each () - should not be used to
invoke operations that modify the elements of the sequence.

18.5.1 For each

We use a library to benefit from the work of others. Using a library function, class, algorithm, etc.,
saves the work of inventing, designing, writing, debugging, and documenting something. Using
the standard library also makes the resulting code easier to read for others who are familiar with
that library, but who would have to spend time and effort understanding home-brewed code.

A key benefit of the standard library algorithms is that they save the programmer from writing
explicit loops. Loops can be tedious and error-prone. The for_each () algorithm is the simplest



S24 Algorithms and Function Objects Chapter 18

algorithm in the sense that it does nothing but eliminate an explicit loop. It simply calls its operator
argument for a sequence:

template<class In, class Op> Op for_each (In first, In last, Op t>
{

while (first! = last) f( *first++);
return I;

What functions would people want to call this way? If you want to accumulate information from
the elements, consider accumulate () (§22.6). If you want to find something in a sequence, con
sider find () and find_if() (§ 18.5.2). If you change or remove elements, consider replace ( )
(§18.6.4) or remove () (§18.6.5). In general, before using for_each (), con~ider if there is a more
specialized algorithm that would do more for you.

The result of for_each () is the function or function object passed as its third argument. As
shown in the Sum example (§18.4), this allows information to be passed back to a caller.

One common use of for_each () is to extract information from elements of a sequence. For
example, consider collecting the names of any of a number of Clubs:

void extract{const list<Club>& lc, list<Person*>& of/) II place the officersfrom clc ' on coff'
{

for_each (lc . begin ( ) , lc. end ( ) , Extract_officers (off) );

In parallel to the examples from §18.4 and §18.4.2, we define a function class that extracts the
desired information. In this case, the names to be extracted are found in list<Person*>s in our
list<Club>. Consequently, Extract_officers needs to copy the officers from a Club's officers list
to our list:

class Extract_officers {
list<Person*>& lst;

public:
explicit Extract_officers (list<Person*>& x) : lst (x) { }

void operator () (const Club& c)
{ copy (c. officers. begin ( ), c. officers. end ( ) , back_inserter (lst) ) ;

} ;

We can now print out the names, again usingfor_each ( ) :

void extract_andyrint (const list<Club>& Ic)
{

list<Person* > off;
extract (lc , off) ;
for_each (off. begin ( ) , off. end ( ) , Print_name (cout) ) ;

Writing Print_name is left as an exercise (§18.13[4]).
The for_each () algorithm is classified as nonmodifying because it doesn't explicitly modify a

sequence. However, if applied to a non-const sequence for_each ( ) 's operation (its third argu
ment) may change the elements of the sequence. For an example, see the use of negate () in §11.9.



Section 18.5.2 The Find Family 525

18.5.2 The Find Family

The find () algorithms look through a sequence or a pair of sequences to find a value or a match on
a predicate. The simple versions offind () look for a value or for a match with a predicate:

template<class In, class T> In find (In first, In last, const T& val) i

template<class In, class Pred> In find_if(In first, In last, Pred p);

The algorithms find () and find_if () return an iterator to the first element that matches a value and
a predicate, respectively. In fact, find () can be understood as the version of find_if ( ) with the
predicate ==. Why aren't they both called find ( )? The reason is that function overloading cannot
always distinguish calls of two template functions with the same number of arguments. Consider:

bool pred (int) ;

void f(vector<bool (*j) (int) >& vl, vector<int>& v2)
{

find (vl . begin (), vl . end () ,pred);
find_if( v2. begin ( ), v2. end ( ), pred);

I I find 'pred'
I I find int for which pred() returns true

If find () and find_if() had had the same name, surprising ambiguities would have resulted. In
general, the _if suffix is used to indicate that an algorithm takes a predicate.

The findJirst_of() algorithm finds the first element of a sequence that has a match in a second
sequence:

template<class For, class For2>
For findJirst_of(For first, For last, For2 first2, For2 last2);

template<class For, class For2, class BinPred>
For findJirst_of(For first, For last, For2 firsi2, For2 last2, BinPred p);

For example:

int x [] = { 1, 3 ,4 } i

int y [] = { 0, 2 , 3 , 4 , 5} ;

void f()
{

int* p =findJirst_of(x, x+3, y, y+5);
int* q =findJirst_of(p+l ,x+3,y,y+5);

II p =&x[l]
II q = &x[2]

The pointer p will point to x [1] because 3 is the first element of x with a match in y. Similarly, q
will point to x [2] .

The adjacentJind () algorithm finds a pair of adjacent matching values:

template<class For> For adjacentJind(For first, For last);

template<class For, class BinPred> For adjacentJind (For first, For last, BinPred p);

The return value is an iterator to the first matching element. For example:



526 Algorithms and Function Objects

void f( vector<string>& text)
{

vector<string> : : iterator p =adjacent-.find (text. begin ( ) I text. end ( ) ) ;
if (p! =text. end () && *p==II the II) { I I I duplicated "the II again!

text. erase (p) ;
1/ ...

18.5.3 Count

The count () and count_if() algorithms count occurrences of a value in a sequence:

Chapter 18

template<class In I class T>
typename iterator_traits<ln> : :difference_type count (In first I In last I const T& val) ;

template<class In I class Pred>
typename iterator_traits<ln> : :difference_type count_if(In first, In last, Pred p);

The return type of count () is interesting. Consider an obvious and somewhat simple-minded ver
sion of count ( ) :

template<class In, class T> int count (In first, In last, const T& val)
{

int res = 0;
while (first! = last) if (*first++ == val) ++res;
return res;

The problem is that an int might not be the right type for the result. On a machine with small ints,
there might be too many elements in the sequence for count () to fit in an into Conversely, a high
performance implementation on a specialized machine might prefer to keep the count in a short.

Clearly, the number of elements in the sequence cannot be larger than the maximum difference
between its iterators (§ 19.2.1). Consequently, the first idea for a solution to this problem is to
define the return type as

typename In:: difference_type

However, a standard algorithm should be applicable to built-in arrays as well as to standard con
tainers. For example:

void f(char* P, int size)
{

int n =count (p I p+size, ,e ' ) ; I I count the number ofoccurrences ofthe letter 'e'
II ...

Unfortunately, char* : :difference_type is not valid C++. This problem is solved by partial spe
cialization of an iterator_traits (§ 19.2.2).



Section 18.5.4

18.5.4 Equal and Mismatch

The equal () and mismatch () algorithms compare two sequences:

Equal and Mismatch 527

template<class In I class In2> bool equal (In first I In last I In2 first2);

template<class In I class In2 I class BinPred>
bool equal (In first I In last I In2 first2 I BinPred p);

template<class In I class In2> pair<ln I In2> mismatch (In first I In last I In2 first2);

template<class In I class In2 I class BinPred>
pair<ln I In2> mismatch (In first I In last I In2 first2 I BinPred p);

The equal () algorithm simply tells whether all corresponding pairs of elements of two sequences
compare equal; mismatch () looks for the first pair of elements that compares unequal and returns
iterators to those elements. No end is specified for the second sequence; that is, there is no last2.
Instead, it is assumed that there are at least as many elements in the second sequence as in the first
and first2 + (last-first) is used as last2. This technique is used throughout the standard library,
where pairs of sequences are used for operations on pairs of elements.

As shown in §18.5.1, these algorithms are even more useful than they appear at first glance
because the user can supply predicates defining what it means to be equal and to match.

Note that the sequences need not be of the same type. For example:

void !Uist<int>& Ii I vector<double>& vd)
{

bool b = equal (Ii . begin ( ) I Ii . end ( ) I vd . begin ( ) );

All that is required is that the elements be acceptable as operands of the predicate.
The two versions of mismatch () differ only in their use of predicates. In fact, we could imple

ment them as one function with a default template argument:

template<class In I class In2 I class BinPred>
pair<ln I In2> mismatch (In first I In last I In2 first2 I

BinPred p =equal_to<typename In:: value_type> ()) / / §J8.4.2.J

while (first ! = last && p (*first I *first2) )
++first;
++first2 ;

}

return pair<ln I In2> (first I first2) ;

The difference between having two functions and having one with a default argument can be
observed by someone taking pointers to functions. However, thinking of many of the variants of
the standard algorithms as simply "the version with the default predicate" roughly halves the num
ber of template functions that need to be remembered.



528 Algorithms and Function Objects

18.5.5 Search

Chapter 18

The search ( ) , search_n ( ) , and find_end () algorithms find one sequence as a subsequence in
another:

template<class For, class For2>
For search (For first, For last, For2 first2, For2 last2);

template<class For, class For2, class BinPred>
For search (For first, For last, For2 first2, For2 last2, BinPred p);

template<class For, class For2>
For find_end (For first, For last, For2 first2, For2 last2);

template<class For, class For2, class BinPred>
For find_end (For first, For last, For2 first2, For2 last2, BinPred p);

template<class For, class Size, class T>
For search_n (For first, For last, Size n, const T& val) ;

template<class For, class Size, class T, class BinPred>
For search_n (For first, For last, Size n, const T& val, BinPred p) i

The search () algorithm looks for its second sequence as a subsequence of its first. If that second
sequence is found, an iterator for the first matching element in the first sequence is returned. The
end of sequence (last) is returned to represent' 'not found." Thus, the return value is always in the
[first, last] sequence. For example:

string quote ( II Why waste time learning, when ignorance is instantaneous? II ) ;

bool in_quote (const string& s)
{

typedef string:: const_iterator SCI;
SCI p =search (quote. begin ( ), quote. end ( ), s. begin (), s. end ( ) ); / / find s in quote
return p! =quote . end ( ) i

void g ()
{

booI b J = in_quote ( II learning II ) ;

bool b2 = in_quote ( II lemming II ) ;

/ / bJ = true
/ / b2 =false

Thus, search () is an operation for finding a substring generalized to all sequences. This implies
that search () is a very useful algorithm.

The find_end () algorithm looks for its second input sequence as a subsequence of its first
input sequence. If that second sequence is found, find_end () returns an iterator pointing to the
last match in its first input. In other words, find_end () is search () , 'backwards." It finds the
last occurrence of its second input sequence in its first input sequence, rather than the first occur
rence of its second sequence.

The search_n () algorithm finds a sequence of at least n matches for its value argunlent in the
sequence. It returns an iterator to the first element of the sequence of n matches.



Section 18.6 Modifying Sequence Algorithms 529

18.6 Modifying Sequence Algorithms

If you want to change a sequence, you can explicitly iterate through it. You can then modify val
ues. Wherever possible, however, we prefer to avoid this kind of programming in favor of simpler
and more systematic styles of programming. The alternative is algorithms that traverse sequences
performing specific tasks. The nonmodifying algorithms (§ 18.5) serve this need when we just read
from the sequence. The modifying sequence algorithms are provided to do the most common
forms of updates. Some update a sequence, while others produce a new sequence based on infor
mation found during a traversal.

Standard algorithms work on data structures through iterators. This implies that inserting a new
element into a container or deleting one is not easy. For example, given only an iterator, how can
we find the container from which to remove the element pointed to? Unless special iterators are
used (e.g., inserters, §3.8, §19.2.4), operations through iterators do not change the size of a con
tainer. Instead of inserting and deleting elements, the algorithms change the values of elements,
swap elements, and copy elements. Even remove () operates by overwriting the elements to be
removed (§ 18.6.5). In general, the fundamental modifying operations produce outputs that are
modified copies of their inputs. The algorithms that appear to modify a sequence are variants that
copy within a sequence.

18.6.1 Copy

Copying is the simplest way to produce one sequence from another. The definitions of the basic
copy operations are trivial:

template<class In, class Out> Out copy (In first, In last, Out res)
{

while (first! = last) *res++ = *first++;
return res;

template<class Bi, class Bi2> Bi2 copy_backward (Bi first, Bi last, Bi2 res)
{

while (first ! = last) * - - res = * - -last;
return res;

The target of a copy algorithm need not be a container. Anything that can be described by an out
put iterator (§ 19.2.6) will do. For example:

void !(list<Club>& Ic, ostream& os)
{

copy (lc. begin ( ), lc. end ( ), ostream_iterator<Club> (os) );

To read a sequence, we need a sequence describing where to begin and where to end. To write, we
need only an iterator describing where to write to. However, we must take care not to write beyond
the end of the target. One way to ensure that we don't do this is to use an inserter (§ 19.2.4) to grow
the target as needed. For example:



530 Algorithms and Function Objects

void f( const vector<char>& vs, vector<char>& v)
{

Chapter 18

copy (vs . begin ( ) , vs . end ( ) , v . begin ( ) )ill might overwrite end ofv
copy (vs. begin ( ) , vs. end ( ) , back_inserter (v) ) i I I add elements from vs to end ofv

The input sequence and the output sequence may overlap. We use copy () when the sequences do
not overlap or if the end of the output sequence is in the input sequence. We use
copy_backward () when the beginning of the output sequence is in the input sequence. In that
way, no element is overwritten until after it has been copied. See also §18.13[13].

Naturally, to copy something backwards we need a bidirectional iterator (§19.2.1) for both the
input and the output sequences. For example:

void !(vector<char>& vc)
{

II ok
II ok

copy_backward (vc . begin ( ) , vc . end ( ) , ostream_iterator<char> (cout) ) i

vector<char> v (vc . size ( ) ) i
copy_backward (vc . begin ( ) , vc . end ( ) , v . end ( ) ) i
copy (V • begin ( ) , v. end ( ) , ostream_iteratoT<char> (cout) ) i

I I error

Often, we want to copy only elements that fulfill some criterion. Unfortunately, coPY_if() was
somehow dropped from the set of algorithms provided by the standard library (mea culpa). On the
other hand, it is trivial to define:

template<class In, class Out, class Pred>
Out copy_if(In first, In last, Out res, Pred p)
{

while (first ! = last) {
if (p (*first)) *res++ = *first i
++firsti

return res;

Now if we want to print elements with a value larger than n, we can do it like this:

void f(list<int>&ld, int n, ostream& os)
{

copy_if(ld . begin ( ) , ld . end ( ) , ostream_iterator<int> (os) , bind2nd (greater<int> ( ) , n) ) i

See also remove_copy_if() (§18.6.5).

18.6.2 Transform

Somewhat confusingly, transform () doesn't necessarily change its input. Instead, it produces an
output that is a transformation of its input based on a user-supplied operation:



Section 18.6.2

template<class In, class Out, class Op>
Out transform (In first, In last, Out res, Op op)
{

while (first! = last) *res++ = op (*first++) ;
return res;

template<class In, class In2, class Out, class BinOp>
Out transform (In first, In last, In2 first2, Out res, BinOp op)
{

while (first! = last) *res++ = op (*first++, *first2++);
return res;

Transform 531

The transform () that reads a single sequence to produce its output is rather similar to copy ( ) .
Instead of writing its element, it writes the result of its operation on that element. Thus, we could
have defined copy () as transform () with an operation that returns its argument:

template<class T> T identity (const T& x) { return x; }

template<class In, class Out> Out ceopy (In first, In last, Out res)
{

return transform (first, last, res, identity<typename iterator_traits<In> : :value_type> ) ;

The the explicit qualification of identity is needed to get a specific function from the function tem
plate. The iterator_traits template (§ 19.2.2) is used to get In's element type.

Another way to view transform () is as a variant of for_each that explicitly produces output.
For example, we can produce a list of name strings from a list of Clubs using transform ( ) :

string nameof(const Club& c) {return c. name;} / / extract name string

void f(list<Club>& lc)
{

transform (Ie. begin ( ) , lc . end ( ) , ostream_iterator<string> (cout, n\n n) , nameo/) ;

One reason transform () is called "transform" is that the result of the operation is often written
back to where the argument came from. Consider deleting objects pointed to by a set of pointers:

struct Deleteytr { / / use function object to get inlining
template<class T> T* operator () (T* p) const { delete p; return 0; }

} ;

void purge (deque<Shape*>& s)
{

transform (s. begin ( ), s. end ( ), s. begin ( ), Deleteytr ( ) );

The transform () algorithm always produces an output sequence. Here, I directed the result back
to the input sequence so that Deleteytr () (p) has the effect p=Deleteytr () (p). This was why
I chose to return 0 from Deleteytr: : operator () ().



532 Algorithms and Function Objects Chapter 18

The transform () algorithm that takes two sequences allows people to combine information
from two sources. For example, an animation may have a routine that updates the position of a list
of shapes by applying a translation:

Shape* move_shape (Shape* s, Point p) / / *s += p
{

s->move_to (s->center() +p) i

return s i

void updateyositions(list<Shape*>& Is, vector<Point>& oper)
{

/ / invoke operation on corresponding object:
transform (Is. begin ( ) , Is . end ( ) , oper. begin ( ) , Is . begin ( ) , move_shape) i

I didn't really want to produce a return value from nJove_shape ( ). However, transform () insists
on assigning the result of its operation, so I let move_shape () return its first operand so that I
could write it back to where it came from.

Sometimes, we do not have the freedom to do that. For example, an operation that I didn't write
and don't want to modify might not return a value. Sometimes, the input sequence is const. In
such cases, we might define a two-sequence for_each () to match the two-sequence transform ( ) :

template<class In, class In2, class BinOp>
BinOp for_each (In first, In last, In2 first2, BinOp op)
{

while (first! =last) op (*first++, *first2++) i

return 0Pi

void updateyositions(list<Shape*>& Is, vector<Point>& oper)
{

for_each (Is. begin ( ) , Is. end ( ) , oper. begin ( ) , move_shape) i

At other times, it can be useful to have an output iterator that doesn't actually write anything
(§ 19.6[2]).

There are no standard library algorithms that read three or more sequences. Such algorithms are
easily written, though. Alternatively, you can use transform () repeatedly.

18.6.3 Unique

Whenever information is collected, duplication can occur. The unique () and unique_copy ( )
algorithms eliminate adjacent duplicate values:

template<class For> For unique (For first, For last) i

template<class For, class BinPred> For unique (For first, For last, BinPred p) i

template<class In, class Out> Out unique_copy (In first, In last, Out res) i

template<class In, class Out, class BinPred>
Out unique_copy (In first, In last, Out res, BinPred p) i



Section 18.6.3 Unique 533

The unique () algorithm eliminates adjacent duplicates from a sequence, unique_copy () makes a
copy without duplicates. For example:

void f( list<string>& Is I vector<string>& vs)
{

Is. sort ( ); / / list sort (§J 7.2.2. J)
unique_copy (Is. begin ( ) I ls . end ( ) I back_inserter (vs) );

This copies Is to VS, eliminating duplicates in the process. The sort () is needed to get equal
strings adjacent.

Like other standard algorithms, unique () operates on iterators. It has no way of knowing the
type of container these iterators point into, so it cannot modify that container. It can only modify
the values of the elements. This implies that unique () does not eliminate duplicates from its input
sequence in the way we naively might expect. Rather, it moves unique elements towards the front
(head) of a sequence and returns an iterator to the end of the subsequence of unique elements:

template <class For> For unique (For first I For last)
{

first =adjacentJind (first I last); / / §J8.5.2
return unique_copy (first I last I first) ;

The elements after the unique subsequence are left unchanged. Therefore, this does not eliminate
duplicates in a vector:

void f( vector<string> & vs)
{

/ / warning: bad code!

sort (vs . begin ( ) I VS • end ( ) ) ;
unique (vs . begin ( ) I VS • end ( ) ) ;

/ / sort vector
/ / elitninate duplicates (no it doesn't!)

In fact, by moving the last elements of a sequence forward to eliminate duplicates, unique () can
introduce new duplicates. For example:

int main ()
{

char v [] = II abbcccde II ;

char* p = unique (v I v+strlen (v) ) ;
cout << v << ' , << p-v << ' \n ' ;

produced

abcdecde 5

That is, p points to the second c.
Algorithms that might have removed elements (but can't) generally come in two forms: the

"plain" version that reorders elements in a way similar to unique () and a version that produces a
new sequence in a way similar to unique_copy ( ). The _copy suffix is used to distinguish these
two kinds of algorithms.



534 Algorithms and Function Objects

To eliminate duplicates from a container, we must explicitly shrink it:

template<class C> void eliminate_duplicates (C& c)
{

Chapter 18

sort (c . begin ( ) Ie. end ( ) ) i
typename C:: iterator p =unique (c . begin ( ) Ie. end ( ) ) i
c. erase (p Ie. end ( ) ) i

/ I sort
II compact
II shrink

Note that eliminate_duplicates () would make no sense for a built-in array, yet unique () can still
be applied to arrays.

An example of unique_copy () can be found in §3.8.3.

18.6.3.1 Sorting Criteria

To eliminate all duplicates, the input sequences must be sorted (§18.7.1). Both unique () and
unique_copy () use ==as the default criterion for comparison and allow the user to supply alterna
tive criteria. For instance, we might modify the example from §18.5.1 to eliminate duplicate
names. After extracting the names of the Club officers, we were left with a list<Person*> called
o[f(§18.5.1). We could eliminate duplicates like this:

eliminate_duplicates (of:{) i

However, this relies on sorting pointers and assumes that each pointer uniquely identifies a person.
In general, we would have to examine the Person records to determine whether we would consider
them equal. We might write:

bool operator== (const Person& x I const Person& y) / / equality for object
{

/ / compare x and y for equality

bool operator< (const Person& x I const Person& y) / / less than for object
{

/ / compare x and y for order

bool Person_eq (const Person* x I const Person * y) / / equality through pointer
{

return *x == *Yi

bool Person_It (const Person* x I const Person* y) / / less than through pointer
{

return *x < *y i



Section 18.6.3.1

void extract_andyrint (const list<Club>& Ie)
{

Sorting Criteria 535

list<Person*> off;
extract (Ie , of:{) ;
off. sort (off, Person_It);
list<Club>:: iterator p =unique (off. begin ( ), off. end (), Person_eq);
for_each (off. begin ( ), p, Print_name (cout) );

I use list::sort() (§17.2.2.1) because the standard sort ( ) algorithm (§18.7.1) requires random
access iterators and list offers only bidirectional iterators (§ 17.1.2).

It is wise to make sure that the criterion used to sort matches the one used to eliminate dupli
cates. The default meanings of < and == for pointers are rarely useful as comparison criteria for
the objects pointed to.

18.6.4 Replace

The replace () algorithms traverse a sequence, replacing values by other values as specified. They
follow the patterns outlined by find/find_if and unique/unique_copy, thus yielding four variants
in all. Again, the code is simple enough to be illustrative:

template<class For, class T>
void replace (For first, For last, const T& val, const T& new_val)
{

while (first ! = last) {
if (*first == val) *first = new_val;
++first;

template<class For, class Pred, class T>
void replace_if(For first, For last, Pred p, const T& new_val)
{

while (first ! = last) {
if (p (*first)) *first =new_val;
++first;

template<class In, class Out, class T>
Out replace_copy (In first I In last, Out res, const T& val, const T& new_val)
{

while (first ! = last) {
*res++ = (*first == val) ? new val: *first;
++first;

return res;



536 Algorithms and Function Objects

template<class In, class Out, class Pred, class T>
Out replace_copy_if(In first, In last, Out res, Pred p, const T& new_val)
{

while (first ! = last) {
*res++ = p (*first) ? new val: *first;
++first;

return res;

Chapter 18

We might want to go through a list of strings, replacing the usual English transliteration of the
name of my home town Aarhus with its proper name Arhus:

void f( list<string>& towns)
{

replace (towns. begin ( ) , towns. end ( ), II Aarhus II , II Arhus II ) ;

This relies on an extended character set (§C.3.3).

18.6.5 Remove

The remove () algorithms remove elements from a sequence based on a value or a predicate:

template<class For, class T> For remove (For first, For last, const T& val) ;

template<class For, class Pred> For remove_if(For first, For last, Pred p);

template<class In, class Out, class T>
Out remove_copy (In first, In last, Out res, const T& val) ;

template<class In, class Out, class Pred>
Out remove_copy_if(In first, In last, Out res, Pred p);

Assuming that a Club has an address, we could produce a list of Clubs located in Copenhagen:

class located_in : public unaryJunction< Club, bool> {
string town;

public:
located_in (const string& ss) : town (ss) { }
bool operator () (const Club& c) const { return c. town == town; }

} ;

void f(list<Club>& lc)
{

remove_copy_if(lc. begin ( ), Ic. end ( ),
ostream_iterator<Club> (cout) , notl (located_in ( II Kf/Jbenhavn II ) ) );

Thus, remove_copy_if() is copy_if() (§18.6.1) with the inverse condition. That is, an element is
placed on the output by remove_copy_if() if the element does not match the predicate.

The "plain" remove () compacts non-matching elements at the beginning of the sequence and
returns an iterator for the end of the compacted sequence (see also §18.6.3).



Section 18.6.6

18.6.6 Fill and Generate

Fill and Generate 537

/ / see §22.7

The fill () and generate () algorithms exist to systematically assign values to sequences:

template<class For, class T> void fill (For first, For last, const T& val) ;
template<class Out, class Size, class T> void fill_n (Out res, Size n, const T& val) ;

template<class For, class Gen> void generate (For first, For last, Gen g);
template<class Out, class Size, class Gen> void generate_n (Out res, Size n, Gen g);

The fill () algorithm assigns a specified value; the generate () algorithm assigns values obtained
by calling its function argument repeatedly. Thus, fill () is simply the special case of generate ( )
in which the generator function returns the same value repeatedly. The _n versions assign to the
first n elements of the sequence.

For example, using the random-number generators Randint and Urand from §22.7:

int vI [900];
int v2 [900] i

vector v3 i

void f()

{

fill (vI, &vl [900],99) i / / set all elements ofvl to 99
generate (v2, &v2 [900] , Randint ( ) ) i / / set to random values (§22. 7)

/ I output 200 random integers in the interval [0.. 99J:
generate_n (ostream_iterator<int> (cout), 200, Urand (100) );

fiLl_n (back_inserter (v3) ,20,99) i / / add 20 elements with the value 99 to v3

The generate () and fill () functions assign rather than initialize. If you need to manipulate raw
storage, say to tum a region of memory into objects of well-defined type and state, you must use an
algorithm like uninitializedJill () from <memory> (§ 19.4.4) rather than algorithms from <algo
rithm>.

18.6.7 Reverse and Rotate

Occasionally, we need to reorder the elements of a sequence:

template<class Bi> void reverse (Bi first, Bi last) i

template<class Bi, class Out> Out reverse_copy (Bi first, Bi last, Out res);

template<class For> void rotate (For first, For middle, For last);
template<class For, class Out> Out rotate_copy (For first, For middle, For last, Out res);

template<class Ran> void random_shuffle (Ran first, Ran last);
template<class Ran, class Gen> void random_shuffle (Ran first, Ran last, Gen& g) ;

The reverse () algorithm reverses the order of the elements so that the first element becomes the
last, etc. The reverse_copy () algorithm produces a copy of its input in reverse order.

The rotate () algorithm considers its [first, last [ sequence a circle and rotates its elements
until its former middle element is placed where its first element used to be. That is, the element in



538 Algorithms and Function Objects Chapter 18

position first+i moves to position first+ (i+ (last-middle) ) %(last-first). The % (modulo) is
what makes the rotation cyclic rather than simply a shift to the left. For example:

void f()
{

string v [] ={ "Frog" I II and" , "Peach" } i

reverse (v I v+3);
rotate (v, v+l ,v+3) i

/ / Peach and Frog
/ / and Frog Peach

The rotate_copy () algorithm produces a copy of its input in rotated order.
By default, random_shuffle () shuffles its sequence using a uniform distribution random

number generator. That is, it chooses a permutation of the elements of the sequence in such a way
that each permutation has the same chance of being chosen. If you want a different distribution or
simply a better random-number generator, you can supply one. For example, using the Urand gen
erator from §22.7 we might shuffle a deck of cards like this:

void f(deque<Card>& de)
{

Urand r(52) i

random_shuffle (de. begin ( ) , de. end ( ) , r) ;
/ / ...

The movement of elements done by rotate ( ) , etc., is done using swap () (§ 1~.6.8).

18.6.8 Swap

To do anything at all interesting with elements in a container, we need to move them around. Such
movement is best expressed - that is, expressed most simply and most efficiently - as swap ( ) s:

template<class T> void swap (T& a I T& b)
{

T tmp =a;
a =bi
b = tmp;

template<class For, class For2> void iter_swap (For x, For2 Y)i

template<class For, elass For2> For2 swap_ranges (For first, For last, For2 flrst2)
{

while (first! =last) iter_swap (first++, flrst2++) i

return first2 i

To swap elements, you need a temporary. There are clever tricks to eliminate that need in special
ized cases, but they are best avoided in favor of the simple and obvious. The swap () algorithm is
specialized for important types for which it matters (§ 16.3.9, §13.5.2).

The iter_swap () algorithm swaps the elements pointed to by its iterator arguments.
The swap_ranges algorithm swaps elements in its two input ranges.



Section 18.7 Sorted Sequences 539

18.7 Sorted Sequences

Once we have collected some data, we often want to sort it. Once the sequence is sorted, our
options for manipulating the data in a convenient manner increase significantly.

To sort a sequence, we need a way of comparing elements. This is done using a binary predi
cate (§ 18.4.2). The default comparison is less (§ 18.4.2), which in tum uses < by default.

18.7.1 Sorting

The sort () algorithms require random-access iterators (§ 19.2.1). That is, they work best for
vectors (§ 16.3) and similar containers:

template<class Ran> void sort (Ran first, Ran last);
template<class Ran, class Cmp> void sort (Ran first, Ran last, Cmp cmp);

template<class Ran> void stable_sort (Ran first, Ran last);
template<class Ran, class Cmp> void stable_sort (Ran first, Ran last, Cmp cmp) i

The standard list (§ 17.2.2) does not provide random-access iterators, so lists should be sorted using
the specific list operations (§ 17.2.2.1).

The basic sort () is efficient - on average N* log (N) - but its worst-case performance is poor
- 0 (N*N). Fortunately, the worst case is rare. If guaranteed worst-case behavior is important or
a stable sort is required, stable_sort () should be used; that is, an N*log (N) *log (N) algorithm
that improves towards N* log (N) when the system has sufficient extra memory. The relative order
of elements that compare equal is preserved by stable_sort ( ) but not by sort ( ) .

Sometimes, only the first elements of a sorted sequence are needed. In that case, it makes sense
to sort the sequence only as far as is needed to get the first part in order. That is a partial sort:

template<class Ran> void partial_sort (Ran first, Ran middle, Ran last);
template<class Ran, class Cmp>

void partial_sort (Ran first, Ran middle, Ran last, Cmp cmp) i

template<class In, class Ran>
Ran partial_sort_copy (In first, In last, Ran first2, Ran last2);

template<class In, class Ran, class Cmp>
Ran partial_sort_copy (In first, In last, Ran first2, Ran last2, Cmp cmp);

The plain partial_sort () algorithms put the elements in the range first to middle in order. The
partial_sort_copy () algorithms produce N elements, where N is the lower of the number of ele
ments in the output sequence and the number of elements in the input sequence. We need to spec
ify both the start and the end of the result sequence because that's what determines how many ele
ments we need to sort. For example:

class Compare_copies_sold {
public:

int operator ( ) (const Book& bl, const Book& b2) const
{ return bl. copies_sold ( )>b2. copies_sold ( ); } / I sort in decreasing order

} ;



540 Algorithms and Function Objects Chapter 18

void f(const vector<Book>& sales) I I find the top ten books
{

vector<Book> bestsellers (10);
partial_sort_copy (sales. begin (), sales. end (),

bestsellers. begin ( ) , bestsellers . end ( ) , Compare_copies_sold ( ) ) ;
copy (bestsellers . begin ( ) , bestsellers . end ( ) , ostream_iterator<Book> (cout, II \II II ) ) ;

Because the target of partial_sort_copy () must be a random-access iterator, we cannot sort
directly to couto

Finally, algorithms are provided to sort only as far as is necessary to get the Nth element to its
proper place with no element comparing less than the Nth element placed after it in the sequence:

template<class Ran> void nth_element (Ran first, Ran nth, Ran last);
template<class Ran, class Cmp> void nth_element (Ran first, Ran nth, Ran last, Cmp cmp);

This algorithm is particularly useful for people - such as economists, sociologists, and teachers 
who need to look for medians, percentiles, etc.

18.7.2 Binary Search

A sequential search such as find () (§ 18.5.2) is terribly inefficient for large sequences, but it is
about the best we can do without sorting or hashing (§ 17.6). Once a sequence is sorted, however,
we can use a binary search to determine whether a value is in a sequence:

template<class For, class T> bool binary_search (For first, For last, const T& val);

template<class For, class T, class Cmp>
bool binary_search (For first, For last, const T& value, Cmp cmp);

For example:

void f( list<int>& c)
{

if (binary_search (c. begin ( ), c. end (), 7) )

I I ...
}

II ...

I I is 7 in c?

A binary_search () returns a bool indicating whether a value was present. As with find ( ), we
often also want to know where the elements with that value are in that sequence. However, there
can be many elements with a given value in a sequence, and we often need to find either the first or
all such elements. Consequently, algorithms are provided for finding a range of equal elements,
equal_range ( ) , and algorithms for finding the lower_bound ( ) and upper_bound () of that range:

template<class For, class T> For lower_bound (For first, For last, const T& val);
template<class For, class T, class Cmp>

For lower_bound (For first, For last, const T& val, Cmp cmp);



Section 18.7.2 Binary Search 541

template<class For, class T> For upper_bound (For first, For last, const T& val);
template<class For, class T, class Cmp>

For upper_bound (For first, For last, const T& val, Cmp cmp);

template<class For, class T> pair<For, For> equal_range (For first, For last, const T& val) ;
template<class For, class T, class Cmp>

pair<For, For> equal_range (For first, For last, const T& val, Cmp cmp);

These algorithms correspond to the operations on multimaps (§ 17.4.2). We can think of
lower_bound () as a fastfind () and find_if() for sorted sequences. For example:

void g (vector<int>& c)
{

typedef vector<int> : : iterator VI;

VI P=find(c.begin(),c.end(),7);
VI q =lower_bound (c . begin (), c. end (), 7);

II ...

I I probably slow: D(N); c needn't be sorted
I I probably fast: D(log(N)); c must be sorted

If lower_bound (first, last, k) doesn't find k, it returns an iterator to the first element with a key
greater than k, or last if no such greater element exists. This way of reporting failure is also used
by upper_bound () and equal_range ( ). This means that we can use these algorithms to deter
mine where to insert a new element into a sorted sequence so that the sequence remains sorted.

18.7.3 Merge

Given two sorted sequences, we can merge them into a new sorted sequence using merge () or
merge two parts of a sequence using inplace_merge ( ) :

template<class In, class In2, class Out>
Out merge (In first, In last, In2 first2, In2 last2, Out res);

template<class In, class In2, class Out, class Cmp>
Out merge (In first, In last, In2 first2, In2 last2, Out res, Cmp cmp);

template<class Bi> void inplace_merge (Bi first, Bi middle, Bi last);
template<class Bi, class Cmp> void inplace_merge (Bi first, Bi middle, Bi last, Cmp cmp);

Note that these merge algorithms differ from list's merge (§ 17.2.2.1) by not removing elements
from their input sequences. Instead, elements are copied.

For elements that compare equal, elements from the first range will always precede elements
from the second.

The inplace_merge () algorithm is primarily useful when you have a sequence that can be
sorted by more than one criterion. For example, you might have a vector of fish sorted by species
(for example, cod, haddock, and herring). If the elements of each species are sorted by weight, you
can get the whole vector sorted by weight by applying inplace_merge () to merge the information
for the different species (§18.13[20]).



542 Algorithms and Function Objects

18.7.4 Partitions

Chapter 18

To partition a sequence is to place every element that satisfies a predicate before every element that
doesn't. The standard library provides astableyartition ( ), which maintains relative order
among the elements that do and do not satisfy the predicate. In addition, the library offers parti
tion () which doesn't maintain relative order, but which runs a bit faster when memory is limited:

template<class Bi, class Pred> Bi partition (Bi first, Bi last, Pred p);
template<class Bi, class Pred> Bi stableyartition (Bi first, Bi last, Pred p);

You can think of a partition as a kind of sort with a very simple sorting criterion. For example:

void f( list<Club>& lc)
{

list< Club> : : iterator p =partition (lc .begin ( ) I lc . end ( ), located_in ( II Kt6benhavn II ) ) i

/ / ...

This "sorts" the list so that Clubs in Copenhagen comes first. The return value (here p) points
either to the first element that doesn't satisfy the predicate or to the end.

18.7.5 Set Operations on Sequences

A sequence can be considered a set. Looked upon that way, it makes sense to provide set opera
tions such as union and intersection for sequences. However, such operations are horribly ineffi
cient unless the sequences are sorted, so the standard library provides set operations for sorted
sequences only. In particular, the set operations work well for sets (§ 17.4.3) and multisets
(§17.4.4), both of which are sorted anyway.

If these set algorithms are applied to sequences that are not sorted, the resulting sequences will
not conform to the usual set-theoretical rules. These algorithms do not change their input
sequences, and their output sequences are ordered.

The includes () algorithm tests whether every member of the second sequence, [first2: last2 [,
is also a member of the first, [first: last [:

template<class In I class In2>
bool includes (In first, In last, In2 first2, In2 last2) i

template<class In, class In2, class Cmp>
bool includes (In first, In last, In2 first2, In2 last2, Cmp cmp);

The set_union () and set_intersection () produce their obvious outputs as sorted sequences:

template<class In, class In2, class Out>
Out set_union (In first, In last, In2 jirst2, In2 last2, Out res) i

template<class In, class In2, class Out, class Cmp>
Out set_union (In first, In last, In2 jirst2, In2 last2, Out res, Cmp cmp) i

template<class In, class In2, class Out>
Out set_intersection (In first, In last, In2 first2, In2 last2, Out res) i

template<class In, class In2, class Out, class Cmp>
Out set_intersection (In first, In last, In2 first2, In2 last2, Out res, Cmp cmp) i

The set_difference () algorithm produces a sequence of elements that are members of its first, but



Section 18.7.5 Set Operations on Sequences 543

not its second, input sequence. The set_symmetric_difference () algorithm produces a sequence
of elements that are members of either, but not of both, of its input sequences:

template<class In I class In2 I class Out>
Out set_difference (In first I In last I In2 first2 I In2 last2 lOut res);

template<class In I class In2 I class Out I class Cmp>
Out set_difference (In first I In last I In2 first2 I In2 last2, Out res, Cmp cmp);

template<class In, class In2, class Out>
Out set_symmetric_difference (In first, In last, In2 first2, In2 last2, Out res);

template<class In, class In2, class Out, class Cmp>
Out set_symmetric_difference (In first, In last, In2 first2, In2 last2, Out res, Cmp cmp);

For example:

char vI [] = "abed" i

char v2 [] = "cdef" ;

void f(char v3 [ ] )
{

set_difference (vI, vl+4, v2, v2+4, v3);
set_symmetric_difference (vI, vl+4, v2, v2+4, v3);

.}

18.8 Heaps

II v3 ="ab"
I I v3 ="abet'

The word heap means different things in different contexts. When discussing algorithms, "heap"
often refers to a way of organizing a sequence such that it has a first element that is the element
with the highest value. Addition of an element (using push_heap ( ) and removal of an element
(using pop_heap ( ) ) are reasonably fast, with a worst-case performance of 0 (log (N) ) , where N
is the number of elements in the sequence. Sorting (using sort_heap ( ) ) has a worst-case perfor
mance of 0 (N*log (N) ). A heap is implemented by this set of functions:

template<class Ran> void push_heap (Ran first, Ran last);
template<class Ran, class Cmp> void push_heap (Ran first, Ran last, Cmp cmp);

template<class Ran> void pop_heap (Ran first, Ran last);
template<class Ran, class Cmp> void pop_heap (Ran first I Ran last, Cmp cmp) i

template<class Ran> void make_heap (Ran first, Ran last); I I tum sequence into heap
template<class Ran, class Cmp> void make_heap (Ran first, Ran last, Cmp cmp);

template<class Ran> void sort_heap (Ran first, Ran last); I I turn heap into sequence
template<class Ran I class Cmp> void sort_heap (Ran first, Ran last, Cmp cmp);

The style of the heap algorithms is odd. A more natural way of presenting their functionality would
be to provide an adapter class with four operations. Doing that would yield something like a
priority_queue (§ 17.3.3). In fact, a priority_queue is almost certainly implemented using a heap.

The value pushed by push_heap (first, last) is * (last-l). The assumption is that
[first, last-l [ is already a heap, so push_heap () extends the sequence to [first, last [ by includ
ing the next element. Thus, you can build a heap from an existing sequence by a series of



544 Algorithms and Function Objects Chapter 18

push_heap () operations. Conversely, pop_heap (first, last) removes the first element of the
heap by swapping it with the last element (* (last-I) ) and making [first, last-l [ into a heap.

18.9 Min and Max

The algorithms described here select a value based on a comparison. It is obviously useful to be
able to find the maximum and minimum of two values:

template<class T> const T& max (const T& a, const T& b)
{

return (a<b) ? b : Q;

template<class T, class Cmp> const T& max (const T& a, const T& b, Cmp cmp)
{

return (cmp (a , b) ) ? b : a;

template<class T> const T& min (const T& a, const T& b) ;

template<class T, class Cmp> const T& min (const T& a, const T& b, Cmp cmp);

The max () and min () operations can be generalized to apply to sequences in the obvious manner:

template<class For> For max_element (For first, For last);
template<class For, class Cmp> For max_element (For first, For last, Cmp cmp);

template<class For> For min_element (For first, For last);
template<class For, class Cmp> For min_element (For first, For last, Cmp cmp);

Finally, lexicographical ordering is easily generalized from strings of characters to sequences of
values of a type with comparison:

template<class In, class In2>
bool lexicographical_compare (In first, In last, In2 first2, In2 last2);

template<class In, class In2, class Cmp>
bool lexicographical_compare (In first, In last, In2 first2, In2 last2, Cmp cmp)
{

while (first ! =last && first2 ! =last2) {
if (cmp (*first, *first2) ) return true;
if (cmp (*first2 + + , *first+ +) ) return false;

}

return first == last &&first2 ! = last2;

This is very similar to the function presented for general strings in §13.4.1. However,
lexicographical_compare () compares sequences in general and not just strings. It also returns a
booI rather than the more useful into The result is true (only) if the first sequence compares < the
second. In particular, the result isfalse when the sequences compare equal.

C-style strings and strings are 8equences, so lexicographical_compare () can be used as a
string compare function. For example:



Section 18.9

char vi [] = "yes" ;
char v2 [] = II no II ;

string s1 = "Yes" ;
string s2 = "No" ;

void f()

{

Min and Max 545

bool b1 = lexicographical_compare (vI, vl+strlen (vi), v2, v2+strlen (v2) );
booI b2 = lexicographical_compare (s I . begin ( ) , sI . end ( ) , s2 . begin ( ) , s2 . end ( ) };

bool b3 = lexicographical_compare (vI, vJ+strlen (vI), s1 . begin ( ), s1 . end ( ) );
bool b4 = lexicographical_compare (s1 . begin ( ) , s1 . end ( ) , v1 , v1+strlen (v1 ) , Nocase ( ) );

The sequences need not be of the same type - all we need is to compare their elements - and the
comparison criterion can be supplied. This makes lexicographical_compare () more general and
potentially a bit slower than string's compare. See also §20.3.8.

18.10 Permutations

Given a sequence of four elements, we can order them in 4*3*2 ways. Each of these orderings is
called a permutation. For example, from the four characters abcd we can produce 24 permutations:

abcd abdc acbd acdb adbc adcb bacd badc
bcad bcda bdac bdca cabd cadb cbad cbda
cdab cdba dabc dacb dbac dbca dcab dcba

The nextyermutation () and prevyermutation () functions deliver such permutations of a
sequence:

template<class Hi> bool nextyermutation (Hi first, Hi last) i

template<class Hi, class Cmp> bool nextyermutation (Bi first, Bi last, Cmp cmp) i

template<class Bi> bool prevyermutation (Hi first, Bi last) i

template<class Bi, class Cmp> bool prevyermutation (Bi first, Bi last, Cmp cmp);

The permutations of abcd were produced like this:

int main ()
{

char v [] = "abcd" i

cout« v« '\1' i

while {nextyermutation {v, v+4} } cout« v« '\1' i

The permutations are produced in lexicographical order (§ 18.9). The return value of
nextyermutation () indicates whether a next permutation actually exists. If not, false is returned
and the sequence is the permutation in which the elements are in lexicographical order. The return
value of prevyermutation () indicates whether a previous permutation actually exists. If not,
false is returned and the sequence is the permutation in which the elements are in reverse lexico
graphical order.



546 Algorithms and Function Objects Chapter 18

18.11 C-Style Algorithms

From the C standard library, the C++ standard library inherited a few algorithms dealing with C
style strings (§20.4.I), plus a quicksort and a binary search, both limited to arrays.

The qsort () and bsearch () functions are presented in <cstdlib> and <stdlib. h>. They each
operate on an array of n elements of size elem_size using a less-than comparison function passed as
a pointer to function. The elements must be of a type without a user-defined copy constructor, copy
assignment, or destructor:

typedef int ( *_ cmp) (const void* I const void*); / / typedeffor presentation only

void qsort(void* P, size_t n , size_t elem_size , _cmp};
void* bsearch (const void* key I void* p I size_t n I size_t elem_size I _ cmp ) ;

/ / sort p
/ / find key in p

The use of qsort () is described in §7.7.
These algorithms are provided solely for C compatibility; sort () (§ 18.7.1) and search ( )

(§ 18.5.5) are more general and should also be more efficient.

18.12 Advice

[1] Prefer algorithms to loops; § 18.5.1.
[2] When writing a loop, consider whether it could be expressed as a general algorithm; §18.2.
[3] Regularly review the set of algorithms to see if a new application has become obvious; §18.2.
[4] Be sure that a pair of iterator arguments really do specify a sequence; §18.3.1.
[5] Design so that the most frequently-used operations are simple and safe; §18.3, §18.3.1.
[6] Express tests in a form that allows them to be used as predicates; §18.4.2.
[7] Remember that predicates are functions and objects, not types; §18.4.2.
[8] You can use binders to make unary predicates out of binary predicates; §18.4.4.1.
[9] Use memJun () and memJun_ref() to apply algorithms on containers; §18.4.4.2.
[10] Use ptTJun () when you need to bind an argument of a function; §18.4.4.3.
[II] Remember that stTcmp () differs from == by returning 0 to indicate "equal;" §18.4.4.4.
[12] Use for_each () and transform () only when there is no more-specific algorithm for a task;

§18.5.1.
[13] Use predicates to apply algorithms using a variety of comparison and equality criteria;

§18.4.2.1, §18.6.3.1.
[14] Use predicates and other function objects so as to use standard algorithms with a wider range

of meanings; §18.4.2.
[15] The default == and < on pointers are rarely adequate for standard algorithms; §18.6.3.1.
[16] Algorithms do not directly add or subtract elements from their argument sequences; §18.6.
[17] Be sure that the less-than and equality predicates used on a sequence match; §18.6.3.1.
[18] Sometimes, sorted sequences can be used to increase efficiency and elegance; §18.7.
[19] Use qsort () and bsearch () for compatibility only; §18.11.



Section 18.13

18.13 Exercises

Exercises 547

The solutions to several exercises for this chapter can be found by looking at the source text of an
implementation of the standard library. Do yourself a favor: try to find your own solutions before
looking to see how your library implementer approached the problems.
1. (*2) Learn 0 () notation. Give a realistic example in which an 0 (N*N) algorithm is faster

than an 0 (N) algorithm for some N>lO.
2. (*2) Implement and test the four memJun () and memJun_ref() functions (§ 18.4.4.2).
3. (*1) Write an algorithm match () that is like mismatch ( ), except that it returns iterators to the

first corresponding pair that matches the predicate.
4. (*1.5) Implement and test Print_name from §18.5.1.
5. (* 1) Sort a list using only standard library algorithms.
6. (*2.5) Define versions of iseq() (§18.3.1) for built-in arrays, istream, and iterator pairs.

Define a suitable set of overloads for the nonmodifying standard algorithms (§ 18.5) for Iseqs.
Discuss how best to avoid ambiguities and an explosion in the number of template functions.

7. (*2) Define an oseq () to complement iseq ( ). The output sequence given as the argument to
oseq () should be replaced by the output produced by an algorithm using it. Define a suitable
set of overloads for at least three standard algorithms of your choice.

8. (*1.5) Produce a vector of squares of numbers 1 through 100. Print a table of squares. Take
the square root of the elements of that vector and print the resulting vector.

9. (*2) Write a set of functional objects that do bitwise logical operations on their operands. Test
these objects on vectors of char, int, and bitset<67>.

10. (*1) Write a binder3 () that binds the second and third arguments of a three-argument function
to produce a unary predicate. Give an example where binder3 () is a useful function.

11. (* 1.5) Write a small program that that removes adjacent repeated words from from a file file.
Hint: The program should remove a that, afrom, and afile from the previous statement.

12. (*2.5) Define a format for records of references to papers and books kept in a file. Write a pro
gram that can write out records from the file identified by year of publication, name of author,
keyword in title, or name of publisher. The user should be able to request that the output be
sorted according to similar criteria.

13. (*2) Implement a move () algorithm in the style of copy () in such a way that the input and
output sequences can overlap. Be reasonably efficient when given random-access iterators as
arguments.

14. (*1.5) Produce all anagrams of the wordfood. That is, all four-letter combinations of the letters
f, 0, 0, and d. Generalize this program to take a word as input and produce anagrams of that
word.

15. (*1.5) Write a program that produces anagrams of sentences; that is, a program that produces all
permutations of the words in the sentences (rather than permutations of the letters in the words).

16. (*1.5) Implement find_if ( ) (§18.5.2) and then implement find () usingfind_if(). Find a way
of doing this so that the two functions do not need different names.

17. (*2) Implement search () (§18.5.5). Provide an optimized version for random-access iterators.
18. (*2) Take a sort algorithm (such as sort () from your standard library or the Shell sort from

§13.5.2) and insert code so that it prints out the sequence being sorted after each swap of ele
ments.



548 Algorithms and Function Objects Chapter 18

19. (*2) There is no sort () for bidirectional iterators. The conjecture is that copying to a vector
and then sorting is faster than sorting a sequence using bidirectional iterators. Implement a gen
eral sort for bidirectional iterators and test the conjecture.

20. (*2.5) Imagine that you keep records for a group of sports fishermen. For each catch, keep a
record of species, length, weight, date of catch, name of fisherman, etc. Sort and print the
records according to a variety of criteria. Hint: inplace_merge ( ) .

21. (*2) Create lists of students taking Math, English, French, and Biology. Pick about 20 names
for each class out of a set of 40 names. List students who take both Math and English. List stu
dents who take French but not Biology or Math. List students who do not take a science course.
List students who take French and Math but neither English nor Biology.

22. (* 1.5) Write a remove () function that actually removes elements from a container.



19
Iterators and Allocators

The reason that data structures and algorithms
can work together seamlessly is ... that they

do not know anything about each other.
- Alex Stepanov

Iterators and sequences - operations on iterators - iterator traits - iterator categories
- inserters - reverse iterators - stream iterators - checked iterators - exceptions
and algorithms - allocators - the standard allocator - user-defined allocators 
low-level memory functions - advice - exercises.

19.1 Introduction

Iterators are the glue that holds containers and algorithms together. They provide an abstract view
of data so that the writer of an algorithm need not be concerned with concrete details of a myriad of
data structures. Conversely, the standard model of data access provided by iterators relieves con
tainers from having to provide a more extensive set of access operations. Similarly, allocators are
used to insulate container implementations from details of access to memory.

Iterators support an abstract model of data as sequences of objects (§ 19.2). Allocators provide a
mapping from a lower-level model of data as arrays of bytes into the higher-level object model
(§19.4). The most common lower-level memory model is itself supported by a few standard func
tions (§ 19.4.4).

Iterators are a concept with which every programmer should be familiar. In contrast, allocators
are a support mechanism that a programmer rarely needs to worry about and few programmers will
ever need to write a new allocator.



550 Iterators and AUocators Chapter 19

19.2 Iterators and Sequences

An iterator is a pure abstraction. That is, anything that behaves like an iterator is an iterator
(§3.8.2). An iterator is an abstraction of the notion of a pointer to an element of a sequence. Its key
concepts are

- "the element currently pointed to" (dereferencing, represented by operators * and - >),
- "point to next element" (increment, represented by operator ++), and
- equality (represented by operator ==).

For example, the built-in type int* is an iterator for an int [] and the class list<int> : : iterator is an
iterator for a list class.

A sequence is an abstraction of the notion "something where we can get from the beginning to
the end by using a next-element operation:"

begin() end()

I ele![O] I~ I elem[l] I~ I elem[2] I~ Ir-----I ~ lelem[n-lJl ~ ::::::~::::::

Examples of such sequences are arrays (§5.2), vectors (§ 16.3), singly-linked lists (§17.8[17]),
doubly-linked lists (§17.2.2), trees (§17.4.1), input (§21.3.1), and output (§21.2.1). Each has its
own appropriate kind of iterator.

The iterator classes and functions are declared in namespace std and found in <iterator>.
An iterator is not a general pointer. Rather, it is an abstraction of the notion of a pointer into an

array. There is no concept of a "null iterator." The test to determine whether an iterator points to
an element or not is conventionally done by comparing it against the end of its sequence (rather
than comparing it against a null element). This notion simplifies many algorithms by removing the
need for a special end case and generalizes nicely to sequences of arbitrary types.

An iterator that points to an element is said to be valid and can be dereferenced (using *, [], or
-> appropriately). An iterator can be invalid either because it hasn't been initialized, because it
pointed into a container that was explicitly or implicitly resized (§16.3.6, §16.3.8), because the con
tainer into which it pointed was destroyed, or because it denotes the end of a sequence (§ 18.2). The
end of a sequence can be thought of as an iterator pointing to a hypothetical element position one
past-the-Iast element of a sequence.

19.2.1 Iterator Operations

Not every kind of iterator supports exactly the same set of operations. For example, reading
requires different operations from writing, and a vector allows convenient and efficient random
access in a way that would be prohibitively expensive to provide for a list or an istream. Conse
quently, we classify iterators into five categories according to the operations they are capable of
providing efficiently (that is, in constant time; §17.1):



Section 19.2.1 Iterator Operations 551

Iterator Operations and Categories
Category: output input forward bidirectional random-access
Abbreviation: Out In For Bi Ran

Read: =*p =*p =*p =*p
Access: -> -> -> -> [ ]

Write: *p= *p= *p= *p=
Iteration: ++ ++ ++ ++ -- ++ -- + - += - =
Comparison: -- != -- != -- != -- != < > >= <=

Both read and write are through the iterator dereferenced by *:

*p =Xi

X =*Pi

/ / write x through p
/ / read through p into x

To be an iterator type, a type must provide an appropriate set of operations. These operations must
have their conventional meanings. That is, each operation must have the same effect it has on an
ordinary pointer.

Independently of its category, an iterator can allow const or non-const access to the object it
points to. You cannot write to an element using an iterator to const - whatever its category. An
iterator provides a set of operators, but the type of the element pointed to is the final arbiter of what
can be done to that element.

Reads and writes copy objects, so element types must have the conventional copy semantics
(§17.1.4).

Only random-access iterators can have an integer added or subtracted for relative addressing.
However, except for output iterators, the distance between two iterators can always be found by
iterating through the elements, so a distance () function is provided:

template<class In> typename iterator_traits<ln> : :difference_type distance (In first I In last)
{

typename iterator_traits<ln> : :difference_type d =0 i
while (first+ + ! =last ) d+ + i
return di

An iterator_traits<In> : : difference_type is defined for every iterator In to hold distances between
elements (§ 19.2.2).

This function is called distance () rather than operator- () because it can be expensive and
the operators provided for an iterator all operate in constant time (§ 17.1). Counting elements one
by one is not the kind of operation I would like to invoke unwittingly for a large sequence. The
library also provides a far more efficient implementation of distance () for a random-access itera
tor.

Similarly, advance () is provided as a potentially slow +=:

template <class In I class Dist> void advance (In& i I Dist n); / / i+=n



552 Iterators and Allocators

19.2.2 Iterator Traits

Chapter 19

We use iterators to gain information about the objects they point to and the sequences they point
into. For example, we can dereference an iterator and manipulate the resulting object and we can
find the number of elements in a sequence, given the iterators that describe it. To express such
operations, we must be able to refer to types related to an iterator such as "the type of the object
referred to by an iterator" and "the type of the distance between two iterators." The related types
of an iterator are described by a small set of declarations in an iterator_traits template class:

/ / return type ofoperator->()
/ / return type ofoperator*()

template<class Iter> struct iterator_traits {
typedef typename Iter:: iterator_category iterator_category ;
typedef typename Iter:: value_type value_type;
typedef typename Iter:: difference_type difference_type;
typedef typename Iter: :pointer pointer;
typedef typename Iter:: reference reference;

/ / §19.2.3
/ / type ofelement

} ;

The difference_type is the type used to represent the difference between two iterators, and the
iterator_category is a type indicating what operations the iterator supports. For ordinary pointers,
specializations (§ 13.5) for <T* > and <const T* > are provided. In particular:

template<class T> struct iterator_traits<T*> { / / specialization for pointers
typedef random_access_iterator_tag iterator_category ;
typedef T value_type;
typedef ptrdiff_t difference_type;
typedef T* pointer;
typedef T& reference;

} ;

That is, the difference between two pointers is represented by the standard library type ptrdiff_t
from <cstddef> (§6.2.1) and a pointer provides random access (§ 19.2.3). Given iterator_traits,
we can write code that depends on properties of an iterator parameter. The count () algorithm is
the classical example:

template<class In, class T>
typename iterator_traits<ln>: :difference_type count (In first, In last, const T& val)
{

typename iterator_traits<ln> : :difference_type res =0;
while (first! =last) if (*first++ == val) ++res;
return res;

The type of the result is expressed using iterator_traits</n>. The reason is that there is no lan
guage primitive for directly expressing an arbitrary type in terms combinations of other types. In
particular, there is no way to directly express "the type of the result of subtracting two Ins. "

Instead of using iterator_traits, we might have specialized count () for pointers:

template<class In, class T>
typename In:: difference_type count (In first, In last, const T& val) ;

template<class In, class T> ptrdiff_t count<T* , T> (T* first, T* last, const T& val) ;



Section 19.2.2 lterator Traits 553

/ / §19.2.3
/ / type ofelement
/ / type ofiterator difference
/ / return type for - >
/ / return type for *

However, this would have solved the problem for count () only. Had we used this technique for a
dozen algorithms, the information about distance types would have been replicated a dozen times.
In general, it is better to represent a design decision in one place (§23.4.2). In that way, the deci
sion can - if necessary - be changed in one place.

Because iterator_traits<Iterator> is defined for every iterator, we implicitly define an
iterator_traits whenever we design a new iterator type. If the default traits generated from the
general iterator_traits template are not right for our new iterator type, we provide a specialization
in a way similar to what the standard library does for pointer types. The iterator_traits that are
implicitly generated assume that the iterator is a class with the member types difference_type,
value_type, etc. In <iterator>, the library provides a base type that can be used to define those
member types:

template<class Cat, class T, class Dist = ptrdiff_t, class Ptr = T*, class Ref = T&>
struct iterator {

typedef Cat iterator_category ;
typedef T value_type i

typedef Dist difference_type;
typedef Ptr pointer;
typedef Ref reference;

} ;

Note that reference and pointer are not iterators. They are intended to be the return types of oper
ator* () and operator-> ( ) , respectively, for some iterator.

The iterator_traits are the key to the simplicity of many interfaces that rely on iterators and to
the efficient implementation of many algorithms. -- .

19.2.3 Iterator Categories

The different kinds of iterators - usually referred to as iterator categories - fit into a hierarchical
ordering:

Input ::=: Forward __ Bidirectional __Random access

Output

This is not a class inheritance diagram. An iterator category is a classification of a type based on
the operations it provides. Many otherwise unrelated types can belong to the same iterator cate
gory. For example, both ordinary pointers (§19.2.2) and Checked_iters (§19.3) are random-access
iterators.

As noted in Chapter 18, different algorithms require different kinds of iterators as arguments.
Also, the same algorithm can sometimes be implemented with different efficiencies for different
kinds of iterators. To support overload resolution based on iterator categories, the standard library
provides five classes representing the five iterator categories:



554 Iterators and AUocators

struct input_iterator_tag { } ;
struct output_iterator_tag {} ;
struct forward_iterator_tag : public input_iterator_tag {} ;
struct bidirectional_iterator_tag : public forward_iterator_tag {} ;
struct random_access_iterator_tag : public bidirectional_iterator_tag {} ;

Chapter 19

Looking at the operations supported by input and forward iterators (§19.2.1), we would expect
forward_iterator_tag to be derived from output_iterator_tag as well as from input_iterator_tag.
The reasons that it is not are obscure and probably invalid. However, I have yet to see an example
in which that derivation would have simplified real code.

The inheritance of tags is useful (only) to save us from defining separate versions of a function
where several - but not all - kinds of iterators can use the same algorithms. Consider how to
implement distance:

template<class In>
typename iterator_traits<ln> : :difference_type distance (In first, In last);

There are two obvious alternatives:
[1] If In is a random-access iterator, we can subtract first from last.
[2] Otherwise, we must increment an iterator fromfirst to last and count the distance.

We can express these two alternatives as a pair of helper functions:

template<class In>
typename iterator_traits<ln> : : difference_type
dist_helper (In first, In last, input_iterator_tag)
{

typename iterator_traits</n> : :difference_type d = 0;
while (first++! =last) d++; / / use increment only
return d;

template<class Ran>
typename iterator_traits<Ran> : :difference_type
dist_helper (Ran first, Ran last, random_access_iterator_tag)
{

return last-first; / / rely on random access

The iterator category tag arguments make it explicit what kind of iterator is expected. The iterator
tag is used exclusively for overload resolution; the tag takes no part in the actual computation. It is
a purely compile-time selection mechanism. In addition to automatic selection of a helper function,
this technique provides immediate type checking (§ 13.2.5).

It is now trivial to define distance () by calling the appropriate helper function:

template<class In>
typename iterator_traits<ln> : : difference_type distance (In first, In last)
{

return dist_helper (first, last, iterator_traits<ln> : : iterator_category ( ) ) ;



Section 19.2.3 Iterator Categories 555

For a dist_helper () to be called, the iterator_traits<ln> : : iterator_category used must be a
input_iterator_tag or a random_access_iterator_tag. However, there is no need for separate ver
sions of dist_helper () for forward or bidirectional iterators. Thanks to tag inheritance, those cases
are handled by the dist__Itelper () which takes an input_iterator_tag. The absence of a version for
output_iterator_tag reflects the fact that distance () is not meaningful for output iterators:

void f(vector<lnt>& vi,
list<double>& ld,
istream_iterator<string>& isl, istream_iterator<string>& is2,
ostream_iterator<char>& osl, ostream_iterator<char>& os2)

,distance (vi. begin ( ) , vi . end ( ) ) ; / / use subtraction algorithm
distance (ld . begin ( ) , ld . end ( ) ) ; / / use increment algorithm
distance (isl , is2) ; / / use increment algorithm
distance (os1 , os2) ; / / error: wrong iterator category, dist_helper() argument type mismatch

~alling distance () for an istream_iterator probably doesn't make much sense in a real program,
though. The effect would be to read the input, throw it away, and return the number of values
thrown away.

Using iterator_traits<T> : : iterator_category allows a programmer to provide alternative
implementations so that a user who cares nothing about the implementation of algorithms automati
cally gets the most appropriate implementation for each data structure used. In other words, it
allows us to hide an implementation detail behind a convenient interface. Inlining can be used to
ensure that this elegance is not bought at the cost of run-time efficiency.

19.2.4 Inserters

Producing output through an iterator into a container implies that elements following the one
pointed to by the iterator can be overwritten. This implies the possibility of overflow and conse
quent memory corruption. For example:

void f( vector<int>& vi)
{

fill_n (vi . begin (), 200, 7) ; / / assign 7 to vi{O}..{199}

If vi has fewer than 200 elements, we are in trouble.
In < iterator>, the standard library provides three iterator template classes to deal with this

problem, plus three functions to make it convenient to use those iterators:

template <class Cont> back insert iterator<Cont> back inserter (Cont& c) ;
template <class Cont> jront__insert__iterator<Cont> fron~inserter (Cont& c) i

template <class Cont, class Out> insert_iterator<Cont> inserter (Cont& c, Out p);

The back_inserter () causes elements to be added to the end of the container, front_inserter ( )
causes elements to be added to the front, and "plain" inserter () causes elements to be added
before its iterator argument. For inserter (c , p) , p must be a valid iterator for c. Naturally, a con
tainer grows each time a value is written to it through an insert iterator.



556 Iterators and Allocators Chapter 19

When written to, an inserter inserts a new element into a sequence using push_back ( ) ,
pushJront ( ) , or insert () (§ 16.3.6) rather than overwriting an existing element. For example:

void g (vector<int>& vi)
{

fill_n (back_inserter (vi), 200, 7); / / add 200 7s to the end ofvi

Inserters are as simple and efficient as they are useful. For example:

template <class Cont>
class insert_iterator : public iterator<output_iterator_tag, void, void, void, void> {
protected:

Cont& container; / / container to insert into
typename Cont:: iterator iter; / / points into the container

public:
explicit insert_iterator (Cont& x, typename Cont:: iterator i)

: container (x), iter (i) {}

insert_iterator& operator= (const typename Cont:: value_type& val)
{

iter =container. insert (iter, val) ;
++iter;
return * this ;

} ;

insert_iterator& operator* () { return * this; }
insert_iterator& operator++ () {return * this; }
insert_iterator operator++ (int) { return *this; }

/ / prefix ++
/ / postfix ++

Clearly, inserters are output iterators.
An insert_iterator is a special case of an output sequence. In parallel to the iseq from § 18.3.1,

we might define:

template<class Cont>
insert iterator<Cont>
oseq (Cont& c, typename Cont:: iterator first, typename Cont:: iterator last)
{

return insert_iterator<Cont> (c Ie. erase (first, last) ); / / erase is explained in §16.3.6

In other words, an output sequence removes its old elements and replaces them with the output.
For example:

void f(list<int>& Ii, vector<int>& vi) / / replace second halfo/vi by a copy of Ii
{

copy (Ii .begin ( ) , li . end ( ) , oseq (vi, vi . begin ( ) +vi . size ( ) /2, vi . end ( ) ) );

The container needs to be an argument to an oseq because it is not possible to decrease the size of a
container, given only iterators into it (§ 18.6, §18.6.3).



Section 19.2.5 Reverse Iterators 557

19.2.5 Reverse Iterators

The standard containers provide rbegin () and rend () for iterating through elements in reverse
order (§ 16.3.2). These member functions return reverse_iterators:

template <class Iter>
class reverse_iterator : public iterator<typename iterator_traits<lter> : : iterator_category ,

typename iterator_traits<lter>:: value_type,
typename iterator_traits<lter> : :difference_type,
typename iterator_traits<lter> : :pointer,
typename iterator_traits<lter> : : reference> {

protected:
Iter current; / / current points to the element after the one *this refers to.

public:
typedef Iter iterator_type;

reverse_iterator () : current () { }
explicit reverse_iterator (Iter x) : current (x) { }
template<class U> reverse_iterator (const reverse_iterator< U>& x) : current (x • base ( )) { }

Iter base () const { return current; } / / current iterator value

reference operator* () const { Iter tmp = current; return * - -tmp ;
pointer operator-> () const;
reference operator [] (difference_type n) const;

reverse_iterator& operator++ () { - -current; return * this; } / / note: not ++
reverse_iterator operator++ (int) {reverse_iterator t = current; - -current; return t;
reverse_iterator& operator- - () { ++current ; return * this; } / / note: not-
reverse_iterator operator-- (int) { reverse_iterator t = current; ++current; return t;

reverse_iterator operator+ (difference_type n) const;
reverse_iterator& operator+= (difference_type n);
reverse_iterator operator- (difference_type n) const;
reverse_iterator& operator- = (difference_type n);

} ;

A reverse_iterator is implemented using an iterator called current. That iterator can (only) point
to the elements of its sequence plus its one-past-the-end element. However, the reverse_iterator's
one-past-the-end element is the original sequence's (inaccessible) one-before-the-beginning ele
ment. Thus, to avoid access violations, current points to the element after the one the
reverse_iterator refers to. This implies that * returns the value * (current- J) and that ++ is
implemented using - - on current.
A reverse_iterator supports the operations that its initializer supports (only). For example:

void f(vector<int>& v, list<char>& lst)
{

v.rbegin() [3] = 7;
1st. rbegin () [3] = "4";

* (++++++lst. rbegin ( ) )

/ / ok: random-access iterator
/ / error: bidirectional iterator doesn't support [1

"4"; / / ok!

In addition, the library provides ==, ! =, <, <=, >, >=, + and - for reverse_iterators.



558 Iterators and Allocators

19.2.6 Stream Iterators

Chapter 19

Ordinarily, I/O is done using the streams library (Chapter 21), a graphical user-interface system
(not covered by the C++ standard), or the C I/O functions (§21.8). These I/O interfaces are primar
ily aimed at reading and writing individual values of a variety of types. The standard library pro
vides four iterator types to fit stream I/O into the general framework of containers and algorithms:

- ostream_iterator: for writing to an ostream (§3.4, §21.2.1).
istream_iterator: for reading from an istream (§3.6, §21.3.1).

- ostreambuf_iterator: for writing to a stream buffer (§21.6.1).
- istreambuf_iterator: for reading from a stream buffer (§21.6.2).

The idea is simply to present input and output of collections as sequences:

template <class T, class Ch = char, class Tr = char_traits<Ch> >
class ostream_iterator : public iterator<output_iterator_tag, void, void, void, void> {
public:

typedef Ch char_type;
typedef Tr traits_type;
typedef basic_ostream<Ch, Tr> ostream_type;

ostream_iterator (ostream_type& s) ;
ostream_iterator (ostream_type& s, const Ch * delim); / / write delim after each output value
ostream_iterator (const ostream_iterator& ) ;
-ostream_iterator ( );

} ;

ostream_iterator& operator= (const T& val) ;

ostream_iterator& operator* ( );
ostream_iterator& operator++ ( );
ostream_iterator& operator++ (int);

/ / write val to output

This iterator accepts the usual write and increment operations of an output iterator and converts
them into « output operations on an ostream. For example:

void f()
{

ostream_iterator<int> os (cout) ; / / write ints to cout through os
*os = 7 i / / output 7 (using cout«7)
++os ; / / get ready for next output
*os = 79; / / output 79

The ++ operation might trigger an actual output operation, or it might have no effect. Different
implementations will use different implementation strategies. Consequently, for code to be port
able a ++ must occur between every two assignments to an ostream_iterator. Naturally, every
standard algorithm is written that way - or it would not work for a vector. This is why
ostream_iterator is defined this way.

An implementation of ostream_iterator is trivial and is left as an exercise (§ 19.6[4]). The stan
dard I/O supports different character types; char_traits (§20.2) describes the aspects of a character
type that can be important for I/O and strings.



Section 19.2.6

An input iterator for istreams is defined analogously:

Stream Iterators 559

template <class T, class Ch = char, class Tr = char_traits<Ch>, class Dist = ptrdiff_t>
class istream_iterator : public iterator<input_iterator_tag, T, Dist, const T*, const T&> {
public:

typedef Ch char_type;
typedef Tr traits_type;
typedef basic_istream<Ch, Tr> istream_type;

istream_iterator ( ) ; / / end of input
istream_iterator (istream_type& s) ;
istream_iterator (const istream_iterator& ) ;
.... istream_iterator ( ) ;

const T& operator* () const;
const T* operator-> () const;
istream_iterator& operator++ ( ) ;
istream_iterator operator++ (int) ;

} ;

This iterator is specified so that what would be conventional use for a container triggers >> input
from an istream. For example:

void f()
{

istream_iterator<int> is (cin) ; / / read ints from cin through is
int i1 = *is; / / read an int (using cin»i1)
++is; / / get ready for next input
int i2 = * is ; / / read an int

The default istream_iterator represents the end of input so that we can specify an input sequence:

void f(vector<int>& v)
{

copy (istream_iterator<int> (cin) , istream_iterator<int> ( ) , back_inserter (v) );

To make this work, the standard library supplies == and! =for istream_iterators.
An implementation of istream_iterator is less trivial than an ostream_iterator implementa

tion, but it is still simple. Implementing an istream_iterator is also left as an exercise (§ 19.6[5]).

19.2.6.1 Stream Buffers

As described in §21.6, stream 110 is based on the idea of ostreams and istreams filling and empty
ing buffers from and to which the low-level physical 1/0 is done. It is possible to bypass the stan
dard iostreams formatting and operate directly on the stream buffers (§21.6.4). That ability is also
provided to algorithms through the notion of istreambuf_iterators and ostreambuf_iterators:



/ / prefix
/ / postfix

560 Iterators and Allocators

template<class Ch, class Tr =char_traits<Ch> >
class istreambuf_iterator

: public iterator<input_iterator_tag, Ch, typename Tr:: off_type, Ch* ,Ch&> {
public:

typedef Ch char_type;
typedef Tr traits_type;
typedef typename Tr:: int_type int_type;
typedef basic_streambuf<Ch, Tr> streambuf_type;
typedef basic_istream<Ch, Tr> istream_type;

class proxy; / / helper type

istreambuf_iterator () throw ( ) ; / / end ofbuffer
istreambuf_iterator(istream_type& is) throw (); / / readfrom is's streambuf
istreambuf_iterator(streambuf_type*) throw ();
istreambuf_iterator (const proxy& p) throw ( ) ; / / readfrom p's streambuf

Ch operator* () const;
istreambuf_iterator& operator++ ( ) ;
proxy operator++ (int);

Chapter 19

} ;
bool equal (istreambuf_iterator& ) ; / / both or neither streambufat eof

In addition, == and ! = are supplied.
Reading from a streambuf is a lower-level operation than reading from an istream. Conse

quently, the istreambuf_iterator interface is messier than the istream_iterator interface. How
ever, once the istreambuf_iterator is properly initialized, *, ++, and = have their usual meanings
when used in the usual way.

The proxy type is an implementation-defined helper type that allows the postfix + + to be imple
mented without imposing constraints on the streambuf implementation. A proxy holds the result
value while the iterator is incremented:

template<class Ch, class Tr = char_traits<Ch> >
class istreambuf_iterator<Ch, Tr>: :proxy {

Ch val;
basic_streambuf<Ch, Tr>* buf;

proxy (Ch v I basic_streambuf<Ch, Tr>* b) : val (v), buf(b) { }
public:

Ch operator* () { return val; }
} ;

An ostreambuf_iterator is defined similarly:

template <class Chi class Tr = char_traits<Ch> >
class ostreambuf_iterator : public iterator<output_iterator_tag I void, void, void I void> {
public:

typedef Ch char_type;
typedef Tr traits_type;



Section 19.2.6.1

typedef basic_streambuf<Ch, Tr> streambuf_type;
typedef basic_ostream<Ch, Tr> ostream_type;

ostreambuf_iterator (ostream_type& os) throw ( ) ;
ostreambuf_iterator (streambuf_type*) throw ( );
ostreambuf_iterator& operator= (Ch) ;

ostreambuf_iterator& operator* ( ) ;
ostreambuf_iterator& operator++ ( );
ostreambuf_iterator& operator++ (int);

bool failed () const throw ( ) ;
} ;

19.3 Checked Iterators

Stream Buffers 561

/ / write to os's streambuf

/ / true if rr::eof() seen

A programmer can provide iterators in addition to those provided by the standard library. This is
often necessary when providing a new kind of container, and sometimes a new kind of iterator is a
good way to support a different way of using existing containers. As an example, I here describe
an iterator that range checks access to its container.

Using standard containers reduces the amount of explicit memory management. Using standard
algorithms reduces the amount of explicit addressing of elements in containers. Using the standard
library together with language facilities that maintain type safety dramatically reduces run-time
errors compared to traditional C coding styles. However, the standard library still relies on the pro
grammer to avoid access beyond the limits of a container. If by accident element x [x . size ( ) +7]
of some container x is accessed, then unpredictable - and usually bad - things happen. Using a
range-checked vector, such as Vee (§3.7.2), helps in some cases. More cases can be handled by
checking every access through an iterator.

To achieve this degree of checking without placing a serious notational burden on the program
mer, we need checked iterators and a convenient way of attaching them to containers. To make a
Checked_iter, we need a container and an iterator into that container. As for binders (§ 18.4.4.1),
inserters (§ 19.2.4), etc., I provide functions for making a Checked_iter:

template<class Cont, class Iter> Checked_iter<Cont, Iter> make_checked (Cont& c I Iter i)
{

return Checked_iter<Cont I Iter> (c, i);

template<class Cont> Checked_iter<Cont I typename Cont:: iterator> make_checked (Cont& c)
{

return Checked_iter<Cont I typename Cont:: iterator> (c I c. begin ( ) ) ;

These functions offer the notational convenience of deducing the types from arguments rather than
stating those types explicitly. For example:



562 Iterators and Allocators

void f(vector<int>& v, const vector<int>& vc)
{

typedef Checked_iter<vector<int> , vector<int> : : iterator> CI i

CI pl =make_checked (v, v . begin () +3) i

CI p2 = make_checked (v) i / / by default: point to first element

typedef Checked_iter<const vector<int> I vector<int> : : const_iterator> CIC i

CIC p3 = make_checked (vc I vc. begin ( ) +3) i

CIC p4 =make_checked (vc) i

const vector<int>& vv =Vi

CIC p5 =make_checked (v , vv . begin ( ) ) i

Chapter 19

By default, const containers have const iterators, so their Checked_iters must also be constant iter
ators. The iterator p5 shows one way of getting a const iterator for a non-const iterator.

This demonstrates why Checked_iter needs two template parameters: one for the container type
and one to express the const/non-const distinction.

The names of these Checked_iter types become fairly long and unwieldy, but that doesn't mat-
ter when iterators are used as arguments to a generic algorithm. For example:

template<class Iter> void mysort (Iter first I Iter last) i

void f(vector<int>& c)
{

try {
mysort (make_checked (c) I make_checked (c I C • end ( ) ) i

}

catch (out_of_bounds) {
cerr« "oops: bug in mysort ( )\n" i

abort ( );

An early version of such an algorithm is exactly where I would most suspect a range error so that
using checked iterators would make sense.

The representation of a Checked_iter is a pointer to a container plus an iterator pointing into
that container:

template<class Cont, class Iter = typename Cont:: iterator>
class Checked_iter : public iterator_traits<lser> {

Iter curr i / / iterator for current position
Cont* c i / / pointer to current container

/ / ...
} ;

Deriving from iterator_traits is one technique for defining the desired typedefs. The obvious
alternative - deriving from iterator - would be verbose in this case (as it was for
reverse_iterator; §19.2.5). Just as there is no requirement that an iterator should be a class, there
is no requirement that iterators that are classes should be derived from iterator.



Section 19.3

The Checked_iter operations are all fairly trivial:
template<class Cont, class Iter = typename Cont:: iterator>
class Checked_iter : public iterator_traits<lter> {

/ / ...
public:

void valid (Iter p) const
{

Checked Iterators 563

if (c->end () == p) return;
for (Iter pp =c->begin (); pp! =c->end (); ++pp) if (pp == p) return;
throw out_of_bounds ( );

friend bool operator== (const Checked_iter& i, const Checked_iter&j)
{

return i. c==j. c && i. curr==j. curr;

/ / No default initializer.
/ / Use default copy constructor and copy assignment.

Checked_iter (Cont& x, Iter p) : C (&x), curr (p) {valid (p) ;
Checked_iter{Cont&x) : c{&x), curr{x.hegin{)) { }

reference operator* () const
{

if {curr==c- >end ( ) ) throw out_of_bounds ( ) i

return *curr ;

pointer operator- > () const
{

if {curr==c->end ( ) ) throw out_of_bounds ( );
return & *curr i

Checked_iter operator+ (difference_type d) const
{

/ / for random-access iterators only

if {c->end ( ) -curr<d II d<curr-c->begin ( ) ) throw out_oj_bounds ( ) i

return Checked_iter (c , curr+d) i

reference operator [] (difference_type d) const
{

/ / for random-access iterators only

if {c->end ( ) -curr<=d I I d<curr-c->begin ( ) ) throw out_ol_bounds ( ) i

return curr [d] ;

Checked_iter& operator++ ( )
{

if {curr == c->end ( ) ) throw out_oj_bounds ();
++curr;
return *this i

/ / prefix ++



S64 Iterators and Allocators

Checked_iter operator++ (int)
{

Checked_iter tmp = *this;
++*this;
return tmp;

Checked_iter& operator-- ( )
{

/ / postfix ++

/ / checked by prefix ++

/ / prefix--

Chapter 19

if (curr == c->begin ( ) ) throw out_oj_bounds ( );
--curr;
return *this;

Checked_iter operator-- (int)
{

Checked_iter tmp = *this;
--*this;
return tmp;

/ / postfix--

/ / checked by prefix --

difference_type index () const { return curr-c. begin ( ); } / / random-access only

Iter unchecked () const { return curr;

/ / +, -, <, etc. (§/9.6[6])
} ;

A Checked_iter can be initialized only for a particular iterator pointing into a particular container.
In a full-blown implementation, a more efficient version of valid () should be provided for
random-access iterators (§ 19.6[6]). Once a Checked_iter is initialized, every operation that
changes its position is checked to make sure the iterator still points into the container. An attempt
to make the iterator point outside the container causes an out_oj_bounds exception to be thrown.
For example:

void f(list<string>& Is)
{

int count = 0 i
try {

Checked_iter< list<string> > p (Is, Is . begin ( ) ) ;
while (true) {

++p; / / sooner or later this will reach the end
++counti

}

catch (out_of_bounds) {
cout« II overrun after II « count« II tries\n II ;

A Checked_iter knows which container it is pointing into. This allows it to catch some, but not all,
cases in which iterators into a container have been invalidated by an operation on it (§ 16.3.6,



Section 19.3 Checked Iterators 565

§16.3.8). To protect against all such cases, a different and more expensive iterator design would be
needed (see §19.6[7]).

Note that postincrement (postfix ++) involves a temporary and preincrement does not. For this
reason, it is best to prefer ++P over p++ for iterators.

Because a Checked_iter keeps a pointer to a container, it cannot be used for a built-in array
directly. When necessary, a c_array (§ 17.5.4) can be used.

To complete the notion of checked iterators, we must make them trivial to use. There are two
basic approaches:

[1] Define a checked container type that behaves like other containers, except that it provides
only a limited set of constructors and its begin ( ) , end ( ) , etc., supply Checked_iters rather
than ordinary iterators.

[2] Define a handle that can be initialized by an arbitrary container and that provides checked
access functions to its container (§ 19.6[8]).

The following template attaches checked iterators to a container:

template<class C> class Checked : public C {
public:

explicit Checked (size_t n) : C (n ) { }

Checked () : C () { }

typedef Checked_iter<C> iterator;
typedef Checked_iter<C, C:: const_iterator> const_iterator;

iterator begin () { return iterator (*this, C: : begin ( ) ); }
iterator end () { return iterator (*this, C: : end ( ) ); }
const_iterator begin () const { return const_iterator (*this, C:: begin ( ) );
const_iterator end () eonst { return const_iterator (* this, C: :end ( ) ); }

typename C::referenee_type operator[] (typename C::size_type n)
{ return Checked_iter< C> ( *this) [n]; }

C& base () { return * this;
} ;

This allows us to write:

Checked< vector<int> > vee (10);

Checked< list<double> > lst;

void f()
{

I I get hold of the base container

II ok
I I throws out_of_bounds

int iJ =vec [5];
int i2 =vec [15] ;
1/ ...
mysort (vec. begin ( ), vec. end ( ) );
copy (vec. begin ( ), vee. end ( ), lst. begin () );

The apparently redundant base () function is provided to make Checked ( ) 's interface similar to
that of handles to containers. Container handles don't usually provide an implicit conversion to
their containers.



566 Iterators and Allocators Chapter 19

If a container is resized, iterators - including Checked_iters - into it may become invalid. In
that case, the Checked_iter can be re-initialized:

void g (vector<int>& vi)
{

Checked_iter< vector<int> > p (vi) ;
II ..
int i =p . index ( ) ;
vi. resize (100);
p =Checked_iter< vector<int> > (vi, vi . begin ( ) +i) ;

/ I get current position
I I p becomes invalid
I I restore current position

The old - and invalid - current position is lost. I provided index () as a means of extracting an
index, so that a Checked_iter could be restored.

19.3.1 Exceptions, Containers, and Algorithms

You could argue that using both standard algorithms and checked iterators is like wearing both belt
and suspenders: either should keep you safe. However, experience shows that for many people and
for many applications a dose of paranoia is reasonable - especially during times when a program
goes through frequent changes that involve several people.

One way of using run-time checks is to keep them in the code only while debugging. The
checks are then removed before the program is shipped. This practice has been compared to wear
ing a life jacket while paddling around close to the shore and then removing it before setting out
onto the open sea. However, some uses of run-time checks do impose significant time and space
overheads, so insisting on such checks at all times is not realistic. In any case, it is unwise to opti
mize without measurements, so before removing checks, do an experiment to see if worthwhile
improvements actually emerge from doing so. To do such an experiment, we must be able to
remove run-time checks easily (see §24.3.7.1). Once measurements have been done, we could
remove the run-time testing from the most run-time critical - and hopefully most thoroughly tested
- code and leave the rest of the code checked as a relatively cheap form of insurance.

Using a Checked_iter allows us to detect many mistakes. It does not, however, make it easy to
recover from these errors. People rarely write code that is 100% robust against every ++, - -, *,
[ ] , ->, and =potentially throwing an exception. This leaves us with two obvious strategies:

[1] Catch exceptions close to the point from which they are thrown so that the writer of the
exception handler has a decent chance of knowing what went wrong and can take appropri
ate action.

[2] Catch the exception at a high level of a program, abandon a significant portion of a compu
tation, and consider all data structures written to during the failed computation suspect
(maybe there are no such data structures or maybe they can be sanity checked).

It is irresponsible to catch an exception from some unknown part of a program and proceed under
the assumption that no data structure is left in an undesirable state, unless there is a further level of
error handling that will catch subsequent errors. A simple example of this is when a final check (by
computer or human) is done before the results are accepted. In such cases, it can be simpler and
cheaper to proceed blithely rather than to try to catch every error at a low level. This would be an
example of a simplification made possible by a multilevel error recovery scheme (§ 14.9).



Section 19.4

19.4 Allocators

Allocators 567

An allocator is used to insulate implementers of algorithms and containers that must allocate mem
ory from the details of physical memory. An allocator provides standard ways of allocating and
deallocating memory and standard names of types used as pointers and references. Like an iterator,
an allocator is a pure abstraction. Any type that behaves like an allocator is an allocator.

The standard library provides a standard allocator intended to serve most users of a given imple
mentation well. In addition, users can provide allocators that represent alternative views of mem
ory. For example, we can write allocators that use shared memory, garbage-collected memory,
memory from preallocated pools of objects (§19.4.2), etc.

The standard containers and algorithms obtain and access memory through the facilities pro
vided by an allocator. Thus, by providing a new allocator we provide the standard containers with
a way of using a new and different kind of memory.

19.4.1 The Standard Allocator

The standard allocator template from <memory> allocates memory using operator new ( )
(§6.2.6) and is by default used by all standard containers:

template <class T> class std:: allocator {
public:

typedef T value_type;
typedef size_t size_type;
typedef ptrdiff_t difference_type;

typedef T* pointer;
typedef const T* constyointer;

typedef T& reference;
typedef const T& const_reference i

pointer address (reference r) const { return &r; }
constyointer address (const_reference r) const { return &r;

allocator () throw ( ) ;
template <class U> allocator (const allocator<U>&) throw ( );
-allocator () throw ( ) ;

pointer allocate (size_type n, allocator<void>:: constyointer hint = 0) ; / / space for n Ts
void deallocate (pointer p, size_type n) i / / deallocate n Ts, don't destroy

void construct (pointer p, const T& val) {new (p) T (val);} / / initialize *p by val
void destroy (pointer p) {p->-T(); } / / destroy *p but don't deallocate

size_type max_size () const throw ( ) ;

template <class U>
struct rebind { typedef allocator< U> other; }; / / in effect: typedefaliocator<U> other

} ;

template<class T> bool operator== (const aliocator<T>&, const aliocator<T>&) throw ( ) ;
template<class T> bool operator! = (const allocator<T>&, const aliocator<T>&) throw ();



568 Iterators and Allocators Chapter 19

I I allocator object
I I pointer to elements

An allocate (n) operation allocates space for n objects that can be deallocated by a corresponding
call of deallocate (p , n). Note that deallocate () also takes a number-of-elements argument n.
This allows for close-to-optimal allocators that maintain only minimal information about allocated
memory. On the other hand, such allocators require that the user always provide the right n when
they deallocate ( ) .

The default allocator uses operator new (size_t) to obtain memory and operator
delete (void* ) to free it. This implies that the new_handler ( ) might be called and
std: :bad_alloc might be thrown in case of memory exhaustion (§6.2.6.2).

Note that allocate () is not obliged to call a lower-level allocator each time. Often, a better
strategy is for the allocator to maintain a free list of space ready to hand out with minimal time
overhead (§ 19.4.2).

The optional hint argument to allocate () is completely implementation-dependent. However,
it is intended as a help to allocators for systems where locality is important. For example, an allo
cator might try to allocate space for related objects on the same page in a paging system. The type
of the hint argument is the pointer from the ultra-simplified specialization:

template <> class allocator<void> {
public:

typedef void* pointer;
typedef const void* constyointer;
/ / note: no reference
typedef void value_type;
template <class U>
struct rebind { typedef allocator<U> other; }; /1 in effect: typedefallocator<U> other

} i

The allocator<void>: :pointer type acts as a universal pointer type and is void* for all standard
allocators.

Unless the documentation for an allocator says otherwise, the user has two reasonable choices
when calling allocate ( ) :

[I] Don't give a hint.
[2] Use a pointer to an object that is frequently used together with the new object as the hint; for

example, the previous element in a sequence.
Allocators are intended to save implementers of containers from having to deal with raw memory
directly. As an example, consider how a vector implementation might use memory:

template <class T, class A = allocator<T> > class vector {
public:

typedef typename A:: pointer iterator;
II ...

private:
A alloc;
iterator v;
II ...



Section 19.4.1 The Standard Allocator 569

public:
explicit vector (size_type n, const T& val = T ( ), const A& a =A ( ) )

: alloc (a)

v =alloc . allocate (n ) i

for (iterator p =Vi p<v+n i ++p) alloc. construct (p, val) ;
/ / ...

void reserve (size_type n)
{

if (n< =capacity ( ) ) return;

iterator p = alloc. allocate (n ) ;
iterator q = v i

} ;
/ / ...

while (q<v+size ( )) {
alloc. construct (p++, *q) i

alloc . destroy (q+ + ) i

}

alloc . deallocate (v , capacity ( ) ) ;
v = p - size ( ) i

/ / ...

/ / copy existing elements

/ / free old space

The allocator operations are expressed in terms of pointer and reference typedefs to give the user
a chance to supply alternative types for accessing memory. This is very hard to do in general. For
example, it is not possible to define a perfect reference type within the C++ language. However,
language and library implementers can use these typedefs to support types that couldn't be pro
vided by an ordinary user. An example would be an allocator that provided access to a persistent
store. Another example would be a "long" pointer type for accessing main memory beyond what
a default pointer (usually 32 bits) could address.

The ordinary user can supply an unusual pointer type to an allocator for specific uses. The
equivalent cannot be done for references, but that may be an acceptable constraint for an experi
ment or a specialized system.

An allocator is designed to make it easy to handle objects of the type specified by its template
parameter. However, most container implementations require objects of additional types. For
example, the implementer of a list will need to allocate Link objects. Usually, such Links must be
allocated using their list's allocator.

The curious rebind type is provided to allow an allocator to allocate objects of arbitrary type.
Consider:

typedef typename A:: template rebind<Link>:: other Link_alloc i / / "template;" see §C.J3.6

If A is an allocator, then rebind<Link> : :other is typedefd to mean allocator<Link>, so the pre
vious typedefis an indirect way of saying:

typedef aliocator<Link> Link_alloc i



570 Iterators and Allocators Chapter 19

The indirection frees us from having to mention allocator directly. It expresses the Link_alloc
type in terms of a template parameter A. For example:

template <class T I class A = alloeator< T> > class list {
private:

class Link { / * ... * / };

typedef typename A:: rebind<Link> : : other Link_alloe ;

Link_aUoc a; / / link allocator
A alloc; / / list allocator
/ / ...

public:
typedef typename A: :pointer iterator;
/ / ...

/ / allocator<Link>

} i

iterator insert (iterator pOS I const T& x )
{

Link_alIoc : :pointer p = a . allocate ( / ) ;
/ / ...

}

/ / ...

/ / get a Link

/ / slightly less than 8K so that a chunk will fit in 8K
/ / allocation area first to get stringent alignment

Link is a member of list, so it too is parameterized by an allocator (§ 13.2.1). Consequently, Links
from lists with different allocators are of different types, just like the lists themselves (§ 17.3.3).

19.4.2 A User-Defined Allocator

Implementers of containers often allocate () and deallocate () objects one at a time. For a naive
implementation of allocate ( ) , this implies lots of calls of operator new, and not all implementa
tions of operator new are efficient when used like that. As an example of a user-defined allocator, I
present a scheme for using pools of fixed-sized pieces of memory from which the allocator can
allocate () more efficiently than can a conventional and more general operator new ( ) .

I happen to have a pool allocator that does approximately the right thing, but it has the wrong
interface (because it was designed years before allocators were invented). This Pool class imple
ments the notion of a pool of fixed-sized elements from which a user can do fast allocations and
deallocations. It is a low-level type that deals with memory directly and worries about alignment:

class Pool {
struct Link { Link* next i };

struct Chunk {
enum { size = 8* /024-16 } i

char mem [size] i

Chunk* next i

} ;

Chunk* chunks;
const unsigned int esize i

Link* head;



Section 19.4.2

Pool (Pool& ) ;
void operator= (Pool&) ;
void grow ( );

public:
Pool (unsigned int n);
-Pool ( );

void* alloc ( ) ;
void free (void* b) ;

} ;

inline void* Pool:: alloc ( )
{

if (head==O) grow ( );
Link* p =head;
head =p->next;
return p;

inline void Pool: :free (void* b)
{

A User-Defined Allocator 571

/ / copy protection
/ / copy protection
/ / make pool larger

/ / n is the size ofelements

/ / allocate one element
/ / put an element back into the pool

/ / return first element

Link* p =static_cast<Link* > (b) ;
p->next = head; / / put b back asfirst element
head = p;

Pool: : Pool (unsigned int sz)
: esize (sz<sizeof (Link) ?sizeof(Link) : sz)

head = 0;
chunks =0;

Pool: : - Pool () / / free all chunks
{

Chunk* n = chunks;
while (n) {

Chunk* p =n;
n = n->next;
delete p;

void Pool:: grow ( ) / / allocate new 'chunk, , organize it as a linked list ofelements ofsize 'esize'
{

Chunk* n =new Chunk;
n->next =chunks;
chunks =n;

const int nelem =Chunk: : size / esize ;
char* start = n->memj
char* last = &start [ (nelem-l) *esizel;



572 Iterators and Allocators

for (char* p = start; p<last; p+=esize)
reinterpret_cast<Link* > (p) - >next = reinterpret_cast<Link* > (p+esize) ;

reinterpret_cast<Link* > (last) - >next = 0;
head = reinterpret_cast<Link*> (start);

Chapter 19

To add a touch of realism, I'll use Pool unchanged as part of the implementation of my allocator,
rather than rewrite it to give it the right interface. The pool allocator is intended for fast allocation
and deallocation of single elements and that is what my Pool class supports. Extending this imple
mentation to handle allocations of arbitrary numbers of objects and to objects of arbitrary size (as
required by rebind) is left as an exercise (§ 19.6[9]).

Given Pool, the definition of Pool_alloc is trivial;

template <class T> class Pool_aUoc {
private:

static Pool mem; I I pool ofelements ofsizeof(T)
public:

/ I like the standard allocator (§/9.4.1)
} ;

template <class T> Pool Pool_aUoc<T>:: mem (sizeof( T) );

template <class T> Pool_aUoc<T> : : Pool_aUoc () { }

template <class T>
T* Pool_aUoc<T> : :allocate (size_type n, void* = 0)
{

if (n ==1) return static_cast<T* > (mem . aUoc ( ) ) ;
II ...

template <class T>
void Pool_alloc<T>::deallocate(pointer p, size_type n)
{

if (n == 1) {

mem .free (p) ;
return;

}

II ...

This allocator can now be used in the obvious way:

vector< int, Pool_alloc<int> > v;
map<string, number, Pool_alloc< pair<const string, number> > > m;

/ I use exactly as usual

vector<int> v2 = v; I I error: different allocator parameters

I chose to make the Pool for a Pool_alloc static because of a restriction that the standard library
imposes on allocators used by the standard containers: the implementation of a standard container
is allowed to treat every object of its allocator type as equivalent. This can lead to significant



Section 19.4.2 A User-Defined Allocator 573

perfonnance advantages. For example, because of this restriction, memory need not be set aside for
allocators in Link objects (which are typically parameterized by the allocator of the container for
which they are Links; §19.4.1), and operations that may access elements of two sequences (such as
swap ( ) ) need not check whether the objects manipulated all have the same allocator. However,
the restriction does imply that such allocators cannot use per-object data.

Before applying this kind of optimization, make sure that it is necessary. I expect that many
default allocators will implement exactly this kind of classic C++ optimization - thus saving you
the bother.

19.4.3 Generalized Allocators

An allocator is a simplified and optimized variant of the idea of passing information to a container
through a template parameter (§ 13.4.1, §16.2.3). For example, it makes sense to require that every
element in a container is allocated by the container's allocator. However, if two lists of the same
type were allowed to have different allocators, then splice () (§ 17.2.2.1) couldn't be implemented
through relinking. Instead, splice () would have to be defined in terms of copying of elements to
protect against the rare cases in which we want to splice elements from a list with one allocator into
another with a different allocator of the same allocator type. Similarly, if allocators were allowed
to be perfectly general, the rebind mechanism that allows an allocator to allocate elements of arbi
trary types would have to be more elaborate. Consequently, a standard allocator is assumed to hold
no per-object data and an implementation of a standard may take advantage of that.

Surprisingly, the apparently Draconian restriction against per-object information in allocators is
not particularly serious. Most allocators do not need per-object data and can be made to run faster
without such data. Allocators can still hold data on a per-allocator-type basis. If separate data is
needed, separate allocator types can be used. For example:

template<class T, class D> class My_alloc { I I allocator for T implemented using D
D d; II data needed for My_alloc<T,D>
1/ ...

} ;

typedef My_alloc<int , Persistent_info> Persistent;
typedef My_alloc<int , Shared_info> Shared;
typedef My_alloc<int , Default_info> Default;

list<int, Persistent> Ist1 ;
list<int, Shared> 1st2;
list<int, Default> Ist3 ;

The lists Ist1, Ist2, and Ist3 are of different types. Therefore, we must use general algorithms
(Chapter 18) when operating on two of these lists rather than specialized list operations (§ 17.2.2.1).
This implies that copying rather than relinking is done, so having different allocators poses no
problems.

The restriction against per-object data in allocators is imposed because of the stringent demands
on the run-time and space efficiency of the standard library. For example, the space overhead of
allocator data for a list probably wouldn't be significant. However, it could be serious if each link
of a list suffered overhead.



574 Iterators and Allocators Chapter 19

/ / copy into res

Consider how the allocator technique could be used when the efficiency constraints of the stan
dard library don't apply. This would be the case for a nonstandard library that wasn't meant to
deliver high performance for essentially every data structure and every type in a program and for
some special-purpose implementations of the standard library. In such cases, an allocator can be
used to carry the kind of information that often inhabits universal base classes (§ 16.2.2). For exam
ple, an allocator could be designed to answer requests about where its objects are allocated, present
data representing object layout, and answer questions such as "is this element in this container?"
It could also provide controls for a container that acts as a cache for memory in permanent storage,
provide association between the container and other objects, etc.

In this way, arbitrary services can be provided transparently to the ordinary container opera
tions. However, it is best to distinguish between issues relating to storage of data and issues of the
use of data. The latter do not belong in a generalized allocator, but they could be provided through
a separate template argument.

19.4.4 Uninitialized Memory

In addition to the standard allocator, the <memory> header provides a few functions for dealing
with uninitialized memory. They share the dangerous and occasionally essential property of using
a type name T to refer to space sufficient to hold an object of type T rather than to a properly con
structed object of type T.

The library provides three ways to copy values into uninitialized space:

template <class In, class For>
For uninitialized_copy (In first, In last, For res)
{

typedef typename iterator_traits<For> : : value_type V;

while (first ! = last)
new (static_cast<void*> (&*res++)) V( *first++);

return res;
/ / construct in res (§JO.4.1 J)

/ / copy into [first,last)
template <class For, class T>
void uninitializedJill (For first, For last, const T& val)
{

typedef typename iterator_traits<FoT> : : value_type V;

while (first! = last) new (static_cast<void*> (&*first++) ) V(val); / / construct in first

/ / copy into [first,first+n)
template <class For, class Size, class T>
void uninitializedJill_n (For first, Size n I const T& val)
{

typedef typename iterator_traits<For> : : value_type V;

while (n - -) new (static_cast<void* > (& *first+ + )) V (val); / / construct in first

These functions are intended primarily for implementers of containers and algorithms. For exam
ple, reserve () and resize () (§ 16.3.8) are most easily implemented using these functions



Section 19.4.4 Uninitialized Memory 575

(§ 19.6[10]). It would clearly be most unfortunate if an uninitialized object escaped from the inter
nals of a container into the hands of general users. See also §E.4.4.

Algorithms often require temporary space to perform acceptably. Often, such temporary space
is best allocated in one operation but not initialized until a particular location is actually needed.
Consequently, the library provides a pair of functions for allocating and deallocating uninitialized
space:

template <class T> pair<T* , ptrdiff_t> get_temporary_buffer (ptrdiff_t) i / / allocate, don '[ initialize
template <class T> void return_temporary_buffer (T* ) i / / deallocate, don '[ destroy

A get_temporary_buffer<X> (n) operation tries to allocate space for n or more objects of type X.
If it succeeds in allocating some memory, it returns a pointer to the first uninitialized space and the
number of objects of type X that will fit into that space; otherwise, the second value of the pair is
zero. The idea is that a system may keep a number of fixed-sized buffers ready for fast allocation
so that requesting space for n objects may yield space for more than n. It may also yield less, how
ever, so one way of using get_temporary_buffer () is to optimistically ask for a lot and then use
what happens to be available.

A buffer obtained by get_temporary_buffer () must be freed for other use by a call of
return_temporary_buffer(). Just as get_temporary._buffer() allocates without constructing,
return_temporary_buffer () frees without destroying. Because get_temporary_buffer () is low
level and likely to be optimized for managing temporary buffers, it should not be used as an alter
native to new or allocator: : allocate () for obtaining longer-term storage.

The standard algorithms that write into a sequence assume that the elements of that sequence
have been previously initialized. That is, the algorithms use assignment rather than copy construc
tion for writing. Consequently, we cannot use uninitialized memory as the immediate target of an
algorithm. This can be unfortunate because assignment can be significantly more expensive than
initialization. Besides, we are not interested in the values we are about to overwrite anyway (or we
wouldn't be overwriting them). The solution is to use a raw_storage_iterator from <memory>
that initializes instead of assigns:

template <class Out, class T>
class raw_storage_iterator : public iterator<output_iterator_tag, void, void, void, void> {

Out Pi
public:

explicit raw_storage_iterator (Out pp) : p (pp) { }
raw_storage_iterator& operator* () { return * this i

raw_storage_iterator& operator= (const T& val) {
T* pp = &*Pi
new (pp) T(val) i / / place val in pp (§JO.4.J J)
return *this;

}

raw_storage_iterator& operator++ () {++p; return *this ;
raw_storage_iterator operator++ (int)

raw_storage_iterator t = * this;
++Pi
return t;

} ;



576 Iterators and Allocators Chapter 19

I / indicator for allocation that doesn't throw exceptions

For example, we might write a template that copies the contents of a vector into a buffer:

template<class T, class A> T* temporary_dup (vector<T,A>& v)
{

pair<T* ,ptrdiff_t> p = get_temporary_buffer<T> (v. size ( ) ) ;
if (p. second < v. size ( )) { / / check that enough memory was available

if (p ·first ! =0) return_temporary_buffer (p .first);
return 0;

}

copy (v. begin ( ) , v. end ( ) , raw_storage_iterator<T* , T> (p .first) ) ;
return p .first;

Had new been used instead of get_temporary_buffer ( ), initialization would have been done.
Once initialization is avoided, the raw_storage_iterator becomes necessary for dealing with the
uninitialized space. In this example, the caller of temporary_dup () is responsible for calling
return_temporary_buffer () for the pointer it received.

19.4.5 Dynamic Memory

The facilities used to implement the new and delete operators are declared in <new>:

class bad_alloc : public exception { / * ... * / } i

struct nothrow_t {} i

extern const nothrow_t nothrow;

typedef void (*new_handler) ();
new_handler set_new_handler (new_handler newJJ) throw ( ) ;

void* operator new (size_t) throw (bad_alloc) i

void operator delete (void*) throw ( ) i

void* operator new (size_t, const nothrow_t&) throw ( ) ;
void operator delete (void*, const nothrow_t&) throw ( ) i

void* operator new [] (size_t) throw (bad_aUoc) i

void operator delete [] (void*) throw ();

void* operator new [] (size_t, const nothrow_t&) throw ( ) ;
void operator delete [] (void*, const nothrow_,&) throw ( ) i

void* operator new (size_t, void* p) throw ( ) {return pi} II placement (§lO.4.11)
void operator delete (void* p, void*) throw () {} / / do nothing

void* operator new [] (size_t, void* p) throw () { return Pi}
void operator delete [] (void* p, void*) throw () { } 1/ do nothing

An operator new () or operator new [] () with an empty exception-specification (§ 14.6) cannot
signal memory exhaustion by throwing std: : bad_alloc. Instead, if allocation fails they return O.
A new-expression (§6.2.6.2) tests the value returned by an allocator with an empty exception
specification; if the returned value is 0, no constructor is invoked and the new-expression returns O.
In particular, the nothrow allocators return 0 to indicate failure to allocate rather than throwing
bad alloc. For example:



Section 19.4.5

void f()
{

Dynamic Memory 577

inl* p = new int [100000] i I I may throw bad_alloc

if (int* q = new (nothrow) int [100000]) { I I will not throw exception
/ / allocation succeeded

}

else {
II allocation failed

This allows us to use pre-exception error-handling strategies for allocation.

19.4.6 C-Style Allocation

From C, C++ inherited a functional interface to dynamic memory. It can be found in <cstdlib>:

void* malloc (size_t s);
void* calloc (size_t n I size_t s);
void free (void* p) ;
void* realloc (void* p I size_t s) i

/ / allocate s bytes
/ / allocate n times s bytes initialized to 0
/ / free space allocated by malloc() or calloc()
1/ change the size ofthe array pointed to by p to s;
I I if that cannot be done, allocate s bytes, copy
I I the array pointed to by p to it, and free p

These functions should be avoided in favor of new, delete, and standard containers. These func
tions deal with uninitialized memory. In particular, free () does not invoke destructors for the
memory it frees. An implementation of new and delete may use these functions, but there is no
guarantee that it does. For example, allocating an object using new and deleting it using free () is
asking for trouble. If you feel the need to use realloc ( ) , consider relying on a standard container
instead; doing that is usually simpler and just as efficient (§ 16.3.5).

The library also provides a set of functions intended for efficient manipulation of bytes.
Because C originally accessed untyped bytes through char* pointers, these functions are·found in
<cstring>. The void* pointers are treated as if they were char* pointers within these functions:

void* memcpy (void* P, const void* q I size_t n);
void* memmove (void* P, const void* q I size_t n);

I / copy non-overlapping areas
I I copy potentially overlapping areas

Like strcpy () (§20.4.1), these functions copy n bytes from q to p and return p. The ranges copied
by memmove () may overlap. However, memcpy () assumes that the ranges do not overlap and is
usually optimized to take advantage of that assumption. Similarly:

void* memchr(const void* P, int b , size_t n)i II likestrchr() (§20.4.1):findb inp[O}..p[n-l}
int memcmp (const void* P, const void* q I size_t n); I I like strcmp(): compare byte sequences
void* memset (void* p lint b I size_I n); I I set n bytes to b, return p

Many implementations provide highly optimized versions of these functions.



578 Iterators and Allocators

19.5 Advice

Chapter 19

[1] When writing an algorithm, decide which kind of iterator is needed to provide acceptable effi
ciency and express the algorithm using the operators supported by that kind of iterator (only);
§19.2.1.

[2] Use overloading to provide more-efficient implementations of an algorithm when given as
arguments iterators that offer more than minimal support for the algorithm; §19.2.3.

[3] Use iterator_traits to express suitable algorithms for different iterator categories; §19.2.2.
[4] Remember to use ++ between accesses of istream_iterators and ostream_iterators; §19.2.6.
[5] Use inserters to avoid container overflow; §19.2.4.
[6] Use extra checking during debugging and remove checking later only where necessary;

§19.3.1.
[7] Prefer ++p to p++; §19.3.
[8] Use uninitialized memory to improve the performance of algorithms that expand data struc

tures; §19.4.4.
[9] Use temporary buffers to improve the performance of algorithms that require temporary data

structures; §19.4.4.
[10] Think twice before writing your own allocator; §19.4.
[11] Avoid malloc ( ) ,free ( ) , realloc ( ), etc.; §19.4.6.
[12] You can simulate a typede/of a template by the technique used for rebind; §19.4.1.

19.6 Exercises

1. (*1.5) Implement reverse () from §18.6.7. Hint: See §19.2.3.
2. (*1.5) Write an output iterator, Sink, that doesn't actually write anywhere. When can Sink be

useful?
3. (*2) Implement reverse_iterator (§19.2.5).
4. (*1.5) Implement ostream_iterator (§19.2.6).
5. (*2) Implement istream_iterator (§19.2.6).
6. (*2.5) Complete Checked_iter (§19.3).
7. (*2.5) Redesign Checked_iter to check for invalidated iterators.
8. (*2) Design and implement a handle class that can act as a proxy for a container by providing a

complete container interface to its users. Its implementation should consist of a pointer to a
container plus implementations of container operations that do range checking.

9. (*2.5) Complete or reimplement Pool_alloc (§19.4.2) so that it provides all of the facilities of
the standard library allocator (§19.4.1). Compare the performance of allocator and
Pool_alloc to see if there is any reason to use a Pool_alloc on your system.

10. (*2.5) Implement vector using allocators rather than new and delete.



20
Strings

Prefer the standard to the offbeat.
- Strunk & White

Strings - characters - char_traits - basic_string - iterators - element access 
constructors - error handling - assignment - conversions - comparisons - inser
tion - concatenation - find and replace - size and capacity - string I/O - C-style
strings - character classification - C library functions - advice - exercises.

20.1 Introduction

A string is a sequence of characters. The standard library string provides string manipulation oper
ations such as subscripting (§20.3.3), assignment (§20.3.6), comparison (§20.3.8), appending
(§20.3.9), concatenation (§20.3.10), and searching for substrings (§20.3.11). No general substring
facility is provided by the standard, so one is provided here as an example of standard string use
(§20.3.11). A standard string can be a string of essentially any kind of character (§20.2).

Experience shows that it is impossible to design the perfect string. People's taste, expectations,
and needs differ too much for that. So, the standard library string isn't ideal. I would have made
some design decisions differently, and so would you. However, it serves many needs well, auxil
iary functions to serve further needs are easily provided, and std: : string is generally known and
available. In most cases, these factors are more important than any minor improvement we could
provide. Writing string classes has great educational value (§ 11.12, §13.2), but for code meant to
be widely used, the standard library string is the one to use.

From C, C++ inherited the notion of strings as zero-terminated arrays of char and a set of func
tions for manipulating such C-style strings (§20.4.1).



580 Strings

20.2 Characters

Chapter 20

"Character" is itself an interesting concept. Consider the character C. The C that you see as a
curved line on the page (or screen), I typed into my computer many months ago. There, it lives as
the numeric value 67 in an 8-bit byte. It is the third letter in the Latin alphabet, the usual abbrevia
tion for the sixth atom (Carbon), and, incidentally, the name of a programming language (§1.6).
What matters in the context of programming with strings is that there is a correspondence between
squiggles with conventional meaning, called characters, and numeric values. To complicate mat
ters, the same character can have different numeric values in different character sets, not every
character set has values for every character, and many different character sets are in common use.
A character set is a mapping between a character (some conventional symbol) and an integer value.

C++ programmers usually assume that the standard American character set (ASCII) is available,
but C++ makes allowances for the possibility that some characters may be missing in a
programmer's environment. For example, in the absence of characters such as [ and {, keywords
and digraphs can be used (§C.3.I).

Character sets with characters not in ASCII offer a greater challenge. Languages such as Chi
nese, Danish, French, Icelandic, and Japanese cannot be written properly using ASCII only.
Worse, the character sets used for these languages can be mutually incompatible. For example, the
characters used for European languages using Latin alphabets almost fit into a 256-character char
acter set. Unfortunately, different sets are still used for different languages and some different
characters have ended up with the same integer value. For example, French (using LatinI) doesn't
coexist well with Icelandic (which therefore requires Latin2). Ambitious attempts to present every
character known to man in a single character set have helped a lot, but even I6-bit character sets 
such as Unicode - are not enough to satisfy everyone. The 32-bit character sets that could - as far
as I know - hold every character are not widely used.

Basically, the C++ approach is to allow a programmer to use any character set as the character
type in strings. An extended character set or a portable numeric encoding can be used (§C.3.3).

20.2.1 Character Traits

As shown in §I3.2, a string can, in principle, use any type with proper copy operations as its char
acter type. However, efficiency can be improved and implementations can be simplified for types
that don't have user-defined copy operations. Consequently, the standard string requires that a
type used as its character type does not have user-defined copy operations. This also helps to make
YO of strings simple and efficient.

The properties of a character type are defined by its char_traits. A char_traits is a specializa
tion of the template:

template<class Ch> struct char_traits { };

All char_traits are defined in std, and the standard ones are presented in <string>. The general
char_traits itself has no properties; only char_traits specializations for a particular character type
have. Consider char traits<char>:

template< > struct char_traits<char> { / / char_traits operations should not throw exceptions
typedef char char_type; / / type ofcharacter



Section 20.2.1

static void assign (char_type& , const char_type& ) i

I I integer representation ofcharacters:

Character Traits 581

I I =for char_type

typedef int int_type i I I type of integer value ofcharacter

II ==
II <

static char_type to_char_type (const int_type& ) i I I int to char conversion
static int_type to_int_type (const char_type& ) i I I char to int conversion
static bool eq_int_type (const int_type&, const int_type&); I I ==
I / char_type comparisons:

static bool eq (const char_type& , const char_type& ) i

static bool It (const char_type& , const char_type& ) i

1/ operations on sfn] arrays:

static char_type* move (char_type* s, const char_type * s2, size_t n) i

static char_type* copy (char_type* s, const char_type* s2, size_t n);
static char_type* assign (char_type* s, size_t n, char_type a);

static int compare (const char_type * s, const char_type * s2, size_t n);
static size_1 length (const char_type* ) i

static const char_type* find (const char_type* s, int n, const char_type&);

I I I/O related:

typedef streamoff off_type;
typedef streampos pos_type;
typedef mbstate_t state_type;

I I offset in stream
I I position in stream
I I multi-byte stream state

static int_type eof( ) ; I I end-oj-file
static int_type not_eof(const int_type& i); I I i unless i equals eof(); ifnot any value!=eof()
static state_type get_state (pos_type p); I I multibyte conversion state ofcharacter in p

} ;

The implementation of the standard string template, basic_string (§20.3), relies on these types and
functions. A type used as a character type for basic_string must provide a char_traits specializa
tion that supplies them all.

For a type to be a char_type, it must be possible to obtain an integer value corresponding to
each character. The type of that integer is int_type, and the conversion between it and the
char_type is done by to_char_type () and to_int_type ( ). For a char, this conversion is trivial.

Both move (s , s2 , n) and copy (s , s2 , n) copy n characters from s2 to s using
assign (s [i], s2 [i] ). The difference is that move () works correctly even if s2 is in the [s, s+n [
range. Thus, copy () can be faster. This mirrors the standard C library functions memcpy () and
memmove () (§ 19.4.6). A call assign (s , n, x) assigns n copies of x into s using assign (s [i] , x) .

The compare () function uses It () and eq () to compare characters. It returns an int, where 0
represents an exact match, a negative number means that its first argument comes lexicographically
before the second, and a positive number means that its first argument comes after its second. This
use of return values mirrors the standard C library function strcmp () (§20.4.1).

The I/O-related functions are used by the implementation of low-level I/O (§21.6.4).
A wide character - that is, an object of type wchar_t (§4.3) - is like a char, except that it takes

up two or more bytes. The properties of a wchar_t are described by char_traits<wchar_t>:



582 Strings

template<> struct char_traits<wchar_'> {
typedef wchar_t char_type;
typedef wint_t int_type;
typedef wstreamoff off_type;
typedef wstreampos pos_type;

II like char_traits<char>
} ;

Chapter 20

A wchar_t is typically used to hold characters of a 16-bit character set such as Unicode.

20.3 Basic string

The standard library string facilities are based on the template basic_string that provides member
types and operations similar to those provided by standard containers (§ 16.3):

template<class Ch, class Tr =char_traits<Ch> I class A =aliocator<Ch> >
class std:: basic_string {
public:

II ...
} ;

This template and its associated facilities are defined in namespace std and presented by <string>.
Two typedefs provide conventional names for common string types:

typedef basic_string<char> string;
typedef basic_string<wchar_'> wstring;

The basic_string is similar to vector (§ 16.3), except that basic_string provides some typical string
operations, such as searching for substrings, instead of the complete set of operations offered by
vector. A string is unlikely to be implemented by a simple array or vector. Many common uses of
strings are better served by implementations that minimize copying, use no free store for short
strings, allow for simple modification of longer strings, etc. (see §20.6[12]). The number of string
functions reflects the importance of string manipulation and also the fact that some machines pro
vide specialized hardware instructions for string manipulation. Such functions are most easily uti
lized by a library implementer if there is a standard library function with similar semantics.

Like other standard library types, a basic_string<T> is a concrete type (§2.5.3, §10.3) without
virtual functions. It can be used as a member when designing more sophisticated text manipulation
classes, but it is not intended to be a base for derived classes (§25.2.1; see also §20.6[10]).

20.3.1 Types

Like vector, basic_string makes its related types available through a set of member type names:

template<class Ch, class Tr = char_traits<Ch> I class A = aliocator<Ch> >
class basic_string {
public:

1/ types (much like vector, list, etc.: §16.3.1):



Section 20.3.1

typedef Tr traits_type i / / specific to basic_string

typedef typename Tr:: char_type value_type i

typedef A allocator_type i

typedef typename A:: size_type size_type i

typedef typename A:: difference_type difference_type i

typedef typename A:: reference reference i

typedef typename A:: const_reference const_reference i

typedef typename A: :pointer pointer;
typedef typename A:: constyointer constyointer;

typedef implementation_defined iterator;
typedef implementation_defined const_iterator;

typedef std:: reverse_iterator<iterator> reverse_iterator;
typedef std:: reverse_iterator<const_iterator> const_reverse_iterator;

/ / ...
} ;

Types 583

The basic_string notion supports strings of many kinds of characters in addition to the simple
basic_string<char> known as string. For example:

typedej basic_string<unsigned char> Ustring;

struct Jchar { / * ... * / }; / / Japanese character type
typedeJ basic_string<Jchar> Jstring;

Strings of such characters can be used just like strings of char as far as the semantics of the charac
ters allows. For example:

Ustring first_word (const Ustring& us)
{

Ustring:: size_type pos = us ·find (' ') i

return Ustring (us I 0 I pos) ;

Jstring first_word (const Jstring& is)
{

Jstring: :size_type pos = is .find (' ');
return Jstring (is I 0 I pos) ;

/ / see §20.3.11
/ / see §20.3.4

/ / see §20.3.11
/ / see §20.3.4

Naturally, templates that take string arguments can also be used:

template<class S> S first_word (const S& s)
{

typename S:: size_type pos = s .find (' '); / / see §20.3.11
return S (s 10 I pos) ; / / see §20.3.4

A basic_string<Ch> can contain any character of the set Ch. In particular, string can contain a 0
(zero). The "character type" Ch must behave like a character. In particular, it may not have a
user-specified copy constructor, destructors, or copy assignments.



584 Strings

20.3.2 Iterators

Like other containers, a string provides iterators for ordinary and reverse iteration:

template<class Ch I class Tr =char_traits<Ch>, class A =aliocator<Ch> >
class basic_string {
public:

I I ...
I I iterators (like vector, list, etc.: §16.3.2):

iterator begin ( ) i

const_iterator begin () const i

iterator end ( ) i

const_iterator end () const i

reverse_iterator rbegin ( ) i

const_reverse_iterator rbegin () const i

reverse_iterator rend ( ) i

const_reverse_iterator rend () const i

1/ ...
} i

Chapter 20

Because string has the required member types and the functions for obtaining iterators, strings can
be used together with the standard algorithms (Chapter 18). For example:

void !(string& s)
{

string: : iterator p =find (s . begin ( ) IS. end ( ), ' a ' ) ;
1/ ...

The most common operations on strings are supplied directly by string. Hopefully, these versions
will be optimized for strings beyond what would be easy to do for general algorithms.

The standard algorithms (Chapter 18) are not as useful for strings as one might think. General
algorithms tend to assume that the elements of a container are meaningful in isolation. This is typi
cally not the case for a string. The meaning of a string is encoded in its exact sequence of charac
ters. Thus, sorting a string (that is, sorting the characters in a string) destroys its meaning, whereas
sorting a general container typically makes it more useful.

The string iterators are not range checked.

20.3.3 Element Access

Individual characters of a string can be accessed through subscripting:

template<class Ch, class Tr =char_traits<Ch>, class A =allocator<Ch> >
class basic_string {
public:

I I ...
I I element access (like vector: §16.3.3):



Section 20.3.3 Element Access 585

const_reference operator [] (size_type n) const; I I unchecked access
reference operator [] (size_type n);

} ;

const_reference at (size_type n) const;
reference at (size_type n);

I I ...

I I checked access

Out-of-range access causes at () to throw an out_oi_range.
Compared to vector, string lacks front () and back ( ). To refer to the first and the last charac

ter of a string, we must say s [0] and s [s . length ( ) -1], respectively. The pointer/array equiva
lence (§5.3) doesn't hold for strings. If s is a string, &s [0] is not the same as s.

20.3.4 Constructors

The set of initialization and copy operations for a string differs from what is provided for other
containers (§16.3.4) in many details:

template<class Ch, class Tr =char_traits<Ch>, class A =aliocator<Ch> >
class basic_string {
public:

II ...
I I constructors, etc. (a bit like vector and list: §16.3.4):

explicit basic_string (const A& a =A () );
basic_string (const basic_string& s ,

size_type pos =0, size_type n =npos, const A& a =A ( ) );
basic_string (const Ch* p, size_type n, const A& a = A ( ) ) ;
basic_string (const Ch* p, const A& a = A ( ) );
basic_string (size_type n, Ch c, const A& a = A ( ) );
template<class In> basic_string (In first, In last, const A& a = A ( ) ) ;

-basic_string ();

} ;

static const size_type npos;

II ...

I I "all characters" marker

A string can be initialized by a C-style string, by another string, by part of a C-style string, by part
of a string, or from a sequence of characters. However, a string cannot be initialized by a charac
ter or an integer:

void f( char* p, vector<char>&v)
{

string sO;
string sOO = " " ;

string 81 = 'a ' ;
string 82 =7;
string s3 (7) ;

I I the empty string
I I also the empty string

I I error: no conversion from char to string
I I error: no conversion from int to string
I I error: no constru't:tor taking one int argument



586 Strings

string 34 (7, ,a ' ) i I I 7 copies of 'a'; that is "aaaaaaa"

Chapter 20

string s5 = II FrodonilI copy of "Frodo"
string s6 = s5 i I I copy ofs5

string s7 (s5, 3,2)ill s5[3] and s5[4]; that is rIdott
string s8(p+7,3)i II p[7],p[8], andp[9]
string s9 (p, 7, 3) i I I string(string(p), 7,3), possibly expensive

string s10 (v. begin ( ) , v. end ( ) ) i I I copy all characters from v

Characters are numbered starting at position 0 so that a string is a sequence of characters numbered
oto length ( ) -1.

The length () of a string is simply a synonym for its size ( ) ; both functions return the number
of characters in the string. Note that they do not count a C-string-style, zero-terminator character
(§20.4.1). An implementation of basic_string stores its length rather than relying on a terminator.

Substrings are expressed as a character position plus a number of characters. The default value
npos is initialized to the largest possible value and used to mean "all of the elements."

There is no constructor that creates a string of n unspecified characters. The closest we come to
that is the constructor that makes a string of n copies of a given character. The absence of a con
structor that takes a single character only and of a constructor that takes a number of elements only
allows the compiler to detect mistakes such as the definitions of s2 and s3 in the previous example.

The copy constructor is the constructor taking four arguments. Three of those arguments have
defaults. For efficiency, that constructor could be implemented as two separate constructors. The
user wouldn't be able to tell without actually looking at the generated code.

The constructor that is a template member is the most general. It allows a string to be initial
ized with values from an arbitrary sequence. In particular, it allows a string to be initialized with
elements of a different character type as long as a conversion exists. For example:

void f (string s)
{

wstring ws(s.begin(),s.end(»i
1/ ...

I I copy all characters from s

Each wchar_t in ws is initialized by its corresponding char from s.

20.3.5 Errors

Often, strings are simply read, written, printed, stored, compared, copied, etc. This causes no prob
lems, or, at worst, performance problems. However, once we start manipulating individual sub
strings and characters to compose new string values from existing ones, we sooner or later make
mistakes that could cause us to write beyond the end of a string.

For explicit access to individual characters, at () checks and throws out_oj_range () if we try
to access beyond the end of the string; [] does not.

Most string operations take a character position plus a number of characters. A position larger
than the size of the string throws an out_oj_range exception. A "too large" character count is
simply taken to be equivalent to "the rest" of the characters. For example:



Section 20.3.5

void f()

{

Errors 587

string s = II Snobol4 II i

string s2 (s , 100, 2); / / character position beyond end ofstring: throw out_of_range()
string s3 (s, 2,100); / / character count too large: equivalent to s3(s,2,s.size()- 2)
string s4 (s , 2 , string: : npos) ; / / the characters starting from s[2]

Thus, "too large" positions are to be avoided, but "too large" character counts are useful. In fact,
npos is really just the largest possible value for size_type.

We could try to give a negative position or character count:

void g (string& s)
{

string s5 (s, -2, 3) ; / / large position!: throw out_of_range()
string s6 (s, 3, -2); / / large character count!: ok

However, the size_type used to represent positions and counts is an unsigned type, so a negative
number is simply a confusing way of specifying a large positive number (§ 16.3.4).

Note that the functions used to find substrings of a string (§20.3.11) return npos if they don't
find anything. Thus, they don't throw exceptions. However, later using npos as a character posi
tion does.

A pair of iterators is another way of specifying a substring. The first iterator identifies a posi
tion' and the difference between two iterators is a character count. As usual, iterators are not range
checked.

Where a C-style string is used, range checking is harder. When given a C-style string (a pointer
to char) as an argument, basic_string functions assume the pointer is not O. When given character
positions for C-style strings, they assume that the C-style string is long enough for the position to
be valid. Be careful! In this case, being careful means being paranoid, except when using character
literals.

All strings have length ( ) <npos. In a few cases, such as inserting one string into another
(§20.3.9), it is possible (although not likely) to construct a string that is too long to be represented.
In that case, a length_error is thrown. For example:

string s (string: :npos, ' a ' ) ; / / throw length_error()

20.3.6 Assignment

Naturally, assignment is provided for strings:

template<class Ch, class Tr =char_traits<Ch>, class A =aliocator<Ch> >
class basic_string {
public:

1/ ...
1/ assignment (a bit like vector and list: §16.3.4).·



588 Strings

basic_string& operator= (const basic_string& s);
basic_string& operator= (const Ch* p);
basic_string& operator= (Ch I c) ;

basic_string& assign (const basic_string& ) ;

basic_string& assign (const basic_string& s, size_type pos, size_type n);
basic_string& assign (const Ch * p, size_type n);
basic_string& assign (const Ch * p) ;
basic_string& assign (size_type n, Ch c);
template<class In> basic_string& assign (In first, In last);

/ / ...
} ;

Chapter 20

Like other standard containers, strings have value semantics. That is, when one string is assigned
to another, the assigned string is copied and two separate strings with the same value exist after the
assignment. For example:

void g ()
{

string sJ = "Knold II ;

string s2 = II Tot II ;

sl =s2;
s2 [J] = 'u' ;

/ / two copies of "Tot"
/ / s2 is "Tut", s1 is still "Tot"

Assignment with a single character to a string is supported even though initialization by a single
character isn't:

void f()
{

string s = 'a ~; / / error: initialization by char
s = 'a ' ; / / ok: assignment
s = "a";
s =s;

Being able to assign a char to a string isn't much use and could even be considered error-prone.
However, appending a char using += is at times essential (§20.3.9), and it would be odd to be able
to say s+ = ' c' but not s= ' c ' .

The name assign () is used for the assignments, which are the counterparts to multiple argu
ment constructors (§ 16.3.4, §20.3.4).

As mentioned in §11.12, it is possible to optimize a string so that copying doesn't actually take
place until two copies of a string are needed. The design of the standard string encourages imple
mentations that minimize actual copying. This makes read-only uses of strings and passing of
strings as function arguments much cheaper than one could naively have assumed. However, it
would be equally naive for programmers not to check their implementations before writing code
that relied on string copy being optimized (§20.6[ 13]).



Section 20.3.7 Conversion to C-Style Strings 589

20.3.7 Conversion to C-Style Strings

As shown in §20.3.4, a string can be initialized by a C-style string and C-style strings can be
assigned to strings. Conversely, it is possible to place a copy of the characters of a string into an
array:

template<class Ch, class Tr =char_traits<Ch>, class A =aliocator<Ch> >
class basic_string {
public:

/1 ...
/ I conversion to C-style string:

const Ch* c_str () const i

const Ch* data () const i

size_type copy (Ch * p, size_type n, size_type pos = 0) const j

/ I ...
} j

The data () function writes the characters of the string into an array and returns a pointer to that
array. The array is owned by the string, and the user should not try to delete it. The user also can
not rely on its value after a subsequent call on a non-const function on the string. The c_str ( )
function is like data () , except that it adds a 0 (zero) at the end as a C-string-style terminator. For
example:

void f()
{

string s = II equinox II i

const char* pI = s. data ( ) j
printf( "pl = %s\n II ,pI) j
pI [2] = ' a' i

s[2] = 'a'j
char c=pl[l]j

const char* p2 = s . c_str ( ) j
printf( "p2 = %S\n" ,p2) j

/ / s.length()==7
/ / pl points to seven characters
/ / bad: missing terminator
/ / error: pl points to a const array

/ / bad: access ofs.data() after modification ofs

/ / p2 points to eight characters
/ / ok: c_str() adds terminator

In other words, data () produces an array of characters, whereas c_str () produces a C-style string.
These functions are primarily intended to allow simple use of functions that take C-style strings.
Consequently, c_str () tends to be more useful than data ( ). For example:

void f(string s)
{

int i = atoi (s . c_str ( ) ) j / / get int value ofdigits in string (§20.4.l)
// ...

Typically, it is best to leave characters in a string until you need them. However, if you can't use
the characters immediately, you can copy them into an array rather than leave them in the buffer
allocated by c_str () or data ( ). The copy () function is provided for that. For example:



590 Strings

char* c_string (const string& s)
{

char* p = new char[s . length () +1] i / / note: +1
s .copy (p I string: : npos ) i

P [s . length ( )] = 0; / / note: add terminator
return Pi

Chapter 20

A call s. copy (p In, m) copies at most n characters to p starting with s [m]. If there are fewer
than n characters in s to copy, copy () simply copies all the characters there are.

Note that a string can contain the 0 character. Functions manipulating C-style strings will
interprete such a 0 as a terminator. Be careful to put Os into a string only if you don't apply C-style
functions to it or if you put the 0 there exactly to be a terminator.

Conversion to a C-style string could have been provided by an operator const char* () rather
than c_str ( ). This would have provided the convenience of an implicit conversion at the cost of
surprises in cases in which such a conversion was unexpected.

If you find c_str () appearing in your program with great frequency, it is probably because you
rely heavily on C-style interfaces. Often, an interface that relies on strings rather than C-style
strings is available and can be used to eliminate the conversions. Alternatively, you can avoid most
of the explicit calls of c_str () by providing additional definitions of the functions that caused you
to write the c_str () calls:

extern II C II int atoi (const char*);

int atoi (const string& s)
{

return atoi (s. c_str( ) );

20.3.8 Comparisons

Strings can be compared to strings of their own type and to arrays of characters with the same char
acter type:

template<class Ch I class Tr = char_traits<Ch> I class A = allocator<Ch> >
class basic_string {
public:

/ / ...
int compare (const basic_string& s) const; / / combined> and ==
int compare (const Ch* p) const;

int compare (size_type pos I size_type n I const basic_string& s) const i

int compare (size_type pos I size_type n,
const basic_string& s, size_type pos2, size_type n2) const i

int compare (size_type pos I size_type n I const Ch * p, size_type n2 = npos) const;

/ / ...
} i



Section 20.3.8 Comparisons 591

When a position and a size are supplied for a string in a compare ( ) , only the indicated substring is
used. For example, s. compare (pos , n, s2) is equivalent to string (s , pos , n) . compare (s2) .
The comparison criterion is char_traits<Ch>'s compare () (§20.2.1). Thus, s. compare (s2)
returns 0 if the strings have the same value, a negative number if s is lexicographically before s2,
and a positive number otherwise.

A user cannot supply a comparison criterion the way it was done in §13.4. When that degree of
flexibility is needed, we can use lexicographical_compare () (§18.9), define a function like the
one in §13.4, or write an explicit loop. For example, the toupper () function (§20.4.2) allows us to
write case-insensitive comparisons:

int cmp_nocase (const string& s, const string& s2)
{

string: : const_iterator p =s . begin ( ) ;
string: : const_iterator p2 =s2 . begin ( ) ;

while (p! =s . end () && p2 ! =s2 . end ( )) {
if (toupper (*p) ! =toupper ( *p2) ) return (toupper (*p) <toupper (*p2)) ? -1 : 1;
++p;
++p2;

return (s2. size ( ) ==s . size ( )) ? 0: (s. size ( ) <s2 . size ( )) ? -1 : 1; / / size is unsigned

void f(const string& s, const string& s2)
{

if (s == s2)
/ / ...

if (cmp_nocase(s,s2) == 0) {
/ / ...

/ / ...

/ / case sensitive compare ofsand s2

/ / case insensitive compare ofsand s2

The usual comparison operators ==, ! =, >, <, >=, and <= are provided for basic_strings:

template<class Ch, class Tr, class A>
booI operator== (const basic_string<Ch, Tr, A>&, const basic_string<Ch, Tr, A>&);

template<class Ch, class Tr, class A>
bool operator== (const Ch*, const basic_string<Ch, Tr, A>&);

template<class Ch, class Tr, class A>
bool operator== (const basic_string<Ch, Tr,A>&, const Ch*);

/ / similar declarations for 1=, >, <, >=, and <=

Comparison operators are nonmember functions so that conversions can be applied in the same way
to both operands (§ 11.2.3). The versions taking C-style strings are provided to optimize compar
isons against string literals. For example:



592 Strings

void !(const string& name)
{

if (name =="0belix" II "Asterix"==name) {
I I ...

I I use optimized ==

Chapter 20

20.3.9 Insert

Once created, a string can be manipulated in many ways. Of the operations that modify the value
of a string, one of the most common is appending to it - that is, adding characters to the end.
Insertion at other points of a string is rarer:

template<class Ch, class Tr =char_traits<Ch>, class A =allocator<Ch> >
class basic_string {
public:

1/ ...
1/ add characters after (*this)[length()-1]:

basic_string& operator+= (const basic_string& s);
basic_string& operator+= (const Ch* p);
basic_string& operator+= (Ch c);
void push_back (Ch c);

basic_string& append (const basic_string& s) ;
basic_string& append (const basic_string& s I size_type pos, size_type n);
basic_string& append (const Ch* P, size_type n);
basic_string& append (const Ch* p) ;
basic_string& append (size_type n I Ch c);
template<class In> basic_string& append (In first, In last);

I / insert characters before (*this)[pos]:

basic_string& insert (size_type pos, const basic_string& s);
basic_string& insert (size_type pos, const basic_string& s, size_type pos2, size_type n);
basic_string& insert (size_type pos, const Ch* p, size_type n);
basic_string& insert (size_type pos, const Ch* p)i
basic_string& insert (size_type pos, size_type n, Ch c) i

I / insert characters before p:

iterator insert (iterator p I Ch c);
void insert (iterator p, size_type n, Ch c);
template<class In> void insert (iterator p, In first, In last);

1/ ...
} ;

Basically, the variety of operations provided for initializing a string and assigning to a string is also
available for appending and for inserting characters before some character position.

The += operator is provided as the conventional notation for the most common forms of
append. For example:



Section 20.3.9

string complete_name (const string& first_name I const string& family_name)
{

string s = first_name;
s +=
s += family_name;
return s;

Insert 593

Appending to the end can be noticeably more efficient than inserting into other positions. For
example:

string complete_name2 (const string&first_name I const string&family_name) / / poor algorithm
{

string s = family_name;
s. insert (s . begin ( ) I ' ');
return s. insert (0 Ifirst_name) ;

Insertion usually forces the string implementation to do extra memory management and to move
characters around.

Because string has a push_back () operation (§ 16.3.5), a back_inserter can be used for a
string exactly as for general containers.

20.3.10 Concatenation

Appending is a special form of concatenation. Concatenation - constructing a string out of two
strings by placing one after the other - is provided by the + operator:

template<class Ch I class Tr I class A>
basic_string<Ch ITr IA> .
operator+ (const basic_string<Ch , TrIA>&, const basic_string<Ch , Tr,A>&);

template<class Ch I class Tr I class A>
basic_string<Ch , TriA> operator+ (const Ch* I const basic_string<Ch , Tr,A>&);

template<class Ch I class Tr I class A>
basic_string<Ch ITr IA> operator+ (Ch I const basic_string<Ch ITr I A>&) ;

template<class Ch I class Tr I class A>
basic_string<Ch, Tr IA> operator+ (const basic_string<Ch ITr IA>& I const Ch*);

template<class Ch I class Tr I class A>
basic_string<Ch , Tr IA> operator+ (const basic_string<Ch , Tr IA>&, Ch);

As usual, + is defined as a nonmember function. For templates with several template parameters,
this implies a notational disadvantage, since the template parameters are mentioned repeatedly.

On the other hand, use of concatenation is obvious and convenient. For example:

string complete_name3 (const string& first_name, const string& family_name)
{

return first_name + ' , + family_name;



594 Strings Chapter 20

This notational convenience may be bought at the cost of some run-time overhead compared to
complete_name (). One extra temporary (§11.3.2) is needed in complete_name3 (). In my expe
rience, this is rarely important, but it is worth remembering when writing an inner loop of a pro
gram where performance matters. In that case, we might even consider avoiding a function call by
making complete_name () inline and composing the result string in place using lower-level opera
tions (§20.6[14]).

20.3.11 Find

There is a bewildering variety of functions for finding substrings:

template<class Ch I class Tr =char_traits<Ch> I class A =aliocator<Ch> >
class basic_string {
public:

/ / ...
/ / find subsequence (like search() §18.5.5):

size_type find (const basic_string& s I size_type i =0) const;
size_type find (const Ch* p I size_type i I size_type n) const;
size_type find (const Ch* p I size_type i =0) const;
size_type find (Ch c I size_type i = 0) const;

/ / find subsequence searching backwardsfrom the end (likefind_end(), §18.5.5):

size_type rfind (const basic_string& s I size_type i = npos) const;
size_type rfind (const Ch* p I size_type i I size_type n) const i

size_type rfind (const Ch* p I size_type i = npos) const;
size_type rfind (Ch c I size_type i = npos) const;

/ / find character (likefind..first_of() in §18.5.2):

size_type findJirst_of(const basic_string& s I size_type i = 0) const;
size_type findJirst_of(const Ch* p I size_type i I size_type n) const;
size_type findJirst_of(const Ch* p I size_type i =0) const;
size_type findJirst_of(Ch c , size_type i =0) const;

/ / find characterfrom argument searching backwards from the end:

size_type find_last_of (const basic_string& s I size_type i = npos) const;
size_type find_Iast_of(const Ch* P, size_type i , size_type n) const;
size_type find_last_of(const Ch* P, size_type i =npos) const;
size_type find_last_of(Ch c , size_type i =npos) const;

/ / find character not in argument:

size_type findJirst_not_of(const basic_string& S I size_type i =0) const;
size_type findJirst_not_of(const Ch* P, size_type i , size_type n) const;
size_type findJirst_not_of{const Ch* P, size_type i = 0) const;
size_type findJirst_not_of(Ch C , size_type i = 0) const;

/ / find character not in argument searching backwards from the end:



Section 20.3.11

size_type find_last_not_of(const basic_string& s I size_type i = npos) const;
size_type find_last_not_of(const Ch* P, size_type i , size_type n) const;
size_type find_last_not_of(const Ch * p I size_type i = npos) const;
size_type find_last_not_of(Ch c I size_type i = npos) const;
I I ...

} i

Find 595

These are all const members. That is, they exist to locate a substring for some use, but they do not
change the value of the string to which they are applied.

The meaning of the basic_string: :find functions can be understood from their general algo
rithm equivalents. Consider an example:

void f()
{

string s = "accdcde" ;
string: : size_type il = s .find ( II cd II ) i

string: :size_type i2 =s. rfind ( II cd" ) ;
string: :size_type i3 = s.findJirst_of( "cd ll

);

string:: size_type i4 = s .find_last_of( "cd" );
string: : size_type i5 = s .findJirst_not_of( II cd II ) ;

string: : size_type i6 =s.find_last_not_of( "cd");

II il =2 s[2]=='c' && s[3]=='d'
I I i2 =4 s[4]== 'c' && s[5]== 'd'
I I i3 = J s[1] == 'c '
I I i4 =5 s[5] == 'd'
I I i5 =0 s[O]I= 'c' && s[O]I= 'd'
I I i6 =6 s[6]1='c' && s[6]1= 'd'

If a find () function fails to find anything, it returns npos, which represents an illegal character
position. If npos is used as a character position, out_oj_range will be thrown (§20.3.5).

Note that result of afind () is an unsigned value.

20.3.12 Replace

Once a position in a string is identified, the value of individual character positions can be changed
using subscripting or whole substrings can be replaced with new characters using replace ( ) :

template<class Ch I class Tr =char_traits<Ch>, class A =allocator<Ch> >
class basic_string {
public:

I I ...
I I replace [ (*this)[i], (*this)[i+n] [ with other characters:

basic_string& replace (size_type i , size_type n , const basic_string& s);
basic_string& replace (size_type i I size_type n I

const basic_string& s I size_type i2 I size_type n2) i

basic_string& replace (size_type i I size_type n I const Ch * p I size_type n2);
basic_string& replace (size_type i , size_type n , const Ch* p);
basic_string& replace (size_type i, size_type n I size_type n2 I Ch c);

basic_string& replace (iterator i, iterator i2 I const basic_string& s) ;
basic_string& replace (iterator i, iterator i2 I const Ch * p I size_type n);
basic_string& replace (iterator i, iterator i2 I const Ch* p) ;
basic_string& replace (iterator i , iterator i2 I size_type n , Ch c);
template<class In> basic_string& replace (iterator i I iterator i2 I In j, In j2);



596 Strings

I I remove characters from string (" replace with nothing"):

basic_string& erase (size_type i = 0, size_type n =npos);
iterator erase (iterator i);
iterator erase (iterator first, iterator last);

I I ...
} ;

Chapter 20

I I s[i}..s[i+n-1J
I I s2 in s
I I *p in s

Note that the number of new characters need not be the same as the number of characters previ
ously in the string. The size of the string is changed to accommodate the new substring. In particu
lar, erase () simply removes a substring and adjusts its size accordingly. For example:

void f()
{

string s = II but I have heard it works even if you don't believe in it II ;

s . erase (0 , 4) ; I I erase initial "but "
s . replace (s .find ( n even II ) , 4, II only II ) ;

s. replace (s .find ( "don' til ),5, II II ); I I erase by replacing with It"~

The simple call erase ( ), with no argument, makes the string into an empty string. This is the
operation that is called clear () for general containers (§ 16.3.6).

The variety of replace () functions matches that of assignment. After all, replace () is an
assignment to a substring.

20.3.13 Substrings

The substr () function lets you specify a substring as a position plus a length:

template<class Ch, class Tr = char_traits<Ch>, class A = aliocator<Ch> >
class basic_string {
public:

I I ...
I I address substring:

basic_string substr (size_type i =0, size_type n =npos) const;
II ...

} ;

The substr () function is simply a way of reading a part of a string. On the other hand, replace ( )
lets you write to a substring. Both rely on the low-level position plus number of characters nota
tion. However, find () lets us find substrings by value. Together, they allow us to define a sub
string that can be used for both reading and writing:

template<class Ch> class Basic_substring {
public:

typedef typename basic_string<Ch>: :size._type size_type;

Basic_substring (basic_string<Ch>& s, size_type i, size_type n);
Basic_substring (basic_string<Ch>& s, const basic_string<Ch>& s2) ;
Basic_substring (basic-.string<Ch>& s, const Ch* p);



Section 20.3.13 Substrings 597

Basic_substring& operator= (const basic_string<Ch>&);
Basic_substring& operator= (const Basic_substring<Ch>& ) ;
Basic_substring& operator= (const Ch*);
Basic_substring& operator= (Ch) ;

operator basic_string< Ch> () const;
operator const Ch* () const;

private:
basic_string<Ch> * pSi
size_type pos;
size_type n i

} ;

The implementation is largely trivial. For example:

/ / write through to *ps

/ / read from *ps
/ / use c_str()

template<class Ch>
Basic_substring<Ch>:: Basic_substring (basic_string<Ch>& s, const basic_string<Ch>& s2)

:ps (&s), n (s2 . length ( ) )

pos =s .find (s2);

template<class Ch>
Basic_substring<Ch>& Basic_substring<Ch>:: operator= (const basic_string<Ch>& s)
{

ps->replace (pos, n, s);
return * this;

/ / write through to *ps

template<class Ch> Basic_substring<Ch>: : operator basic_string<Ch> () const
{

return basic_string<Ch> ( *ps , pos , n) ; / / copy from *ps

If s2 isn't found in s, pos will be npos. Attempts to read or write it will throw out_oj_range
(§20.3.5).

This Basic_substring can be used like this:

typedeJ Basic_substring<char> Substring;

void f()
{

string s ="Mary had a little lamb II ;

Substring (s, "lamb") = "fun" ;
Substring (s, "a little II) = II no II ;

string s2 = "Joe" + Substring (s , s .find (' '), string: : npos) i

Naturally, this would be much more interesting if Substring could do some pattern matching
(§20.6[7]).



598 Strings

20.3.14 Size and Capacity

Memory-related issues are handled much as they are for vector (§16.3.8):

template<class Ch, class Tr = char_traits<Ch>, class A = aliocator<Ch> >
class basic_string {
public:

I I ...
1/ size, capacity, etc. (like §J6.3.8):

Chapter 20

} ;

size_type size () const;
size_type max_size () const;
size_type length () const { return size ( ); }
bool empty () const { return size ( ) ==0; }

void resize (size_type n, Ch c);
void resize (size_type n) { resize (n, Ch ( ) );

size_type capacity () const;
void reserve (size_type res_arg = 0);

allocator_type get_allocator () const;

II number ofcharacters (§20.3.4)
I I largest possible string

II like vector: §J6.3.8
II like vector: §J6.3.8

A call reserve (res_arg) throws length_error if res_arg>max_size ().

20.3.15 I/O Operations

One of the main uses of strings is as the target of input and as the source of output. Input and out
put operators for basic_string are provided in <string> (not in <iostream»:

template<class Ch, class Tr, class A>
basic_istream<Ch, Tr>& operator» (basic_istream<Ch, Tr>&, basic_string<Ch, Tr, A>&) ;

template<class Ch, class Tr, class A>
basic_ostream<Ch, Tr>& operator« (basic_ostream<Ch, Tr>&, const basic_string<Ch, Tr ,A>&);

template<class Ch, class Tr, class A>
basic_istream<Ch, Tr>& getline (basic_istream<Ch, Tr>&, basic_string<Ch, Tr, A>&, Ch eol);

template<class Ch, class Tr, class A>
basic_istream<Ch, Tr>& getline (basic_istream<Ch, Tr>&, basic_string<Ch, Tr, A>&) i

The « operator writes a string to an ostream (§21.2.1). The» operator reads a whitespace
terminated word (§3.6, §21.3.1) to its string, expanding the string as needed to hold the word. Ini
tial whitespace is skipped, and the terminating whitespace character is not entered into the string.

The getline () function reads a line terminated by eol to its string, expanding the string as
needed to hold the line (§3.6). If no eol argument is provided, a newline '\n' is used as the delim
iter. The line terminator is removed from the stream but not entered into the string. Because a
string expands to hold the input, there is no reason to leave the terminator in the stream or to pro
vide a count of characters read in the way get () and getline () do for character arrays (§21.3.4).



Section 20.3.16 Swap 599

20.3.16 Swap

As for vectors (§ 16.3.9), a swap () function for strings can be much more efficient than the general
algorithm, so a specific version is provided:

template<class Ch, class Tr, class A>
void swap (basic_string<Ch, Tr, A>&, basic_string<Ch, Tr, A>&) ;

20.4 The C Standard Library

The C++ standard library inherited the C-style string functions from the C standard library. This
section lists some of the most useful C string functions. The description is not meant to be exhaus
tive; for further information, check your reference manual. Beware that implementers often add
their own nonstandard functions to the standard header files, so it is easy to get confused about
which functions are guaranteed to be available on every implementation.

The headers presenting the standard C library facilities are listed in §16.1.2. Memory manage
ment functions can be found in §19.4.6, C I/O functions in §21.8, and the C math library in §22.3.
The functions concerned with startup and termination are described in §3.2 and §9.4.1.1, and the
facilities for reading unspecified function arguments are presented in §7.6. C-style functions for
wide character strings are found in <cwchar> and <wchar. h>.

20.4.1 C-Style Strings

Functions for manipulating C-style strings are found in <string. h> and <cstring>:

char* strcpy (char* p, const char* q) ; / / copy from q into p (incl. terminator)
char* strcat (char* p, const char* q) ; / / append from q to p (incl. terminator)
char* stmcpy (char* p, const char* q, int n); / / copy n char from q into p
char* stmcat (char* p, const char* q, int n); / / append n char from q to p

size_t strlen (const char* p) ; / / length ofp (not counting the terminator)

int strcmp (const char* p, const char* q) ;
int strncmp (const char* p, const char* q, int n);

/ / compare: p and q
/ / compare first n char

char* strchr (char* p, int c); / / find first c in p
const char* strchr (const char* p, int c);
char* strrchr (char* p, int c); / / find last c in p
const char* strrchr (const char* p, int c);
char* strstr (char* p, const char* q) ; / / find first q in p
const char* strstr (const char* p, const char* q) ;

char* strpbrk (char* p, const char* q) ; / / find first char from q in p
const char* strpbrk (const char* p, const char* q) ;

size t strspn (const char* p, const char* q) ; / / number ofchar in p before any char in q
size=t strcspn (const char* p, const char* q) ; / / number ofchar in p before a char not in q

A pointer is assumed to be nonzero, and the array of char that it points to is assumed to be termi
nated by O. The stm-functions pad with 0 if there are not n characters to copy. String comparisons



600 Strings Chapter 20

return 0 if the strings are equal, a negative number if the first argument is lexicographically before
the second, and a positive number otherwise.

Naturally, C doesn't provide the pairs of overloaded functions. However, they are needed in
C++ for const safety. For example:

void f(const char* pee, char* pc) / / c++
{

*strchr (pee I ' a ') = ' b '; / / error: cannot assign to const char
*strchr (pc, ' a ') = 'b '; I10k, but sloppy: there might not be an 'a' in pc

The C++ strchr () does not allow you to write to a const. However, a C program may "take
advantage" of the weaker type checking in the C strchr ( ) :

ehar* strchr(const char* P, int c); 1* C standard libraryfunctionJ not c++ * I

void g (const ehar* pee, char* pc) I * C, will not compile in C++ * I
{

*strchr (pee, ' a ') = ' b '; I * converts const to non-const.· ok in C, error in C++ * /
*strchr (pc, ' a ') = 'b '; I * ok in C and C++ * I

Whenever possible, C-style strings are best avoided in favor of strings. C-style strings and their
associated standard functions can be used to produce very efficient code, but even experienced C
and C++ programmers are prone to make uncaught "silly errors" when using them. However, no
C++ programmer can avoid seeing some of these functions in old code. Here is a nonsense exam
ple illustrating the most common functions:

void f (char* p, char* q)
{

if (p==q) return;
if (strcmp(p,q) ==0) {

int i = strlen (p) ;
1/ ...

}

char buf[200l i

strcpy (buf, p) i

stmcpy (buf, p, 200);

II ...

I I pointers are equal
I I string values are equal
1/ number ofcharacters (not counting the terminator)

/ / copy pinto buf(including the terminator)
I I sloppy: will overflow some day.
I I copy 200 char from pinto buf
/ / sloppy: will fail to copy the terminator some day.

Input and output of C-style strings are usually done using the priniffamily of functions (§21.8).
In <stdlib. h> and <cstdlib>, the standard library provides useful functions for converting

strings representing numeric values into numeric values:

double atof(const char* p); I I convert p to double
int atoi (const char* p) ; / / convert p to int
long atol (const char* p) ; / I convert p to long

Leading whitespace is ignored. If the string doesn't represent a number, zero is returned. For



Section 20.4.1 C-Style Strings 601

example, the value of atoi ( "seven") is O. If the string represents a number that cannot be repre
sented in the intended result type, errno (§ 16.1.2, §22.3) is set to ERANGE and an appropriately
huge or tiny value is returned.

20.4.2 Character Classification

In <ctype. h> and <cctype>, the standard library provides a set of useful functions for dealing with
ASCII and similar character sets:

int isalpha (int) ;
int isupper (int) ;
int islower (int) i

int isdigit (int) ;
int isxdigit (int) i

int isspace (int) i

int iscntrl (int) ;
int ispunct (int) ;
int isalnum (int) ;
int isprint (int) i

int isgraph (int) ;

int toupper{int C)i

int tolower (int C) i

I I letter: 'a'.. 'z' 'A '.. '2' in C locale (§20.2.1, §2J.7)
I I upper case letter: 'A '.. '2' in C locale (§20.2./, §2/.7)
I I lower case letter: 'a'.. 'z' in C locale (§20.2./, §2/.7)
I I decimal digit: '0'.. '9'
I I hexadecimal digit: '0'.. '9' or 'a'.. 'i' or 'A '.. 'F'
I I ' , '\t' \v' return newline formfeed
I I control character (ASCII 0..3/ and /27)
I I punctuation: none of the above
I I isalpha() I isdigit()
I I printable: ascii ' '.. ,-,
I I isalpha() I isdigit() I ispunct()

I I uppercase equivalent to c
I I lowercase equivalent to c

All are usually implemented by a simple lookup, using the character as an index into a table of
character attributes. This means that constructs such as:

i/(('a'<=c&&c<='z') II ('A'<=c&&c<='Z')) {

II ...
/ I alphabetic

are inefficient in addition to being tedious to write and error-prone (on a machine with the EBCDIC
character set, this will accept nonalphabetic characters).

These functions take int arguments, and the integer passed must be representable as an
unsigned char or EOF (which is most often - J). This can be a problem on systems where char is
signed (see §20.6[ 11 ]).

Equivalent functions for wide characters are found in <cwctype> and <wctype. h>.

20.5 Advice

[1] Prefer string operations to C-style string functions; §20.4.1.
[2] Use strings as variables and members, rather than as base classes; §20.3, §25.2.1.
[3] You can pass strings as value arguments and return them by value to let the system take care

of memory management; §20.3.6.
[4] Use at () rather than iterators or [] when you want range checking; §20.3.2, §20.3.5.
[5] Use iterators and [] rather than at () when you want to optimize speed; §20.3.2, §20.3.5.
[6] Directly or indirectly, use substr () to read substrings and replace () to write substrings;

§20.3.12, §20.3.13.



602 Strings Chapter 20

[7] Use the find () operations to locate values in a string (rather than writing an explicit loop);
§20.3.Il.

[8] Append to a string when you need to add characters efficiently; §20.3.9.
[9] Use strings as targets of non-time-critical character input; §20.3.15.
[10] Use string: :npos to indicate "the rest of the string;" §20.3.5.
[11] If necessary, implement heavily-used strings using low-level operations (rather than using

low-level data structures everywhere); §20.3.1 O.
[12] If you use strings, catch length_error and out_oj_range somewhere; §20.3.5.
[13] Be careful not to pass a char* with the value 0 to a string function; §20.3.7.
[14] Use c_str () produce a C-style string representation of a string (only) when you have to;

§20.3.7.
[15] Use isalpha ( ) , isdigit ( ) , etc., when you need to know the classification of a character rather

that writing your own tests on character values; §20.4.2.

20.6 Exercises

The solutions to several exercises for this chapter can be found by looking at the source text of an
implementation of the standard library. Do yourself a favor: try to find your own solutions before
looking to see how your library implementer approached the problems.
1. (*2) Write a function that takes two strings and returns a string that is the concatenation of the

strings with a dot in the middle. For example, given file and write, the function returns
file. write. Do the same exercise with C-style strings using only C facilities such as malloc ( )
and strlen ( ). Compare the two functions. What are reasonable criteria for a comparison?

2. (*2) Make a list of differences between vector and basic_string. Which differences are impor
tant?

3. (*2) The string facilities are not perfectly regular. For example, you can assign a char to a
string, but you cannot initialize a string with a char. Make a list of such irregularities. Which
could have been eliminated without complicating the use of strings? What other irregularities
would this introduce?

4. (* 1.5) Class basic_string has a lot of members. Which could be made nonmember functions
without loss of efficiency or notational convenience?

5. (* 1.5) Write a version of back_inserter () (§ 19.2.4) that works for basic_string.
6. (*2) Complete Basic_substring from §20.3.13 and integrate it with a String type that overloads

() to mean "substring of" and otherwise acts like string.
7. (*2.5) Write a find () function that finds the first match for a simple regular expression in a

string. Use? to mean "any character," * to mean any number of characters not matching the
next part of the regular expression, and [abc] to mean any character from the set specified
between the square braces (here a, b, and c). Other characters match themselves. For example,
find (s, "name: " ) returns a pointer to the first occurrence of name: in s;
find (s, II [nN] ame: ") returns a pointer to the first occurrence of name: or Name: in s; and
find (s, II [nN] ame (*) ") returns a pointer to the first occurence of Name or name followed
by a (possibly empty) parenthesized sequence of characters in s.

8. (*2.5) What operations do you find missing from the simple regular expression function from



Section 20.6 Exercises 603

§20.6[7]? Specify and add them. Compare the expressiveness of your regular expression
matcher to that of a widely distributed one. Compare the performance of your regular expres
sion matcher to that of a widely distributed one.

9. (*2.5) Use a regular expression library to implement pattern-matching operations on a String
class that has an associated Substring class.

10. (*2.5) Consider writing an "ideal" class for general text processing. Call it Text. What facili
ties should it have? What implementation constraints and overheads are imposed by your set of
"ideal" facilities?

11. (*1.5) Define a set of overloaded versions for isalpha ( ) , isdigit ( ) , etc., so that these functions
work correctly for char, unsigned char, and signed char.

12. (*2.5) Write a String class optimized for strings having no more than eight characters. Com
pare its performance to that of the String from §11.12 and your implementation's version of the
standard library string. Is it possible to design a string that combines the advantages of a string
optimized for very short strings with the advantages of a perfectly general string?

13. (*2) Measure the performance of copying of strings. Does your implementation's implementa
tion of string adequately optimize copying?

14. (*2.5) Compare the performance of the three complete_name () functions from §20.3.9 and
§20.3.10. Try to write a version of complete_name () that runs as fast as possible. Keep a
record of mistakes found during its implementation and testing.

15. (*2.5) Imagine that reading medium-long strings (most are 5 to 25 characters long) from cin is
the bottleneck in your system. Write an input function that reads such strings as fast as you can
think of. You can choose the interface to that function to optimize for speed rather than for con
venience. Compare the result to your implementation's » for strings.

16. (*1.5) Write a function itos (int) that returns a string representing its int argument.





21
Streams

What you see is all you get.
- Brian Kernighan

Input and output - ostreams - output of built-in types - output of user-defined types
- virtual output functions - istreams - input of built-in types - unformatted input
- stream state - input of user-defined types - I/O exceptions - tying of streams -
sentries - formatting integer and floating-point output - fields and adjustments 
manipulators - standard manipulators - user-defined manipulators - file streams 
closing streams - string streams - stream buffers - locale - stream callbacks 
printf() - advice - exercises.

21.1 Introduction

Designing and implementing a general input/output facility for a programming language is notori
ously difficult. Traditionally, I/O facilities have been designed exclusively to handle a few built-in
data types. However, a nontrivial C++ program uses many user-defined types, and the input and
output of values of those types must be handled. An I/O facility should be easy, convenient, and
safe to use; efficient and flexible; and, above all, complete. Nobody has come up with a solution
that pleases everyone. It should therefore be possible for a user to provide alternative I/O facilities
and to extend the standard I/O facilities to cope with special applications.

C++ was designed to enable a user to define new types that are as efficient and convenient to
use as built-in types. It is therefore a reasonable requirement that an I/O facility for c++ should be
provided in C++ using only facilities available to every programmer. The stream I/O facilities pre
sented here are the result of an effort to meet this challenge:

§21.2 Output: What the application programmer thinks of as output is really the conversion of
objects of types, such as int, char*, and Employee_record, into sequences of charac
ters. The facilities for writing built-in and user-defined types to output are described.



606 Streams Chapter 21

§21.3 Input: The facilities for requesting input of characters, strings, and values of other built
in and user-defined types are presented.

§21.4 Formatting: There are often specific requirements for the layout of the output. For
example, ints may have to be printed in decimal and pointers in hexadecimal or
floating-point numbers must appear with exactly specified precision. Formatting con
trols and the programming techniques used to provide them are discussed.

§21.5 Files and Streams: By default, every c++ program can use standard streams, such as
standard output (cout), standard input (cin), and error output (cerr). To use other
devices or files, streams must be created and attached to those files or devices. The
mechanisms for opening and closing files and for attaching streams to files and strings
are described.

§21.6 Buffering: To make I/O efficient, we must use a buffering strategy that is suitable for
both the data written (read) and the destination it is written to (read from). The basic
techniques for buffering streams are presented.

§21.7 Locale: A locale is an object that specifies how numbers are printed, what characters are
considered letters, etc. It encapsulates many cultural differences. Locales are implicitly
used by the I/O system and are only briefly described here.

§21.8 C 1/0: The printf() function from the C <stdio. h> library and the C library's relation
to the C++ <iostream> library are discussed.

Knowledge of the techniques used to implement the stream library is not needed to use the library.
Also, the techniques used for different implementations will differ. However, implementing I/O is
a challenging task. An implementation contains examples of techniques that can be applied to
many other programming and design tasks. Therefore, the techniques used to implement I/O are
worthy of study.

This chapter discusses the stream I/O system to the point where you should be able to appreci
ate its structure, to use it for most common kinds of I/O, and to extend it to handle new user
defined types. If you need to implement the standard streams, provide a new kind of stream, or
provide a new locale, you need a copy of the standard, a good systems manual, and/or examples of
working code in addition to what is presented here.

The key components of the stream I/O systems can be represented graphically like this:

ios base:
locale independent format state

basic ios<>:
locale dependent format state

stream state

basic iostream<>:
formatting «<, », etc.)

setup/cleanup real destination/source



Section 21.1 Introduction 607

The dotted arrow from basic_iostream<> indicates that basic_ios<> is a virtual base class; the
solid arrows represent pointers. The classes marked with <> are templates parameterized by a
character type and containing a locale.

The streams concept and the general notation it provides can be applied to a large class of com
munication problems. Streams have been used for transmitting objects between machines
(§25.4.1), for encrypting message streams (§21.10[22]), for data compression, for persistent storage
of objects, and much more. However, the discussion here is restricted to simple character-oriented
input and output.

Declarations of stream 110 classes and templates (sufficient to refer to them but not to apply
operations to them) and standard typedefs are presented in <iosfwd>. This header is occasionally
needed when you want to include some but not all of the 110 headers.

21.2 Output

Type-safe and uniform treatment of both built-in and user-defined types can be achieved by using a
single overloaded function name for a set of output functions. For example:

put (cerr, II X = "); / / cerr is the error output stream
put (cerr, x);
put (cerr, '\n');

The type of the argument determines which put function will be invoked for each argument. This
solution is used in several languages. However, it is repetitive. Overloading the operator << to
mean "put to" gives a better notation and lets the programmer output a sequence of objects in a
single statement. For example:

cerr« "X = " «x« '\n';

If x is an int with the value 123, this statement would print

x = 123

followed by a newline onto the standard error output stream, cerro Similarly, if x is of type com
plex (§22.5) with the value (1,2.4), the statement will print

X= (1,2.4)

on cerro This style can be used as long as x is of a type for which operator « is defined and a user
can trivially define operator « for a new type.

An output operator is needed to avoid the verbosity that would have resulted from using an out
put function. But why «? It is not possible to invent a new lexical token (§ 11.2). The assign
ment operator was a candidate for both input and output, but 'most people seemed to prefer to use
different operators for input and output. Furthermore, = binds the wrong w~y; that is, cout=a=b
means cout= (a=b) rather than (cout=a) =b (§6.2). I tried the operators < and >, but the mean
ings "less than" and "greater than" were so firmly implanted in people's minds that the new 110
statements were for all practical purposes unreadable.

The operators « and » are not used frequently enough for built-in types to cause that prob
lem. They are symmetric in a way that can be used to suggest "to" and "from." When they are



608 Streams Chapter 21

used for 110, I refer to « as put to and to » as get from. People who prefer more technical
sounding names call them inserters and extractors, respectively. The precedence of « is low
enough to allow arithmetic expressions as operands without using parentheses. For example:

cout« "a*b+c= II « a*b+c« '\n' i

Parentheses must be used to write expressions containing operators with precedence lower than
«~'so For example:

cout« lIa A b Ic=" « (aAb Ic) « '\n';

The left shift operator (§6.2.4) can be used in an output statement, but of course it, too, must appear
within parentheses:

cout« "a«b=II« (a«b)« '\n';

21.2.1 Output Streams

An ostream is a mechanism for converting values of various types into sequences of characters.
Usually, these characters are then output using lower-level output operations. There are many
kinds of characters (§20.2) that can be characterized by char_traits (§20.2.1). Consequently, an
ostream is a specialization for a particular kind of character of a general basic_ostream template:

template <class Ch, class Tr = char_traits<Ch> >
class std:: basic_ostream : virtual public basic_ios<Ch, Tr> {
public:

virtual -basic_ostream ( ) ;
II ...

} ;

This template and its associated output operations are defined in namespace std and presented by
<ostream>, which contains the output-related parts of <iostream>.

The basic_ostream template parameters control the type of characters that is used by the imple
mentation; they do not affect the types of values that can be output. Streams implemented using
ordinary chars and streams implemented using wide characters are directly supported by every
implementation:

typedeJ basic_ostream<char> ostream;
typedeJ basic_ostream<wchar_t> wostream i

On many systems, it is possible to optimize writing of wide characters through wostream to an
extent that is hard to match for streams using bytes as the unit of output.

It is possible to define streams for which the physical 110 is not done in terms of characters.
However, such streams are beyond the scope of the C++ standard and beyond the scope of this book
(§21.10[15]).

The basic_ios base class is presented in <ios>. It controls formatting (§21.4), locale (§21.7),
and access to buffers (§21.6). It also defines a few types for notational convenience:



Section 21.2.1 Output Streams 609

template <class Ch I class Tr =char_traits<Ch> >
class std:: basic_ios : public ios_base {
public:

typedeJ Ch char_type;
typedeJ Tr traits_type i
typedeJ typename Tr:: int_type int_type i I I type of integer value ojcharacter
typedeJ typename Tr: :pos_type pos_type i I I position in buffer
typedeJ typename Tr:: off_type off_type i I I offset in buffer

1/ ... see also §21.3.3, §21.3.7, §2J.4.4, §21.6.3, and §2J.7.1 ...

I I copying prevented by private (and undefined) assignment and copy constructor (§11.2.2)
} i

Class basic_ios prohibits copy construction and assignment (§ 11.2.2). This implies that ostreams
and istreams cannot be copied. Therefore, if you need to change the target of a stream you must
either change stream buffers (§21.6.4) or indirect through a pointer (§6.1.7).

Class ios_base contains information and operations that are independent of the character type
used, such as the precision used for floating-point output. Thus, it doesn't need to be a template.

In addition to the typedeJs in basic_ios, the stream I/O library uses a signed integral type
streamsize to represent buffer sizes and the number of characters transferred in an I/O operation.
Similarly, a typedeJcalled streamoff is supplied for expressing offsets in streams and buffers.

Several standard streams are declared in <iostream>:

ostream cout i
ostream cerri
ostream clog i

wostream wcout i
wostream wcerri
wostream wclog i

I I standard output stream ojchar
I I standard unbuffered output streamfor error messages
/ / standard output stream for error messages

/ I wide stream corresponding to cout
1/ wide stream corresponding to cerr
/ / wide stream corresponding to clog

The cerr and clog streams writes to the same destination; they simply differ in the buffering they
provide. The cout writes to the same destination as stdout (§21.8), while cerr and clog write to the
same destination as stderr. The programmer can create more streams as needed (see §21.5).

21.2.2 Output of Built-In Types

The class ostream is defined with the operator « ("put to") to handle output of the built-in types:

template <class Chi class Tr = char_traits<Ch> >
class basic_ostream : virtual public basic_ios<Ch , Tr> {
public:

/ / ...
basic_ostream& operator« (short n) i
basic_ostream& operator« (int n);
basic_ostream& operator« (long n) i

basic_ostream& operator« (unsigned short n);
basic_ostream& operator« (unsigned int n);
basic_ostream& operator« (unsigned long n);



610 Streams

basic_ostream& operator« (float j);
basic_ostream& operator« (double j);
basic_ostream& operator<< (long double j);

basic_ostream& operator« (bool n);
basic_ostream& operator<< (const void* p);

basic_ostream& put (Ch c); / / write c
basic_ostream& write (const Ch * p, streamsize n);

/ / ...
} ;

/ / write pointer value

/ / p[O}..p[n-J1

Chapter 21

The put () and write () functions simply write characters. Consequently, the « for outputting
characters need not be a member. The operator« () functions that take a character operand can
be implemented as nonmembers using put ( ) :

template<class Ch, class Tr>
basic_ostream<Ch, Tr>& operator« (basic_ostream<Ch, Tr>&, Ch);

template<class Ch, class Tr>
basic_ostream<Ch, Tr>& operator« (basic_ostream<Ch, Tr>&, char);

template<class Tr>
basic_ostream<char, Tr>& operator<< (basic_ostream<char, Tr>&, char);

template<class Tr>
basic_ostream<char , Tr>& operator« (basic_ostream<char, Tr>&, signed char);

template<class Tr>
basic_ostream<char, Tr>& operator« (basic_ostream<char, Tr>&, unsigned char);

Similarly, « is provided for writing out zero-terminated character arrays:

template<class Ch, class Tr>
basic_ostream<Ch, Tr>& operator« (basic_ostream<Ch, Tr>&, const Ch*);

template<class Ch, class Tr>
basic_ostream<Ch, Tr>& operator« (basic_ostream<Ch, Tr>&, const char*);

template<class Tr>
basic_ostream<char, Tr>& operator« (basic_ostream<char, Tr>&, const char*);

template<class Tr>
basic_ostream<char, Tr>& operator« (basic_ostream<char, Tr>&, const signed char*);

template<class Tr>
basic_ostream<char, Tr>& operator« (basic_ostream<char, Tr>&, const unsigned char*);

The output operators for strings are presented in <string>; see §20.3.15.
An operator« () returns a reference to the ostream for which it was called so that another

operator« () can be applied to it. For example,

cerr << "x = II << x;

where x is an int, will be interpreted as:

operator« (cerr, "x = ") . operator« (x);

In particular, this implies that when several items are printed by a single output statement, they will
be printed in the expected order: left to right. For example:



Section 21.2.2

void val (char c)
{

caut << II int ( , II << C << II ') = II << int (c) << ' \n ' ;

int main ()
{

val ( 'A');
val ( 'Z');

Output of Built-In Types 611

On an implementation using ASCII characters, this will print:

int ( ,A ') =65
int( 'Z') =90

Note that a character literal has type char (§4.3.1) so that cout« ' Z' will print the letter Z and not
the integer value 90.

A bool value will be output as 0 or J by default. If you don't like that, you can set the format
ting flag boolalpha from <iomanip> (§21.4.6.2) and get true or false. For example:

int main ()
{

cout « true« ' , «false« '\n';

cout << boolalpha;
cout « true« ' , «false« '\n';

/ / use symbolic representation for true andfalse

This prints:

I 0
true false

More precisely, boolalpha ensures that we get a locale-dependent representation of bool values.
By setting my locale (§21.7) just right, I can get:

I 0
sandt falsk

Formatting floating-point numbers, the base used for integers, etc., are discussed in §21.4.
The function ostream:: operator<< (const void*) prints a pointer value in a form appropriate

to the architecture of the machine used. For example,

int main ()
{

int* p =new int;
cout« IIlocal II « &p « II ,free store II «p« '\n';

printed

local Ox7fffeadO, free store Ox500c

on my machine. Other systems have different conventions for printing pointer values.



612 Streams

21.2.3 Output of User-Defined Types

Consider a user-defined type complex (§ 11.3):

class complex {
public:

double real () const { return re; }
double imag () const { return im; }
/ / ...

} ;

Operator« can be defined for the new type complex like this:

ostream& operator<< (ostream&s, const complex& z)

{

return s < < ' ( , << z. real () << " , < < z. imag () << ') , ;

This « can then be used exactly like « for a built-in type. For example,

int main ()
{

complex x (1 , 2 ) ;
cout« fiX = " «x« '\11';

produces

x = (1,2)

Chapter 21

Defining an output operation for a user-defined type does not require modification of the declara
tion of class ostream. This is fortunate because ostream is defined in <ostream>, which users can
not and should not modify. Not allowing additions to ostream also provides protection against
accidental corruption of that data structure and makes it possible to change the implementation of
an ostream without affecting user programs.

21.2.3.1 Virtual Output Functions

The ostream members are not virtual. The output operations that a programmer can add are not
members, so they cannot be virtual either. One reason for this is to achieve close to optimal perfor
mance for simple operations such as putting a character into a buffer. This is a place where run
time efficiency is crucial and where inlining is a must. Virtual functions are used to achieve flexi
bility for the operations dealing with buffer overflow and underflow only (§21.6.4).

However, a programmer sometimes wants to output an object for which only a base class is
known. Since the exact type isn't known, correct output cannot be achieved simply by defining a
< < for each new type. Instead, a virtual output function can be provided in the abstract base:



Section 21.2.3.1

class My_base {
public:

/ I 000

virtual ostream& put (ostream& s) const =0;
} ;

ostream& operator<< (ostream& s, const My_base& r)

{

Virtual Output Functions 613

/ / write *this to s

return r .put (s); / / use the right put()

That is, put () is a virtual function that ensures that the right output operation is used in << 0

Given that, we can write:

class Sometype : public My_base {
public:

/ I 0.0

} ;

ostream& put (ostream& s) const; / / the real output function: override My_base:.·put()

void f (const My_base& r, Sometype& s) / / use« which calls the right put()
{

cout << r << s ;

This integrates the virtual put () into the framework provided by ostream and «. The technique
is generally useful to provide operations that act like virtual functions, but with the run-time selec
tion based on their second argument.

21.3 Input

Input is handled similarly to output. There is a class istream that provides an input operator >>
("get from") for a small set of standard types. An operator» () can then be defined for a user
defined type.

21.3.1 Input Streams

In parallel to basic_ostream (§21.2.1), basic_istream is defined in <istream>, which contains the
input-related parts of <iostream> , like this:

template <class Ch, class Tr =char_traits<Ch> >
class std:: basic_istream : virtual public basic_ios<Ch, Tr> {
public:

virtual -basic_istream ( ) ;

/ / to.
} i

The base class basic_ios is described in §21.2.1.



I / read into n

614 Streams

Two standard input streams cin and wcin are provided in <iostream>:

typedeJ basic_istream<char> istream i

typedeJ basic_istream<wchar_t> wistream;

istream cin; / / standard input stream ofchar
wistream wcin; / / standard input stream ofwchar_t

The cin stream reads from the same source as C's stdin (§21.8).

21.3.2 Input of Built-In Types

An istream provides operator» for the built-in types:

template <class Ch, class Tr =char_traits< Ch> >
class basic_istream : virtual public basic_ios< Ch, rr> {
public:

/ I ...
I / formatted input:

basic_istream& operator> > (short& n) ;
basic_istream& operator>> (int& n) ;
basic_istream& operator» (long& n);

basic_istream& operator» (unsigned short& u); 1/ read into u
basic_istream& operator» (unsigned int& u);
basic_istream& operator» (unsigned long& u);

Chapter 21

} ;

basic_istream& operator>> (float& f) ;
basic_istream& operator» (double&f);
basic_istream& operator> > (long double& f) i

basic_istream& operator» (bool& b);
basic_istream& operator» (void*& p);

/ I ...

/ / read into f

/ / read into b
/ / read pointer value into p

The operator>> () input functions are defined in this style:

istream& istream: : operator> > (T& tvar)
{

/ / T is a type for which istream::operator» is declared

/ / skip whitespace, then somehow read a T into 'tvar'
return *this j

Because>> skips whitespace, you can read a sequence of whitespace-separated integers like this:

int read_ints (vector<int>& v) / / fill v, return number of ints read

int i =OJ
while (i<v. size () && cin»v [i] ) i++ i
return ii



Section 21.3.2 Input of Built-In Types 615

A non-int on the input will cause the input operation to fail and thus terminate the input loop. For
example, the input:

J 234 5.6 7 8.

will have read_ints () read in the five integers

J 234 5

and leave the dot as the next character to be read from input. Whitespace is defined as the standard
C whitespace (blank, tab, newline, formfeed, and carriage return) by a call to isspace () as defined
in <cctype> (§20.4.2).

By default, the » operators skip whitespace. However, we can modify that behavior:
is . unsetf(ios_base: : skipws) wiII cause is's >> operators to treat whitespace characters as ordi
nary characters (see §21.4.1, §21.4.6, and §21.4.6.2).

The most common mistake when using istreams is to fail to notice that input didn't happen as
expected because the input wasn't of the expected format. One should either check the state of an
input stream (§21.3.3) before relying on values supposedly read in or use exceptions (§21.3.6).

The format expected for input is specified by the current locale (§21.7). By default, the bool
values true and false are represented by 1 and 0, respectively. Integers must be decimal and
floating-point numbers of the form used to write them in a C++ program. By setting basefield
(§21.4.2), it is possible to read 0123 as an octal number with the decimal value 83 and Oxffas a
hexadecimal number with the decimal value 255. The format used to read pointers is completely
implementation-dependent (have a look to see what your implementation does).

Surprisingly, there is no member » for reading a character. The reason is simply that » for
characters can be implemented using the get () character input operations (§21.3.4), so it doesn't
need to be a member. From a stream, we can read a character into the stream's character type. If
that character type is char, we can also read into a signed char and unsigned char:

template<class Ch, class Tr>
basic_istream<Ch, Tr>& operator» (basic_istream<Ch, Tr>&, Ch&) i

template<class Tr>
basic_istream<char, Tr>& operator» (basic_istream<char, Tr>&, unsigned char&) i

template<class Tr>
basic_istream<char, Tr>& operator>> (basic_istream<char, Tr>&, signed char&) i

From a user's point of view, it does not matter whether a » is a member.
Like the other » operators, these functions first skip whitespace. For example:

void f()

{

char Ci

cin» Ci

/ / ...

This places the first non-whitespace character from cin into c.
In addition, we can read into an array of characters:



616 Streams Chapter 21

template<class Ch, class Tr>
basic_istream<Ch, Tr>& operator» (basic_istream<Ch, Tr>&, Ch*);

template<class Tr>
basic_istream<char, Tr>& operator» (basic_istream<char, Tr>&, unsigned char*);

template<class Tr>
basic_istream<char, Tr>& operator» (basic_istream<char, Tr>&, signed char*);

These operations first skip whitespace. Then they read into their array operand until they encounter
a whitespace character or end-of-file. Finally, they terminate the string with a O. Clearly, this
offers ample opportunity for overflow, so reading into a string (§20.3.15) is usually better. How
ever, you can specify a maximum for the number of characters to be read by»: is. width (n)
specifies that the next » on is will read at most n-l characters into an array. For example:

void g ()
{

char v[4];
cin. width (4);

cin» Vi

cout« IIV = II « v« endl;

This will read at most three characters into v and add a terminating O.
Setting width () for an istream affects only the immediately following » into an array and

does not affect reading into other types of variables.

21.3.3 Stream State

Every stream (istream or ostream) has a state associated with it. Errors and nonstandard condi
tions are handled by setting and testing this state appropriately.

The stream state is found in basic istream's base basic ios from <ios>:

template <class Ch, class Tr =char_traits<Ch> >
class basic_ios : public ios_base {
public:

/ / ...
bool good () const;
bool eof() const;
bool fail () const;
bool bad () const;

/ / next operation might succeed
/ / end of input seen
/ / next operation will fail
/ / stream is corrupted

iostate rdstate () const; / / get io state flags
void clear (iostate f = goodbit) i / / set io state flags
void setstate (iostate f) {clear (rdstate () If); } / / addf to io state flags

} ;

operator void* () const;
bool operator! () const { return fail ( ) ;

/ / ...

/ / nonzero if !fail()

If the state is good () the previous input operation succeeded. If the state is good ( ) , the next input



Section 21.3.3 Stream State 617

operation might succeed; otherwise, it will fail. Applying an input operation to a stream that is not
in the good () state is a null operation as far as the variable being read into is concerned. If we try
to read into a variable v and the operation fails, the value of v should be unchanged (it is unchanged
if v is a variable of one of the types handled by istream or ostream member functions). The differ
ence between the states fail () and bad () is subtle. When the state is fail () but not also bad ( ) , it
is assumed that the stream is uncorrupted and that no characters have been lost. When the state is
bad ( ) , all bets are off.

The state of a stream is represented as a set of flags. Like most constants used to express the
behavior of streams, these flags are defined in basic_ios' base ios_base:

class ios_base {
public:

/ / ...

typedeJ implementation_defined2 iostate;
static const iostate badbit, / / stream is corrupted

eofbit, / / end-oj-file seen
Jailbit, / / next operation will fail
goodbit; / / goodbit==O

/ / ...
} ;

The I/O state flags can be directly manipulated. For example:

void J()
{

ios_base: : iostate s = cin . rdstate ( ) ; / / returns a set of iostate bits

if (s & ios_base: : badbit) {
/ / cin characters possibly lost

}

/ / ...
c;n . setstate (ios_base: :failbit) ;
/ / ...

When a stream is used as a condition, the state of the stream is tested by operator void* () or
operator! (). The tests succeed only if the state is !fail () andfail ( ), respectively. For example,
a general copy function can be written like this:

template<class T> void iocopy (istream& is, ostream& os)
{

T buf;
while (is»buj) os« buf« '\n';

The is»buj returns a reference to is, which is tested by a call of is:: operator void* ( ). For
example:



618 Streams

void !(istream& i1, istream& i2, istream& i3, istream& i4)
{

Chapter 21

iocopy<complex> (i1 , cout) ;
iocopy<double> (i2 , cout) ;
iocopy<char> (i3 , cout) ;
iocopy<string> (i4 , cout) i

I I copy complex numbers
I I copy doubles
I I copy chars
I I copy whitespace-separated words

21.3.4 Input of Characters

The » operator is intended for formatted input; that is, reading objects of an expected type and
format. When we want to read characters without making assumptions about their meaning, we use
the unformatted input functions:

template <class Ch, class Tr = char_traits<Ch> >
class basic_istream : virtual public basic_ios<Ch, Tr> {
public:

II ...
I / unformatted input:

streamsize gcount () const;

int_type get ();

basic_istream& get (Ch& c) ;

I I number ofchar read by last get()

I I read one Ch (or Tr::eof())

I I read one Ch into c

basic_istream& get (Ch* p, streamsize n); / I newline is terminator
basic_istream& get (Ch* p, streamsize n, Ch term);

basic_istream& getline (Ch* p, streamsize n) i / I newline is terminator
basic_istream& getline (Ch * p, streamsize n, Ch term);

basic_istream& ignore (streamsize n = 1, int_type t = Tr:: eof( ) ) i

basic_istream& read (Ch* p, streamsize n) i I I read at most n char
1/ ...

} i

In addition, <string> offers getline () for standard strings (§20.3.15).
The unformatted input functions do not skip whitespace.
If a get () or getline () function doesn't read and remove at least one character from the

stream, setstate (failbit) is called, so that subsequent reads from the stream will fail (or an excep
tion is thrown (§21.3.6)).

The get (char&) function reads a single character into its argument. For example:

int main ()
{

char Ci

while (cin . get (c) ) cout. put (c) i I I character-by-character copy

The three-argument s . get (p , n, term) reads at most n-l characters into p [0] ..p [n-2]. A call
of get () will always place a 0 at the end of the characters (if any) it placed in p [ ] , so p must point



Section 21.3.4 Input of Characters 619

to an array of at least n characters. The third argument, term, specifies a terminator. A typical use
of the three-argument get () is to read a "line" into a fixed-sized buffer for further analysis:

void f()
{

char buf[ 100] ;
cin» buf;
cin. get (buf, 100, '\n');

1/ ...

I I suspect: will overflow some day
I I safe

If the terminator is found, it is left as the first unread character on the stream. Never call get ( )
twice without removing the terminator. For example:

void SUbtle_error ( )
{

char buf[256];

while (cin) {
cin . get (buf, 256) ; I I read a line
cout« buf; I I print a line
I lOops: forgot to remove '\n' from cin - the next get() will fail

This example is a good reason to prefer getline () over get ( ). A getline () behaves like its corre
sponding get ( ) , except that it removes its terminator from the istream. For example:

void f()
{

char word[MAX_WORD] [MAX_LINE]; II MAX_WORD arrays ofMAX_LINE char each
int i = 0;
while (cin .getline (word[i++], MAX_LINE, '\n') && i<MAX_WORD);
1/ ...

When efficiency isn't paramount, it is better to read into a string (§3.6, §20.3.15). In that way, the
most common allocation and overflow problems cannot occur. However, the get ( ) , getline ( ) ,
and read () functions are needed to implement such higher-level facilities. The relatively messy
interface is the price we pay for speed, for not having to re-scan the input to figure out what termi
nated the input operation, for being able to reliably limit the number of characters read, etc.

A call read (p , n) reads at most n characters into p [0] . .p [n -1 ]. The read function does not
rely on a terminator, and it doesn't put a terminating 0 into its target. Consequently, it really can
read n characters (rather than just n-1). In other words, it simply reads characters and doesn't try
to make its target into a C-style string.

The ignore () function reads characters like read ( ) , but it doesn't store them anywhere. Like
read ( ) , it really can read n characters (rather than n-1). The default number of characters read by
ignore () is 1, so a call of ignore () without an argument means' 'throw the next character away."
Like getline ( ) , it optionally takes a terminator and removes that terminator from the input stream
if it gets to it. Note that ignore ( ) 's default terminator is end-of-file.



620 Streams Chapter 21

For all of these functions, it is not immediately obvious what terminated the read - and it can
be hard even to remember which function has what termination criterion. However, we can always
inquire whether we reached end-of-file (§21.3.3). Also, gcount () gives the number of characters
read from the stream by the most recent, unformatted input function call. For example:

void read_a_line (int max)
{

I lOops: bad input format
I I clear the inputjlags (§21.3.3)
I I skip to semicolon

II ...
if (cin ·fail ( )) {

cin . clear ( ) i
cin . ignore (max, ' i ') i

if ( ! cin) {
I loops: we reached the end ofthe stream

}

else if (cin. gcount ( ) ==max) {
I loops: read max characters

}

else {
I I found and discarded the semicolon

Unfortunately, if the maximum number of characters are read there is no way of knowing whether
the terminator was found (as the last character).

The get () that doesn't take an argument is the <iostream> version of the <cstdio> getchar ( )
(§21.8). It simply reads a character and returns the character's numeric value. In that way, it
avoids making assumptions about the character type used. If there is no input character to return,
get () returns a suitable "end-of-file" marker (that is, the stream's traits_type: : eo/( )) and sets
the istream into eo/-state (§21.3.3). For example:

void f(unsigned char* p)
{

int ii
while ( (i = cin. get ( ) ) && i! =EOF)

*p++ = ii
I I ...

EOF is the value of eo/() from the usual char_traits for char. EOF is presented in <iostream>.
Thus, this loop could have been written read (p I MAX_INT) , but presumably we wrote an explicit
loop because we wanted to look at each character as it came in. It has been said that C's greatest
strength is its ability to read a character and decide to do nothing with it - and to do this fast. It is
indeed an important and underrated strength, and one that c++ aims to preserve.

The standard header <cctype> defines several functions that can be useful when processing
input (§20.4.2). For example, an eatwhite () function that reads whitespace characters from a
stream could be defined like this:



Section 21.3.4

istream& eatwhite (istream& is)
{

char c;
while (is. get (c)) {

if ( ! isspace (c)) { / / is c a whitespace character?
is .putback (c); / / put c back into the input buffer
break;

}

return is;

Input of Characters 621

The call is .putback (c) makes c be the next character read from the stream is (§21.6.4).

21.3.5 Input of User-Defined Types

An input operation can be defined for a user-defined type exactly as an output operation was. How
ever, for an input operation, it is essential that the second argument be of a non-const reference
type. For example:

istream& operator» (istream& s, complex& a)
/*

input formats for a complex ('f' indicates a floating-point number):

f
(f)
(f,f)

*/
{

double re =0, im =0;
char c =0;

s» c;
if (c == ' (, )

s» re »c;
if (c == ' , ') s >> im >> c;

if (c ! = ') ') s. clear (ios_base: : badbit); / / set state
}

else {
s .putback (c) i

s» rei

if (s) a =complex (re, im);
return s i

Despite the scarcity of error-handling code, this will actually handle most kinds of errors. The local
variable c is initialized to avoid having its value accidentally be ' ( , after a failed first » opera
tion. The final check of the stream state ensures that the value of the argument a is changed only if
everything went well.



622 Streams Chapter 21

The operation for setting a stream state is called clear () because its most common use is to
reset the state of a stream to good ( ) ; ios_base: : goodbit is the default argument value for clear ( )
(§21.3.3).

21.3.6 Exceptions

It is not convenient to test for errors after each I/O operation, so a common cause of error is failing
to do so where it matters. In particular, output operations are typically unchecked, but they do
occasionally fail.

The only function that directly changes the state of a stream is clear ( ). Thus, an obvious way
of getting notified by a state change is to ask clear () to throw an exception. The basic_iDS mem
ber exceptions () does just that:

template <class Ch, class Tr = char_traits<Ch> >
class basic_ios : public ios_base {
public:

II ...

class failure; I I exception class (see §J4. J0)

) ;

iostate exceptions () const;
void exceptions (iostate except);

1/ ...

I I get exception state
I I set exception state

For example,

cout. exceptions (ios_base: : badbit Iios_base: :failbit Iios_base: : eofbit) ;

requests that clear () should throw an ios_base: :/ailure exception if coul goes into states bad,
fail, or eo/ - in other words, if any output operation on cout doesn't perform flawlessly. If neces
sary, we can examine cout to determine exactly what went wrong. Similarly,

cin . exceptions (ios_base: : badbit Iios_base: :failbit) ;

allows us to catch the not-too-uncommon case in which the input is not in the format we expected,
so that an input operation wouldn't return a value from the stream.

I'\. call of exceptions () with no arguments returns the set of I/O state flags that triggers an
exception. For example:

void print_exceptions (ios_base& ios)
{

ios_base: : iostate s =ios. exceptions ( ) ;
if (s&ios_base:: badbit) cout« II throws for bad ll

;

if (s&ios_base: :failbit) cout« II throws for fail II ;

if (s&ios_base:: eojbit) cout« II throws for eof";
if (s == 0) cout« "doesn't throw";

The primary use of I/O exceptions is to catch unlikely - and therefore often forgotten - errors.
Another is to control I/O. For example:



Section 21.3.6

void readints (vector<int>& s)
{

/ / not my favorite style!

Exceptions 623

ios_base: : iostate old_state =cin. exceptions ( ) i / / save exception state
cin . exceptions (ios_base: : eojbit) i / / throw for eof

for (i i)
try {

int ii
cin»i i
s . push_back (i) ;

}

catch (ios_base: :failure) {
/ / ok: end offile reached

cin . exceptions (old_state) i / / reset exception state

The question to ask about this use of exceptions is, "Is that an error?" or' 'Is that really excep
tional?" (§ 14.5). Usually, I find that the answer to either question is no. Consequently, I prefer to
deal with the stream state directly. What can be handled with local control structures within a func
tion is rarely improved by the use of exceptions.

21.3.7 Tying of Streams

The basic_ios function tie () is used to set up and break connections between an istream and an
ostream:

template <class Ch, class Tr = char_traits<Ch> >
class std:: basic_ios : public ios_base {

/ / ...
basic_ostream<Ch, Tr> * tie () const i
basic_ostream<Ch, Tr>* tie (basic_ostream<Ch, Tr>* s) i

/ / ...
} i

Consider:

string getyasswd ( )
{

string s;
cout« II Password: II i
cin» Si
/ / ...

/ / get pointer to tied stream
/ / tie *this to s

How can we be sure that Password: appears on the screen before the read operation is executed?
The output on cout is buffered, so if cin and coul had been independent, Password: would not
have appeared on the screen until the output buffer was full. The answer is that cout is tied to cin
by the operation cin . tie (&cout) .



624 Streams Chapter 21

When an ostream is tied to an istream, the ostream is flushed whenever an input operation on
the istream causes underflow; that is, whenever new characters are needed from the ultimate input
source to complete the input operation. Thus,

cout« "Password: "i

cin» Si

is equivalent to:

cout« "Password: "i

cout .flush ( ) i

cin» Si

A stream can have at most one ostream at a time tied to it. A call s. tie (0) unties the stream s
from the stream it was tied to, if any. Like most other stream functions that set a value, tie (s)
returns the previous value; that is, it returns the previously tied stream or O. A call without an argu
ment, tie ( ) , returns the current value without changing it.

Of the standard streams, cout is tied to cin and wcout is tied to wcin. The cerr streams need
not be tied because they are unbuffered, while the clog streams are not meant for user interaction.

21.3.8 Sentries

When I wrote operators « and » for complex, I did not worry about tied streams (§21.3.7) or
whether changing stream state would cause exceptions (§21.3.6). I assumed - correctly - that the
library-provided functions would take care of that for me. But how? There are a couple of dozen
such functions. If we had to write intricate code to handle tied streams, locales (§21.7), exceptions,
etc., in each, then the code could get rather messy.

The approach taken is to provide the common code through a sentry class. Code that needs to
be executed first (the "prefix code") - such as flushing a tied stream - is provided as the sentry's
constructor. Code that needs to be executed last (the "suffix code") - such as throwing exceptions
caused by state changes - is provided as the sentry's destructor:

template <class Ch, class Tr =char_traits<Ch> >
class basic_ostream : virtual public basic_ios<Ch, Tr> {

II ...
class sentry i

II ...
} i

template <class Ch, class Tr = char_traits<Ch> >
class basic_ostream<Ch, Tr>:: sentry {
public:

explicit sentry (basic_ostream<.Ch, Tr>& s) i

-sentry ( ) i

operator bool ( ) i

II ...
} i

Thus, common code is factored out and an individual function can be written like this:



Section 21.3.8

template <class Ch, class Tr = char_traits<Ch> >
basic_ostream<Ch, Tr>& basic_ostream<Ch, Tr>: : operator< < (int i)
{

sentry s (* this) ;
if ( ! s) { / / check whether all is well for output to start

setstate (jailbit) ;
return *this;

/ / output the int
return * this;

Sentries 625

This technique of using constructors and destructors to provide common prefix and suffix code
through a class is useful in many contexts.

Naturally, basic_istream has a similar sentry member class.

21.4 Formatting

The examples in §21.2 were all of what is commonly called unformatted output. That is, an object
was turned into a sequence of characters according to default rules. Often, the programmer needs
more detailed control. For example, we need to be able to control the amount of space used for an
output operation and the format used for output of numbers. Similarly, some aspects of input can
be explicitly controlled.

Control of 110 formatting resides in class basic_iDs and its base ios_base. For example, class
basic_ios holds the information about the base (octal, decimal, or hexadecimal) to be used when
integers are written or read, the precision of floating-point numbers written or read, etc. It also
holds the functions to set and examine these per-stream control variables.

Class basic_ios is a base of basic_istream and basic_ostream, so format control is on a per
stream basis.

21.4.1 Format State

Formatting of I/O is controlled by a set of flags and integer values in the stream's ios_base:

class ios_base {
public:

/ I ...
// namesofformatflags:

typedef implementation_definedl fmtflags;
static const fmtflags

skipws, / / skip whitespace on input

left,
right,
internal,

/ / field adjustment: pad after value
/ / pad before value
/ / pad between sign and value



626 Streams

boolalpha,

dec,
hex,
oct,

scientific,
fixed,

showbase,
showpoint,
showpos,
uppercase,

adjustfield,
basefield,
floatfield,

unitbuf;

I I use symbolic representation oftrue andfalse

I I integer base: base 10 output (decimal)
I I base /6 output (hexadecimal)
I I base 8 output (octal)

I I floating-point notation: d.ddddddEdd
II dddd.dd

I I on output prefix oct by 0 and hex by Ox
I I print trailing zeros
I I explicit '+ ' for positive ints
I I 'E', 'X' rather than 'e', 'x'

I I flags related to field adjustment (§21.4.5)
I I flags related to integer base (§21.4.2)
I I flags related to floating-point output (§21.4.3)

I I flush output after each output operation

Chapter 21

fmtflags flags () const; I I readflags
fmtflags flags (fmtflags f); I I set flags

fmtflags setf(fmtflags j) { return flags (flags () If); I I addflag
II clear and set flags in mask:
fmtflags setf(fmtflags f, fmtflags mask) {return flags ( (flags () &-mask) I (f&mask) ); }
void unsetf(fmtflags mask) {flags (flags ( ) & ,."mask); } I I clearflags

I I ...
} ;

The values of the flags are implementation-defined. Use the symbolic names exclusively, rather
than numeric values, even if those values happen to be correct on your implementation today.

Defining an interface as a set of flags, and providing operations for setting and clearing those
flags is a time-honored if somewhat old-fashioned technique. Its main virtue is that a user can
compose a set of options. For example:

const ios_base: :fmtflags my_opt = iDs_base: : left Iios_base: : oct Iios_base: :fued;

This allows us to pass options around and install them where needed. For example:

void yourJunction (ios_base: :fmtflags opt)
{

iDs_base: :fmtflags old_options =cout .flags (opt);
II ...
cout .flags (old_options) ; I I reset options

void myJunction ( )
{

yourJunction (my_opt) ;
II ...

The flags () function returns the old option set.

/ I save old_options and set new ones



Section 21.4.1 Format State 627

Being able to read and set all options allows us to set an individual flag. For example:

myostream .flags (myostream .flags ( ) Iios_base:: showpos);

This makes myostream display an explicit + in front of positive numbers without affecting other
options. The old options are read, and showpos is set by or-ing it into the set. The function setf( )
does exactly that, so the example could equivalently have been written:

myostream. setf(ios_base:: showpos);

Once set, a flag retains its value until it is unset.
Controlling I/O options by explicitly setting and clearing flags is crude and error-prone. For

simple cases, manipulators (§21.4.6) provide a cleaner interface. Using flags to control stream state
is a better study in implementation technique than in interface design.

21.4.1.1 Copying Format State

The complete format state of a stream can be copied by copyfmt ( ) :

template <class Ch, class Tr =char_traits<Ch> >
class basic_ios : public ios_base {
public:

I I ...
basic_ios& copyfmt (const basic_ios& f) ;
I I ...

} ;

The stream's buffer (§21.6) and the state of that buffer isn't copied by copyfmt ( ). However, all of
the rest of the state is, including the requested exceptions (§21.3.6) and any user-supplied additions
to that state (§21.7.1).

21.4.2 Integer Output

The technique of or-iog in a new option with flags () or setf() works only when a single bit con
trols a feature. This is not the case for options such as the base used for printing integers and the
style of floating-point output. For such options, the value that specifies a style is not necessarily
represented by a single bit or as a set of independent single bits.

The solution adopted in <iostream> is to provide a version of setf() that takes a second
"pseudo argument" that indicates which kind of option we want to set in addition to the new value.
For example,

cout . setf(ios_base: : oct I ios_base: :basefield) ; I I octal
cout.setf(ios_base: :dec , ios_base: :basefield); II decimal
cout . setf(ios_base: : hex I ios_base: : basefield); I I hexadecimal

sets the base of integers without side effects on other parts of the stream state. Once set, a base is
used until reset. For example,

cout« 1234« ' , « 1234« ' , I I default: decimal



628 Streams

cout. setf( ios_base: : oct, ios_base: :basefield) ; / / octal
cout« 1234« ' , « 1234« ' ';

cout. setf( ios_base: : hex, ios_base: : basefield) ; / / hexadecimal
cout « 1234« ' , « 1234« ' ';

Chapter 21

/ / use fixed-point format

produces 1234 1234 2322 2322 4d2 4d2.
If we need to be able to tell which base was used for each number, we can set showbase. Thus,

adding

cout. setf( ios_base: : showbase) ;

before the previous operations, we get 1234 1234 02322 02322 Ox4d2 Ox4d2. The standard
manipulators (§21.4.6.2) provide a more elegant way of specifying the base of integer output.

21.4.3 Floating-Point Output

Floating-point output is controlled by aformat and a precision:
- The general format lets the implementation choose a format that presents a value in the style

that best preserves the value in the space available. The precision specifies the maximum
number of digits. It corresponds to printf( ) 's %g (§21.8).

- The scientific format presents a value with one digit before a decimal point and an exponent.
The precision specifies the maximum number of digits after the decimal point. It corre
sponds to printf( ) 's %e.

- The fixed format presents a value as an integer part followed by a decimal point and a frac
tional part. The precision specifies the maximum number of digits after the decimal point.
It corresponds to printf( ) 's %f

We control the floating-point output format through the state manipulation functions. In particular,
we can set the notation used for printing floating-point values without side effects on other parts of
the stream state. For example,

cout« II default: \ttl « 1234.56789« '\n';

cout. setf( ios_base: : scientific, ios_base: :floatfield); / / use scientific format
cout« II scientific: \tn « 1234.56789« '\n';

cout . setf( ios_base: :fixed, ios_base: :floatfield) ;
cout« "fixed:\t" « 1234.56789« '\n';

cout. setf(ios_base: :fmtflags (0), ios_base: :floatfield); / / reset to default (that is, generalformat)
cout« t1default:\t" « 1234.56789« '\n';

produces

default: 1234 . 57
scientific: 1. 234568e+03
fixed: 1234 . 567890
default: 1234 . 57

The default precision (for all formats) is 6. The precision is controlled by an ios_base member
function:



Section 21.4.3

class ios_base {
public:

1/ ...
streamsize precision () const;
streamsize precision (streamsize n);
1/ ...

} ;

Floating-Point Output 629

I I get precision
II set precision (and get old precision)

I I get field width
I I set field width

II get filler character
I I set filler character

A call of precision () affects all floating-point I/O operations for a stream up until the next call of
precision ( ). Thus,

cout .precision (8) ;
cout« 1234.56789« ' , « 1234.56789« ' , « 123456« '\n';

cout .precision (4) ;
cout« 1234.56789« ' , « 1234.56789« ' , « 123456« '\n';

produces

1234.5679 1234.5679 123456
1235 1235 123456

Note that floating-point values are rounded rather than just truncated and that precision () doesn't
affect integer output.

The uppercase flag (§21.4.1) detennines whether e or E is used to indicate the exponents in the
scientific format.

Manipulators provide a more elegant way of specifying output fonnat for floating-point output
(§21.4.6.2).

21.4.4 Output Fields

Often, we want to fill a specific space on an output line with text. We want to use exactly n charac
ters and not fewer (and more only if the text does not fit). To do this, we specify a field width and a
character to be used if padding is needed:

class ios_base {
public:

II ...
streamsize width () const;
streamsize width (streamsize wide);
II ...

} ;

template <class Ch, class Tr =char_traits<Ch> >
class basic_ios : public ios_base {
public:

II ...
Ch fill () const;
Ch fill (Ch ch);
II ...

} ;



630 Streams Chapter 21

The width () function specifies the minimum number of characters to be used for the next standard
library « output operation of a numeric value, bool, C-style string, character, pointer (§21.2.1),
string (§20.3.15), and bitset (§ 17.5.3.3). For example,

cout. width (4);

cout« 12;

will print 12 preceded by two spaces.
The "padding" or "filler" character can be specified by the fill () function. For example,

cout. width (4);
cout .fill ( , # ' ) ;
cout« nab" ;

gives the output ##ab.
The default fill character is the space character and the default field size is 0, meaning "as many

characters as needed." The field size can be reset to its default value like this:

cout. width (0); / / "as many characters as needed"

A call width (n) function sets the minimum number of characters to n. If more characters are pro
vided, they will all be printed. For example,

cout. width (4);

cout << "abcdefn ;

produces abedef rather than just abed. It is usually better to get the right output looking ugly than
to get the wrong output looking just fine (see also §21.10[21 ]).

A width (n) call affects only the immediately following « output operation:

cout . width (4) ;
cout .fill ( , # ' ) ;
cout << 12 << ': ' << J3 ;

This produces ##12: 13, rather than ##12###: ##13, as would have been the case had width (4)
applied to subsequent operations. Had all subsequent output operations been affected by width ( ) ,
we would have had to explicitly specify width () for essentially all values.

The standard manipulators (§21.4.6.2) provide a more elegant way of specifying the width of an
output field.

21.4.5 Field Adjustment

The adjustment of characters within a field can be controlled by setf() calls:

cout. setf(ios_base: : left, ios_base: :adjustfield) ; / / left
cout. setf( ios_base: : right, ios_base: : adjustjield) ; / / right
cout. setf( ios_base: : internal, ios_base: :adjustjield); / / internal

This sets the adjustment of output within an output field defined by iDs_base: :width () without
side effects on other parts of the stream state.



Section 21.4.5

Adjustment can be specified like this:

cout .fill ( , # ' ) ;

cout« ' ( , ;
cout . width (4) ;

cout << -12 << n), (" ;

cout. width (4);

cout. setf( ios_base: : left, ios_base:: adjustfield) ;
cout « -12 « II), (" ;

cout. width (4);

cout. setf( ios_base: : internal, ios_base: :adjustfield) ;
cout << -12 << ") II ;

Field Adjustment 631

This produces: (# - J2), (- J2 #), (- #J2). Internal adjustment places fill characters between the
sign and the value. As shown, right adjustment is the default. It is undefined what happens if more
than one adjustment flag are simultaneously set.

21.4.6 Manipulators

To save the programmer from having to deal with the state of a stream in terms of flags, the stan
dard library provides a set of functions for manipulating that state. The key idea is to insert an
operation that modifies the state in between the objects being read or written. For example, we can
explicitly request that an output buffer be flushed:

cout« x «flush« y «flush;

Here, cout .flush () is called at the appropriate times. This is done by a version of « that takes a
pointer to function argument and invokes it:

template <class Ch, class Tr =char_traits<Ch> >
class basic_ostream : virtual public basic_ios<Ch, Tr> {
public:

/ / ...
basic_ostream& operator« (basic_ostream& (*f) (basic_ostream&)) {return f( *this);
basic_ostream& operator« (ios_base& (*j) (ios_base&) );
basic_ostream& operator« (basic_ios<Ch, Tr>& (*j) (basic_ios<Ch, Tr>&) );

/ / ...
} ;

For this to work, a function must be a nonmember or static-member function with the right type. In
particular,flush () is defined like this:

template <class Ch, class Tr = char_traits<Ch> >
basic_ostream<Ch, Tr>& flush (basic_ostream<Ch, Tr>& s)
{

return s .flush ( ) ; / / call osfream's memberflush()



632 Streams

These declarations ensure that

cout << flush;

is resolved as

cout. operator<< (flush) i

Chapter 21

which calls

flush (cout) ;

which then invokes

cout .flush ( );

The whole rigmarole is done (at compile time) to allow basic_ostream: :flush () to be called
using the cout<<jlush notation.

There is a wide variety of operations we might like to perform just before or just after an input
or output operation. For example:

cout« x;
cout .flush ( ) ;
cout« y;

cin. unsetf(ios_base:: skipws); I I don't skip whitespace (§21.4.1)
cin »X;

When the operations are written as separate statements, the logical connections between the opera
tions are not obvious. Once the logical connection is lost, the code gets harder to understand. The
notion of manipulators allows operations such as flush () and unset!(ios_base: : skipws) to be
inserted directly in the list of input or output operations. For example:

cout« X «flush« y «flush;
cin» noskipws» x;

Note that manipulators are in the std namespace so that they must be explicitly qualified where std
isn't part of the current scope:

std: : cout « endl;
std: :cout « std: : endl;

I I error: endl not in scope
II ok

Naturally, class basic_istream provides » operators for invoking manipulators in a way similar to
class basic ostream:

template <class Ch, class Tr = char_traits<Ch> >
class basic_istream : virtual public basic_ios<Ch, Tr> {
public:

II ...
basic_istream& operator» (basic_istream& (*pj) (basic_istream&) ) ;
basic_istream& operator» (basic_ios<Ch, Tr>& (*pf) (basic_ios<Ch, Tr>&) );
basic_istream& operator» (ios_base& (*pf) (ios_base&) );
II ...

} ;



Section 21.4.6 Manipulators 633

21.4.6.1 Manipulators Taking Arguments

Manipulators that take arguments can also be useful. For example, we might want to write

cout << setprecision (4) << angle;

to print the value of the floating-point variable angle with four digits.
To do this, setprecision must return an object that is initialized by 4 and that calls

cout . precision (4) when invoked. Such a manipulator is a function object that is invoked by <<
rather than by (). The exact type of that function object is implementation-defined, but it might be
defined like this:

struct smanip {
ios_base& (*j) (ios_base&, int);
int i;

/ / function to be called

smanip (ios_base& (*fj) (ios_base&, int), int ii) : f(fj), i (ii) { }

} ;

template<class Ch, class Tr>
ostream<Ch, Tr>& operator« (ostream<Ch, Tr>& os, smanip& m)
{

return m .f(os, m. i);

The smanip constructor stores its arguments in/and i, and operator« calls/(i). We can now
define setprecision () like this:

ios_base& setyrecision (ios_base& s, int n)
{

/ / helper

return s. precision (n ) ; / / call the memberfunction

inline smanip setprecision (int n)
{

return smanip (setyrecision , n) i

We can now write:

cout« setprecision (4) «angle;

/ / make the function object

A programmer can define new manipulators in the style of smanip as needed (§21.10[22]). Doing
this does not require modification of the definitions of standard library templates and classes such
as basic_istream, basic_ostream, basic_ios, and ios_base.

21.4.6.2 Standard 110 Manipulators

The standard library provides manipulators corresponding to the various format states and state
changes. The standard manipulators are defined in namespace std. Manipulators taking ios_base
are presented in <ios>. Manipulators taking istream and ostream are presented in <istream> and
<ostream>, respectively, and also in <iostream>. The rest of the standard manipulators are pre
sented in <iomanip>.



634 Streams Chapter 21

/ / s.unsetf(ios_base::showpos)

ios_base& boolalpha (ios_base&); / / symbolic representation oftrue andfaLse (input and output)
ios_base& noboolalpha (ios_base& s); / / s. unsetf(ios_base::booLaLpha)

ios_base& showbase (ios_base& ) ; / / on output prefix oct by 0 and hex by Ox
ios_base& noshowbase (ios_base& s); / / s.unsetf(ios_base::showbase)

ios_base& showpoint ( iDS_base& ) ;
ios_base& noshowpoint (ios_base& s); / / s.unsetf(ios_base::showpoint)

ios_base& showpos (ios_base& ) ;

ios_base& noshowpos (ios_base& s) ;

ios_base& skipws (ios_base& ) ;
ios_base& noskipws (ios_base& s);

ios_base& uppercase (ios_base& ) ;
ios_base& nouppercase (ios_base& ) ;

ios_base& internal (ios_base&);
ios_base& left (ios_base&);
iDS_base& right (ios_base& ) ;

ios_base& dec (ios_base& ) ;
ios_base& hex (ios_base& ) ;
ios_base& oct (ios_base&) ;

ios_base&fixed (ios_base&);
ios_base& scientific (ios_base& ) ;

/ / skip whitespace
/ / s.unsetf(ios_base::skipws)

/ / X and E rather than x and e
/ / x and e rather than X and E

/ / adjust §21.4.5
/ / pad after value
/ / pad before value

/ / integer base is 10 (§21.4.2)
/ / integer base is 16
/ / integer base is 8

/ / floating-point format dddd.dd (§21.4.3)
/ / scientific format d.ddddEdd

template <class Ch, class Tr>
basic_ostream<Ch, Tr>& endl (basic_ostream<Ch, Tr>&); / / put '\n' and flush

template <class Ch, class Tr>
basic_ostream<Ch, Tr>& ends (basic_ostream<Ch, Tr>&); / / put \0'

template <class Ch, class Tr>
basic_ostream<Ch, Tr>&flush (basic_ostream<Ch, Tr>&); / / flush stream

template <class Ch, class Tr>
basic_istream<Ch, Tr>& ws (basic_istream<Ch, Tr>&); / / eat whitespace

smanip resetiosflags (iDs_base: :fmtflags j);
smanip setiosflags (iDs_base: :fmtflags j);
smanip setbase (int b);
smanip setfill (int c) i

smanip setprecision (int n);
smanip setw (int n);

/ / clear flags (§21.4)
/ / set flags (§21.4)
/ / output integers in base b (§21.4.2)
/ / make c thefill character (§21.4.4)
/ / n digits (§21.4.3, §21.4.6)
/ / next field width is n char (§21.4.4)

For example,

cout« 1234« " ' « hex« 1234« " ' « oct « 1234 « endl;

produces 1234, 4d2, 2322 and

cout << ' ( , << setw (4) << setfill ( , # ') << 12 << .. ) (.. << 12 << .. ) \n" i

produces (# #12 ) (12).



Section 21.4.6.2 Standard 110 Manipulators 635

When using manipulators that do not take arguments, do not add parentheses. When using stan
dard manipulators that take arguments, remember to #include <iomanip>. For example:

#include <iostream>
using namespace std;

int main ()
{

cout << setprecision (4)

<< scientific ( )
«d« endl;

/ / error: setprecision undefined (forgot <iomanip>)
/ / error: ostream«ostream& (spurious parentheses)

21.4.6.3 User-Defined Manipulators

A programmer can add manipulators in the style of the standard ones. Here, I present an additional
style that I have found useful for formatting floating-point numbers.

The precision used persists for all output operations, but a width () operation applies to the
next numeric output operation only. What I want is something that makes it simple to output a
floating-point number in a predefined format without affecting future output operations on the
stream. The basic idea is to define a class that represents formats, another that represents a format
plus a value to be formatted, and then an operator « that outputs the value to an ostream accord
ing to the format. For example:

Form gen4 (4); / / general format, precision is 4

void f(double d)
{

Form sci8 = gen4;
sci8. scientific ( ) . precision (8); / / scientific format, precision 8

cout « d« ' , « gen4 (d) « ' , « sci8 (d) « ' , « d« '\n';

A callf( 1234.56789) writes

1234.57 1235 1.2345678ge+03 1234.57

Note how the use of a Form doesn't affect the state of the stream so that the last output of d has the
same default format as the first.

Here is a simplified implementation:

class BoundJorm; / / Form plus value

class Form {
friend ostream& operator« (ostream&, const BoundJorm&);

int prc;
int wdti
int fmt;
/ / ...

/ / precision
/ / width, 0 means as wide as necessary
/ / general, scientific, or fixed (§21.4.3)



636 Streams

public:
explicit Form (int p =6) : prc (p)
{

I I default precision is 6

Chapter 21

fmt =0;
wdt = 0;

I I generalfonnat (§2J.4.3)
I I as wide as necessary

/ I applies to all types

BoundJorm operator () (double d) const; /1 make a BoundJormfor *this and d

Form& scientific () {fmt =ios_base:: scientific; return * this ;
Form&fixed() {fmt= ios_base::fixed; return *this; }
Form& general () {fmt = 0; return *this ; )

Form& uppercase ( ) ;
Form& lowercase ( ) ;
Form& precision (int p) {prc = p; return *this;

Form& width (int w) { wdt =w; return *this;
Form&fill (char);

} ;

Form& plus (bool b = true);
Form& trailing_zeros (bool b =true);
II ...

/ I explicit plus
/ I print trailing zeros

The idea is that a Form holds all the information needed to format one data item. The default is
chosen to be reasonable for many uses, and the various member functions can be used to reset indi
vidual aspects of formatting. The () operator is used to bind a value with the format to be used to
output it. A BoundJorm can then be output to a given stream by a suitable « function:

struct BoundJorm {
const Form&f;
double val;

BoundJorm (const Form&ff, double v) : f(f/), val (v) { }
} ;

BoundJorm Form::operator() (double d) const {return BoundJorm(*this,d);

ostream& operator« (ostream& os, const BoundJorm& bj)
{

ostringstream s; I I string streams are described in §21.5.3
8 • precision (bl.l.prc);
8. setf(bf.f.fmt, ios_base: :floatfield);
s << hi. val; I I compose string in s
return 08 << 8 • str ( ) ; I I output s to os

Writing a less simplistic implementation of« is left as an exercise (§21.10[21]). The Form and
BoundJorm classes are easily extended for formatting integers, strings, etc. (see §21.10[20]).

Note that these declarations make the combination of « and () into a ternary operator;
cout«sci4 (d) collects the ostream, the format, and the value into a single function before doing
any real computation.



Section 21.5 File Streams and String Streams 637

21.5 File Streams and String Streams

When a C++ program starts, cout, cerr, clog, cin, and their wide-character equivalents (§21.2.1) are
available for use. These streams are set up by default and their correspondence with 110 devices or
files is determined by "the system." In addition, you can create your own streams. In this case,
you must specify to what the streams are attached. Attaching a stream to a file or to a string is
common enough so as to be supported directly by the standard library. Here is the hierarchy of
standard stream classes:

ios base

t
ioso
~

istream<> ostream<>

istringstream<> ifstreamo iostreamo ofstream<> ostringstream<>

~
fstream<> stringstream<>

The classes suffixed by <> are templates parameterized on the character type, and their names have
a basic_prefix. A dotted line indicates a virtual base class (§ 15.2.4).

Files and strings are examples of containers that you can both read from and write to. Conse
quently, you can have a stream that supports both « and ». Such a stream is called an iostream,
which is defined in namespace std and presented in <iostream>:

template <class Ch, class Tr =char_traits<Ch> >
class basic_iostream : public basic_istream<Ch, Tr>, public basic_ostream<Ch, Tr> {
public:

explicit basic_iostream (basic_streambuf<Ch, Tr>* sb);
virtual -basic_iostream ( ) ;

} ;

typedef basic_iostream<char> iostream;
typedef basic_iostream<wchar_t> wiostream;

Reading and writing from an iostream is controlled through the put-buffer and get-buffer opera
tions on the iostream's streambuf(§21.6.4).

21.5.1 File Streams

Here is a complete program that copies one file to another. The file names are taken as command
line arguments:

#include </stream>
#include <cstdlib>



638 Streams

void error (const char* p, const char* p2 = "")
{

cerr « p« ' , «p2« '\n';

std : : exit (1) i

int main (int argc, char* argv [ ] )
{

if (argc ! =3) error ( "wrong number of arguments" ) i

Chapter 21

std: : ifstream from (argv [ /] ) ; / / open input file stream
if ( !from) error ("cannot open input file II ,argv [/] ) i

std : :ofstream to (argv [2] ) ; / / open output file stream
if ( ! to) error ( .. cannot open output file" ,argv [2] ) ;

char chi
while (from. get (ch) ) to. put (ch) ; / / copy characters

if ( !from. eof() I I ! to) error ( "something strange happened");

A file is opened for input by creating an object of class ifstream (input file stream) with the file
name as the argument. Similarly, a file is opened for output by creating an object of class ofstream
(output file stream) with the file name as the argument. In both cases, we test the state of the cre
ated object to see if the file was successfully opened.

A basic_ofstream is declared like this in <fstream>:

template <class Ch, class Tr =char_traits<Ch> >
class basic_ofstream : public basic_ostream<Ch, Tr> {
public:

basic_ofstream ( ) ;
explicit basic_ofstream (const char* p, openmode m = out) ;

basicJilebuf<Ch, Tr>* rdbuf() cons!; / / get pointer to currentfile buffer (§2/.6.4)

bool is_open () const;
void open (const char* p, openmode m =out) ;
void close ( );

} ;

A basic_ifstream is like an basic_ofstream, except that it is derived from basic_istream and is by
default opened for reading. In addition, the standard library offers basicJstream, which is like
basic_ofstream, except that it is derived from basic_iostream and by default can be both read
from and written to.

As usual, typedefs are available for the most common types:

typedef basic_ifstream<char> ifstream;
typedef basic_ofstream<char> ofstream ;
typedef basicJstream<char> fstream;
typedef basic_ifstream<wchar_t> wifstream;
typedef basic_ofstream<wchar_t> wofstream;
typedef basicJstream<wchar_t> wfstream;



Section 21.5.1 File Streams 639

File stream constructors take a second argument specifying alternative modes of opening:

class ios_base {
public:

/ / ...
typedef implementation_defined3 openmode;
static openmode app I / / append

ate I / / open and seek to end offile (pronounced "at end")
binary, / / I/O to be done in binary mode (rather than text mode)
in , / / open for reading
out, / / open for writing
trunc; / / truncate file to O-length

/ / ...
} ;

The actual values of openmodes and their meanings are implementation-defined. Please consult
your systems and library manual for details - and do experiment. The comments should give some
idea of the intended meaning of the modes. For example, we can open a file so that anything writ
ten to it is appended to the end:

ofstream mystream (name. c_sir ( ) I ios_base: : app) ;

It is also possible to open a file for both input and output. For example:

fstream dictionary ( II concordance II , ios_base: : in Iios_base: : out) ;

21.5.2 Closing of Streams

A file can be explicitly closed by calling close () on its stream:

void f(ostream& mystream)
{

/ / ...
mystream . close ( ) ;

However, this is implicitly done by the stream's destructor. So an explicit call of close () is
needed only if the file must be closed before reaching the end of the scope in which its stream was
declared.

This raises the question of how an implementation can ensure that the predefined streams cout,
cin, cerr, and clog are created before their first use and closed (only) after their last use. Naturally,
different implementations of the <iostream> stream library can use different techniques to achieve
this. After all, exactly how it is done is an implementation detail that should not be visible to the
user. Here, I present just one technique that is general enough to be used to ensure proper order of
construction and destruction of global objects of a variety of types. An implementation may be
able to do better by taking advantage of special features of a compiler or linker.

The fundamental idea is to define a helper class that is a counter that keeps track of how many
times <iostream> has been included in a separately compiled source file:



640 Streams

class ios_base:: Init {
static int count;

public:
Init ( );
-Init ( ) ;

} ;

Chapter 21

namespace { ios_base:: Init _ioinit; } / / in <iostream>, one copy in eachfile #including <iostream>

int ios_base: : Init: : count =0; / / in some .c file

Each translation unit (§9.1) declares its own object called _ioinit. The constructor for the ioinit
objects uses ios_base: : [nit: : count as a first-time switch to ensure that actual initialization of the
global objects of the stream 110 library is done exactly once:

ios_base: : Init: : Init () {if (count++ == 0) { / * initialize cout, cerr, cin, etc. * / } }

Conversely, the destructor for the _ioinit objects uses ios_base:: Init: : count as a last-time
switch to ensure that the streams are closed:

ios_base: : Init : : -Init () { if (--count == 0) { / * clean up cout (flush, etc.), cerr, cin, etc. * / } }

This is a general technique for dealing with libraries that require initialization and cleanup of global
objects. In a system in which all code resides in main memory during execution, the technique is
almost free. When that is not the case, the overhead of bringing each object file into main memory
to execute its initialization function can be noticeable. When possible, it is better to avoid global
objects. For a class in which each operation performs significant work, it can be reasonable to test
a first-time switch (like ios_base: : Init : : count) in each operation to ensure initialization. How
ever, that approach would have been prohibitively expensive for streams. The overhead of a first
time switch in the functions that read and write single characters would have been quite noticeable.

21.5.3 String Streams

A stream can be attached to a string. That is, we can read from a string and write to a string using
the formatting facilities provided by streams. Such streams are called stringstreams. They are
defined in <sstream>:

template <class Ch, class Tr = char_traits<Ch>, class A = aliocator<Ch> >
class basic_stringstream : public basic_iostream<Ch, Tr> {
public:

explicit basic_stringstream (ios_base: : openmode m = out Iin) ;
explicit basic_stringstream (const basic_string<Ch, Tr I A>& s, openmode m = out Iin) ;

} ;

basic_string<Ch, Tr, A> str () const;
void str (const basic_string<Ch, Tr, A>& s);

basic_stringbuf<Ch, Tr,A>* rdbuf() const;

/ / get copy ofstring
/ / set value to copy ofs

/ / get pointer to currentfile buffer

A basic_istringstream is like a basic_stringstream, except that it is derived from basic_istream
and is by default opened for reading. A basic_ostringstream, is like a basic_stringstream, except
that it is derived from basic_ostream and is by default opened for writing.



Section 21.5.3 String Streams 641

As usual, typedefs are provided for the most common specializations:

typedef basic_istringstream<char> istringstream;
typedef basic_ostringstream<char> ostringstream i
typedef basic_stringstream<char> stringstream i
typedef basic_istringstream<wchar_t> wistringstream i
typedef basic_ostringstream<wchar_t> wostringstream i

typedef basic_stringstream<wchar_t> wstringstream;

For example, an ostringstream can be used to format message strings:

string compose (int n, const string& cs)
{

extern const char* std_message [ ] ;
ostringstream ost;
ost« lIerror(1I «n« II) II «std_message[n]« II (user comment: II «cs«')';
return ost. str ( ) i

There is no need to check for overflow because ost is expanded as needed. This technique can be
most useful for coping with cases in which the formatting required is more complicated than what
is common for a line-oriented output device.

An initial value for a string stream is treated analogously to the way a file stream treats its file:

string compose2 (int n, const string& cs) / / equivalent to compose()
{

extern const char* std_message [ ] i
ostringstream ost ( II error ( II , ios_base: :ate) i / / start writing at end ofinitial string
ost«n« II) II «std_message[n]« II (user comment: "«cS«')'i
return ost. str ( ) i

An istringstream is an input stream that reads from its initial string value (exactly as a ifilestream
reads from its file):

#include <sstream>

void wordyer_line (const string& s) / / prints one word per line
{

istringstream ist (s);
string Wi

while (ist»w) cout« w« '\n' i

int main ()
{

wordyer_line ( II If you think c++ is difficult, try English II ) ;

The initializer string is copied into the istringstream. The end of the string terminates input.
It is possible to define streams that directly read from and write to arrays of characters

(§21.10[26]). This is often useful when dealing with older code, especially since the ostrstream
and istrstream classes doing that were part of the original streams library.



642 Streams Chapter 21

21.6 Buffering

Conceptually, an output stream puts characters into a buffer. Some time later, the characters are
then written to wherever they are supposed to go. Such a buffer is called a streambuf(§21.6.4). Its
definition is found in <streambuf>. Different types of streambufs implement different buffering
strategies. Typically, the streambufstores characters in an array until an overflow forces it to write
the characters to their real destination. Thus, an ostream can be represented graphically like this:

tellp()-r------
streambuf: begin

current,-,-~---__---_
end

ostream:

The set of template arguments for an ostream and its streambuf must be the same and determines
the type of character used in the character buffer.

An istream is similar, except that the characters flow the other way.
Unbuffered I/O is simply I/O where the streambuf immediately transfers each character, rather

than holding on to characters until enough have been gathered for efficient transfer.

21.6.1 Output Streams and ButTers

An ostream provides operations for converting values of various types into character sequences
according to conventions (§21.2.1) and explicit formatting directives (§21.4). In addition, an
ostream provides operations that deal directly with its streambuf

template <class Ch, class Tr =char_traits<Ch> >
class basic_ostream : virtual public basic_ios<Ch, Tr> {
public:

II ...
explicit basic_ostream (basic_streambuf<Ch, Tr>* b);

pos_type tellp ( ) ;
basic_ostream& seekp (pos_type);
basic_ostream& seekp (off_type, ios_base: : seekdir) ;

I I get current position
II set current position
II set current position

basic_ostream&flush ( ); I I empty buffer (to real destination)

basic_ostream& operator« (basic_streambuf<Ch, Tr>* b); II write from b
} ;

An ostream is constructed with a streambuf argument, which determines how the characters writ
ten are handled and where they eventually go. For example, an ostringstream (§21.5.3) or an
ofstream (§21.5.1) is created by initializing an ostream with a suitable streambuf(§21.6.4).

The seekp () functions are used to position an ostream for writing. The p suffix indicates that



Section 21.6.1 Output Streams and Buffers 643

it is the position used for putting characters into the stream. These functions have no effect unless
the stream is attached to something for which positioning is meaningful, such as a file. The
pos_type represents a character position in a file, and the off_type represents an offset from a point
indicated by an ios_base: : seekdir:

class ios_base {
/ / ...
typedef implementation_defined4 seekdir i

static const seekdir beg I / / seek from beginning ofcurrent file
cur I / / seek from current position
end i / / seek backwards from end ofcurrent file

/ / ...
} i

Stream positions start at 0, so we can think of a file as an array of n characters. For example:

int f(ofstream&fout) / / fout refers to some file
{

fout. seekp (10) i

fout << ' # ' i / / add character and move position (+ J)
fout. seekp (-2 I ios_base:: cur) i

fout« ' * ' ;

This places a # into file [10] and a * in file [9]. There is no similar way to do random access on
elements of a plain istream or ostream (see §21.10[13]). Attempting to seek beyond the beginning
or the end of a file puts the stream into the bad () state (§21.3.3).

Theflush () operation allows the user to empty the buffer without waiting for an overflow.
It is possible to use « to write a streambuf directly into an ostream. This is primarily handy

for implementers of I/O mechanisms.

21.6.2 Input Streams and ButTers

An istream provides operations for reading characters and converting them into values of various
types (§21.3.1). In addition, an istream provides operations that deal directly with its streambuf

template <class Chi class Tr =char_traits<Ch> >
class basic_istream : virtual public basic_ios<Ch I Tr> {
public:

/ / ...
explicit basic_istream (basic_streambuf<Ch I rr> * b) ;

pos_type tellg ( ) i

basic_istream& seekg (pos_type) i

basic_istream& seekg (off_type I ios_base:: seekdir) i

/ / get current position
/ / set current position
/ / set current position

basic_istream& putback (Ch c) i / / put c back into the buffer
basic_istream& unget ( ) i / / putback most recent char read
int_type peek ( ) i / / look at next character to be read

int sync ( ); / / clear buffer (flush)



644 Streams

basic_istream& operator» (basic_streambuf<Ch, Tr> * b) i / / read into b
basic_istream& get (basic_streambuf<Ch, Tr>& b, Ch t = Tr: :newline ( ) ) i

Chapter 21

} ;
streamsize readsome (Ch* p, streamsize n); / / read at most n char

The positioning functions work like their ostream counterparts (§21.6.1). The g suffix indicates
that it is the position used for getting characters from the stream. The p and g suffixes are needed
because we can create an iostream derived from both istream and ostream and such a stream needs
to keep track of both a get position and a put position.

The putback () function allows a program to put an unwanted character back to be read some
other time, as shown in §21.3.5. The unget () function puts the most recently read character back.
Unfortunately, backing up an input stream is not always possible. For example, trying to back up
past the first character read will set ios_base: :failbit. What is guaranteed is that you can back up
one character after a successful read. The peek () reads the next character but leaves it in the
streambuf so that it can be read again. Thus, c=peek () is equivalent to {c=get ( ) , unget ( ) , c)

and to (putback (c=get ( ) ), c). Note that settingfailbit might trigger an exception (§21.3.6).
Flushing an istream is done using sync ( ). This cannot always be done right. For some kinds

of streams, we would have to reread characters from the real source - and that is not always possi
ble or desirable. Consequently, sync () returns 0 if it succeeded. If it failed, it sets
ios_base: :badbit (§21.3.3) and returns -1. Again, setting badbit might trigger an exception
(§21.3.6). A sync () on a buffer attached to an ostream flushes the buffer to output.

The » and get () operations that target a streambuf are primarily useful for implementers of
I/O facilities. Only such implementers should manipulate streambufs directly.

The readsome () function is a low-level operation that allows a user to peek at a stream to see
if there are any characters available to read. This can be most useful when it is undesirable to wait
for input, say, from a keyboard. See also in_avail () (§21.6.4).

21.6.3 Streams and ButTers

The connection between a stream and its buffer is maintained in the stream's basic ios:

template <class Ch, class Tr = char_traits<Ch> >
class basic_ios : public ios_base {
public:

1/ ...
basic streambuf<Ch, Tr>* rdbuf() const; /1 get buffer
1/ setbuffer, clear(), and return pointer to old buffer:
basic_streambuf<Ch, Tr>* rdbuf(basic_streambuf<Ch, Tr>* b);

locale imbue (const locale& loc) ;

char narrow (char._type c, char d) const;
char_type widen (char c) const;
1/ ...

protected:
basic_ios ( );
void init (basic_streambuf<Ch, Tr> * b) ;

} ;

/ / set locale (and return old locale)

/ / make char value from char_type c
/ / make char_type value from char c

/ / set initial buffer



Section 21.6.3 Streams and ButTers 645

In addition to reading and setting the stream's streambuf(§21.6.4), basic_ios provides imbue () to
read and re-set the stream's locale (§21.7) by calling imbue () on its ios_base (§21.7.1) and
pubimbue () on its buffer (§21.6.4).

The narrow () and widen () functions are used to convert chars to and from a buffer's
char_type. The second argument of narrow (c I d) is the char returned if there isn't a char corre
sponding to the char_type value c.

21.6.4 Stream ButTers

The 110 operations are specified without any mention of file types, but not all devices can be
treated identically with respect to buffering strategies. For example, an ostream bound to a string
(§21.5.3) needs a different kind of buffer than does an ostream bound to a file (§21.5.1). These
problems are handled by providing different buffer types for different streams at the time of initial
ization. There is only one set of operations on these buffer types, so the ostream functions do not
contain code distinguishing them. The different types of buffers are derived from class streambuf.
Class streambuf provides virtual functions for operations where buffering strategies differ, such as
the functions that handle overflow and underflow.

The basic_streambuf class provides two interfaces. The public interface is aimed primarily at
implementers of stream classes such as istream, ostream, fstream, stringstream, etc. In addition,
a protected interface is provided for implementers of new buffering strategies and of streambufs for
new input sources and output destinations.

To understand a streambuf, it is useful first to consider the underlying model of a buffer area
provided by the protected interface. Assume that the streambuf has a put area into which «
writes, and a get area from which »reads. Each area is described by a beginning pointer, current
pointer, and one-past-the-end pointer. These pointers are made available through functions:

template <class Chi class Tr = char_traits<Ch> >
class basic_streambuf {
protected:

Ch* eback () const;
Ch* gptr () const;
Ch* egptr () const;

/ / start ofget-buffer
/ / next filled character (next char read comes from here)
/ / one-past-end ofget-buffer

void gbump (int n); / / add n to gptr( )
void setg (Ch* begin, Ch* next, Ch* end); / / set eback(), gptr(), and egptr()

Ch* pbase () const; / / start ofput-buffer
Ch* pptr () const; / / next free char (next char written goes here)
Ch* epptr() const; / / one-past-end ofput-buffer
void pbump (int n); / / add n to pptr()
void setp (Ch * begin, Ch * end); / / set pbase() and pptr() to begin, and epptr() to end
/ / ...

} ;

Given an array of characters, setg () and setp () can set up the pointers appropriately. An imple
mentation might access its get area like this:



646 Streams

template <class Ch, class Tr =char_traits<Ch> >
basic_streambuf<Ch, Tr>:: int_type basic_streambuf<Ch, Tr>:: snextc ( )
/ / skip current character, then read next character
{

Chapter 21

I I set locale (and get old locale)
II get locale

if (1 < egptr ( ) - gptr ( » { / / if there is at least two characters in the buffer
gbump (1 ) i / / skip current character
return Tr:: to_int_type (*gptr ( ) ) ; / / return the new current character

}

if (1 == egptr ( ) -gptr ( » { I I if there is exactly one character in the buffer
gbump (1 ) i I I skip current character
return underflow ( ) ;

}

/ / the buffer is empty (or there is no buffer), try to fill it:
if (Tr:: eq_int_type (uflow ( ), Tr:: eof( ) ) ) return Tr:: eof( ) i

if(0 < egptr ( ) - gptr ( ) ) return Tr:: to_int_type (*gptr ( ) ) i I / return the new current character
return underflow ( ) i

The buffer is accessed through gptr ( ) ; egptr () marks the limit of the get area. Characters are
read from the real source by uflow () and underflow ( ). The calls to traits_type: : to_int_type ( )
ensure that this code is independent of the actual character type. This code allows for a variety of
stream buffer types, and takes into account the possibility that the virtual functions uflow () and
underflow () may decide to introduce a new get area (using setg ( ) ).

The public interface of a streambuflooks like this:

template <class Ch, class Tr =char traits<Ch> >
class basic_streambuf {
public:

II usual typedefs (§21.2.1)

virtual -basic_streambuf() i

locale pubimbue (const locale &loc) i

locale getloc () const;

basic_streambuf* pubsetbuf( Ch* p, streamsize n) i / / set buffer space

pos_type pubseekoff(off_type off, ios_base: : seekdir way, I I position (§21.6.1)
ios_base: : openmode m = ios_base: : in Iios_base: : out) i

pos_type pubseekpos (pos_type p, ios_base:: openmode m = ios_base:: in Iios_base: :out);

int pubsync ( ) i

int_type snextc ( ) i

int_type sbumpc ( ) i

int_type sgetc ( ) i

streamsize sgetn (Ch * p, streamsize n) i

int_type sputbackc (Ch c);
int_type sungetc ( ) ;

int_type sputc (Ch c);
streamsize sputn (const Ch * p, streamsize n);

/ I sync(); see §21.6.2

/ I skip current character, then get next character
II advance gptr() by 1
/ I get current character
/ I get into p[Ol..p[n-i]

/ I put c back into buffer (§21.6.2)
II unget last character

/ I put c
/ I put p[O}..p[n-11



Section 21.6.4

streamsize in_avail ( ) i

/ / ...
} ;

/ / is input ready?

Stream Buffers 647

The public interface contains functions for inserting characters into the buffer and extracting char
acters from the buffer. These functions are simple and easily inlined. This is crucial for efficiency.

Functions that implement parts of a specific buffering strategy invoke corresponding functions
in the protected interface. For example, pubsetbuf() calls setbuf( ), which is overridden by a
derived class to implement that class' notion of getting memory for the buffered characters. Using
two functions to implement an operation such as setbuf() allows an iostream implementer to do
some "housekeeping" before and after the user's code. For example, an implementer might wrap
a try-block around the call of the virtual function and catch exceptions thrown by the user code.

By default, setbuf(O10) means "unbuffered" and setbuf(p ,n) means use p [0] • •p [n-l]
to hold buffered characters.

A call to in_avail () is used to see how many characters are available in the buffer. This can be
used to avoid waiting for input. When reading from a stream connected to a keyboard, cin . get (c)

might wait until the user comes back from lunch. On some syst~ms and for some applications, it
can be worthwhile taking that into account when reading. For example:

if (cin. rdbuf( ) ->in_avail (» { / / get() will not block
cin. get (c) i

/ / do something
}

else {
/ / do something else

/ / get() might block

/ / set locale

Note that on some systems, it can be hard to determine if input is available. Thus, in_avail ( )
might be (poorly) implemented to return 0 in cases where an input operation would succeed.

In addition to the public interface used by basic_istream and basic_ostream, basic_streambuf
offers a protected interface to implementers of streambufs. This is where the virtual functions that
determine policy are declared:

template <class Ch, class Tr =char_traits<Ch> >
class basic_streambuf {
protected:

/ / ...
basic_streambuf( );

virtual void imbue (const locale &loc) ;

virtual basic_streambuf* setbuf(Ch* p, streamsize n);

virtual pos type seekoff( off type off, ios base:: seekdir way,
- ios_base: : openmode m =ios_base: : in Iios_base: : out) ;

virtual pos_type seekpos (pos_type p,
ios_base: : openmode m = ios_base: : in Iios_base: : out) ;

virtual int sync ( ); / / sync(); see §21.6.2



648 Streams Chapter 21

virtual int showmanyc ( ) ;
virtual streamsize xsgetn (Ch * p I streamsize n); / / get n chars
virtual int_type underflow ( ); / / replentish get area; return character or eo!
virtual int_type uflow ( ) ; / / replentish get area,· return character or eof,· increment gptr()

} ;

virtual int_type pbackfail (int_type c = Tr: :eof( ) ) ;

virtual streamsize xsputn (const Ch * p I streamsize n) i

virtual int_type overflow (int_type c = Tr: :eof( ) ) ;

/ / putback failed

/ / put n chars
/ / put area full

The underflow () and uflow () functions are called to get the next character from the real input
source when the buffer is empty. If no more input is available from that source, the stream is set
into eof state (§21.3.3), and if setting the state doesn't cause an exception, traits_type: : eof() is
returned. The gptr () is incremented past the returned character by uflow () but not by under
flow ( ). Remember that there typically are more buffers in your system than the ones introduced
by the iostream library, so you can suffer buffering delays even when using unbuffered stream I/O.

The overflow () function is called to transfer characters to the real output destination when the
buffer is full. A call overflow (c) outputs the contents of the buffer plus the character c. If no
more output can be written to that target, the stream is put into eof state (§21.3.3). If doing that
doesn't cause an exception, traits_type: :eof() is returned.

The showmanyc () - "show how many characters" - function is an odd function intended to
allow a user to learn something about the state of a machine's input system. It returns an estimate
of how many characters can be read "soon," say, by -emptying the operating system's buffers
rather than waiting for a disc read. A call to showmanyc () returns -1 if it cannot promise that any
character can be read without encountering end-of-file. This is (necessarily) rather low-level and
highly implementation-dependent. Don't use showmanyc () without a careful reading of your sys
tem documentation and a few experiments.

By default, every stream gets the global locale (§21.7). A pubimbue (loc) or imbue (loc) call
makes a stream use loc as its locale.

A streambuffor a particular kind of stream is derived from basic_streambuf It provides the
constructors and initialization functions that connect the streambuf to a real source of (target for)
characters and overrides the virtual functions that determine the buffering strategy. For example:

template <class Ch I class Tr = char_traits<Ch> >
class basicJilebuf: public basic_streambuf<Ch, Tr> {
pu~blic :

basicJilebuf() ;
virtual -basicJilebuf ( ) ;

booI is_open () const;
basicY.lebuf* open (const char* p, ios_base: : openmode mode);
basicJilebuf* close ( ) ;

protected:
virtual int showmanyc ( );
virtual int_type underflow ( );
virtual int_type uflow ( ) ;



Section 21.6.4 Stream Buffers 649

virtual int_type pbackfail (int_type c = Tr: : eof ( ) ) ;
virtual int_type overflow (int_type c = Tr: : eof( ) ) ;

virtual basic_streambuf<Ch, Tr>* setbuf(Ch* p, streamsize n);
virtual pos type seekoff( off type off, ios base:: seekdir way,

- ios_base: : openmode m =los_base: : in Iios_base: : out) ;
virtual pos type seekpos (pos type p,

- ios_base: : op"inmode m = ios_base: : in Iios_base: : out) ;
virtual int sync ( ) ;
virtual void imbue (const locale& loc);

} ;

The functions for manipulating buffers, etc., are inherited unchanged from basic_streambuf Only
functions that affect initialization and buffering policy need to be separately provided.

As usual, the obvious typedefs and their wide stream counterparts are provided:

typedef basic_streambuf<char> streambuf;
typedef basic_stringbuf<char> stringbuf;
typedef basicJilebuf<char> filebuf;

typedef basic_streambuf<wchar_t> wstreambuf;
typedef basic_stringbuf<wchar_t> wstringbuf;
typedef basicJilebuf<wchar_t> wfilebuf;

21.7 Locale

A locale is an object that controls the classification of characters into letters, digits, etc.; the colla
tion order of strings; and the appearance of numeric values on input and output. Most commonly a
locale is used implicitly by the iostreams library to ensure that the usual conventions for some nat
ural language or culture is adhered to. In such cases, a programmer never sees a locale object.
However, by changing a stream's locale, a programmer can change the way the stream behaves to
suit a different set of conventions

A locale is an object of class locale defined in namespace std presented in <locale> (§D.2).

class locale {
public:

/ / ...

/ / complete declaration in §D.2

locale () throw ( ) ;
explicit locale (const char* name) ;
basic_string<char> name () const;

/ / copy ofcurrent global locaLe
/ / construct LocaLe using C LocaLe name
/ / give name ofthis LocaLe

locale (const locale&) throw ( ) ;
const locale& operator= (const locale& ) throw ( );

/ / copy LocaLe
/ / copy LocaLe

} ;

static locale global (const locale&);
static const locale& classic ( ) ;

/ / set the gLobaL LocaLe (get the previous LocaLe)
/ / get the LocaLe that C defines

The simplest use of locales is to switch from one existing locale to another. For example:



650 Streams

void f()
{

std : : locale loc ( II POSIX II ) ;

cin . imbue (loc) ;
/ / ...
cin. imbue (std:: locale ( ) );

Chapter 21

/ / standard locale for pos/x

/ / let cin use loc

/ / reset cin to use the default (global) locale

The imbue () function is a member of basic_ios (§21.7.1 ).
As shown, some fairly standard locales have character string names. These tend to be shared

with C.
It is possible to set the locale that is used by all newly constructed streams:

void g (const locale& loc = locale ( ) ) / / use current global locale by default
{

locale old_global = locale: : global (loc) ; / / make loc the default locale
/ / ...

Setting the global locale does not change the behavior of existing streams that are using the previ
ous value of the global locale. In particular, cin, cout, etc., are not affected. If they should be
changed, they must be explicitly imbue ( )d.

Imbuing a stream with a locale changes facets of its behavior. It is possible to use members of
a locale directly, to define new locales, and to extend locales with new facets. For example, a
locale can also be used explicitly to control the appearance of monetary units, dates, etc., on input
and output (§21.10[25]) and conversion between codesets. The locale concept, the locale and/acet
classes, and the standard locales and facets are described in Appendix D.

The C-style locale is presented in <clocale> and <locale. h>.

21.7.1 Stream Callbacks

Sometimes, people want to add to the state of a stream. For example, one might want a stream to
"know" whether a complex should be output in polar or Cartesian coordinates. Class ios_base
provides a function xalloc () to allocate space for such simple state information. The value
returned by xalloc () identifies a pair of locations that can be accessed by iword () and pword ( ) :

class ios_base {
public:

/ / ...
-ios_base ();

locale imbue (const locale& loc) ;
locale getloc () const;

/ / set locale and return old locale; see §D.2.3
/ / get locale

static int xalloc ( ) ;
long& iword (int i);

void* & pword (int i);

/ / get an integer and a pointer (both initialized to 0)
/ / access the integer iword(i)
/ / access the pointer pword(i)



Section 21.7.1

II callbacks:

Stream Callbacks 651

enum event { erase_event I imbue_event I copyfmt_event }; I I event type

typedef void (*event_callback) (event I ios_base& I int i);
void register_callback (event_callback f, int i); I I attach/to word(i)

} ;

Sometimes, an implementer or a user needs to be notified about a change in a stream's state. The
register_callback () function "registers" a function to be called when its "event" occurs. Thus,
a call of imbue(), copyfmt() , or ""ios_base() will call a function "registered" for an
imbue_event, copyfmt_event, or erase_event, respectively. When the state changes, registered
functions are called with the argument i supplied by their register_callback ( ) .

This storage and callback mechanism is fairly obscure. Use it only when you absolutely need to
extend the low-level formatting facilities.

21.8 C Input/Output

Because C++ and C code are often intermixed, C++ stream 110 is sometimes mixed with the C
printf() family of I/O functions. The C-style I/O functions are presented by <cstdio> and
<stdio. h>. Also, because C functions can be called from C++ some programmers may prefer to
use the more familiar C 110 functions. Even if you prefer stream I/O, you will undoubtedly
encounter C-style 110 at some time.

C and C++ 110 can be mixed on a per-character basis. A call of sync_with_stdio () before the
first stream I/O operation in the execution of a program guarantees that the C-style and C++-style
I/O operations share buffers. A call of sync_with_stdio (false) before the first stream I/O opera
tion prevents buffer sharing and can improve I/O performance on some implementations.

class ios_base {
II ...
static bool sync_with_stdio (bool sync = true) ; I I get and set

} ;

The general advantage of the stream output functions over the C standard library function printf( )
is that the stream functions are type safe and have a common style for specifying output of objects
of built-in and user-defined types.

The general C output functions

int printf(const char* format . .. );
int fprintf(FILE* I const char* format );
int sprintf( char* P, const char* format ) ;

I I write to stdout
I I write to ''file'' (stdout, stderr)
I I write to p[OJ ...

produce formatted output of an arbitrary sequence of arguments under control of the format string
format. The format string contains two types of objects: plain characters, which are simply copied
to the output stream, and conversion specifications, each of which causes conversion and printing
of the next argument. Each conversion specification is introduced by the character %. For example:

printf( II there were %d members present. " I no_of_members);



652 Streams Chapter 21

Here %d specifies that no_oJ_members is to be treated as an int and printed as the appropriate
sequence of decimal digits. With no_of_members==127, the output is

there were /27 members present.

The set of conversion specifications is quite large and provides a great degree of flexibility. Fol
lowing the %, there may be:

an optional minus sign that specifies left-adjustment of the converted value in the field;
+ an optional plus sign that specifies that a value of a signed type will always begin with a +

or - sign;
o an optional zero that specifies that leading zeros are used for padding of a numeric value.

If - or a pecision is specified this 0 is ignored;
# an optional # that specifies that floating-point values will be printed with a decimal point

even if no nonzero digits follow, that trailing zeroes will be printed, that octal values will
be printed with an initial 0, and that hexadecimal values will be printed with an initial Ox
or OX;

d an optional digit string specifying a field width; if the converted value has fewer characters
than the field width, it will be blank-padded on the left (or right, if the left-adjustment indi
cator has been given) to make up the field width; if the field width begins with a zero,
zero-padding will be done instead of blank-padding;
an optional period that serves to separate the field width from the next digit string;

d an optional digit string specifying a precision that specifies the number of digits to appear
after the decimal point, for e- and f-conversion, or the maximum number of characters to
be printed from a string;

* a field width or precision may be * instead of a digit string. In this case an integer argu
ment supplies the field width or precision;

h an optional character h, specifying that a following d, 0, x, or u corresponds to a short inte
ger argument;

1 an optional character I, specifying that a following d, 0, x, or u corresponds to a long inte
ger argument;

% indicating that the character %is to be printed; no argument is used;
c a character that indicates the type of conversion to be applied. The conversion characters

and their meanings are:
d The integer argument is converted to decimal notation;
i The integer argument is converted to decimal notation;
o The integer argument is converted to octal notation;
x The integer argument is converted to hexadecimal notation with an initial Ox;
X The integer argument is converted to hexadecimal notation with an initial OX;
.f Thefloat or double argument is converted to decimal notation in the style [-]ddd.ddd.

The number of d's after the decimal point is equal to the precision for the argument.
If necessary, the number is rounded. If the precision is missing, six digits are given;
if the precision is explicitly 0 and # isn't specified, no decimal point is printed;

e The float or double argument is converted to decimal notation in the scientific style
{-]d.ddde+dd or [-]d.ddde-dd, where there is one digit before the decimal point and
the number of digits after the decimal point is equal to the precision specification for



Section 21.8 C Input/Output 653

the argument. If necessary, the number is rounded. If the precision is missing, six
digits are given; if the precision is explicitly 0 and # isn't specified, no digits and no
decimal point are printed;

E As e, but with an uppercase E used to identify the exponent;
g The float or double argument is printed in style d, in style f, or in style e, whichever

gives the greatest precision in minimum space;
G As g, but with an uppercase E used to identify the exponent;
c The character argument is printed. Null characters are ignored;
s The argument is taken to be a string (character pointer), and characters from the string

are printed until a null character or until the number of characters indicated by the
precision specification is reached; however, if the precision is 0 or missing, all charac
ters up to a null are printed;

p The argument is taken to be a pointer. The representation printed is implementation
dependent;

u The unsigned integer argument is converted to decimal notation;
n The number of characters written so far by the call of printf(), /printf( ), or

sprintf() is written to the int pointed to by the pointer to int argument.
In no case does a nonexistent or small field width cause truncation of a field; padding takes
place only if the specified field width exceeds the actual width.

Here is a more elaborate example:

char* lineJormat = II #line %d \ II %s\"\n II i
int line = J3 i
char* file_name = nC++/main.c" i

printf( II int a i \n II ) i
printf(lineJormat, line ,file_name);
printf( II int b i \nil );

which produces:

int a;
#line /3 I1 C++/main.c ll

int bi

Using printf() is unsafe in the sense that type checking is not done. For example, here is a well
known way of getting unpredictable output, a core dump, or worse:

char Xi

/ / ...
printf( II bad input char: %s II ,x) i / / %s should have been %c

The print!() does, however, provide great flexibility in a form that is familiar to C programmers.
Similarly, getchar () provides a familiar way of reading characters from input:

int ii
while ( (i=getchar ( ) ) ! =EOF) { / * use i * / }

Note that to be able to test for end-of-file against the int value EOF, the value of getchar () must
be put into an int rather than into a char.



654 Streams Chapter 21

For further details of C I/O, see your C reference manual or Kernighan and Ritchie: The C Pro
gramming Language [Kemighan,1988].

21.9 Advice

[I] Define« and » for user-defined types with values that have meaningful textual representa-
tions; §21.2.3, §21.3.5.

[2] Use parentheses when printing expressions containing operators of low precedence; §21.2.
[3] You don't need to modify istream or ostream to add new « and » operators; §21.2.3.
[4] You can define a function so that it behaves as a virtual function based on its second (or sub

sequent) argument; §21.2.3.1.
[5] Remember that by default » skips whitespace; §21.3.2.
[6] Use lower-level input functions such as get () and read () primarily in the implementation of

higher-lever input functions; §21.3.4.
[7] Be careful with the termination criteria when using get ( ) , getline ( ) , and read ( ) ; §21.3.4.
[8] Prefer manipulators to state flags for controlling I/O; §21.3.3, §21.4, §21.4.6.
[9] Use exceptions to catch rare I/O errors (only); §21.3.6.
[10] Tie streams used for interactive I/O; §21.3.7.
[II] Use sentries to concentrate entry and exit code for many functions in one place; §21.3.8.
[12] Don't use parentheses after a no-argument manipulator; §21.4.6.2.
[13] Remember to #include <iomanip> when using standard manipulators; §21.4.6.2.
[14] You can achieve the effect (and efficiency) of a ternary operator by defining a simple function

object; §21.4.6.3.
[15] Remember that width specifications apply to the following 110 operation only; §21.4.4.
[16] Remember that precision specifications apply to all following floating-point output opera-

tions; §21.4.3.
[17] Use string streams for in-memory formatting; §21.5.3.
[18] You can specify a mode for a file stream; §21.5.1.
[19] Distinguish sharply between formatting (iostreams) and buffering (streambufs) when extend-

ing the I/O system; §21.1, §21.6.
[20] Implement nonstandard ways of transmitting values as stream buffers; §21.6.4.
[21] Implement nonstandard ways of formatting values as stream operations; §21.2.3, §2] .3.5.
[22] You can isolate and encapsulate calls of user-defined code by using a pair of functions;

§21.6.4.
[23] You can use in_avail () to determine whether an input operation will block before reading;

§21.6.4.
[24] Distinguish between simple operations that need to be efficient and operations that implement

policy (make the former inline and the latter virtual); §21.6.4.
[25] Use locale to localize "cultural differences;" §21.7.
[26] Use sync_with_stdio (x) to mix C-style and C++-style I/O and to disassociate C-style and

C++-style I/O; §21.8.
[27] Beware of type errors in C-style I/O; §21.8.



Section 21.10

21.10 Exercises

Exercises 655

1. (* 1.5) Read a file of floating-point numbers, make complex numbers out of pairs of numbers
read, and write out the complex numbers.

2. (*1.5) Define a type Name_and_address. Define « and » for it. Copy a stream of
Name_and_address objects.

3. (*2.5) Copy a stream of Name_and_address objects in which you have inserted as many errors
as you can think of (e.g., format errors and premature end of string). Handle these errors in a
way that ensures that the copy function reads most of the correctly formatted
Name_and_addresses, even when the input is completely messed up.

4. (*2.5) Redefine the I/O format Name_and_address to make it more robust in the presence of
format errors.

5. (*2.5) Design some functions for requesting and reading information of various types. Ideas:
integer, floating-point number, file name, mail address, date, personal information, etc. Try to
make them foolproof.

6. (* 1.5) Write a program that prints (a) all lowercase letters, (b) all letters, (c) all letters and dig
its, (d) all characters that may appear in a c++ identifier on your system, (e) all punctuation
characters, (f) the integer value of all control characters, (g) all whitespace characters, (h) the
integer value of all whitespace characters, and finally (i) all printing characters.

7. (*2) Read a sequence of lines of text into a fixed-sized character buffer. Remove all whitespace
characters and replace each alphanumeric character with the next character in the alphabet
(replace z by a and 9 by 0). Write out the resulting line.

8. (*3) Write a "miniature" stream I/O system that provides classes istream, ostream, ifstream,
ofstream providing functions such as operator« () and operator» () for integers and oper
ations such as open () and close () for files.

9. (*4) Implement the C standard I/O library «stdio. h» using the c++ standard I/O library
«iostream>).

10. (*4) Implement the c++ standard I/O library «iostream» using the C standard I/O library
«stdio. h».

11. (*4) Implement the C and c++ libraries so that they can be used simultaneously.
12. (*2) Implement a class for which [] is overloaded to implement random reading of characters

from a file.
13. (*3) Repeat §21.IO[12] but make [] useful for both reading and writing. Hint: Make [] return

an object of a "descriptor type" for which assignment means "assign through descriptor to
file" and implicit conversion to char "means read from file through descriptor."

14. (*2) Repeat §21.10[13] but let [] index objects of arbitrary types, not just characters.
15. (*3.5) Implement versions of istream and ostream that read and write numbers in their binary

form rather than converting them into a character representation. Discuss the advantages and
disadvantages of this approach compared to the character-based approach.

16. (*3.5) Design and implement a pattern-matching input operation. Use print/-style format
strings to specify a pattern. It should be possible to try out several patterns against some input
to find the actual format. One might derive a pattern-matching input class from istream.

17. (*4) Invent (and implement) a much better kind of pattern for pattern matching. Be specific
about what is better about it.



656 Streams Chapter 21

/ / output to bufthrough ost
/ / ost adds terminating 0

18. (*2) Define an output manipulator based that takes two arguments - a base and an int value 
and outputs the integer in the representation specified by the base. For example, based (2 , 9)

should print 1001.
19. (*2) Write manipulators that tum character echoing on and off.
20. (*2) Implement BoundJorm from §21.4.6.3 for the usual set of built-in types.
21. (*2) Re-implement BoundJorm from §21.4.6.3 so that an output operation never overflows its

width ( ). It should be possible for a programmer to ensure that output is never quietly trun
cated beyond its specified precision.

22. (*3) Implement an encrypt (k) manipulator that ensures that output on its ostream is encrypted
using the key k. Provide a similar decrypt (k) manipulator for an istream. Provide the means
for turning the encryption off for a stream so that further 110 is cleartext.

23. (*2) Trace a character's route through your system from the keyboard to the screen for a simple:

char c;
cin »c;
cout « C « endl;

24. (*2) Modify readints () (§21.3.6) to handle all exceptions. Hint: Resource acquisition is
initialization.

25. (*2.5) There is a standard way of reading, writing, and representing dates under control of a
locale. Find it in the documentation of your implementation and write a small program that
reads and writes dates using this mechanism. Hint: struct tm.

26. (*2.5) Define an ostream called ostrstream that can be attached to an array of characters (a C
style string) in a way similar to the way ostringstream is attached to a string. However, do not
copy the array into or out of the ostrstream. The ostrstream should simply provide a way of
writing to its array argument. It might be used for in-memory formatting like this:

char buf[message_sizel;
ostrstream ost (buf, message_size) ;
do_something (arguments ,ost) ;
cout« buf;

An operation such as do_something () can write to the stream ost, pass ost on to its subopera
tions, etc., using the standard output operations. There is no need to check for overflow because
ost knows its size and will go into fail () state when it is full. Finally, a display () operation
can write the message to a "real" output stream. This technique can be most useful for coping
with cases in which the final display operation involves writing to something more complicated
than a traditional line-oriented output device. For example, the text from ost could be placed in
a fixed-sized area somewhere on a screen. Similarly, define class istrstream as an input string
stream reading from a zero-terminated string of characters. Interpret the terminating zero char
acter as end-of-file. These strstreams were part of the original streams library and can often be
found in <strstream . h>.

27. (*2.5) Implement a manipulator general () that resets a stream to its original (general) format
in the same way a scientific () (§21.4.6.2) sets a stream to use scientific format.



22
Numerics

The purpose ofcomputing is insight, not numbers.
- R. W. Hamming

... but for the student,
numbers are often the best road to insight.

- A. Ralston

Introduction - numeric limits - mathematical functions - valarray - vector opera
tions - slices - slice_array - elimination of temporaries - gslice_array 
mask_array - indirect_array - complex - generalized algorithms - random num
bers - advice - exercises.

22.1 Introduction

It is rare to write any real code without doing some calculation. However, most code requires little
mathematics beyond simple arithmetic. This chapter presents the facilities the standard library
offers to people who go beyond that.

Neither C nor C++ were designed primarily with numeric computation in mind. However,
numeric computation typically occurs in the context of other work - such as database access, net
working, instrument control, graphics, simulation, financial analysis, etc. - so C++ becomes an
attractive vehicle for computations that are part of a larger system. Furthermore, numeric methods
have come a long way from being simple loops over vectors of floating-point numbers. Where
more complex data structures are needed as part of a computation, C++'s strengths become rele
vant. The net effect is that C++ is increasingly used for scientific and engineering computation
involving sophisticated numerics. Consequently, facilities and techniques supporting such compu
tation have emerged. This chapter describes the parts of the standard library that support numerics
and presents a few techniques for dealing with issues that arise when people express numeric



658 Numerics Chapter 22

computations in c++. I make no attempt to teach numeric methods. Numeric computation is a fas
cinating topic in its own right. To understand it, you need a good course in numerical methods or
at least a good textbook - not just a language manual and tutorial.

22.2 Numeric Limits

To do anything interesting with numbers, we typically need to know something about general prop
erties of built-in numeric types that are implementation-defined rather than fixed by the rules of the
language itself (§4.6). For example, what is the largest int? What is the smallestfloat? Is a dou
ble rounded or truncated when assigned to afloat? How many bits are there in a char?

Answers to such questions are provided by the specializations of the numeric_limits template
presented in <limits>. For example:

void f{double d, int i)
{

if (numeric_limits<unsigned char>:: digits ! = 8)

/ / unusual bytes (number ofbits not 8)

if (i<numeric_limits<short> : : min () I I numeric_limits<short> : : max ( ) <i)
/ / i cannot be stored in a short without loss ofprecision

if (O<d && d<numeric_limits<double> : : epsilon ( ) ) d = 0;

if (numeric_limits<Quad>:: is_specialized) {
/ / limits information available for type Quad

Each specialization provides the relevant information for its argument type. Thus, the general
numeric_limits template is simply a notational handle for a set of constants and inline functions:

template<class T> class numeric_limits {
public:

static const bool is_specialized = false j / / is information available for numeric_limits<T>?

/ / uninteresting defaults
} ;

The real information is in the specializations. Each implementation of the standard library provides
a specialization of numeric_limits for each fundamental type (the character types, the integer and
floating-point types, and bool) but not for any other plausible candidates such as void, enumera
tions, or library types (such as complex<double>).

For an integral type such as char, only a few pieces of information are of interest. Here is
numeric_limits<char> for an implementation in which a char has 8 bits and is signed:



Section 22.2 Numeric Limits 659

class numeric_limits<char> {
public:

static const bool is_specialized = true;

static const int digits = 7;

static const bool is_signed = true;
static const booI is_integer = true;

/ / yes, we have information

/ / number ofbits (' 'binary digits") excluding sign

/ / this implementation has char signed
/ / char is an integral type

} ;

static char min () throw () {return -128; }
static char max () throw () { return 127; }

/ I lots ofdeclarations not relevant to a char

/ / smallest value
/ / largest value

Note that for a signed integer type digits is one less than the number of bits used to store the type.
Most members of numeric_limits are intended to describe floating-point numbers. For exam

ple, this describes one possible implementation offloat:

class numeric_limits<float> {
public:

static const bool is_specialized = true;

static const int radix = 2 ;
static const int digits = 24;
static const int digitsl0 = 6;

/ / base ofexponent (in this case, binary)
/ / number radix digits in mantissa
/ / number ofbase 10 digits in mantissa

static const bool is_signed = true;
static const bool is_integer = false;
static const bool is_exact = false;

static float min () throw () { return 1. 17549435E-38F; }
static float max () throw () { return 3. 40282347E+38F i }

static float epsilon () throw () { return 1. J9209290E-07F;
static float round_error () throw () {return O. 5F; }

static float infinity () throw () { return / * some value * / i }

static float quiet_NaN () throw () { return / * some value * / i }

static float signaling_NaN () throw () { return / * some value * / i

static float denorm_min () throw () { return min ( ) i }

static const int min_exponent = - J25 i
static const int min_exponentJO = -37;
static const int max_exponent = +J28 i
static const int max_exponentJ0 = +38 i

static const bool has_infinity = true;
static const bool has_quiet_NaN = true;
static const bool has_signaling_NaN = true;
static const float_denorm_style has_denorm = denorm_absenti / / enumfrom <limits>
static const bool has_denorm_loss = false i



660 Numerics Chapter 22

static const bool is_iec559 =true; / / conforms to IEC-559
static const bool is_bounded = true;
static const bool is_modulo = false;
static const bool traps =true;
static const bool tinyness_before =true;

static const float_round_style round_style = round_to_nearest; / / enum from <limits>
} ;

Note that min () is the smallest positive normalized number and that epsilon is the smallest posi
tive floating-point number such that 1+epsilon-l is representable.

When defining a scalar type along the lines of the built-in ones, it is a good idea also to provide
a suitable specialization of numeric_limits. For example, if I wrote a quadruple-precision type
Quad or if a vendor provided an extended-precision integer long long, a user could reasonably
expect numeric_limits<Quad> and numeric_limits<long long> to be supplied.

One can imagine specializations of numeric_limits describing properties of user-defined types
that have little to do with floating-point numbers. In such cases, it is usually better to use the gen
eral technique for describing properties of a type than to specialize numeric_limits with properties
not considered in the standard.

Floating-point values are represented as inline functions. Integral values in numeric_limits,
however, must be represented in a form that allows them to be used in constant expressions. That
implies that they must have in-class initializers (§ 10.4.6.2). If you use static const members rather
than enumerators for that, remember to define the statics.

22.2.1 Limit Macros

From C, C++ inherited macros that describe properties of integers. These are found in <climits>
and <limits. h> and have names such as CHAR_BIT and INT_MAX. Similarly, <cfloat> and
<float. h> define macros describing properties of floating-point numbers. They have names such
as DBL_MIN_EXP, FLT_RADIX, and LDBL_MAX.

As ever, macros are best avoided.

22.3 Standard Mathematical Functions
The headers <cmath> and <math. h> provide what is commonly referred to as "the usual mathe
matical functions:"

double abs (double) ;
double fabs (double) ;

double ceil (double d);
double floor (double d);

double sqrt (double d);

double pow (double d, double e);

double pow (double d, int i);

/ / absolute value; not in C, same as fabs()
/ / absolute value

/ / smallest integer not less than d
/ / largest integer not greater than d

/ / square root ofd, d must be non-negative

/ / d to the power ofe,
/ / error ifd==O and e<=O or ifd<O and e isn't an integer.
/ / d to the power ofi; not in C



Section 22.3

double cos (double) ;
double sin (double) ;
double tan (double) ;

/ / cosine
/ / sine
/ / tangent

Standard Mathematical Functions 661

double acos (double) ; / / arc cosine
double asin (double) ; / / arc sine
double atan (double) ; / / arc tangent
double atan2 (double x, double y); / / atan(x/y)

double sinh (double) ;
double cosh (double) ;
double tanh (double) ;

double exp (double) ;
double log (double d);
double log10 (double d);

/ / hyperbolic sine
/ / hyperbolic cosine
/ / hyperbolic tangent

/ / exponential, base e
/ / natural (base e) logarithm, d must be> 0
/ / base 10 logarithm, d must be> 0

double modf(double d, double* p); / / return fractional part ofd, place integral part in *p
double frexp (double d, int* p); / / find x in [.5,1) and y so that d =x*pow(2,y),

/ / return x and store y in *p
double fmod (double d, double m); / / floating-point remainder, same sign as d
double ldexp (double d, int i); / / d*pow(2,i)

In addition, <cmath> and <math. h> supply these functions for float and long double arguments.
Where several values are possible results - as with asin () - the one nearest to 0 is returned.

The result of acos () is non-negative.
Errors are reported by setting ermo from <cermo> to EDOM for a domain error and to

ERANGE for a range error. For example:

void f()
{

ermo =0; / / clear old error state
sqrt (-1);

if (ermo==EDOM) cerr« II sqrt () not defined for negative argument n ;

pow (numeric_limits<double> : : max ( ) , 2) ;

if (ermo == ERANGE) cerr« "result of pow () too large to represent as a double n ;

For historical reasons, a few mathematical functions are found in the <cstdlib> header rather than
in <cmath>:

int abs (int) ;
long abs (long) ;
long labs (long) i

/ / absolute value
/ / absolute value (not in C)
/ / absolute value

struct div_t { implementation_defined quot, rem i };

struct ldiv_t { implementation_defined quot, rem; };

div_t div (int n, int d); / / divide n by d, return (quotient, remainder)
ldiv_t div (long int n, long int d); / / divide n by d, return (quotient, remainder) (not in C)
ldiv_t ldiv (long int n, long int d); / / divide n by d, return (quotient, remainder)



662 Numerics

22.4 Vector Arithmetic

Chapter 22

I I valarray with size()==O
/ / n elements with value T()
/ / n elements with value val
I I n elements with values p[O], pIll, ...
II copy ofv

Much numeric work relies on relatively simple single-dimensional vectors of floating-point values.
In particular, such vectors are well supported by high-performance machine architectures, libraries
relying on such vectors are in wide use, and very aggressive optimization of code using such
vectors is considered essential in many fields. Consequently, the standard library provides a vector
- called valarray - designed specifically for speed of the usual numeric vector operations.

When looking at the valarray facilities, it is wise to remember that they are intended as a rela
tively low-level building block for high-performance computation. In particular, the primary
design criterion wasn't ease of use, but rather effective use of high-performance computers when
relying on aggressive optimization techniques. If your aim is flexibility and generality rather than
efficiency, you are probably better off building on the standard containers from Chapter 16 and
Chapter 17 than trying to fit into the simple, efficient, and deliberately traditional framework of
valarray.

One could argue that valarray should have been called vector because it is a traditional mathe
matical vector and that vector (§ 16.3) should have been called array. However, this is not the way
the terminology evolved. A valarray is a vector optimized for numeric computation, a vector is a
flexible container designed for holding and manipulating objects of a wide variety of types, and an
array is a low-level, built-in type.

The valarray type is supported by four auxiliary types for specifying subsets of a valarray:
- slice_array and gslice_array represent the notion of slices (§22.4.6, §22.4.8),
- mask_array specifies a subset by marking each element in or out (§22.4.9), and
- indirect_array lists the indices of the elements to be considered (§22.4.10).

22.4.1 Valarray Construction

The valarray type and its associated facilities are defined in namespace std and presented in
<valarray>:

template<class T> class std:: valarray {
/ / representation

public:
typedef T value_type i

valarray ( ) i

explicit valarray (size_t n) i

valarray (const T& val, size_t n);
valarray (const T* p, size_t n);
valarray (const valarray& v) ;

} i

valarray (const slice_array<T>& ) i

valarray (const gslice_array<T>&) i

valarray (const mask_array<T>&) i

valarray (const indirect_array<T>&) i

-valarray ( ) i

/ / ...

I I see §22.4.6
1/ see §22.4.8
I I see §22.4.9
/ / see §22.4.l0



Section 22.4.1 Valarray Construction 663

This set of constructors allows us to initialize valarrays from the auxiliary numeric array types and
from single values. For example:

valarray<double> vO i

valarray<float> v1 (1000) i

valarray<int> v2 (-1 , 2000) i

valarray<double> v3 (100, 9. 8064) i

valarray<double> v4 = v3;

I I placeholder, we can assign to vO later
I I 1000 elements with value float()==0.OF

I I 2000 elements with value -1
I I bad mistake,· floating-point valarray size

I I v4 has v3.size() elements

In the two-argument constructors, the value comes before the number of elements. This differs
from the convention for other standard containers (§16.3.4).

The number of elements of an argument valarray to a copy constructor determines the size of
the resulting valarray.

Most programs need data from tables or input; this is supported by a constructor that copies ele
ments from a built-in array. For example:

const double vd [] = { 0, 1, 2, 3, 4 } ;
const int vi [] = { 0, 1, 2 I 3, 4 } ;

valarray<double> v3 (vd , 4) ;
valarray<double> v4 (vi, 4) ;

valarray<double> v5 (vd, 8) ;

I I 4 elements: 0,1,2,3
I I type error: vi is not pointer to double
I I undefined: too few elements in initializer

This form of initialization is important because numeric software that produces data in the form of
large arrays is common.

The valarray and its auxiliary facilities were designed for high-speed computing. This is
reflected in a few constraints on users and by a few liberties granted to implementers. Basically, an
implementer of valarray is allowed to use just about every optimization technique you can think
of. For example, operations may be inlined and the valarray operations are assumed to be free of
side effects (except on their explicit arguments of course). Also, valarrays are assumed to be alias
free, and the introduction of auxiliary types and the elimination of temporaries is allowed as long as
the basic semantics are maintained. Thus, the declarations in <valarray> may look somewhat dif
ferent from what you find here (and in the standard), but they should provide the same operations
with the same meaning for code that doesn't go out of the way to break the rules. In particular, the
elements ofa valarray should have the usual copy semantics (§17.1.4).

22.4.2 Valarray Subscripting and Assignment

For valarrays, subscripting is used both to access individual elements and to obtain subarrays:

template<ciass T> class valarray {
public:

II ...
valarray& operator= (const valarray& v) ;

valarray&.operator= (const T& val);

T operator [] (size_t) const;
T& operator [] (size_t) ;

I I copy v
/ / assign val to every element



664 Numerics

valarray operator [] (slice) const;
slice_array<T> operator [ ] (slice);

valarray operator [] (const gslice&) const;
gslice_array<T> operator [ ] (const gslice&) i

valarray operator [ ] (const valarray<bool>&) const;
mask_array<T> operator [ ] (const valarray<bool>&);

valarray operator [] (const valarray<size_t>&) const;
indirect_array<T> operator [] (const valarray<size_t>& ) i

valarray& operator= (const slice_array<T>&) ;
valarray& operator= (const gslice_array<T>&) ;
valarray& operator= (const mask_array<T>&);
valarray& operator= (const indirect_array<T>&) ;

II ...
} ;

II see §22.4.6

/ I see §22.4.8

/ I see §22.4.9

I I see §22.4.JO

/ I see §22.4.6
/ I see §22.4.8
I I see §22.4.9
/ I see §22.4.10

Chapter 22

A valarray can be assigned to another of the same size. As one would expect, v1=v2 copies every
element of v2 into its corresponding position in v1. If valarrays have different sizes, the result of
assignment is undefined. Because valarray is designed to be optimized for speed, it would be
unwise to assume that assigning with a valarray of the wrong size would cause an easily compre
hensible error (such as an exception) or other' 'reasonable" behavior.

In addition to this conventional assignment, it is possible to assign a scalar to a valarray. For
example, v=7 assigns 7 to every element of the valarray v. This may be surprising, and is best
understood as an occasionally useful degenerate case of the operator assignment operations
(§22.4.3).

Subscripting with an integer behaves conventionally and does not perform range checking.
In addition to the selection of individual elements, valarray subscripting provides four ways of

extracting subarrays (§22.4.6). Conversely, assignment (and constructors §22.4.1) accepts such
subarrays as operands. The set of assignments on valarray ensures that it is not necessary to con
vert an auxiliary array type, such as slice_array, to valarray before assigning it. An implementa
tion may similarly replicate other vector operations, such as + and *, to assure efficiency. In addi
tion, many powerful optimization techniques exist for vector operations involving slices and the
other auxiliary vector types.

22.4.3 Member Operations

The obvious, as well as a few less obvious, member functions are provided:

template<class T> class valarray {
public:

II ...
valarray& operator*=(const T& arg) i I I v[iJ*=argfor every element
II similarly: /=, %=, +=, -=, "'=, &=, 1=, «=, and»=

T sum () const;
T min () const;
T max ( ) const;

I I sum ofelements, using +=for addition
I I smallest value, using <for comparison
I I largest value, using <for comparison



Section 22.4.3

valarray shift (int i) const;
valarray cshift (int i) const;

valarray apply (T f( T) ) const;
valarray apply (T f (const T&)) const;

valarray operator- () const;
I I similarly: +, -: !

size_t size () const;
void resize (size_t n I const T& val =T ( ) );

} ;

Member Operations 665

I I logical shift (left for O<i, right for i<O)
I I cyclic shift (left for O<i, right for i<O)

I I result[i] = f(v[i]) for every element

I I result[i] = -vIi] for every element

I I number ofelements
I I n elements with value val

If size ( ) ==0, the value of sum ( ) , min ( ) , and max () are undefined.
For example, if v is a valarray, it can be scaled like this: v*=. 2, and this: v / =1 .3. That is,

applying a scalar to a vector means applying the scalar to each element of the vector. As usual, it is
easier to optimize uses of *=than uses of a combination of * and =(§ 11.3.1).

Note that the non-assignment operations construct a new valarray. For example:

double incr(double d) {return d+/i

void f(valarray<double>& v)
{

valarray<double> v2 =v . apply (incr) ; I I produce incremented valarray

This does not change the value of v. Unfortunately, apply () does not accept a function object
(§ 18.4) as an argument (§22.9[1]).

The logical and cyclic shift functions, shift () and cshift ( ) , return a new valarray with the ele
ments suitably shifted and leave the original one unchanged. For example, the cyclic shift
v2=v. cshift (n) produces a valarray so that v2 [i] ==v [ (i+n) %v. size ( ) ]. The logical shift
v3=v.shift(n) produces a valarray so that v3[i] is v[i+n] if i+n is a valid index for v. Other
wise, the result is the default element value. This implies that both shift () and cshift () shift left
when given a positive argument and right when given a negative argument. For example:

void f()
{

int alpha [] ={ / I 2 I 3, 4, 5 I 6, 7, 8 };
valarray<int> v (alpha, 8); II i, 2, 3, 4, 5, 6,7,8
valarray<int> v2 = v. shift (2) ; I I 3, 4, 5, 6, 7, 8, 0, 0
valarray<int> v3 = v«2; I I 4, 8, 12, 16, 20, 24, 28, 32
valarray<int> v4 = v. shift (-2) ; I I 0, 0, 1, 2, 3, 4, 5, 6
valarray<int> v5 = v»2; I I 0,0,0, 1, 1, 1, 1,2
valarray<int> v6 = v. cshift (2) ; I I 3, 4, 5, 6, 7, 8, 1, 2
valarray<int> v7 = v. cshift ( - 2) ; I I 7, 8, 1, 2, 3, 4, 5, 6

For valarrays, » and « are bit shift operators, rather than element shift operators or 110 opera
tors (§22.4.4). Consequently, «= and »= can be used to shift bits within elements of an integral
type. For example:



666 Numerics

void f(valarray<int> vi, valarray<double> vd)
{

vi «= 2; I I vi[il«=2for all elements ofvi
vd «= 2; I I error: shift is not defined for floating-point values

Chapter 22

I I read array size

I I read array size

It is possible to change the size of a va/array. However, resize () is not an operation intended to
make va/array into a data structure that can grow dynamically the way a vector and a string can.
Instead, resize () is a re-initialize operation that replaces the existing contents of a va/array by a
set of default values. The old values are lost.

Often, a resized valarray is one that we created as an empty vector. Consider how we might
initialize a va/array from input:

void f()

{

int n = 0;
cin » n;

if (n<=O) error(lIbad array bound");

valarray<double> v (n ) ; I I make an array ofthe right size
int i =0;
while (i<n && cin»v [i++] ) I I fill array
if (i ! =n) error ( "too few elements on input II ) ;

II ...

If we want to handle the input in a separate function, we might do it like this:

void initializeJrom_input (valarray<double>& v)
{

int n =0;
cin » n;
if (n<=O) error ( "bad array bound");

v . resize (n ) ; I I make v the right size
int i = 0;
while (i<n && cin»v [i++] ) I I fill array
if (i ! =n) error ( "too few elements on input");

void g()
{

vaiarray<double> Vi

initializeJrom_input (v) ;

I I ...

This avoids copying large amounts of data.

I I make a default array
I I give v the right size and elements



Section 22.4.3 Member Operations 667

If we want a valarray holding valuable data to grow dynamically, we must use a temporary:

void grow (valarray<int>& v, size_t n)
{

if (n< =v . size ( ) ) return;

valarray<int> tmp (n ) ; / / n default elements

copy (&v [0], &v [v •size () ], &tmp [0] ); / / copy algorithm from §l8.6.1
v. resize (n) i

copy (&tmp [0] , &tmp [v . size ( ) ], &v [0] ) ;

This is not the intended way to use valarray. A valarray is intended to have a fixed size after
being given its initial value.

The elements of a valarray form a sequence; that is, v [0] •• v [n-l] are contiguous in mem
ory. This implies that T* is a random-access iterator (§19.2.1) for valarray<T> so that standard
algorithms, such as copy ( ) , can be used. However, it would be more in the spirit of valarray to
express the copy in terms of assignment and subarrays:

void grow2 (valarray<int>& v, size_t n)
{

if (n<=v.size()) return;

valarray<int> tmp = Vi

slice s (0 , v . size ( ) , 1 ) ;

v. resize (n);
v[s] =tmp;

/ / subarray ofv.size() elements (see §22.4.5)

/ / resizing doesn't preserve element values
/ / copy elements back into theftrst part ofv

If for some reason input data is organized so that you have to count the elements before knowing
the size of vector needed to hold them, it is usually best to read the input into a vector (§16.3.5) and
then copy the elements into a valarray.

22.4.4 Nonmember Operations

The usual binary operators and mathematical functions are provided:

template<class T> valarray<T> operator* (const valarray<T>&, const vala"ay<T>&);
template<class T> valarray<T> operator* (const valarray<T>&, const T&);
template<class T> valarray<T> operator* (const T&, const valarray<T>&);

/ / similarly: I, %, +, -, A, &, I, «, », &&, II, ==, 1=, <, >, <=, >=, atan2, and pow

template<class T> valarray<T> abs (const valarray<T>&);

/ / similarly: acos, asin, atan, cos, cosh, exp, log, JoglO, sin, sinh, sqrt, tan, and tanh

The binary operations are defined for valarrays and for combinations of a valarray and its scalar
type. For example:



668 Numerics

void f( valarray<double>& v, valarray<double>& v2, double d)
{

valarray<double> v3 =v*v2ill v3[i] = v[i]*v2[i] for all i
valarray<double> v4 = V*di II v4[i] =v[i]*dforall i
valarray<double> v5 = d*v2 i II v5[i] =d*v2[i] for all i

valarray<double> v6 = cos (v) i II v6[i] =cos(v[i]) for all i

Chapter 22

These vector operations all apply their operations to each element of their operand(s) in the way
indicated by the * and cos () examples. Naturally, an operation can be used only if the corre
sponding operation is defined for the template argument type. Otherwise, the compiler will issue
an error when trying to specialize the template (§ 13.5).

Where the result is a valarray, its length is the same as its valarray operand. If the lengths of
the two arrays are not the same, the result of a binary operator on two valarrays is undefined.

Curiously enough, no 110 operations are provided for valarray (§22.4.3); « and » are shift
operations. However, I/O versions of» and « for valarray are easily defined (§22.9[5]).

Note that these valarray operations return new valarrays rather than modifying their operands.
This can be expensive, but it doesn't have to be when aggressive optimization techniques are
applied (e.g., see §22.4.7).

All of the operators and mathematical functions on valarrays can also be applied to
slice_arrays (§22.4.6), gslice_arrays (§22.4.8), mask_arrays (§22.4.9), indirect_arrays
(§22.4.10), and combinations of these types. However, an implementation is allowed to convert an
operand that is not a valarray to a valarray before performing a required operation.

22.4.5 Slices

A slice is an abstraction that allows us to manipulate a vector efficiently as a matrix of arbitrary
dimension. It is the key notion of Fortran vectors and of the BLAS (Basic Linear Algebra Subpro
grams) library, which is the basis for much numeric computation. Basically, a slice is every nth
element of some part of a valarray:

class std:: slice {
I / starting index, a length, and a stride

public:
slice ( );
slice (size_t start, size_t size, size_t stride) i

} i

size_t start () const i
size_t size () const i
size_t stride () const i

/ / index offirst element
/ / number ofelements
/ / element n is at start()+n*stride()

A stride is the distance (in number of elements) between two elements of the slice. Thus, a slice
describes a sequence of integers. For example:



Section 22.4.5

size_t slice_index (const slice& s, size_t i) / / map i to its corresponding index
{

return s. start ( ) +i*s . stride ( ) i

void print_seq (const slice& s) / / print the ele171ents (~f s
{

for (size_t i = 0; i<s . size (); i++) cout« slice_index (s, i) « II II;

void f()
{

print_seq (slice (0 , 3 , 4) ) i / / row 0
cout« ", II i

print_seq (slice (J ,3,4) ); / / row I
cout« ", II i

print_seq (slice (0, 4, J) ) i / / co/until 0
cout« ", ";
print_seq (sUce (4,4, J) ) i / / CO/l11111l I

Slices 669

}

prints 0 4 8 , J 5 9 ,OJ 2 3 , 4 5 6 7.
In other words, a slice describes a mapping of non-negative integers into indices. The number

of elements (the size ( ) ) doesn't affect the mapping (addressing) but simply allows us to find the
end of a sequence. This mapping can be used to simulate two-dimensional arrays within a one
dimensional array (such as valarray) in an efficient, general, and reasonably convenient way. Con
sider a 3-by-4 matrix the way we often think of it (§C.7):

00 01 02
10 II 12

- - 1----

20 21 22
30 31 32

Following Fortran conventions, we can lay it out in memory like this:

This is not the way arrays are laid out in C++ (see §C.7). However, we should be able to present a
concept with a clean and logical interface and then choose a representation to suit the constraints of
the problem. Here, I have chosen to use Fortran layout to ease the interaction with numeric soft
ware that foHows that convention. I have not, however, gone so far as to start indexing from J
rather than 0; that is left as an exercise (§22.9[9]). Much numeric computation is done and will
remain done in a mixture of languages and using a variety of libraries. Often the ability to manipu
late data in a variety of formats determined by those Ii~raries and language standards is essential.



670 Numerics Chapter 22

Row x can be described by a slice (x, 3 , 4). That is, the first element of row x is the xth ele
ment of the vector, the next element of the row is the (x+4) th, etc., and there are 3 elements in
each row. In the figures, slice (0, 3 , 4) describes the row 00, 01, and 02.

Column y can be described by slice (4*y, 4, 1). That is, the first element of column y is the
4*yth element of the vector, the next element of the column is the (4*y+ 1) th, etc., and there are 4
elements in each column. In the figures, slice (0, 4, 1) describes the column 00, 10, 20, and 30.

In addition to its use for simulating two-dimensional arrays, a slice can describe many other
sequences. It is a fairly general way of specifying very simple sequences. This notion is explored
further in §22.4.8.

One way of thinking of a slice is as an odd kind of iterator: a slice allows us to describe a
sequence of indices for a valarray. We could build a real iterator based on that:

template<class T> class Slice_iter {
valarray<T> * v;
slice s;
size_t curr; / / index ofcurrent element

T& ref(size_t i) const { return (*v) [s. start ( ) +i*s . stride ( ) ] ;
public:

Slice_iter (valarray<T>* vv, slice ss) :v(vv), s(ss), curr(O) { }

Slice_iter end () const
{

Slice_iter t = *this;
t . curr =s . size ( ) ;
return t;

/ / index of last-pius-one element

Slice_iter& operator++ () { curr++; return *this ; }
Slice_iter operator+ + (int) {Slice_iter t =*this; curr+ +; return t; }

T& operator [ ] (size_t i) { return ref(i); }
T& operator ( ) (size_t i) { return ref(i) i }

T& operator* () { return ref(curr); }

/ / C style subscript
/ / Fortran-style subscript
/ / current element

friend bool operator==<> (const Slice_iter& p, const Slice_iter& q) ;
friend bool operator! =<> (const Slice_iter& p, const Slice_iter& q) ;
friend bool operator< <> (const Slice_iter& p, const Slice_iter& q);

} ;

Since a slice has a size, we could even provide range checking. Here, I have taken advantage of
slice: : size () to provide an end () operation to provide an iterator for the one-past-the-end ele
ment of the valarray.

Since a slice can describe either a row or a column, the Slice_iter allows us to traverse a
valarray by row or by column.

The comparisons could be defined like this:

template<class T> bool operator== (const Slice_iter<T>& p, const Slice_iter<T>& q)
{

return p. curr==q. curr && p. s. stride ( ) ==q. s. stride () && p. s. start ( ) ==q. s . start () i



Section 22.4.5 Slices 671

/ / assign val to each element

/ / prevent construction
/ / prevent copying
/ / prevent copying

template<class T> bool operator! = (const Slice_iter<T>& p, const Slice_iter<T>& q)
{

return! (p==q);

template<class T> bool operator< (const Slice_iter<T>& p, const Slice_iter<T>& q)
{

return p. curr<q. curr && p. s. stride ( ) ==q. s. stride () && p. s. start ( ) ==q. s. start ( );

22.4.6 Slice_array

From a valarray and a slice, we can build something that looks and feels like a valarray, but
which is really simply a way of referring to the subset of the array described by the slice. Such a
slice_array is defined like this:

template <class T> class std:: slice_array {
public:

typedef T value_type;

void operator= (const valarray<T>&);
void operator= (const T& val);

void operator*= (const valarray<T>& val); / / v[i]*=val[i] for each element
/ / similarly: /=, %=, +=, -=, A=, &=, I=, «=, »=

,..,slice_array ( ) ;
private:

slice_array ( ) ;
slice_array (const slice_array& ) ;
slice_array& operator= (const slice_array& ) ;

} ;

valarray<T> * p;
slice s;

/ / implementation-defined representation

A user cannot directly create a slice_array. Instead, the user subscripts a valarray to create a
slice_array for a given slice. Once the slice_array is initialized, all references to it indirectly go to
the valarray for which it is created. For example, we can create something that represents every
second element of an array like this:

void f( valarray<double>& d}
{

slice_array<double>& v_even = d [slice {O, d. size ( ) /2+d. size ( ) %2,2} ];
slice_array<double>& v_odd = d [slice (I, d. size ( ) /2, 2) ] ;

v_even *= v_odd;
v_odd =0;

/ / multiply element pairs and store results in even elements
/ / assign 0 to every odd element ofd

The ban on copying slice_arrays is necessary so as to allow optimizations that rely on absence of
aliases. It can be quite constraining. For example:



672 Numerics

slice_array<double> row (valarray<double>& d, int i)
{

slice_array<double> v = d [slice (0 , 2, d . size ( ) 12) ] ; II error: attempt to copy

return d [slice (i%2 , i , d . size ( ) 12) ]; I I error: attempt to copy

Chapter 22

Often copying a slice is a reasonable alternative to copying a slice_array.
Slices can be used to express a variety of subsets of an array. For example, we might use slices

to manipulate contiguous subarrays like this:

inline slice sub_array (size_t first, size_t count) I I [first:first+count[
{

return slice (first, count, 1 ) ;

void f (valarray<double>& v)
{

size_t sz = v. size ( ) ;
if (sz<2) return i

size_t n = szl2;
size_t n2 = sz-n;

valarray<double> halfl (n) ;
valarray<double> halj2 (n2 ) ;

halfl = v [sub_array (0, n) ];
halj2 = v [sub_array (n, n2) ] ;

II ...

I I copy offirst halfofv
I I copy ofsecond halfofv

The standard library does not provide a matrix class. Instead, the intent is for valarray and slice to
provide the tools for building matrices optimized for a variety of needs. Consider how we might
implement a simple two-dimensional matrix using a valarray and slice_arrays:

I I stores elements by column as described in §22.4.5
II dl == number ofcolumns, d2 == number of rows

class Matrix {
valarray<double> * v;
size_t dl, d2;

public:
Matrix (size_t x, size_t y) i

Matrix (const Matrix&) i

Matrix& operator= (const Matrix&) i

-Matrix ( ) i

/ I note: no default constructor

size_t size () const { return dl *d2; }
size_t diml () const { return dl i} I / number ofcolumns
size_t dim2 () const { return d2 i} I / number of rows

Slice_iter<double> row (size_t i);

Cslice_iter<double> row (size_, i) const i



/ / Fortran-style subscripts

Section 22.4.6

Slice_iter<double> column (size_t i);
Cslice_iter<double> column (size_t i) const;

double& operator () (size_t x I size_t y);
double operator ( ) (size_t x, size_t y) const;

Slice_iter<double> operator () (size_t i) {return column (i); }
Cslice_iter<double> operator () (size_t i) const { return column (i) ;

Slice_array 673

Slice_iter<double> operator [] (size_t i) {return column (i);} / / C-style subscript
Cslice_iter<double> operator [] (size_t i) const { return column (i); }

Matrix& operator* = (double) ;

valarray<double>& array () {return *v;
} ;

The representation of a Matrix is a valarray. We impose dimensionality on that array through slic
ing. When necessary, we can view that representation as having one, two, three, etc., dimensions in
the same way that we provide the default two-dimensional view through row () and column ( ) .
The Slice_iters are used to circumvent the ban on copying slice_arrays. I couldn't return a
slice_array:

slice_array<double> row (size_t i) {return (* v) (slice (i I dl I d2) ); } / / error

so I returned an iterator containing a pointer to the valarray and the slice itself instead of a
slice_array.

We need an additional class "iterator for slice of constants," Cslice_iter to express the distinc
tion between a slice of a const Matrix and a slice of a non-const Matrix:

inline Slice_iter<double> Matrix: : row (size_t i)
{

return Slice_iter<double> (v I slice (i I dl I d2) ) ;

inline Cslice_iter<double> Matrix: : row (size_t i) const
{

return Cslice_iter<double> (v I slice (i I dl I d2) );

inline Slice_iter<double> Matrix: : column (size_t i)
{

return Slice_iter<double> (v I slice (i* d2 I d2 I 1) ) ;

inline Cslice_iter<double> Matrix: : column (size_t i) const
{

return Cslice_iter<double> (v I slice (i* d2 I d2 I 1) ) ;

The definition of Cslice_iter is identical to that of Slice_iter, except that it returns const references
to elements of its slice.

The rest of the member operations are fairly trivial:



674 Numerics

Matrix: : Matrix (size_t X, size_t y)
{

I / check that x and yare sensible
dI =X;

d2 =y;
v = new valarray<double> (x*y);

double& Matrix: : operator () (size_t X I size_t y)
{

return column (x) [y];

double mul (const Cslice_iter<double>& v1 I const valarray<double>& v2)
{

double res = 0;
for (size_t i = 0; i<v2. size ( ); i++) res+= vI [i] *v2 [i] ;
return res;

valarray<double> operator* (const Matrix& m , const valarray<double>& v)
{

valarray<double> res (m . dim2 ( ) );
for (size_t i=O; i<m.dim2(); i++) res[i] =mul(m.row(i),v);
return res;

Matrix& Matrix: : operator* = (double d)
{

(*v) *= d;
return *this;

Chapter 22

I provided (i, j) to express Matrix subscripting because () is a single operator and because that
notation is the most familiar to many in the numeric community. The concept of a row provides
the more familiar (in the C and c++ communities) [i] [j] notation:

void f(Matrix& m)
{

m(1,2) =5;
m . row (1) (2) =6;

m.row(l) [2] = 7;
m[l] (2) =8;

m[l] [2] =9;

/ / Fortran-style subscripts

/ I undesirable mixed style (but it works)
/ I C++-style subscripts

The use of slice_arrays to express subscripting assumes a good optimizer.
Generalizing this to an n-dimensional matrix of arbitrary elements and with a reasonable set of

operations is left as an exercise (§22.9[7]).
Maybe your first idea for a two-dimensional vector was something like this:



Section 22.4.6

class Matrix {
valarray< valarray<double> > v;

public:
/ / ...

} ;

Slice_array 675

This would also work (§22.9[10]). However, it is not easy to match the efficiency and compatibil
ity required by high-performance computations without dropping to the lower and more conven
tionallevel represented by valarray plus slices.

22.4.7 Temporaries, Copying, and Loops

If you build a vector or a matrix class, you will soon find that three related problems have to be
faced to satisfy performance-conscious users:

[1] The number of temporaries must be minimized.
[2] Copying of matrices must be minimized.
[3] Multiple loops over the same data in composite operations must be minimized.

These issues are not directly addressed by the standard library. However, I can outline a technique
that can be used to produce highly optimized implementations.

Consider U=M* V+W, where U, V, and W are vectors and M is a matrix. A naive implementa
tion introduces temporary vectors for M*V and M*V+W and copies the results of M*V and
M* V+W. A smart implementation calls a function mul_add_and_assign (&U , &M , &V, &w) that
introduces no temporaries, copies no vectors, and touches each element of the matrices the mini
mum number of times.

This degree of optimization is rarely necessary for more than a few kinds of expressions, so a
simple solution to efficiency problems is to provide functions such as mul_add_and_assign () and
let the user call those where it matters. However, it is possible to design a Matrix so that such opti
mizations are applied automatically for expressions of the right form. That is, we can treat
U=M*V+Was a use of a single operator with four operands. The basic technique was demon
strated for ostream manipulators (§21.4.6.3). In general, it can be used to make a combination of n
binary operators act like an (n+l) -ary operator. Handling U=M*V+ Wrequires the introduction of
two auxiliary classes. However, the technique can result in impressive speedups (say, 30 times) on
some systems by enabling more-powerful optimization techniques.

First, we define the result of multiplying a Matrix by a Vector:

struct MVmul {
const Matrix& mi
const Vector& v;

MVmul (const Matrix& mm, const Vector &vv) :m (mm), v (vv) { }

operator Vector ( ) ; / / evaluate and return result
} ;

inline MVmul operator* (const Matrix& mm, const Vector& vv)
{

retum MVmul (mm, vv) ;



676 Numerics Chapter 22

I I initialize by result ofm

This "multiplication" does nothing except store references to its operands; the evaluation of M*V
is deferred. The object produced by * is closely related to what is called a closure in many techni
cal communities. Similarly, we can deal with what happens if we add a Vector:

stTUct MVmulVadd {
const Matrix& mi
const Vector& Vi
const Vector& v2 i

MVmulVadd(const MVmul&mv, const Vector&vv) :m(mv.m), v(mv.v), v2(vv) {}

operator' Vector ( ) ; I I evaluate and return result
} i

inline MVmulVadd operator+ (const MVmul& mv, const Vector& vv)
{

return MVmulVadd (mv, vv) i

This defers the evaluation of M*V+W. We now have to ensure that it all gets evaluated using a
good algorithm when it is assigned to a Vector:

class Vector {
II ...

public:
Vector(const MVmulVadd& m)
{

I / allocate elements, etc.
mul_add_and_assign (this, &m.m, &m. v, &m. v2) i

Vector& operator= (const MVmulVadd& m)
{

I I assign the result ofm to *this

mul_add_and_assign (this, &m.m, &m. v, &m. v2) i
return *this;

}

II ...
} ;

Now U=M*V+Wis automatically expanded to

U. operator= (MVmulVadd (MVmul (M, V) , W) )

which because of inlining resolves to the desired simple call

mul_add_and_assign (&U, &M, &V, &W)

Clearly, this eliminates the copying and the temporaries. In addition, we might write
mul_add_and_assign () in an optimized fashion. However, if we just wrote it in a fairly simple
and unoptimized fashion, it would still be in a form that offered great opportunities to an optimizer.

I introduced a new Vector (rather than using a valarray) because I needed to define assignment
(and assignment must be a member function; §11.2.2). However, valarray is a strong candidate for
the representation of that Vector.



Section 22.4.7 Temporaries, Copying, and Loops 677

The importance of this technique is that most really time-critical vector and matrix computa
tions are done using a few relatively simple syntactic forms. Typically, there is no real gain in opti
mizing expressions of half-a-dozen operators this way; more conventional techniques (§ 11.6) suf
fice.

This technique is based on the idea of using compile-time analysis and closure objects to trans
fer evaluation of subexpression into an object representing a composite operation. It can be applied
to a variety of problems with the common attribute that several pieces of information need to be
gathered into one function before evaluation can take place. I refer to the objects generated to defer
evaluation as composition closure objects, or simply compositors.

22.4.8 Generalized Slices

The Matrix example in §22.4.6 showed how two slices could be used to describe rows and
columns of a two-dimensional array. In general, a slice can describe any row or column of an n
dimensional array (§22.9[7]). However, sometimes we need to extract a subarray that is not a row
or a column. For example, we might want to extract the 2-by-3 matrix from the top-left comer of a
3-by-4 matrix:

- -
00 01 02

10 11 12

20 21 22

30 31 32

Unfortunately, these elements are not allocated in a way that can be described by a single slice:

A gslice is a "generalized slice" that contains (almost) the information from n slices:

class std:: gslice {
/ / instead of1 stride and one size like slice, gslice holds n strides and n sizes

public:
gslice ();
gslice (size_, s, const valarray<size_'>& I, consl valarray<size_'>& d) ;

} ;

size_t start () const;
valarray<size_t> size () const;
valarray<size_t> stride () const;

/ / index offirst element
/ / number ofelements in dimension
/ / stridefor index[O], index[l], ...

The extra values allow a gslice to specify a mapping between n integers and an index to be used to
address elements of an array. For example, we can describe the layout of the 2-by-3 matrix by a
pair of (length,stride) pairs. As shown in §22.4.5, a length of 2 and a stride of 4 describes two



678 Numerics Chapter 22

elements of a row of the 3-by-4 matrix, when Fortran layout is used. Similarly, a length of 3 and a
stride of 1 describes 3 elements of a column. Together, they describe every element of the 2-by-3
submatrix. To list the elements, we can write:

size_t gslice_index (const gslice& s I size_t i I size_t j)
{

return s. start ( ) +i*s. stride () [0] +j*s. stride () [1];

size_t len [] = { 2, 3 } ;
size_t str [] ={4 I 1 };

valarray<size_'> lengths (len I 2) ;
valarray<size_'> strides (str I 2) ;

void f()
{

I I (len[O],str[O]) describes a row
I I (len[1],str[1]) describes a column

gslice s (0 I lengths I strides) ;

for (int i = 0 ; i<s. size () [0]; i++) cout« gslice_index (s I i 10) « " "; / / row
cout« ", "i

for (int j =0 ; j<s. size () [1]; j++) cout« gslice_index (s 10 ,j) « n n; I I column

.This prints 04,012.
In this way, a gslice with two (length,stride) pairs describes a subarray of a 2-dimensional

array, a gslice with three (length,stride) pairs describes a subarray of a 3-dimensional array, etc.
Using a gslice as the index of a valarray yields a gslice_array consisting of the elements
described by the gslice. For example:

void f(valarray<float>& v)
{

gslice m (0 I lengths I strides) ;
v[m] = 0; II assign 0 to v[O],v[1],v[2],v[4],v[5],v[6]

The gslice_array offers the same set of members as slice_array. In particular, a gslice_array
cannot be constructed directly by the user and cannot be copied (§22.4.6). Instead, a gslice_array
is the result of using a gslice as the subscript of a valarray (§22.4.2).

22.4.9 Masks

A mask_array provides yet another way of specifying a subset of a valarray and making the result
look like a valarray. In the context of valarrays, a mask is simply a valarray<bool>. When a
mask is used as a subscript for a valarray, a true bit indicates that the corresponding element of the
valarray is considered part of the result. This allows us to operate on a subset of a valarray even if
there is no simple pattern (such as a slice) that describes that subset. For example:



Section 22.4.9

void f(valarray<double>& v)

{

bool b [] ={ true , false, false, true, false, true } ;
vala"ay<bool> mask (b , 6) ; I I elements 0, 3, and 5

Masks 679

valarray<double> vv = cos (v [mask] ) ; II w[OJ==cos(v[O}), vv[lJ==cos(v[3}),
I I vv[2J==cos(v[5})

The mask_array offers the same set of members as slice_array. In particular, a mask_array can
not be constructed directly by the user and cannot be copied (§22.4.6). Instead, a mask_array is
the result of using a valarray<bool> as the subscript of a valarray (§22.4.2). The number of ele
ments of a valarray used as a mask must not be greater than the number of elements of the
valarray for which it is used as a subscript.

22.4.10 Indirect Arrays

An indirect_array provides a way of arbitrarily subsetting and reordering a valarray. For exam
ple:

void f(valarray<double>& v)

{

size_t i [] ={3, 2, 1, 0 } ;
vala"ay<size_t> index (i, 4) ;

valarray<double> vv = log (v [index] );

I I first four elements in reverse order
I I elements 3, 2, 1,0 (in that order)

I I vv[OJ==log(v[3J), w[lJ==log(v[2J),
I I vv[2J==log(v[1J), w[3J==log(v[O})

If an index is specified twice, we have referred to an element of a valarray twice in the same opera
tion. That's exactly the kind of aliasing that valarrays do not allow, so the behavior of an
indirect_array is undefined if an index is repeated.

The indirect_array offers the same set of members as slice_array. In particular, an
indirect_array cannot be constructed directly by the user and cannot be copied (§22.4.6). Instead,
an indirect_array is the result of using a valarray<size_t> as the subscript of a valarray
(§22.4.2). The number of elements of a valarray used as a subscript must not be greater than the
number of elements of the valarray for which it is used as a subscript.

22.5 Complex Arithmetic

The standard library provides a complex template along the lines of the complex class described in
§11.3. The library complex needs to be a template to serve the need for complex numbers based on
different scalar types. In particular, specializations are provided for complex using float, double,
and long double as its scalar type.

The complex template is defined in namespace std and presented in <complex>:



680 Numerics Chapter 22

template<class T> class std:: complex {
T re, imi

public:
typedef T value_type;

complex (const T& r =T ( ) I const T& i =T ( )) : re (r) I im (i) { }
template<class x> complex (const complex<X>& a) : re (a . real ( ) ) I im (a . imag ( )) { }

T real () const { return re; }
T imag () const { return im; }

complex<T>& operator= (const T& z) j / / assign complex(z,D)
template<class X> complex<T>& operator= (const complex<X>&);
/ / similarly: +=, - =, *=, /=

} ;

The representation and the inline functions are here for illustration. One could - barely - imagine
a standard library complex that used a different representation. Note the use of member templates
to ensure initialization and assignment of any complex type with any other (§ 13.6.2).

Throughout this book, I have used complex as a class rather than as a template. This is feasible
because I assumed a bit of namespace magic to get the complex of double that I usually prefer:

typedef std:: complex<double> complex;

The usual unary and binary operators are defined:

template<class T> complex<T> operator+ (const complex<T>& I const complex<T>&);
template<class T> complex<T> operator+ (const complex<T>& I const T&);
template<class T> complex<T> operator+ (const T& I const complex<T>&);

1/ similarly: -, *, /, ==, and 1=

template<class T> complex<T> operator+ (const complex<T>&);
template<class T> complex<T> operator- (const complex<T>&);

The coordinate functions are provided:

template<class T> T real (const complex<T>&);
template<class T> T imag (const complex<T>&);

template<class T> complex<T> conj (const complex<T>&);

/ / construct from polar coordinates (abs(),arg()):
template<class T> complex<T> polar (const T& rho I const T& theta) ;

templale<class T> Tabs (const complex<T>&);
template<class T> T arg (consl complex<T>&);

template<class T> T norm (const complex<T>&) i

The usual set of mathematical functions is provided:

/ / sometimes called rho
/ / sometimes called theta

/ / square ofabs()



Section 22.5 Complex Arithmetic 681

template<class T> complex<T> sin (const complex<T>&) i
II similarly: sinh, sqrt, tan, tanh, cos, cosh, exp, log, and loglO

template<class T> complex<T> pow (const complex<T>&, int) i
template<class T> complex<T> pow (const complex<T>&, const T&);
template<class T> complex<T> pow (const complex<T>&, const complex<T>&);
template<class T> complex<T> pow (const T&, const complex<T>&);

Finally, stream 1/0 is provided:

template<class T, class Ch, class Tr>
basic_istream<Ch, Tr>& operator» (basic_istream<Ch, Tr>&, complex<T>&);
template<class T, class Ch, class Tr>
basic_ostream<Ch, Tr>& operator<< (basic_ostream<Ch, Tr>&, const complex<T>& ) ;

A complex is written out in the format (x I Y) and can be read in the formats x, (x), and (x I Y)

(§21.2.3, §21.3.5). The specializations complex<float> , complex<double> , and complex<long
double> are provided to restrict conversions (§ 13.6.2) and to provide opportunities for optimized
implementations. For example:

template<> class complex<double> {
double re, im i

public:
typedef double value_type;

complex(double r=O.O, double i=O.O) : re(r), im(i) {}
complex (const complex<float>& a) : re (a. real ( ) ), im (a . imag ( )) { }
explicit complex (const complex<long double>& a) : re (a . real ( ) ), im (a . imag ( )) { }

1/ ...
} i

Now a complex<float> can be quietly converted to a complex<double>, while a complex< long
double> can't. Similar specializations ensure that a complex<float> and a complex<double> can
be quietly converted to a complex< long double> but that a complex< long double> cannot be
implicitly converted to a complex<double> or to a complex<.float> and a complex<double> can
not be implicitly converted to a complex<.float>. Curiously, the assignments don't offer the same
protection as the constructors. For example:

void f(complex<float> cf, complex<double> cd, complex<long double> cld, complex<int> ci)
{

complex<double> cl = cli
complex<double> c2 = cd;
complex<double> c3 =cld i
complex<double> c4 (cld) i
complex<double> c5 =ci i

cl = cldi
cl = cfi
cl = Cii

II fine
I I fine
I I error: possible truncation
I 10k: explicit conversion
I I error: no conversion

I 10k, but beware: possible truncation
II ok
II ok



682 Numerics Chapter 22

22.6 Generalized Numeric Algorithms

In <numeric>, the standard library provides a few generalized numeric algorithms in the style of
the non-numeric algorithms from <algorithm> (Chapter 18) :

Generalized Numeric Algorithms <numeric>

accumulate()
inneryroduct()
partial_sum()
adjacent_difference()

Accumulate results of operation on a sequence
Accumulate results of operation on two sequences
Generate sequence by operation on a sequence
Generate sequence by operation on a sequence

These algorithms generalize common operations such as computing a sum by letting them apply to
all kinds of sequences and by making the operation applied to elements on those sequences a
parameter. For each algorithm, the general version is supplemented by a version applying the most
common operator for that algorithm.

22.6.1 Accumulate

The accumulate () algorithm can be understood as the generalization of a sum of the elements of a
vector. The accumulate () algorithm is defined in namespace std and presented in <numeric>:

template <class In, class T> T accumulate (In first, In last I T init)
{

while (first ! =last) init =init + *first+ + ; / / plus
return initi

template <class In, class T, class BinOp> T accumulate (In first, In last, T init , BinOp op)
{

while (first! =last) init = op (init, *first++);
return init;

/ / general operation

The simple version of accumulate () adds elements of a sequence using their + operator. For
example:

void !(vector<int>& price, list<float>& incr)
{

int i =accumulate (price. begin ( ) , price. end ( ) I 0) ; / / accumulate in int
double d =0;
d =accumulate (incr. begin ( ) , incr. end ( ) I d) ; / / accumulate in double
/ / ...

Note how the type of the initial value passed determines the return type.
Not all items that we want to add are available as elements of a sequence. Where they are not,

we can often supply an operation for accumulate () to call in order to produce the items to be
added. The most obvious kind of operation to pass is one that extracts a value from a data struc
ture. For example:



Section 22.6.1

struct Record {
/ / ...
int unityrice ;
int number_of_units;

} ;

long price (long val, const Record& r)
{

return val + r. unityrice * r. number_of_units;

void f(const vector<Record>& v)
{

Accumulate 683

cout« n Total value: II « accumulate (v. begin ( ) , v. end ( ) ,0, price) « '\n';

Operations similar to accumulate are called reduce and reduction in some communities.

22.6.2 InnerJlroduct

Accumulating from a sequence is very common, while accumulating from a pair of sequences is
not uncommon. The inneryroduct () algorithm is defined in namespace std and presented in
<numeric>:

template <class In, class In2, class T>
T inneryroduct (In first, In last, In2 first2, T init)
{

while (first! = last) init = init + *first++ * *first2++;
return init;

template <class In, class In2, class T, class BinOp, class BinOp2>
T inneryroduct (In first, In last, In2 first2, T init , BinOp op, BinOp2 op2)
{

while (first! = last) init = op (init, op2 (*first++, *first2++) ) ;
return init;

As usual, only the beginning of the second input sequence is passed as an argument. The second
input sequence is assumed to be at least as long as the first.

The key operation in multiplying a Matrix by a valarray is an inneryroduct:

valarray<double> operator* (const Matrix& m, valarray<double>& v)
{

valarray<double> res (m • dim2 ( ) ) ;

for (size_t i = 0; i<m. dim2 ( ); i++) {
const Cslice_iter<double>& ri = m. row (i) ;
res [i] =inneryroduct {ri, ri. end ( ) , &v [0] , double (O) );

return res;



684 Numerics

valarray<double> operator* (valarray<double>& v, const Matrix& m)
{

valarray<double> res (m •dim] ( ) ) ;

for (size_t i = 0; i<m. dim] (); i++) {
const Cslice_iter<double>& ci = m . column (i) ;
res [iJ = innerJJroduct (ci, ci. end (), &v [0], double (0) );

return res;

Some forms of inneryroduct are often referred to as "dot product."

Chapter 22

22.6.3 Incremental Change

The partial_sum () and adjacent_difference () algorithms are inverses of each other and deal
with the notion of incremental change. They are defined in namespace std and presented in
<numeric>:

template <class In, class Out> Out adjacent_difference (In first I In last, Out res);

template <class In, class Out, class BinOp>
Out adjacent_difference (In first, In last, Out res, BinOp op);

Given a sequence a, b, C, d, etc., adjacent_difference () produces a, b-a, c-b, d-c, etc.
Consider a vector of temperature readings. We could transform it into a vector of temperature

changes like this:

ve~tor<double> temps;

void f()
{

adjacent_difference {temps. begin ( ) , temps. end ( ) , temps. begin ( ) ) ;

For example, 17, 19, 20, 20, 17 turns into 17, 2,1, 0, -3.
Conversely, partial_sum () allows us to compute the end result of a set of incremental

changes:

template <class In, class Out, class BinOp>
Out partial_sum (In first, In last, Out res, BinOp op)
{

if (first==last) return res;
*res = *first;
T val = *firsti
while (++first ! = last) {

val =op (val, *first) ;
*++res = val;

return ++res;



Section 22.6.3 Incremental Change 685

template <class In I class Out> Out partial_sum (In first I In last lOut res)
{

return partial_sum (first I last I res I plus); / / §18.4.3

Given a sequence a, b, c, d, etc. , partial_sum () produces a, a+b, a+b+c, a+b+c+d, etc. For
example:

void f()

{

partial_sum (temps. begin ( ) I temps. end ( ) I temps. begin ( ) ) ;

Note the way partial_sum () increments res before assigning a new value through it. This allows
res to be the same sequence as its input; adjacent_difference () behaves similarly. Thus,

partial_sum (v. begin ( ) I v. end ( ) I V • begin ( ) ) ;

turns the sequence a, b, c, d into a, a+b, a+b+c, a+b+c+d, and

adjacent_difference (v. begin ( ) I v. end ( ) I v. begin ( ) ) ;

turns it back into the original. In particular, partial_sum () turns 17, 2, 1, 0, -3 back into 17, 19,
20,20,17.

These operations are useful for analysing any series of changes. For example, analyzing varia
tions in stock prices involves exactly the same two operations.

22.7 Random Numbers

Random numbers are essential to many simulations and games. In <cstdlib> and <stdlib. h>, the
standard library provides a simple basis for the generation of random numbers:

#define RAND_MAX implementation_defined / * large positive integer * /

int rand ( );
void srand (unsigned int i);

/ / pseudo-random number between 0 and RAND_MAX
/ / seed random number generator by i

Producing a good random-number generator isn't easy, and unfortunately not all systems deliver a
good rand ( ). In particular, the low-order bits of a random number are often suspect, so rand ( ) %n
is not a good portable way of generating a random number between ° and n -1. Often,
int ( (double (rand ( ) ) / RAND_MAX) *n) gives acceptable results. However, to seriously use
that formula, we must take care of the miniscule propability that the result will be n.

A call of srand () starts a new sequence of random numbers from the seed given as argument.
For debugging, it is often important that a sequence of random numbers from a given seed be
repeatable. However, we often want to start each real run with a new seed. In fact, to make games
unpredictable, it is often useful to pick a seed from the environment of a program. For such pro
grams, some bits from a real-time clock often make a good seed.

If you must write your own random-number generator, be sure to test it carefully (§22.9[14]).
A random-number generator is often more useful if represented as a class. In that way,

random-number generators for different distributions are easily built:



686 Numerics Chapter 22

class Randint { / / uniform distribution, assuming 32-bit long
unsigned long randx;

public:
Randint (long s = 0) { randx=s; }
void seed (long s) {randx=s; }

/ / magic numbers chosen to use 31 bits ofa 32-bit long:

long ahs (long x) {return x&Ox7/fffff/; }
static double max () {return 2147483648.0; } / / note: a double
long draw () { return randx = randx* 1103515245 + 12345; }

double fdraw () { return abs (draw ( ) ) /max ( ); / / in the interval [0,1]

long operator () () { return abs (draw ( ) );} / / in the interval [O,pow(2,31 J]
} ;

class Urand : public Randint { / / uniform distribution in the interval [O:n[
long n;

public:
Urand (long nn) {n = nn; }

long operator ( ) () { long r = n*fdraw (); return (r==n) ? n-1 : r; }
} ;

class Erand : public Randint { / / exponential distribution random number generator
long mean;

public:
Erand (long m) {mean=m; }
long operator ( ) () { return -mean * log ( (max ( ) -draw ( ) ) /max () + .5); }

} ;

Here is a simple test:

int main ()
{

Urand draw (10);
map<int, int> bucket;
for (int i =0; i< 1000000; i++) bucket [draw ( ) ] ++;
for (int j=0;j<10;j++) cout«bucket[j]« '\n';

Unless each bucket has approximately the value 100,000, there is a bug somewhere.
These random-number generators are slightly edited versions of what I shipped with the very

first C++ library (actually, the first "C with Classes" library; §1.4).

22.8 Advice

[1] Numerical problems are often subtle. If you are not 100% certain about the mathematical
aspects of a numerical problem, either take expert advice or experiment; §22.1.

[2] Use numeric_limits to determine properties of built-in types; §22.2.
[3] Specialize numeric_limits for user-defined scalar types; §22.2.



Section 22.8 Advice 687

[4] Use valarray for numeric computation when run-time efficiency is more important than flexi
bility with respect to operations and element types; §22.4.

[5] Express operations on part of an array in terms of slices rather than loops; §22.4.6.
[6] Use conlpositors to gain efficiency through elimination of temporaries and better algorithms;

§22.4.7.
[7] Use std: : complex for complex arithmetic; §22.5.
[8] You can convert old code that uses a complex class to use the std: : complex template by

using a typedef, §22.5.
[9] Consider accumulate ( ), inneryroduct ( ), partial_sum ( ), and adjacent_difference ( )

before you write a loop to compute a value from a list; §22.6.
[10] Prefer a random-number class for a particular distribution over direct use of rand ( ) ; §22.7.
[11] Be careful that your random numbers are sufficiently random; §22.7.

22.9 Exercises

1. (*1.5) Write a function that behaves like apply () from §22.4.3, except that it is a nonmember
function and accepts function objects.

" '~1 t:;, Wntp ~ function that behaves like apply () from §22.4.3 , except that it is a nonmember
on objects, and modifies its valarray argument.
er (§22.4.5). Take special care when defining the destructor.

;gram from §17.4.1.3 using accumulate ( ) .
.Jperators « and » for valarray. Implement a get_array () function that

,)f a size specified as part of the input itself.
implement a three-dimensional matrix with suitable operations.

_ j implement an n-dimensional matrix with suitable operations.
ent a valarray-like class and implement + and * for it. Compare its performance

-------_-__-_~__mance of your C++ implementation's valarray. Hint: Include x=O.5 (x+y) +z
among your test cases and try it with a variety of sizes for the vectors x, y, and z.

9. (*3) Implement a Fortran-style array Fort_array where indices start from 1 rather than O.
10. (*3) Implement Matrix using a valarray member as the representation of the elements (rather

than a pointer or a reference to a valarray).
11. (*2.5) Use compositors (§22.4.7) to implement efficient multidimensional subscripting using

the [] notation. For example, vI [x], v2 [x] [y], v2 [x], v3 [x] [y] [z], v3 [x] [y], and
v3 [x] should all yield the appropriate elements and subarrays using a simple calculation of an
index.

12. (*2) Generalize the idea from the program in §22.7 into a function that, given a generator as an
argument, prints a simple graphical representation of its distribution that can be used as a crude
visual check of the generator's correctness.

13. (*1) If n is an int, what is the distribution of (double (rand ( ) ) / RAND_MAX.) *n?
14. (*2.5) Plot points in a square output area. The coordinate pairs for the points should be gener

ated by Urand (N) , where N is the number of pixels on a side of the output area. What does
the output tell you about the distribution of numbers generated by Urand?

15. (*2) Implement a Normal distribution generator, Nrand.





Part IV

Design Using C++

This part presents C++ and the techniques it supports in the larger picture
of software development. The focus is on design and the effective real
ization of design in terms of language constructs.

Chapters

23 Development and Design
24 Design and Programming
25 Roles of Classes



690 Design Using C++ Part IV

, ,... I am just now beginning to discover the difficulty of expressing one's
ideas on paper. As long as it consists solely of description it is pretty
easy; but where reasoning comes into play, to make a proper connection,
a clearness & a moderate fluency, is to me, as I have said, a difficulty of
which I had no idea ..."

- Charles Darwin



23
Development and Design

There is no silver bullet.
- F. Brooks

Building software - aims and means - development process - development cycle 
design aims - design steps - finding classes - specifying operations - specifying
dependencies - specifying interfaces - reorganizing class hierarchies - models 
experimentation and analysis - testing - software maintenance - efficiency - man
agement - reuse - scale - the importance of individuals - hybrid design - bibliog
raphy - advice.

23.1 Overview

This chapter is the first of three that present the production of software in increasing detail, starting
from a relatively high-level view of design and ending with c++ specific programming techniques
and concepts directly supporting such design. After the introduction and a brief discussion of the
aims and means of software development in §23.3, this chapter has two major parts:

§23.4 A view of the software development process
§23.5 Practical observations about the organization of software development

Chapter 24 discusses the relationship between design and programming language. Chapter 25 pre
sents some roles that classes play in the organization of software from a design perspective. Taken
as a whole, the three chapters of Part 4 aim to bridge the gap between would-be language
independent design and programming that is myopically focussed on details. Both ends of this
spectrum have their place in a large project, but to avoid disaster and excessive cost, they must be
part of a continuum of concerns and techniques.



692 Development and Design

23.2 Introduction

Chapter 23

Constructing any nontrivial piece of software is a complex and often daunting task. Even for an
individual programmer, the actual writing of program statements is only one part of the process.
Typically, issues of problem analysis, overall program design, documentation, testing, and mainte
nance, as well as the management of all of this, dwarf the task of writing and debugging individual
pieces of code. Naturally, one might simply label the totality of these activities "programming"
and thereafter make a logically coherent claim that "I don't design, I just program;" but whatever
one calls the activity, it is important sometimes to focus on its individual parts - just as it is impor
tant occasionally to consider the complete process. Neither the details nor the big picture must be
permanently lost in the rush to get a system shipped - although often enough that is exactly what
happens.

This chapter focusses on the parts of program development that do not involve writing and
debugging individual pieces of code. The discussion is less precise and less detailed than the dis
cussions of individual language features and specific programming techniques presented elsewhere
in this book. This is necessary because there can be no cookbook method for creating good soft
ware. Detailed "how to" descriptions can exist for specific well-understood kinds of applications,
but not for more general application areas. There is no substitute for intelligence, experience, and
taste in programming. In consequence, this chapter offers only general advice, alternative
approaches, and cautionary observations.

The discussion is hampered by the abstract nature of software and the fact that techniques that
work for smaller projects (say, for one or two people writing 10,000 lines of code) do not necessar
ily scale to medium and large projects. For this reason, some discussions are formulated in terms
of analogies from less abstract engineering disciplines rather than in terms of code examples.
Please remember that "proof by analogy" is fraud, so analogy is used here for exposition only.
Discussions of design issues phrased in c++ specific terms and with examples can be found in
Chapter 24 and Chapter 25. The ideas expressed in this chapter are reflected in both the C++ lan
guage itself and in the presentation of the individual examples throughout this book.

Please also remember that because of the extraordinary diversity of application areas, people,
and program-development environments, you cannot expect every observation made here to apply
directly to your current problem. The observations are drawn from real-life projects and apply to a
wide variety of situations, but they cannot be considered universal. Look at these observations with
a healthy degree of skepticism.

C++ can be used simply as a better C. However, doing so leaves the most powerful techniques
and language features unused so that only a small fraction of the potential benefits of using C++
will be gained. This chapter focusses on approaches to design that enable effective use of C++'s
data abstraction and object-oriented programming facilities; such techniques are often called
object-oriented design.

A few major themes run through this chapter:
- The most important single aspect of software development is to be clear about what you are

trying to build.
- Successful software development is a long-term activity.
- The systems we construct tend to be at the limit of the complexity that we and our tools can

handle.



Section 23.2 Introduction 693

- There are no "cookbook" methods that can replace intelligence, experience, and good taste
in design and programming.

- Experimentation is essential for all nontrivial software development.
- Design and programming are iterative activities.
- The different phases of a software project, such as design, programming, and testing, cannot

be strictly separated.
- Programming and design cannot be considered without also considering the management of

these activities.
It is easy - and typically expensive - to underestimate any of these points. It is hard to transform
the abstract ideas they embody into practice. The need for experience should be noted. Like boat
building, bicycling, and programming, design is not a skill that can be mastered through theoretical
study alone.

Too often, we forget the human aspects of system building and consider the software develop
ment process as simply "a series of well-defined steps, each performing specific actions on inputs
according to predefined rules to produce the desired outputs." The very language used conceals
the human involvement! Design and programming are human activities; forget that and all is lost.

This chapter is concerned with the design of systems that are ambitious relative to the experi
ence and resources of the people building the system. It seems to be the nature of individuals and
organizations to attempt projects that are at the limits of their ability. Projects that don't offer such
challenges don't need a discussion of design. Such projects already have established frameworks
that need not be upset. Only when something ambitious is attempted is there a need to adopt new
and better tools and procedures. There is also a tendency to assign projects that "we know how to
do" to relative novices who don't.

There is no "one right way" to design and build all systems. I would consider belief in "the
one right way" a childhood disease, if experienced programmers and designers didn't succumb to it
so often. Please remember that just because a technique worked for you last year and for one pro
ject, it does not follow that it will work unmodified for someone else or for a different project. It is
most important to keep an open mind.

Clearly, much of the discussion here relates to larger-scale software development. Readers who
are not involved in such development can sit back and enjoy a look at the horrors they have
escaped. Alternatively, they can look for the subset of the discussion that relates to individual
work. There is no lower limit to the size of programs for which it is sensible to design before start
ing to code. There is, however, a lower limit for which any particular approach to design and docu
mentation is appropriate. See §23.5.2 for a discussion of issues of scale.

The most fundamental problem in software development is complexity. There is only one basic
way of dealing with complexity: divide and conquer. A problem that can be separated into two
sub-problems that can be handled separately is more than half solved by that separation. This sim
ple principle can be applied in an amazing variety of ways. In particular, the use of a module or a
class in the design of systems separates the program into two parts - the implementation and its
users - connected only by an (ideally) well-defined interface. This is the fundamental approach to
handling the inherent complexity of a program. Similarly, the process of designing a program can
be broken into distinct activities with (ideally) well-defined interactions between the people
involved. This is the basic approach to handling the inherent complexity of the development pro
cess and the people involved in it.



694 Development and Design Chapter 23

In both cases, the selection of the parts and the specification of the interfaces between the parts
is where the most experience and taste is required. Such selection is not a simple mechanical pro
cess but typically requires insights that can be achieved only through a thorough understanding of a
system at suitable levels of abstraction (see §23.4.2, §24.3.1, and §25.3). A myopic view of a pro
gram or of a software development process often leads to seriously flawed systems. Note also that
for both people and programs, separation is easy. The hard part is to ensure effective
communication between parties on different sides of a barrier without destroying the barrier or sti
fling the communication necessary to achieve cooperation.

This chapter presents an approach to design, not a complete design method. A complete formal
design method is beyond the scope of this book. The approach presented here can be used with dif
ferent degrees of formalization and as the basis for different formalizations. Similarly, this chapter
is not a literature survey and does not attempt to touch every topic relevant to software develop
ment or to present every viewpoint. Again, that is beyond the scope of this book. A literature sur
vey can be found in [Booch,1994]. Note that terms are used here in fairly general and conventional
ways. Most "interesting" terms, such as design, prototype, and programmer, have several differ
ent and often conflicting definitions in the literature. Please be careful not to read something unin
tended into what is said here based on specialized or locally precise definitions of the terms.

23.3 Aims and Means

The purpose of professional programming is to deliver a product that satisfies its users. The pri
mary means of doing so is to produce software with a clean internal structure and to grow a group
of designers and programmers skilled enough and motivated enough to respond quickly and effec
tively to change and opportunities.

Why? The internal structure of the program and the process by which it was created are ideally
of no concern to the end user. Stronger: if the end user has to worry about how the program was
written, then there is something wrong with that program. Given that, what is the importance of the
structure of a program and of the people who create the program?

A program needs a clean internal structure to ease:
- testing,
- porting,
- maintenance,
- extension,
- reorganization, and
- understanding.

The main point is that every successful "major piece of software has an extended life in which it is
worked on by a succession of programmers and designers, ported to new hardware, adapted to
unanticipated uses, and repeatedly reorganized. Throughout the software's life, new versions of it
must be produced with acceptable error rates and on time. Not planning for this is planning to fail.

Note that even though end users ideally don't have to know the internal structure of a system,
they might actually want to. For example, a user might want to know the design of a system in
detail to be able to assess its likely reliability and potential for revision and extension. If the soft
ware in question is not a complete system - rather, a set of libraries for building other software -



Section 23.3 Aims and Means 695

then the users will want to know more "details" to be able to better use the libraries and also to
better benefit from them as sources of ideas.

A balance has to be struck between the lack of an overall design for a piece of software and
overemphasis on structure. The former leads to endless cutting of corners (' 'we'll just ship this one
and fix the problem in the next release"). The latter leads to overelaborate designs in which essen
tials are lost in formalism and to situations where implementation gets delayed by program reorga
nizations ("but this new structure is much better than the old one; people will want to wait for it").
It also often results in systems so demanding of resources that they are unaffordable to most poten
tial users. Such balancing acts are the most difficult aspects of design and the area in which talent
and experience show themselves. The choices are hard for the individual designer or programmer
and harder for the larger projects in which more people with differing skills are involved.

A program needs to be produced and maintained by an organization that can do this despite
changes of personnel, direction, and management structure. A popular approach to coping with this
problem has been to try to reduce system development into a few relatively low-level tasks slotted
into a rigid framework. That is, the idea is to create a class of easy-to-train (cheap) and inter
changeable low-level programmers ("coders") and a class of somewhat less cheap but equally
interchangeable (and therefore equally dispensable) designers. The coders are not supposed to
make design decisions, while the designers are not supposed to concern themselves with the grubby
details of coding. This approach often fails. Where it does work, it produces overly large systems
with poor performance.

The problems with this approach are:
- insufficient communication between implementers and designers, which leads to missed

opportunities, delays, inefficiencies, and repeated problems due to failure to learn from
experience; and

- insufficient scope for initiative among implementers, which leads to lack of professional
growth, lack of initiative, sloppiness, and high turnover.

Basically, such a system lacks feedback mechanisms to allow people to benefit from other people's
experience. It is wasteful of scarce human talent. Creating a framework within which people can
utilize diverse talents, develop new skills, contribute ideas, and enjoy themselves is not just the
only decent thing to do but also makes practical and economic sense.

On the other hand, a system cannot be built, documented, and maintained indefinitely without
some form of formal structure. Simply finding the best people and letting them attack the problem
as they think best is often a good start for a project requiring innovation. However, as the project
progresses, more scheduling, specialization, and formalized communication between the people
involved in the project become necessary. By "formal" I don't mean a mathematical or mechani
cally verifiable notation (although that is nice, where available and applicable) but rather a set of
guidelines for notation, naming, documentation, testing, etc. Again, a balance and a sense of appro
priateness is necessary. A too-rigid system can prevent growth and stifle innovation. In this case,
it is the manager's talent and experience that is tested. For the individual, the equivalent dilemma
is to choose where to try to be clever and where to simply' 'do it by the book."

The recommendation is to plan not just for the next release of the current project but also for the
longer term. Looking only to the next release is planning to fail. We must develop organizations
and software development strategies aimed at producing and maintaining many releases of many
projects; that is, we must plan for a series of successes.



696 Development and Design Chapter 23

The purpose of "design" is to create a clean and relatively simple internal structure, sometimes
also called an architecture, for a program. In other words, we want to create a framework into
which the individual pieces of code can fit and thereby guide the writing of those individual pieces
of code.

A design is the end product of the design process (as far as there is an end product of an itera
tive process). It is the focus of the communication between the designer and the programmer and
between programmers. It is important to have a sense of proportion here. If I - as an individual
programmer - design a small program that I'm going to implement tomorrow, the appropriate level
of precision and detail may be some scribbles on the back of an envelope. At the other extreme, the
development of a system involving hundreds of designers and programmers may require books of
specifications carefully written using formal or semi-formal notations. Determining a suitable level
of detail, precision, and formality for a design is in itself a challenging technical and managerial
task.

In this and the following chapters, I assume that the design of a system is expressed as a set of
class declarations (typically with their private declarations omitted as spurious details) and their
relationships. This is a simplification. Many more issues enter into a specific design; for example,
concurrency, management of namespaces, uses of nonmember function and data, parameterization
of classes and functions, organization of code to minimize recompilation, persistence, and use of
multiple computers. However, simplification is necessary for a discussion at this level of detail,
and classes are the proper focus of design in the context of C++. Some of these other issues are
mentioned in passing in this chapter, and some that directly affect the design of C++ programs are
discussed in Chapter 24 and Chapter 25. For a more detailed discussion and examples of a specific
object-oriented design method, see [Booch,1994].

I leave the distinction between analysis and design vague because a discussion of this issue is
beyond the scope of this book and is sensitive to variations in specific design methods. It is essen
tial to pick an analysis method to match the design method and to pick a design method to match
the programming style and language used.

23.4 The Development Process

Software development is an iterative and incremental process. Each stage of the process is revis
ited repeatedly during the development, and each visit refines the end products of that stage. In
general, the process has no beginning and no end. When designing and implementing a system,
you start from a base of other people's designs, libraries, and application software. When you fin
ish, you leave a body of design and code for others to refine, revise, extend, and port. Naturally, a
specific project can have a definite beginning and end, and it is important (though often surpris
ingly hard) to delimit the project cleanly and precisely in time and scope. However, pretending that
you are starting from a clean slate can cause serious problems. Pretending that the world ends at
the "final delivery" can cause equally serious problems for your successors (often yourself in a
different role).

One implication of this is that the following sections could be read in any order because the
aspects of design and implementation can be almost arbitrarily interleaved in a real project. That is,
"design" is almost always redesign based on a previous design and some implementation



Section 23.4 The Development Process 697

experience. Furthermore, the design is constrained by schedules, the skills of the people involved,
compatibility issues, etc. A major challenge to a designer/manager/programmer is to create order
in this process without stifling innovation and destroying the feedback loops that are necessary for
successful development.

The development process has three stages:
- Analysis: defining the scope of the problem to be solved
- Design: creating an overall structure for a system
- Implementation: writing and testing the code

Please remember the iterative nature of this process - it is significant that these stages are not num
bered. Note that some major aspects of program development don't appear as separate stages
because they ought to permeate the process:

- Experimentation
- Testing
- Analysis of the design and the implementation
- Documentation
- Management

Software "maintenance" is simply more iterations through this development process (§23.4.6).
It is most important that analysis, design, and implementation don't become too detached from

each other and that the people involved share a culture so that they can communicate effectively. In
larger projects, this is all too often not the case. Ideally, individuals move from one stage to
another during a project; the best way to transfer subtle information is in a person's head. Unfortu
nately, organizations often establish barriers against such transfers, for example, by giving design
ers higher status and/or higher pay than "mere programmers." If it is not practical for people to
move around to learn and teach, they should at least be encouraged to talk regularly with individu
als involved in "the other" stages of the development.

For small-to-medium projects, there often is no distinction made between analysis and design;
these two phases have been merged into one. Similarly, in small projects there often is no distinc
tion made between design and programming. Naturally, this solves the communication problems.
It is important to apply an appropriate degree of formality for a given project and to maintain an
appropriate degree of separation between these phases (§23.5.2). There is no one right way to do
this.

The model of software development described here differs radically from the traditional
"waterfall model." In a waterfall model, the development progresses in an orderly and linear fash
ion through the development stages from analysis to testing. The waterfall model suffers from the
fundamental problem that information tends to flow only one way. When problems are found
"downstream," there is often strong methodological and organizational pressure to provide a local
fix; that is, there is pressure to solve the problem without affecting the previous stages of the pro
cess. This lack of feedback leads to deficient designs, and the local fixes lead to contorted imple
mentations. In the inevitable cases in which information does flow back toward the source and
cause changes to the design, the result is a slow and cumbersome ripple effect through a system that
is geared to prevent the need for such change and therefore unwilling and slow to respond. The
argument for "no change" or for a "local fix" thus becomes an argument that one suborganization
cannot impose large amounts of work on other suborganizations "for its own convenience." In
particular, by the time a major flaw is found there has often been so much paperwork generated



698 Development and Design Chapter 23

relating to the flawed decision that the effort involved in modifying the documentation dwarfs the
effort needed to fix the code. In this way, paperwork can become the major problem of software
development. Naturally, such problems can - and do - occur however one organizes the develop
ment of large systems. After all, some paperwork is essential. However, the pretense of a linear
model of development (a waterfall) greatly increases the likelihood that this problem will get out of
hand.

The problem with the waterfall model is insufficient feedback and the inability to respond to
change. The danger of the iterative approach outlined here is a temptation to substitute a series of
nonconverging changes for real thought and progress. Both problems are easier to diagnose than to
solve, and however one organizes a task, it is easy and tempting to mistake activity for progress.
Naturally, the emphasis on the different stages of the development process changes as a project pro
gresses. Initially, the emphasis is on analysis and design, and programming issues receive less
attention. As time passes, resources shift towards design and programming and then become more
focussed on programming and testing. However, the key is never to focus on one part of the
analysis/design/implementation spectrum to the exclusion of all other concerns.

Remember that no amount of attention to detail, no application of proper management tech
nique, no amount of advanced technology can help you if you don't have a clear idea of what you
are trying to achieve. More projects fail for lack of well-defined and realistic goals than for any
other reason. Whatever you do and however you go about it, be clear about your aims, define tan
gible goals and milestones, and don't look for technological solutions to sociological problems. On
the other hand, do use whatever appropriate technology is available - even if it involves an invest
ment; people do work better with appropriate tools and in reasonable surroundings. Don't get
fooled into believing that following this advice is easy.

23.4.1 The Development Cycle

Developing a system should be an iterative activity. The main loop consists of repeated trips
through this sequence:

[0] Examine the problem.
[1] Create an overall design.
[2] Find standard components.

- Customize the components for this design.
[3] Create new standard components.

- Customize the components for this design.
[4] Assemble the design.

As an analogy, consider a car factory. For a project to start, there needs to be an overall design for
a new type of car. This first cut will be based on some kind of analysis and specifies the car in gen
eral terms related mostly to its intended use rather than to details of how to achieve desired proper
ties. Deciding which properties are desirable - or even better, providing a relatively simple guide
to deciding which properties are desirable - is often the hardest part of a project. When done well,
this is typically the work of a single insightful individual and is often called a vision. It is quite
common for projects to lack such clear goals - and for projects to falter or fail for that reason.

Say we want to build a medium-sized car with four doors and a fairly powerful engine. The
first stage in the design is most definitely not to start designing the car (and all of its sub-



Section 23.4.1 The Development Cycle 699

components) from scratch. A software designer or programmer in a similar circumstance might
unwisely try exactly that.

The first stage is to consider which components are available from the factory's own inventory
and from reliable suppliers. The components thus found need not be exactly right for the new car.
There will be ways of customizing the components. It might even be possible to affect the specifi
cation of the "next release" of such components to make them more suitable for our project. For
example, there may be an engine available with the right properties except for a slight deficiency in
delivered power. Either we or the engine supplier might be able to add a turbocharger to compen
sate without affecting the basic design. Note that making such a change "without affecting the
basic design" is unlikely unless the original design anticipated at least some form of customization.
Such customization will typically require cooperation between you and your engine supplier. A
software designer or programmer has similar options. In particular, polymorphic classes and tem
plates can often be used effectively for customization. However, don't expect to be able to effect
arbitrary extensions without foresight by or cooperation with the provider of such a class.

Having run out of suitable standard components, the car designer doesn't rush to design optimal
new components for the new car. That would simply be too expensive. Assume that there were no
suitable air conditioning unit available and that there was a suitable L-shaped space available in the
engine compartment. One solution would be to design an L-shaped air conditioning unit. How
ever, the probability that this oddity could be used in other car types - even after extensive cus
tomization - is low. This implies that our car designer will not be able to share the cost of produc
ing such units with the designers of other car types and that the useful life of the unit will be short.
It will thus be worthwhile to design a unit that has a wider appeal; that is, design a unit that has a
cleaner design and is more suited for customization than our hypothetical L-shaped oddity. This
will probably involve more work than the L-shaped unit and might even involve a modification of
the overall design of our car to accommodate the more general-purpose unit. Because the new unit
was designed to be more widely useful than our L-shaped wonder, it will presumably need a bit of
customization to fit our revised needs perfectly. Again, the software designer or programmer has a
similar option. That is, rather than writing project-specific code the designer can design a new
component of a generality that makes it a good candidate to become a standard in some universe.

Finally, when we have run out of potential standard components we assemble the "final"
design. We use as few specially designed widgets as possible because next year we will have to go
through a variant of this exercise again for the next new model and the specially designed widgets
will be the ones we most likely will have to redo or throwaway. Sadly, the experience with tradi
tionally designed software is that few parts of a system can even be recognized as discrete compo
nents, and few of those are of use outside their original project.

I'm not saying that all car designers are as rational as I have outlined in this analogy or that all
software designers make the mistakes mentioned. On the contrary, this model can be made to work
with software. In particular, this chapter and the next present techniques for making it work with
c++. I do claim, however, that the intangible nature of software makes those mistakes harder to
avoid (§24.3.1, §24.3.4), and in §23.5.3 I argue that corporate culture often discourages people
from using the model outlined here.

Note that this model of development really works well only when you consider the longer term.
If your horizon extends only to the next release, the creation and maintenance of standard compo
nents makes no sense. It will simply be seen as spurious overhead. This model is suggested for an



700 Development and Design Chapter 23

organization with a life that spans several projects and of a size that makes worthwhile the neces
sary extra investment in tools (for design, programming, and project management) and education
(of designers, programmers, and managers). It is a sketch of a kind of software factory. Curiously
enough, it differs only in scale from the practices of the best individual programmers, who over the
years build up a stock of techniques, designs, tools, and libraries to enhance their personal effec
tiveness. It seems, in fact, that most organizations have failed to take advantage of the best per
sonal practices due to both a lack of vision and an inability to manage such practices on more than a
very small scale.

Note that it is unreasonable to expect "standard components" to be universally standard. There
will exist a few international standard libraries. However, most components will be standard (only)
within a country, an industry, a company, a product line, a department, an application area, etc.
The world is simply too large for universal standards to be a realistic or indeed to be a desirable aim
for all components and tools.

Aiming for universality in an initial design is a prescription for a project that will never be com
pleted. One reason that the development cycle is a cycle is that it is essential to have a working
system from which to gain experience (§23.4.3.6).

23.4.2 Design Aims

What are the overall aims of a design? Simplicity is one, of course, but simplicity according to
what criteria? We assume that a design will have to evolve. That is, the system will have to be
extended, ported, tuned, and generally changed in a number of ways that cannot all be foreseen.
Consequently, we must aim for a design and an implemented system that is simple under the con
straint that it will be changed in many ways. In fact, it is realistic to assume that the requirements
for the system will change several times between the time of the initial design and the first release
of the system.

The implication is that the system must be designed to remain as simple as possible under a
sequence of changes. We must design for change; that is, we must aim for

- flexibility,
- extensibility, and
- portability.

This is best done by trying to encapsulate the areas of a system that are likely to change and by pro
viding non-intrusive ways for a later designer/programmer to modify the behavior of the code.
This is done by identifying the key concepts of an application and giving each class the exclusive
responsibility for the maintenance of all information relating to a single concept. In that case, a
change can be effected by a modification of that class only. Ideally, a change to a single concept
can be done by deriving a new class (§23.4.3.5) or by passing a different argument to a template.
Naturally, this ideal is much easier to state than to follow.

Consider an example. In a simulation involving meteorological phenomena, we want to display
a rain cloud. How do we do that? We cannot have a general routine to display the cloud because
what a cloud looks like depends on the internal state of the cloud, and that state should be the sole
responsibility of the cloud.

A first solution to this problem is to let the cloud display itself. This style of solution is accept
able in many limited contexts. However, it is not general because there are many ways to view a



Section 23.4.2 Design Aims 701

cloud: for example, as a detailed picture, as a rough outline, or as an icon on a map. In other words,
what a cloud looks like depends on both the cloud and its environment.

A second solution to the problem is to make the cloud aware of its environment and then let the
cloud display itself. This solution is acceptable in even more contexts. However, it is still not a
general solution. Having the cloud know about such details of its environment violates the dictum
that a class is responsible for one thing only and that every "thing" is the responsibility of some
class. It may not be possible to come up with a coherent notion of "the cloud's environment"
because in general what a cloud looks like depends on both the cloud and the viewer. Even in real
life, what the cloud looks like to me depends rather strongly on how I look at it; for example, with
my naked eyes, through a polarizing filter, or with a weather radar. In addition to the viewer and
the cloud, some "general background" such as the relative position of the sun might have to be
taken into account. Adding other objects, such as other clouds and airplanes, further complicates
the matter. To make life really hard for the designer, add the possibility of having several simulta
neous viewers.

A third solution is to have the cloud - and other objects such as airplanes and the sun 
describe themselves to a viewer. This solution has sufficient generality to serve most purposest. It
may, however, impose a significant cost in both complexity and run-time overhead. For example,
how do we arrange for a viewer to understand the descriptions produced by clouds and other
objects?

Rain clouds are not particularly common in programs (but for an example, see §15.2), but
objects that need to be involved in a variety of I/O operations are. This makes the cloud example
relevant to programs in general and to the design of libraries in particular. c++ code for a logically
similar example can be found in the manipulators used for formatted output in the stream I/O sys
tem (§21.4.6, §21.4.6.3). Note that the third solution is not "the right solution;" it is simply the
most general solution. A designer must balance the various needs of a system to choose the level
of generality and abstraction that is appropriate for a given problem in a given system. As a rule of
thumb, the right level of abstraction for a long-lived program is the most general you can compre
hend and afford, not the absolutely most general. Generalization beyond the scope of a given pro
ject and beyond the experience of the people involved can be harmful; that is, it can cause delays,
unacceptable inefficiencies, unmanageable designs, and plain failure.

To make such techniques manageable and economical, we must also design and manage for
reuse (§23.5.1) and not completely forget about efficiency (§23.4.7).

23.4.3 Design Steps

Consider designing a single class. Typically, this is not a good idea. Concepts do not exist in iso
lation; rather, a concept is defined in the context of other concepts. Similarly, a class does not exist
in isolation but is defined together with logically related classes. Typically, one works on a set of
related classes. Such a set is often called a class library or a component. Sometimes all classes in a
component constitute a single class hierarchy, sometimes they are members of a single namespace,
and sometimes they are a more ad-hoc collection of declarations (§24.4).

t Even this model is unlikely to be sufficient for extreme cases like high-quality graphics based on ray tracing. I suspect that
achieving such detail requires the designer to move to a different level of abstraction.



702 Development and Design Chapter 23

The set of classes in a component is united by some logical criteria, often by a common style
and often by a reliance on common services. A component is thus the unit of design, documenta
tion, ownership, and often reuse. This does not mean that if you use one class from a component,
you must understand and use all the classes from the component or maybe get the code for every
class in the component loaded into your program. On the contrary, we typically strive to ensure
that a class can be used with only minimal overhead in machine resources and human effort. How
ever, to use any part of a component we need to understand the logical criteria that define the com
ponent (hopefully made abundantly clear in the documentation), the conventions and style embod
ied in the design of the component and its documentation, and the common services (if any).

So consider how one might approach the design of a component. Because this is often a chal
lenging task, it is worthwhile breaking it into steps to help focus on the various subtasks in a logical
and complete way. As usual, there is no one right way of doing this. However, here is a series of
steps that have worked for some people:

[I] Find the concepts/classes and their most fundamental relationships.
[2] Refine the classes by specifying the sets of operations on them.

- Classify these operations. In particular, consider the needs for construction, copying,
and destruction.

- Consider minimalism, completeness, and convenience.
[3] Refine the classes by specifying their dependencies.

- Consider parameterization, inheritance, and use dependencies.
[4] Specify the interfaces.

- Separate functions into public and protected operations.
- Specify ~he exact type of the operations on the classes.

Note that these are steps in an iterative process. Typically, several loops through this sequence are
needed to produce a design one can comfortably use for an initial implementation or a re
implementation. One advantage of well-done analysis and data abstraction as described here is that
it becomes relatively easy to reshuffle class relationships even after code has been written. This is
never a trivial task, though.

After that, we implement the classes and go back and review the design based on what was
learned from implementing them. In the following subsections, I discuss these steps one by one.

23.4.3.1 Step 1: Find Classes

Find the concepts/classes and their mostfundamental relationships. The key to a good design is to
model some aspect of "reality" directly - that is, capture the concepts of an application as classes,
represent the relationships between classes in well-defined ways such as inheritance, and do this
repeatedly at different levels of abstraction. But how do we go about finding those concepts?
What is a practical approach to deciding which classes we need?

The best place to start looking is in the application itself, as opposed to looking in the computer
scientist's bag of abstractions and concepts. Listen to someone who will become an expert user of
the system once it has been built and to someone who is a somewhat dissatisfied user of the system
being replaced. Note the vocabulary they use.

It is often said that the nouns will correspond to the classes and objects needed in the program;
often that is indeed the case. However, that is by no means the end of the story. Verbs may denote



Section 23.4.3.1 Step 1: Find Classes 703

operations on objects, traditional (global) functions that produce new values based on the value of
their arguments, or even classes. As examples of the latter, note the function objects (§ 18.4) and
manipulators (§21.4.6). Verbs such as "iterate" or "commit" can be represented by an iterator
object and an object representing a database commit operation, respectively. Even adjectives can
often usefully be represented by classes. Consider the adjectives' 'storable," "concurrent," "reg
istered," and "bounded." These may be classes intended to allow a designer or programmer to
pick and choose among desirable attributes for later-designed classes by specifying virtual base
classes (§ 15.2.4).

Not all classes correspond to application-level concepts. For example, some represent system
resources and implementation-level abstractions (§24.3.1). It is also important to avoid modeling
an old system too closely. For example, we don't want a system that is centered around a database
to faithfully replicate aspects of a manual system that exist only to allow individuals to manage the
physical shuffling of pieces of paper.

Inheritance is used to represent commonality among concepts. Most important, it is used to
represent hierachical organization based on the behavior of classes representing individual concepts
(§1.7, §12.2.6, §24.3.2). This is sometimes referred to as classification or even taxonomy. Com
monality must be actively sought. Generalization and classification are high-level activities that
require insight to give useful and lasting results. A common base should represent a more general
concept rather than simply a similar concept that happens to require less data to represent.

Note that the classification should be of aspects of the concepts that we model in our system,
rather than aspects that may be valid in other areas. For example, in mathematics a circle is a kind
of an ellipse, but in most programs a circle should not be derived from an ellipse or an ellipse
derived from a circle. The often-heard arguments "because that's the way it is in mathematics"
and "because the representation of a circle is a subset of that of an ellipse" are not conclusive and
most often wrong. This is because for most programs, the key property of a circle is that it has a
center and a fixed distance to its perimeter. All behavior of a circle (all operations) must maintain
this property (invariant; §24.3.7.1). On the other hand, an ellipse is characterized by two focal
points that in many programs can be changed independently of each other. If those focal points
coincide, the ellipse looks like a circle, but it is not a circle because its operations do not preserve
the circle invariant. In most systems, this difference will be reflected by having a circle and an
ellipse provide sets of operations that are not subsets of each other.

We don't just think up a set of classes and relationships between classes and use them for the
final system. Instead, we create an initial set of classes and relationships. These are then refined
repeatedly (§23.4.3.5) to reach a set of class relationships that are sufficiently general, flexible, and
stable to be of real help in the further evolution of a system.

The best tool for finding initial key concepts/classes is a blackboard. The best method for their
initial refinement is discussions with experts in the application domain and a couple of friends.
Discussion is necessary to develop a viable initial vocabulary and conceptual framework. Few peo
ple can do that alone. One way to evolve a set of useful classes from an initial set of candidates is
to simulate a system, with designers taking the roles of classes. This brings the inevitable absurdi
ties of the initial ideas out into the open, stimulates discussion of alternatives, and creates a shared
understanding of the evolving design. This activity can be supported by and documented by notes
on index cards. Such cards are usually called CRe cards ("Class, Responsibility, and Collabora
tors' '; [Wirfs-Brock,1990]) because of the information they record.



704 Development and Design Chapter 23

A use case is a description of a particular use of a system. Here is a simple example of a use
case for a telephony system: take the phone off hook, dial a number, the phone at the other end
rings, the phone at the other end is taken off hook. Developing a set of such use cases can be of
immense value at all stages of development. Initially, finding use cases can help us understand
what we are trying to build. During design, they can be used to trace a path through the system (for
example, using eRe cards) to check that the relatively static description of the system in terms of
classes and objects actually makes sense from a user's point of view. During programming and
testing, the use cases become a source of test cases. In this way, use cases provide an orthogonal
way of viewing the system and act as a reality check.

Use cases view the system as a (dynamic) working entity. They can therefore trap a designer
into a functional view of a system and distract from the essential task of finding useful concepts
that can be mapped into classes. Especially in the hands of someone with a background in struc
tured analysis and weak experience with object-oriented programming/design, an emphasis on use
cases can lead to a functional decomposition. A set of use cases is not a design. A focus on the use
of the system must be matched by a complementary focus on the system's structure.

A team can become trapped into an inherently futile attempt to find and describe all of the use
cases. This is a costly mistake. Much as when we look for candidate classes for a system, there
comes a time when we must say, "Enough is enough. The time has come to try out what we have
and see what happens." Only by using a plausible set of classes and a plausible set of use cases in
further development can we obtain the feedback that is essential to obtaining a good system. It is
always hard to know when to stop a useful activity. It is especially hard to know when to stop
when we know that we must return later to complete the task.

How many cases are enough? In general it is impossible to answer that question. However, in
a given project, there comes a time when it is clear that most of the ordinary functioning of the sys
tem has been covered and a fair bit of the more unusual and error handling issues have been
touched upon. Then it is time to get on with the next round of design and programming.

When you are trying to estimate the coverage of the system by a set of use cases, it can be use
ful to separate the cases into primary and secondary use cases. The primary ones describe the
system's most common and "normal" actions, and the secondary describe the more unusual and
error-handling scenarios. An example of a secondary use case would be a variant of the "make a
phone call" case, in which the called phone is off hook, dialing its caller. It is often said that when
80% of the primary use cases and some of the secondary ones have been covered, it is time to pro
ceed, but since we cannot know what constitutes "all of the cases" in advance, this is simply a rule
of thumb. Experience and good sense matter here.

The concepts, operations, and relationships mentioned here are the ones that come naturally
from our understanding of the application area or that arise from further work on the class structure.
They represent our fundamental understanding of the application. Often, they are classifications of
the fundamental concepts. For example, a hook-and-Iadder is a fire engine, which is a truck, which
is a vehicle. Sections §23.4.3.2 and §23.4.5 explain a few ways of looking at classes and class hier
archies with the view of making improvements.

Beware of viewgraph engineering! At some stage, you will be asked to present the design to
someone and you will produce a set of diagrams explaining the structure of the system being built.
This can be a very useful exercise because it helps focus your attention on what is important about
the system and forces you to express your ideas in terms that others can understand. A presentation



Section 23.4.3.1 Step 1: Find Classes 705

is an invaluable design tool. Preparing a presentation with the aim of conveying real understanding
to people with the interest and ability to produce constructive criticism is an exercise in conceptual
ization and clean expression of ideas.

However, a formal presentation of a design is also a very dangerous activity because there is a
strong temptation to present an ideal system - a system you wish you could build, a system your
high management wish they had - rather than what you have and what you might possibly produce
in a reasonable time. When different approaches compete and executives don't really understand or
care about "the details," presentations can become lying competitions, in which the team that pre
sents the most grandiose system gets to keep its job. In such cases, clear expression of ideas is
often replaced by heavy jargon and acronyms. If you are a listener to such a presentation - and
especially if you are a decision maker and you control development resources - it is desperately
important that you distinguish wishful thinking from realistic planning. High-quality presentation
materials are no guarantee of quality of the system described. In fact, I have often found that orga
nizations that focus on the real problems get caught short when it comes to presenting their results
compared to organizations that are less concerned with the production of real systems.

When looking for concepts to represent as classes, note that there are important properties of a
system that cannot be represented as classes. For example, reliability, performance, and testability
are important measurable properties of a system. However, even the most thoroughly object
oriented system will not have its reliability localized in a reliability object. Pervasive properties of
a system can be specified, designed for, and eventually verified through measurement. Concern for
such properties must be applied across all classes and may be reflected in rules for the design and
implementation of individual classes and components (§23.4.3).

23.4.3.2 Step 2: Specify Operations

Refine the classes by specifying the sets ofoperations on them. Naturally, it is not possible to sepa
rate finding the classes from figuring out what operations are needed on them. However, there is a
practical difference in that finding the classes focusses on the key concepts and deliberately de
emphasizes the computational aspects of the classes, whereas specifying the operations focusses on
finding a complete and usable set of operations. It is most often too hard to consider both at the
same time, especially since related classes should be designed together. When it is time to consider
both together, CRC cards (§23.4.3.1) are often helpful.

In considering what functions are to be provided, several philosophies are possible. I suggest
the following strategy:

[1] Consider how an object of the class is to be constructed, copied (if at all), and destroyed.
[2] Define the minimal set of operations required by the concept the class is representing. Typi

cally, these operations become the member functions (§ 10.3).
[3] Consider which operations could be added for notational convenience. Include only a few

really important ones. Often, these operations become the nonmember "helper functions"
(§ 10.3.2).

[4] Consider which operations are to be virtual, that is, operations for which the class can act as
an interface for an implementation supplied by a derived class.

[5] Consider what commonality of naming and functionality can be achieved across all the
classes of the component.



706 Development and Design Chapter 23

This is clearly a statement of minimalism. It is far easier to add every function that could conceiv
ably be useful and to make all operations virtual. However, the more functions, the more likely
they are to remain unused and the more likely they are to constrain the implementation and the fur
ther evolution of the system. In particular, functions that directly read or write part of the state of
an object of a class often constrain the class to a single implementation strategy and severely limit
the potential for redesign. Such functions lower the level of abstraction from a concept to one
implementation of it. Adding functions also causes more work for the implementer - and for the
designer in the next redesign. It is much easier to add a function once the need for it has been
clearly established than to remove it once it has become a liability.

The reason for requiring that the decision to make a function virtual be explicit rather than a
default or an implementation detail is that making a function virtual critically affects the use of its
class and the relationships between that class and other classes. Objects of a class with even a sin
gle virtual function have a nontrivial layout compared to objects in languages such as C and For
tran. A class with even a single virtual function potentially acts as the interface to yet-to-be-defined
classes, and a virtual function implies a dependency on yet-to-be-defined classes (§24.3.2.1).

Note that minimalism requires more work from the designer, rather than less.
When choosing operations, it is important to focus on what is to be done rather than how it is to

be done. That is, we should focus more on desired behavior than on implementation issues.
It is sometimes useful to classify operations on a class in terms of their use of the internal state

of objects:
- Foundation operators: constructors, destructors and copy operators
- Inspectors: operations that do not modify the state of an object
- Modifiers: operations that do modify the state of an object
- Conversions: operations that produce an object of another type based on the value (state) of

the object to which they are applied
- Iterators: operations that allow access to or use of a sequence of contained objects

These categories are not orthogonal. For example, an iterator can be designed to be either an
inspector or a modifier. These categories are simply a classification that has helped people
approach the design of class interfaces. Naturally, other classifications are possible. Such classifi
cations are especially useful for maintaining consistency across a set of classes within a component.

C++ provides support for the distinction between inspectors and modifiers in the form of const
and non-const member functions. Similarly, the notions of constructors, destructors, copy opera
tions, and conversion functions are directly supported.

23.4.3,,3 Step 3: Specify Dependencies

Refine the classes by specifying their dependencies. The various dependencies are discussed in
§24.3. The key ones to consider in the context of design are parameterization, inheritance, and use
relationships. Each involves consideration of what it means for a class to be responsible for a sin
gle property of a system. To be responsible certainly doesn't mean that the class has to hold all the
data itself or that its member functions have to perform all the necessary operations directly. On
the contrary, each class having a single area of responsibility ensures that much of the work of a
class is done by directing requests "elsewhere" for handling by some other class that has that par
ticular subtask as its responsibility. However, be warned that overuse of this technique can lead to



Section 23.4.3.3 Step 3: Specify Dependencies 707

inefficient and incomprehensible designs by proliferating classes and objects to the point where no
work is done except by a cascade of forwarded requests for service. What can be done here and
now, should be.

The need to consider inheritance and use relationships at the design stage (and not just during
implementation) follows directly from the use of classes to represent concepts. It also implies that
the component (§23.4.3, §24.4), and not the individual class, is the unit of design.

Parameterization - often leading to the use of templates - is a way of making implicit depen
dencies explicit so that several alternatives can be represented without adding new concepts. Often,
there is a choice between leaving something as a dependency on a context, representing it as a
branch of an inheritance tree, or using a parameter (§24.4.1).

23.4.3.4 Step 4: Specify Interfaces

Specify the interfaces. Private functions don't usually need to be considered at the design stage.
What implementation issues must be considered in the design stage are best dealt with as part of the
consideration of dependencies in Step 2. Stronger: I use as a rule of thumb that unless at least two
significantly different implementations of a class are possible, then there is probably something
wrong with the class. That is, it is simply an implementation in disguise and not a representation of
a proper concept. In many cases, considering if some form of lazy evaluation is feasible for a class
is a good way of approaching the question, "Is the interface to this class sufficiently
implementation-independent?"

Note that public bases and friends are part of the public interface of a class; see also §11.5 and
§24.4.2. Providing separate interfaces for inheriting and general clients by defining separate pro
tected and public interfaces can be a rewarding exercise.

This is the step where the exact types of arguments are considered and specified. The ideal is to
have as many interfaces as possible statically typed with application-level types; see §24.2.3 and
§24.4.2.

When specifying the interfaces, look out for classes where the operations seem to support more
than one level of abstraction. For example, some member functions of a class File may take argu
ments of type File_descriptor and others string arguments that are meant to be file names. The
File_descriptor operations operate on a different level of abstraction than do the file name opera
tions, so one must wonder whether they belong in the same class. Maybe it would be better to have
two file classes, one supporting the notion of a file descriptor and another supporting the notion of a
file name. Typically, all operations on a class should support the same level of abstraction. When
they don't, a reorganization of the class and related classes should be considered.

23.4.3.5 Reorganization of Class Hierarchies

In Step 1 and again in Step 3, we examine the classes and class hierarchies to see if they adequately
serve our needs. Typically they don't, and we have to reorganize to improve that structure or a
design and/or an implementation.

The most common reorganizations of a class hierarchy are factoring the common part of two
classes into a new class and splitting a class into two new ones. In both cases, the result is three
classes: a base class and two derived classes. When should such reorganizations be done? What
are common indicators that such a reorganization might be useful?



708 Development and Design Chapter 23

Unfortunately, there are no simple, general answers to such questions. This is not really sur
prising because what we are talking about are not minor implementation details, but changes to the
basic concepts of a system. The fundamental - and nontrivial - operation is to look for common
ality between classes and factor out the common part. The exact criteria for commonality are unde
fined but should reflect commonality in the concepts of the system, not just implementation conve
niences. Clues that two or more classes have commonality that might be factored out into a com
mon base class are common patterns of use, similarity of sets of operations, similarity of implemen
tations, and simply that these classes often tum up together in design discussions. Conversely, a
class might be a good candidate for splitting into two if subsets of the operations of that class have
distinct usage patterns, if such subsets access separate subsets of the representation, and if the class
turns up in apparently unrelated design discussions. Sometimes, making a set of related classes
into a template is a way of providing necessary alternatives in a systematic manner (§24.4.1).

Because of the close relationship between classes and concepts, problems with the organization
of a class hierarchy often surface as problems with the naming of classes and the use of class names
in design discussions. If design discussion using class names and the classification implied by the
class hierarchies sounds awkward, then there is probably an opportunity to improve the hierarchies.
Note that I'm implying that two people are much better at analyzing a class hierarchy than is one.
Should you happen to be without someone with whom to discuss a design, then writing a tutorial
description of the design using the class names can be a useful alternative.

One of the most important aims of a design is to provide interfaces that can remain stable in the
face of changes (§23.4.2). Often, this is best achieved by making a class on which many classes
and functions depend into an abstract class presenting very general operations. Details are best rel
egated to more specialized derived classes on which fewer classes and functions directly depend.
Stronger: the more classes that depend on a class, the more general that class should be and the
fewer details it should reveal.

There is a strong temptation to add operations (and data) to a class used by many. This is often
seen as a way of making that class more useful and less likely to need (further) change. The effect
of such thinking is a class with a fat interface (§24.4.3) and with data members supporting several
weakly related functions. This again implies that the class must be modified whenever there is a
significant change to one of the many classes it supports. This, in tum, implies changes to appar
ently unrelated user classes and derived classes. Instead of complicating a class that is central to a
design, we should usually keep it general and abstract. When necessary, specialized facilities
should be presented as derived classes. See [Martin, 1995] for examples.

This line of thought leads to hierarchies of abstract classes, with the classes near the roots being
the most general and having the most other classes and functions dependent on them. The leaf
classes are the most specialized and have only very few pieces of code depending directly on them.
As an example, consider the final version of the Ivai_box hierarchy (§ 12.4.3, §12.4.4).

23.4.3.6 Use of Models

When I write an article, I try to find a suitable model to follow. That is, rather than immediately
starting to type I look for papers on a similar topic to see if I can find one that can be an initial pat
tern for my paper. If the model I choose is a paper I wrote myself on a related topic, I might even
be able to leave parts of the text in place, modify other parts as needed, and add new information



Section 23.4.3.6 Use of Models 709

only where the logic of the information I'm trying to convey requires it. For example, this book is
written that way based on its first and second editions. An extreme form of this writing technique
is the form letter. In that case, I simply fill in a name and maybe add a few lines to "personalize"
the letter. In essence, I'm writing such letters by specifying the differences from a basic model.

Such use of existing systems as models for new designs is the norm rather than the exception in
all forms of creative endeavors. Whenever possible, design and programming should be based on
previous work. This limits the degrees of freedom that the designer has to deal with and allows
attention to be focussed on a few issues at a time. Starting a major project "completely from
scratch" can be exhilarating. However, often a more accurate description is "intoxicating" and the
result is a drunkard's walk through the design alternatives. Having a model is not constraining and
does not require that the model should be slavishly followed; it simply frees the designer to con
sider one aspect of a design at a time.

Note that the use of models is inevitable because any design will be synthesized from the expe
riences of its designers. Having an explicit model makes the choice of a model a conscious deci
sion, makes assumptions explicit, defines a common vocabulary, provides an initial framework for
the design, and increases the likelihood that the designers have a common approach.

Naturally, the choice of an initial model is in itself an important design decision and often can
be made only after a search for potential models and careful evaluation of alternatives. Further
more, in many cases a model is suitable only with the understanding that major modification is nec
essary to adapt the ideas to a particular new application. Software design is hard, and we need all
the help we can get. We should not reject the use of models out of misplaced disdain for "imita
tion." Imitation is the sincerest form of flattery, and the use of models and previous work as inspi
ration is - within the bounds of propriety and copyright law - acceptable technique for innovative
work in all fields: what was good enough for Shakespeare is good enough for us. Some people
refer to such use of models in design as "design reuse."

Documenting general elements that tum up in many designs together with some description of
the design problem they solve and the conditions under which they can be used is an obvious idea
- at least once you think of it. The word pattern is often used to describe such a general and useful
design element, and a literature exists documenting patterns and their use (for example,
[Gamma,1994] and [Coplien,1995]).

It is a good idea for a designer to be acquainted with popular patterns in a given application
domain. As a programmer, I prefer patterns that have some code associated with them as concrete
examples. Like most people, I understand a general idea (in this case, a pattern) best when I have a
concrete example (in this case, a piece of code illustrating a use of the pattern) to help me. People
who use patterns heavily have a specialized vocabulary to ease communication among themselves.
Unfortunately, this can become a private language that effectively excludes outsiders from under
standing. As always, it is essential to ensure proper communication among people involved in dif
ferent parts of a project (§23.3) and also with the design and programming communities at large.

Every successful large system is a redesign of a somewhat smaller working system. I know of
no exceptions to this rule. The closest I can think of are projects that failed, muddled on for years
at great cost, and then eventually became successes years after their intended completion date.
Such projects unintentionally - and often unacknowledged - simply first built a nonworking sys
tem, then transformed that into a working system, and finally redesigned that into a system that
approximated the original aims. This implies that it is a folly to set out to build a large system from



710 Development and Design Chapter 23

scratch exactly right according to the latest principles. The larger and the more ambitious a system
we aim for, the more important it is to have a model from which to work. For a large system, the
only really acceptable model is a somewhat smaller, related working system.

23.4.4 Experimentation and Analysis

At the start of an ambitious development project, we do not know the best way to structure the sys
tem. Often, we don't even know precisely what the system should do because particulars will
become clear only through the effort of building, testing, and using the system. How - short of
building the complete system - do we get the information necessary to understand what design
decisions are significant and to estimate their ramifications?

We conduct experiments. Also, we analyze the design and implementation as soon as we have
something to analyze. Most frequently and importantly, we discuss the design and implementation
alternatives. In all but the rarest cases, design is a social activity in which designs are developed
through presentations and discussions. Often, the most important design tool is a blackboard; with
out it, the embryonic concepts of a design cannot be developed and shared among designers and
programmers.

The most popular form of experiment seems to be to build a prototype, that is, a scaled-down
version of the system or a part of the system. A prototype doesn't have stringent performance crite
ria, machine and programming-environment resources are typically ample, and the designers and
programmers tend to be uncommonly well educated, experienced, and motivated. The idea is to get
a version running as fast as possible to enable exploration of design and implementation choices.

This approach can be very successful when done well. It can also be an excuse for sloppiness.
The problem is that the emphasis of a prototype can easily shift from "exploring design alterna
tives" to "getting some sort of system running as soon as possible." This easily leads to a disin
terest in the internal structure of the prototype (' 'after all, it is only a prototype' ') and a neglect of
the design effort in favor of playing around with the prototype implementation. The snag is that
such an implementation can degenerate into the worst kind of resource hog and maintenance night
mare while giving the illusion of an "almost complete" system. Almost by definition, a prototype
does not have the internal structure, the efficiency, and the maintenance infrastructure that allows it
to scale to real use. Consequently, a "prototype" that becomes an "almost product" soaks up time
and energy that could have been better spent on the product. The temptation for both developers
and managers is to make the prototype into a product and postpone "performance engineering"
until the next release. Misused this way, prototyping is the negation of all that design stands for.

A related problem is that the prototype developers can fall in love with their tools. They can
forget that the expense of their (necessary) convenience cannot always be afforded by a production
system and that the freedom from constraints and formalities offered by their small research group
cannot easily be maintained for a larger group working toward a set of interlocking deadlines.

On the other hand, prototypes can be invaluable. Consider designing a user interface. In this
case, the internal structure of the part of the system that doesn't interact directly with the user often
is irrelevant and there are no other feasible ways of getting experience with users' reactions to the
look and feel of a system. Another example is a prototype designed strictly for studying the inter
nal workings of a system. Here, the user interface can be rudimentary - possibly with simulated
users instead of real ones.



Section 23.4.4 Experimentation and Analysis 711

Prototyping is a way of experimenting. The desired results from building a prototype are the
insights that building it brings, not the prototype itself. Maybe the most important criterion for a
prototype is that it has to be so incomplete that it is obviously an experimental vehicle and cannot
be turned into a product without a major redesign and reimplementation. Having a prototype
"incomplete" helps keep the focus on the experiment and minimizes the danger of having the pro
totype become a product. It also minimizes the temptation to try to base the design of the product
too closely on the design of the prototype - thus forgetting or ignoring the inherent limitations of
the prototype. After use, a prototype should be thrown away.

It should be remembered that in many cases, there are experimental techniques that can be used
as alternatives to prototyping. Where those can be used, they are often preferable because of their
greater rigor and lower demands on designer time and system resources. Examples are mathemati
cal models and various forms of simulators. In fact, one can see a continuum from mathematical
models, through more and more detailed simulations, through prototypes, through partial imple
mentations, to a complete system.

This leads to the idea of growing a system from an initial design and implementation through
repeated redesign and reimplementation. This is the ideal strategy, but it can be very demanding on
design and implementation tools. Also, the approach suffers from the risk of getting burdened with
so much code reflecting initial design decisions that a better design cannot be implemented. At
least for now, this strategy seems limited to small-to-medium-scale projects, in which major
changes to the overall design are unlikely, and for redesigns and reimplementations after the initial
release of the system, where such a strategy is inevitable.

In addition to experiments designed to provide insights into design choices, analysis of a design
and/or an implementation itself can be an important source of further insights. For example, stud
ies of the various dependencies between classes (§24.3) can be most helpful, and traditional
implementer's tools such as call graphs, performance measurements, etc., must not be ignored.

Note that specifications (the output of the analysis phase) and designs are as prone to errors as is
the implementation. In fact, they may be more so because they are even less concrete, are often
specified less precisely, are not executable, and typically are not supported by tools of a sophistica
tion comparable to what is available for checking and analyzing the implementation. Increasing the
formality of the language/notation used to express a design can go some way toward enabling the
application of tools to help the designer. This must not be done at the cost of impoverishing the
programming language used for implementation (§24.3.1). Also, a formal notation can itself be a
source of complexity and problems. This happens when the formalism is ill suited to the practical
problem to which it is applied, when the rigor of the formalism exceeds the mathematical back
ground and maturity of the designers and programmers involved, and when the formal description
of a system gets out of touch with the system it is supposedly describing.

Design is inherently error-prone and hard to support with effective tools. This makes experi
ence and feedback essential. Consequently, it is fundamentally flawed to consider the software
development process a linear process starting with analysis and ending with testing. An emphasis
on iterative design and implementation is needed to gain sufficient feedback from experience dur
ing the various stages of development.



712 Development and Design Chapter 23

23.4.5 Testing

A program that has not been tested does not work. The ideal of designing and/or verifying a pro
gram so that it works the first time is unattainable for all but the most trivial programs. We should
strive toward that ideal, but we should not be fooled into thinking that testing is easy.

"How to test?" is a question that cannot be answered in general. "When to test?" however,
does have a general answer: as early and as often as possible. Test strategies should be generated
as part of the design and implementation efforts or at least should be developed in parallel with
them. As soon as there is a running system, testing should begin. Postponing serious testing until
"after the implementation is complete" is a prescription for slipped schedules and/or flawed
releases.

Wherever possible, a system should be designed specifically so that it is relatively easy to test.
In particular, mechanisms for testing can often be designed right into the system. Sometimes this is
not done out of fear of causing expensive run-time testing or for fear that the redundancy necessary
for consistency checks will unduly enlarge data structures. Such fear is usually misplaced because
most actual testing code and redundancy can, if necessary, be stripped out of the code before the
system is shipped. Assertions (§24.3.7.2) are sometimes useful here.

More important than specific tests is the idea that the structure of the system should be such that
we have a reasonable chance of convincing ourselves and our users/customers that we can eliminate
errors by a combination of static checking, static analysis, and testing. Where a strategy for fault
tolerance is developed (§ 14.9), a testing strategy can usually be designed as a complementary and
closely related aspect of the total design.

If testing issues are completely discounted in the design phase, then testing, delivery date, and
maintenance problems will result. The class interfaces and the class dependencies (as described in
§24.3 and §24.4.2) are usually a good place to start work on a testing strategy.

Determining how much testing is enough is usually hard. However, too little testing is a more
common problem than too much. Exactly how many resources should be allocated to testing com
pared to design and implementation naturally depends on the nattire of the system and the methods
used to construct it. However, as a rule of thumb, I can suggest that more resources in time, effort,
and talent should be spent testing a system than on constructing the initial implementation. Testing
should focus on problems that would have disastrous consequences and on problems that would
occur frequently.

23.4.6 Software Maintenance

"Software maintenance" is a misnomer. The word "maintenance" suggests a misleading analogy
to hardware. Software doesn't need oiling, doesn't have moving parts that wear down, and doesn't
have crevices in which water can collect and cause rust. Software can be replicated exactly and
transported over long distances at minute costs. Software is not hardware.

The activities that go under the name of software maintenance are really redesign and reimple
mentation and thus belong under the usual program development cycle. When flexibility, extensi
bility, and portability are emphasized in the design, the traditional sources of maintenance problems
are addressed direct}y.

Like testing, maintenance must not be an afterthought or an activity segregated from the main
stream of development. In particular, it is important to have some continuity in the group of people



Section 23.4.6 Software Maintenance 713

involved in a project. It is not easy to successfully transfer maintenance to a new (and typically
less-experienced) group of people with no links to the original designers and implementers. When
a major change of people is necessary, there must be an emphasis on transferring an understanding
of the system's structure and of the system's aims to the new people. If a "maintenance crew" is
left guessing about the architecture of the system or must deduce the purpose of system compo
nents from their implementation, the structure of a system can deteriorate rapidly under the impact
of local patches. Documentation is typically much better at conveying details than in helping new
people to understand key ideas and principles.

23.4.7 Efficiency

Donald Knuth observed that "premature optimization is the root of all eviL" Some people have
learned that lesson all too well and consider all concern for efficiency evil. On the contrary, effi
ciency must be kept in mind throughout the design and implementation effort. However, that does
not mean the designer should be concerned with micro-efficiencies, but that first-order efficiency
issues must be considered.

The best strategy for efficiency is to produce a clean and simple design. Only such a design can
remain relatively stable over the lifetime of the project and serve as a base for performance tuning.
Avoiding the gargantuanism that plagues large projects is essential. Far too often people add fea
tures "just in case" (§23.4.3.2, §23.5.3) and end up doubling and quadrupling the size and run
time of systems to support frills. Worse, such overelaborate systems are often unnecessarily hard to
analyze so that it becomes difficult to distinguish the avoidable overheads from the unavoidable.
Thus, even basic analysis and optimization is discouraged. Optimization should be the result of
analysis and performance measurement, not random fiddling with the code. Especially in larger
systems, a designer's or programmer's "intuition" is an unreliable guide in matters of efficiency.

It is important to avoid inherently inefficient constructs and constructs that will take much time
and cleverness to optimize to an acceptable performance level. Similarly, it is important to mini
mize the use of inherently nonportable constructs and tools because using such tools and constructs
condemns the project to run on older (less powerful and/or more expensive) computers.

23.5 Management

Provided it makes some minimum of sense, most people do what they are encouraged to do. In
particular, if in the context of a software project you reward certain ways of operating and penalize
others, only exceptional programmers and designers will risk their careers to do what they consider
right in the face of management opposition, indifference, and red tapet. It follows that an organiza
tion should have a reward structure that matches its stated aims of design and programming. How
ever, all too often this is not the case: a major change of programming style can be achieved only
through a matching change of design style, and both typically require changes in management style
to be effective. Mental and organizational inertia all too easily leads to a local change that is not

t An organization that treats its programmers as morons will soon have programmers that are willing and able to act like mo
rons only.



714 Development and Design Chapter 23

supported by global changes required to ensure its success. A fairly typical example is a change to
a language that supports object-oriented programming, such as C++, without a matching change in
the design strategies to take advantage of its facilities (see also §24.2). Another is a change to
"object-oriented design" without the introduction of a programming language to support it.

23.5.1 Reuse

Increased reuse of code and design is often cited as a major reason for adopting a new program
ming language or design strategy. However, most organizations reward individuals and groups that
choose to re-invent the wheel. For example, a programmer may have his productivity measured in
lines of code; will he produce small programs relying on standard libraries at the cost of income
and, possibly, status? A manager may be paid somewhat proportionally to the number of people in
her group; is she going to use software produced in another group when she can hire another couple
of programmers for her own group instead? A company can be awarded a government contract,
where the profit is a fixed percentage of the development cost; is that company going to minimize
its profits by using the most effective development tools? Rewarding reuse is hard, but unless man
agement finds ways to encourage and reward it, reuse will not happen.

Reuse is primarily a social phenomenon. I can use someone else's software provided that:
[1] It works: to be reusable, software must first be usable.
[2] It is comprehensible: program structure, comments, documentation, and tutorial material are

important.
[3] It can coexist with software not specifically written to coexist with it.
[4] It is supported (or I'm willing to support it myself; typically, I'm not).
[5] It is economical (can I share the development and maintenance costs with other users?).
[6] I can find it.

To this, we may add that a component is not reusable until someone has "reused" it. The task of
fitting a component into an environment typically leads to refinements in its operation, generaliza
tions of its behavior, and improvements in its ability to coexist with other software. Until this exer
cise has been done at least once, even components that have been designed and implemented with
the greatest care tend to have unintended and unexpected rough comers.

My experience is that the conditions necessary for reuse will exist only if someone makes it
their business to make such sharing work. In a small group, this typically means that an individual,
by design or by accident, becomes the keeper of common libraries and documentation. In a larger
organization, this means that a group or department is chartered to gather, build, document, popu
larize, and maintain software for use by many groups.

The importance of such a "standard components" group cannot be overestimated. Note that as
a first approximation, a system reflects the organization that produced it. If an organization has no
mechanism for promoting and rewarding cooperation and sharing, cooperation and sharing will be
rare. A standard components group must actively promote its components. This implies that good
traditional documentation is essential but insufficient. In addition, the components group must pro
vide tutorials and other information that allow a potential user to find a component and understand
why it might be of help. This implies that activities that traditionally are associated with marketing
and education must be undertaken by the components group.



Section 23.5.1 Reuse 715

Whenever possible, the members of this group should work in close cooperation with applica
tions builders. Only then can they be sufficiently aware of the needs of users and alert to the oppor
tunities for sharing components among different applications. This argues for there to be a consul
tancy role for such an organization and for the use of internships to transfer information into and
out of the components group.

The success of a "components group" must be measured in terms of the success of its clients.
If its success is measured simply in terms of the amount of tools and services it can convince devel
opment organizations to accept, such a group can become corrupted into a mere peddler of com
mercial software and a proponent of ever-changing fads.

Not all code needs to be reusable, and reusability is not a universal property. Saying that a
component is "reusable" means that its reuse within a certain framework requires little or no work.
In most cases, moving to a different framework will require significant work. In this respect, reuse
strongly resembles portability. It is important to note that reuse is the result of design aimed at
reuse, refinement of components based on experience, and deliberate effort to search out existing
components to (re)use. Reuse does not magically arise from mindless use of specific language fea
tures or coding techniques. c++ features such as classes, virtual functions, and templates allow
designs to be expressed so that reuse is made easier (and thus more likely), but in themselves such
features do not ensure reusability.

23.5.2 Scale

It is easy for an individual or an organization to get excited about' 'doing things right." In an insti
tutional setting, this often translates into "developing and strictly following proper procedures."
In both cases, common sense can be the first victim of a genuine and often ardent desire to improve
the way things are done. Unfortunately, once common sense is missing there is no limit to the
damage that can unwittingly be done.

Consider the stages of the development process listed in §23.4 and the stages of the design steps
listed in §23.4.3. It is relatively easy to elaborate these stages into a proper design method where
each stage is more precisely defined and has well-defined inputs and outputs and a semiformal
notation for expressing these inputs and outputs. Checklists can be developed to ensure that the
design method is adhered to, and tools can be developed to enforce a large number of the proce
dural and notational conventions. Further, looking at the classification of dependencies presented
in §24.3 one could decree that certain dependencies were good and others bad and provide analysis
tools to ensure that these value judgements were applied uniformly across a project. To complete
this "firming up" of the software-production process, one would define standards for documenta
tion (including rules for spelling and grammar and typesetting conventions) and for the general
look of the code (including specifications of which language features can and cannot be used, speci
fications of what kinds of libraries can and cannot be used, conventions for indentation and the
naming of functions, variables, and types, etc.).

Much of this can be helpful for the success of a project. At least, it would be a folly to set out
to design a system that will eventually contain ten million lines of code that will be developed by
hundreds of people and maintained and supported by thousands more over a decade or more with
out a fairly well-defined and somewhat rigid framework along the lines described previously.



716 Development and Design Chapter 23

Fortunately, most systems do not fall into this category. However, once the idea is accepted
that such a design method or adherence to such a set of coding and documentation standards is "the
right way," pressure builds to apply it universally and in every detail. This can lead to ludicrous
constraints and overheads on small projects. In particular, it can lead to paper shuffling and forms
filling replacing productive work as the measure of progress and success. If that happens, real
designers and programmers will leave the project and be replaced with bureaucrats.

Once such a ridiculous misapplication of a (hopefully perfectly reasonable) design method has
occurred in a community, its failure becomes the excuse for avoiding almost all formality in the
development process. This in tum naturally leads to the kind of messes and failures that the design
method was designed to prevent in the first place.

The real problem is to find an appropriate degree of formality for the development of a particu
lar project. Don't expect to find an easy answer to this problem. Essentially every approach works
for a small project. Worse, it seems that essentially every approach - however ill conceived and
however cruel to the individuals involved - also works for a large project, provided you are willing
to throw indecent amounts of time and money at the problem.

A key problem in every software project is how to maintain the integrity of the design. This
problem increases more than linearly with scale. Only an individual or a small group of people can
grasp and keep sight of the overall aims of a major project. Most people must spend so much of
their time on subprojects, technical details, day-to-day administration, etc., that the overall design
aims are easily forgotten or subordinated to more local and immediate goals. It also is a recipe for
failure not to have an individual or group with the explicit task of maintaining the integrity of the
design. It is a recipe for failure not to enable such an individual or group to have an effect on the
project as a whole.

Lack of a consistent long-term aim is much more damaging to a project and an organization
than the lack of any individual feature. It should be the job of some small number of individuals to
formulate such an overall aim, to keep that aim in mind, to write the key overall design documents,
to write the introductions to the key concepts, and generally to help others to keep the overall aim
in mind.

23.5.3 Individuals

Use of design as described here places a premium on skillful designers and programmers. Thus, it
makes the choice of designers and programmers critical to the success of an organization.

Managers often forget that organizations consist of individuals. A popular notion is that pro
grammers are equal and interchangeable. This is a fallacy that can destroy an organization by driv
ing out many of the most effective individuals and condemning the remaining people to work at
levels well below their potential. Individuals are interchangeable only if they are not allowed to
take advantage of skills that raise them above the absolute minimum required for the task in ques
tion. Thus, the fiction of interchangeability is inhumane and inherently wasteful.

Most programming performance measures encourage wasteful practices and fail to take critical
individual contributions into account. The most obvious example is the relatively widespread prac
tice of measuring progress in terms of number of lines of code produced, number of pages of docu
mentation produced, number of tests passed, etc. Such figures look good on management charts
but bear only the most tenuous relation to reality. For example, if productivity is measured in terms



Section 23.5.3 Individuals 717

of number of lines of code produced, a successful application of reuse will appear to cause negative
performance of programmers. A successful application of the best principles in the redesign of a
major piece of software typically has the same effect.

Quality of work produced is far harder to measure than quantity of output, yet individuals and
groups must be rewarded based on the quality of their output rather than by crude quantity mea
sures. Unfortunately, the design of practical quality measures has - to the best of my knowledge 
hardly begun. In addition, measures that incompletely describe the state of a project tend to warp
development. People adapt to meet local deadlines and to optimize individual and group perfor
mance as defined by the measures. As a direct result, overall system integrity and performance suf
fer. For example, if a deadline is defined in terms of bugs removed or known bugs remaining, we
may see that deadline met at the expense of run-time performance or hardware resources needed to
run the system. Conversely, if only run-time performance is measured the error rate will surely rise
when the developers struggle to optimize the system for benchmarks. The lack of good and com
prehensive quality measures places great demands on the technical expertise of managers, but the
alternative is a systematic tendency to reward random activity rather than progress. Don't forget
that managers are also individuals. Managers need at least as much education on new techniques as
do the people they manage.

As in other areas of software development, we must consider the longer term. It is essentially
impossible to judge the performance of an individual on the basis of a single year's work. Most
individuals do, however, have consistent long-term track records that can be reliable predictors of
technical judgement and a useful help in evaluating immediate past performance. Disregard of
such records - as is done when individuals are considered merely as interchangeable cogs in the
wheels of an organization - leaves managers at the mercy of misleading quantity measurements.

One consequence of taking a long-term view and avoiding the "interchangeable morons school
of management" is that individuals (both developers and managers) need longer to grow into the
more demanding and interesting jobs. This discourages job hopping as well as job rotation for
"career development.' , A low turnover of both key technical people and key managers must be a
goal. No manager can succeed without a rapport with key designers and programmers and some
recent and relevant technical knowledge. Conversely, no group of designers and developers can
succeed in the long run without support from competent managers and a minimum of understand
ing of the larger nontechnical context in which they work.

Where innovation is needed, senior technical people, analysts, designers, programmers, etc.,
have a critical and difficult role to play in the introduction of new techniques. These are the people
who must learn new techniques and in many cases unlearn old habits. This is not easy. These indi
viduals have typically made great personal investments in the old ways of doing things and rely on
successes achieved using these ways of operating for their technical reputation. So do many techni
cal managers.

Naturally, there is often a fear of change among such individuals. This can lead to an overesti
mation of the problems involved in a change and a reluctance to acknowledge problems with the
old ways of doing things. Equally naturally, people arguing for change tend to overestimate the
beneficial effects of new ways of doing things and to underestimate the problems involved in a
change. These two groups of individuals must communicate, they must learn to talk the same lan
guage, they must help each other hammer out a model for transition. The alternative is organiza
tional paralysis and the departure of the most capable individuals from both groups. Both groups



718 Development and Design Chapter 23

should remember that the most successful "old timers" are often the "young turks" of yesteryear.
Given a chance to learn without humiliation, more experienced programmers and designers can
become the most successful and insightful proponents of change. Their healthy skepticism, knowl
edge of users, and acquaintance with the organizational hurdles can be invaluable. Proponents of
immediate and radical change must realize that a transition, often involving a gradual adoption of
new techniques, is more often than not necessary. Conversely, individuals who have no desire to
change should search out areas in which no change is needed rather than fight vicious rear-guard
battles in areas in which new demands have already significantly altered the conditions for success.

23.5.4 Hybrid Design

Introducing new ways of doing things into an organization can be painful. The disruption to the
organization and the individuals in the organization can be significant. In particular, an abrupt
change that overnight turns productive and proficient members of "the old school" into ineffective
novices in "the new school" is typically unacceptable. However, it is rare to achieve major gains
without changes, and significant changes typically involve risks.

c++ was designed to minimize such risks by allowing a gradual adoption of techniques.
Although it is clear that the largest benefits from using c++ are achieved through data abstraction,
object-oriented programming, and object-oriented design, it is not clear that the fastest way to
achieve these gains is a radical break with the past. Occasionally, such a clean break is feasible.
More often, the desire for improvement is - or should be - tempered by concerns about how to
manage the transition. Consider:

- Designers and programmers need time to acquire new skills.
- New code needs to cooperate with old code.
- Old code needs to be maintained (often indefinitely).
- Work on existing designs and programs needs to be completed (on time).
- Tools supporting the new techniques need to be introduced into the local environment.

These factors lead naturally to a hybrid style of design - even where that isn't the intention of some
designers. It is easy to underestimate the first two points.

By supporting several programming paradigms, C++ supports the notion of a gradual introduc-
tion into an organization in several ways:

- Programmers can remain productive while learning C++.
- c++ can yield significant benefits in a tool-poor environment.
- C++ program fragments can cooperate well with code written in C and other traditional lan-

guages.
- C++ has a large C-compatible subset.

The idea is that programmers can make the move to C++ from a traditional language by first adopt
ing C++ while retaining a traditional (procedural) style of programming. Then they use the data
abstraction techniques. Finally - when the language and its associated tools have been mastered 
they move on to object-oriented programming and generic programming. Note that a well
designed library is much easier to use than it was to design and implement, so a novice can benefit
from the more advanced uses of abstraction even during the early stages of this progress.

The idea of learning object-oriented design, object-oriented programming, and C++ in stages is
supported by facilities for mixing C++ code with code written in languages that do not support



Section 23.5.4 Hybrid Design 719

C++'s notions of data abstraction and object-oriented programming (§24.2.1). Many interfaces can
simply be left procedural because there will be no immediate benefits in doing anything more com
plicated. For many key libraries, this will already have been done by the library provider so that
the c++ programmer can stay ignorant of the actual implementation language. Using libraries writ
ten in languages such as C is the first, and initially most important, form of reuse in c++.

The next stage - to be used only where a more elaborate technique is actually needed - is to
present facilities written in languages such as C and Fortran as classes by encapsulating the data
structures and functions in C++ interface classes. A simple example of lifting the semantics from
the procedure plus data structure level to the data abstraction level is the string class from §11.12.
There, encapsulation of the C character string representation and the standard C string functions is
used to produce a string type that is much simpler to use.

A similar technique can be used to fit a built-in or stand-alone type into a class hierarchy
(§23.5.1). This allows designs for C++ to evolve to use data abstraction and class hierarchies in the
presence of code written in languages in which these concepts are missing and even under the con
straint that the resulting code must be callable from procedural languages.

23.6 Annotated Bibliography

This chapter only scratches the surface of the issues of design and of the management of program
ming projects. For that reason, a short annotated bibliography is provided. An extensive annotated
bibliography can be found in [Booch,1994].

[Anderson, 1990]

[Booch, 1994]

[Booch, 1996]

[Brooks,1982]

[Brooks, 1987]

Bruce Anderson and Sanjiv Gossain: An Iterative Design Model for Reus
able Object-Oriented Software. Proc. OOPSLA'90. Ottawa, Canada. A
description of an iterative design and redesign model with a specific exam
ple and a discussion of experience.
Grady Booch: Object-Oriented Analysis and Design with Applications.
Benjamin/Cummings. 1994. ISBN 0-8053-5340-2. Contains a detailed
description of design, a specific design method with a graphical notation,
and several large examples of designs expressed in C++. It is an excellent
book to which this chapter owes much. It provides a more in-depth treat
ment of many of the issues in this chapter.
Grady Booch: Object Solutions. Benjamin/Cummings. 1996. ISBN 0
8053-0594-7. Describes the development of object-oriented systems from
a management perspective. Contains extensive C++ code examples.
Fred Brooks: The Mythical Man Month. Addison-Wesley. 1982. Every
one should read this book every couple of years. A warning against
hubris. It is a bit dated on technical matters, but it is not at all dated in
matters related to individuals, organizations, and scale. Republished with
additions in 1997. ISBN 1-201-83595-9.
Fred Brooks: No Silver Bullet. IEEE Computer, Vol. 20, No.4. April
1987. A summary of approaches to large-scale software development,
with a much-needed warning against belief in miracle cures ("silver bul
lets").



720 Development and Design Chapter 23

[Coplien,1995] James O. Coplien and Douglas C. Schmidt (editors): Pattern Languages of
Program Design. Addison-Wesley. 1995. ISBN 1-201-60734-4.

[DeMarco,1987] T. DeMarco and T. Lister: Peopleware. Dorset House Publishing Co.
1987. One of the few books that focusses on the role of people in the pro
duction of software. A must for every manager. Smooth enough for bed
side reading. An antidote for much silliness.

[Gamma,1994] Eric Gamma, et. a1.: Design Patterns. Addison-Wesley. 1994. ISBN 0
201-63361-2. A practical catalog of techniques for creating flexible and
reusable software, with a nontrivial, well-explained example. Contains
extensive C++ code examples.

[Jacobson,1992] Ivar Jacobson et. a1.: Object-Oriented Software Engineering. Addison
Wesley. 1992. ISBN 0-201-54435-0. A thorough and practical descrip
tion of software development in an industrial setting with an emphasis on
use cases (§23.4.3.1). Miscasts C++ by describing it as it was ten years
ago.

[Kerr, 1987] Ron Kerr: A Materialistic View of the Software "Engineering" Analogy.
In SIGPLAN Notices, March 1987. The use of analogy in this chapter and
the next owes much to the observations in this paper and to the presenta
tions by and discussions with Ron that preceded it.

[Liskov,1987] Barbara Liskov: Data Abstraction and Hierarchy. Proc. OOPSLA'87
(Addendum). Orlando, Florida. A discussion of how the use of inheri
tance can compromise data abstraction. Note, C++ has specific language
support to help avoid most of the problems mentioned (§24.3.4).

[Martin, 1995] Robert C. Martin: Designing Object-Oriented c++ Applications Using the
Booch Method. Prentice-Hall. 1995. ISBN 0-13-203837-4. Shows how
to go from a problem to c++ code in a fairly systematic way. Presents
alternative designs and principles for choosing between them. More prac
tical and more concrete than most books on design. Contains extensive
C++ code examples.

[Meyer, 1988] Bertrand Meyer: Object Oriented Software Construction. Prentice Hall.
1988. Pages 1-64 and 323-334 give a good introduction to one view of
object-oriented programming and design with many sound pieces of prac
tical advice. The rest of the book describes the Eiffel language. Tends to
confuse Eiffel with universal principles.

[Parkinson,1957] C. N. Parkinson: Parkinson's Law and other Studies in Administration.
Houghton Mifflin. Boston. 1957. One of the funniest and most cutting
descriptions of disasters caused by administrative processes.

[Shlaer,1988] S. Shlaer and S. J. Mellor: Object-Oriented Systems Analysis and Object
Lifecycles. Yourdon Press. ISBN 0-13-629023-X and 0-13-629940-7.
Presents a view of analysis, design, and programming that differs strongly
from the one presented here and embodied in c++ and does so using a
vocabulary that makes it sound rather similar.

[Snyder,1986] Alan Snyder: Encapsulation and Inheritance in Object-Oriented Program
ming Languages. Proc. OOPSLA'86. Portland, Oregon. Probably the



Section 23.6 Annotated Bibliography 721

first good description of the interaction between encapsulation and inheri
tance. Also provides a nice discussion of some notions of multiple inheri
tance.

[Wirfs-Brock,1990] Rebecca Wirfs-Brock, Brian Wilkerson, and Lauren Wiener: Designing
Object-Oriented Software. Prentice Hall. 1990. Describes an anthropo
morphic design method based on role playing using CRC (Classes,
Responsibilities, and Collaboration) cards. The text, if not the method
itself, is biased toward Smalltalk.

23.7 Advice

[1] Know what you are trying to achieve; §23.3.
[2] Keep in mind that software development is a human activity; §23.2, §23.5.3.
[3] Proof by analogy is fraud; §23.2.
[4] Have specific and tangible aims; §23.4.
[5] Don't try technological fixes for sociological problems; §23.4.
[6] Consider the longer term in design and in the treatment of people; §23.4.1, §23.5.3.
[7] There is no lower limit to the size of programs for which it is sensible to design before starting

to code; §23.2.
[8] Design processes to encourage feedback; §23.4.
[9] Don't confuse activity for progress; §23.3, §23.4.
[10] Don't generalize beyond what is needed, what you have direct experience with, and what can

be tested; §23.4.1, §23.4.2.
[11] Represent concepts as classes; §23.4.2, §23.4.3.1.
[12] There are properties of a system that should not be represented as a class; §23.4.3.1.
[13] Represent hierarchical relationships between concepts as class hierarchies; §23.4.3.1.
[14] Actively search for commonality in the concepts of the application and implementation and

represent the resulting more general concepts as base classes; §23.4.3.1, §23.4.3.5.
[15] Classifications in other domains are not necessarily useful classifications in an inheritance

model for an application; §23.4.3.1.
[16] Design class hierarchies based on behavior and invariants; §23.4.3.1, §23.4.3.5, §24.3.7.1.
[17] Consider use cases; §23.4.3.1.
[18] Consider using CRC cards; §23.4.3.1.
[19] Use existing systems as models, as inspiration, and as starting points; §23.4.3.6.
[20] Beware of viewgraph engineering; §23.4.3.1.
[21] Throw a prototype away before it becomes a burden; §23.4.4
[22] Design for change, focusing on flexibility, extensibility, portability, and reuse; §23.4.2.
[23] Focus on component design; §23.4.3.
[24] Let each interface represent a concept at a single level of abstraction; §23.4.3.1.
[25] Design for stability in the face of change; §23.4.2.
[26] Make designs stable by making heavily-used interfaces minimal, general, and abstract;

§23.4.3.2, §23.4.3.5.
[27] Keep it small. Don't add features "just in case;" §23.4.3.2.



722 Development and Design Chapter 23

[28] Always consider alternative representations for a class. If no alternative representation is plau
sible, the class is probably not representing a clean concept; §23.4.3.4.

[29] Repeatedly review and refine both the design and the implementation; §23.4, §23.4.3.
[30] Use the best tools available for testing and for analyzing the problem, the design, and the

implementation; §23.3, §23.4.1, §23.4.4.
[31] Experiment, analyze, and test as early as possible and as often as possible; §23.4.4, §23.4.5.
[32] Don't forget about efficiency; §23.4.7.
[33] Keep the level of formality appropriate to the scale of the project; §23.5.2.
[34] Make sure that someone is in charge of the overall design; §23.5.2.
[35] Document, market, and support reusable components; §23.5.1.
[36] Document aims and principles as well as details; §23.4.6.
[37] Provide tutorials for new developers as part of the documentation; §23.4.6.
[38] Reward and encourage reuse of designs, libraries, and classes; §23.5.1.



24
Design and Programming

Keep it simple:
as simple as possible,

but no simpler.
- A. Einstein

Design and programming language - classes - inheritance - type checking - pro
gramming - what do classes represent? - class hierarchies - dependencies - con
tainment - containment and inheritance - design tradeoffs - use relationships 
programmed-in relationships - invariants - assertions - encapsulation - compo
nents - templates - interfaces and implementations - advice.

24.1 Overview

This chapter considers the ways programming languages in general and C++ in particular can sup
port design:

§24.2 The fundamental role of classes, class hierarchies, type checking, and programming itself
§24.3 Uses of classes and class hierarchies, focussing on dependencies between different parts

ofaprogram
§24.4 The notion of a component, which is the basic unit of design, and some practical observa

tions about how to express interfaces
More general design issues are found in Chapter 23, and the various uses of classes are discussed in
more detail in Chapter 25.



724 Design and Programming Chapter 24

24.2 Design and Programming Language

If I were to build a bridge, I would seriously consider what material to build it out of. Also, the
design of the bridge' would be heavily influenced by the choice of material and vice versa. Reason
able designs for stone bridges differ from reasonable designs for steel bridges, from reasonable
designs for wooden bridges, etc. I would not expect to be able to select the proper material for a
bridge without knowing a bit about the various materials and their uses. Naturally, you don't have
to be an expert carpenter to design a wooden bridge, but you do have to know the fundamentals of
wooden constructions to choose between wood and iron as the material for a bridge. Furthermore,
even though you don't personally have to be an expert carpenter to design a wooden bridge, you do
need quite a detailed knowledge of the properties of wood and the mores of carpenters.

The analogy is that to choose a language for some software, you need knowledge of several lan
guages, and to design a piece of software successfully, you need a fairly detailed knowledge of the
chosen implementation language - even if you never personally write a single line of that software.
The good bridge designer respects the properties of materials and uses them to enhance the design.
Similarly, the good software designer builds on the strengths of the implementation language and 
as far as possible - avoids using it in ways that cause problems for implementers.

One might think that this sensitivity to language issues comes naturally when only a single
designer/programmer is involved. However, even in such cases the programmer can be seduced
into misusing the language due to inadequate experience or undue respect for styles of program
ming established for radically different languages. When the designer is different from the pro
grammer - and especially if they do not share a common culture - the likelihood of introducing
error, inelegance, and inefficiencies into the resulting system approaches certainty.

So what can a programming language do for a designer? It can provide features that allow the
fundamental notions of the design to be represented directly in the programming language. This
eases the implementation, makes it easier to maintain the correspondence between the design and
the implementation, enables better communication between designers and implementers, and
allows better tools to be built to support both designers and implementers.

For example, most design methods are concerned about dependencies between different parts of
a program (usually to minimize them and to ensure that they are well defined and understood). A
language that supports explicit interfaces between parts of a program can support such design
notions. It can guarantee that only the expected dependencies actually exist. Because many depen
dencies are explicit in code written in such a language, tools that read a program to produce charts
of dependencies can be provided. This eases the job of designers and others that need to under
stand the structure of a program. A programming language such as c++ can be used to decrease the
gap between design and program and consequently reduce the scope for confusion and misunder
standings.

The key notion of c++ is that of a class. A C++ class is a type. Together with namespaces,
classes are also a primary mechanism for information hiding. Programs can be specified in terms
of user-defined types and hierarchies of such user-defined types. Both built-in and user-defined
types obey statically checked type rules. Virtual functions provide a mechanism for run-time bind
ing without breaking the static type rules. Templates support the design of parameterized types.
Exceptions provide a way of making error handling more regular. These C++ features can be used
without incurring overhead compared to C programs. These are the first-order properties of c++



Section 24.2 Design and Programming Language 725

that must be understood and considered by a designer. In addition, generally available major
libraries - such as matrix libraries, database interfaces, graphical user interface libraries, and con
currency support libraries - can strongly affect design choices.

Fear of novelty sometimes leads to sub-optimal use of C++. So does misapplication of lessons
from other languages, systems, and application areas. Poor design tools can also warp designs.
Five ways designers fail to take advantage of language features and fail to respect limitations are
worth mentioning:

[1] Ignore classes and express the design in a way that constrains implementers to use the C
subset only.

[2] Ignore derived classes and virtual functions and use only the data abstraction subset.
[3] Ignore the static type checking and express the design in such a way that implementers are

constrained to simulate dynamic type checking.
[4] Ignore programming and express systems in a way that aims to eliminate programmers.
[5] Ignore everything except class hierarchies.

These variants are typical for designers with
[1] a C, traditional CASE, or structured design background,
[2] an Ada83, Visual Basic, or data abstraction background,
[3] a Smalltalk or Lisp background,
[4] a nontechnical or very specialized background,
[5] a background with heavy emphasis on "pure" object-oriented programming,

respectively. In each case, one must wonder if the implementation language was well chosen, if the
design method was well chosen, or if the designer had failed to adapt to the tool in hand.

There is nothing unusual or shameful in such a mismatch. It is simply a mismatch that delivers
sub-optimal designs and imposes unnecessary burdens on programmers. It does the same to
designers when the conceptual framework of the design method is noticeably poorer than C++'s
conceptual framework. Therefore, we avoid such mismatches wherever possible.

The following discussion is phrased as answers to objections because that is the way it often
occurs in real life.

24.2.1 Ignoring Classes

Consider design that ignores classes. The resulting C++ program will be roughly equivalent to the
C program that would have resulted from the same design process - and this program would again
be roughly equivalent to the COBOL program that would have resulted from the same design pro
cess. In essence, the design has been made "programming language independent" at the cost of
forcing the programmer to code in the common subset of C and COBOL. This approach does have
advantages. For example, the strict separation of data and code that results makes it easy to use tra
ditional databases that are designed for such programs. Because a minimal programming language
is used, it would appear that less skill - or at least different skills - would be required from pro
grammers. For many applications - say, a traditional sequential database update program - this
way of thinking is quite reasonable, and the traditional techniques developed over decades are ade
quate for the job.

However, suppose the application differs sufficiently from traditional sequential processing of
records (or characters) or the complexity involved is higher - say, in an interactive CASE system.



726 Design and Programming Chapter 24

The lack of language support for data abstraction implied by the decision to ignore classes will
hurt. The inherent complexity will show up in the application somewhere, and if the system is
implemented in an impoverished language, the code will not reflect the design directly. The pro
gram will have too many lines of source code, lack type checking, and will in general not be ame
nable to tools. This is the prescription for a maintenance nightmare.

A common band-aid for this problem is to build specific tools to support the notions of the
design method. These tools then provide higher-level constructs and checking to compensate for
deficiencies of the (deliberately impoverished) implementation language. Thus, the design method
becomes a special-purpose and typically corporate-owned programming language. Such program
ming languages are in most contexts poor substitutes for a widely available, general-purpose pro
gramming language supported by suitable design tools.

The most common reason for ignoring classes in design is simple inertia. Traditional program
ming languages don't support the notion of a class, and traditional design techniques reflect this
deficiency. The most common focus of design has been the decomposition of the problems into a
set of procedures performing required actions. This notion, called procedural programming in
Chapter 2, is in the context of design often called functional decomposition. A common question
is, "Can we use C++ together with a design method based on functional decomposition?" You
can, but you will most likely end up using C++ as simply a better C and will suffer the problems
mentioned previously. This may be acceptable in a transition period, for already completed
designs, and for subsystems in which classes do not appear to offer significant benefits (given the
experience of the individuals involved at this time). For the longer term and in general, however,
the policy against large-scale use of classes implied by functional decomposition is not compatible
with effective use of C++ or any other language that has support for abstraction.

The procedure-oriented and object-oriented views of programming are fundamentally different
and typically lead to radically different solutions to the same problem. This observation is as true
for the design phase as it is for the implementation phase: you can focus the design on the actions
taken or on the entities represented, but not simultaneously on both.

So why prefer "object-oriented design" over the traditional design methods based on func
tional decomposition? A first-order answer is that functional decomposition leads to insufficient
data abstraction. From this, it follows that the resulting design is

- less resilient to change,
- less amenable to tools,
- less suited for parallel development, and
- less suited for concurrent execution.

The problem is that functional decomposition causes interesting data to become global because
when a system is structured as a tree of functions, any data accessed by two functions must be glo
bal to both. This ensures that' 'interesting" data bubbles up toward the root of the tree as more and
more functions require access to it (as ever in computing, trees grow from the root down). Exactly
the same process can be seen in single-rooted class hierarchies, in which "interesting" data and
functions tend to bubble up toward a root class (§24.4). Focussing on the specification of classes
and the encapsulation of data addresses this problem by making the dependencies between different
parts of a program explicit and tractable. More important, though, it reduces the number of depen
dencies in a system by improving locality of reference to data.



Section 24.2.1 Ignoring Classes 727

However, some problems are best solved by writing a set of procedures. The point of an
"object-oriented" approach to design is not that there should never be any nonmember functions in
a program or that no part of a system may be procedure-oriented. Rather, the key point is to decou
ple different parts of a program to better reflect the concepts of the application. Typically, that is
best done when classes, not functions, are the primary focus of the design effort. The use of a pro
cedural style should be a conscious decision and not simply a default. Both classes and procedures
should be used appropriately relative to the application and not just as artifacts of an inflexible
design method.

24.2.2 Avoiding Inheritance

Consider design that avoids inheritance. The resulting programs simply fail to take advantage of a
key C++ feature, while still reaping many benefits of C++ compared to C, Pascal, Fortran, COBOL,
etc. Common reasons for doing this - apart from inertia - are claims that "inheritance is an imple
mentation detail," "inheritance violates information hiding," and "inheritance makes cooperation
with other software harder."

Considering inheritance merely an implementation detail ignores the way that class hierarchies
can directly model key relationships between concepts in the application domain. Such relation
ships should be explicit in the design to allow designers to reason about them.

A strong case can be made for excluding inheritance from the parts of a C++ program that must
interface directly with code written in other languages. This is, however, not a sufficient reason for
avoiding the use of inheritance throughout a system; it is simply a reason for carefully specifying
and encapsulating a program's interface to "the outer world." Similarly, worries about compro
mising information hiding through the use of inheritance (§24.3.2.1) are a reason to be careful with
the use of virtual functions and protected members (§ 15.3). They are not a reason for general
avoidance.

In many cases, there is no real advantage to be gained from inheritance. However, in a large
project a policy of "no inheritance" will result in a less comprehensible and less flexible system in
which inheritance is "faked" using more traditional language and design constructs. Further, I
suspect that despite such a policy, inheritance will eventually be used anyway because C++ pro
grammers will find convincing arguments for inheritance-based designs in various parts of the sys
tem. Therefore, a "no inheritance" policy will ensure only that a coherent overall architecture will
be missing and will restrict the use of class hierarchies to specific subsystems.

In other words, keep an open mind. Class hierarchies are not an essential part of every good
program, but in many cases they can help in both the understanding of the application and the
expression of a solution. The fact that inheritance can be misused and overused is a reason for cau
tion; it is a not reason for prohibition.

24.2.3 Ignoring Static Type Checking

Consider design that ignores static type checking. Commonly stated reasons to ignore static type
checking in the design phase are that' 'types are an artifact of the programming language," that' 'it
is more natural to think about objects without bothering about types," and that "static type check
ing forces us to think about implementation issues too early." This attitude is fine as far as it goes
and harmless up to a point. It is reasonable to ignore details of type checking in the design stage,



728 Design and Programming Chapter 24

and it is often safe to ignore type issues almost completely in the analysis stage and early design
stages. However, classes and class hierarchies are very useful in the design. In particular, they
allow us to be specific about concepts, allow us to be precise about their relationships, and help us
reason about the concepts. As the design progresses, this precision takes the form of increasingly
precise statements about classes and their interfaces.

It is important to realize that precisely-specified and strongly-typed interfaces are a fundamental
design tool. c++ was designed with this in mind. A strongly-typed interface ensures (up to a
point) that only compatible pieces of software can be compiled and linked together and thus allows
these pieces of software to make relatively strong assumptions about each other. These assump
tions are guaranteed by the type system. The effect of this is to minimize the use of run-time tests,
thus promoting efficiency and causing significant reductions in the integration phase of multiperson
projects. In fact, strong positive experience with integrating systems that provide strongly-typed
interfaces is the reason integration isn't a major topic of this chapter.

Consider an analogy. In the physical world, we plug gadgets together all the time, and a seem
ingly infinite number of standards for plugs exists. The most obvious thing about these plugs is
that they are specifically designed to make it impossible to plug two gadgets together unless the
gadgets were designed to be plugged together, and then they can be connected only in the right
way. You cannot plug an electric shaver into a high-power socket. Had you been able to, you
would have ended up with a fried shaver or a fried shavee. Much ingenuity is expended on ensur
ing that incompatible pieces of hardware cannot be plugged together. The alternative to using
many incompatible plugs is gadgets that protect themselves against undesirable behavior from gad
gets plugged into their sockets. A surge protector is a good example of this. Because perfect com
patibility cannot be guaranteed at the "plug compatibility level," we occasionally need the more
expensive protection of circuitry that dynamically adapts to and/or protects from a range of inputs.

The analogy is almost exact. Static type checking is equivalent to plug compatibility, and
dynamic checking corresponds to protection/adaptation circuitry. If both checks fail - in either the
physical world or the software world - serious damage can result. In large systems, both forms of
checking are used. In the early stages of a design, it may be reasonable simply to say, "These two
gadgets should be plugged together." However, it soon becomes relevant exactly how they should
be plugged together. What guarantees does the plug provide about behavior? What error condi
tions are possible? What are the first-order cost estimates?

The use of "static typing" is not limited to the physical world. The use of units (for example,
meters, kilograms, and seconds) to prevent the mixing of incompatible entities is pervasive in phy
sics and engineering.

In the description of the design steps in §23.4.3, type information enters the picture in Step 2
(presumably after being superficially considered in Step 1) and becomes a major issue in Step 4.

Statically-checked interfaces are the prime vehicle for ensuring cooperation between C++ soft
ware developed by different groups. The documentation of these interfaces (including the exact
types involved) is the primary means of communicat~onbetween separate groups of programmers.
These interfaces are one of the most important outputs of the design process and a focus of commu
nication between designers and programmers.

Ignoring type issues when considering interfaces leads to designs that obscure the structure of
the program and postpone error detection until run time. For example, an interface can be specified
in terms of self-identifying objects:



Section 24.2.3 Ignoring Static Type Checking 729

I I Example assuming dynamic type checking instead ofstatic checking:

Stack s; I I Stack can hold pointers to objects ofany type

void f()
{

s .push (new Saab900);
s .push (new Saab37B);

s .pop ( ) ->takeoff( );
s .pop ( ) ->takeof/( );

I I fine: a Saab 37B is a plane
I I run-time error: car cannot take off

This is a severe underspecification of the interface (of Stack: :push ( ) ) that forces dynamic check
ing rather than static checking. The stack s is meant to hold Planes, but that was left implicit in the
code, so it becomes the user's obligation to make sure the requirement is upheld.

A more precise specification - a template plus virtual functions rather than unconstrained
dynamic type checking - moves error detection from run time to compile time:

Stack<Plane* > s; I I Stack can hold pointers to Planes

void f()

{

s .push (new Saab900); I I error: a Saab900 is not a Plane
s .push (new Saab37B);

s .pop () ->takeoff( ); I I fine: a Saab 37B is a plane
s .pop () ->takeoff( );

A similar point is made in §16.2.2. The difference in run time between dynamic checking and
static checking can be significant. The overhead of dynamic checking is usually a factor in the
range of3 to 10.

One should not go to the other extreme, though. It is not possible to catch all errors by static
checking. For example, even the most thoroughly statically checked program is vulnerable to hard
ware failures. See also §25.4.1 for an example where complete static checking would be infeasible.
However, the ideal is to have the vast majority of interfaces be statically typed with application
level types; see §24.4.2.

Another problem is that a design can be perfectly reasonable in the abstract but can cause seri
ous trouble because it fails to take into account limitations of a basic tool, in this case c++. For
example, a functionf() that needs to perform an operation turn_right () on an argument can do so
only provided all of its arguments are of a common type:

class Plane {
II ...
void tum_right ( );

} ;



730 Design and Programming

class Car {
I I ...
void turn_right ( ) i

} i

void !(X* p) II what type should X be?
{

p->tum_right ( ) i

I I ...

Chapter 24

Some languages (such as Smalltalk and CLOS) allow two types to be used interchangeably if they
have the same operations by relating every type through a common base and postponing name reso
lution until run time. However, C++ (intentionally) supports this notion through templates and
compile-time resolution only. A non-template function can accept arguments of two types only if
the two types can be implicitly converted to a common type. Thus, in the previous example X must
be a common base of Plane and Car (e.g., a Vehicle class).

Typically, examples inspired by notions alien to C++ can be mapped into C++ by expressing the
assumptions explicitly. For example, given Plane and Car (without a common base), we can still
create a class hierarchy that allows us to pass an object containing a Car or a Plane to !(X*)
(§25.4.1). However, doing this often requires an undesirable amount of mechanism and cleverness.
Templates are often a useful tool for such concept mappings. A mismatch between design notions
and C++ typically leads to "unnatural-looking" and inefficient code. Maintenance programmers
tend to dislike the non-idiomatic code that arises from such mismatches.

A mismatch between the design technique and the implementation language can be compared to
word-for-word translation between natural languages. For example, English with German grammar
is as awkward as German with English grammar, and both can be close to incomprehensible to
someone fluent in only one of those languages.

Classes in a program are the concrete representation of the concepts of the design. Conse
quently, obscuring the relationships between the classes obscures the fundamental concepts of the
design.

24.2.4 Avoiding Programming

Programming is costly and unpredictable compared to many other activities, and the resulting code
is often less than 100% reliable. Programming is labor-intensive and - for a variety of reasons 
most serious project delays manifest themselves by code not being ready to ship. So, why not elim
inate programming as an activity altogether?

To many managers, getting rid of the arrogant, undisciplined, over-paid, technology-obsessed,
improperly-dressed, etc. programmerst would appear to be a significant added benefit. To a pro
grammer, this suggestion may sound absurd. However, important problem areas with realistic
alternatives to traditional programming do exist. For specific areas, it is possible to generate code
directly from a high-level specification. In other areas, code can be generated by manipulating
shapes on a screen. For example, useful user interfaces can be constructed by direct manipulation

t Yes, I'm a programmer.



Section 24.2.4 Avoiding Programming 731

in a tiny fraction of the time it would take to construct the same interface by writing traditional
code. Similarly, database layouts and the code for accessing data according to such layouts can be
generated from specifications that are far simpler than the code needed to express those operations
directly in C++ or in any other general-purpose programming language. State machines that are
smaller, faster, and more correct than most programmers could produce can be generated from
specifications or by a direct manipulation interface.

These techniques work well in specific areas where there is either a sound theoretical founda
tion (e.g., math, state machines, and relational databases) or where a general framework exists into
which small application fragments can be embedded (e.g., graphical user interfaces, network simu
lations, and database schema). The obvious usefulness of these techniques in limited - and typi
cally crucial - areas can tempt people to think that the elimination of traditional programming by
these techniques is "just around the comer." It is not. The reason is that expanding specification
techniques outside areas with sound theoretical frameworks implies that the complexity of a
general-purpose programming language would be needed in the specification language. This
defeats the purpose of a clean and well-founded specification language.

It is sometimes forgotten that the framework that allows elimination of traditional programming
in an area is a system or library that has been designed, programmed, and tested in the traditional
way. In fact, one popular use of C++ and the techniques described in this book is to design and
build such systems.

A compromise that provides a small fraction of the expressiveness of a general-purpose lan
guage is the worst of both worlds when applied outside a restricted application domain. Designers
who stick to a high-level modeling point of view are annoyed by the added complexity and produce
specifications from which horrendous code is produced. Programmers who apply ordinary pro
gramming techniques are frustrated by the lack of language support and generate better code only
by excessive effort and by abandoning high-level models.

I see no signs that programming as an activity can be successfully eliminated outside areas that
either have well-founded theoretical bases or in which the basic programming is provided by a
framework. In either case, there is a dramatic drop in the effectiveness of the techniques as one
leaves the original framework and attempts more general-purpose work. Pretending otherwise is
tempting and dangerous. Conversely, ignoring the high-level specification techniques and the
direct-manipulation techniques in domains in which they are well-founded and reasonably mature
would be a folly.

Designing tools, libraries, and frameworks is one of the highest forms of design and program
ming. Constructing a useful mathematically-based model of an application area is one of the high
est forms of analysis. Thus, providing a tool, language, framework, etc., that makes the result of
such work available to thousands is a way for programmers and designers to escape the trap of
becoming craftsmen of one-of-a-kind artifacts.

It is most important that a specification system or a foundation library be able to interface effec
tively with a general-purpose programming language. Otherwise, the framework provided is inher
ently limiting. This implies that specification systems and direct-manipulation systems that gener
ate code at a suitable high level into an accepted general-purpose programming language have a
great advantage. A proprietary language is a long-term advantage to its provider only. If the code
generated is so low-level that general code added must be written without the benefits of abstrac
tion, then reliability, maintainability, and economy are lost. In essence, a generation system should



732 Design and Programming Chapter 24

be designed to combine the strengths of higher-level specifications and higher-level programming
languages. To exclude one or the other is to sacrifice the interests of system builders to the inter
ests of tool providers. Successful large systems are multilevel and modular and evolve over time.
Consequently, successful efforts to produce such systems involve a variety of languages, libraries,
tools, and techniques.

24.2.5 Using Class Hierarchies Exclusively

When we find that something new actually works, we often go a bit overboard and apply it indis
criminately. In other words, a great solution to some problems often appears to be the solution to
almost all problems. Class hierarchies and operations that are polymorphic on their (one) object
provide a great solution to many problems. However, not every concept is best represented as a
part of a hierarchy and not every software component is best represented as a class hierarchy.

Why not? A class hierarchy expresses relationships between its classes and a class represents a
concept. Now what is the common relationship between a smile, the driver for my CD-ROM
reader, a recording of Richard Strauss' Don Juan, a line of text, a satellite, my medical records, and
a real-time clock? Placing them all in a single hierarchy when their only shared property is that
they are programming artifacts (they are all "objects") is of little fundamental value and can cause
confusion (§ 15.4.5). Forcing everything into a single hierarchy can introduce artificial similarities
and obscure real ones. A hierarchy should be used only if analysis reveals conceptual commonality
or if design and programming discover useful commonality in the structures used to implement the
concepts. In the latter case, we have to be very careful to distinguish genuine commonality (to be
reflected as subtyping by public inheritance) and useful implementation simplifications (to be
reflected as private inheritance; §24.3.2.1).

This line of thinking leads to a program that has several unrelated or weakly-related class hier
archies, each representing a set of closely related concepts. It also leads to the notion of a concrete
class (§25.2) that is not part of a hierarchy because placing such a class in a hierarchy would com
promise its performance and its independence of the rest of the system.

To be effective, most critical operations on a class that is part of a class hierarchy must be vir
tual functions. Furthermore, much of that class' data must be protected rather than private. This
makes it vulnerable to modification from further derived classes and can seriously complicate test
ing. Where stricter encapsulation makes sense from a design point of view, non-virtual functions
and private data should be used (§24.3.2.1).

Having one argument of an operation (the one designating "the object") special can lead to
contorted designs. When several arguments are best treated equally, an operation is best repre
sented as a nonmember function. This does not imply that such functions should be global. In fact,
almost all such free-standing functions should be members of a namespace (§24.4).

24.3 Classes

The most fundamental notion of object-oriented design and programming is that the program is a
model of some aspects of reality. The classes in the program represent the fundamental concepts of
the application and, in particular, the fundamental concepts of the "reality" being modeled. Real
world objects and artifacts of the implementation are represented by objects of these classes.



Section 24.3 Classes 733

The analysis of relationships between classes and within parts of a class is central to the design
of a system:

§24.3.2 Inheritance relationships
§24.3.3 Containment relationships
§24.3.5 Use relationships
§24.3.6 Programmed-in relationships
§24.3.7 Relationships within a class

Because a C++ class is a type, classes and the relationships between classes receive significant sup
port from compilers and are generally amenable to static analysis.

To be relevant in a design, a class doesn't just have to represent a useful concept; it must also
provide a suitable interface. Basically, the ideal class has a minimal and well-defined dependence
on the rest of the world and presents an interface that exposes the minimal amount of information
necessary to the rest of the world (§24.4.2).

24.3.1 What Do Classes Represent?

There are essentially two kinds of classes in a system:
[1] Classes that directly reflect the concepts in the application domain; that is, concepts that are

used by end-users to describe their problems and solutions
[2] Classes that are artifacts of the implementation; that is, concepts that are used by the design-

ers and programmers to describe their implementation techniques.
Some of the classes that are artifacts of the implementation may also represent real-world entities.
For example, the hardware and software resources of a system provide good candidates for classes
in an application. This reflects the fact that a system can be viewed from several viewpoints. This
implies that one person's implementation detail is another person's application. A well-designed
system will contain classes supporting logically separate views of the system. For example:

[1] Classes representing user-level concepts (e.g., cars and trucks)
[2] Classes representing generalizations of the user-level concepts (e.g. vehicles)
[3] Classes representing hardware resources (e.g., a memory management class)
[4] Classes representing system resources (e.g., output streams)
[5] Classes used to implement other classes (e.g., lists, queues, locks)
[6] Built-in data types and control structures.

In larger systems, keeping logically separate types of classes separate and maintaining separation
between several levels of abstraction becomes a challenge. A simple example can be considered to
have three levels of abstraction:

[1 +2] Provide an application level view of the system
[3+4] Represent the machine on which the model runs
[5+6] Represent a low-level (programming language) view of the implementation.

The larger the system, the more levels of abstraction are typically needed for the description of the
system and the more difficult it becomes to define and maintain the levels. Note that such levels of
abstraction have direct counterparts in nature and in other types of human constructions. For exam
ple, a house can be considered as consisting of

[1] atoms;
[2] molecules;



734 Design and Programming Chapter 24

[3] lumber and bricks;
[4] floors, walls, and ceilings; and
[5] rooms.

As long as these levels of abstraction are kept separate, you can maintain a coherent view of the
house. However, if you mix them, absurdities arise. For example, the statement, "My house con
sists of several thousand pounds of carbon, some complex polymers, about 5,000 bricks, two bath
rooms, and 13 ceilings," is silly. Given the abstract nature of software, the equivalent statement
about a complex system is not always recognized for what it is.

The translation of a concept in the application area into a class in a design is not a simple
mechanical operation. It often requires significant insights. Note that the concepts in an applica
tion area are themselves abstractions. For example, "taxpayers," "monks," and "employees"
don't really exist in nature; such concepts are themselves labels put on individuals to classify them
relative to some system. The real or even the imagined world (literature, especially science fiction)
is sometimes simply a source of ideas for concepts that mutate radically in the transition into
classes. For example, the screen of my PC doesn't really resemble my desktop despite its being
designed to support the desktop metaphort, and the windows on my screen bear only the slightest
relation to the contraptions that let drafts into my office. The point about modeling reality is not to
slavishly follow what we see but rather to use it as a starting point for design, a source of inspira
tion, and an anchor to hold on to when the intangible nature of software threatens to overcome our
ability to understand our prJgrams.

A word of caution: beginners often find it hard to "find the classes," but that problem is usu
ally soon overcome without long-term ill effects. Next, however, often follows a phase in which
classes - and their inheritance relationships - seem to multiply uncontrollably. This can cause
long-term problems with the complexity, comprehensibility, and efficiency of the resulting pro
gram. Not every minute detail needs to be represented by a distinct class, and not every relation
ship between classes needs to be represented as an inheritance relationship. Try to remember that
the aim of a design is to model a system at an appropriate level of detail and at appropriate levels
of abstraction. Finding a balance between simplicity and generality is not easy.

24.3.2 Class Hierarchies

Consider simulating the traffic flow of a city to determine the likely times needed for emergency
vehicles to reach their destinations. Clearly, we need to represent cars, trucks, ambulances, fire
engines of various sorts, police cars, busses, etc. Inheritance comes into play because a real-world
concept does not exist in isolation; it exists with numerous relationships to other concepts. Without
understanding these relationships, we cannot understand the concepts. Consequently, a model that
does not represent such relationships does not adequately represent our concepts. That is, in our
programs we need classes to represent concepts, but that is not enough. We also need ways of rep
resenting relationships between classes. Inheritance is one powerful way of representing hierarchi
cal relationships directly. In our example, we would probably consider emergency vehicles special
and want also to distinguish between car-like and truck-like vehicles. This would yield a class hier
archy along these lines:

t I wouldn't be able to tolerate such a mess on my screen, anyway.



Section 24.3.2

/hicle
Car E~rgency

/ ~
""""""""jf ":'-',

........ / '
........ /

........ /
........ /

Police ....car Ambulance

Class Hierarchies 735

ruck

, 1
Fire'--engine

1
Hook and ladder

Here, Emergency represents the aspects of an emergency vehicle that are relevant to the simulation:
it can violate some traffic rules, has priority in intersections when on an emergency call, it is under
control of a dispatcher, etc.

Here is the C++ version:

class Vehicle { /* ... * / };
class Emergency { / * ... * / };
class Car : public Vehicle { / * ... * / };
class Truck : public Vehicle { / * ... * / };
class Police_car : public Car , protected Emergency { / * * / };
class Ambulance : public Car , protected Emergency { / * * / };
class Fire_engine : public Truck , protected Emergency { / * ... * / };
class Hook_and_ladder : public Fire_engine { / * ... * / };

Inheritance is the highest level relationship that can be represented directly in C++ and the one that
figures largest in the early stages of a design. Often there is a choice between using inheritance to
represent a relationship and using membership. Consider an alternative notion of what it means to
be an emergency vehicle: a vehicle is an emergency vehicle if it displays a flashing light. This
would allow a simplification of the class hierarchy by replacing the Emergency class by a member
in class Vehicle:

?e{eptr l

Car

/~
Police car Ambulance

ruck

1Fire-rgine
Hook and ladder



736 Design and Programming Chapter 24

Class Emergency is now simply used as a member in classes that might need to act as emergency
vehicles:

class Emergency { / * ... * / };
class Vehicle { protected: Emergency* eptr; / * ... * / }; / / better: provide proper interface to eptr
class Car : public Vehicle { / * ... * / };
class Truck : public Vehicle { / * .. 0 * / };
class Police_car : public Car { / * 0" * / };
class Ambulance : public Car { / * .o. * / };
class Fire_engine : public Truck { / * ... * / };
class Hook_and_ladder: public Fire_engine { / * ... * / };

Here, a vehicle is an emergency vehicle if Vehicle: :eptr is nonzero. The "plain" cars and trucks
are initialized with Vehicle: :eptr zero; the others are initialized with Vehicle: : eptr nonzero. For
example:

Car: :Car{)
{

eptr = 0;

/ / Car constructor

Police_car: : Police_car () / / Police_car constructor
{

eptr = new Emergency;

Defining things this way enables a simple conversion of an emergency vehicle to an ordinary vehi
cle and vice versa:

void f{ Vehicle * p)
{

delete p- >eptr;
p->eptr =0;

// .0.

p->eptr =new Emergency i

/ / no longer an emergency vehicle

/ / an emergency vehicle again

So, which variant of the class hierarchy is best? The general answer is, "The program that most
directly models the aspects of the real world that we are interested in is the best." That ~s, in
choosing between models we should aim for greater realism under the inevitable constraints of effi
ciency and simplicity. In this case, the easy conversion between ordinary vehicles and emergency
vehicles seems unrealistic to me. Fire engines and ambulances are purpose-built vehicles manned
by trained personnel and operated using dispatch procedures requiring specialized communication
equipment. This view indicates that being an emergency vehicle should be a fundamental concept
and represented directly in the program to improve type checking and other uses of tools. Had we
been modeling a place where the roles of vehicles were less firmly defined - say, an area where
private vehicles were routinely used to carry emergency personnel to accident sites and where com
munication was primarily based on portable radios - the other way of modeling the system might
have been more appropriate.



Section 24.3.2 Class Hierarchies 737

For people who consider traffic simulations esoteric, it might be worth pointing out that such
tradeoffs between inheritance and membership almost invariably occur in a design. The scrollbar
example in §24.3.3 is an equivalent example.

24.3.2.1 Dependencies within a Class Hierarchy

Naturally, a derived class depends on its base classes. It is less often appreciated that the opposite
can also be truet. If a class has a virtual function, the class depends on derived classes to imple
ment part of its functionality whenever a derived class overrides that function. If a member of a
base class itself calls one of the class' virtual functions, then the base class depends on its derived
classes for its own implementation. Similarly, if a class uses a protected member, then it is again
dependent on its derived classes for its own implementation. Consider:

class B {
/ / ...

protected:
int a;

public:
virtual int f( ) ;
int g () {int x =f(); return x-a;

} ;

What does g () do? The answer critically depends on the definition of f() in some derived class.
Here is a version that will ensure that g () returns 1:

class D1 : public B {
int f () { return a+1; }

} ;

and a version that makes g () write' 'Hello, world!" and return 0:

class D2 : public B {
int f() { cout« If Hello I world 1\n If ; return a;

} ;

This example illustrates one of the most important points about virtual functions. Why is it silly?
Why wouldn't a programmer ever write something like that? The answer is that a virtual function
is part of an interface to a base class, and that class can supposedly be used without knowledge of
the classes derived from it. Consequently, it must be possible to describe the expected behavior of
an object of the base class in such a way that programs can be written without knowledge of the
derived classes. Every class that overrides the virtual function must implement a variant of that
behavior. For example, the virtual function rotate () of a Shape class rotates a shape. The
rotate () functions for derived classes such as Circle and Triangle must rotate objects of their
respective type; otherwise, a fundamental assumption about class Shape is violated. No such
assumption about behavior is made for class B or its derived classes Dl and D2; thus, the example
is nonsensical. Even the names B, D1, D2, f, and g were chosen to obscure any possible meanings.

t This observation has been summarized as: "Insanity is hereditary. You get it from your children."



738 Design and Programming Chapter 24

The specification of the expected behavior of virtual functions is a major focus of class design.
Choosing good names for classes and functions is important - and not always easy.

Is a dependency on unknown (possibly yet unwritten) derived classes good or bad? Naturally,
that depends on the intent of the programmer. If the intent is to isolate a class from all external
influences so that it can be proven to behave in a specific way, then protected members and virtual
functions are best avoided. If, however, the intent is to provide a framework into which a later pro
grammer (such as the same programmer a few weeks later) can add code, then virtual functions are
often an elegant mechanism for achieving this; and protected member functions have proven conve
nient for supporting such use. This technique is used in the stream 110 library (§21.6) and was
illustrated by the final version of the Ivai_box hierarchy (§12.4.2).

If a virtual function is meant to be used only indirectly by a derived class, it can be left private.
For example, consider a simple buffer template:

template<class T> class Buffer {
public:

void put (T) i I I call overflow(T) ifbuffer is full
T get ( ) ; I I call underflow() ifbuffer is empty
/ I ...

private:
virtual int overflow (T) ;
virtual int underflow ( ) ;
/ / ...

} ;

The put () and get () functions call virtual functions overflow () and underflow ( ) , respectively.
A user can now implement a variety of buffer types to suit a variety of needs by overriding over
flow () and underflow ( ) :

template<class T> class Circular_buffer: public Buffer<T> {
int overflow (T) ; I I wrap around iffull
int underflow ( ) ;
/ / ...

} ;

template<class T> class Expanding_buffer: public Buffer<T> {
int overflow (T) ; I I increase buffer size iffull
int underflow ( ) ;
II ...

} ;

Only if a derived class needed to call overflow () and underflow () directly would these functions
need to be protected rather than private.

24.3.3 Containment Relationships

Where containment is used, there are two major alternatives for representing an object of a class X:
[1] Declare a member of type X.
[2] Declare a member of type x* or type X&.



Section 24.3.3 Containment Relationships 739

If the value of the pointer is never changed, these alternatives are equivalent, except for efficiency
issues and the way you write constructors and destructors:

class X {
public:

X(int)i
I I ...

} i

class C {
X ai

X* Pi
X& ri

public:
C (int i, int j, int k) : a ( i), p (new X (j) ), r ( *new X (k)) { }
-c () {delete Pi delete &r i }

} i

In such cases, membership of the object itself, as in the case of C: :a, is usually preferable because
it is the most efficient in time, space, and keystrokes. It is also less error-prone because the connec
tion between the contained object and the containing object is covered by the rules of construction
and destruction (§10.4.1, §12.2.2, §14.4.1). However, see also §24.4.2 and §25.7.

The pointer solution should be used when there is a need to change the pointer to the "con
tained" object during the life of the "containing" object. For example:

class C2 {

x* Pi
public:

C2 (int i) : p (new X ( i)) { }
-C2 () {delete Pi

X* change (X* q)
{

X* t = Pi
P = qi
return ti

} i

Another reason for using a pointer member is to allow the "contained" member to be supplied as
an argument:

class C3 {

x* Pi
public:

C3(X* q) : p(q) { }

II ...
} i

By having objects contain pointers to other objects, we create what are often called object
hierarchies. This is an alternative and complementary technique to using class hierarchies. As
shown in the emergency vehicle example in §24.3.2, it is often a tricky design issue to choose



740 Design and Programming Chapter 24

between representing a property of a class as a base class or representing it as a member. A need to
override is an indication that the former is the better choice. Conversely, a need to be able to allow
the property to be represented by a variety of types is an indication that the latter is the better
choice. For example:

class XX : public X { 1* * I } i

class XXX : public X { I * * I } i

void f()
{

C3* pl = new C3 (new X) i

C3* p2 = new C3 (new XX) i

C3* p3 = new C3 (new XXX) i

/ I ...

I I C3 "contains" an X
II C3 "contains" an XX
II C3 "contains" an XXX

This could not be modeled by a derivation of C3 from X or by C3 having a member of type X,
because the exact type of a member needs to be used. This is important for classes with virtual
functions, such as a shape class (§2.6.2) or an abstract set class (§25.3).

References can be used to simplify classes based on pointer membership when only one object
is referred to during the life of the containing object. For example:

class C4 {
X& Ti

public:
C4(X&q) :r(q) {}

II ...
} i

Pointer and reference members are also needed when an object needs to be shared:

x* p = new XX;
C4 objl (*p) i

C4 obj2 (*p) i I I objl and obj2 now share the new XX

Naturally, management of shared objects requires extra care - especially in concurrent systems.

24.3.4 Containment and Inheritance

Given the importance of inheritance relationships, it is not surprising that they are frequently
overused and misunderstood. When a class D is publicly derived from another class B, it is often
said that a D is a B:

class B { I * ... * I } i

class D : public B { I * ... * I } i II DisakindofB

Alternatively, this is expressed by saying that inheritance is an is-a relationship or - somewhat
more precisely - that a D is a kind ofB. In contrast, a class D that has a member of another class B
is often said to have a B or contain a B. For example:



Section 24.3.4

class D { / / a D contains a B
public:

B bi
/ / ...

} i

Containment and Inheritance 741

Alternatively, this is expressed by saying that membership is a has-a relationship.
For given classes Band D, how do we choose between inheritance and membership? Consider

an Airplane and an Engine. Novices often wonder if it might be a good idea to derive class Air
plane from Engine. This is a bad idea, though, because an Airplane is not an Engine; it has an
Engine. One way of seeing this is to consider if an Airplane might have two or more engines.
Because that seems feasible (even if we are considering a program in which all of our Airplanes
will be single-engine ones), we should use membership rather than inheritance. The question "can
it have two?" is useful in many cases when there is doubt. As usual, it is the intangible nature of
software that makes this discussion relevant. Had all classes been as easy to visualize as Airplane
and Engine, trivial mistakes like deriving an Airplane from an Engine would be easily avoided.
Such mistakes are, however, quite frequent - particularly among people who consider derivation as
simply another mechanism for combining programming-language-level constructs. Despite the
conveniences and shorthand notation that derivation provides, it should be used almost exclusively
to express relationships that are well defined in a design. Consider:

class B {
public:

virtual void f( ) i

void g () i

} i

class Dl {
public:

B bi
void f() i

} i

void hl (Dl* pd)
{

B* pb =pdi
pb =&pd->bi
pb->g () i
pd->g()i
pd->b.g () i
pb->f() i

pd->f() i

/ / a Dl contains a B

/ / does not override b.f()

/ / error: no Dl* to B* conversion

/ / calls B::g()
/ / error: Dl doesn't have a member g()

/ / calls B:.f(not overridden by D1: :f())
/ / calls Dl ::f()

Note that there is no implicit conversion from a class to one of its members and that a class contain
ing a member of another class does not override the virtual functions of that member. This con
trasts with the public derivation case:



742 Design and Programming

class D2 : public B { / / a D2 is a B
public:

void f( ); / / overrides B:.f()
} ;

void h2 (D2* pd)
{

Chapter 24

B* pb =pd;
pb->g();
pd->g( );
pb->f( );
pd->f();

/ / ok: implicit D2* to B* conversion
/ / calls B::g()
/ / calls B::g()
/ / virtual call: invokes D2::f()
/ / invokes D2::f()

The notational convenience provided by the D2 example compared to the Dl example is a factor
that can lead to overuse. It should be remembered, though, that there is a cost of increased depen
dency between B and D2 to be paid for that notational convenience (see §24.3.2.1). In particular, it
is easy to forget the implicit conversion from D2 to B. Unless such conversions are an acceptable
part of the semantics of your classes, public derivation is to be avoided. When a class is used to
represent a concept and derivation is used to represent an is-a relationship, such conversions are
most often exactly what is desired.

There are cases in which you would like inheritance but cannot afford to have the conversion
happen. Consider writing a class Cfield (controlled field) that - in addition to whatever else it does
- provides run-time access control for another class Field. At first glance, defining Cfield by
deriving it from Field seems just right:

class Cfield : public Field { / * ... * / };

This expresses the notion that a Cfield really is a kind of Field, allows notational convenience
when writing a Cfield function that uses a member of the Field part of the Cfield, and - most
importantly - allows a Cfield to override Field virtual functions. The snag is that the Cfield* to
Field* conversion implied in the declaration of Cfield defeats all attempts to control access to the
Field:

void g (Cfield* p)
{

*p = lIasdfIJ;

Field* q = p;
*q = lIasdfll ;

/ / access to Field controlled by Cfield's assignment operator.'
I I p->Cfield.·.·operator=("asdf')

/ / implicit Cfield* to Field* conversion
1/ OOPS! no control

A solution would be to define Cfield to have a Field as a member, but doing that precludes Cfield
from overriding Field virtual functions. A better solution would be to use private derivation:

class Cfield : private Field { I * ... * / };

From a design perspective, private derivation is equivalent to containment, except for the (occa
sionally essential) issue of overriding. An important use of this is the technique of deriving a class



Section 24.3.4 Containment and Inheritance 743

publicly from an abstract base class that defines an interface and using private or protected deriva
tion from a concrete class to provide an implementation (§2.5.4, §12.3, §25.3). Because the inheri
tance implied in private and protected derivation is an implementation detail that is not reflected in
the type of the derived class, it is sometimes called implementation inheritance and contrasted to
public derivation, whereby the interface of the base class is inherited and the implicit conversion to
the base type is allowed. The latter is sometimes referred to as subtyping, or interface inheritance.

Another way of stating this is to point out that an object of a derived class should be usable
wherever an object of its public base class is. This is sometimes called "the Liskov Substitution
Principle" (§23.6[Liskov, 1987]). The public/protected/private distinction supports this directly for
polymorphic types manipulated through pointers and references.

24.3.4.1 MemberlHierarchy Tradeoffs

To further examine the design choices involving containment and inheritance, consider how to rep
resent a scrollbar in an interactive graphics system and how to attach a scrollbar to a window. We
need two kinds of scrollbars: horizontal and vertical. We can represent this either by two types 
Horizontal_scrollbar and Vertical_scrollbar - or by a single Scrollbar type that takes an argu
ment that says whether its layout is horizontal or vertical. The former choice implies the need for a
third type, the plain Scrollbar, as the base class of the two specific scollbar types. The latter choice
implies the need for an extra argument to the scrollbar type and the need to choose values to repre
sent the two kinds of scrollbars. For example:

enum Orientation { horizontal, vertical } ;

Once a choice is made, it determines the kind of change needed to extend the system. In the scroll
bar example, we might want to introduce a third type of scrollbar. We may originally have thought
that there could be only two kinds of scrollbars ("after all, a window has only two dimensions").
However, in this case - as in most - there are possible extensions that surface as redesign issues.
For example, one might like to use a "navigation button" instead of two scrollbars. Such a button
would cause scrolling in different directions depending on where a user pressed it. Pressing the
middle of the top would cause "scrolling up," pressing the middle left would cause "scrolling
left," while pressing the top-left corner would cause "scrolling up and left." Such buttons are not
uncommon. They can be seen as a refinement of the notion of a scrollbar that is particularly suited
to applications in which the information scrolled over isn't plain text but rather more general sorts
of pictures.

Adding a navigation button to a program with a three-scrollbar class hierarchy involves adding
a new class, but it requires no changes to the old scrollbar code:

Scrollbar

Horizontal_scrollbar
t

Vertical scrollbar Navigation_button

This is the nice aspect of the "hierarchical" solution.
Passing the orientation of the scrollbar as an argument implies the presence of type fields in the

scrollbar objects and the use of switch statements in the code of the scrollbar member functions.



744 Design and Programming Chapter 24

That is, we are facing a tradeoff between expressing this aspect of the structure of the system in
terms of declarations or in terms of code. The former increases the degree of static checking and
the amount of information on which tools have to work. The latter postpones decisions to run time
and allows changes to be made by modifying individual functions without affecting the overall
structure of the system as seen by the type checker and other tools. In most situations, I recom
mend using a class hierarchy to directly model hierarchical relationships of the concepts.

The single scrollbar type solution makes it easy to store and pass information specifying a kind
of scrollbar:

void helper (Orientation 00)

{

II ...
p = new Scrollbar (00 ) ;

I I ...

void me ()
{

helper (horizontal);
II ...

This representation would also make it easy to re-orient a scrollbar at run time. This is unlikely to
be of major importance in the case of scrollbars, but it can be important for equivalent examples.
The point here is that there are always tradeoffs, and the tradeoffs are often nontrivial.

24.3.4.2 ContainmentIHierarchy TradeotTs

Now consider how to attach a scrollbar to a window. If we consider a Window with scrollbar as
something that is both a Window and a Scrollbar, we get something like:

class Window_with_scrollbar : public Window, public Scrollbar {
1/ ...

} ;

This allows any Window_with_scrollbar to act like a Scrollbar and like a Window, but it con
strains us to using the single scrollbar-type solution.

On the other hand, if we consider a Window_with_scrollbar as a Window that has a Scrollbar,
we get something like:

class Window_with_scrollbar : public Window {
1/ ...
Scrollbar* sb;

public:
Window_with_scrollbar (Scrollbar* p, 1* ... * I) : Window (I * ... * I), sb (p) { / * ... * / }
1/ ...

} ;

This allows us to use the scrollbar-hierarchy solution. Passing the scrollbar as an argument allows
the window to be oblivious to the exact type of its scrollbar. We could even pass a Scrollbar



Section 24.3.4.2 ContainmentlHierarchy Tradeoffs 745

around the way we passed an Orientation (§24.3.4.1). If we need to have Window with scrollbar
act as a scrollbar, we can add a conversion operator:

Window_with_scrollbar: : operator Scrollbar& ( )
{

return *Sbi

My preference is to have a window contain a scrollbar. I find it easier to think of a window having
a scrollbar than of a window being a scrollbar in addition to being a window. In fact, my favorite
design strategy involves a scrollbar being a special kind of window, which is then contained in a
window that needs scrollbar services. This strategy forces the decision in favor of the containment
solution. An alternative argument for the containment solution comes from the "can it have two?"
rule of thumb (§24.3.4). Because there is no logical reason why a window shouldn't have two
scrollbars (in fact, many windows do have both a horizontal and a vertical scrollbar),
Window_with_scrollbar ought not be derived from Scrollbar.

Note that it is not possible to derive from an unknown class. The exact type of a base class
must be known at compile time (§12.2). On the other hand, if an attribute of a class is passed as an
argument to its constructor, then somewhere in the class there must be a member that represents it.
However, if that member is a pointer or a reference we can pass an object of a class derived from
the class specified for the member. For example, The Scrollbar* member sb in the previous exam
ple can point to a Scrollbar of a type, such as Navigation_button, that is unknown to users of the
Scrollbar* .

24.3.5 Use Relationships

Knowledge of what other classes are used by a class and in which ways is often critical in order to
express and understand a design. Such dependencies are supported only implicitly by C++. A class
can use only names that have been declared (somewhere), but a list of names used is not provided
in the C++ source. Tools (or in the absence of suitable tools, careful reading) are necessary for
extracting such information. The ways a class X can use another class Y can be classified in several
ways. Here is one way:

- X uses the name Y.
- X uses Y.

- X calls a Y member function.
- X reads a member of Y.
- X writes a member of Y.

- X creates a Y.
- X allocates an auto or static variable of Y.
- X creates a Y using new.

- X takes the size of a Y.
Taking the size of an object is classified separately because doing so requires knowledge of the
class declaration, but doesn't depend on the constructors. Naming Y is also classified as a separate
dependency because just doing that - for example, in declaring a y* or mentioning Y in the decla
ration of an external function - doesn't require access to the declaration of Yat all (§5.7):



746 Design and Programming Chapter 24

class Y i / / Y is the name ofa class
y* Pi
extern Y f( const Y&) i

It is often important to distinguish between the dependencies of a class' interface (the class declara
tion) and the dependencies of the class implementation (the class member definitions). In a well
designed system, the latter typically have many more dependencies, and those are far less interest
ing to a user than are the dependencies of the class declaration (§24.4.2). Typically, a design aims
at minimizing the dependencies of an interface because they become dependencies of the class'
users (§8.2.4.1, §9.3.2, §12.4.1.1, §24.4) .

C++ doesn't require the implementer of a class to specify in detail what other classes are used
and how. One reason for this is that most significant classes depend on so many other classes, that
an abbreviation of the list of those classes, such as an #include directive, would be necessary for
readability. Another is that the classification and granularity of such dependencies doesn't appear
to be a programming language issue. Rather, exactly how uses dependencies are viewed depends
on the purpose of the designer, programmer, or tool. Finally, which dependencies are interesting
may also depend on details of the language implementation.

24.3.6 Programmed-In Relationships

A programming language cannot - and should not - directly support every concept from every
design method. Similarly, a design language should not support every feature of every program
ming language. A design language should be richer and less concerned with details than a language
suitable for systems programming must be. Conversely, a programming language must be able to
support a variety of design philosophies, or it will fail for lack of adaptability.

When a programming language does not provide facilities for representing a concept from the
design directly, a conventional mapping between the design construct and the programming lan
guage constructs should be used. For example, a design method may have a notion of delegation.
That is, the design can specify that every operation not defined for a class A should be serviced by
an object of a class B pointed to by a pointer p. C++ cannot express this directly. However, the
expression of that idea in C++ is so stylized that one could easily imagine a program generating the
code. Consider:

class B {
/ / ...
void f() i

void g () i

void h () i

} i

class A {
B* Pi
/ / ...
void f() i

void If() i

} ;

A specification that A delegated to B through A : :p would result in code like this:



II delegation through p

Section 24.3.6

class A {
B* Pi
1/ ...
void f() i

void If() i

void g () {p->g ( ) i }

void h () {p- >h ( ) i }

} i

I I delegate g()
I I delegate h()

Programmed-In Relationships 747

It is fairly obvious to a programmer what is going on here, but simulating a design concept in code
is clearly inferior to a one-to-one correspondence. Such "programmed-in" relationships are not as
well "understood" by the programming language and are therefore less amenable to manipulation
by tools. For example, standard tools would not recognize the "delegation" from A to B through
A : :p as different from any other use of a B* .

A one-to-one mapping between the design concepts and the programming language concepts
should be used wherever possible. A one-to-one mapping ensures simplicity and guarantees that
the design really is reflected in the program so that programmers and tools can take advantage of it.

Conversion operators provide a language mechanism for expressing a class of programmed-in
relationships. That is, a conversion operator X: :operator Y () specifies that wherever a Y is
acceptable, an X can be used (§11.4.1). A constructor Y: : Y(X) expresses the same relationship.
Note that a conversion operator (and a constructor) produces a new object rather than changing the
type of an existing object. Declaring a conversion function to Y is simply a way of requesting
implicit application of a function that returns a Y. Because the implicit application of conversions
defined by constructors and conversion operators can be treacherous, it is sometimes useful to ana
lyze them separately in a design.

It is important to ensure that the conversion graphs for a program do not contain cycles. If they
do, the resulting ambiguity errors will render the types involved in the cycles unusable in combina
tion. For example:

class Rational i

class Big_int {
public:

friend Big_int operator+ (Big_int, Big_int) i

operator Rational ( ) ;
/ I ...

} i

class Rational {
public:

friend Rational operator+ (Rational, Rational) i

operator Big_int ( ) i

II ...
} i

The Rational and Big_int types will not interact as smoothly as one might have hoped:



748 Design and Programming

void f(Rational r, Big_int i)
{

Chapter 24

g (r+i);
g (r+Rational (i) ) i

g (Big_int (r) +i) i

/ / error, ambiguous: operator+(r,Rational(i)) or operator+(Big_int(r),i) ?
/ / one explicit resolution
/ / another explicit resolution

One can avoid such "mutual" conversions by making at least some of them explicit. For example,
the Big_int to Rational conversion might have been defined as make_Rational () instead of as a
conversion operator, and the addition would have been resolved to g (Big_int (r), i). Where
"mutual" conversion operators cannot be avoided, one must resolve the resulting clashes either by
explicit conversions as shown or by defining many separate versions of binary operators, such as +.

24.3.7 Relationships within a Class

A class can conceal just about any implementation detail and just about any amount of dirt - and
sometimes it has to. However, the objects of most classes do themselves have a regular structure
and are manipulated in ways that are fairly easy to describe. An object of a class is a collection of
other sub-objects (often called members), and many of these are pointers and references to other
objects. Thus, an object can be seen as the root of a tree of objects and the objects involved can be
seen as constituting an ' 'object hierarchy" that is complementary to the class hierarchy, as
described in §24.3.2.1. For example, consider a very simple String:

class String {
int SZi

char* Pi
public:

String (const char* q) i

-String () i

/1 ...
} i

A String object can be represented graphically like this:

int sz;
char* p;

................ " ...... ;:;'-1 ... elements ... \ 0

24.3.7.1 Invariants

The values of the members and the objects referred to by members are collectively called the state
of the object (or simply, its value). A major concern of a class design is to get an object into a
well-defined state (initialization/construction), to maintain a well-defined state as operations are
performed, and finally to destroy the object gracefully. The property that makes the state of an
object well-defined is called its invariant.



Section 24.3.7.1 Invariants 749

Thus, the purpose of initialization is to put an object into a state for which the invariant holds.
Typically, this is done by a constructor. Each operation on a class can assume it will find the
invariant true on entry and must leave the invariant true on exit. The destructor finally invalidates
the invariant by destroying the object. For example, the constructor String: : String (const char* )
ensures that p points to an array of at least sz+1 elements, where sz has a reasonable value and
p [sz] ==0. Every string operation must leave that assertion true.

Much of the skill in class design involves making a class simple enough to make it possible to
implement it so that it has a useful invariant that can be expressed simply. It is easy enough to state
that every class needs an invariant. The hard part is to come up with a useful invariant that is easy
to comprehend and that doesn't impose unacceptable constraints on the implementer or on the effi
ciency of the operations. Note that "invariant" here is used to denote a piece of code that can
potentially be run to check the state of an object. A stricter and more mathematical notion is clearly
possible and, in some contexts, more appropriate. An invariant, as discussed here, is a practical 
and therefore typically economical and logically incomplete - check on an object's state.

The notion of invariants has its origins in the work of Floyd, Naur, and Hoare on preconditions
and postconditions and is present in essentially all work on abstract data types and program verifi
cation done over the last 30 years or so. It is also a staple of C debugging.

Typically, the invariant is not maintained during the execution of a member function. Functions
that may be called while the invariant is invalid should not be part of the public interface. Private
and protected functions can serve that purpose.

How can we express the notion of an invariant in a C++ program? A simple way is to define an
invariant-checking function and insert calls to it in the public operations. For example:

class String {
int SZi

char* Pi
public:

class Range {} i

class Invariant {} i

enum { TOO_LARGE = 16000 } i

void check ( ) i

String (const char* q) i

String (const String&) i

-String () i

char& operator [] (int i) i

int size () { return sz i }

/ / ...
} i

void String:: check ( )
{

/ / exception classes

/ / length limit

/ / invariant check

if (p==O II sz<O I I TOO_LARGE<=sz II p [sz] ) throw Invariant ( ) i



750 Design and Programming

char& String: : operator [] (int i)
{

check ( );
if (i<O I I sz<=i) throw Range ( ) ;
check ( );
return p [i];

I I check on entry
II do work
I I check on exit

Chapter 24

This will work nicely and is hardly any work for the programmer. However, for a simple class like
String the invariant checking will dominate the run time and maybe even the code size. Therefore,
programmers often execute the invariant checks only during debugging:

inline void String:: check ( )
{

#ifndef NDEBUG
if (p==O II sz<O II TOO_LARGE<=sz II p [sz] ) throw Invariant ();

#endif
}

Here, the NDEBUG macro is used in a way similar to the way it is used in the standard C assert ( )
macro. NDEBUG is conventionally set to indicate that debugging is not being done.

The simple act of defining invariants and using them during debugging is an invaluable help in
getting the code right and - more importantly - in getting the concepts represented by the classes
well defined and regular. The point is that when you are designing invariants, a class will be con
sidered from an alternative viewpoint and the code will contain redundancy. Both increase the like
lihood of spotting mistakes, inconsistencies, and oversights.

24.3.7.2 Assertions

An invariant is a special form of an assertion. An assertion is simply a statement that a given logi
cal criterion must hold. The question is what to do when it doesn't.

The C standard library - and by implication the c++ standard library - provides the assert ( )
macro in <cassert> or <assert. h>. An assert () evaluates its argument and calls abort () if the
result is zero (false). For example:

void f( int* p)
{

assert (p! =0); I I assert that p!=O; abort() ifp is zero
/ / ...

Before aborting, assert () outputs the name of its source file and the number of the line on which it
appears. This makes assert () a useful debugging aid. NDEBUG is usually set by compiler
options on a per-compilation-unit basis. This implies that assert () shouldn't be used in inline
functions and template functions that are included in several translation units unless great care is
taken that NDEBUG is set consistently (§9.2.3). Like all macro magic, this use of NDEBUG is too
low-level, messy, and error-prone. Also, it is typically a good idea to leave at least some checks
active in even the best-checked program, and NDEBUG isn't well suited for that. Furthermore,
calling abort () is rarely acceptable in production code.



Section 24.3.7.2 Assertions 751

The alternative is to use an Assert () template that throws an exception rather than aborting so
that assertions can be left in production code when that is desirable. Unfortunately, the standard
library doesn't provide an Assert ( ). However, it is trivially defined:

template<class X, class A> inline void Assert (A assertion)
{

if ( !assertion) throw X ( ) i

Assert () throws the exception X () if the assertion is false. For example:

class Bad_arg { } i

void f(int* p)
{

Assert<Bad_arg> (p! =0) i I I assert p!=O; throw Bad_arg unless p!=O
I I ...

This style of assertion has the condition explicit, so if we want to check only while debugging we
must say so. For example:

void 12 (int* p)
{

Assert<Bad_arg> (NDEBUG lip! =0) i
II ...

1/ either I'm not debugging or p!=O

/ / we are debugging

I I we are not debugging: disable checks

The use of II rather than && in the assertion may appear surprising. However, Assert<E> (a II b)
tests! (allb) which is !a&&!b.

Using NDEBUG in this way requires that we define NDEBUG with a suitable value whether or
not we are debugging. A C++ implementation does not do this for us by default, so it is better to
use a value. For example:

iifdef NDEBUG
const bool ARG_CHECK = false i
#else
const bool ARG_CHECK =true i
iendif

void f3 (int* p)
{

Assert<Bad_arg> ( !ARG_CHECK II p!=O)i
I I ...

I I either I'm not debugging or p!=O

If the exception associated with an assertion is not caught, a failed Assert () terminate ( ) s the pro
gram much like an equivalent assert () would abort ( ). However, an exception handler may be
able to take some less drastic action.

In any realistically-sized program, I find myself turning assertions on and off in groups to suit
the need for testing. Using NDEBUG is simply the crudest form of that technique. Early on in
development, most assertions are enabled, whereas only key sanity checks are left enabled in



752 Design and Programming Chapter 24

shipped code. This style of usage is most easily managed if the actual assertion is in two parts,
with the first being an enabling condition (such as ARG_CHECK) and the second being the asser
tion proper.

If the enabling condition is a constant expression, the whole assertion will be compiled away
when not enabled. However, the enabling condition can also be a variable so that it can be turned
on and off at run time as debugging needs dictate. For example:

booI string_check = true;

inline void String:: check ( )
{

Assert<lnvariant> ( ! string_check II (p && O<=sz && sz<TOO_LARGE && P [sz] ==0) );

void f()
{

String s = II wonder" ;
/ / strings are checked here
string_check = false;
/ / no checking ofstrings here

Naturally, code will be generated in such cases, so we must keep an eye out for code bloat if we use
such assertions extensively.

Saying

Assert<E> (a) ;

is simply another way of saying

if ( !a) throw E ( ) ;

Then why bother with Assert ( ) , rather than writing out the statement directly? Using Assert ( )
makes the designer's intent explicit. It says that this is an assertion of something that is supposed
to be always true. It is not an ordinary part of the program logic. This is valuable information to a
reader of the program. A more practical advantage is that it is easy to search for assert () or
Assert () whereas searching for conditional statements that throw exceptions is nontrival.

Assert () can be generalized to throw exceptions taking arguments and variable exceptions:

template<class A, class E> inline void Assert (A assertion, E except)
{

if ( !assertion) throw except;

struct Bad_g_arg {
int* p;
Bad_g_arg (int* pp) :p (pp) { }

} ;

bool g_check = true;
int g_tnaX =100;



Section 24.3.7.2

void g (int* p, exception e)
{

Assert ( ! g_check II p! =0, e);
Assert ( !g_check II (O<*P&&*p<=g_max) , Bad_g_arg (p) );
/ / ...

Assertions 753

/ / pointer is valid
/ / value is plausible

In many programs, it is crucial that no code is generated for an Assert () where the assertion can be
evaluated at compile time. Unfortunately, some compilers are unable to achieve this for the gener
alized Assert ( ). Consequently, the two-argument Assert () should be used only when the excep
tion is not of the form E () and it is also acceptable for some code to be generated independently of
the value of the assertion.

In §23.4.3.5, it was mentioned that the two most common forms of class hierarchy reorganiza
tions were to split a class into two and to factor out the common part of two classes into a base
class. In both cases, well-designed invariants can give a clue to the potential for reorganization.
Comparing the invariant with the code of operations will show most of the invariant checking to be
redundant in a class that is ripe for splitting. In such cases, subsets of the operations will access
only subsets of the object state. Conversely, classes that are ripe for merging will have similar
invariants even if their detailed implementations differ.

24.3.7.3 Preconditions and Postconditions

One popular use of assertions is to express preconditions and postconditions of a function. That is,
checking that basic assumptions about input hold and verifying that the function leaves the world in
the expected state upon exit. Unfortunately, the assertions we would like to make are often at a
higher level than the programming language allows us to express conveniently and efficiently. For
example:

template<class Ran> void sort (Ran first, Ran last)
{

Assert<Bad_sequence> ( " [first, last) is a valid sequence");

/ / ... sorting algorithm ...

Assert<Failed_sort> ( II [first, last) is in increasing order");

/ / pseudo code

/ / pseudo code

This problem is fundamental. What we want to say about a program is best expressed in a
mathematically-based higher language, rather than in the algorithmic programming language in
which we write the program.

As for invariants, a certain amount of cleverness is needed to translate the ideal of what we
would like to assert into something that is algorithmically feasible to check. For example:

template<class Ran> void sort (Ran first, Ran last)
{

/ / lfirst,last) is a valid sequence: check plausibility:
Assert<Bad_sequence> (NDEBUG II first<=last);

/ / ... sorting algorithm ...



754 Design and Programming Chapter 24

I I [first, last) is in increasing order: check a sample:
Assert<Failed_sort> (NDEBUG II

(last-first<2 II (*first<=last [-1]
&& *first<=first [ (last-first) 12] && first [ (last-first) 12] <=last [ -1] ) ) ) ;

I often find writing ordinary code-checking arguments and results simpler than composing asser
tions. However, it is important to try to express the real (ideal) preconditions and postconditions 
and at least document them as comments - before reducing them to something less abstract that
can be effectively expressed in a programming language.

Precondition checking can easily degenerate into simple checking of argument values. As an
argument is often passed through several functions, this checking can be repetitive and expensive.
However, simply asserting that every pointer argument is nonzero in every function is not particu
larly helpful and can give a false sense of security - especially if the tests are done during debug
ging only to prevent overhead. This is a major reason why I recommend a focus on invariants.

24.3.7.4 Encapsulation

Note that in C++, the class - not the individual object - is the unit of encapsulation. For example:

class List {
List* next;

public:
booI on (List* ) ;
II ...

) ;

bool List:: on (List* p)
{

if (p == 0) return false;
for (List* q =this; q i q=q->next) if (p == q) return true i

return false;

The chasing of the private List: : next pointer is accepted because List: :on () has access to every
object of class List it can somehow reference. Where that is inconvenient, matters can be simpli
fied by not taking advantage of the ability to access the representation of other objects from a mem
ber function. For example:

bool List:: on (List* p)
{

if (p == 0) return false i

if (p == this) return true;
if (next==0) return false i

return next->on (p) i

However, this turns iteration into recursion, and doing that can cause a major performance hit when
a compiler isn't able to optimize the recursion back into an iteration.



Section 24.4 Components 755

24.4 Components

The unit of design is a collection of classes, functions, etc., rather than an individual class. Such a
collection, often called a library or aframework (§25.8), is also the unit of reuse (§23.5.1), mainte
nance, etc. C++ provides three mechanisms for expressing the notion of a set of facilities united by
a logical criteria:

[1] A class - containing a collection of data, function, template, and type members
[2] A class hierarchy - containing a collection of classes
[3] A namespace - containing a collection of data, function, template, and type members

A class provides many facilities to make it convenient to create objects of the type it defines. How
ever, many significant components are not best described by a mechanism for creating objects of a
single type. A class hierarchy expresses the notion of a set of related types. However, the individ
ual members of a component are not always best expressed as classes and not all classes possess the
basic similarity required to fit into a meaningful class hierarchy (§24.2.5). Therefore, a namespace
is the most direct and the most general embodiment of the notion of a component in C++. A com
ponent is sometimes referred to as a "class category." However, not every element of a compo
nent is or should be a class.

Ideally, a component is described by the set of interfaces it uses for its implementation plus the
set of interfaces it provides for its users. Everything else is "implementation detail" and hidden
from the rest of the system. This may indeed be the designer's description of a component. To
make it real, the programmer needs to map it into declarations. Classes and class hierarchies pro
vide the interfaces, and namespaces allow the programmer to group the interfaces and to separate
interfaces used from interfaces provided. Consider:

Used by X interface

\
X interface

X implementation

Used by X implementation

Using the techniques described in §8.2.4.1, this becomes:

namespace A { / / some facilities used by X's interface
/ / ...

namespace X { / / inteiface ofcomponent X

using namespace A; / / dependent on declarations from A
/ / ...
void f();



756 Design and Programming

namespace X_impl { I I facilities needed by X's implementation
using namespace X;
II ...

void X: :f()
{

using namespace X_impl; I I dependent on declarations from X_impl
I I ...

Chapter 24

The general interface X should not depend on the implementation interface X_impl.
A component can have many classes that are not intended for general use. Such classes should

be "hidden" within implementation classes or namespaces:

namespace X_impl { I I component X implementation details

class Widget {
I I ...

} ;

1/ ...

This ensures that Widget isn't used from other parts of the program. However, classes that repre
sent coherent concepts are often candidates for reuse and should therefore be considered for inclu
sion into the interface of the component. Consider:

class Car {
class Wheel {

I I ...
} ;

Wheel flw I frw I rlw I rrw;
1/ ...

public:
1/ ...

} ;

In most contexts, we need to have the actual wheels hidden to maintain the abstraction of a car
(when you use a car you cannot operate the wheels independently). However, the Wheel class itself
seems a good candidate for wider use, so moving it outside class Car might be better:

class Wheel {
1/ ...

} ;

class Car {
Wheel flw I frw, rlw I rrw;
1/ ...

public:
1/ ...

} ;



Section 24.4 Components 757

The decision to nest or not depends on the aims of the design and the generality of the concepts
involved. Both nesting and "non-nesting" are widely applicable techniques for expressing a
design. The default should be to make a class as local as possible until a need to make it more gen
erally available is demonstrated.

There is a nasty tendency for "interesting" functions and data to "bubble up" to the global
namespace, to widely-used namespaces, or to ultimate base classes in a hierarchy. This can easily
lead to unintentional exposure of implementation details and to the problems associated with global
data and global functions. This is most likely to happen in a single-rooted hierarchy, and in a pro
gram where only very few namespaces are used. Virtual base classes (§15.2.4) can be used to com
bat this phenomenon in the context of class hierarchies. Small "implementation" namespaces are
the main tool for avoiding the problem in the context of namespaces.

Note that header files provide a powerful mechanism for supplying different views of a compo
nent to different users and for excluding classes that are considered part of the implementation from
the user's view (§9.3.2).

24.4.1 Templates

From a design perspective, templates serve two, weakly-related needs:
- Generic programming
- Policy parameterization

Early in a design effort, operations are just operations. Later, when it is time to specify the type of
operands templates become essential when using a statically-typed programming language, such as
C++. Without templates, function definitions would have to be replicated or checking would have
to be unnecessarily postponed to run time (§24.2.3). An operation that implements an algorithm for
a variety of operand types is a candidate to be implemented as a template. If all operands fit into a
single class hierarchy, and especially if there is a need to add new operand types at run time, the
operand type is best represented as a class - often as an abstract class. If the operand types do not
fit into a single hierarchy and especially if run-time performance is critical, the operation is best
implemented as a template. The standard containers and their supporting algorithms are an exam
ple of when the need to take operands of a variety of unrelated types combined with a need for
run-time performance lead to the use of templates (§ 16.2).

To make the template/hierarchy tradeoff more concrete, consider how to generalize a simple
iteration:

void print_all (IterJor_T x)
{

for (T* p = x .first ( ); p; p = x . next ( ) ) cout << *P;

Here, the assumption is that IterJor_T provides operations that yield T* s.
We can make the iterator IterJor_T a template parameter:

template<class IterJor_T> void print_all (IterJor_T x)
{

for (T* p =x .first ( ) ; p; p =x .next ( ) ) cout << *p ;



758 Design and Programming Chapter 24

This allows us to use a variety of unrelated iterators as long as they all provide first () and next ( )
with the right meanings and as long as we know the type of iterator for each call of print_all () at
compile time. The standard library containers and algorithms are based on this idea.

Alternatively, we can use the observation thatfirst () and next () constitute an interface to iter
ators. We can then define a class to represent that interface:

class Iter {
public:

virtual T* first () const = 0;
virtual T* next () = 0;

} ;

void print_aIl2 (lter& x)
{

for (T* p =x .first ( ); p; p =x. next ( ) ) cout« *p;

We can now use every iterator derived from Iter. The actual code doesn't differ depending on
whether we use templates or a class hierarchy to represent the parameterization - only the run-time,
recompilation, etc., tradeoffs differ. In particular, class Iter is a candidate for use as an argument
for the template:

void f (lter& i)
{

print_all (i) ; / / use the template
print a1l2 (i) ;

Consequently, the two approaches can be seen as complementary.
Often, a template needs to use functions and classes as part of its implementation. Many of

those must themselves be templates so as to maintain generality and efficiency. In that way, algo
rithms become generic over a range of types. This style of template use is called generic
programming (§2.7). When we call std:: sort () on a vector, the elements of the vector are the
operands of the sort ( ) ; thus, sort () is generic for the element types. In addition, the standard sort
is generic for the container types because it is invoked on iterators for arbitrary, standard
conforming containers (§ 16.3.1).

The sort ( ) algorithm is also parameterized on the comparison criteria (§18.7.1). From a
design perspective, this is different from taking an operation and making it generic on its operand
type. Deciding to parameterize an algorithm on an object (or operation) in a way that controls the
way the algorithm operates is a much higher-level design decision. It is a decision to give the
designer/programmer control over some part of the policy governing the operation of the algorithm.
From a programming language point of view, however, there is no difference.

24.4.2 Interfaces and Implementations

The ideal interface
- presents a complete and coherent set of concepts to a user,
- is consistent over all parts of a component,



Section 24.4.2 Interfaces and Implementations 759

- does not reveal implementation details to a user,
- can be implemented in several ways,
- is statically typed,
- is expressed using application-level types, and
- depends in limited and well-defined ways on other interfaces.

Having noted the need for consistency across the classes that present the component's interface to
the rest of the world (§24.4), we can simplify the discussion by looking at only a single class. Con
sider:

class Y{ / * * / };

class Z { / * * / };

/ / needed by X

/ / needed by X

class X { / / example ofpoor interface style
Y a;

Z b;
public:

void f(const char * ... );
void g (int [ ] , int) ;
void set_a (Y&);

Y& get_a ();
} ;

This interface has several potential problems:
- The interface uses the types Y and Z in a way that requires the declarations of Y and Z to be

known to compile it.
- The function X: :f() takes an arbitrary number of arguments of unknown types (probably

somehow controlled by a "format string" supplied as the first argument; §21.8).
- The function X : : g () takes an int [] argument. This may be acceptable, but typically it is a

sign that the level of abstraction is too low. An array of integers is not self-describing, so it
is not obvious how many elements it is supposed to have.

- The set_a () and get_a () functions most likely expose the representation of objects of
class X by allowing direct access to X : : a.

These member functions provide an interface at a very low level of abstraction. Basically, classes
with interfaces at this level belong among the implementation details of a larger component - if
they belong anywhere at all. Ideally, an argument of an interface function carries enough informa
tion to make it self-describing. A rule of thumb is that it should be possible to transmit the request
for service over a thin wire for service at a remote server.

C++ allows the programmer to expose the representation of a class as part of the interface. This
representation may be hidden (using private or protected), but it is available to the compiler to
allow allocation of automatic variables, to allow inline substitution of functions, etc. The negative
effect of this is that use of class types in the representation of a class may introduce undesirable
dependencies. Whether the use of members of types Yand Z is a problem depends on what kind of
types Yand Z actually are. If they are simple types, such as list, complex, and string, their use is
most often quite appropriate. Such types can be considered stable, and the need to include their
class declarations is an acceptable burden on the compiler. However, if Y and Z themselves had
been interface classes of significant components, such as a graphics system or a bank account



760 Design and Programming Chapter 24

management system, it might be wise not to depend too directly on them. In such cases, using a
pointer or a reference member is often a better choice:

class Yi
class Zi

class X { I I X accesses Y and Z through pointers and references only
y* ai

Z&bi
II ...

} i

This decouples the definition of X from the definitions of Y and Z; that is, the definition of X
depends on the names Y and Z only. The implementation of X will, of course, still depend on the
definitions of Yand Z, but this will not adversely affect the users of X.

This illustrates an important point: an interface that hides significant amounts of information 
as a useful interface ought to - will have far fewer dependencies than the implementation it hides.
For example, the definition of class X can be compiled without access to the definitions of Yand Z.
However, the definitions of X's member functions that manipulate the Yand Z objects will need
access to the definitions of Y and Z. When dependencies are analyzed, the dependencies of the
interface and the implementation must be considered separately. In both cases, the ideal is for the
dependency graphs of a system to be directed acyclic graphs to ease understanding and testing of
the system. However, this ideal is far more critical and far more often achievable for interfaces
than for implementations.

Note that a class can define three interfaces:

class X {
private:

I / accessible to members andfriends only
protected:

I / accessible to members andfriends and
I / to members and friends ofderived classes only

public:
I / accessible to the general public

} ;

In addition, a friend is part of the public interface (§ 11.5).
A member should be part of the most restrictive interface possible. That is, a member should be

private unless there is a reason for it to be more accessible. If it needs to be more accessible, it
should be protected unless there is a reason for it to be public. It is almost always a bad idea to
make a data member public or protected. The functions and classes that constitute the public inter
face should present a view of the class that fits with its role as representing a concept.

Note that abstract classes can be used to provide a further level of representation hiding (§2.5.4,
§12.3, §25.3).



Section 24.4.3 Fat Interfaces 761

24.4.3 Fat Interfaces

Ideally, an interface should offer only operations that make sense and that can be implemented well
by every derived class implementing that interface. However, this is not always easy. Consider
lists, arrays, associative arrays, trees, etc. As shown in §16.2.2, it is tempting and sometimes useful
to provide a generalization of all of these types - usually called a container - that can be used as
the interface to every one of these. This (apparently) relieves the user of having to deal with the
details of all of these containers. However, defining the interface of a general container class is
nontrivial. Assume that we want to define Container as an abstract type. What operations do we
want Container to provide? We could provide only the operations that every container can support
- the intersection of the sets of operations - but that is a ridiculously narrow interface. In fact, in
many interesting cases that intersection is empty. Alternatively, we could provide the union of all
the sets of operations and give a run-time error if a "non-existent" operation is applied to an object
through this interface. An interface that is such a union of interfaces to a set of concepts is called a
fat interface. Consider a "general container" of objects of type T:

class Container {
public:

struct Bad_oper { / / exception class
const char* p;
Bad_oper(const char* pp) : p(pp) { }

} ;

virtual void put (const T*) {throw Bad_oper ( n Container: :put II ) ;

virtual T* get() {throw Bad_oper("Container::get ll
); }

virtual T* & operator [] (int) {throw Bad_oper ( II Container:: [] (int) II ); }

virtual T* & operator [] (const char*) {throw Bad_oper ( II Container:: [] (char*) II ) ;

/ / ...
} ;

Containers could then be declared like this:

class List_container : public Container, private list {
public:

void put (const T*);
T* get ( );
/ / ... no operatorl] ...

} ;

class Vector_container : public Container, private vector {
public:

T* & operator [] (int);
T* & operator [] (const char*) i

/ / ... no put() or get() ...
} ;

As long as one is careful, all is well:



762 Design and Programming

void f()
{

List_container sc;
Vector_container vc;
I I ...
user (sc I VC) ;

void user (Container& cl, Container& c2)
{

T* pl =cl . get ( ) ;
T*p2=c2[3];
II don't use c2.get() orcl[3]
I I ...

Chapter 24

However, few data structures support both the subscripting and the list-style operations well. Con
sequently, it is probably not a good idea to specify an interface that requires both. Doing so leads
to the use of run-time type-inquiry (§ 15.4) or exception handling (Chapter 14) to avoid run-time
errors. For example:

void user2 (Container& c1 I Container& c2) I I detection is easy, but recovery can be hard
{

try {
T* pl = cl . get ( ) ;
T* p2 = c2[3];
I I ...

}

catch (Container:: Bad_oper& bad)
I lOops!
II Now what?

or

void user3 (Container& cl , Container& c2) I I early detection is tedious; recovery can still be hard
{

if (dynamic_cast<List_container*> (&cl) && dynamic_cast<Vector_container*> (&c2) )
T*pl=cl.get();
T* p2 = c2 [3];
I I ...

}

else {
I lOops!
II Now what?

In both cases, run-time performance can suffer and the generated code can be surprisingly large.
As a result, people are tempted to ignore the potential errors and hope that they don't actually occur



Section 24.4.3 Fat Interfaces 763

when the program is in the hands of users. The problem with this approach is that exhaustive test
ing is also hard and expensive.

Consequently, fat interfaces are best avoided where run-time performance is at a premium,
where strong guarantees about the correctness of code are required, and in general wherever there is
a good alternative. The use of fat interfaces weakens the correspondence between concepts and
classes and thus opens the floodgates for the use of derivation as a mere implementation conve
nience.

24.5 Advice

[1] Evolve use towards data abstraction and object-oriented programming; §24.2.
[2] Use C++ features and techniques as needed (only); §24.2.
[3] Match design and programming styles; §24.2.1.
[4] Use classes/concepts as a primary focus for design rather than functions/processing; §24.2.1.
[5] Use classes to represent concepts; §24.2.I, §24.3.
[6] Use inheritance to represent hierarchical relationships between concepts (only); §24.2.2,

§24.2.5, §24.3.2.
[7] Express strong guarantees about interfaces in terms of application-level static types; §24.2.3.
[8] Use program generators and direct-manipulation tools to ease well-defined tasks; §24.2.4.
[9] Avoid program generators and direct-manipulation tools that do not interface cleanly with a

general-purpose programming language; §24.2.4.
[10] Keep distinct levels of abstraction distinct; §24.3.I.
[11] Focus on component design; §24.4.
[12] Make sure that a virtual function has a well-defined meaning and that every overriding func-

tion implements a version of that desired behavior; §24.3.4, §24.3.2.I.
[13] Use public inheritance to represent is-a relationships; §24.3.4.
[14] Use membership to represent has-a relationships; §24.3.4.
[15] Prefer direct membership over a pointer to a separately-allocated object for expressing simple

containment; §24.3.3, §24.3.4.
[16] Make sure that the uses dependencies are understood, non-cyclic wherever possible, and mini

mal; §24.3.5.
[17] Define invariants for all classes; §24.3.7.I.
[18] Explicitly express preconditions, postconditions, and other assertions as assertions (possibly

using Assert ( ); §24.3.7.2.
[19] Define interfaces to reveal the minimal amount of information needed; §24.4.
[20] Minimize an interface's dependencies on other interfaces; §24.4.2.
[21] Keep interfaces strongly typed; §24.4.2.
[22] Express interfaces in terms of application-level types; §24.4.2.
[23] Express an interface so that a request could be transmitted to a remote server; §24.4.2.
[24] Avoid fat interfaces; §24.4.3.
[25] Use private data and member functions wherever possible; §24.4.2.
[26] Use the public/protected distinction to distinguish between the needs of designers of derived

classes and general users; §24.4.2.



764 Design and Programming

[27] Use templates for generic programming; §24.4.1.
[28] Use templates to parameterize an algorithm by a policy; §24.4.1.
[29] Use templates where compile-time type resolution is needed; §24.4.1.
[30] Use class hierarchies where run-time type resolution is needed; §24.4.1.

Chapter 24



25
Roles of Classes

Some things better change ...
but fundamental themes

should revel in persistence.
- Stephen J. Gould

Kinds of classes - concrete types - abstract types - nodes - changing interfaces 
object I/O - actions - interface classes - handles - use counts - application frame
works - advice - exercises.

25.1 Kinds of Classes

The C++ class is a programming language construct that serves a variety of design needs. In fact, I
find that the solution to most knotty design problems involves the introduction of a new class to
represent some notion that had been left implicit in the previous draft design (and maybe the elimi
nation of other classes). The great variety of roles that a class can play leads to a variety of kinds of
classes that are specialized to serve a particular need well. In this chapter, a few archetypical kinds
of classes are described, together with their inherent strengths and weaknesses:

§25.2 Concrete types
§25.3 Abstract types
§25.4Nodes
§25.5 Operations
§25.6 Interfaces
§25.7 Handles
§25.8 Application frameworks

These "kinds of classes" are design notions and not language constructs. The unattained; and
probably unattainable, ideal is to have a minimal set of simple and orthogonal kinds of classes from
which all well-behaved and useful classes could be constructed. It is important to note that each of



766 Roles of Classes Chapter 25

these kinds of classes has a place in design and none is inherently better than the others for all uses.
Much confusion in discussions of design and programming comes from people trying to use only
one or two kinds of classes exclusively. This is usually done in the name of simplicity, yet it leads
to contorted and unnatural uses of the favored kinds of classes.

The description here emphasizes the pure forms of these kinds of classes. Naturally, hybrid
forms can also be used. However, a hybrid ought to appear as the result of a design decision based
on an evaluation of the engineering tradeoffs and not a result of some misguided attempt to avoid
making decisions. "Delaying decisions" is too often a euphemism for' 'avoiding thinking." Nov
ice designers will usually do best by staying away from hybrids and also by following the styIe of
an existing component with properties that resemble the desired properties for the new component.
Only experienced programmers should attempt to write a general-purpose component or library,
and every library designer should be "condemned" to use, document, and support his or her cre
ation for some years. Also, please note §23.5.1.

25.2 Concrete Types

Classes such as vector (§ 16.3), list (§ 17.2.2), Date (§ 10.3), and complex (§ 11.3, §22.5) are
concrete in the sense that each is the representation of a relatively simple concept with all the oper
ations essential for the support of that concept. Also, each has a one-to-one correspondence
between its interface and an implementation and none are intended as a base for derivation. Typi
cally, concrete types are not fitted into a hierarchy of related classes. Each concrete type can be
understood in isolation with minimal reference to other classes. If a concrete type is implemented
well, programs using it are comparable in size and speed to programs a user would write using a
hand-crafted and specialized version of the concept. Similarly, if the implementation changes sig
nificantly the interface is usually modified to reflect the change. In all of this, a concrete type
resembles a built-in type. Naturally, the built-in types are all concrete. User-defined concrete
types, such as complex numbers, matrices, error messages, and symbolic references, often provide
fundamental types for some application domain.

The exact nature of a class' interface determines what implementation changes are significant in
this context; more abstract interfaces leave more scope for implementation changes but can com
promise run-time efficiency. Furthermore, a good implementation does not depend on other classes
more than absolutely necessary so that the class can be used without compile-time or run-time over
heads caused by the accommodation of other' 'similar" classes in a program.

To sum up, a class providing a concrete type aims:
[1] to be a close match to a particular concept and implementation strategy;
[2] to provide run-time and space efficiency comparable to "hand-crafted" code through the

use of inlining and of operations taking full advantage of the properties of the concept and
its implementation;

[3] to have only minimal dependency on other classes; and
[4] to be comprehensible and usable in isolation.

The result is a tight binding between user code and implementation code. If the implementation
changes in any way, user code will have to be recompiled because user code almost always con
tains calls of inline functions or local variables of a concrete type.



Section 25.2 Concrete Types 767

The name "concrete type" was chosen to contrast with the common term "abstract type." The
relationship between concrete and abstract types is discussed in §25.3.

Concrete types cannot directly express commonality. For example, list and vector provide sim
ilar sets of operations and can be used interchangeably by some template functions. However, there
is no relationship between the types list<int> and vector<int> or between list<Shape*> and
list<Circle*> (§13.6.3), even though we can discern their similarities.

For naively designed concrete types, this implies that code using them in similar ways will look
dissimilar. For example, iterating through a List using a next () operation differs dramatically
from iterating through a Vector using subscripting:

void my (List& sl)
{

for (T* P =sl.ftrst ( ) i PiP =sl. next ( )) {I I "natural" list iteration
I I my stuff

}

I I ...

void your (Vector& v)
{

for (int i =0 i i<v. size ( ) i i++)
I I your stuff

}

II ...

I I "natural" vector iteration

The difference in iteration style is natural in the sense that a get-next-element operation is essential
to the notion of a list (but not that common for a vector) and subscripting is essential to the notion
of a vector (but not for a list). The availability of operations that are "natural" relative to a chosen
implementation strategy is often crucial for efficiency and important for ease of writing the code.

The obvious snag is that the code for fundamentally similar operations, such as the previous two
loops, can look dissimilar, and code that uses different concrete types for similar operations cannot
be used interchangeably. In realistic examples, it takes significant thought to find similarities and
significant redesign to provide ways of exploiting such similarities once found. The standard con
tainers and algorithms are an example of a thorough rethinking that makes it possible to exploit
similarities between concrete types without losing their efficiency and elegance benefits (§ 16.2).

To take a concrete type as an argument, a function must specify that exact concrete type as an
argument type. There will be no inheritance relationships that can be used to make the argument
declaration less specific. Consequently, an attempt to exploit similarities between concrete types
will involve templates and generic programming as described in §3.8. When the standard library is
used, iteration becomes:

template<class C> void ours (const C& c)
{

for (C:: const_iterator p =c. begin ( ) i p! =c . end ( ) i ++p) { I I standard library iteration
I I ...



768 Roles of Classes Chapter 25

The fundamental similarity between containers is exploited, and this in tum opens the possibility
for further exploitation as done by the standard algorithms (Chapter 18).

To use a concrete type well, the user must understand its particular details. There are (typically)
no general properties that hold for all concrete types in a library that can be relied on to save the
user the bother of knowing the individual classes. This is the price of run-time compactness and
efficiency. Sometimes that is a price well worth paying; sometimes it is not. It can also be the case
that an individual concrete class is easier to understand and use than is a more general (abstract)
class. This is often the case for classes that represent well-known data types such as arrays and
lists.

Note, however, that the ideal is still to hide as much of the implementation as is feasible without
seriously hurting performance. Inline functions can be a great win in this context. Exposing mem
ber variables by making them public or by providing set and get functions that allow the user to
manipulate them directly is almost never a good idea (§24.4.2). Concrete types should still be
types and not just bags of bits with a few functions added for convenience.

25.2.1 Reuse of Concrete Types

Concrete types are rarely useful as bases for further derivation. Each concrete type aims at provid
ing a clean and efficient representation of a single concept. A class that does that well is rarely a
good candidate for the creation of different but related classes through public derivation. Such
classes are more often useful as members or private base classes. There, they can be used effec
tively without having their interfaces and implementations mixed up with and compromised by
those of the new classes. Consider deriving a new class from Date:

class My_date : public Date {
/ / ...

} i

Is it ever valid for My_date to be used as a plain Date? Well, that depends on what My_date is,
but in my experience it is rare to find a concrete type that makes a good base class without modifi
cation.

A concrete type is "reused" unmodified in the same way as built-in types such as int are
(§10.3.4). For example:

class Date_and_time {
private:

Date d;
Time ti

public:
/ / ...

} i

This form of use (reuse?) is usually simple, effective, and efficient.
Maybe it was a mistake not to design Date to be easy to modify through derivation? It is some

times asserted that every class should be open to modification by overriding and by access from
derived class member functions. This view leads to a variant of Date along these lines:



Section 25.2.1 Reuse of Concrete Types 769

class Date2 {
public:

/ / public inteiface, consisting primarily ofvirtual functions
protected:

/ / other implementation details (possibly including some representation)
private:

/ / representation and other implementation details
} i

To make writing overriding functions easy and efficient, the representation is declared protected.
This achieves the objective of making Date2 arbitrarily malleable by derivation, yet keeping its
user interface unchanged. However, there are costs:

[1] Less efficient basic operations. A C++ virtual function call is a fraction slower than an ordi
nary function call, virtual functions cannot be inlined as often as non-virtual functions, and a
class with virtual functions typically incurs a one-word space overhead.

[2] The need to use free store. The aim of Date2 is to allow objects of different classes derived
from Date2 to be used interchangeably. Because the sizes of these derived classes differ,
the obvious thing to do is to allocate them on the free store and access them through pointers
or references. Thus, the use of genuine local variables dramatically decreases.

[3] Inconvenience to users. To benefit from the polymorphism provided by the virtual func
tions, accesses to Date2s must be through pointers or references.

[4] Weaker encapsulation. The virtual operations can be overridden and protected data can be
manipulated from derived classes (§12.4.1.1).

Naturally, these costs are not always significant, and the behavior of a class defined in this way is
often exactly what we want (§25.3, §25.4). However, for a simple concrete type, such as Date2,
the costs are unnecessary and can be significant.

Finally, a well-designed concrete type is often the ideal representation for a more malleable
type. For example:

class Date3 {
public:

/ / public inteiface, consisting primarily ofvirtual functions
private:

Date di
} i

This is the way to fit concrete types (including built-in types) into a class hierarchy when that is
needed. See also §25.10[1].

25.3 Abstract Types

The simplest way of loosening the coupling between users of a class and its implementers and also
between code that creates objects and code that uses such objects is to introduce an abstract class
that represents the interface to a set of implementations of a common concept. Consider a naive
Set:



770 Roles of Classes

template<class T> class Set {
public:

virtual .void insert (T*) =0;
virtual void remove (T*) =0;

virtual int is_member (T*) = 0;

virtual T* first () = 0;
virtual T* next () =0;

virtual -Set () { }
} ;

Chapter 25

This defines an interface to a set with a built-in notion of iteration over its elements. The absence
of a constructor and the presence of a virtual destructor is typical (§12.4.2). Several implementa
tions are possible (§16.2.1). For example:

template<class T> class List_set: public Set<T>, private list<T> {
/ / ...

} ;

template<class T> class Vector_set: public Set<T> , private vector<T> {
/ / ...

} ;

The abstract class provides the common interface to the implementations. This means we can use a
Set without knowing which kind of implementation is used. For example:

void f(Set<Plane*>& s)
{

for (Plane* * p =s .first ( ); p; p =s . next ( ) )
/ / my stuff

}

/ / ...

List_set<Plane*> sl;
Vector_set<Plane*> v (100);

void g()
{

f(sl) ;
f(v);

For concrete types, we required a redesign of the implementation classes to express commonality
and used a template to exploit it. Here, we must design a common interface (in this case Set), but
no commonality beyond the ability to implement the interface is required of the classes used for
implementation.

Furthermore, users of Set need not know the declarations of List_set and Vector_set, so users
need not depend on these declarations and need not be recompiled or in any way changed if
List_set or Vector_set changes or even if a new implementation of Set - say Tree_set - is



Section 25.3 Abstract Types 771

introduced. All dependencies are contained in functions that explicitly use a class derived from Set.
In particular, assuming the conventional use of header files the programmer writing f (Set&) needs
only include Set. h and not List_set. h or Vector_set. h. An "implementation header" is needed
only where a List_set or a Vector_set, respectively, is created. An implementation can be further
insulated from the actual classes by introducing an abstract class that handles requests to create
objects ("a factory;" §12.4.4).

This separation of the interface from the implementations implies the absence of access to oper
ations that are "natural" to a particular implementation but not general enough to be part of the
interface. For example, because a Set doesn't have a notion of ordering we cannot support a sub
scripting operator in the Set interface even if we happen to be implementing a particular Set using
an array. This implies a run-time cost due to missed hand optimizations. Furthermore, inlining
typically becomes infeasible (except in a local context, when the compiler knows the real type), and
all interesting operations on the interface become virtual function calls. As with concrete types,
sometimes the cost of an abstract type is worth it; sometimes it is not. To sum up, an abstract type
aims to:

[1] define a single concept in a way that allows several implementations of it to coexist in a pro-
gram;

[2] provide reasonable run-time and space efficiency through the use of virtual functions;
[3] let each implementation have only minimal dependency on other classes; and
[4] be comprehensible in isolation.

Abstract types are not better than concrete types, just different. There are difficult and important
tradeoffs for the user to make. The library provider can dodge the issue by providing both, thus
leaving the choice to the user. The important thing is to be clear about to which world a class
belongs. Limiting the generality of an abstract type in an attempt to compete in speed with a con
crete type usually fails. It compromises the ability to use interchangeable implementations without
significant recompilation after changes. Similarly, attempting to provide "generality" in concrete
types to compete with the abstract type notion also usually fails. It compromises the efficiency and
appropriateness of a simple class. The two notions can coexist - indeed, they must coexist because
concrete classes provide the implementations for the abstract types - but they must not be muddled
together.

Abstract types are often not intended to be bases for further derivation beyond their immediate
implementation. Derivation is most often used just to supply implementation. However, a new
interface can be constructed from an abstract class by deriving a more extensive abstract class from
it. This new abstract class must then in turn be implemented through further derivation by a non
abstract class (§ 15.2.5).

Why didn't we derive List and Vector classes from Set in the first place to save the introduction
of List_set and Vector_set classes? In other words, why have concrete types when we can have
abstract types?

[1] Efficiency. We want to have concrete types such as vector and list without the overheads
implied by decoupling the implementations from the interfaces (as implied by the abstract
type styIe).

[2] Reuse. We need a mechanism to fit types designed "elsewhere" (such as vector and list)
into a new library or application by giving them a new interface (rather than rewriting
them).



772 Roles of Classes Chapter 25

[3] Multiple interfaces. Using a single common base for a variety of classes leads to fat inter
faces (§24.4.3). Often, it is better to provide a new interface to a class used for new pur
poses (such as a Set interface for a vector) rather than modify its interface to serve multiple
purposes.

Naturally, these points are related. They are discussed in some detail for the Ivai_box example
(§ 12.4.2, §15.2.5) and in the context of container design (§ 16.2). Using the Set base class would
have resulted in a based-container solution relying on node classes (§25.4).

Section §25.7 describes a more flexible iterator in that the binding of the iterator to the imple
mentation yielding the objects can be specified at the point of initialization and changed at run
time.

25.4 Node Classes

A class hierarchy is built with a view of derivation different from the interface/implementer view
used for abstract types. Here, a class is viewed as a foundation on which to build. Even if it is an
abstract class, it usually has some representation and provides some services for its derived classes.
Examples of node classes are Polygon (§ 12.3), the initial Ivai_slider (§12.4.1), and Satellite
(§ 15.2).

Typically, a class in a hierarchy represents a general concept of which its derived classes can be
seen as specializations. The typical class designed as an integral part of a hierarchy, a node class,
relies on services from base classes to provide its own services. That is, it calls base class member
functions. A typical node class provides not just an implementation of the interface specified by its
base class (the wayan implementation class does for an abstract type). It also adds new functions
itself, thus providing a wider interface. Consider Car from the traffic-simulation example in
§24.3.2:

class Car : public Vehicle {
public:

Car (int passengers, Size_category size, int weight, int fc)
: Vehicle (passengers, size, weight), fuel_capacity (fc) { / * ... * / }

/ / override relevant virtual functions from Vehicle:

void tum (Direction);
/ / ...
/ / add Car-specific functions:

virtual void addJuel (int amount); / / a car needs fuel to run
/ / ...

} ;

The important functions are the constructor through which the programmer specifies the basic prop
erties that are relevant to the simulation and the (virtual) functions that allow the simulation rou
tines to manipulate a Car without knowing its exact type. A Car might be created and used like
this:



Section 25.4

void user ( )
{

I I ...
Car* p =new Car(3, economy, 1500,60);
drive (p, bs_home, MH); I I enter into simulated traffic pattern
1/ ...

Node Classes 773

A node class usually needs constructors and often a nontrivial constructor. In this, node classes dif
fer from abstract types, which rarely have constructors.

The operations on Car will typically use operations from the base class Vehicle in their imple
mentations. In addition, the user of a Car relies on services from its base classes. For example,
Vehicle provides the basic functions dealing with weight and size so that Car doesn't have to:

booI Bridge:: can_cross (const Vehicle& r)
{

if (max_weight<r. weight ( ) ) return false;
/ / ...

This allows programmers to create new classes such as Car and Truck from a node class Vehicle
by specifying and implementing only what needs to differ from Vehicle. This is often referred to as
"programming by difference" or "programming by extension."

Like many node classes, a Car is itself a good candidate for further derivation. For example, an
Ambulance needs additional data and operations to deal with emergencies:

class Ambulance : public Car, public Emergency {
public:

Ambulance ( ) ;

I I override relevant Car virtual functions:

void turn (Direction) ;
II ...

I I override relevant Emergency virtualfunctions:

virtual void dispatch_to (const Location&);
II ...

I I add Ambulance-specific functions:

virtual int patient_capacity ( ); I I number ofstretchers
/ I ...

} ;

To sum up, a node class
[1] relies on its base classes both for its implementation and for supplying services to its users;
[2] provides a wider interface (that is, an interface with more public member functions) to its

users than do its base classes;
[3] relies primarily (but not necessarily exclusively) on virtual functions in its public interface;
[4] depends on all of its (direct and indirect) base classes;



774 Roles of Classes Chapter 25

[5] can be understood only in the context of its base classes;
[6] can be used as a base. for further derivation; and
[7] can be used to create objects.

Not every node class will conform to all of points 1, 2, 6, and 7, but most do. A class that does not
confonn to point 6 resembles a concrete type and could be called a concrete node class. For exam
ple, a concrete node class can be used to implement an abstract class (§ 12.4.2) and variables of such
a class can be allocated statically and on the stack. Such a class is sometimes called a leaf class.
However, any code operating on a pointer or reference to a class with virtual functions must take
into account the possibility of a further derived class (or assume without language support that fur
ther derivation hasn't happened). A class that does not conform to point 7 resembles an abstract
type and could be called an abstract node class. Because of unfortunate traditions, many node
classes have at least some protected members to provide a less restricted interface for derived
classes (§ 12.4.1.1).

Point 4 implies that to compile a node class, a programmer must include the declarations of all
of its direct and indirect base classes and all of the declarations that they, in tum, depend on. In
this, a node class again provides a contrast to an abstract type. A user of an abstract type does not
depend on the classes used to implement it and need not include them to compile.

25.4.1 Changing Interfaces

By definition, a node class is part of a class hierarchy. Not every class in a hierarchy needs to offer
the same interface. In particular, a derived class can provide more member functions, and a sibling
class can provide a completely different set of functions. From a design perspective, dynamic_cast
(§ 15.4) can be seen as a mechanism for asking an object if it provides a given interface.

As an example, consider a simple object 110 system. Users want to read objects from a stream,
determine that they are of the expected types, and then use them. For example:

void user ( )
{

/ / ... open file assumed to hold shapes, and attach ss as an istream for that file ...

10_obj* p =get_obj (ss) i / / read object from stream

if (Shape* sp = dynamic_cast<Shape*> (p) )
sp- >draw ( ) i / / use the Shape
/ / ...

}

else {
/ / oops.· non-shape in Shape file

The function user () deals with shapes exclusively through the abstract class Shape and can there
fore use every kind of shape. The use of dynamic_cast is essential because the object 110 system
can deal with many other kinds of objects and the user may accidentally have opened a file contain
ing perfectly good objects of classes that the user has never heard of.

This object 110 system assumes that every object read or written is of a class derived from
10_obj. Class 10_obj must be a polymorphic type to allow us to use dynamic_cast. For example:



Section 25.4.1

class lo_obj {
public:

virtual lo_obj* clone () const =0;
virtual -1o_obj () {}

} ;

I I polymorphic

Changing Interfaces 775

The critical function in the object 110 system is get_obi (), which reads data from an istream and
creates class objects based on that data. Assume that the data representing an object on an input
stream is prefixed by a string identifying the object's class. The job of get_obi () is to read that
string prefix and call a function capable of creating and initializing an object of the right class. For
example:

typedef 10_obj* (*PF) (istream&); I I pointer to function returning an /0_obj*

map<string, PF> io_map;

bool get_word (istream& is I string& s);

lo_obj* get_obj(istream& s)
{

I I maps strings to creation functions

I I read a wordfrom is into s

string str;
bool b = get_word (s I str) ; I I read initial word into str
if (b ==false) throw No_class(); II ioformatproblem

PF != io_map [str]; I I lookup 'str' to get function
if if== 0) throw Unknown_class (); I I no matchfor 'str'

return !(s); / I construct object from stream

The map called io_map holds pairs of name strings and functions that can construct objects of the
class with that name.

We could define class Shape in the usual way, except for deriving it from 10_obi as required by
user ( ):

class Shape: public lo_obj {
II ...

} ;

However, it would be more interesting (and in many cases more realistic) to use a defined Shape
(§2.6.2) unchanged:

class 10_circle : public Circle, public 10_obj {
public:

10_circle* clone () const { return new 10_circle (* this); } II using copy constructor
10_circle (istream& ); I I initialize from input stream
static 10_obj* new_circle (istream& s) { return new 10_circle (s) ;
I I ...

} ;

This is an example of how a class can be fitted into a hierarchy using an abstract class with less
foresight than would have been required to build it as a node class in the first place (§12.4.2,
§25.3).



776 Roles of Classes Chapter 25

The 10_circle (istream&) constructor initializes an object with data from its istream argument.
The new_circle () function is the one put into the io_map to make the class known to the object
I/O system. For example:

io_map [ II 10_circle II ] =&10_circle: : new_circle;

Other shapes are constructed in the same way:

class 10_triangle : public Triangle, public 10_obj {
I I ...

} ;

If the provision of the object I/O scaffolding becomes tedious, a template might help:

template<class T> class 10 : public T, public 10_obj {
public:

10* clone () const { return new 10 (*this);} I I override 10_obj::clone()

10 (istream& ) ; / I initialize from input stream

static 10* new_io (istream& s) { return new 10 (s); }
II ...

} ;

Given this, we can define 10_circle:

typedej 10<Circle> 10_circle;

We still need to define Io<Circle>: :10 (istream&) explicitly, though, because it needs to know
about the details of Circle.

The 10 template is an example of a way to fit concrete types into a class hierarchy by providing
a handle that is a node in that hierarchy. It derives from its template parameter to allow casting
from 10_obj. Unfortunately, this precludes using 10 for a built-in type:

typedef 10<Date> 10_date;
typedef lo<int> 10_inti

I I wrap concrete type
I I error: cannot derive from built-in type

This problem can be handled by providing a separate template for built-in types or by using a class
representing a built-in type (§25.10[1]).

This simple object 110 system may not do everything anyone ever wanted, but it almost fits on a
single page and the key mechanisms have many uses. In general, these techniques can be used to
invoke a function based on a string supplied by a user and to manipulate objects of unknown type
through interfaces discovered through run-time type identification.

25.5 Actions

The simplest and most obvious way to specify an action in C++ is to write a function. However, if
an action has to be delayed, has to be transmitted "elsewhere" before being performed, requires its
own data, has to be combined with other actions (§25.10[18,19]), etc., then it often becomes attrac
tive to provide the action in the form of a class that can execute the desired action and provide other
services as well. A function object used with the standard algorithms is an obvious example



Section 25.5 Actions 777

(§18.4), and so are the manipulators used with iostreams (§21.4.6). In the former case, the actual
action is performed by the application operator, and in the latter case, by the « or »operators. In
the case of Form (§21.4.6.3) and Matrix (§22.4.7), compositor classes were used to delay execu
tion until sufficient information had been gathered for efficient execution.

A common form of action class is a simple class containing just one virtual function (typically
called something like "do_it' '):

struct Action {
virtual int do_it (int) =0 i

virtual -Action () { }
} i

Given this, we can write code - say a menu - that can store actions for later execution without
using pointers to functions, without knowing anything about the objects invoked, and without even
knowing the name of the operation it invokes. For example:

class WriteJile : public Action {
File&/i

public:
int do_it (int) {return /. write () . succeed ( ) i

} i

class Error_response : public Action {
string message i

public:
Error_response (const string& s) :message (s) { }
int do_it (int) i

} ;

int Error_response: :do_it (int)
{

Response_box db (message. c_str ( ) I "continue" I "cancel" I "retry" );

switch (db. get_response ( ) )
case 0:

return 0;
case 1:

abort ( ) i

case 2:
current_operation. redo ( ) ;
return 1;

Action* actions [] = {
new WriteJile (j) I

new Error_response ( "you blew it again") I

/ / ...
} ;

A user of Action can be completely insulated from any knowledge of derived classes such as
WriteJile and Error_response.



778 Roles of Classes Chapter 2S

This is a powerful technique that should be treated with some care by people with a background
in functional decomposition. If too many classes start looking like Action, the overall design of the
system may have deteriorated into something unduly functional.

Finally, a class can encode an operation for execution on a remote machine or for storage for
future use (§25.10[18]).

25.6 Interface Classes

One of the most important kinds of classes is the humble and mostly overlooked interface class.
An interface class doesn't do much - if it did, it wouldn't be an interface class. It simply adjusts
the appearance of some service to local needs. Because it is impossible in principle to serve all
needs equally well all the time, interface classes are essential to allow sharing without forcing all
users into a common straitjacket.

The purest form of an interface doesn't even cause any code to be generated. Consider the
Vector specialization from §13.5:

template<class T> class Vector<T*> : private Vector<void*> {
public:

typedef Vector<void* > Base j

Vector ( ) : Base () {}
Vector(int i) : Base (i) {}

T*& operator [ ] (int i) {return static_cast<T*&> (Base: : operator [ ] (i) ) j

II ...
} ;

This (partial) specialization turns the unsafe Vector<void*> into a much more useful family of
type-safe vector classes. Inline functions are often essential for making interface classes affordable.
In cases such as this, when an inline forwarding function does only type adjustment, there is no
added overhead in time or space.

Naturally, an abstract base class representing an abstract type implemented by concrete types
(§25.2) is a form of interface class, as are the handles from §25.7. However, here we will focus on
classes that have no more specific function than adjusting an interface.

Consider the problem of merging two hierarchies using multiple inheritance. What can be done
if there is a name clash, that is, two classes have used the same name for virtual functions perform
ing completely different operations? For example, consider a Wild-West videogame in which user
interactions are handled by a general window class:

class Window {
II ...
virtual void draw ( ) ; I I display image

} ;

class Cowboy {
II ...
virtual void draw ( ) j I I pull gun from holster

} ;



Section 25.6

class Cowboy_window : public Cowboy I public Window {
I I ...

} ;

Interface Classes 779

A Cowboy_window represents the animation of a cowboy in the game and handles the
user/player's interactions with the cowboy character. We would prefer to use multiple inheritance,
rather than declaring either the Window or the Cowboy as members, because there will be many
service functions defined for both Windows and Cowboys. We would like to pass a
Cowboy_window to such functions without special actions required by the programmer. However,
this leads to a problem defining Cowboy_window versions of Cowboy:: draw ( ) and
Window: : draw ( ) .

There can be only one function defined in Cowboy_window called draw ( ). Yet because ser
vice functions manipulate Windows and Cowboys without knowledge of Cowboy_windows,
Cowboy_window must override both Cowboy's draw () and Window's draw (). Overriding both
functions by a single draw () function would be wrong because, despite the common name, the
draw () functions are unrelated and cannot be redefined by a common function.

Finally, we would also like Cowboy_window to have distinct, unambiguous names for the
inherited functions Cowboy: : draw () and Window: : draw ( ) .

To solve this problem, we need to introduce an extra class for Cowboy and an extra class for
Window. These classes introduce the two new names for the draw () functions and ensure that a
call of the draw () functions in Cowboy and Window calls the functions with the new names:

class CCowboy : public Cowboy {
public:

virtual int cow_draw () = 0;
void draw () {cow_draw ( ) ;

} ;

class WWindow : public Window {
public:

virtual int win_draw () = 0;
void draw () { win_draw ( );

} ;

I I interface to Cowboy renaming draw()

I I override Cowboy::draw()

I I interface to Window renaming draw()

I I override Window::draw()

We can now compose a Cowboy_window from the interface classes CCowboyand WWindowand
override cow_draw () and win_draw () with the desired effect:

class Cowboy_window : public CCowboy I public WWindow {
II ...
void cow_draw ( ) ;
void win_draw ();

} ;

Note that this problem was serious only because the two draw () functions have the same argu
ment type. If they have different argument types, the usual overloading resolution rules will ensure
that no problem manifests itself despite the unrelated functions having the same name.



780 Roles of Classes Chapter 25

For each use of an interface class, one could imagine a special-purpose language extension that
could perform the desired adjustment a little bit more efficiently or a little more elegantly. How
ever, each use of an interface class is infrequent and supporting them all with specialized language
constructs would impose a prohibitive burden of complexity. In particular, name clashes arising
from the merging of class hierarchies are not common (compared with how often a programmer
will write a class) and tend to arise from the merging of hierarchies generated from dissimilar cul
tures - such as games and window systems. Merging such dissimilar hierarchies is not easy, and
resolving name clashes will more often than not be the least of the programmer's problems. Other
problems include dissimilar error handling, dissimilar initialization, and dissimilar memory
management strategies. The resolution of name clashes is discussed here because the technique of
introducing an interface class with a forwarding function has many other applications. It can be
used not only to change names, but also to change argument and return types, to introduce run-time
checking, etc.

Because the forwarding functions CCowboy:: draw () and WWindow:: draw () are virtual
functions, they cannot be optimized away by simple inlining. It is, however, possible for a com
piler to recognize them as simple forwarding functions and then optimize them out of the call
chains that go through them.

25.6.1 Adjusting Interfaces

A major use of interface functions is to adjust an interface to match users' expectations better, thus
moving code that would have been scattered throughout a user's code into an interface. For exam
ple, the standard vector is zero-based. Users who want ranges other than 0 to size-l must adjust
their usage. For example:

void f()
{

vector v<int> (10) i / / range [0:9]

/ / pretend v is in the range [I:IOI.·

for (int i = 1; i<=10; i++) {

v [i-1] = 7; / / remember to adjust index
/ / ...

A better way is to provide a vector with arbitrary bounds:

class Vector: public vector<int> {
int lb;

public:
Vector (int low, int high) : vector<int> (high -low+1) { lb=low; }

int& operator [] (int i) {return vector<int>:: operator [] (i-lb);

int low () { return lb; }
int high () {return lb+size ( ) -1; }

} ;



Section 25.6.1

A Vector can be used like this:

void g ()
{

Vector v (1, 10) ;

for (int i = 1; i<=10; i++)
v[i] =7;
/ / ...

/ / range [1:10]

Adjusting Interfaces 781

This imposes no overhead compared to the previous example. Clearly, the Vector version is easier
to read and write and is less error-prone.

Interface classes are usually rather small and (by definition) do rather little. However, they crop
up wherever software written according to different traditions needs to cooperate because then there
is a need to mediate between different conventions. For example, interface classes are often used to
provide c++ interfaces to non-C++ code and to insulate application code from the details of
libraries (to leave open the possibility of replacing the library with another).

Another important use of interface classes is to provide checked or restricted interfaces. For
example, it is not uncommon to have integer variables that are supposed to have values in a given
range only. This can be enforced (at run time) by a simple template:

template<int low I int high> class Range {
int val;

public:
class Error { }; / / exception class

Range (int i) {Assert<Error> (low<=i&&i<high); val = i; } / / see §24.3.7.2
Range operator= (int i) { return *this=Range (i); }

operator int () { return val; }
/ / ...

} ;

void f(Range<2, 17»;
void g(Range<-10,10»;

void h (int x)
{

Range<O, 200} > i = Xi

int i1 = i;

f(3);
f(17);
g(-7)i
g(}OO)i

/ / might throw Range:.·Error

/ / throws Range::Error

/ / throws Range.·.·Error

The Range template is easily extended to handle ranges of arbitrary scalar types (§25.10[7]).
An interface class that controls access to another class or adjusts its interface is sometimes

called a wrapper.



782 Roles of Classes

25.7 Handle Classes

Chapter 25

An abstract type provides an effective separation between an interface and its implementations.
However, as used in §25.3 the connection between an interface provided by an abstract type and its
implementation provided by a concrete type is permanent. For example, it is not possible to rebind
an abstract iterator from one source - say, a set - to another - say, a stream - once the original
source becomes exhausted.

Furthermore, unless one manipulates an object implementing an abstract class through pointers
or references, the benefits of virtual functions are lost. User code may become dependent on details
of the implementation classes because an abstract type cannot be allocated statically or on the stack
(including being accepted as a by-value argument) without its size being known. Using pointers
and referenc~s implies that the burden of memory management falls on the user.

Another limitation of the abstract class approach is that a class object is of fixed size. Classes,
however, are used to represent concepts that require varying amounts qf storage to implement them.

A popular technique for dealing with these issues is to separate what is used as a single object
into two parts: a handle providing the user interface and a representation holding all or most of the
object's state. The connection between the handle and the representation is typically a pointer in
the handle. Often, handles have a bit more data than the simple representation pointer, but not
much more. This implies that the layout of a handle is typically stable even when the representa
tion changes and also that handles are small enough to move around relatively freely so that point
ers and references need not be used by the user.

Handle ··1" .
. ••••...• :;:p-

Representation

The String from §11.12 is a simple example of a handle. The handle provides an interface to,
access control for, and memory management for the representation. In this case, both the handle
and the representation are concrete types, but the representation class is often an abstract class.

Consider the abstract type Set from §25.3. How could one provide a handle for it, and what
benefits and cost would that involve? Given a set class, one might simply define a handle by over
loading the - > operator:

template<class T> class Set_handle (
Set<T>* rep;

public:
Set<T>* operator-> () {return rep; }

Set_handle (Set<T> * pp) : rep (pp) { }
} ;

This doesn't significantly affect the way Sets are used; one simply passes Set_handles around
instead of Set&s or Set*s. For example:



Section 25.7

void f (Set_handle<int> s)
{

for (int* p =s->first ( ); p; p =s->next ( ) )
{

/ / ...

void user ()
{

Set_handle<int> sl (new List_set<int> ) ;
Set_handle<int> v (new Vector_set<int> (100) );

f(sl) i

f(v);

Handle Classes 783

Often, we want a handle to do more than just provide access. For example, if the Set class and the
Set_handle class are designed together it is easy to do reference counting by including a use count
in each Set. In general, we do not want to design a handle together with what it is a handle to, so
we will have to store any information that needs to be shared by a handle in a separate object. In
other words, we would like to have non-intrusive handles in addition to the intrusive ones. For
example, here is a handle that removes an object when its last handle goes away:

template<class x> class Handle {
X* rep;
int* pcount;

public:
x* operator-> () {return rep; }

Handle(X* pp) : rep (pp), pcount(new int(l» { }
Handle (const Handle&r) : rep(r.rep) , pcount(r.pcount) { (*pcount)++; }

Handle& operator= (const Handle& r)
{

if (rep == r. rep) return *this;
if (-- (*pcount) == 0) {

delete rep;
delete pcount;

rep = r. rep;
pcount = r. pcount ;
(*pcount) ++;

return * this;

- Handle () { if (- - (*pcount) ==0) {delete rep; delete pcount; } }

/ / ...
} i

Such a handle can be passed around freely. For example:



784 Roles of Classes

void /1 (Handle<Set> ) ;

Handle<Set> 12 ()
{

Handle<Set> h (new List_set<int> ) ;
/ / ...
return h;

void g ()
{

Handle<Set> hh =12 ();
/1 (hh);
/ / ...

Chapter 25

Here, the set created inf2 () will be deleted upon exit from g () - unlessf] () held on to a copy;
the programmer does not need to know.

Naturally, this convenience comes at a cost, but for many applications the cost of storing and
maintaining the use count is acceptable.

Sometimes, it is useful to extract the representation pointer from a handle and use it directly.
For example, this would be needed to pass an object to a function that does not know about han
dles. This works nicely provided the called function does not destroy the object passed to it or
store a pointer to it for use after returning to its caller. An operation for rebinding a handle to a new
representation can also be useful:

template<class x> class Handle {
/ / ...
x* get_rep () { return rep; }

void bind (X* pp)
{

} ;

if (pp ! =rep) {
if (--*pcount == 0)

delete rep;
*pcount =1;

}

else
pcount = new int (1) ;

rep =pp;

/ / recycle pcount

/ / new pcount

Note that derivation of new classes from Handle isn't particularly useful. It is a concrete type
without virtual functions. The idea is to have one handle class for a family of classes defined by a
base class. Derivation from this base class can be a powerful technique. It applies to node classes
as well as to abstract types.



Section 25.7 Handle Classes 785

As written, Handle doesn't deal with inheritance. To get a class that acts like a genuine use
counted pointer, Handle needs to be combined with Ptr from §13.6.3.1 (see §25.10[2]).

A handle that provides an interface that is close to identical to the class for which it is a handle
is often called a proxy. This is particularly common for handles that refer to an object on a remote
machine.

25.7.1 Operations in Handles

Overloading -> enables a handle to gain control and do some work on each access to an object.
For example, one could collect statistics about the number of uses of the object accessed through a
handle:

template <class T> class Xhandle {
T* rep;
int no_oj_accesses;

public:
T* operator-> () {no_of_accesses++ ; return rep; }

/ / ...
} ;

Handles for which work needs to be done both before and after access require more elaborate pro
gramming. For example, one might want a set with locking while an insertion or a removal is
being done. Essentially, the representation class' interface needs to be replicated in the handle
class:

template<class T> class Set_controller {
Set<T> * rep;
Lock lock;
/ / ...

public:
void in:;ert (T* p) {Lockytr x (lock); rep->insert (p);} / / see §14.4.1
void remove(T* p) {Lockytr x(lock); rep->remove(p); }

int is_member(T* p) { return rep->is_member(p); }

T getJirst () { T* p = rep->first (); return p ? *p : T(}; }
T get_next () { T* p =rep->next ( ); return p ? *p : T(); }

T first () {Lockytr x (lock); T tmp = *rep- >first ( ); return tmp;
T next () {Lockytr x (lock); T tmp = * rep- >next ( ); return tmp;

/ / ...
} ;

Providing these forwarding functions is tedious (and therefore somewhat error-prone), although it is
neither difficult nor costly in run time.

Note that only some of the Set functions required locking. In my experience, it is typical that a
class needing pre- and post-actions requires them for only some member functions. In the case of
locking, locking on all operations - as is done for monitors in some systems - leads to excess lock
ing and sometimes causes a noticeable decrease in concurrency.



786 Roles of Classes Chapter 25

An advantage of the elaborate definition of all operations on the handle over the overloading of
- > style of handles is that it is possible to derive from class Set_controller. Unfortunately, some
of the benefits of being a handle are compromised if data members are added in the derived class.
In particular, the amount of code shared (in the handled class) decreases compared to the amount of
code written in each handle.

25.8 Application Frameworks

Components built out of the kinds of classes described in §25.2-§25.7 support design and reuse of
code by supplying building blocks and ways of combining them; the application builder designs a
framework into which these common building blocks are fitted. An alternative, and sometimes
more ambitious, approach to the support of design and reuse is to provide code that establishes a
common framework into which the application builder fits application-specific code as building
blocks. Such an approach is often called an application framework. The classes establishing such
a framework often have such fat interfaces that they are hardly types in the traditional sense. They
approximate the ideal of being complete applications, except that they don't do anything. The spe
cific actions are supplied by the application programmer.

As an example, consider a filter, that is, a program that reads an input stream, (maybe) performs
some actions based on that input, (maybe) produces an output stream, and (maybe) produces a final
result. A naive framework for such programs would provide a set of operations that an application
programmer might supply:

class Filter {
public:

class Retry {
public:

virtual const char* message () { return 0; }
} i

virtual void start () { }
virtual int read () = 0;
virtual void write () { }
virtual void compute () { }
virtual int result () = 0 i

virtual int retry (Retry& m) {cerr << m. message () << '\n' i return 2 i }

virtual ....Filter () { }
} i

Functions that a derived class must supply are declared pure virtual; other functions are simply
defined to do nothing.

The framework also provides a main loop and a rudimentary error-handling mechanism:



Section 25.8

int main_loop (Filter* p)
{

/or(;;) {
try {

p->start ( ) i

while (p- >read ( )) {
p->compute ();
p->write ( ) ;

}

return p- >result ( ) ;
}

catch (Filter:: Retry& m) {

if (int i =p->retry (m) ) return i;
}

catch ( ... ) {
cerr« II Fatal filter error\n II ;

return 1;

Application Frameworks 787

Finally, I could write my program like this:

class MyJilter : public Filter {
istream& is;
ostream& os;
int nchar;

public:
int read () {char c; is. get (c); return is. good ( ); }
void compute () {nchar+ +; }

int result () { os << nchar << II characters reatl\n II i return 0; }

MyJilter (istream& ii, ostream& 00) : is (ii), os (00), nchar (0) { }
} ;

and activate it like this:

int main ()
{

MyJilter / (cin , cout) ;
return main_loop (&j) ;

Naturally, for a framework to be of significant use, it must provide more structure and many more
services than this simple example does. In particular, a framework is typically a hierarchy of node
classes. Having the application programmer supply leaf classes in a deeply nested hierarchy allows
commonality between applications and reuse of services provided by such a hierarchy. A frame
work will also be supported by a library that provides classes that are useful for the application pro
grammer when specifying the action classes.



788 Roles of Classes

25.9 Advice

Chapter 25

[1] Make conscious decisions about how a class is to be used (both as a designer and as a user);
§25.1.

[2] Be aware of the tradeoffs involved among the different kinds of classes; §25.1.
[3] Use concrete types to represent simple independent concepts; §25.2.
[4] Use concrete types to represent concepts where close-to-optimal efficiency is essential; §25.2.
[5] Don't derive from a concrete class; §25.2.
[6] Use abstract classes to represent interfaces where the representation of objects might change;

§25.3.
[7] Use abstract classes to represent interfaces where different representations of objects need to

coexist; §25.3.
[8] Use abstract classes to represent new interfaces to existing types; §25.3.
[9] Use node classes where similar concepts share significant implementation details; §25.4.
[10] Use node classes to incrementally augment an implementation; §25.4.
[11] Use Run-time Type Identification to obtain interfaces from an object; §25.4.1.
[12] Use classes to represent actions with associated state; §25.5.
[13] Use classes to represent actions that need to be stored, transmitted, or delayed; §25.5.
[14] Use interface classes to adapt a class for a new kind of use (without modifying the class);

§25.6.
[15] Use interface classes to add checking; §25.6.1.
[16] Use handles to avoid direct use of pointers and references; §25.7.
[17] Use handles to manage shared representations; §25.7.
[18] Use an application framework where an application domain allows for the control structure to

be predefined; §25.8.

25.10 Exercises

1. (*1) The 10 template from §25.4.1 does not work for built-in types. Modify it so that it does.
2. (*1.5) The Handle template from §25.7 does not reflect inheritance relationships of the classes

for which it is a handle. Modify it so that it does. That is, you should be able to assign a
Handle<Circle> to a Handle<Shape> but not the other way around.

3. (*2.5) Given a String class, define another string class using it as the representation and provid
ing its operations as virtual functions. Compare the performance of the two classes. Try to find
a meaningful class that is best implemented by publicly deriving from the string with virtual
functions.

4. (*4) Study two widely used libraries. Classify the library classes in terms of concrete types,
abstract types, node classes, handle classes, and interface classes. Are abstract node classes and
concrete node classes used? Is there a more appropriate classification for the classes in these
libraries? Are fat interfaces used? What facilities - if any - are provided for run-time type
information? What is the memory-management strategy?

5. (*2) Use the Filter framework (§25.8) to implement a program that removes adjacent duplicate
words from an input stream but otherwise copies the input to output.

6. (*2) Use the Filter framework to implement a program that counts the frequency of words on



Section 25.10 Exercises 789

an input stream and produces a list of (word,count) pairs in frequency order as output.
7. (*1.5) Write a Range template that takes both the range and the element type as template

parameters.
8. (* 1) Write a Range template that takes the range as constructor arguments.
9. (*2) Write a simple string class that performs no error checking. Write another class that

checks access to the first. Discuss the pros and cons of separating basic function and checking
for errors.

10. (*2.5) Implement the object I/O system from §25.4.1 for a few types, including at least integers,
strings, and a class hierarchy of your choice.

11. (*2.5) Define a class Storable as an abstract base class with virtual functions write_out () and
read_in ( ). For simplicity, assume that a character string is sufficient to specify a permanent
storage location. Use class Storable to provide a facility for writing objects of classes derived
from Storable to disk, and for reading such objects from disk. Test it with a couple of classes
of your own choice.

12. (*4) Define a base class Persistent with operations save () and no_save () that control
whether an object is written to permanent storage by a destructor. In addition to save () and
no_save ( ) , what operations could Persistent usefully provide? Test class Persistent with a
couple of classes of your own choice. Is Persistent a node class, a concrete type, or an abstract
type? Why?

13. (*3) Write a class Stack for which it is possible to change implementation at run time. Hint:
"Every problem is solved by yet another indirection."

14. (*3.5) Define a class Oper that holds an identifier of type ld (maybe a string or a C-style string)
and an operation (a pointer to function or some function object). Define a class Cat_object that
holds a list of Opers and a void*. Provide Cat_object with operations add_oper(Oper) ,
which adds an Oper to the list; remove_oper (Id) , which removes an Oper identified by Id
from the list; and an operator () (Id, arg) , which invokes the Oper identified by Id. Imple
ment a stack of Cats by a Cat_object. Write a small program to exercise these classes.

15. (*3) Define a template Object based on class Cat_object. Use Object to implement a stack of
Strings. Write a small program to exercise this template.

16. (*2.5) Define a variant of class Object called Class that ensures that objects with identical oper
ations share a list of operations. Write a small program to exercise this template.

17. (*2) Define a Stack template that provides a conventional and type-safe interface to a stack
implemented by the Object template. Compare this stack to the stack classes found in the pre
vious exercises. Write a small program to exercise this template.

18. (*3) Write a class for representing operations to be shipped to another computer to execute
there. Test it either by actually sending commands to another machine or by writing commands
to a file and then executing the commands read from the file.

19. (*2) Write a class for composing operations represented as function objects. Given two func
tion objects f and g, Compose if, g) should make an object that can be invoked with an argu
ment x suitable for g and return f(g (x) ) , provided the return value of g () is an acceptable
argument type forf ().





Appendices and Index

These Appendices provide the C++ grammar, a discussion of compatibil
ity issues that arise between C++ and C and betwe~n Standard C++ and
prestandard versions of C++, and a variety of language-technical details.
The index is extensive and considered an integral part of the book.

Chapters

A Grammar
B Compatibility
C Technicalities
I Index



I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I



Appendix A
Grammar

There is no worse danger for a teacher
than to teach words instead of things.

- Marc Block

Introduction - keywords - lexical conventions - programs - expressions - state
ments - declarations - declarators - classes - derived classes - special member
functions - overloading - templates - exception handling - preprocessing direc
tives.

A.I Introduction

This summary of c++ syntax is intended to be an aid to comprehension. It is not an exact statement
of the language. In particular, the grammar described here accepts a superset of valid C++ con
structs. Disambiguation rules (§A.5, §A.7) must be applied to distinguish expressions from decla
rations. Moreover, access control, ambiguity, and type rules must be used to weed out syntactically
valid but meaningless constructs.

The C and c++ standard grammars express very minor distinctions syntactically rather than
through constraints. That gives precision, but it doesn't always improve readability.

A.2 Keywords
New context-dependent keywords are introduced into a program by typedef (§4.9.7), namespace
(§8.2), class (Chapter 10), enumeration (§4.8), and template (Chapter 13) declarations.

typedef-name:
identifier



794 Grammar

namespace-name:
original-namespace-name
namespace-alias

original-namespace-name:
identifier

namespace-alias:
identifier

class-name:
identifier
template-id

enum-name:
identifier

template-name:
identifier

Appendix A

Note that a typedef-name naming a class is also a class-name.
Unless an identifier is explicitly declared to name a type, it is assumed to name something that

is not a type (see §C.13.5).
The C++ keywords are:

c++ Keywords
and and_eq asm auto bitand bitor
bool break case catch char class
compl const const cast continue default delete
do double dynamic_cast else enum explicit
export extern false floal for friend
golO if inline int long mutable
namespace new not not_eq operator or
or_eq private protected public register reinterpret_cast
return short signed sizeD! static static cast
struct switch template this throw true
try typedef typeid typename union unsigned
using virtual void volatile wchar t while
xor xor eq

A.3 Lexical Conventions

The standard C and C++ grammars present lexical conventions as grammar productions. This adds
precision but also makes for large grammars and doesn't always increase readability:

hex-quad.'
hexadecimal-digit hexadecimal-digit hexadecimal-digit hexadecimal-digit



Section A.3

universal-character-name:
\u hex-quad
\U hex-quad hex-quad

preprocessing-token:
header-name
identifier
pp-number
character-literal
string-literal
preprocessing-op-or-punc
each non-white-space character that cannot be one ofthe above

token:
identifier
keyword
literal
operator
punctuator

header-name:
<h-char-sequence>
"q-char-sequence ..

h-char-sequence:
h-char
h-char-sequence h-char

h-char:
any member ofthe source character set except new-line and>

q-char-sequence:
q-char
q-char-sequence q-char

q-char:
any member ofthe source character set except new-line and II

pp-number:
digit
. digit
pp-number digit
pp-number nondigit
pp-number e sign
pp-number E sign
pp-number.

identifier:
nondigit
identifier nondigit
identifier digit

Lexical Conventions 795



796 Grammar

nondigit: one of
universal-characterename

abc d e f g h i j k 1 m n 0 p q r stu v w x y z
ABC D E F G H I J K L M N 0 P Q R STU V W X Y Z

digit: one of
012 3 4 5 6 7 8 9

Appendix A

preprocessing-op-or-punc: one of
{ } [ ] # ## <-
%: ? - . * +
& I < > +=
&= 1= «= »= « » != <=

-> ->* new delete and
bitor compl not or not_eq xor

:> <%
* /
*= /=
>= &&
and_eq
or_eq

%> %:%:
%
%= "=
II ++
bitand
xor_eq

literal:
integer-literal
character-literal
floating-literal
string-literal
boolean-literal

integer-literal:
decimal-literal integer-sujJixopt
octal-literal integer-suffixopt
hexadecimal-literal integer-su!fuopt

decimal-literal:
nonzero-digit
decimal-literal digit

octal-literal:
o
octal-literal octal-digit

hexadecimal-literal:
Ox hexadecimal-digit
OX hexadecimal-digit
hexadecimal-literal hexadecimal-digit

nonzero-digit: one of
123456789

octal-digit: one of
012 345 6 7

hexadecimal-digit: one of
012 345 6 7 8 9
abc d e f
ABC D E F



Section A.3

integer-suffix:
unsigned-suffix 10ng-sufflXopt
long-suffIX unsigned-suffIX()pt

unsigned-suffIX: one of
.u U

10ng·suffIX: one of
1 L

Lexical Conventions 797

character-literal:
, c-char-sequence '
L ' c-char-sequence '

c-char-sequence:
c-char
c-char-sequence c-char

c-char:
any member ofthe source character set except the single-quote, backslash, or new-line character
escape-sequence
universal-character-name

escape-sequence:
simple-escape-sequence
octal-escape·sequence
hexadecimal·escape-sequence

simple-escape-sequence: one of
\ ' \ II \ ? \ \ \a \b \ f \n \r \ t \ v

octal-escape-sequence:
\ octal-digit
\ octal-digit octal-digit
\ octal-digit octal-digit octal-digit

hexadecimal-escape-sequence.·
\x hexadecimal-digit
hexadecimal-escape-sequence hexadecimal-digit

floating-literal:
fractional-constant exponent-partoptfloating-sufjix()Pt
digit-sequence exponent-part floating-suffixopt

fractional-constant:
digit-sequenceopt . digit-sequence
digit-sequence .

exponent-part.'
e signopt digit-sequence
E signopt digit-sequence

sign: one of
+



798 Grammar

digit-sequence:
digit
digit-sequence digit

.f7oating-su.ffix: one {~f

f 1 F L

Appendix A

string-literal:
n s-c!1ar-sequenceO!" "

L " s-chlir-sequence"pI "

s-char-sequence:
s-char
s-c!1ar-sequence s-char

s-c!Jar:
any 171e111ber {~l the source character set except double-quote, backslash , or new-line
eSl'ape-sequence
tllliverSlil-character-l1al1le

booleall-literal:
false
true

A.4 Programs

A program is a collection of translation-units combined through linking (§9.4). A translation-unit,
often called a source.file, is a sequence of declarations:

translation-unit:
declaration-seq"pl

A.5 Expressions

Expressions are described in Chapter 6 and summarized in §6.2. The definition of expression-list is
identical to that of expression. There are two rules to dinstinguish the function-argument comma
separator from the comma (sequencing) operator (§6.2.2).

primary-expression:
literal
this
.. identifier
:: operator-!unct;on-;d
:: qualified-id
( expres.v;on )
id-express;on



Section A.S

id-expression:
unqualified-id
qualified-id

unqualified-id:
identifier
operator-function-id
conversion-functioll-id
- class-name
tenzplate-id

qualified-id:
nested-name-specifier templateopt unqualified-id

nested-name-specifier:
class-or-namespace-name .. nested-name-specifieropt
class-or-namespace-name .. template nested-name-specifier

class-or-namespace-name:
class-name
namespace-name

Expressions 799

postfix-expression:
primary-expression
postfix-expression [ expression ]
postfix-expression ( expression-listopt
simple-type-specifier ( expression-listopt )
typename :: opt nested-name-specifier identifier ( expression-listopt )
typename :: opt nested-name-specifier templateopt template-id ( expression-listopt
postfix-expression . templateopt :: opt id-expression
postfix-expression - > templateopt :: opt id-expression
postfix-expression . pseudo-destructor-name
postfix-expression - > pseudo-destructor-name
postfIX-expression ++
postfix-expression
dynamic_cast < type-id > ( expression )
static_cast < type-id > ( expression )
reinterpret_cast < type-id > ( expression
const_cast < type-id > ( expression )
typeid ( expression )
typeid ( type-id )

expression-list:
assignment-expression
expression-list , assignment-expression

pseudo-destructor-name:
: :opt nested-name-specijieropt type-name :: - type-name
: : opt nested-name-specijier template template-id .. - type-name
: : opt nested-name-specijieropt - type-name



800 Grammar

unary-expression:
postfix-expression
... + cast-expression
- - cast-expression
unary-operator cast-expression
sizeof unary-expression
sizeof ( type-id )
new-expression
delete-expression

unary-operator: one of
* & +

new-expression:
: : opt new new-placementopt new-type-id new-initializeropt
: : opt new neMl-placement(1pt ( type-id ) new-initializeroPt

new-placement:
( expression-list )

new-type-id:
type-specifier-seq ne'tv-declaratoropt

new-declarator:
ptr-operator new-declaratoropt
direet-ne",'-declarator

direet-ne",'-declarator:
[ expression ]
direct-new-declarator [ constant-expression ]

new-initializer:
{ expression-listopt

delete-expression:
: : opt delete cast-expression
: : opt delete [ ] cast-expression

cast-expression:
unary-expression
( type-id ) cast-expression

pm-expression:
cast-expression
pm-expression . * cast-expression
pm-expression - >* cast-expression

multiplicative-expression:
pm-expression
multiplicative-expression * pm-expression
multiplicative-expression / pm-expression
multiplicative-expression % pm-expression

Appendix A



relational-expression
relational-expression

assignment-expression

»= «= &= A= 1=

Section A.5

additive-expression:
multiplicative-expression
additive-expression + multiplicative-expression
additive-expression - multiplicative-expression

shift-expression:
additive-expression
shift-expression « additive-expression
shift-expression >> additive-expression

relational-expression:
shift-expression
relational-expression < shift-expression
relational-expression > shift-expression
relational-expression <= shift-expression
relational-expression >= shift-expression

equality-expression:
relational-expression
equality-expression
equality-expression ! =

and-expression:
equality-expression
and-expression & equality-expression

exclusive-or-expression:
and-expression
exclusive-or-expression A and-expression

inclusive-or-expression:
exclusive-or-expression
inclusive-or-expression I exclusive-or-expression

logical-and-expression:
inclusive-or-expression
logical-and-expression && inclusive-or-expression

logical-or-expression:
logical-and-expression
logical-or-expression I I logical-and-expression

conditional-expression:
logical-or-expression
logical-or-expression ? expression

assignment-expression:
conditional-expression
logical-or-expression assignment-operator assignment-expression
throw-expression

assignment-operator: one of
*= /= %= +=

Expressions 801



802 Grammar

expression:
ass;gnnlent-express;on
expression , assignment-expres~'ion

constant-expression:
conditional-expression

Appendix A

Grammar ambiguities arise from the similarity between function style casts and declarations. For
example:

int Xi

void f()

~

char (x) i / / conversion ofx to char or declaration ofa char called x?

All such ambiguities are resolved to declarations. That is, "if it could possibly be interpreted as a
declaration, it is a declaration." For example:

T(a) ->mi
T(a)++;

T ( *e) (int (3) );
T(j) [4];

T(a);
T(a)=mi
T(*b) ();
T(x),y,z=7;

/ / expression statenlent
/ / expression statel7lent

/ / lleclaration
/ / lleclaration

/ / declaratioll
/ / declaratioll
/ / declaration
/ / declaratioll

This disambiguation is purely syntactic. The only information used for a name is whether it is_
known to be a name of a type or a name of a template. If that cannot be determined, the name is
assumed to name something that isn't a template or a type.

The construct template unqualified-id is used to state that the unqualified-id is the name of a
template in a context in which that cannot be deduced (see §C.13.6).

A.6 Statements
See §6.3.

statement:
labeled-statement
expression-statement
compound-statement
selection-statement
iteration-statement
jump-statement
declaration-statement
try-block



Section A.6

labeled-statement:
identifier : statement
case constant-expression
defaul t : statement

statement

Statements 803

expression-statement:
expressionoP1 ;

compound-statement:
{ statement-seqopl

statement-seq:
statement
statement-seq statement

selection-statement:
if ( condition ) statement
if ( condition ) statement e 1s e statement
swi tch ( condition ) statement

condition:
expression
type-specifier-seq declarator assignment-expression

iteration-statement:
whi1e ( condition ) statement
do statement while ( expression
for ( for-init-statement conditionoP1

for-init-statement:
expression-statement
simple-declaration

jump-statement:
break ;
continue
return expressionopt
gato identifier ;

declaration-statement:
block-declaration

A.7 Declarations

expressionopt ) statement

The structure of declarations is described in Chapter 4, enumerations in §4.8, pointers and arrays in
Chapter 5, functions in Chapter 7, namespaces in §8.2, linkage directives in §9.2.4, and storage
classes in §10.4.

declaration-seq:
declaration
declaration-seq declaration



804 Grammar

declaration:
block-declaration
function-definition
template-declaration
explicit-instantiation
explicit-specialization
linkage-specification
namespace-definition

block-declaration:
simple-declaration
asm-dejinition
namespace-alias-definition
using-declaration
using-directive

simple-declaration:
decl-specifier-seqoPI init-declarator-listopt

decl-specifier:
storage-class-spec~er

type-specifier
function-specifier
friend
typedef

decl-specifier-seq:
decl-specifier-seqopt decl-specifier

storage-class-specifier:
auto
register
static
extern
mutable

function-specifier:
inline
virtual
explicit

typedef-name:
identifier

type-specifier:
simple-type-specifier
class-specifier
enum-specifier
elaborated-type-specifier
cv-qualifier

Appendix A



Section A.7

simple-type-specifier:
" • opt nested-name-specijieropt type-name
: : opt nested-name-specijier templateopt template-id
char
wchar t
bool
short
int
long
signed
unsigned
float
double
void

type-name:
class-name
enum-name
typedef-name

elaborated-type-specijier.·
class-key :: opt nested-name-specijieropt identijier
enum : : opt nested-name-specijieropt identijier
typename :: opt nested-name-specijier identijier
typename :: opt nested-name-specijier templateopt template-id

enum-name:
identifier

enum-specifier:
enum identifieropt { enumerator-Ustopt

enumerator-list:
enumerator-definition
enumerator-list I enumerator-definition

enumerator-definition."
enumerator
enumerator = constant-expression

enumerator:
identifier

namespace-name:
original-namespace-name
namespace-aUas

original-namespace-name:
identifier

namespace-definition:
named-namespace-definition
unnamed-namespace-dejinition

Declarations 805



namespace-body

806 Grammar

named-namespace-definition:
original-namespace-definition
extension-namespace-definition

original-namespace-definition:
namespace identifier { namespace-body

extension-namespace-definition:
namespace original-namespace-name

unnamed-namespace-definition:
namespace { namespace-body

namespace-body:
declaration-seqopt

namespace-alias:
identifier

namespace-alias-definition:
namespace identifier = qualified-namespace-specijier,.

qualified-namespace-specifier:
: : opt nested-name-specifieropt namespace-name

using-declaration:
us ing typenameopt :: opt nested-name-specijier unqualified-id ;
us ing :: unqualified-id;

using-directive:
using namespace :: opt nested-name-specijieropt namespace-name ,.

asm-definition:
asm ( string-literal

linkage-specification:
extern string-literal { declaration-seqopt
extern string-literal declaration

A

The grammar allows for arbitrary nesting of declarations. However, some semantic restrictions
apply. For example, nested functions (functions defined local to other functions) are not allowed.

The list of specifiers that starts a declaration cannot be empty (there is no "implicit int;" §B.2)
and consists of the longest possible sequence of specifiers. For example:

typedef int I;
void f(unsigned I) { / * ... * / )

Here,!() takes an unnamed unsigned int.
An asm () is an assembly code insert. Its meaning is implementation-defined, but the intent is

for the string to be a piece of assembly code that will be inserted into the generated code at the
place where it is specified.

Declaring a variable register is a hint to the compiler to optimize for frequent access; doing so
is redundant with most modern compilers.



Section A.7.1 Declarators 807

parameter-declaration-clause ) cv-qualijier-seqopt exception-specificationopt
constant-expressionopt ]

A.7.1 Declarators

See §4.9.1, Chapter 5 (pointers and arrays), §7.7 (pointers to functions), and §15.5 (pointers to
members).

init-declarator-list:
init-declarator
init-declarator-list , init-declarator

init-declarator:
declarator initializeropt

declarator:
direct-declarator
ptr-operator declarator

direct-declarator:
declarator-id
direct-declarator
direct-declarator
( declarator )

ptr-operator:
* cv-qualijier-seqopt
&
: :opt nested-name-specifier * cv-qualijier-seqoPl

cv-qualifier-seq:
cv-qualifier cv-qualifier-seqopt

cv-qualifier:
const
volatile

declarator-id:
: : opt id-expression
: :opt nested-name-specifieropt type-name

type-id:
type-specifier-seq abstract-declaratoropt

type-specifier-seq:
type-specifier type-specifier-seqopt

abstract-declarator:
ptr-operator abstract-declaratoropt
direct-abstract-declarator

direct-abstract-declarator:
direct-abstract-declaratoropt ( parameter-decLaration-clause ) cv-quaLijier-seqopt exception-specijicationopt
direct-abstract-declaratoropt [ constant-expressionopt ]
( abstract-declarator )



.. "opt

808 Grammar

parameter-decLaration-clause:
parameter-declaration-listopt
parameter-decLaration-list ,

parameter-decLaration-list:
parameter-declaration
parameter-declaration-list , parameter-declaration

parameter-declaration:
decl-specijier-seq declarator
decl-specifier-seq declarator = assignment-expression
declrspecifier-seq abstract-decLaratoropt
decl-specifier-seq abstract-declaratoropt = assignment-expression

function-definition:
decl-specijier-seqopt decLarator ctor-initiaLizeropt function-body
decl-specifier-seqofJt declarator function-try-block

function-body:
compound-statement

initiaLizer:
= initializer-clause
(expression-list )

initializer-cLause:
assigl1ment-expression
{ initializer-list , opt }
{ }

initializer-list:
initializer-clause
in~tializer-list , initializer-cLause

Appendix A

A volatile specifier is a hint to a compiler that an object may change its value in ways not specified
by the language so that aggressive optimizations must be avoided. For example, a real time clock
might be declared:

extern const volatile clock i

Two successive reads of clock might give different results.

A.8 Classes

See Chapter 10.

class-namf!:
identifier
template-id

class-specifier:
class-head { member-specificationoPt }



Section A.8

class-head:
class-key identifieropt base-clauseopt
class-key nested-name-specifier identifier base-clauseopt
class-key nested-name-specifier template template-id base-clauseopt

class-key:
class
struct
union

member-specification:
member-declaration member-specificationopt
access-specifier : member-specificationopt

member-declaration:
decl-specifier-seqopt member-declarator-listopt
function-definition ; opt
: :opt nested-name-specifier templateopt unqualified-id
using-declaration
template-declaration

member-declarator-list:
member-declarator
member-declarator-list , member-declarator

member-declarator:
declarator pure-specifieropt
declarator constant-initializeropt
identijierop, : constant-expression

pure-specifier:
= 0

constant-initializer:
= constant-expression

. Classes 809

To preserve C compatibility, a class and a non-class of the same name can be declared in the same
scope (§5.7). For example:

struct stat { / * ... * / };
int stat (char* name, struct stat* buf) ;

In this case, the plain name (stat) is the name of the non-class. The class must be referred to using
a class-key prefix .

Constant expressions are defined in §C.5.

A.S.I Derived Classes

See Chapter 12 and Chapter 15.

base-clause:
: base-specifier-list



810 Grammar

base-specifier-list:
base-~pecifier
base-~pecifier-Iist I base-specifier

base-specifier:
: : 01" nested-nanze-~pecifierol" class-name
virtual access-specifierol" : : 01" nested-name-~pecifierol" class-name
access-specifier virtualo,,' : :01" nested-name-specifierop, class-name

access-specijier:
private
protected
public

Appendix A

A.8.2 Special Member Functions

See § 11.4 (conversion operators), §10.4.6 (class member initialization), and § 12.2.2 (base initial
ization).

conversion-function-id:
operator conversion-type-id

conversion-t.\pe-id:
~vpe-specifie r-seq conversion-declarator"I"

conversion-declarator:
plr-operator conversion-declaratorop,

ctor-initializer:
: nzenz-initializer-Iist

nzenz-initializer-list:
mem-initializer
mem-initializer I lnenz-initializer-list

mem-initializer:
mem-initializer-id ( expression-listol" )

nlenz-initializer-id:
: : 01" nesred-name-!)pecijier"I" class-name
identifier

A.8.3 Overloading

See Chapter I I.

operator-function-id:
operator operator



Section A.8.3 Overloading 811

operator: one of
new delete new[] delete []
+ * / % & I < >
+= *= /= %= &= 1= « » »= «=
!= <= >= && II ++ ->* -> ( ) [ ]

A.9 Templates

Templates are explained in Chapter 13 and §C.13.

template-declaration:
exportop1 template < template-parameter-list > declaration

template-parameter-list:
template-parameter
template-parameter-list , template-parameter

te,nplate-parameter:
type-parameter
parameter-declaration

type-parameter:
class identifieroPI
class identijieroP1 = type-id
typename identijieropt

typename identijieropl = type-id
template < template-parameter-list > class identijieropt

template < template-parameter-list > class identijieropt

template-id:
template-name < template-argument-listopt >

template-name:
identifier

template-argument-list :
template-argument
template-argument-list , template-argument

template-argument:
assignment-expression
type-id
template-name

explicit-instantiation:
template declaration

explicit-specialization:
template < > declaration

template-nante

The explicit template argument specification opens up the possibility of an obscure syntactic ambi
guity. Consider:



812 Grammar

void h ()
{

/<1> (O) i I I ambiguity: ((/)<1) > (0) or (!<1»(0) ?
I I resolution: f<1> is called with argument 0

Appendix A

The resolution is simple and effective: if f is a template name, f< is the beginning of a qualified
template name and the subsequent tokens must be interpreted based on that; otherwise, < means
less-than. Similarly, the first non-nested> terminates a template argument list. If a greater-than is
needed, parentheses must be used:

/<a>b>{O);
!< (a>b) > (O);

I I syntax error
II ok

A similar lexical ambiguity can occur when terminating >8 get too close. For example:

list<vector<int> > Lv1;
list< vector<int> > Lv2 ;

I I syntax error: unexpected» (right shift)
I I correct: list o/vectors

Note the space between the two >s; » is the right-shift operator. That can be a real nuisance.

A.tO Exception Handling

See §8.3 and Chapter 14.

try-block:
try compound-statement handler-seq

function-try-block:
try ctor-initializeropt!unction-body handler-seq

handler-seq:
handler handler-seqopt

handler:
catc;h ( exception-declaration ) compound-statement

exceptiol'f.-declaration:
type-sper:ijier-seq declarator
type-specijier-seq abstract-declarator
type-specifier-seq

throw-expression:
throw assignment-expressionopt

exception-specification:
throw ( type-id-listopt )

type-id-list:
type-id
type-id-list , type-id



Section A.I0 Exception Handling 813

A.II Preprocessing Directives

The preprocessor is a relatively unsophisticated macro processor that works primarily on lexical
tokens rather than individual characters. In addition to the ability to define and use macros (§7.8),
the preprocessor provides mechanisms for including text files and standard headers (§9.2.1) and
conditional compilation based on macros (§9.3.3). For example:

#if OPT==4
#include II header4. h II

#elif O<OPT
#include "someheader. h"
#else
#include<cstdlib>
#endif

All preprocessor directives start with a #, which must be the first non-whitespace character on its
line.

preprocessing-file:
grouPopt

group:
group-part
group group-part

group-part:
pp-tokensopt new-line
if-section
control-line

if-section:
if-group elif-groupsopt else-grouPopt endif-line

if-group:
# if constant-expression new-line groupopt
# ifdef identifier new-line grouPopt
# ifndef identifier new-line grouPopt

elif-groups:
elif-group
elif-groups eli/-group

elif-group:
# elif constant-expression new-line grouPopt

else-group:
# else new-line grouPopt

endif-line:
# endif new-line



814 Grammar

control-line:
# inc1ude pp-tokens ne~v-line

# define ident(fier replacement-list new-line
# define identifier lparen ident(fier-listol" replacement-list new-line
# undef identifier new-line
# 1 ine pp-tokens new-line
# error pp-tokenso/)t new-line
# pragma pp-tokenso,Jt new/-line
# new-line

lparen:
the left-parenthesis character wdthout preceding white-space

replacel1lent-1ist:
pp-tokensO'1'

pp-tokens:
preprocessing-token
pp-tokens preprocessing-token

new-line:
the lleH.'-lille character

identifier-list:
identifier
itentifier-list , identifier

Appendix A



Appendix B
Compatibility

You go ahead andfollow your customs,
and I'll follow mine.

- C. Napier

C/C++ compatibility - silent differences between C and C++ - C code that is not C++
- deprecated features - C++ code that is not C - coping with older C++ implementa
tions - headers - the standard library - namespaces - allocation errors - templates
- for-statement initializers - advice - exercises.

B.l Introduction

This appendix discusses the incompatibilities between C and C++ and between Standard C++ and
earlier versions of C++. The purpose is to document differences that can cause problems for the
programmer and point to ways of dealing with such problems. Most compatibility problems sur
face when people try to upgrade a C program to a C++ program, to try port a C++ program from one
pre-standard version of C++ to another, or try to compile C++ using modem features with an older
compiler. The aim here is not to drown you in the details of every compatibility problem that ever
surfaced in an implementation, but rather to list the most frequently occurring problems and present
their standard solutions.

When you look at compatibility issues, a key question to consider is the range of implementa
tions under which a program needs to work. For learning C++, it makes sense to use the most com
plete and helpful implementation. For delivering a product, a more conservative strategy might be
in order to maximize the number of systems on which the product can run. In the past, this has
been a reason (and sometimes just an excuse) to avoid C++ features deemed novel. However,
implementations are converging, so the need for portability across platforms is less cause for
extreme caution than it was a couple of years ago.



816 Compatibility

8.2 C/C++ Compatibility

Appendix B

With minor exceptions, C++ is a superset of C. Most differences stem from C++' s greater emphasis
on type checking. Well-written C programs tend to be C++ programs as well. All differences
between c++ and C can be diagnosed by a compiler.

B.2.1 "Silent" Differences

With a few exceptions, programs that are both C++ and C have the same meaning in both lan
guages. Fortunately, these "silent differences" are rather obscure:

In C, the size of a character constant and of an enumeration equals sizeof(int). In C++,
sizeof( ,a ') equals sizeof( char) , and a C++ implementation is allowed to choose whatever size is
most appropriate for an enumeration (§4.8).

C++ provides the / / comments; C does not (although many C implementations provide them as
an extension). This difference can be used to construct programs that behave differently in the two
languages. For example:

int f (int a, int b)
{

return a / / * pretty unlikely */ b
/ * unrealistic: sel1lic%l1 on separate line to avoid syntax error * /

ISO C is being revised to allow / / as in C++ .
A structure name declared in an inner scope can hide the name of an object, function, enumera-

tor, or type in an outer scope. For example:

int x [99];
void f()
{

struct x { int a; };
sizeof(x); / * size ofthe array in C, size ofthe struct in C++ * /

8.2.2 C Code That Is Not C++

The C/C++ incompatibilities that cause most real problems are not subtle. Most are easily caught
by compilers. This section gives examples of C code that is not C++. Most are deemed poor style
or even obsolete in modem C.

In C, most functions can be called without a previous declaration. For example:

double sq2 = sqrt (2) ;

printf( "the square root of 2 is %g\n II , sq2) ;

main(}
{

/ * poor style C. Not C++ * /

/ * call undeclaredfunction * /
/ * call undeclared function * /

Complete and consistent use of function declarations (function prototypes) is generally recom
mended for C. Where that sensible advice is followed, and especially where C compilers provide



Section B.2.2 C Code That Is Not C++ 817

options to enforce it, C code conforms to the C++ rule. Where undeclared functions are called, you
have to know the functions and the rules for C pretty well to know whether you have made a mis
take or introduced a portability problem. For example, the previous main () contains at least two
errors as a C program.

In C, a function declared without specifying any argument types can take any number of argu
ments of any type at all. Such use is deemed obsolescent in Standard C, but it is not uncommon:

void f ( ) i / * argument types not mentioned * /

void g ()
{

f(2) i / * poor style C. Not C++ * /

In C, functions can be defined using a syntax that optionally specifies argument types after the list
of arguments:

void f(a,p,c) char *Pi char Ci { /* ... */} /* C. Not C++ */

Such definitions must be rewritten:

void fUnt a, char* p, char c) { / * ... * / }

In C and in pre-standard versions of C++, the type specifier defaults to into For example:

const a = 7: / * In C, type int assumed. Not C++ * /

ISO C is being revised to disallow' 'implicit int," just as in C++.
C allows the definition of structs in return type and argument type declarations. For example:

struct S { int x, y; } f ( ) ;
void g (struct S { int x, y; } y);

/* C. Not C++ */
/* C. Not C++ */

The C++ rules for defining types make such declarations useless, and they are 110t allowed.
In C, integers can be assigned to variables of enumeration type:

enum Direction { up, down } ;
Direction d = J ; / * error: int assigned to Direction; ok in C * /

C++ provides many more keywords than C does. If one of these appears as an identifier in a C pro
gram, that program must be modified to make a C++ program:

C++ Keywords That Are Not C Keywords

and and_eq asm bitand bitor /JoDI
catch class compl const cast delete dynamic_cast
explicit export false friend inline mutable
namespace new not not_eq operator or
or_eq private protected public reinterpret_cast static cast
template this throw true try typeid
typename using virtual wchar t xor xor_eq-



818 Compatibility

In C, some of the C++ keywords are macros defined in standard headers:

C++ Keywords That Are C Macros
and_eq bitand bitor compl
or or_eq wchar t xor

not
xor eq

B

This implies that in C they can be tested using #ifde/, redefined, etc.
In C, a global data object may be declared several times in a single translation unit without

using the extern specifier. As long as at most one such declaration provides an initializer, the
object is considered defined only once. For example:

int i i int i i / * defines or declares a single integer 'i'; not C++ * /

In C++, an entity must be defined exactly once; §9.2.3.
In C++, a class may not have the same name as a typedefdeclared to refer to a different type in

the same scope; §5.7.
In C, a void* may be used as the right-hand operand of an assignment to or initialization of a

variable of any pointer type; in C++ it may not (§5.6). For example:

void f(int n)
{

int* p =malloc(n*sizeof(int))j /* not C++. In C++, allocate using 'new' */

C allows jumps to bypass an initialization; C++ does not.
In C, a global const by default has external linkage; in C++ it does not and must be initialized,

unless explicitly declared extern (§5.4).
In C, names of nested structures are placed in the same scope as the structure in which they are

nested. For example:

struct S {
struct T { / * ... * / } i

/ / ...
} i

struct T Xi / * ok in C meaning 'S::T X; '. Not C++ * I

In C, an array can be initialized by an initializer that has more elements than the array requires. For
example:

char v [5] = II Oscar" ; / * ok in C, the terminating 0 is not used. Not C++ * /

B.2.3 Deprecated Features

By deprecating a feature, the standards committee expresses the wish that the feature would go
away. However, the committee does not have a mandate to remove a heavily used feature - how
ever redundant or dangerous it may be. Thus, a deprecation is a strong hint to the users to avoid the
feature.

The keyword static, which usually means "statically allocated," can be used to indicate that a
function or an object is local to a translation unit. For example:



Section B.2.3

/ / filel:
static int glob;

/ / file2:
static int glob;

Deprecated Features 819

This program genuinely has two integers called glob. Each glob is used exclusively by functions
defined in its translation unit.

The use of static to indicate "local to translation unit" is deprecated in C++. Use unnamed
namespaces instead (§8.2.5.1).

The implicit conversion of string literal to a (non-const) char* is deprecated. Use named
arrays of char or avoid assignment of string literals to char*s (§5.2.2).

C-style casts should have been deprecated when the new-style casts were introduced. Program
mers should seriously consider banning C-style casts from their own programs. Where explicit
type conversion is necessary, static_cast, reinterpret_cast, const_cast, or a combination of these
can do what a C-style cast can. The new-style casts should be preferred because they are more
explicit and more visible (§6.2.7).

B.2.4 C++ Code That Is Not C

This section lists facilities offered by C++ but not by C. The features are sorted by purpose. How
ever, many classifications are possible and most features serve multiple purposes, so this classifica
tion should not be taken too seriously.

- Features primarily for notational convenience:
[I] II comments (§23); being added to C
[2] Support for restricted character sets (§C.3.1)
[3] Support for extended character sets (§C.3.3); being added to C
[4] Non-constant initializers for objects in static storage (§9.4.1)
[5] const in constant expressions (§5.4, §C.5)
[6] Declarations as statements (§6.3.1)
[7] Declarations infor-statement initializers and conditions (§6.3.3, §6.3.2.1)
[8] Structure names need not be prefixed by struct (§5.7)
Features primarily for strengthening the type system:
[1] Function argument type checking (§7.1); later added to C (§B.2.2)
[2] Type-safe linkage (§9.2, §9.2.3)
[3] Free store management using new and delete (§6.2.6, §10.4.5, §15.6)
[4] const (§5.4, §5.4.1); later added to C
[5] The Boolean type bool (§4.2)
[6] New cast syntax (§6.2.7)
Facilities for user-defined types:
[1] Classes (Chapter 10)
[2] Member functions (§ 10.2.1) and member classes (§ 11.12)
[3] Constructors and destructors (§ 10.2.3, §10.4.1)
[4] Derived classes (Chapter 12, Chapter 15)
[5] virtual functions and abstract classes (§12.2.6, §12.3)



820 Compatibility AppendixB

[6] Public/protected/private access control (§10.2.2, §15.3, §C.II)
[7] friends (§ 11.5)
[8] Pointers to members (§ 15.5, §C.12)
[9] static members (§10.2.4)
[10] mutable members (§10.2.7.2)
[11] Operator overloading (Chapter 11)
[12] References (§5.5)

- Features primarily for program organization (in addition to classes):
[1] Templates (Chapter 13, §C.13)
[2] Inline functions (§7.1.1)
[3] Default arguments (§7.5)
[4] Function overloading (§7.4)
[5] Nam~spaces (§8.2)
[6] Explicit scope qualification (operator: : ; §4.9.4)
[7] Exception handling (§8.3, Chapter 14)
[8] Run-time Type Identification (§ 15.4)

The keywords added by C++ (§B.2.2) can be used to spot most C++-specific facilities. However,
some facilities, such as function overloading and consts in constant expressions, are not identified
by a keyword. In addition to the language features listed here, the C++ library (§ 16.1.2) is mostly
C++ specific.

The _ cplusplus macro can be used to determine whether a program is being processed by a C
or a C++ compiler (§9.2.4).

B.3 Coping with Older C++ Implementations

C++ has been in constant use since 1983 (§I.4). Since then, several versions have been defined and
many separately developed implementations have emerged. The fundamental aim of the standards
effort was to ensure that implementers and users would have a single definition of C++ to work
from. Until that definition becomes pervasive in the C++ community, however, we have to deal
with the fact that not every implementation provides every feature described in this book.

It is unfortunately not uncommon for people to take their first serious look at C++ using a five
year-old implementation. The typical reason is that such implementations are widely available and
free. Given a choice, no self-respecting professional would touch such an antique. For a novice,
older implementations come with serious hidden costs. The lack of language features and library
support means that the novice must struggle with problems that have been eliminated in newer
implementations. Using a feature-poor older implementation also warps the novice's programming
style and gives a biased view of what C++ is. The best subset of C++ to initially learn is not the set
of low-level facilities (and not the common C and C++ subset; §I.2). In particular, I recommend
relying on the standard library and on templates to ease learning and to get a good initial impres
sion of what C++ programming can be.

The first commercial release of C++ was in late 1985. The language was defined by the first
edition of this book. At that point, c++ did not offer multiple inheritance, templates, run-time type
infonnation, exceptions, or namespaces. Today, I see no reason to use an implementation that



Section B.3 Coping with Older C++ Implementations 821

doesn't provide at least some of these features. I added multiple inheritance, templates, and excep
tions to the definition of c++ in 1989. However, early support for templates and exceptions was
uneven and often poor. If you find problems with templates or exceptions in an older implementa
tion, consider an immediate upgrade.

In general, it is wise to use an implementation that conforms to the standard wherever possible
and to minimize the reliance on implementation-defined and undefined aspects of the language.
Design as if the full language were available and then use whatever workarounds are needed. This
leads to better organized and more maintainable programs than designing for the lowest-common
denominator subset of C++. Also, be careful to use implementation-specific language extensions
only when absolutely necessary.

B.3.1 Headers

Traditionally, every header file had a . h suffix. Thus, C++ implementations provided headers such
as <map. h> and <iostream. h>. For compatibility, most still do.

When the standards committee needed headers for redefined versions of standard libraries and
for newly added library facilities, naming those headers became a problem. Using the old . h
names would have caused compatibility problems. The solution was to drop the . h suffix in stan
dard header names. The suffix is redundant anyway because the < > notation ihdicates that a stan
dard heauer L) being named.

Thus, the standard library provides non-suffixed headers, such as <iostream> and <map>. The
declarations in those files are placed in namespace std. Older headers place their declarations in the
global namespace and use a . h suffix. Consider:

#include<iostream>

int main ()
{

std: : cout« n Hello I world! \n II i

If this fails to compile on an implementation, try the more traditional version:

#include<iostream. h>

int main ()
{

cout« II Hello I world! \n II ;

Some of the most serious portability problems occur because of incompatible headers. The stan
dard headers are only a minor contributor to this. Often, a program depends on a large number of
headers that are not present on all systems, on a large number of declarations that don't appear in
the same headers on all systems, and on declarations that appear to be standard (because they are
found in headers with standard names) but are not part of any standard.

There are no fully-satisfactory approaches to dealing with portability in the face of inconsistent
headers. A general idea is to avoid direct dependencies on inconsistent headers and localize the
remaining dependencies. That is, we try to achieve portability through indirection and localization.



822 Compatibility AppendixB

For example, if declarations that we need are provided in different headers in different systems, we
may choose to #include an application specific header that in tum #includes the appropriate
header(s) for each system. Similarly, if some functionality is provided in slightly different forms
on different systems, we may choose to access that functionality through application-specific inter
face classes and functions.

B.3.2 The Standard Library

Naturally, pre-standard-C++ implementations may lack parts of the standard library. Most will
have iostreams, non-templated complex, a different string class, and the C standard library. How
ever, some may lack map, list, valarray , etc. In such cases, use the - typically proprietary 
libraries available in a way that will allow conversion when your implementation gets upgraded to
the standard. It is usually better to use a non-standard string, list, and map than to revert to C-style
programming in the absence of these standard library classes. Also, good implementations of the
STL part of the standard library (Chapter 16, Chapter 17, Chapter 18, Chapter 19) are available free
for downloading.

Early implementations of the standard library were incomplete. For example, some had con
tainers that didn't support allocators and others required allocators to be explicitly specified for
each class. Similar problems occurred for other "policy arguments," such as comparison criteria.
For example:

list<int> Ii;
list<int, allocator<int> > li2;

/ / ok, but some implementations require an allocator
/ / ok, but some implementations don't implement allocators

map<string , Record> ml j / / ok, but some implementations require a less-operation
map<string I Record, less<string> > m2 ;

Use whichever version an implementation accepts. Eventually, the implementations will accept all.
Early C++ implementations provided istrstream and ostrstream defined in <strstream. h>

instead of istringstream and ostringstream defined in <sstream>. The strstreams operated
directly on a char [ ] (see §21.10[26]).

The streams in pre-standard-C++ implementations were not parameterized. In particular, the
templates with the basic_ prefix are new in the standard, and the basic_ios class used to be called
ios. Curiously enough, iostate used to be called io_state.

B.3.3 Namespaces

If your implementation does not support namespaces, use source files to express the logical struc
ture of the program (Chapter 9). Similarly, use header files to express interfaces that you provide
for implementations or that are shared with C.

In the absence of namespaces, use static to compensate for the lack of unnamed namespaces.
Also use an identifying prefix to global names to distinguish your names from those of other parts
of the code. For example:

/ / for use on pre-namespace implementations:

class bs_string { / * ... * / } i

typedef int bs_bool;
/ / Bjame's string
/ / Bjame's Boolean type



Section B.3.3

class joe_string;
enum joe_bool {joeJalse, joe_true } ;

/ / Joe's string
/ / Joe's bool

~8IDespaces 823

Be careful when choosing a prefix. Existing C and C++ libraries are littered with such prefixes.

8.3.4 Allocation Errors

In pre-exception-handling-C++, operator new returned 0 to indicate allocation failure. Standard
C++'s new throws bad_alloe by default.

In general, it is best to convert to the standard. In this case, this means modify the code to catch
bad_aUoe rather than test for O. In either case, coping with memory exhaustion beyond giving an
error message is hard on many systems.

However, when converting from testing 0 to catching bad_alloe is impractical, you can some
times modify the program to revert to the pre-exception-handling behavior. If no _new_handler is
installed, using the nothrow allocator will cause a 0 to be returned in case of allocation failure:

x* pI =new X; / / throws bad_alIoe ifno memory
x* p2 =new (nothrow) X; / / returns 0 ifno memory

B.3.5 Templates

The standard introduced new template features and clarified the rules for several existing ones.
If your implementation doesn't support partial specialization, use a separate name for the tem

plate that would otherwise have been a specialization. For example:

template<class T> class plist : private list<void* > { / / should have been list<T*>
/ / ...

} ;

If your implementation doesn't support member templates, some techniques become infeasible. In
particular, member templates allow the programmer to specify construction and conversion with a
flexibility that cannot be matched without them (§ 13.6.2). SOlnetimes, providing a nonmember
function that constructs an object is an alternative. Consider:

template<class T> class X {
/ / ...
template<class A> X (const A& a) ;

} ;

In the absence of member templates, we must restrict ourselves to specific types:

template<class T> class X {
/ / ...
X(const AI& a);
X (const A2& a) i

/ / ...
} ;

Most early implementations generated definitions for all member functions defined within a tem
plate class when that template class was instantiated. This could lead to errors in unused member



824 Compatibility Appendix B

functions (§C.13.9.1). The solution is to place the definition of the member functions after the
class declaration. For example, rather than

template<class T> class Container {
/ / ...

public:
void sort () { / * use < * / } / / in-class definition

} i

class Glob { / * no <for Glob * / };

Container<Gloh> cg i / / sonze pre-standard inlplell1entations try to define Container<Glob>::sort()

use

template<class T> class Container {
/ / ...

public:
void sort ( ) i

} i

template<class T> void Container<T>:: sort () { / * use < * /} / / ()ut-(~f-class definition

class Glob { / * 110 <for Glob * / };

Container<Glob> cg; / / no problenl as long as cg.sort() isn't called

Early implementations of C++ did not handle the use of members defined later in a class. For
example:

template<class T> class Vector {
public:

T& operator [] (size_I i) { return v [i];} / / v declared heloHt'
/ / ...

private:
T* Vi / / oops: not found!
size_1 SZi

} ;

In such cases, either sort the member declarations to avoid the problem or place the definition of
the member function after the class declaration.

Some pre-standard-C++ implementations do not accept default arguments for templates
(§ 13.4.1). In that case, every template parameter must be given an explicit argument. For example:

template<class Key, class T, class LT = less<T> > class map {
/ / ...

} ;

map<string , int> m;

map< string, int, less<string> > m2 ;
/ / Oops: default template arguments not implemented
/ / workaround: be explicit



Section B.3.6

B.3.6 For-Statement Initializers

Consider:

void f(vector<char>& V, int m)
{

For-Statement Initializers 825

for (int i=O; i<v.size() &&i<=mi ++i) cout«V[i]i

ij<i==m)
/ / ...

/ / error: i referred to after end offor-statentent

Such code used to work because in the original definition of C++, the scope of the controlled vari
able extended to the end of the scope in which the .for-statement appears. If you find such code,
simply declare the controlled variable before the.tor-statement:

void j2 (vector<char>& v lint m)

{

int i= 0; / / i needed {{fter the loop
for ( ; i<v. size () && i<=mi ++i) cout« v [i];

ij(i==m)
/ / ...

B.4 Advice

[ I] For learning C++, use the most up-to-date and complete implementation of Standard C++ that
you can get access to; §B.3.

[2] The common subset of C and C++ is not the best initial subset of C++ to learn; §1.6, §B.3.
[3] For production code, remember that not every C++ implementation is completely up-to-date.

Before using a major new feature in production code, try it out by writing small programs to
test the standards conformance and performance of the implementations you plan to use; for
example, see §8.5[6-7], §16.5[10], §B.5[7].

[4] Avoid deprecated features such as global statics; also avoid C-style casts; §6.2.7, §B.2.3.
[5] "implicit int" has been banned, so explicitly specify the type of every function, variable,

const, etc.; §B.2.2.
[6] When converting a C program to C++, first make sure that function declarations (prototypes)

and standard headers are used consistently; §B.2.2.
[7] When converting a C program to C++, rename variables that are C++ keywords; §B.2.2.
[8] When converting a C program to C++, cast the result of malloc () to the proper type or change

all uses of malloc () to uses of new; §B.2.2.
[9] When converting from malloc () and free () to new and delete, consider using vector,

push back ( ) I and reserve () instead of realloc ( ) ; §3.8, §16.3.5.
[10] When converting a C program to C++, remember that there are no implicit conversions from

ints to enumerations; use explicit type conversion where necessary; §4.8.



826 Compatibility B

[II] A facility defined in namespace std is defined in a header without a suffix (e.g. std:: eout is
declared in <iostream». Older implementations have standard library facilities in the global
namespace and declared in headers with a . h suffix (e.g. :: eout declared in <iostream. h> ) ;
§9.2.2, §B.3.1.

[12] If older code tests the result of new against 0, it must be modified to catch bad_alloc or to use
new (nothrow) ; §B.3.4.

[13] If your implementation doesn't support default template arguments, provide arguments explic
itly; typedefs can often be used to avoid repetition of template arguments (similar to the way
the typedef string saves you from saying basic_string< ehar, char_traits<char> ,
allocator<ehar> »; §B.3.5.

[14] Use <string> to get std:: string «string. h> holds the C-style string functions); §9.2.2,
§B.3.1.

[15] For each standard C header <X. h> that places names in the global namespace, the header
<eX> places the names in namespace std; §B.3.1.

[16] Many systems have a .. String. It It header defining a string type. Note that such strings differ
from the standard library string.

[17] Prefer standard facilities to non-standard ones; §20.1, §B.3, §C.2.
[18] Use extern nenwhen declaring C functions; §9.2.4.

B.5 Exercises

1. (*2.5) Take a C program and convert it to a c++ program; list the kinds of non-C++ constructs
used and determine if they are valid ANSI C constructs. First convert the program to strict
ANSI C (adding prototypes, etc.), then to C++. Estimate the time it would take to convert a
100,000 line C program to C++.

2. (*2.5) Write a program to help convert C programs to C++ by renaming variables that are c++
keywords, replacing calls of malloc () by uses of new, etc. Hint: don't try to do a perfect job.

3. (*2) Replace all uses of malloc () in a C-style C++ program (maybe a recently converted C pro
gram) to uses of new. Hint: §B.4[8-9].

4. (*2.5) Minimize the use of macros, global variables, uninitialized variable, and casts in a C
style C++ program (maybe a recently converted C program).

5. (*3) Take a C++ program that is the result of a crude conversion from C and critique it as a C++
program considering locality of information, abstraction, readability, extensibility, and potential
for reuse of parts. Make one significant change to the program based on that critique.

6. (*2) Take a small (say, 500 line) C++ program and convert it to C. Compare the original with
the result for size and probable maintainability.

7. (*3) Write a small set of test programs to determine whether a C++ implementation has "the
latest" standard features. For example, what is the scope of a variable defined in a for
statement initializer? (§B.3.6), are default template arguments supported? (§B.3.5), are member
templates supported? (§ 13.6.2), and is argument-based lookup supported? (§8.2.6). Hint:
§B.2.4.

8. (*2.5) Take a C++ program that use <X. h> headers and convert it to using <X> and <eX>
headers. Minimize the use of using-directives.



Appendix c
Technicalities

Deep in the fundamental
heart ofmind and Universe,

there is a reason.
- Slartibartfast

What the standard promises - character sets - integer literals - constant expressions
- promotions and conversions - multidimensional arrays - fields and unions 
memory management - garbage collection - namespaces - access control - pointers
to data members - templates - static members - friends - templates as template
parameters - template argument deduction - typename and template qualification 
instantiation - name binding - templates and namespaces - explicit instantiation 
advice.

C.I Introduction and Overview

This chapter presents technical details and examples that do not fit neatly into my presentation of
the main C++ language features and their uses. The details presented here can be important when
you are writing a program and essential when reading code written using them. However, I con
sider them technical details that should not be allowed to distract from the student's primary task of
learning to use C++ well or the programmer's primary task of expressing ideas as clearly and as
directly as possible in C++.

C.2 The Standard

Contrary to common belief, strictly adhering to the C++ language and library standard doesn't guar
antee good code or even portable code. The standard doesn't say whether a piece of code is good



828 Technicalities Appendix C

or bad; it simply says what a programmer can and cannot rely on from an implementation. One can
write perfectly awful standard-conforming programs, and most real-world programs rely on fea
tures not covered by the standard.

Many important things are deemed implementation-defined by the standard. This means that
each implementation must provide a specific, well-defined behavior for a construct and that behav
ior must be documented. For example:

unsigned char cJ = 64 i

unsigned char c2 = J256 ;
/ / well-defined: a char has at least 8 bits and can always hold 64
/ / implententation-defined: truncation ifa char has only 8 bits

The initialization of cJ is well-defined because a char must be at least 8 bits. However, the behav
ior of the initialization of c2 is implementation-defined because the number of bits in a char is
implementation-defined. If the char has only 8 bits, the value 1256 will be truncated to 232
(§C.6.2.1). Most implementation-defined features relate to differences in the hardware used to run
a program.

When writing real-world programs, it is usually necessary to rely on implementation-defined
behavior. Such behavior is the price we pay for the ability to operate effectively on a large range of
systems. For example, the language would have been much simpler if all characters had been 8 bits
and all integers 32 bits. However, 16-bit and 32-bit character sets are not uncommon - nor are
integers too large to fit in 32 bits. For example, many computers now have disks that hold more
than 32G bytes, so 48-bit or 64-bit integers can be useful for representing disk addresses.

To maximize portability, it is wise to be explicit about what implementation-defined features
we rely on and to isolate the more subtle examples in clearly marked sections of a program. A typi
cal example of this practice is to present all dependencies on hardware sizes in the form of con
stants and type definitions in some header file. To support such techniques, the standard library
provides numeric limits (§22.2).

Undefined behavior is nastier. A construct is deemed undefined by the standard if no reason
able behavior is required by an implementation. Typically, some obvious implementation tech
nique will cause a program using an undefined feature to behave very badly. For example:

const int size =4* J024 i

char page [size] i

void f()

{

page [size+size] = 7 i / / undefined

Plausible outcomes of this code fragment include overwriting unrelated data and triggering a hard
ware error/exception. An implementation is not required to choose among plausible outcomes.
Where powerful optimizers are used, the actual effects of undefined behavior can become quite
unpredictable. If a set of plausible and easily implementable alternatives exist, a feature is deemed
implementation-defined rather than undefined.

It is worth spending considerable time and effort to ensure that a program does not use some
thing deemed undefined by the standard. In many cases, tools exist to help do this.



Section C.3

C.3 Character Sets

Character Sets 829

The examples in this book are written using the U.S. variant of the international 7-bit character set
ISO 646-1983 called ASCII (ANSI3.4-1968). This can cause three problems for people who use
C++ in an environment with a different character set:

[I] ASCII contains punctuation characters and operator symbols - such as ], {, and! - that
are not available in some character sets.

[2] We need a notation for characters that do not have a convenient character representation
(e.g., newline and "the character with value 17").

[3] ASCII doesn't contain characters, such as - ~ , re, and n - that are used for writing lan
guages other than English.

C.3.1 Restricted Character Sets

The ASCII special characters [, ], {, }, I, and \ occupy character set positions designated as
alphabetic by ISO. In most European national ISO-646 character sets, these positions are occupied
by letters not found in the English alphabet. For example, the Danish national character set uses
them for the vowels Ai, IZ, ft', f/J, A, and tie No significant amount of text can be written in Danish
without them.

A set of trigraphs is provided to allow national characters to be expressed in a portable way
using a truly standard minimal character set. This can be useful for interchange of programs, but it
doesn't make it easier for people to read programs. Naturally, the long-term solution to this prob
lem is for C++ programmers to get equipment that supports both their native language and C++
well. Unfortunately, this appears to be infeasible for some, and the introduction of new equipment
can be a frustratingly slow process. To help programmers stuck with incomplete character sets,
C++ provides alternatives:

Keywords Digraphs Trigraphs
and && <% { ??= #
and_eq &= %> } ??( [

biland & <: [ ??< {

bitor 1 :> ] ??/ \
compl ,." %: # ?? ) ]

not ! %:%: ## ??> }

or II ??' "-

or_eq 1= ??! I
xor " ??-

,."

xor_eq "- =
not_eq 1=

Programs using the keywords and digraphs are far more readable than the equivalent programs
written using trigraphs. However, if characters such as { are not available, trigraphs are necessary
for putting "missing" characters into strings and character constants. For example, , { , becomes
'??< '.

Some people prefer the keywords such as and to their traditional operator notation.



830 Technicalities

C.3.2 Escape Characters

A few characters have standard nalnes that use the backslash \ as an escape character:

Name ASCII Name C++ Name

newline NL (LF) \n
horizontal tab HT \t

vertical tab VT \v
backspace BS \b
carriage return CR \r
form feed FF \f
alert BEL \a
backslash \ \\
question mark ? \?
single quote ,

\ '
double quote II \ II

octal number 000 \000

hex number hhh \xhhh ...

Appendix C

Despite their appearance, these are single characters.
It is possible to represent a character as a one-, two-, or three-digit octal number (\ followed by

octal digits) or as a hexadecimal number (\x followed by hexadecimal digits). There is no limit to
the number of hexadecimal digits in the sequence. A sequence of octal or hexadecimal digits is ter
minated by the first character that is not an octal digit or a hexadecimal digit~ re~;p~ctivciy. For
example:

Octal Hexadecimal Decimal ASCII

'\6 ' '\x6' 6 ACK
'\60' '\x30' 48 '0 '
'\137' '\x05f' 95 , ,

-

This makes it possible to represent every character in the machine's character set and, in particular,
to embed such characters in character strings (see §5.2.2). Using any numeric notation for charac
ters makes a program nonportable across machines with different character sets.

It is possible to enclose more than one character in a character literal, for example ' ab '. Such
uses are archaic, implementation-dependent, and best avoided.

When embedding a numeric constant in a string using the octal notation, it is wise always to use
three digits for the number. The notation is hard enough to read without having to worry about
whether or not the character after a constant is a digit. For hexadecimal constants, use two digits.
Consider these examples:

char vi [] = II a\xah\129 II i

char v2 [] = lla\xah\127" i

char v3 [] = " a\xad\127 1l i

char v4 [] = II a\xad\0127 II i

/ / 6 chars: 'a' u-a' 'h' \12' '9' \0'
/ / 5 chars: 'a' u-a' 'h' \/27' \0'
/ / 4 chars: 'a' u-ad' \/27' \0'
/ / 5 chars: 'a' \xad' \012' '7' \0'



Section C.3.3 Large Character Sets 831

C.3.3 Large Character Sets

A C++ program may be written and presented to the user in character sets that are much richer than
the 127 character ASCII set. Where an implementation supports larger character sets, identifiers,
comments, character constants, and strings may contain characters such as a, ~, and r. However, to
be portable the implementation must map these characters into an encoding using only characters
available to every c++ user. In principle, this translation into the C++ basic source character set
(the set used in this book) occurs before the compiler does any other processing. Therefore, it does
not affect the semantics of the program.

The standard encoding of characters from large character sets into the smaller set supported
directly by C++ is presented as sequences of four or eight hexadecimal digits:

universal-character-/lanle:
\uXXXXXXXX
\uXXXX

Here, X represents a hexadecimal digit. For example, \uJe2b. The shorter notation \UXXXX is
equivalent to \UOOOOXXXX. A number of hexadecimal digits different from four or eight is a lexi
cal error.

A programmer can use these character encodings directly. However, they are primarily meant
as a way for an implementation that internally uses a small character set to handle characters from a
large character set seen by the programmer.

If you rely on special environments to provide an extended character set for use in identifiers,
the program becomes less portable. A program is hard to read unless you understand the natural
language used for identifiers and comments. Consequently, for programs used internationally it is
usually best to stick to English and ASCII.

C.3.4 Signed and Unsigned Characters

It is implementation-defined whether a plain char is considered signed or unsigned. This opens the
possibility for some nasty surprises and implementation dependencies. For example:

char c =255; / / 255 is I 'all ones, " hexadecinzal OxFF
int i =c;

What will be the value of i? Unfortunately, the answer is undefined. On all implementations I
know of, the answer depends on the meaning of the "all ones" char bit pattern when extended into
an into On a SGI Challenge machine, a char is unsigned, so the answer is 255. On a Sun SPARC
or an IBM PC, where a char is signed, the answer is -1. In this case, the compiler might warn
about the conversion of the literal 255 to the char value -1. However, C++ does not offer a general
mechanism for detecting this kind of problem. One solution is to avoid plain char and use the spe
cific char types only. Unfortunately, some standard library functions, such as strcmp ( ) , take plain
chars only (§20.4.1).

A char must behave identically to either a signed char or an unsigned char. However, the
three char types are distinct, so you can't mix pointers to different char types. For example:



832 Technicalities

void f (char c, signed char sc, unsigned char uc)
{

char* pc = &uc; II error: no pointer conversion
signed char* psc = pc; I I error: no pointer conversion
unsigned char* puc = pc; II error: no pointer conversion
psc =puc i I I error: no pointer conversion

Appendix C

Variables of the three char types can be freely assigned to each other. However, assigning a too
large value to a signed char (§C.6.2.1) is still undefined. For example:

void f (char c, signed char sc, unsigned char uc)
{

c =255;

c =SCi

C = uc;
sc = uc;
uc = SCi

SC = c;

uc =c;

I I il71plel11entat;on defined ifplain chars are signed and have 8 bits

II ok
I I i171plelnentation defined ifplain chars are signed and ifuc's value is too large
I I i171plel11entation defined (f uc's value is too large
I 10k: conversion to unsigned
II il11plel11entation defined ifplain chars are unsigned and ifc's value is too large
I10k: conversion to unsigned

None of these potential problems occurs if you use plain char throughout.

C.4 Types of Integer Literals

In general, the type of an integer literal depends on its form, value, and suffix:
- If it is decimal and has no suffix, it has the first of these types in which its value can be rep

resented: int, long int, unsigned long into
- If it is octal or hexadecimal and has no suffix, it has the first of these types in which its

value can be represented: int, unsigned int, long int, unsigned long into
- If it is suffixed by u or U, its type is the first of these types in which its value can be repre

sented: unsigned int, unsigned long into
- If it is suffixed by 1or L, its type is the first of these types in which its value can be repre

sented: long int, unsigned long into
- If it is suffixed by ul, lu, uL, Lu, Ul, lU, UL, or LU, its type is unsigned long into

For example, 100000 is of type int on a machine with 32-bit ints but of type long int on a machine
with 16-bit ints and 32-bit longs. Similarly, OXAOOO is of type int on a machine with 32-bit ints
but of type unsigned int on a machine with 16-bit ints. These implementation dependencies can be
avoided by using suffixes: 100000L is of type long int on all machines and OXAOOOU is of type
unsigned int on all machines.



Section C.5 Constant Expressions 833

C.5 Constant Expressions

In places such as array bounds (§5.2), case labels (§6.3.2), and initializers for enumerators (§4.8),
C++ requires a constant expression. A constant expression evaluates to an integral or enumeration
constant. Such an expression is composed of literals (§4.3.1, §4.4.1, §4.5.1), enumerators (§4.8),
and consts initialized by constant expressions. In a template, an integer template parameter can
also be used (§C.13.3). Floating literals (§4.5.1) can be used only if explicitly converted to an inte
gral type. Functions, class objects, pointers, and references can be used as operands to the sizeof
operator (§6.2) only.

Intuitively, constant expressions are simple expressions that can be evaluated by the compiler
before the program is linked (§9.1) and starts to run.

C.6 Implicit Type Conversion

Integral and floating-point types (§4.I.l) can be mixed freely in assignments and expressions.
Wherever possible, values are converted so as not to lose information. Unfortunately, value
destroying conversions are also performed implicitly. This section provides a description of con
version rules, conversion problems, and their resolution.

C.6.1 Promotions

The implicit conversions that preserve values are commonly referred to as promotions. Before an
arithmetic operation is performed, integral promotion is used to create ints out of shorter integer
types. Note that these promotions will not promote to long (unless the operand is a wchar_t or an
enumeration that is already larger than an int). This reflects the original purpose of these promo
tions in C: to bring operands to the' 'natural" size for arithmetic operations.

The integral promotions are:
- A char, signed char, unsigned char, short int, or unsigned short int is converted to an int

if int can represent all the values of the source type; otherwise, it is converted to an
unsigned into

- A wchar_t (§4.3) or an enumeration type (§4.8) is converted to the first of the following
types that can represent all the values of its underlying type: int, unsigned int, long, or
unsigned long.

- A bit-field (§C.8.l) is converted to an int if int can represent all the values of the bit-field;
otherwise, it is converted to unsigned int if unsigned int can represent all the values of the
bit-field. Otherwise, no integral promotion applies to it.

- A bool is converted to an int;false becomes 0 and true becomes 1.
Promotions are used as part of the usual arithmetic conversions (§C.6.3).

C.6.2 Conversions

The fundamental types can be converted into each other in a bewildering number of ways. In my
opinion, too many conversions are allowed. For example:



834 Technicalities

void f(double d)
{

char c =di I I beware: double-precision floating-point to char conversion

Appendix C

When writing code, you should always aim to avoid undefined behavior and conversions that qui
etly throwaway information. A compiler can warn about many questionable conversions. Fortu
nately, many compilers actually do.

C.6.2.1 Integral Conversions

An integer can be converted to another integer type. An enumeration value can be converted to an
integer type.

If the destination type is unsigned, the resulting value is simply as many bits from the source as
will fit in the destination (high-order bits are thrown away if necessary). More precisely, the result
is the least unsigned integer congruent to the source integer modulo 2 to the nth, where n is the
number of bits used to represent the unsigned type. For example:

unsigned char uc = J023 i I I binary II JJJII / JJ: uc becomes binary JJJJJJJI,. that is, 255

If the destination type is signed, the value is unchanged if it can be represented in the destination
type; otherwise, the value is implementation-defined:

signed char sc = J023 i I I inlplel1lentation-defined

Plausible results are 127 and -1 (§C.3.4).
A Boolean or enumeration value can be implicitly converted to its integer equivalent (§4.2,

§4.8).

C.6.2.2 Floating-Point Conversions

A floating-point value can be converted to another floating-point type. If the source value can be
exactly represented in the destination type, the result is the original numeric value. If the source
value is between two adjacent destination values, the result is one of those values. Otherwise, the
behavior is undefined. For example:

float f= FLT_MAXi
double d =fi
float 12 =di
double d3 = DBL_MAX i
float f3 = d3 ;

I I largest float value
Ilok:d==1
I 10k:12 ==1
I I largest double value
/ / undefined ifFLT_MAX<DBL_MAX

C.6.2.3 Pointer and Reference Conversions

Any pointer to an object type can be implicitly converted to a void* (§5.6). A pointer (reference)
to a derived class can be implicitly converted to a pointer (reference) to an accessible and unam
biguous base (§ 12.2). Note that a pointer to function or a pointer to member cannot be implicitly
converted to a void* .



Section C.6.2.3 Pointer and Reference Conversions 835

A constant expression (§C.5) that evaluates to 0 can be implicitly converted to any pointer or
pointer to member type (§5.1.1). For example:

int* p =

!!!!!! !!!!! ! ! ! ! 1;

A T* can be implicitly converted to a const T* (§5.4.1). Similarly, a T& can be implicitly con
verted to a const T&.

C.6.2.4 Pointer-to-Member Conversions

Pointers and references to members can be implicitly converted as described in §15.5.1.

C.6.2.5 Boolean Conversions

Pointers, integral, and floating-point values can be implicitly converted to bool (§4.2). A nonzero
value converts to true; a zero value converts tofalse. For example:

void f{ int* p, int i)
{

bool is_not_zero = p;
bool b2 = i;

/ / true ifp!=O
/ / true if i!=O

C.6.2.6 Floating-Integral Conversions

When a floating-point value is converted to an integer value, the fractional part is discarded. In
other words, conversion from a floating-point type to an integer type truncates. For example, the
value of int (I .6) is 1. The behavior is undefined if the truncated value cannot be represented in
the destination type. For example:

in! i = 2.7;
char b = 2000.7;

/ / i becomes 2
/ / undefinedfor 8-bit chars: 2000 cannot be represented as an 8-bit char

Conversions from integer to floating types are as mathematically correct as the hardware allows.
Loss of precision occurs if an integral value cannot be represented exactly as a value of the floating
type. For example,

int i = float (1234567890);

left i with the value 1234567936 on a machine where both ints and floats are represented using 32
bits.

Clearly, it is best to avoid potentially value-destroying implicit conversions. In fact, compilers
can detect and warn against some obviously dangerous conversions, such as floating to integral and
long int to char. However, general compile-time detection is impractical, so the programmer must
be careful. When "being careful" isn't enough, the programmer can insert explicit checks. For
example:



836 Technicalities

class checkJailed { };

char checked (int i)
{

char c =i;
if (i ! = c) throw checkJailed ( ) ;
return c;

}

void my_code (int i)
{

char c = checked (i) ;
/ / ...

/ / warning: not portable (§C.6.2./)

Appendix C

To truncate in a way that is guaranteed to be portable requires the use of numeric_limits (§22.2).

C.6.3 Usual Arithmetic Conversions

These conversions are performed on the operands of a binary operator to bring them to a common
type, which is then used as the type of the result:

[I] If either operand is of type long double, the other is converted to long double.
- Otherwise, if either operand is double, the other is converted to double.
- Otherwise, if either operand isfloat, the other is converted tofloat.
- Otherwise, integral promotions (§C.6.1) are performed on both operands.
[2] Then, if either operand is unsigned long, the other is converted to unsigned long.
- Otherwise, if one operand is a long int and the other is an unsigned int, then if a long int

can represent all the values of an unsigned int, the unsigned int is converted to a long int;
otherwise, both operands are converted to unsigned long into

- Otherwise, if either operand is long, the other is converted to long.
- Otherwise, if either operand is unsigned, the other is converted to unsigned.
- Otherwise, both operands are into

C.7 Multidimensional Arrays

It is not uncommon to need a vector of vectors, a vector of vector of vectors, etc. The issue is how
to represent these multidimensional vectors in C++. Here, I first show how to use the standard
library vector class. Next, I present multidimensional arrays as they appear in C and C++ programs
using only built-in facilities.

C.7.1 Vectors

The standard vector (§ 16.3) provides a very general solution:

vector< vector<int> > m (3, vector<int> (5) );

This creates a vector of 3 vectors of 5 integers each. The 15 integer elements each have the default
value O. We could assign new values the integer elements like this:



Section C.7.1

void init_m ( )
{

for (in! i =0; i<m. size ( ); i++}
for (in! j = 0; j<m [i] • size ( ) ; j++} m [i] [j] = /0* i+j;

or graphically:

m:~

:
~m[O]:i= =

m[I]: 5 ~---~

m[2]: 5

Vectors 837

Each vector is implemented as a pointer to its elements plus the number of elements. The elements
are typically held in an array. For illustration, I gave each int a value representing its coordinates.

Accessing an element is done by indexing twice. For example, m [i] [j] is the jth element of
the ith vector. We can print m like this:

void print_m ( )
{

for (int i =0; i<m . size (); i++) {
for (int j =0; j<m [I] . size (); j++) cou!« m [I] [j] « '\1';

cou!« '\n';

which gives:

o /
/0 / /
20 2/

2 3 4
/2 /3 /4
22 23 24

Note that m is a vector of vectors rather than a simple multidimensional array. In particular, it is
possible to resize (§ 16.3.8) an element. For example:

void reshape_m (int ns)
{

for (int i = 0; i<m. size ( ); i++} m [I] . resize (ns);

It is not necessary for the vector<int>s in the vector< vector<int> > to have the same size.

C.7.2 Arrays

The built-in arrays are a major source of errors - especially when they are used to build multidi
mensional arrays. For novices, they are also a major source of confusion. Wherever possible, use
vector, list, valarray, string, etc.



838 Technicalities Appendix C

Multidimensional arrays are represented as arrays of arrays; a 3-by-5 array is declared like this:

int ma [3] [5]; / / 3 arrays with 5 ints each

We can initialize ma like this:

void init_100 ( )

{

for (int i =0; i<3; i++)
for (int j =0; j<5; j++) ma [i] [j] = JO*i+j;

or graphically:

rna:

The array ma is simply 15 ints that we access as if it were 3 arrays of 5 ints. In particular, there is
no single object in memory that is the matrix ma - only the elements are stored. The dimensions 3
and 5 exist in the compiler source only. When we write code, it is our job to remember them some
how and supply the dimensions where needed. For example, we might print ma like this:

void print_ma ()
{

for (int i =0; i<3; i++) {
for (int j = 0; j<5; j++) cout« ma [i] [j] « '\1';
cout« '\n';

The comma notation used for array bounds in some languages cannot be used in c++ because the
comma (, ) is a sequencing operator (§6.2.2). Fortunately, most mistakes are caught by the com
piler. For example:

int bad [3 , 5] ;
int good [3] [5];

int ouch =good [ J ,4];
int nice =good [ J] [4];

/ / error: comma not alloH-ted in constant expression
/ / 3 arrays with 5 ints each
/ / error: int initialized by int* (good[J,4] means good[4], which is an int*)

c.7.3 Passing Multidimensional Arrays

Consider defining a function to manipulate a two-dimensional matrix. If the dimensions are known
at compile time, there is no problem:

void print_m35 (int m [3] [5] )
{

for (int i =0; i<3; i++) {
for (int j = 0; j<5; j++) cout« m [i] [j] « '\1';
cout« '\n';



Section C.7.3 Passing Multidimensional Arrays 839

A matrix represented as a multidimensional array is passed as a pointer (rather than copied; §5.3).
The first dimension of an array is irrelevant to the problem of finding the location of an element; it
simply states how many elements (here 3) of the appropriate type (here int [5] ) are present. For
example, look at the previous representation of 1M and note that by our knowing only that the sec
ond dimension is 5, we can locate ma [i] [5] for any i. The first dimension can therefore be
passed as an argument:

void print_mi5 (int m [] [5], int diml)
{

for (int i = 0; i<diml; i++) {
for (int j=0;j<5;j++) cout«m[i] [j]« '\1';
cout« '\n';

The difficult case is when both dimensions need to be passed. The "obvious solution" simply
does not work:

void print_mij (int m [] [], int diml, int dim2) II doesn't behave as most people would think
{

for (int i =0; i<diml; i++) {
for (int j = 0; j<dim2; j++) cout« m[i] [j] « '\1';
cout« '\n';

I I surprise!

First, the argument declaration m [] [] is illegal because the second dimension of a multidimen
sional array must be known in order to find the location of an element. Second, the expression
m [i] [j] is (correctly) interpreted as * (* (m+i) +j) , although that is unlikely to be what the pro
grammer intended. A correct solution is:

void print_mij (int* m, int dim}, int dim2)
{

for (int i =0; i<diml; i++) {
for (int j = 0; j<dim2; j++) cout« m[i*dim2+j] « '\1'; II obscure
cout« '\n';

The expression used for accessing the members in print_mij () is equivalent to the one the com
piler generates when it knows the last dimension.

To call this function, we pass a matrix as an ordinary pointer:

int main ()
{

int v [3] [5] = { {O, 1 , 2 , 3 , 4} t {I0, 11 , 12 , 13 , 14}, {20, 21 , 22 , 23 , 24} };

print m35 (v) i

print mi5 (v, 3);
print_mij(&v[O] [0],3,5);



840 Technicalities Appendix C

Note the use of &v [0] [0] for the last call; v [0] would do because it is equivalent, but v would be
a type error. This kind of subtle and messy code is best hidden. If you must deal directly with mul
tidimensional arrays, consider encapsulating the code relying on it. In that way, you might ease the
task of the next programmer to touch the code. Providing a multidimensional array type with a
proper subscripting operator saves most users from having to worry about the layout of the data in
the array (§22.4.6).

The standard vector (§ 16.3) doesn't suffer from these problems.

C.8 Saving Space

When programming nontrivial applications, there often comes a time when you want more memory
space than is available or affordable. There are two ways of squeezing more space out of what is
available:

[1] Put more than one small object into a byte.
[2] Use the same space to hold different objects at different times.

The former can be achieved by using fields, and the latter by using unions. These constructs are
described in the following sections. Many uses of fields and unions are pure optimizations, and
these optimizations are often based on nonportable assumptions about memory layouts. Conse
quently, the programmer should think twice before using them. Often, a better approach is to
change the way data is managed, for example, to rely more on dynamically allocated store (§6.2.6)
and less on preallocated (static) storage.

C.8.1 Fields

It seems extravagant to use a whole byte (a char or a bool) to represent a binary variable - for
example, an on/off switch - but a char is the smallest object that can be independently allocated
and addressed in C++ (§5.1). It is possible, however, to bundle several such tiny variables together
as fields in a struct. A member is defined to be a field by specifying the number of bits it is to
occupy. Unnamed fields are allowed. They do not affect the meaning of the named fields, but they
can be used to make the layout l]etter in some machine-dependent way:

struct PPN { / / R6000 Physical Page Number
unsigned int PFN : 22; / / Page Frame Number
int : 3; / / unused
unsigned int CCA : 3; / / Cache Coherency Algorithm
bool nonreachable : 1;
bool dirty : 1;
booI valid : 1 i

bool global: 1;
} i

This example also illustrates the other main use of fields: to name parts of an externally imposed
layout. A field must be of an integral or enumeration type (§4.1.1). It is not possible to take the
address of a field. Apart from that, however, it can be used exactly like other variables. Note that a
bool field really can be represented by a single bit. In an operating system kernel or in a debugger,
the type PPN might be used like this:



Section C.8.1

void part_of_VM_system(PPN* p)
{

/ / ...
if (p->dirty) { / / contents changed

/ / copy to disc
p->dirty =0;

/ / ...

Fields 841

Surprisingly, using fields to pack several variables into a single byte does not necessarily save
space. It saves data space, but the size of the code needed to manipulate these variables increases
on most machines. Programs have been known to shrink significantly when binary variables were
converted from bit fields to characters! Furthermore, it is typically much faster to access a char or
an int than to access a field. Fields are simply a convenient shorthand for using bitwise logical
operators (§6.2.4) to extract information from and insert information into part of a word.

C.8.2 Unions

A union is a struct in which all members are allocated at the same address so that the union occu
pies only as much space as its largest member. Naturally, a union can hold a value for only one
member at a time. For example, consider a symbol table entry that holds a name and a value:

enum Type { S, I } ;

struct Entry {
char* name;
Type t;
char* s; / / use s ift==S
in! i; / / use i ift==/

} ;

void f(Entry* p)
{

if (p->t == S) coul« p->s;
/ / ...

The members s and i can never be used at the same time, so space is wasted. It can be easily recov
ered by specifying that both should be members of a union, like this:

union Value {
char* Si

int i;
} ;

The language doesn't keep track of which kind of value is held by a union, so the programmer must
still do that:



842 Technicalities

struct Entry {
char* name;
Type t;

Value v i I I use v.S if I==S; use v.i if1==1
} i

void f( Entry* p)
{

i!(p->t==S) cout«p->v.s;
I I ...

Appendix C

Unfortunately, the introduction of the union forced us to rewrite code to say v. s instead of plain s.
This can be avoided by using an anonymous union, which is a union that doesn't have a name and
consequently doesn't define a type. Instead, it simply ensures that its members are allocated at the
same address:

struct Entry {
char* name;
Type ti
union {

char* Si

int i i

} i

} i

void f(Entry* p)
{

I I use s ijt==S
I I use i if!==1

if (p->t == S) cout« p->s i

II ...

This leaves all code using an Entry unchanged.
Using a union so that its value is always read using the member through which it was written is

a pure optimization. However, it is not always easy to ensure that a union is used in this way only,
and subtle errors can be introduced through misuse. To avoid errors, one can encapsulate a union
so that the correspondence between a type field and access to the union members can be guaranteed
(§ 10.6[20]).

Unions are sometimes misused for' 'type conversion." This misuse is practiced mainly by pro
grammers trained in languages that do not have explicit type conversion facilities, where cheating is
necessary. For example, the following "converts" an int to an int* simply by assuming bitwise
equivalence:

union Fudge {
int ii
int* Pi

} i



Section C.8.2

int* cheat (int i)
{

Fudge a;
a.i = i;
return a.pi / / bad use

Unions 843

This is not really a conversion at all. On some machines, an int and an int* do not occupy the
same amount of space, while on others, no integer can have an odd address. Such use of a union is
dangerous and nonportable, and there is an explicit and portable way of specifying type conversion
(§6.2.7).

Unions are occasionally used deliberately to avoid type conversion. One might, for example,
use a Fudge to find the representation of the pointer 0:

int main ()
{

Fudge foo;
foo.p = 0;
cout << It the integer value of the pointer 0 is II << foo . i < < 'Va';

C.8.3 Unions and Classes

Many nontrivial unions have some members that are much larger than the most frequently-used
members. Because the size of a union is at least as large as its largest member, space is wasted.
This waste can often be eliminated by using a set of derived classes instead of a union.

A class with a constructor, destructor, or copy operation cannot be the type of a union member
(§10.4.12) because the compiler would not know which member to destroy.

C.9 Memory Management

There are three fundamental ways of using memory in c++:
Static memory, in which an object is allocated by the linker for the duration of the program.

Global and namespace variables, static class members (§ 10.2.4), and static variables in
functions (§7.1.2) are allocated in static memory. An object allocated in static memory is
constructed once and persists to the end of the program. It always has the same address.
Static objects can be a problem in programs using threads (shared-address space concur
rency) because they are shared and require locking for proper access.

Automatic memory, in which function arguments and local variables are allocated. Each entry
into a function or a block gets its own copy. This kind of memory is automatically created
and destroyed; hence the name automatic memory. Automatic memory is also said "to be
on the stack." If you absolutely must be explicit about this, c++ provides the redundant
keyword auto.

Free store, from which memory for objects is explicitly requested by the program and where a
program can free memory again once it is done with it (using new and delete). When a pro
gram needs more free store, new requests it from the operating system. Typically, the free



844 Technicalities Appendix C

store (also called dynamic memory or the heap) grows throughout the lifetime of a program
because no memory is ever returned to the operating system for use by other programs.

As far as the programmer is concerned, automatic and static storage are used in simple, obvious,
and implicit ways. The interesting question is how to manage the free store. Allocation (using
new) is simple, but unless we have a consistent policy for giving memory back to the free store
manager, memory will fill up - especially for long-running programs.

The simplest strategy is to use automatic objects to manage corresponding objects in free store.
Consequently, many containers are implemented as handles to elements stored in the free store
(§25.7). For example, an automatic String (§11.12) manages a sequence of characters on the free
store and automatically frees that memory when it itself goes out of scope. All of the standard con
tainers (§ 16.3, Chapter 17, Chapter 20, §22.4) can be conveniently implemented in this way.

C.9.1 Automatic Garbage Collection

When this regular approach isn't sufficient, the programmer might use a memory manager that
finds unreferenced objects and reclaims their memory in which to store new objects. This is usu
ally called automatic garbage collection, or simply garbage collection. Naturally, such a memory
manager is called a garbage collector.

The fundamental idea of garbage collection is that an object that is no longer referred to in a
program will not be accessed again, so its memory can be safely reused for some new object. For
example:

void f()

{

int* p =new int;
p =0;
char* q =new char;

Here, the assignment p=O makes the int unreferenced so that its memory can be used for some
other new object. Thus, the char might be allocated in the same memory as the int so that q holds
the value that p originally had.

The standard does not require that an implementation supply a garbage collector, but garbage
collectors are increasingly used for C++ in areas where their costs compare favorably to those of
manual management of free store. When comparing costs, consider the run time, memory usage,
reliability, portability, monetary cost of programming, monetary cost of a garbage collector, and
predictability of performance.

C.9.1.1 Disguised Pointers

What should it mean for an object to be unreferenced? Consider:

void f()

{

int* p = new int;
long i1 = reinterpret_cast<long> (p) &OxFFFFOOOO;
long i2 = reinterpret_cast<long> (p) &OxOOOOFFFF;
P = 0;



Section C.9.1.1

/ / point #1: no pointer to the int exists here

p = reinterpret_cast<int* > (ill i2) ;
/ / now the int is referenced again

Disguised Pointers 845

Often, pointers stored as non-pointers in a program are called "disguised pointers." In particular,
the pointer originally held in p is disguised in the integers il and i2. However, a garbage collector
need not be concerned about disguised pointers. If the garbage collector runs at point #1, the mem
ory holding the int can be reclaimed. In fact, such programs are not guaranteed to work even if a
garbage collector is not used because the use of reinterpret_cast to convert between integers and
pointers is at best implementation-defined.

A union that can hold both pointers and non-pointers presents a garbage collector with a special
problem. In general, it is not possible to know whether such a union contains a pointer. Consider:

union U {
int* p;
int i;

} ;

/ / union with both pointer and non-pointer members

void !(U u, U u2, U u3)
{

u.p = new inti
u2. i =999999;
u.i = 8;
/ / ...

The safe assumption is that any value that appears in such a union is a pointer value. A clever gar
bage collector can do somewhat better. For example, it may notice that (for a given implementa
tion) ints are not allocated with odd addresses and that no objects are allocated with an address as
low as 8. Noticing this will save the garbage collector from having to assume that objects contain
ing locations 999999 and 8 are used by f( ) .

C.9.1.2 Delete

If an implementation automatically collects garbage, the delete and delete [] operators are no
longer needed to free memory for potential reuse. Thus, a user relying on a garbage collector could
simply refrain from using these operators. However, in addition to freeing memory, delete and
delete [] invoke destructors.

In the presence of a garbage collector,

delete Pi

invokes the destructor for the object pointed to by p (if any). However, reuse of the memory can be
postponed until it is collected. Recycling lots of objects at once can help limit fragmentation
(§C.9.l.4). It also renders hannless the otherwise serious mistake of deleting an object twice in the
important case where the destructor simply deletes memory.

As always, access to an object after it has been deleted is undefined.



846 Technicalities

C.9.1.3 Destructors

Appendix C

When an object is about to be recycled by a garbage collector, two alternatives exist:
[ I] Call the destructor (if any) for the object.
[2] Treat the object as raw memory (don't call its destructor).

By default, a garbage collector should choose option (2) because objects created using new and
never deleted are never destroyed. Thus, one can see a garbage collector as a mechanism for simu
lating an infinite memory.

It is possible to design a garbage collector to invoke the destructors for objects that have been
specifically "registered" with the collector. However, there is no standard way of "registering"
objects. Note that it is always important to destroy objects in an order that ensures that the
destructor for one object doesn't refer to an object that has been previously destroyed. Such order
ing isn't easily achieved by a garbage collector without help from the programmer.

C.9.1.4 Memory Fragmentation

When a 'lot of objects of varying sizes are allocated and freed, the memory fragments. That is,
much of memory is consumed by pieces of memory that are too small to use effectively. The rea
son is that a genera! allocator cannot always find a piece of memory of the exact right size for an
object. Using a slightly larger piece means that a smaller fragment of memory remains. After run
ning a program for a while with a naive allocator, it is not uncommon to find half the available
memory taken up with fragments too small ever to get reused.

Several techniques exist for coping with fragmentation. The simplest is to request only larger
chunks of memory from the allocator and use each such chunk for objects of the same size (§ 15.3,
§19.4.2). Because most allocations and deallocations are of small objects of types such as tree
nodes, links, etc., this technique can be very effective. An allocator can sometimes apply similar
techniques automatically. In either case, fragmentation is further reduced if all of the larger
"chunks" are of the same size (say, the size of a page) so that they themselves can be allocated and
reallocated without fragmentation.

There are two main styles of garbage collectors:
[1] A copying collector moves objects in memory to compact fragmented space.
[2] A conservative collector allocates objects to minimize fragmentation.

From a C++ point of view, conservative collectors are preferable because it is very hard (probably
impossible in real programs) to move an object and modify aU pointers to it correctly. A conserva
tive collector also allows C++ code fragments to coexist with code written in languages such as C.
Traditionally, copying collectors have been favored by people usi.ng languages (such as Lisp and
Smalltalk) that deal with objects only indirectly through unique pointers or references. However,
modem conservative collectors seem to be at least as efficient as copying collectors for larger pro
grains, in which the amount of copying and the interaction between the allocator and a paging sys
tem become important. For smaller programs, the ideal of simply never invoking the collector is
often achievable - especially in C++, where many objects are naturally automatic.



Section C.I0 Namespaces 847

C.I0 Namespaces

This section presents minor points about namespaces that look like technicalities, yet frequently
surface in discussions and in real code.

C.I0.1 Convenience vs. Safety

A using-declaration adds a name to a local scope. A using-directive does not; it simply renders
names accessible in the scope in which they were declared. For example:

namespace X {
int i, j, k;

in! k;

void fl ()
{

int i =0;
using namespace X; / / make nantes from X accessible
i++ ; / I local i
j++; II X::j
k++; / / error: X::k or global k ?
: : k+ + ; / I the global k
X::k++; II X'sk

void 12 ()
{

int i =0;
using X:: i;
using X: :j;
using X: :k;

i++ ;
j++;
k++;

/ I error: i declared tWttice in j2()

I / hides global k

/ I X::j
/ I X::k

A locally declared name (declared either by an ordinary declaration or by a using-declaration)
hides nonlocal declarations of the same name, and any illegal overloadings of the name are detected
at the point of declaration.

Note the ambiguity error for k+ + in /1 ( ). Global names are not given preference over names
from namespaces made accessible in the global scope. This provides significant protection against
accidental name clashes, and - importantly - ensures that there are no advantages to be gained
from polluting the global namespace.

When libraries declaring many names are made accessible through using-directives, it is a sig
nificant advantage that clashes of unused names are not considered errors.

The global scope is just another namespace. The global namespace is odd only in that you
don't have to mention its name in an explicit qualification. That is, :: k means "look for k in the
global namespace and in namespaces mentioned in using-directives in the global namespace,'·



848 Technicalities Appendix C

whereas X:: k means "the k declared in namespace X and namespaces mentioned in using
directives in X" (§8.2.8).

I hope to see a radical decrease in the use of global names in new programs using namespaces
compared to traditional C and C++ programs. The rules for namespaces were specifically crafted to
give no advantages to a "lazy" user of global names over someone who takes care not to pollute
the global scope.

C.I0.2 Nesting of Namespaces

One obvious use of namespaces is to wrap a complete set of declarations and definitions in a sepa
rate namespace:

namespace X {
II all my declarations

The list of declarations will, in general, contain namespaces. Thus, nested namespaces are allowed.
This is allowed for practical reasons, as well as for the simple reason that constructs ought to nest
unless there is a strong reason for them not to. For example:

void h () j

namespace X {
void g() j

II ...
namespace Y {

void f() j

void If() i

II ...

The usual scope and qualification rules apply:

void X:: Y: :If()
{

f()j g()j h()i

void X::g ()
{

f();
Y::f()j

void h ()
{

I I error: no f() in X
II ok

f()j

Y::f();
X::f();
X::Y::f()j

I I error: no globalf()
I I error: no global Y
I I error: no f() in X
II ok



Section C.I0.2 Nesting of Namespaces 849

C.I0.3 Namespaces and Classes

A namespace is a named scope. A class is a type defined by a named scope that describes how
objects of that type can be created and used. Thus, a namespace is a simpler concept than a class
and ideally a class would be defined as a namespace with a few extra facilities included. This is
almost the case. A namespace is open (§8.2.9.3), but a class is closed. This difference stems from
the observation that a class needs to define the layout of an object and that is best done in one place.
Furthermore, using-declarations and using-directives can be applied to classes only in a very
restricted way (§ 15.2.2).

Namespaces are preferred over classes when all that is needed is encapsulation of names. In
this case, the class apparatus for type checking and for creating objects is not needed; the simpler
namespace concept suffices.

C.II Access Control

This section presents a few technical examples illustrating access control to supplement those pre
sented in §15.3.

C.II.I Access to Members

Consider:

class X {
/ / private by default:

int priv;
protected:

int prot;
public:

int publ;
void m ();

} ;

The member X : : m () has unrestricted access:

void X::m()
{

priv = 1 ; / / ok
prot =2 ; / / ok
publ = 3 ; / / ok

A member of a derived class has access to public and protected members (§ 15.3):

class Y: public X {
void mderived ( ) ;

} ;



850 Technicalities

void Y:: mderived ( )
{

Appendix C

priv =1 ; / / error: priv is private
prot = 2 ; / / ok: prot is protected and mderived() is a member ofthe derived class Y
publ = 3; / / ok: publ is public

A global function can access only the public members:

void !(y* p)
{

p->priv =1;
p->prot = 2;
p->publ = 3;

/ / error: priv is private
/ / error: prot is protected and f() is not a friend or a member ofX or Y
/ 10k: publ is public

C.ll.2 Access to Base Classes

Like a member, a base class can be declared private, protected, or public. Consider:

class X {
public:

int a;

/ / ...
} ;

class Yl : public X { };
class Y2 : protected X { };
class Y3 : private X { };

Because X is a public base of Yl, any function can (implicitly) convert a Yl* to an x* where
needed just as it can access the public members of class X. For example:

void f(YJ* pyl, Y2* py2, Y3* py3)
{

X* px = pyl;
pyl->a = 7;

px =py2;
py2->a = 7;

px = py3;
py3->a = 7;

I 10k: X is a public base class of YJ
II ok

I I error: X is a protected base of Y2
I I error

I I error: X is a private base of Y3
I I error

Consider:

class Y2 : protected X { };
class Z2 : public Y2 { void f( YJ*, Y2*, Y3*); } i

Because X is a protected base of Y2, only members and friends of Y2 and members and friends of
Y2's derived classes (e.g., Z2) can (implicitly) convert a Y2* to an x* where needed, just as they
can access the public and protected members of class X. For example:



Section C.ll.2

void Z2: :f( Y}* pyJ, Y2* py2, Y3* py3)
{

Access to Base Classes 851

X* px = pyJ;
pyJ->a =7;

px = py2;
py2->a =7;

px =py3;
py3->a = 7;

I 10k: X is a public base class of YJ
II ok

I 10k: X is a protected base ofY2, and Z2 is derivedfrom Y2
II ok

I I error: X is a private base of Y3
I I error

Consider finally:

class Y3 : private X { void f( YJ*, Y2*, Y3*); };

Because X is a private base of Y3, only members and friends of Y3 can (implicitly) convert a Y3* to
an X* where needed, just as they can access the public and protected members of class X. For
example:

void Y3::f(Yl*pyJ, Y2*py2, Y3*py3)
{

X* px = pyJ;
py}->a = 7;

px = py2i
py2->a = 7;

px = py3i
py3->a =7;

I / ok: X is a public base class of Y1
II ok

I I error: X is a protected base of Y2
I I error

I 10k: X is a private base of Y3, and f3: .f() is a member of Y3
II ok

C.II.3 Access to Member Class

The members of a member class have no special access to members of an enclosing class. Simi
larly members of an enclosing class have no special access to members of a nested class; the usual
access rules (§ 10.2.2) shall be obeyed. For example:

class Outer {
typedef int T i

int i;
public:

int i2 i

static int s;

class Inner {
int Xi

T Y i I I error: Outer."""T is private
public:

void f( Outer* p, int v);
} i



852 Technicalities

int g (Inner* p);
} ;

void Outer:: Inner: :f( Outer* p, int v)
{

Appendix C

p->i =v;
p->i2 =v;

/ / error: Outer::i is private
/ / ok: Outer::i2 is public

int Outer:: g (Inner* p)
{

p->f(this, 2);

return p->x;
/ / ok: Inner::f() is public
/ / error: Inner::x is private

However, it is often useful to grant a member class access to its enclosing class. This can be done
by making the member afriend. For example:

class Outer {
typedef int T;
int i;

public:
class Inner;
friend class Inner;

/ / forward declaration ofmember class
/ / grant access to Outer::lnner

class Inner {
int X;

T y; / / ok: Inner is afriend
public:

void f( Outer* p, int v);
} ;

} ;

void Outer:: Inner: :f( Outer* p, in' v)
{

p->i = v; / / ok: Inner is afriend

C.ll.4 Friendship

Friendship is neither inherited nor transitive. For example:

class A {
friend class B i

int ai

} i

class B {
friend class C;

} ;



Section C.ll.4

class C {
void f(A* p)
{

Friendship 853

p->a++; / / error: C is not afriend ofA, despite being a friend ofa friend ofA

} ;

class D : public B {
void f(A* p)
{

p->a++; / / error: D is not a friend ofA, despite being derived from afriend ofA

} i

C.12 Pointers to Data Members

NaturallYt the notion of pointer to member (§15.5) applies to data members and to member func
tions with arguments and return types. For example:

struct C {
const char* val i

int ii
void print (int x) {cout« val « x« '\n'; }
int fl (int) ;
void }2 ();
C (const char* v) {val =Vi

} ;

typedef void (C:: *PMFI) (int);
typedef const char* C:: *PM i

void f(C& zl, C& z2)
{

/ / pointer to memberfunction ofC taking an int
/ / pointer to char* data member ofC

C* p =&z2i
PMFI pl= &C: :printi
PM pm =&C:: val;

zl .print (1 );
(zJ. *pf) (2);
zl . *pm = It nvl It ;

p->*pm = Itnv2 It ;

z2 .print (3) i
(p->*pj) (4) i

pl= &C: :11; / / error: return type mismatch
pi=&C::}2 i / / error: argument type mismatch
pm =&C:: i; / / error: type mismatch
pm =pi; / / error: type mismatch

The type of a pointer to function is checked just like any other type.



854 Technicalities Appendix C

C.13 Templates

A class template specifies how a class can be generated given a suitable set of template arguments.
Similarly, a function template specifies how a function can be generated given a suitable set of tem
plate arguments. Thus, a template can be used to generate types and executable code. With this
expressive power comes some complexity. Most of this complexity relates to the variety of con
texts involved in the definition and use of templates.

C.13.1 Static Members

A class template can have static members. Each class generated from the template has its own
copy of the static members. Static members must be separately defined and can be specialized. For
example:

template<class T> class X {
/ / ...
static T del_val i
static T* new_X (T a =del_val);

} ;

template<class T> T X<T>::del_val(O,O)i
template<class T> T* X<T>::new_X(T a) { /* ... */ }

template<> int X<int>: :del_val<int> = 0;
template<> int* X<int>: :new_X<int> (int i) { /* ... * / }

If you want to share an object or function among all members of every class generated from a tem
plate, you can place it in a non-templatized base class. For example:

struct B {
static B* nil; / / to be used as common null pointerfor every class derivedfrom B

} ;

template<class T> class X : public B {
/ / ...

} ;

B*B::nil=O;

C.13.2 Friends

Like other classes, a template class can have friends. Consider the Matrix and Vector example
from §11.5. Typically, both Matrix and Vector will be templates:

template<class T> class Matrix;

template<class T> class Vector {
T v[4];

public:
friend Vector operator*<> (const Matrix<T>&, const Vector&)i
/ / ...

} i



Section C.13.2

template<clQS~ T> class Matrix {
Vector<T> v[4]j

public:
friend Vector<T> operator*<> (const Matrix& I const Vector<T>&) j

/ / ...
} ;

Friends 855

The <> after the name of the friend function is needed to make clear that the friend is a template
function. Without the <>, a non-template function would be assumed. The multiplication operator
can then be defined to access data from Vector and Matrix directly:

tetnplate<class T> Vector<T> operator* (const Matrix<T>& m, const Vector<T>& v)
{

/ / ... use m.v{i] and v.v{i] for direct access to elenzents ...

Friends do not affect the scope in which the template class is defined, nor do they affect the scope
in which the template is used. Instead, friend functions and operators are found using a lookup
based on their argument types (§ 11.2.4, §11.5.1). Like a member function, a friend function is
instantiated (§C.13.9.1) only if it is called.

C.13.3 Templates as Template Parameters

Sometimes it is useful to pass templates - rather than classes or objects - as template arguments.
For example:

template<class T I template<class> class C> class Xrefd {
C<T> mems;
C<T*> refs;
/ / ...

} ;

Xrefd<Entry I vector> xl; / / store cross references for Entries in a vector

Xrefd<Record, set> x2 ; / / store cross references for Records in a set

To use a template as a template parameter, you specify its required arguments. The template
parameters of the template parameter need to be known in order to use the template parameter. The
point of using a template as a template parameter is usually that we want to instantiate it with a
variety of argument types (such as T and T* in the previous example). That is, we want to express
the member declarations of a template in terms of another template, but we want that other template
to be a parameter so that it can be specified by users.

The common case in which a template needs a container to hold elements of its own argument
type is often better handled by passing the container type (§ 13.6, §17.3.1).

Only class templates can be template arguments.



856 Technicalities Appendix C

C.13.4 Deducing Function Template Arguments

A compiler can deduce a type template argument, T or TI, and a non-type template argument, I,
from a template function argument with a type composed of the following constructs:

T
T*
type [I]
1T<T>
T type:: *
T (*) (args)
type (type:: *) (args_T/)
T (type:: *) (args_T/)

const T
T&
class_template_name< T>
T<I>
T T::*
type (T:: *) (args)
T (T:: *) (args_T/)
type (*) (args_T/)

volatile T
T [constant_expression]
class_template_name</>
T<>
type T:: *
T (type:: *) (args)
type (T::*) (args_T/)

Here, args_TI is a parameter list from which a T or an I can be determined by recursive application
of these rules and args is a parameter list that does not allow deduction. If not all parameters can
be deduced in this way, a call is ambiguous. For example:

template<class T, class U> void f(const T*, U (*) (U) ) i

int g (int) i

void h (const char* p)
{

f(p,g)i
!(p,h)i

/ / T is char. V is inl
/ / error: can'l deduce V

Looking at the arguments of the first call of f( ) , we easily deduce the template arguments. Look
ing at the second call of f( ) , we see that h () doesn't match the pattern U (*) (U) because h ( ) 's
argument and return types differ.

If a template parameter can be deduced from more than one function argument, the same type
must be the result of each deduction. Otherwise, the call is an error. For example:

template<class T> void f (T i, T* p) ;

void g (int i)
{

f (i , &i) i / / ok
f( i, "Remember! " ); / / error. ambiguous: Tis int or Tis const char?

C.13.5 Typename and Template

To make generic programming easier and more general, the standard library containers provide a
set of standard functions and types (§ 16.3.1). For example:

template<class T> class vector {
public:

typedef T* iterator;



Section C.13.S

iterator begin () i
iterator end ( ) i

I I ...
} i

template<class T> class list {
class link { 1* ... * I } i

public:
typede! link* iteratori

iterator begin ( ) i
iterator end ( ) ;

I I ...
} i

This tempts us to write:

template<class C> void !(C& v)
{

C: : iterator i = v. begin ( ); I I syntax error
I I ...

Typename and Template 857

Unfortunately, the compiler isn't psychic, so it doesn't know that C:: iterator is the name of a
type. In some cases, a clever compiler would be able to guess whether a name was intended as a
type name or as the name of something that is not a type (such as a function or a template), but in
general that is not possible. Consider an example stripped of clues as to its meaning:

int Yi

template<class T> void g (T& v)
{

T::x (y); I I function call or variable declaration?

Is T::x a function called with y as its argument? Or, did we intend to declare a local variable y
with the type T::x perversely using redundant parentheses? We could imagine a context in which
X::x (y) was a function call and Y::x (y) was a declaration.

The resolution is simple: unless otherwise stated, an identifier is assumed to refer to something
that is not a type or a template. If we want to state that something should be treated as a type, we
can do so using the typename keyword:

template<class C> void h (C& v)
{

typename C:: iterator i = v. begin ( ) i
II ...

The typename keyword can be placed in front of a qualified name to state that the entity named is a
type. In this, it resembles struct and class.

The typename keyword is required whenever a type name depends on a template parameter.



858 Technicalities

For example:

template<class T>
void k (vector<T>& v)
{

vector<T>:: iterator i = v. begin ( );
typename vector<T>:: iterator i = v. begin ( ) ;
I I ...

Appendix C

II syntax error: "typename" missing
II ok

I I syntax error: int after less-than operator
/ / explicit qualification

In this case, compiler might be able to determine that iterator was the name of a type in every
instantiation of vector, but the compiler is not required to. Doing so would be a nonstandard and
nonportable language extension. The only contexts where a compiler assumes that a name that
depends on a template argument is a type name is in a few cases where only type names are
allowed by the grammar. For example, in a base-specifier (§A.8.1).

The typename keyword can also be used as an alternative to class in template declarations:

template<typename T> void f{ T);

Being an indifferent typist and always short of screen space, I prefer the shorter:

template<class T> void f( T) ;

C.13.6 Template as a Qualifier

The need for the typename qualifier arises because we can refer both to members that are types and
to members that are non-types. Similarly, the need to distinguish the name of a template member
from other member names can arise. Consider a possible interface to a general memory manager:

class Memory { I I some Allocator
public:

template<class T> T* get_new ( ) ;
template<class T> void release (T& ) ;
I I ...

} ;

template<class Allocator> void f (Allocator& m)
{

int* pI =m. get_new<int> ( );
int* p2 =m. template get_new<int> ( ) ;
1/ ...
m. release (pI); I I template argument deduced: no explicit qualification needed
m . release (p2) i .

Explicit qualification of get_new () is necessary because its template parameter cannot be deduced.
In this case, the template prefix must be used to inform the compiler (and the human reader) that
get_new is a member template so that explicit qualification with the desired type of element is pos
sible. Without the qualification with template, we would get a syntax error because the < would be
assumed to be a less-than operator. The need for qualification with template is rare because most
template parameters are deduced.



Section C.13.7 Instantiation 859

e.l3.7 Instantiation

Given a template definition and a use of that template, it is the implementation's job to generate
correct code. From a class template and a set of template arguments, the compiler needs to gener
ate the definition of a class and the definitions of those of its member functions that were used.
From a template function, a function needs to be generated. This process is commonly called
template instantiation.

The generated classes and functions are called specializations. When there is a need to distin
guish between generated specializations and specializations explicitly written by the programmer
(§ 13.5), these are referred to as generated specializations and explicit specializations, respectively.
An explicit specialization is sometimes referred to as a user-defined specialization, or simply a user
specialization.

To use templates in nontrivial programs, a programmer must understand how names used in a
template definition are bound to declarations and how source code can be organized (§ 13.7).

By default, the compiler generates classes and functions from the templates used in accordance
with the name-binding rules (§C.13.8). That is, a programmer need not state explicitly which ver
sions of which templates must be generated. This is important because it is not easy for a program
mer to know exactly which versions of a template are needed. Often, templates that the program
mer hasn't even heard of are used in the implementation of libraries, and sometimes templates that
the programmer does know of are used with unknown template argument types. In general, the set
of generated functions needed can be known only by recursive examination of the templates used in
application code libraries. Computers are better suited than humans for doing such analysis.

However, it is sometimes important for a programmer to be able to state specifically where code
should be generated from a template (§C.13.IO). By doing so, the programmer gains detailed con
trol over the context of the instantiation. In most compilation environments, this also implies con
trol over exactly when that instantiation is done. In particular, explicit instantiation can be used to
force compilation errors to occur at predictable times rather than occurring whenever an implemen
tation determines the need to generate a specialization. A perfectly predictable build process is
essential to some users.

C.13.8 Name Binding

It is important to define template functions so that they have as few dependencies as possible on
nonlocal information. The reason is that a template will be used to generate functions and classes
based on unknown types and in unknown contexts. Every subtle context dependency is likely to
surface as a debugging problem for some programmer - and that programmer is unlikely to want to
know the implementation details of the template. The general rule of avoiding global names as far
as possible should be taken especially seriously in template code. Thus, we try to make template
definitions as self-contained as possible and to supply much of what would otherwise have been
global context in the form of template parameters (e.g., traits; §13.4, §20.2.1).

However, some nonlocal names must be used. In particular, it is more common to write a set of
cooperating template functions than to write just one self-contained function. Sometimes, such
functions can be class members, but not always. Sometimes, nonlocal functions are the best
choice. Typical examples of that are sort ( ) 's calls to swap () and less () (§13.5.2). The standard
library algorithms provide a large-scale example (Chapter 18).



860 Technicalities Appendix C

Operations with conventional names and semantics, such as +, *, [], and sort ( ) , are another
source of nonlocal name use in a template definition. Consider:

#include<vector>

bool tracing;

/ / ...

template<class T> T sum (std: : vector<T>& v)
{

T t =0;
if (tracing) cerr« "sum(" «&v« 1I)\nIl;

for (int i = 0; i<v. size ( ); i++) I = I + v [i];
return I;

/ / ...

#include<quad . h>

void f(std:: vector<Quad>& v)
{

Quad c =sum (v);

The innocent-looking template function sum () depends on the + operator. In this example, + is
defined in <quad. h>:

Quad operator+ (Quad I Quad) ;

Importantly, nothing related to complex numbers is in scope when sum () is defined and the writer
of sum () cannot be assumed to know about class Quad. In particular, the + may be defined later
than sum () in the program text, and even later in time.

The process of finding the declaration for each name explicitly or implicitly used in a template
is called name binding. The general problem with template name binding is that three contexts are
involved in a template instantiation and they cannot be cleanly separated:

[1] The context of the template definition
[2] The context of the argument type declaration
[3] The context of the use of the template

C.13.8.1 Dependent Names

When defining a function template, we want to assure that enough context is available for the tem
plate definition to make sense in terms of its actual arguments without picking up "accidental"
stuff from the environment of a point of use. To help with this, the language separates names used
in a template definition into two categories:

[I] Names that depend on a template argument. Such names are bound at some point of instan
tiation (§C.13.8.3). In the sum () example, the definition of + can be found in the instantia
tion context because it takes operands of the template argument type.



Section C.13.8.1 Dependent Names 861

/ / p and Memtype depend on T
/ / i andj depend on T

[2] Names that don't depend on a template argument. Such names are bound at the point of
definition of the template (§C.13.8.2). In the sum () example, the template vector is
defined in the standard header <vector> and the Boolean tracing is in scope when the defi
nition of sum () is encountered by the compiler.

The simplest definition of "N depends on a template parameter T' would be "N is a member of
T." Unfortunately, this doesn't quite suffice; addition of Quads (§C.13.8) is a counter-example.
Consequently, a function call is said to depend on a template argument if and only if one of these
conditions hold:

[I] The type of the actual argument depends on a template parameter T according to the type
deduction rules (§ 13.3.1). For example,f( T (J) ) ,f(t) ,f(g (t) ), andf( &t), assuming that
t is a T.

[2] The function called has a formal parameter that depends on T according to the type deduc
tion rules (§ 13.3.1). For example,f( T) ,f( list<T>&) , andf( const T* ) .

Basically, the name of a function called is dependent if it is obviously dependent by looking at its
arguments or at its formal parameters.

A call that by coincidence has an argument that matches an actual template parameter type is
not dependent. For example:

template<class T> T f( T a)
{

return g ( J ) ; / / error: no g( ) in scope and g( J) doesn '( depend on T

int g (int);

int z =/(2);

It doesn't matter that for the callf(2) , T happens to be int and g ( ) 's argument just happens to be
an into Had g ( J) been considered dependent, its meaning would have been most subtle and myste
rious to the reader of the template definition. If a programmer wants g (int) to be called, g (int) 's
declaration should be placed before the definition of f () so that g ( int) is in scope when f () is
analyzed. This is exactly the same rule as for non-template function definitions.

In addition to function names, the name of a variable, type, const, etc., can be dependent if its
type depends on a template parameter. For example:

template<class T> void fet (const T& a)
{

typename T:: Memtype p = a . p;
cout << a. i << ' , << p- >j ;

C.13.8.2 Point of Definition Binding

When the compiler sees a template definition, it determines which names are dependent
(§C.13.8.1). If a name is dependent, looking for its declaration must be postponed until instantia
tion time (§C.13.8.3).

Names that do not depend on a template argument must be in scope (§4.9.4) at the point of defi
nition. For example:



862 Technicalities

int Xi

template<class T> T f( T a)
{

x++; II ok
y++; I I error: no y in scope, and y doesn'l depend on T
return a;

int Yi

Appendix C

int Z =f(2);

If a declaration is found, that declaration is used even if a "better" declaration might be found
later. For example:

void g (double) ;

template<class T> class X : public T {
public:

void f() {g (2);} I I call g(doubleJ;
II ...

} ;

void g (int) ;

class Z { };

void h (X<Z> x)
{

x·f();

When a definition for X<Z>: :f() is generated, g (int) is not considered because it is declared
after X. It doesn't matter that X is not used until after the declaration of g (int). Also, a call that
isn't dependent cannot be hijacked in a base class:

class Y { public: void g (int); };

void h (X< Y> x)
{

x·f();

Again, X<Y>: :f() will call g (double). If the programmer had wanted the g () from the base
class T to be called, the definition off() should have said so:

template<class T> class XX : public T {
void f () {T:: g (2);} I I calls T::g()
II ...

} ;

This is, of course, an application of the rule of thumb that a template definition should be as self
contained as possible (§C.13.8).



Section C.13.8.3 Point of Instantiation Binding 863

C.13.8.3 Point of Instantiation Binding

Each use of a template for a given set of template arguments defines a point of instantiation. That
point is in the nearest global or namespace scope enclosing its use, just before the declaration that
contains that use. For example:

template<class T> void f(T a) {g (a); }

void g (int);

void h ()
{

extern g (double);
1(2);

Here, the point of instantiation for f<int> () is just before h ( ) , so the g () called inf() is the glo
bal g (int) rather than the local g (double). The definition of "instantiation point" implies that a
template parameter can never be bound to a local name or a class member. For example:

void f()
{

struct X { / * ... * / };
vector<X> v;
/ / ...

/ / local structure
/ / error: cannot use local structure as template parameter

Nor can an unqualified name used in a template ever be bound to a local name. Finally, even if a
template is first used within a class, unqualified names used in the template will not be bound to
members of that class. Ignoring local names is essential to prevent a lot of nasty macro-like behav
ior. For example:

template<class T> void sort (vector<T>& v)
{

sort (v . begin ( ) , v . end ( ) );

class Container {
vector<int> v; / / elements

public:
void sort ( ) / / sort elements
{

/ / use standard library sort() (without explicitly saying std::)

:: sort (v); / / sort(vector<int>&) which calls std::sort() rather than Container::sort()
}

/ / ...
} ;

Had sort (vector<T>&) called sort () using the std: : sort () notation, the result would have been
the same and the code would have been clearer.

If the point of instantiation for a template defined in a namespace is in another namespace,
names from both namespaces are available for name binding. As always, overload resolution is
used to choose between names from different namespaces (§8.2.9.2).



864 Technicalities Appendix C

Note that a template used several times with the same set of template arguments has several
points of instantiation. If the bindings of independent names differ, the program is illegal. How
ever, this is a difficult error for an implementation to detect, especially if the points of instantiation
are in different translation units. It is best to avoid subtleties in name binding by minimizing the
use of nonlocal names in templates and by using header files to keep use contexts consistent.

C.13.8.4 Templates and Namespaces

When a function is called, its declaration can be found even if it is not in scope, provided it is
declared in the same namespace as one of its arguments (§8.2.6). This is very important for func
tions called in template definitions because it is the mechanism by which dependent functions are
found during instantiation.

A template specialization may be generated at any point of instantiation (§C.13.8.3), any point
subsequent to that in a translation unit, or in a translation unit specifically created for generating
specializations. This reflects three obvious strategies an implementation can use for generating
specializations:

[I] Generate a specialization the first time a call is seen.
[2] At the end of a translation unit, generate all specializations needed for that translation unit.
[3] Once every translation unit of a program has been seen, generate all specializations needed

for the program.
All three strategies have strengths and weaknesses, and combinations of these strategies are also
possible.

In any case, the binding of independent names is done at a point of template definition. The
binding of dependent names is done by looking at

[1] the names in scope at the point where the template is defined, plus
[2] the names in the namespace of an argument of a dependent call (global functions are consid

ered in the namespace of built-in types).
For example:

namespace N {
class A { / * ... * / };

char f(A);

char !(int);

template<class T> char g(T t) { return /(t); }

char c =g (N : : A ( ) ) i / / causes N::f(N::A) to be called

Here,/( t) is clearly dependent, so we can't bind/to f(N: :A) or f( int) at the point of definition.
To generate a specialization for g<N: :A> (N: :A) , the implementation looks in namespace N for
functions calledf() and finds N: :f(N: :A) .

A program is illegal if it is possible to construct two different meanings by choosing different
points of instantiation or different contents of namespaces at different possible contexts for generat
ing the specialization. For example:



Section C.13.8.4

namespace N {
class A { / * ... * / } i

char f(A, int) i

Templates and Namespaces 865

template<class T, class 1'2> char g(T t, 1'2 t2) { return f(t,t2); }

char c = g (N::A (), ,a'); / / error (alternative resolutions of/(t) possible)

namespace N {
void f(A, char) i

/ / add to namespace N (§8.2.9.3)

/ / error: alternative resolutions of/(t) are possible

/ / ok: no definition ofX needed
/ / error: definition o/X needed

We could generate the specialization at the point of instantiation and get f(N: :A, int)- called.
Alternatively, we could wait and generate the specialization at the end of the translation unit and
getf(N ~ :A, char) called. Consequently, the call g (N: :A ( ), ' a') is an error.

It is sloppy programming to call an overloaded function in between two of its declarations.
Looking at a large program, a programmer would have no reason to suspect a problem. In this par
ticular case, a compiler could catch the ambiguity. However, similar problems can occur in sepa
rate translation units, and then detection becomes much harder. An implementation is not obliged
to catch problems of this kind.

Most problems with alternative resolutions of function calls involve built-in types. Conse
quently, most remedies rely on more-careful use of arguments of built-in types.

As usual, use of global functions can make matters worse. The global namespace is considered
the namespace associated with built-in types, so global functions can be used to resolve dependent
calls that take built-in types. For example:

int !(int);

template<class T> T g (T t) { return f (t) i }

char c =g ( ,a ' ) ;

char f(char);

We could generate the specialization g<char> (char) at the point of instantiation and getf(int)
called. Alternatively, we could wait and generate the specialization at the end of the translation
unit and getf(char) called. Consequently, the call g ( ,a') is an error.

C.13.9 When Is 8 Specialization Needed?

It is necessary to generate a specialization of a class template only if the class' definition is needed.
In particular, to declare a pointer to some class, the actual definition of a class is not needed. For
example:

class Xi
x* Pi
X ai

When defining template classes, this distinction can be crucial. A template class is not instantiated
unless its definition is actually needed. For example:



866 Technicalities

template<class T> class Link {
Link* suc; I 10k: no definition ofLink needed (yet)
I I ...

} ;

Link<int> * pi; I I no instantiation ofLink<int> needed

Link<int> Ink; I I now we need to instantiate Link<int>

The point of instantiation is where a definition is first needed.

Appendix C

C.13.9.1 Template Function Instantiation

An implementation instantiates a template function only if that function has been used. In particu
lar, instantiation of a class template does not imply the instantiation of all of its members or even of
all of the members defined in the template class declaration. This allows the programmer an impor
tant degree of flexibility when defining a template class. Consider:

template<class T> class List {
I I ...
void sort ();

} ;

class Glob { I * no comparison operators * I };

void f(List<Glob>& lb, List<string>& Is)
{

Is. sort ( );
/ I use operations on lb, but not lb.sort()

Here, List<string>:: sort () is instantiated, but List<Glob>: : sort () isn't. This both reduces the
amount of code generated and saves us from having to redesign the program. Had
List<Glob> : : sort () been generated, we would have had to either add the operations needed by
List:: sort () to Glob, redefine sort () so that it wasn't a member of List, or use some other con
tainer for Globs.

C.13.10 Explicit Instantiation

An explicit instantiation request is a declaration of a specialization prefixed by the keyword tem
plate (not followed by <):

template class vector<;nt>;
template int& vector<int> : : operator [] (int);
template int convert<int, double> (double);

I I class
II member
I I function

A template declaration starts with template<, whereas plain template starts an instantiation request.
Note that template prefixes a complete declaration; just stating a name is not sufficient:

template vector<int>:: operator [ ] ;
template convert<int, double> ;

I I syntax error
I I syntax error



Section C.13.10 Explicit Instantiation 867

As in template function calls, the template arguments that can be deduced from the function argu
ments can be omitted (§ 13.3.1). For example:

template int convert<int, double> (double) ;
template int convert<int> (double) ;

I I ok (redundant)
II ok

/ / call from every constructor

When a class template is explicitly instantiated, every member function is also instantiated.
Note that an explicit instantiation can be used as a constraints check (§ 13.6.2). For example:

template<class T> class CallsJoo {
void constraints (T t) {foo (t); }
/ / ...

} ;

template class CallsJoo<int> ;
template CallsJoo<Shape*> : : constraints ( );

/ I error: foo(int) undefined
/ / error: foo(Shape*) undefined

The link-time and recompilation efficiency impact of instantiation requests can be significant. I
have seen examples in which bundling most template instantiations into a single compilation unit
cut the compile time from a number of hours to the equivalent number of minutes.

It is an error to have two definitions for the same specialization. It does not matter if such mul
tiple specializations are user-defined (§ 13.5), implicitly generated (§C.13.7), or explicitly
requested. However, a compiler is not required to diagnose multiple instantiations in separate com
pilation units. This allows a smart implementation to ignore redundant instantiations and thereby
avoid problems related to composition of programs from libraries using explicit instantiation
(§C.13.7). However, implementations are not required to be smart. Users of "less smart" imple
mentations must avoid multiple instantiations. However, the worst that will happen if they don't is
that their program won't load; there will be no silent changes of meaning.

The language does not require that a user request explicit instantiation. Explicit instantiation is
an optional mechanism for optimization and manual control of the compile-and-Iink process
(§C.13.7).

C.14 Advice

[ I ] Focus on software development rather than technicalities; §C.l.
[2] Adherence to the standard does not guarantee portability; §C.2.
[3] Avoid undefined behavior (including proprietary extensions); §C.2.
[4] Localize implementation-defined behavior; §C.2.
[5] Use keywords and digraphs to represent programs on systems where {, }, [, ], I, or are

missing and trigraphs if\ is missing; §C.3.1.
[6] To ease communication, use the ANSI characters to represent programs; §C.3.3.
[7] Prefer symbolic escape characters to numeric representation of characters; §C.3.2.
[8] Do not rely on signedness or unsignedness of char; §C.3.4.
[9] If in doubt about the type of an integer literal, use a suffix; §C.4.
[10] Avoid value-destroying implicit conversions; §C.6.
[11] Prefer vector over array; §C.7.
[12] Avoid unions; §C.8.2.



868 Technicalities Appendix C

[13] Use fields to represent externally-imposed layouts; §C.8.1.
[14] Be aware of the tradeoffs between different styles of memory management; §C.9.
[15] Don't pollute the global namespace; §C.I0.1.
[16] Where a scope (module) rather than a type is needed, prefer a namespace over a class;

§C.10.3.
[17] Remember to define static class template members; §C.13.1.
[18] Use typename to disambiguate type members of a template parameter; §C.13.5.
[19] Where explicit qualification by template arguments is necessary, use template to disambiguate

template class members; §C.13.6.
[20] Write template definitions with minimal dependence on their instantiation context; §C.13.8.
[21] If template instantiation takes too long, consider explicit instantiation; §C.13.10.
[22] If the order of compilation needs to be perfectly predictable, consider explicit instantiation;

§C.13.10.



Appendix D
Locales

When in Rome,
do as the Romans do.

- proverb

Handling cultural differences - class locale - named locales - constructing locales
- copying and comparing locales - the global () and classic () locales - comparing
strings - class facet - accessing facets in a locale - a simple user-defined facet 
standard facets - string comparison - numeric I/O - money I/O - date and time I/O
- low-level time operations - a Date class - character classification - character
code conversion - message catalogs - advice - exercises.

D.l Handling Cultural Differences

A locale is an object that represents a set of cultural preferences, such as how strings are compared,
the way numbers appear as human-readable output, and the way characters are represented in exter
nal storage. The notion of a locale is extensible so that a programmer can add new facets to a
locale representing locale-specific entities not directly supported by the standard library, such as
postal codes (zip codes) and phone numbers. The primary use of locales in the standard library is
to control the appearance of information put to an ostream and the format accepted by an istream.

Section §21.7 describes how to change locale for a stream; this appendix describes how a
locale is constructed out of facets and explains the mechanisms through which a locale affects its
stream. This appendix also describes how facets are defined, lists the standard facets that define
specific properties of a stream, and presents techniques for implementing and using locales and
facets. The standard library facilities for representing data and time are discussed as part of the
presentation of date I/O.



870 I.Jocales AppendixD

The discussion of locales and facets is organized like this:
§D.l introduces the basic ideas for representi~g cultural differences using locales.
§D.2 presents the locale class.
§D.3 presents the facet class.
§D.4 gives an overview of the standard facets and presents details of each:

§D.4.1 String comparison
§D.4.2 Input and output of numeric values
§D.4.3 Input and output of monetary values
§D.4.4 Input and output of dates and time
§D.4.5 Character classification
§D.4.6 Character code conversions
§D.4.7 Message catalogs

The notion of a locale is not primarily a C++ notion. Most operating systems and application envi
ronments have a notion of locale. Such a notion is - in principle - shared among all programs on a
system, independently of which programming language they are written in. Thus, the C++ standard
library notion of a locale can be seen as a standard and portable way for C++ programs to access
information that has very different representations on different systems. Among other things, a
C++ locale is a common interface to system information that is represented in incompatible ways
on different systems.

D.I.I Programming Cultural Differences

Consider writing a program that needs to be used in several countries. Writing a program in a style
that allows that is often called "internationalization" (emphasizing the use of a program in many
countries) or "localization" (emphasizing the adaptation of a program to local conditions). Many
of the entities that a program manipulates will conventionally be displayed differently in those
countries. We can handle this by writing our I/O routines to take this into account. For example:

void print_date (const Date& d) / / print in the appropriate format
{

switch (where_am_l) { / I user-defined style indicator
case DK: / I e.g., 7. marts 1999

cout«d.day()« If. If «dk_month[d.month()]« II II «d.year();
break;

case UK: I I e.g., 7/3/ 1999
cout«d.day()« II I" «d.month()« II I II «d.year()i
break;

case us: II e.g., 3fi/1999
cout«d.month()« 11/ 11 «d.day()« If/II «d.year()i
break;

/1 ...
l

This style of code does the job. However, it's rather ugly, and we have to use this style consistently
to ensure that all output is properly adjusted to local conventions. Worse, if we want to add a new
way of writing a date, we must modify the code. We could imagine handling this problem by



Section 0.1.1 Programming Cultural Differences 871

creating a class hierarchy (§ 12.2.4). However, the information in a Date is independent of the way
we "'ant to look at it. Consequently, we don't want a hierarchy of Date types: for example,
US_date, UK_date, and lP_date. Instead, we want a variety of ways of displaying Dates: for
example, US-style output, UK-style output, and Japanese-style output; see §D.4.4.5.

Other problems arise with the "let the user write I/O functions that take care of cultural differ
ences" approach:

[ 1] An application programmer cannot easily, portably, and efficiently change the appearance of
built-in types without the help of the standard library.

[2] Finding every I/O operation (and every operation that prepares data for I/O in a locale
sensitive manner) in a large program is not always feasible.

[3] Sometimes, we cannot rewrite a program to take care of a new convention - and even if we
could, we'd prefer a solution that didn't involve a rewrite.

[4] Having each user design and implement a solution to the problems of different cultural con
vention is wasteful.

[5] Different programmers will handle low-level cultural preferences in different ways, so pro
grams dealing with the same information will differ for non-fundamental reasons. Thus,
programmers maintaining code from a number of sources will have to learn a variety of pro
gramming conventions. This is tedious and error prone.

Consequently, the standard library provides an extensible way of handling cultural conventions.
The iostreams library (§21.7) relies on this framework to handle both built-in and user-defined
types. For example, consider a simple loop copying (Date I double) pairs that might represent a
series of measurements or a set of transactions:

void cpy (istream& is, ostream& os) / / copy (Dale,double) streal11
{

Date d;
double volume;

while (is» d» volume) os «d« ' '« volume« '\n';

Naturally, a real program would do something with the records, and ideally also be a bit more care
ful about error handling.

How would we make this program read a file that conformed to French conventions (where
comma is the character used to represent the decimal point in a floating-point number; for example,
/2 15 means twelve and a half) and write it according to American conventions? We can define
locales and I/O operations so that cpy () can be used to convert between conventions:

void f (istream& fin, ostream& fout, istream& fin2, ostream& fout2 )
{

fin. imbue (locale (lien_US") );
fout . imbue (locale ( "fr II ) );

cpy (fin,fout) i

fin2 . imbue (locale ( IIfr II ) ) ;

fout2 . imbue (locale ( II en_us" ) );
cpy (fin2 I fout2 ) ;

/ / A,nerican English
/ / French
/ / read American English, write French

/ / French
/ / American English
/ / read French, lit'rite American English



872 IJocales

Given streams,

Apr /2, /999 1000.3
Apr /3, 1999 345.45
Apr /4, /999 9688.32/

3 juillet 1950 10,3
3 juillet 1951 134,45
3 juillet /952 67, 9

this program would produce:

/2 avril 1999 /000,3
/3 avril 1999 345,45
/4 avril 1999 9688,321

July 3, 1950 10.3
July 3, /951 134.45
July 3, /952 67. 9

AppendixD

Much of the rest of this appendix is devoted to describing the mechanisms that make this possible
and explaining how to use them. Please note that most programmers will have little reason to deal
with the details of locales. Many programmers will never explicitly manipulate a locale, and most
who do will just retrieve a standard locale and imbue a stream with it (§21.7). However, the mech
anisms provided to compose those locales and to make them trivial to use constitute a little pro
gramming language of their own.

If a program or a system is successful, it will be used by people with needs and preferences that
the original designers and programmers didn't anticipate. Most successful programs will be run in
countries where (natural) languages and character sets differ from those familiar to the original
designers and programmers. Wide use of a program is a sign of success, so designing and program
ming for portability across linguistic and cultural borders is to prepare for success.

The concept of localization (internationalization) is simple. However, practical constraints
make the design and implementation of locale quite intricate:

[I] A locale encapsulates cultural conventions, such as the appearance of a date. Such conven
tions vary in many subtle and unsystematic ways. These conventions have nothing to do
with programming languages, so a programming language cannot standardize them.

[2] The concept of a locale must be extensible, because it is not possible to enumerate every
cultural convention that is important to every c++ user.

[3] A locale is used in I/O operations from which people demand run-time efficiency.
[4] A locale must be invisible to the majority of programmers who want to benefit from stream

I/O "doing the right thing" without having to know exactly what that is or how it is
achieved.

[5] A locale must be available to designers of facilities that deal with cultural-sensitive infor
mation beyond the scope of the stream I/O library.

Designing a program doing I/O requires a choice between controlling formatting through "ordinary



Section D~1.1 Programming Cultural' Differences 87~

code" and the use of locales. The former (traditional) approach is feasible where we can ensure
that every input operation can be easily converted from one convention to another. However, if the
appearance of built-in types needs to vary, if different character sets are needed, or if we need to
choose among an extensible set of I/O conventions, the locale mechanism begins to look attractive.

A locale is composed of facets that control individual aspects, such as the character used for
punctuation in the output of a floating-point value (decimalyoint ( ) ; §D.4.2) and the format used
to read a monetary value (moneypunct; §D.4.3). A facet is an object of a class derived from class
locale: :facet (§D.3). We can think of a locale as a container offacets (§D.2, §D.3.I).

D.2 The locale Class

The locale class and its associated facilities are presented in <locale>:

class std:: locale {
public:

class facet;
class id;
typedef int category;

I I type used to represent aspects ofa locale; §D.3
I I type used to identify a locale; §D.3
I I type used to group/categorize facets

static const category I I the actual values are implementation defined
none = 0,
collate = / ,
ctype = /«/ ,
monetary = 1<<2 ,
numeric = 1«3,
time = 1«4,
messages = 1<<5 ,
all = collate I ctype I monetary I numeric I time I messages;

locale () throw ( ) ;
locale (const locale& x) throw ( );
explicit locale (const char* p) ;

-locale () throw ( ) ;

I I copy ofglobal locale (§D.2. J)

II copy ofx
I I copy oflocale named p (§D.2. J)

locale (const locale& x, const char* p, category c);
locale (const locale& x, const locale& y, category c);

I I copy ofx plus facets from p's c
/ / copy ofx plus facets from y's c

template <class Facet> locale (const locale& x, Facet* j); I I copy ofx plusfacetf
template <class Facet> locale combine (const locale& x) ; / / copy of *this plus Facet from x

const locale& operator= (const locale& x) throw ( );

bool operator== (const locale&) const;
bool operator! =(const locale&) const;

string name () const;

I I compare locales

/ / name ofthis locale (§D.2.J)

template <class Ch, class Tr, class A> I I compare strings using this locale
boot operator ( ) (const basic_string<Ch, Tr,A>&, const basic_string<Ch, Tr,A>&) const;



874 Locales

static locale global (const locale&);
static const locale& classic ( );

private:
/ / representation

} ;

AppendixD

/ / set gLobaL LocaLe and return old gLobaL locale
/ / get' 'classic" C-styLe LocaLe

A locale can be thought of as an interface to a map<id,facet*>; that is, something that allows us
to use a locale: : id to find a corresponding object of a class derived from locale: :facet. A real
implementation of locale is an efficient variant of this idea. The layout will be something like this:

collate<char>:

locale:cr- compare {)
hash{)

mpunct<char>:

decimalJoint ( )
truename ()

Here, collate<char> and numpunct<char> are standard library facets (§D.4). As all facets, they
are derived from locale: :facet.

A locale is meant to be copied freely and cheaply. Consequently, a locale is almost certainly
implemented as a handle to the specialized map<id ,facet*> that constitutes the main part of its
implementation. Thefacets must be quickly accessible in a locale. Consequently, the specialized
map<id ,facet*> will be optimized to provide array-like fast access. The facets of a locale are
accessed by using the useJacet<Facet> (loc) notation; see §D.3.1.

The standard library provides a rich set offacets. To help the programmer manipulatefacets in
logical groups, the standardfacets are grouped into categories, such as numeric and collate (§D.4).

A programmer can replace facets from existing categories (§D.4, §D.4.2.1). However, it is not
possible to add new categories; there is no way for a programmer to define a new category. The
notion of "category" applies to standard library facets only, and it is not extensible. Thus, a facet
need not belong to any category, and many user-defined facets do not.

By far the dominant use of locales is implicitly, in stream I/O. Each istream and ostream has
its own locale. The locale of a stream is by default the global locale (§D.2.1) at the time of the
stream's creation. The locale of a stream can be set by the imbue () operation and we can extract a
copy of a stream's locale using getloc () (§21.6.3).

D.2.1 Named Locales

A locale is constructed from another locale and from facets. The simplest way of making a locale
is to copy an existing one. For example:



Section D.2.1

locale locO i

locale loeJ = locale ( ) i

locale loe2 ( " " ) i

locale loe3 ( "e" );
locale loc4 = locale: : classic ( ) ;

locale loe5 ( "POSIX" ) ;

Named Locales 875

/ / copy of the current global locale (§D.2.3)

/ / copy ofthe current global locale (§D.2.3)
/ / copy of "the user's preferred locale"

/ / copy of the "C" locale
/ / copy of the "C" locale

/ / copy of the implementation-defined "POS/X" locale

The meaning of locale ( "C") is defined by the standard to be the "classic" C locale; this is the
locale that has been used throughout this book. Other locale names are implementation defined.

The locale ( II ") is deemed to be the "the user's preferred locale." This locale is set by
extralinguistic means in a program's execution environment.

Most operating systems have ways of setting a locale for a program. Often, a locale suitable to
the person using a system is chosen when that person first encounters a system. For example, I
would expect a person who configures a system to use Argentine Spanish as its default setting will
find locale ( II ") to mean locale ( II es_AR" ). A quick check on one of my systems revealed 5 I
locales with mnemonic names, such as POSIX, de, en_UK, en_US, es, es_AR, fr, SV, da, pi, and
iso_8859_J. POSIX recommends a format of a lowercase language name, optionally followed by
an uppercase country name, optionally followed by an encoding specifier; for example, jp_lP .jit.
However, these names are not standardized across platforms. On another system, among many
other locale names, I found g, uk, us, s,fr, SW, and da. The C++ standard does not define the mean
ing of a locale for a given country or language, though there may be platform-specific standards.
Consequently, to use named locales on a given system, a programmer must refer to system docu
mentation and experiment.

It is generally a good idea to avoid embedding locale name strings in the program text. Men
tioning a file name or a system constant in the program text limits the portability of a program and
often forces a programmer who wants to adapt a program to a new environment to find and change
such values. Mentioning a locale name string has similar unpleasent consequences. Instead,
locales can be picked up from the program's execution environment (for example, using
locale ( " II ) ), or the program can request an expert user to specify alternative locales by entering a
string. For example:

void user_set_locale (const string& question_string)
{

cout « question_string; / / e.g., "lfyou want to use a different locale, please enter its nalne"
string s i

cin» Si

locale: : global (locale (s . c_str ( ) ) ); / / set global locale as specified by user

It is usually better to let a non-expert user pick from a list of alternatives. A routine for doing this
would need to know where and how a system kept its locales.

If the string argument doesn't refer to a defined locale, the constructor throws the
runtime_error exception (§ 14.10). For example:



876 Locales

void set_loc (locale& loc, const char* name)
try
{

loc = locale (name) ;
}

catch (runtime_error) {
cerr« If locale \ II II « name« "\ II isn't defined\n II ;

/ / ...

AppendixD

If a locale has a name string, name () will return it. If not, name () will return string ( II * " ). A
name string is primarily a way to refer to a locale stored in the execution environment. Secondar
ily, a name string can be used as a debugging aid. For example:

void print_locale_names (const locale& my_loc)
{

cout << If name of current global locale: " << locale ( ) . name () << If \n If ;

cout << If name of classic C locale: If << locale: : classic ( ) . name () << If \n If ;

cout« If name of \ \user's preferred locale' ': II « locale ( If " ) • name () « 1I\n If ;

cout« If name of my locale: II « my_loc. name () « 1I\n" ;

Locales with identical name strings different from the default string ( II * ") compare equal. How
ever, == or ! =provide more direct ways of comparing locales.

The copy of a locale with a name string gets the same name as that locale (if it has one), so
many locales can have the same name string. That's logical because locales are immutable, so all
of these objects define the same set of cultural conventions.

A call locale (loc, II F00 II , cat) makes a locale that is like loc except that it takes the facets
from the category cat of locale ( II Foo II ). The resulting locale has a name string if and only if loc
has one. The standard doesn't specify exactly which name string the new locale gets, but it is sup
posed to be different from loc's. One obvious implementation would be to compose the new string
out of loc's name string and II Foo ". For example, if loc's name string is en_UK, the new locale
may have II en_UK: Foo II as its name string.

The name strings for a newly created locale can be summarized like this:

Locale

locale("Foo")
locale(loc)
locale(loc, "Foo",cat)
locale(IDe, loc2, cat)
locale(IDe, Facet)
loco combinerloc2)

Name String

"Foo"
loc.name ()
New name string if loc has a name string; otherwise, string ( II * II )

New name string if loc and loc2 have strings; otherwise, string ( II * II )

string ( II * II )

string ( II * II )

There are no facilities for a programmer to specify a C-style string as a name for a newly created
locale in a program. Name strings are either defined in the program's execution environment or
created as combinations of such names by locale constructors.



Section D.2.1.1 Constructing New Locales 877

D.2.1.1 Constructing New Locales

A new locale is made by taking an existing locale and adding or replacingfacets. Typically, a new
locale is a minor variation on an existing one. For example:

void !(const locale& loc, const My_money_io* mio) / / My_money_io defined in §D.4.3.1
{

locale locI (locale ( n POSIX n ) , loc, locale: : monetary) ;
locale loe2 =locale (locale: : classic ( ), mio);
/ / ...

/ / use monetary facets from loc
/ / classic plus mio

Here, locI is a copy of the POSIX locale modified to use loc's monetary facets (§D.4.3). Simi
larly, loc2 is a copy of the C locale modified to use a My_money_io (§D.4.3.]). If a Facet* argu
ment (here, My_money_io) is 0, the resulting locale is simply a copy of the locale argument.

When using

locale (const locale& x, Facet* j) ;

thefargument must identify a specific facet type. A plainfacet* is not sufficient. For example:

void g (const locale: :!acet* miol, const My_money_io* mio2)
{

locale loc3 = locale (locale:: classic ( ) I miol); / / error: type offacet not known
locale loc4 = locale (locale: : classic ( ), mio2); / / ok: type offacet known
/ / ...

The reason is that the locale uses the type of the Facet* argument to determine the type of the
facet at compile time. Specifically, the implementation of locale uses a facet's identifying type,
facet: : id (§D.3), to find that facet in the locale (§D.3.1).

Note that the

template <class Facet> locale (const locale& x, Facet* j) ;

constructor is the only mechanism offered within the language for the programmer to supply afacet
to be used through a locale. Other locales are supplied by implementers as named locales
(§D.2.1). These named locales can be retrieved from the program's execution environment. A pro
grammer who understands the implementation-specific mechanism used for that might be able to
add new locales that way (§D.6[ 1j, 12]).

The set of constructors for locale is designed so that the type of every facet is known either
from type deduction (of the Facet template parameter) or because it came from another locale (that
knew its type). Specifying a category argument specifies the type of facets indirectly, because the
locale knows the type of the facets in the categories. This implies that the locale class can (and
does) keep track of the types offacet types so that it can manipulate them with minimal overhead.

The locale:: id member type is used by locale to identify facet types (§D.3).
It is sometimes useful to construct a locale that is a copy of another except for a facet copied

from yet another locale. The combine () template member function does that. For example:



878 Locales

void !(const locale& loc I const locale& loc2)
{

locale loc3 =loc. combine< My_money_io > (loc2) ;
I I ...

AppendixD

The resulting loe3 behaves like loe except that it uses a copy of My_money_io (§D.4.3.1) from
loe2 to format monetary 110. If loe2 doesn't have a My_money_io to give to the new locale, com
bine () will throw a runtime_error (§ 14.10). The result of combine () has no name string.

D.2.2 Copying and Comparing Locales

A locale can be copied by initialization and by assignment. For example:

void swap (locale& x I locale& y)
{

locale temp = x;
x =y;
y = temp;

I I just /ike std:.·swap()

The copy of a locale compares equal to the original, but the copy is an independent and separate
object. For example:

void f(locale* my_locale}
{

locale IDe = locale: :classic ( ); I I "C" locale

if (loc ! = locale: : classic ( )} {
cerr« "implementation error: send bug report to vendor\n";
exit (I);

if (&loc ! = &locale: :classic ( ) } cout << "no surprise: addresses differ\n";

locale loc2 = locale (loc I my_locale, locale:: numeric);

if (IDe == loc2) {
cout« "my numeric facets are the same as classic () , s numeric facets\n II ;

II ...

/ I ...

If my_locale has a numeric punctuation facet, my_numpunct<char> , that is different from
classic ( ) '8 standard numpunct<char>, the resulting locales can be represented like this:



Section D.2.2 Copying and Comparing Locales 879

loc:

U
collate<char>:

compare ( )
hash ( )

mpunct<char>:

decimalyoint ( )
curr_symbol ( )

m numpunct<char>:

decimalyoint ( )
curr_symbol ( )

loc2:

U

There is no way of modifying a locale. Instead, the locale operations provide ways of making new
locales from existing ones. The fact that a locale is immutable after it has been created is essential
for run-time efficiency. This allows someone using a locale to call virtual functions of a/acet and
to cache the values returned. For example, an istream can know what character is used to represent
the decimal point and how true is represented, without calling decimalyoint () each time it reads
a number and truename () each time it reads to a bool (§D.4.2). Only a call of imbue () for the
stream (§21.6.3) can cause such calls to return a different value.

D.2.3 The global() and the classic() Locales

The notion of a current locale for a program is provided by locale ( ) , which yields a copy of the
current locale, and locale: : global (x), which sets the current locale to x. The current locale is
commonly referred to as the "global locale," reflecting its probable implementation as a global (or
static) object.

The global locale is implicitly used when a stream is initialized. That is, every new stream is
imbued (§21.1, §21.6.3) with a copy of locale ( ). Initially, the global locale is the standard C
locale, locale: : classic ( ) .

The locale: :global () static member function allows a programmer to specify a locale to be
used as the global locale. A copy of the previous global locale is returned by global ( ). This
allows a user to restore the global locale. For example:

void !(eonst loeale& my_loe)
{

ifstream fin} (some_name) ;
locale& old_global = locale: : global (my_loe) ;
ifstream fin2 (some_other_name);
/ / ...
locale:: global (old_global);

/ / fin} is imbued with the global/oeale
/ / set new global/oeale
/ / fin2 is imbued with my_/oc

/ / restore old global locale



880 Locales AppendixD

If a locale x has a name string, locale: :global (x) also sets the C global locale. This implies that
if a C++ program calls a locale-sensitive function from the C standard library, the treatment of
locale will be consistent throughout a mixed C and C++ program.

If a locale x does not have a name string, it is undefined whether locale: : global (x) affects the
C global locale. This implies that a C++ program cannot reliably and portably set the C locale to a
locale that wasn't retrieved from the execution environment. There is no standard way for a C pro
gram to set the C++ global locale (except by calling a C++ function to do so). In a mixed C and
C++ program, having the C global locale differ from global () is error prone.

Setting the global locale does not affect existing I/O streams; those still use the locales that they
were imbued with before the global locale was reset. For example,finJ is unaffec~ed by the manip
ulation of the global locale that causedfin2 to be imbued with my_loco

Changing the global locale suffers the same problems as all other techniques relying on chang
ing global data: It is essentially impossible to know what is affected by a change. It is therefore
best to reduce use of global () to a minimum and to localize those changes in a few sections of
code that obey a simple strategy for the changes. The ability to imbue (§21.6.3) individual streams
with specific locales makes that easier. However, too many explicit uses of locales and facets
scattered throughout a program will also become a maintenance problem.

D.2.4 Comparing Strings

Comparing two strings according to a locale is possibly the most common explicit use of a locale.
Consequently, this operation is provided directly by locale so that users don't have to build their
own comparison function from the collate facet (§D.4.1). To be directly useful as a predicate
(§ 18.4.2), this comparison function is defined as locale's operator () (). For example:

void f( vector<string>& v, const locale& my_locale)
{

sort (v . begin ( ) , v . end ( ) ) i

/ / ...
sort (v. begin ( ), v. end ( ), my_locale) i

/ / ...

/ / sort using the global locale

/ / sort according to the rules ofmy_locale

By default, the standard library sort () uses < for the numerical value of the implementation char
acter set to determine collation order (§ 18.7, §18.6.3.1).

Note that locales compare basic_strings rather then C-style strings.

D.3 Facets

Afacet is an object of a class derived from locale's member classfacet:

class std:: locale: :facet {
protected:

explicit facet (size_t r = 0) i

virtual --facet ( ) i

/ / "r==O": the locale controls the lifetime ofthis facet
/ / note: protected destructor



SectionD.3

private:
facet (const facet&); / / not defined
void operator= (const facet&); / / not defined

/ / representation
} ;

Facets 881

The copy operations are private and are left undefined to prevent copying (§ 11.2.2).
The facet class is designed to be a base class and has no public functions. Its constructor is

protected to prevent the creation of "plain facet" objects, and its destructor is virtual to ensure
proper destruction of derived-class objects.

Afacet is intended to be managed through pointers by locales. A 0 argument to the facet con
structor means that locale should delete the facet when the last reference to it goes away. Con
versely, a nonzero constructor argument ensures that locale never deletes the facet. A nonzero
argument is meant for the rare case in which the lifetime of a facet is controlled directly by the pro
grammer rather than indirectly through a locale. For example, we could try to create objects of the
standard facet type collate_byname<char> (§D.4.1.1) like this:

void f(const string& s1, const string& s2)
{

/ / normal case: (default) argument 0 means that locale is responsible for deletion:
collate<char> * p = new collate_byname<char> (lIpl");
locale loc (locale ( ) , p };

/ / rare case: argument 1 means that user is responsible for deletion:
collate<char> * q = new collate_byname<char> ( II ge II , 1);

collate_byname<char> bugl (Jlsw ll
);

collate_byname<char> bug2 ( II no II , 1 );

/ / ...

/ / error: cannot destroy local variable
/ / error: cannot destroy local variable

/ / q cannot be deleted: collate_byname<char> 's destructor is protected
/ / no delete p; locale manages deletion of *p

That is, standard facets are useful when managed by locales, as base classes, and only rarely in
other ways.

A _byname () facet is a facet from a named locale in the the execution environment (§D.2.1).
For a/acet to be found in a locale by hasJacet() and useJacet() (§D.3.1), each kind of

facet must have an id:

class std:: locale: : id {
public:

id() ;
private:

id (const id&);
void operator= (const id&);

/ / representation
} ;

/ / not defined
/ / not defined



882 Locales AppendixD

The copy operations are declared private and are left undefined to prevent copying (§ 11.2.2).
The intended use of id is for the user to define a static member of type id of each class supply

ing a new facet interface (for example, see §D.4.1). The locale mechanisms use ids to identify
facets (§D.2, §D.3.1). In the obvious implementation of a locale, an id is used as an index into a
vector of pointers to facets, thereby implementing an efficient map<id ,facet*>.

Data used to define a (derived) facet is defined in the derived class rather than in the base class
facet itself. This implies that the programmer defining a facet has full control over the data and
that arbitrary amounts of data can be used to implement the concept represented by afacet.

Note that all member functions of a user-defined facet should be const members. Generally, a
facet is intended to be immutable (§D.2.2).

D.3.1 Accessing Facets in a Locale

The facets of a locale are accessed through the template function useJacet, and we can inquire
whether a locale has a specificfacet, using the template function hasJacet:

template <class Facet> bool hasJacet (const locale&) throw ( ) ;
template <class Facet> const Facet& useJacet(const locale&); II may throw bad_cast

Think of these template functions as doing a lookup in their locale argument for their template
parameter Facet. Alternatively, think of useJacet as a kind of explicit type conversion (cast) of a
locale to a specific facet. This is feasible because a locale can have only one facet of a given type.
For example:

void f (const locale& my_locale)
{

char c =useJacet< numpunct<char> > (my_locale) . decimalJoint () / I use standardfacet
/ / ...

if (hasJacet<Encrypt> (my_loCille)) { I I does my_locale contain an Encryptfacet?
const Encrypt& f =useJacet<Encrypt> (my_locale) ; I I retrieve Encrypt facet
const Crypto c =f. get_crypto ( ) ; I I use Encrypt facet
/ / ...

}

/ / ...

Note that useJacet returns a reference to a const facet, so we cannot assign the result of useJacet
to a non-const. This makes sense because a facet is meant to be immutable and to have only const
members.

If we try useJacet<X> (loc) and loc doesn't have an X facet, useJacet () throws bad_cast
(§ 14.10). The standard facets are guaranteed to be available for all locales (§D.4), so we don't
need to use hasJacet for standard facets. For standard facets, useJacet will not throw bad_cast.

How might useJacet and hasJacet be implemented? Remember that we can think of a locale
as a map<id,facet* > (§D.2). Given afacet type as the Facet template argument, the implementa
tion of hasJacet or useJacet can refer to Facet: : id and use that to find the corresponding facet.
A very naive implementation of hasJacet and useJacet might look like this:



Section D.3.1 Accessing Facets in a Locale 883

/ / pseudoimplementation: imagine that a locale has a map<id,facet*> called facet_map

template <class Facet> bool hasJacet (const locale& loe) throw ( )
{

const locale: :facet* f = loe .facet_map [Facet:: id] i

return f? true : false i

template <class Facet> const Facet& useJaeet (const loeale& loc)
{

const locale: :facet* f = loe .facet_map [Facet: : id] i

if (f) return static_cast<const Facet&> (*f) i

throw bad_cast ( ) i

Another way of looking at the facet: : id mechanism is as an implementation of a form of compile
time polymorphism. A dynamic_cast can be used to get very similar results to what useJacet pro
duces. However, the specialized useJacet can be implemented more efficiently than the more
general dynamic_cast.

An id really identifies an interface and a behavior rather than a class. That is, if two facet
classes have exactly the same interface and implement the same semantics (as far as a locale is
concerned), they should be identified by the same ide For example, collate<char> and
collate_byname<char> are interchangeable in a locale, so both are identified by
collate<char> : : id (§D.4.1).

If we define a facet with a new interface - such as Encrypt in f( )- we must define a corre
sponding id to identify it (see §D.3.2 and §D.4.1).

D.3.2 A Simple User-Defined Facet

The standard library provides standard facets for the most critical areas of cultural differences, such
as character sets and I/O of numbers. To examine the facet mechanism in isolation from the com
plexities of widely used types and the efficiency concerns that accompany them, let me first present
afacet for a trivial user-defined type:

enum Season { spring, summer, fall, winter } i

This was just about the simplest user-defined type I could think of. The style of I/O outlined here
can be used with little variation for most simple user-defined types.

elass Season_io : public locale: :facet {
public:

Season_io (int i =0) : locale: :faeet (i) { }

,.,Season_io () { } / / to make it possible to destroy Season_io objects (§D.3)

virtual eonst string& to_str (Season x) const = 0 i / / string representation ofx

/ / place Season corresponding to s in x:
virtual bool from_sIr (const string& s, Season& x) const = 0 i



884 Locales

static locale:: id id; / / facet identifier object (§D.2, §D.3, §D.3. J)
} ;

locale: : id Season_io : : id; / / define the identifier object

Appendix D

For simplicity, this facet is limited to representations using char.
The Season_io class provides a general and abstract interface for all Season_io facets. To

define the I/O representation of a Season for a particular locale, we derive a class from Season_io,
defining to_str () andfrom_str () appropriately.

Output of a Season is easy. If the stream has a Season_io facet, we can use that to convert the
value into a string. If not, we can output the int value of the Season:

ostream& operator« (ostream& s, Season x)
{

const loeale& loe =s . getloc ( ); / / extract the stream's locale (§2 J. 7. J)
if (hasJacet<Season_io> (loe) ) return s« useJaeet<Season_io> (Ioe) . to_str(x);
return s« int (x);

Note that this « operator is implemented by invoking « for other types. This way, we benefit
from the simplicity of using « compared to accessing the ostream's stream buffers directly, from
the locale sensitivity of those < < operators, and from the error handling provided for those <<
operators. Standardfacets tend to operate directly on stream buffers (§D.4.2.2, §D.4.2.3) for maxi
mum efficiency and flexibility, but for many simple user-defined types, there is no need to drop to
the streambuflevel of abstraction.

As is typical, input is a bit more complicated than output:

istream& operator>> (istream& s, Season& x)
{

const loeale& loe =s . getloe ( ) ; / / extract the stream's locale (§2 J. 7. J)

if (hasJacet<Season_io> (Ioe)) { / / read alphabetic representation
eonst Season_io& f = useJaeet<Season_io> (Ioe) ;
string buf;
if (! (s»buf&&f·from_str(buf,x))) s.setstate(ios_base::failbit);
return s;

int i; / / read numeric representation
s» i;
x =Season (i) ;
return s i

The error handling is simple and follows the error-handling style for built-in types. That is, if the
input string didn't represent a Season in the chosen locale, the stream is put into the failure state.
If exceptions are enabled, this implies that an ios_base: :failure exception is thrown (§21.3.6).

Here is a trivial test program:



Section D.3.2

int main ()
{

Season Xi

/ / trivial test

A Simple User-Defined Facet 885

/ / Use default locale (no Season_io facet) implies integer I/O:
cin» Xi

cout « X« endl i

locale loc (locale ( ) I new US_season_io) i

cout. imbue (loc) i / / Use locale with Season_io facet
cin . imbue (loc ) i / / Use locale with Season_io facet

cin» Xi

cout « X « endl i

Given the input

2
summer

this program responded:

2
summer

To get this, we must define US_season_io to do define the string representation of the seasons and
override the Season_io functions that convert between string representations and the enumerators:

class US_season_io : public Season_io {
static const string seasons [ ] i

public:
const string& to_str (Season) const i

bool from_str (const string& I Season&) const i

/ / note: no US_season_io::id
} i

const string US_season_io : : seasons [] = { II spring II I II summer II I IIfaUII I II winter II } i

const string& US_season_io:: to_str (Season x) const
{

if (x<spring I I winter<x) {
static const string ss = II no-such-season II i

return ss i

}

return seasons [x] i



886 Locales

bool US_season_io : :from_str (const string& S I Season& x) const
{

const string* beg = &seasons [spring];
const string* end = &seasons [winter] +J;
const string* p = find (beg I end IS); / / §3.8./, §J8.5.2
if (p==end) return false;
x =Season (p-beg) ;
return true;

AppendixD

Note that because US_season_io is simply an implementation of the Season_io interface, I did not
define an id for US_season_io. In fact, if we want US_season_io to be used as a Season_io, we
must not give US_season_io its own ide Operations on locales, such as hasJacet (§D.3.1), rely
on facets implementing the same concepts being identified by the same id (§D.3).

The only interesting implementation question was what to do if asked to output an invalid Sea
son. Naturally, that shouldn't happen. However, it is not uncommon to find an invalid value for a
simple user-defined types, so it is realistic to take that possibility into account. I could have thrown
an exception, but when dealing with simple output intended for humans to read, it is often helpful
to produce an "out of range" representation for an out-of-range value. Note that for input, the
error-handling policy is left to the » operator, whereas for output, the facet function to_str ( )
implements an error-handling policy. This was done to illustrate the design alternatives. In a "pro
duction design," the facet functions would either implement error handling for both input and out
put or just report errors for » and « to handle.

This Season_io design relied on derived classes to supply the locale-specific strings. An alter
native design would have Season_io itself retrieve those strings from a locale-specific repository
(see §D.4.7). The possibility of having a single Season_io class to which the season strings are
passed as constructor arguments is left as an exercise (§D.6[2]).

D.3.3 Uses of Locales and Facets

The primary use of locales is within the standard library is in 1/0 streams. However, the locale
mechanism is a general and extensible mechanism for representing culture-sensitive information.
The messages facet (§D.4.7) is an example of a facet that has nothing to do with 110 streams.
Extensions to the iostreams library and even 1/0 facilities that are not based on streams might take
advantage of locales. Also, a user may use locales as a convenient way of organizing arbitrary
culture-sensitive information.

Because of the generality of the localelfacet mechanism, the possibilities for user-defined
facets are unlimited. Plausible candidates for representation as facets are dates, time zones, phone
numbers, social security numbers (personal identification numbers), product codes, temperatures,
general (unit,value) pairs, postal codes (zip codes), clothe sizes, and ISBN numbers.

As with every other powerful mechanism, facets should be used with care. That something can
be represented as afacet doesn't mean that it is best represented that way. The key issues to con
sider when selecting a representation for cultural dependencies are - as ever - how the various deci
sions affect the difficulty of writing code, the ease of reading the resulting code, the maintainability
of the resulting program, and the efficiency in time and space of the resulting 110 operations.



Section D.4

D.4 Standard Facets

Standard Facets 887

In <locale>, the standard library provides these/acets for the classic () locale:

Standard Facets (in the classic() locale)
Category Purpose Facets

§D.4.l collate String comparison collate<Ch>

§D.4.2 numeric Numeric I/O numpunct<Ch>
num_get<Ch>
numyut<Ch>

§D.4.3 monetary Money I/O moneypunct<Ch>
moneypunct<Ch, true>
money_get<Ch>
moneyyut<Ch>

§D.4.4 time Time I/O time_get<Ch>
timeyut<Ch>

§D.4.5 ctype Character classification ctype<Ch>
codecvt<Ch,char,mbstate_'>

§D.4.7 messages Message retrieval messages<Ch>

In this table, Ch is as shorthand for char or wchar_to A user who needs standard I/O to deal with
another character type X must provide suitable versions of facets for X. For example,
codecvt<X, char, mbstate_'> (§D.4.6) might be needed to control conversions between X and
char. The mbstate_t type is used to represent the shift states of a multibyte character representa
tion (§D.4.6); mbstate_t is defined in <cwchar> and <wchar. h>. The equivalent to mbstate_t for
an arbitrary character type X is char_traits<X> : : state_type.

In addition, the standard library provides these/acets in <locale>:

Standard Facets
Category Purpose Facets

§D.4.l collate String comparison collate_byname<Ch>

§D.4.2 numeric Numeric I/O numpunct_byname<Ch>
num_get<C,ln>
numyut<C, Out>

§D.4.3 monetary Money 110 moneypunct_byname<Ch,International>
money_get<C,ln>
moneyyut<C,Out>

§D.4.4 time Time I/O timeyut_byname<Ch,Out>

§D.4.5 ctype Character classification ctype_byname<Ch>

§D.4.7 messages Message retrieval messages_byname<Ch>

When instantiating a facet from this table, Ch can be char or wchar_,; C can be any character type
(§20.1). International can be true or false; true means that a four-character "international"



888 Locales Appendix D

representation of a currency symbol is used (§D.4.3.1). The mbstate_t type is used to represent the
shift states of a multibyte character representation (§D.4.6); mbstate_t is defined in <cwchar> and
<wchar.h>.

In and Out are input iterators and output iterators, respectively (§ 19.1, §19.2.1). Providing the
yut and _get facets with these template arguments allows a programmer to provide facets that
access nonstandard buffers (§D.4.2.2). Buffers associated with iostreams are stream buffers, so the
iterators provided for those are ostreambuf_iterators (§ 19.2.6.1, §D.4.2.2). Consequently, the
function failed () (§ 19.2.6.1) is available for error handling.

An F_.byname facet is derived from the facet F. F_byname provides the identical interface to
F, except that it adds a constructor taking a string argument naming a locale (see §D.4.1). The
F_byname (name) provides the appropriate semantics for F defined in locale (name). The idea is
to pick a version of a standard facet from a named locale (§D.2.1) in the program's execution envi
ronment. For example:

void f( vector<string>& v, const locale& loc)
{

locale dJ (loc ,new collate_byname<char> ( II da II ) ) ;

locale dk (dJ ,new ctype_byname<char> ( II da II ) ) ;

sort (v . begin ( ) , v . end ( ) , dk) ;
/ / ...

/ / use Danish string comparison
/ / use Danish character classification

locale dk ( II da II ) i

This new dk locale will use Danish-style strings but will retain the default conventions for numbers.
Note that because facet's second argument is by default 0, the locale manages the lifetime of a
facet created using operator new (§D.3).

Like the locale constructors that take string arguments, the _byname constructors access the
program's execution environment. This implies that they are very slow compared to constructors
that do not need to consult the environment. It is almost always faster to construct a locale and then
to access its facets than it is to use _byname facets in many places in a program. Thus, reading a
facet from the environment once and then using the copy in main memory repeatedly is usually a
good idea. For example:

/ / read the Danish locale (incl. all of its facets) once
/ / then use the dk locale and its facets as needed

void f{ vector<string>& v, const locale& loc)
{

const collate<char>& col = useJacet< collate<char> > (dk) i

const collate<char>& ctyp = useJacet< ctype<char> > (dk);

locale dJ (loc, col); / / use Danish string comparison
locale d2 (dJ , ctyp) i / / use Danish character classification and Danish string comparison

sort (v . begin ( ) , v . end ( ) , d2 ) i

/ / ...

The notion of categories gives a simpler way of manipulating standard facets in locales. For exam
ple, given the dk locale, we can construct a locale that reads and compares strings according to the



Section D.4 Standard Facets 889

/ / note: protected destructor

rules of Danish (that give three extra vowels compared to English) but that retains the syntax of
numbers used in C++:

locale dk_us (locale: : classic ( ) I dk I collate Ictype) ; / I Danish letters, American numbers

The presentations of individual standardfacets contains more examples of facet use. In particular,
the discussion of collate (§D.4.1) brings out many of the common structural aspects of facets.

Note that the standardfacets often depend on each other. For example, numyut depends on
numpunct. Only if you have a detailed knowledge of individual facets can you successfully mix
and match facets or add new versions of the standard facets. In other words, beyond the simple
operations mentioned in §21.7, the locale mechanisms are not meant to be directly used by novices.

The design of an individual facet is often messy. The reason is partially that facets have to
reflect messy cultural conventions outside the control of the library designer, and partially that the
C++ standard library facilities have to remain largely compatible with what is offered by the C stan
dard library and various platform-specific standards. For example, POSIX provides locale facilities
that it would be unwise for a library designer to ignore.

On the other hand, the framework provided by locales and facets is very general and flexible. A
facet can be designed to hold any data, and the facet's operations can provide any desired operation
based on that data. If the behavior of a new facet isn't overconstrained by convention, its design
can be simple and clean (§D.3.2).

D.4.1 String Comparison

The standard collate facet provides ways of comparing arrays of characters of type Ch:

template <class Ch>
class std:: collate : public locale: :facet {
public:

typedef Ch char_type;
typedef basic_string<Ch> string_type;

explicit collate (size_t r = 0) ;

int compare(const Ch* b , const Ch* e , const Ch* b2 , const Ch* e2) const
{ return do_compare (b I e I b2 , e2); }

long hash (const Ch* b I const Ch * e) const { return do_hash (b , e); }
string_type transform (const Ch* b I const Ch * e) const { return do_transform (b , e) ;

static locale:: id id; / / facet identifier object (§D.2, §D.3, §D.3./ )

protected:
- collate ( ) ;

virtual int do_compare (const Ch* b , const Ch* e, const Ch* b2, const Ch* e2) const;
virtual string_type do_transform (const Ch * b I const Ch* e) const i

virtual long do_hash (const Ch * b I const Ch * e) const;
} ;

Like all facets, collate is publically derived from facet and provides a constructor that takes an
argument that tells whether class locale controls the lifetime of the facet (§D.3).



890 Locales Appendix D

Note that the destructor is protected. The collate facet isn't meant to be used directly. Rather,
it is intended as a base class for all (derived) collation classes and for locale to manage (§D.3).
Application programmers, implementation providers, and library vendors will write the string com
parison facets to be used through the interface provided by collate.

The compare () function does the basic string comparison according to the rules defined for a
particular collate; it returns J if the first string is lexicographically greater than the second, 0 if the
strings are identical, and - J if the second string is greater than the first. For example:

void f( const string& s /, const string& s2, collate<char>& cmp)
{

const char* cs / =s / . data ( ) ; / / hecause COlllpare( ) operates on charl]s
const char* cs2 = s2 . data ( ) ;
switch (cmp. compare (cs/ ,cs/+sJ . size ( ), cs2, cs2+s2. size ( ) )
case 0: / / identical strings according to Cillp

/ / , ..
break;

case - / : / / s I < .\'2
/ / ...
break;

case /: / / .\'I > .\'2
/ / ...
break;

Note that the collate member functions compare arrays of Ch rather than basic_strings or zero
terminated C-style strings. In particular, a Ch with the numeric value 0 is treated as an ordinary
character rather than as a terminator. Also, compare () differs from strcmp ( ) , returning exactly
the values - J, 0, and J rather than simply 0 and (arbitrary) negative and positive values (§20.4.I).

The standard library string is not locale sensitive. That is, it compares strings according to the
rules of the implementation's character set (§C.2). Furthermore, the standard string does not pro
vide a direct way of specifying comparison criteria (Chapter 20). To do a locale-sensitive compari
son, we can use a collate's compare ( ), Notationally, it can be more convenient to use collate's
compare () indirectly through a locale's operator () (§D.2.4). For example:

void f( const string& s /, const string& s2, const char* n)
{

bool b =s J == s2; / / COl1lpare using iJnp/elllentafion's character ,\'et values

const char* csJ =s / . data ( ) ; / / becau.\'e COl1lpare( ) operates on charIis
const char* cs2 =s2 . data ( ) ;

typedef collate<char> Col;

const Col& glob =useJacet<Col> (locale ( ) ) ; / / frol1l the current global/ocale
int iO =glob. compare (cs/ ,csJ+sJ . size (), cs2, cs2+s2. size ( ) );

const Col& my_coli = useJacet<Col> (locale ( " II ) ); / / fro"l Illy preferred loca/e
int il = my_coli. compare (cs/ ,cs/+sl . size ( ), cs2, cs2+s2. size ( ) );



Section D.4.1 String Comparison 891

const Col& coil =useJacet<Col> (locale (n) ) ; / / from locale nanled n
int i2 =coll. compare (cs/ ,cs/+s/ . size ( ), cs2, cs2+s2. size ( ) );

int i3 = locale () (s/, s2);
int i4 =locale ( " ") (s / , s2) ;
int i5 =locale (n) (s/, s2);

/ / ...

/ / ('ol11pare using the current global locale
/ / C0l11pllre using 111y preferred locale
/ / C0l11fJare using the locale nal11ed n

Here, iO==i3, il==i4, and i2==i5. It is not difficult to imagine cases in which i2, i3, and i4 differ.
Consider this sequence of words from a German dictionary:

Dialekt, Diat, dich, dichten, Dichtung

According to convention, nouns (only) are capitalized, but the ordering is not case sensitive.
A case-sensitive German sort would place all words starting with D before d:

Dialekt, Diat, Dichtung, dich, dichten

The ii (umlaut a) is treated as "a kind of a," so it comes before c. However, in most common
character sets, the numeric value of ii is larger than the numeric value of c. Consequently,
int ( , c ' ) <int ( , ii' ) , and the simple default sort based on numeric values gives:

Dialekt, Dichtung, Diat, dich, dichten

Writing a compare function that orders this sequence correctly according to the dictionary is an
interesting exercise (§D.6[3]).

The hash () function calculates a hash value (§ 17.6.2.3). Obviously, this can be useful for
building hash tables.

The transform () function produces a string that, when compared to other strings, gives the
same result as would a comparison to the argument string. The purpose of transform () is to allow
optimization of code in which one string is compared to many others. This is useful when imple
menting a search for one or more strings among a set of strings.

The public compare ( ) , hash ( ) , and transform () functions are implemented by calls to the
public virtual functions do_compare ( ), do_hash ( ), and do_transform ( ), respectively. These
"do_functions" can be overridden in derived classes. This two-function strategy allows the
library implementer who writes the non-virtual functions to provide some common functionality for
all calls independently of what the user-supplied do_ function might do.

The use of virtual functions preserves the polymorphic nature of the facet but could be costly.
To avoid excess function calls, a locale can determine the exact/acet used and cache any values it
might need for efficient execution (§D.2.2).

The static member id of type locale: : id is used to identify afacet (§D.3). The standard func
tions hasJacet and useJacet depend on the correspondence between ids and facets (§D.3.1).
Two facets providing exactly the same interface and semantics to locale should have the same ide
For example, collate<char> and collate_byname<char> (§D.4.1.1) have the same ide Con
versely, two facets performing different functions (as far as locale is concerned) must have differ
ent ids. For example, numpunct<char> and numyut<char> have different ids (§D.4.2).



892 Locales

D.4.1.1 Named Collate

AppendixD

Acollate_byname is a facet that provides a version of collate for a particular locale named by a
constructor string argument:

template <class Ch>
class std:: collate_byname : public collate<Ch> {
public:

typedef basic_string<Ch> string_type;

explicit collate_byname (const char* I size_t r =O) ; / / construct from named locale

I / note: no id and no new functions

protected:
- collate_byname ( ) ; / / note: protected destructor

1/ override coilate<Ch>'s virtualfunctions:

int do_compare (const Ch* b , const Ch* e , const Ch* b2 , const Ch* e2) const;
string_type do_transform (const Ch * b I const Ch* e) const;
long do_hash (const Ch * b I const Ch * e) const;

} ;

Thus, a collate_byname can be used to pick out a collate from a locale named in the program's
execution environment (§D.4). One obvious way of storing facets in an execution environment
would be as data in a file. A less flexible alternative would be to represent a facet as program text
and data in a _byname facet.

The collate_byname<char> class is an example of a facet that doesn't have its own id (§D.3).
In a locale, collate_byname<Ch> is interchangeable with collate<Ch>. A collate and a
collate_byname for the same locale differ only in the extra constructor offered by the
collate_byname and in the semantics provided by the collate_byname.

Note that the _byname destructor is protected. This implies that you cannot have a _byname
facet as a local variable. For example:

void f()

{

collate_byname<char> my_coli ( II .. ); /1 error: canrot destroy my_coil
/ / ...

This reflects the view that using locales and facets is something that is best done at a fairly high
level in a program to affect large bodies of code. An example is setting the global locale (§D.2.3)
or imbuing a stream (§21.6.3, §D.l). If necessary, we could derive a class with a public destructor
from a _byname class and create local variables of that class.

D.4.2 Numeric Input and Output

Numeric output is done by a numyut facet writing into a stream buffer (§21.6.4). Conversely,
numeric input is done by a num_get facet reading from a stream buffer. The format used by
numyut and num_get is defined by a "numerical punctuation" facet, numpunct.



Section D.4.2.1 Numeric Punctuation 893

D.4.2.1 Numeric Punctuation

The numpunct facet defines the I/O format of built-in types, such as bool, int, and double:

template <class Ch>
class std:: numpunct : public locale: :facet {
public:

typedef Ch char_type i

typedef basic_string<Ch> string_type i

explicit numpunct (size_t r =0) i

Ch decimalyoint () const i

Ch thousands_sep () const i

string grouping () const i

string_type truename () const i

string_type falsename () const i

/ / '.' ill classic()
/ / ',' in classic( )
/ / ,,,, in classic(), meaning no grouping

/ / "true" in classic()
/ / "false" in classic()

static locale:: id id i / / .facet ident(fier object (§D.2, §D.3, §D.3. ) )

protected:
- numpunct ( ) ;

/ / virtual "do_., functions for public functions (see §D.4. J)
} ;

The characters of the string returned by grouping () are read as a sequence of small integer values.
Each number specifies a number of digits for a group. Character 0 specifies the rightmost group
(the least-significant digits), character I the group to the left of that, etc. Thus, "\004\002\003"
describes a number, such as 123-45-6789 (provided you use ' -' as the separation character). If
necessary, the last number in a grouping pattern is used repeatedly, so n\003" is equivalent to
n\003\003\003 n. As the name of the separation character, thousands_sep ( ), indicates, the most
common use of grouping is to make large integers more readable. The grouping () and
thousands_sep () functions define a format for both input and output of integers. They are not
used for standard floating-point number I/O. Thus, we can not get J234567 . 89 printed as
J , 234, 567 .89 simply by defining grouping () and thousands_sep ( ) .

We can define a new punctuation style by deriving from numpunct. For example, I could
define facet MyJunet to write integer values using spaces to group the digits by threes and
floating-point values, using a European-style comma as the "decimal point"

class MyJunct : public std:: numpunct<char> {
public:

typedef char char_type i

typedef string string_type;

explicit Myyunct(size_t r =0) : numpunct<char> (r) { }

protected:
char do_decimalyoint () const { return ' I '; } / / comma
char do_thousands_sep () const { return ' '; } / / space
string do_grouping () const { return u\003 u i} / / 3-digit groups

} i



894 Locales

void f()

{

cout« "style A: "« /2345678«" *** "« /234567.8« '\n';

locale loc (locale ( ) , new Myyunct) ;
cout . imbue (loc) ;
cout« "style B: "« /2345678«" *** "« /234567.8« '\n';

Appendix D

This produced:

style A: /2345678 * * * /234567. 8
style B: /2 345 678 * * * /234567,8

Note that imbue () stores a copy of its argument in its stream. Consequently, a stream can rely on
an imbued locale even after the original copy of that locale has been destroyed. If an iostream has
its boolalpha flag set (§21.2.2, §21.4.1), the strings returned by truename () andfalsename () are
used to represent true andfalse, respectively; otherwise, J and 0 are used.

A _byname version (§D.4, §D.4.1) of numpunct is provided:

template <class Ch>
class std:: numpunct_byname : public numpunct<Ch> { / * 000 * / };

D.4.2.2 Numeric Output

When writing to a stream buffer (§21.6.4), an ostream relies on the numyut facet:

template <class Ch, class Out =ostreambuf_iterator<Ch> >
class std:: numyut : public locale: :facet {
public:

typedef Ch char_type;
typedef Out iter_type;

explicit numyut (size_t r =0);

/ / put value "v" to buffer position "b" in streanl "s":
Out put (Out b, ios_base& s, Ch fill, bool v) const;
Out put (Out b, ios_base& s, Ch fill, long v) const;
Out put (Out b, ios_base& s, Ch fill, unsigned long v) const;
Out put (Out b, ios_base& s, Ch fill, double v) const;
Out put (Out b, ios_base& s, Ch fill, long double v) const;
Out put (Out b, ios_base& s, Ch fill, const void* v) const;

static locale:: id id; / / facet identifier object (§D.2, §D.3, §D.3. J)

pTotecl~d:

-numyut();

1/ virtual "do_' , functions for public functions (see §D.4. / )
} ;

The output iterator (§ 19.1, §19.2.1) argument, Out, identifies where in an ostream's stream buffer
(§21.6.4) put () places characters representing the numeric value on output. The value of put () is



Section D.4.2.2 Numeric Output 895

that iterator positioned one past the last character position written.
Note that the default specialization of numyut (the one where the iterator used to access char

acters is of type ostreambuf_iterator<Ch» is part of the standard locales (§D.4). If you want to
use another specialization, you'll have to make it yourself. For example:

template<class Ch>
class String_numput : public sId:: numyut<Ch, typename basic_string<Ch> : : iterator> {
public:

String_numput () : numyut<Ch, typename basic_string<Ch> : : iterator> ( J) { }
} ;

void I (int i, string& s, int pas)
{

String_numput<char> I;
ios_base& xxx = cout;
I.put (&s [pos],xxx, , , ,i);

/ / format i into s starting at pos

/ / use cout 's formatting rules
/ / format i into s

/ / default: '.'

/ / deftlult: "false"

/ / char to Ch conversion

The ios_base argument is used to get information about formatting state and locale. For example,
if padding is needed, the fill character is used as required by the ios_base argument. Typically, the
stream buffer written to through b is the buffer associated with an ostream for which s is the base.
Note that an ios_base is not a simple object to construct. In particular, it controls many aspects of
formatting that must be consistent to achieve acceptable output. Consequently, ios_base has no
public constructor (§21.3.3).

A put () function also uses its ios_base argument to get the stream's locale ( ). That locale is
used to determine punctuation (§D.4.2.1), the alphabetic representation of Booleans, and the con
version to Ch. For example, assuming that s is put ( ) 's ios_base argument, we might find code
like this in a put () function:

const locale& loc =s . getIoc ( ) ;
/ / ...
wchar_t w = useJacet< ctype<char> > (loc) . widen (c) ;
/ / ...
string pnt =useJacet< numpunct<char> > (loc) . decimalyoint ( ) ;
/ / ...
string flse =useJacet< numpunct<char> > (loc) .falsename ( ) ;

A standard facet, such as numyut<char> , is typically used implicitly through a standard I/O
stream function. Consequently, most programmers need not know about it. However, the use of
such facets by standard library functions is interesting because they show how 1/0 streams work
and how facets can be used. As ever, the standard library provides examples of interesting pro
gramming techniques.

Using numyut, the implementer of ostream might write:

template<class Ch, class Tr>
ostream& std:: basic_ostream<Ch, Tr>:: operator« (double d)
{

sentry guard (*this); / / see §2J.3.8
if ( ! guard) return * this ;



896 Locales AppendixD

try {
if (useJacet< numyut<Ch> > (getloc ( ) ) .put (*this, *this ,fill ( ), d) .failed ( ) )

setstate (badbit) ;
}

catch ( ... ) {
handle_ioexception (* this) ;

}

return *this;

A lot is going on here. The sentry ensures that all prefix and suffix operations are performed
(§21.3.8). We get the ostream's locale by calling its member function getloc () (§21.7). We
extract numyut from that locale using useJacet (§D.3.1). That done, we call the appropriate
put () function to do the real work. An ostreambuf_iterator can be constructed from an ostream
(§ 19.2.6), and an ostream can be implicitly converted to its base class ios_base (§21.2.l), so the
two first arguments to put () are easily supplied.

A call of put () returns its output iterator argument. This output iterator is obtained from a
basic_ostream, so it is an ostreambuf_iterator. Consequently, failed () (§ 19.2.6.1) is available to
test for failure and to allow us to set the stream state appropriately.

I did not use hasJacet, because the standard facets (§D.4) are guaranteed to be present in every
locale. If that guarantee is violated, bad_cast is thrown (§D.3.1).

The put () function calls the virtual doyut ( ). Consequently, user-defined code may be exe
cuted, and operator« () must be prepared to handle an exception thrown by the overriding
doyut(). Also, numyut may not exist for some character types, so useJacet() might throw
sId: : bad_cast (§D.3.1). The behavior of a « for a built-in type, such as double, is defined by the
C++ standard. Consequently, the question is not what handle_ioexception () should do but rather
how it should do what the standard prescribes. If badbit is set in this ostream's exception state
(§21.3.6), the exception is simply rethrown. Otherwise, an exception is handled by setting the
stream state and continuing. In either case, badbit must be set in the stream state (§21.3.3):

template<class Ch, class Tr>
void handle_ioexception (std:: basic_ostream<Ch, Tr>& s) / / calledfrom catch clause
{

if (s. exceptions ( ) &ios_base: : badbit) {
try { s. setstate (ios_base: : badbit); } catch ( . . .) { }
throw; / / rethrow

}

s. setstate (iDs_base: :badbit) ; / / ntight throw basic_ios:.failure

The try-block is needed because setstate () might throw basic_ios: :failure (§21.3.3, §21.3.6).
However, if badbit is set in the exception state, operator« () must rethrow the exception that
caused handle_ioexception () to be called (rather than simply throwing basic_ios: :failure).

The « for a built-in type, such as double, must be implemented by writing directly to a stream
buffer. When writing a « for a user-defined type, we can often avoid the resulting complexity by
expressing the output of the user-defined type in terms of output of existing types (§D.3.2).



Section D.4.2.3 Numeric Input 897

D.4.2.3 Numeric Input

When reading from a stream buffer (§21.6.4), an istream relies on the num_get facet:

template <class Ch, class In = istreambuf_iterator<Ch> >
class std:: num_get : public locale: :facet {
public:

typedef Ch char_type;
typedef In iter_type;

explicit num_get (size_t r = 0) ;

/ / read [b:e) into v, using formatting rules from s, reporting errors by setting r:
In get (In b, In e, ios_base& s, ios_base: : ;ostate& r, bool& v) const;
In get(/n b, In e, ios_base& s, ios_base: :;ostate& r, long& v) const;
In get (In b, In e, ios_base& s, ios_base:: iostate& r, unsigned short& v) const;
In get (In b, In e, ios_base& s, ios_base: : iostate& r, unsigned int& v) const;
In get(/n b, In e, ;os_base& s, ios_base: :iostate& r, unsigned long& v) const;
In get (In b, In e, los_base& s, ios_base: : iostate& r, float& v) const;
In get(/n b, In e, ios_base& s, ios_base::iostate& r, double& v) const;
In get(/n b, In e, ios_base& s, ios_base: :iostate& r, long double& v) const;
In get(/n b, In e, ios_base& s, ios_base: :iostate& r, void*& v) const;

static locale:: id id; / / facet identifier object (§D.2, §D.3, §D.3./)

protected:
-num_get ( );

/ / virtual "do_" functions for public functions (see §D.4. J)
} ;

Basically, num_get is organized like numyut (§D.4.2.2). Since it reads rather than writes, get ( )
needs a pair of input iterators, and the argument designating the target of the read is a reference.
The iostate variable r is set to reflect the state of the stream. If a value of the desired type could
not be read, failhit is set in r; if the end of input was reached, eofbit is set in r. An input operator
will use r to determine how to set the state of its stream. If no error was encountered, the value
read is assigned though v; otherwise, v is left unchanged.

The implementer of istream might write:

template<class Ch, class Tr>
istream& std:: basic_istream<Ch, Tr>: : operator» (double& d)
{

sentry guard (*this) ;
if ( ! guard) {

setstate (failbit) ;
return * this;

/ / see §2J.3.8

iostate state = 0; / / good
istreambuf_iterator<Ch> eos;
double dd;



898 Locales

try {
useJacet< num_get<Ch> > (getloc ( ) ) . get ( *this, eos, state, dd) ;

Appendix D

}

catch ( ... ) {
handle_ioexception ( *this) ;
return * this;

/ / see §D.4.2.2

}

if (state==O I I state==eojbit) d = dd; /1 Jet value only ~lget() succeeded
setstate (state) ;
return *this i

Exceptions enabled for the istream will be thrown by setstate () in case of error (§21.3.6).
By defining a numpunct, such as my_numpunct from §D.4.2, we can read using nonstandard

punctuation. For example:

void f{)

{

cout« II style A: II

int il;
double dl;
cin » il » dl ; / / relld using Jtlllldard · '/2345678" fonnat

locale loc (locale: : classic ( ) , new Myyunct) i

cin . imbue (loc ) ;
cout« II style B: II

int i2;
double d2;
cin » i I » d2; / / relit! UJ;llg the "/2 345 678" fOr/nllt

If we want to read really unusual numeric formats, we have to override do_get ( ). For example,
we might define a num_get that read Roman numerals, such as XXI and MM (§D.6[ 15]).

D.4.3 Input and Output of Monetary Values

The formatting of monetary amounts is technically similar to the formatting of lo'plain" numbers
(§D.4.2). However, the presentation of monetary amounts is even more sensitive to cultural differ
ences. For example, a negative amount (a loss, a debit), such as -1 .25, should in some contexts be
presented as a (positive) number in parentheses: (1.25). Similarly, color is in some contexts used
to ease the recognition of negative amounts.

There is no standard "money type." Instead, the money facets are meant to be used explicitly
for numeric values that the programmer knows to represent monetary amounts. For example:

class Money { / / sil11ple type to hold a nlonetary al110unl
long int amount;

public:
Money (long int i) : amount (i) { }
operator long int () const { return amount i

} ;



Section D.4.3

/ / ...
void f (long int i)
{

Input and Output of Monetary Values 899

cout« "value=" «i«" amount= If «Money(i) «endli

The task of the monetary facets is to make it reasonably easy to write an output operator fOf Money
so that the amount is printed according to local convention (see §D.4.3.2). The output would vary
depending on cout's locale. Possible outputs are:

value= /234567 amount= $12345.67
value= /234567 amount= /2345,67 DKr
value= -1234567 amount= $-12345 . 67
value= -1234567 amount= - $12345 . 67
value= -1234567 amount= (CHF12345,67)

For money, accuracy to the smallest currency unit is usually considered essential. Consequently, I
adopted the common convention of having the integer value represent the number of cents (pence,
42Sre, fils, cents, etc.) rather than the number of dollars (pounds, kroner, dinar, euro, etc.). This con
vention is supported by moneyyunct'sfrac_digits () function (§D.4.3.1). Similarly, the appear
ance of the' 'decimal point" is defined by decimalyoint ( ) .

The facets money_get and moneyyut provide functions that perform I/O based on the format
defined by the money_base facet.

A simple Money type can be used simply to control I/O formats or to hold monetary values. In
the former case, we cast values of (other) types used to hold monetary amounts to Money before
writing, and we read into Money variables before converting them to other types. It is less error
prone to consistently hold monetary amounts in a Money type; that way, we cannot forget to cast a
value to Money before writing it, and we don't get input errors by trying to read monetary values in
locale-insensitive ways. However, it may be infeasible to introduce a Money type into a system
that wasn't designed for that. In such cases, applying Money conversions (casts) to read and write
operations is necessary.

D.4.3.1 Money Punctuation

The facet controlling the presentation of monetary amounts, moneypunct, naturally resembles the
facet for controlling plain numbers, numpunct (§D.4.2.1):

class std:: money_base {
public:

enum part { none, space I symbol, sign, value } ;
struct pattern { char field [4] i } i

} i

/ / parts ofvalue layout
/ / layout specification



900 Locales

template <class Ch, bool International =false>
class std:: moneypunct : public locale: :facet, public money_base {
public:

typedef Ch char_type i

typedef basic_string<Ch> string_type i

explicit moneypunct (size_t r =0) i

AppendixD

Ch decimalJJoint () const i

Ch thousands_sep () const;
string grouping () const;

string_type curr_symbol () const;
string_type positive_sign () const;
string_type negative_sign () const;

int frac_digits () const;
pattern posJormat () const i

pattern negJormat () const i

static const bool intl = International i

/ / '.' in classic( )
/ / ',' in classic( )
/ / "" in classic(), meaning "no group~ng"

/ / "$" in classic()
/ / "" in classic()
/ / "-" in classic()

/ / number ofdigits after the decimal point; 2 in classic()
/ / ( symbol, sign, none, value J in classic()
/ / { symbol, sign, none, value } in classic( )

/ / use international monetary formats

static locale:: id id i / / facet identifier object (§D.2, §D.3, §D.3. J)

protected:
- moneypunct ( ) ;

I/ virtual •'do_" functions for public functions (see §D.4. J)
} ;

The facilities offered by moneypunct are intended primarily for use by implementers of moneyyut
and money_get facets (§D.4.3.2, §D.4.3.3).

The decimalyoint ( ), thousands_sep ( ) , and grouping () members behave as their equiva
lents in numpunct.

The curr_symbol ( ) , positive_sign ( ) , and negative_sign () members return the string to be
used to represent the currency symbol (for example, $, ¥, FrF, DKr), the plus sign, and the minus
sign, respectively. If the International template argument was true, the inti member will also be
true, and "international" representations of the currency symbols will be used. Such an "interna
tional" representation is a four-character string. For example:

t1USDn
t1DKr n

nEUR II

Usually, the last character is a space. The three-letter currency identifier is defined by the 150
4217 standard. When International is false, a "local" currency symbol, such as $, £, and ¥, can
be used.

A pattern returned by posJormat () or negJormat () is four parts defining the sequence in
which the numeric value, the currency symbol, the sign symbol, and whitespace occur. Most com
mon formats are trivially represented using this simple notion of a pattern. For example:



Section D.4.3.1

+$ /23.45
$+/23.45
$J23.45
$J23.45
-/23.45 DKr
($/23.45)
(J23.45DKr)

Money Punctuation 901

/ / { sign, symbol, ~pace, value} where positive_sign() returns "+"
/ / { symbol, sign, value, none} where positive_sign() returns "+"
/ / { symbol, sign, value, none} where positive_sign() returns ""
/ / { symbol, value, sign, none }
/ / { sign, value, space, symbol}
/ / { sign, symbol, value, none} where negative_sign() returns "()"
/ / { sign, value, symbol, none} where negative_sign() returns "()"

Representing a negative number using parentheses is achieved by having negative_sign () return a
string containing the two characters (). The first character of a sign string is placed where sign is
found in the pattern, and the rest of the sign string is placed after all other parts of the pattern. The
most common use of this facility is to represent the financial community's convention of using
parentheses for negative amounts, but other uses are possible. For example:

-$/23.45
* $/23.45 silly

/ / { sign, symbol, value, none} where negative_sign() returns "-"
/ / { sign, symbol, value, none} where negative_sign() returns ,,* silly"

The values sign, value, and symbol must each appear exactly once in a pattern. The remaining
value can be either space or none. Where space appears, at least one and possibly more white
space characters may appear in the representation. Where none appears, except at the end of a pat
tern, zero or more whitespace characters may appear in the representation.

Note that these strict rules ban some apparently reasonable patterns:

pattern pat = { sign, value, none, none}; I / error: no symbol

The frac_digits () function indicates where the decimalJJoint () is placed. Often, monetary
amounts are represented in the smallest currency unit (§D.4.3). This unit is typically one hundredth
of the major unit (for example, a ¢ is one hundredth of a $), so frac_digits () is often 2.

Here is a simple format defined as a facet:

class My_money_io : public moneypunct<char, true> {
public:

explicit My_money_io (size_t r = 0) :moneypunct<char, true> (r) { }

Ch do_decimalyoint () const { return " . "; }
Ch do_thousands_sep () const { return " , "; }
string do_grouping () const { return "\003\003\003" ;

string_type do_curr_symbol () const { return "USD "; }
string_type doyositive_sign () const { return II It; }

string_type do_negative_sign () const { return II ( ) It; }

int doJrac_digits () const { return 2;} / / two digits after decimal point

pattern doyosJormat () const
{

static pattern pat ={sign I symbol, value I none } ;
return pat;



902 Locales

pattern do_negJormat () const
{

static pattern pat = { sign, symbol, value, none } ;
return pat;

} ;

AppendixD

This facet is used in the Money input and output operations defined in §D.4.3.2 and §D.4.3.3.
A _byname version (§D.4, §D.4.1) of moneypunct is provided:

template <class Ch, booI IntI =false>
class std: :moneypunct_byname : public moneypunct<Ch, IntI> { /* ... * / };

D.4.3.2 Money Output

The moneyyut facet writes monetary amounts according to the format specified by moneypunct.
Specifically, moneyyut provides put () functions that place a suitably formatted character repre
sentation into the stream buffer of a stream:

template <class Ch, class Out = ostreambuf_iterator<Ch> >
class std:: moneyJJut : public std:: locale: :facet {
public:

typedef Ch char_type;
typedef Out iter_type;
typedef basic_string<Ch> string_type;

explicit moneyJJut (size_t r = 0) ;

/ / put value "v" into buffer position "b":
Out put (Out b, bool inti, ios_base& s, Ch fill, long double v) const;
Out put (Out b, bool inti, ios_base& s, Ch fill, const string_type& v) const;

static locale:: id id; / / facet identifier object (§D.2, §D.3, §D.3. / )

protected:
,.,moneyJJut ( ) ;

/ / virtual "do_' , functions for public functions (see §D.4. / )
} ;

The b, S, fill, and v arguments are used as for numyut's put () functions (§D.4.2.2). The inti
argument indicates whether a standard four-character "international" currency symbol or a
"local" symbol is used (§D.4.3.1).

Gjven moneyyut, we can define an output operator for Money (§D.4.3):

ostream& operator« (ostream& s, Money m)
{

ostream : : sentry guard (s) ;
if ( ! guard) return s;

/ / see §2/.3.8



Section D.4.3.2 Money Output 903

try {
const moneyyut<char>& f = useJacet< moneyyut<char> > (s . getloc ( ) ) ;
if (m==static_cast<long double> (m)) { / / m can be represented as a long double

if (f· put (s , true, s, s .fill ( ) ,m) .failed ( ) ) s. setstate (ios_base: :badbit) ;
}

else {
ostringstream v;
v « m; / / convert to string representation
if (f· put (s , true, s , s .fill ( ) , v . str ( ) ) .failed ( ) } s. setstate (ios_base: : badbit) ;

}

catch ( ... ) {
handle_ioexception (s) i

return Si

/ / see §D.4.2.2

If a long double doesn't have sufficient precision to represent the monetary value exactly, I convert
the value to its string representation and output that using the put () that takes a string.

D.4.3.3 Money Input

The money_get facet reads monetary amounts according to the format specified by moneypunct.
Specifically, money_get provides get () functions that extract a suitably formatted character repre
sentation from the stream buffer of a stream:

template <class Ch, class In = ;streambuf_iterator<Ch> >
class std:: money_get : public std:: locale: :facet {
public:

typedef Ch char_type;
typedef In iter_type;
typedef basic_string<Ch> string_type;

explicit money_get (size_t r =O);

/ / read [b:e) into v, using formatting rules from s, reporting errors by setting r:
In get (In b, In e, bool inti, iDS_base& s, ios_base: : iostate& r, long double& v) const;
In get (In b, In e, bool inti, ios_base& s, ios_base: : iostate& r, string_type& v) const i

static locale:: id id; / / facet identifier object (§D.2, §D.3, §D.3. J)
protected:

- money_get ( ) ;

/ / virtual "do_" functions for public functions (see §D.4. J)
} ;

The b, e, s, fill, and v arguments are used as for num_get's get () functions (§D.4.2.3). The inti
argument indicates whether a standard four-character "international" currency symbol or a
"local" symbol is used (§D.4.3.1).



904 Locales Appendix D

A well-defined pair of money_get and moneY.J1ut facets will provide output in a fonn that can
be read back in without errors or loss of information. For example:

int main ( )
{

Money m;

while (cin»m) cout« m « "\n II ;

The output of this simple program should be acceptable as its input. Furthermore, the output pro
duced by a second run given the output from a first run should be identical to its input.

A plausible input operator for Money would be:

istream& operator» (istream& s, Money& m)

{

istream: : sentry guard (s) ; / / .\'ee §2/.3.H
if ( ! guard) {

s . setstate (ios_base: :failbit) ;
return s;

ios_base: : iostate state =0; / / good
istreambuj'-iterator<char> eos;
double ddi
try {

cons! money_get<char> &/ =useJacet< money_get<char> > (s . getloc ( ) ) i
f. get (s, eo... , true, state, dd);

}

catch ( ... ) {
handle_ioexception (s) i
return s i

/ / see §D.4.2.2

}

if (state==O I I state==io.\·_base:: eojbit) m =dd;
s . setstate (state) ;
return S i

/ / set \'alue Oll/Y ~l get( ) succeeded

D.4.4 Date and Time Input and Output

Unfortunately, the C++ standard library does not provide a proper date type. However, from the C
standard library, it inherits low-level facilities for dealing with dates and time intervals. These C
facilities are the basis for C++'s facilities for dealing with time in a system-independent manner.

The following sections demonstrate how the presentation of date and time-of-day information
can be made locale sensitive. In addition, they provide an example of how a user-defined type
(Date) can fit into the framework provided by iostream (Chapter 21) and locale (§D.2). The
implementation of Date shows techniques that are useful for dealing with time if you don't have a
Date type available.



Section D.4.4.1

D.4.4.1 Clocks and Timers

Clocks and Timers 905

At the lowest level, most systems have a fine-grained timer. The standard library provides a func
tion clock () that returns an implementation-defined arithmetic type clock_t. The result of
clock () can be calibrated by using the CLOCKS_PER_SEC macro. If you don't have access to a
reliable timing utility, you might measure a loop like this:

inl main (int argc, char* argv [ ] ) / / §6./.7
{

int n =atoi (argv [1] ); / / §20.4.1

clock_III =clock ( );
if (t1 == clock_, ( - 1)) { / / clock_t(-J) means "clock() didn't work"

cerr« II sorry, no clock\n II ;

exit (1);

for (inl i =0; i<n; ;++) do_something ( ); / / timing loop

clock_t t2 =clock ( ) i

if (12 == clock_' (-1)) {

cerr« "sorry, clock overflow\n";
exit (2);

}

cout« lido_something () " « n « " times took II

«double (t2-tl) /CLOCKS_PER_SEC« " seconds"
« " (measurement granularity: " «CLOCKS_PER_SEC« " of a second)\n";

The explicit conversion double (t2-tJ) before dividing is necessary because clock_t might be an
integer. Exactly when the clock () starts running is implementation defined; clock () is meant to
measure time intervals within a single run of a program. For values t1 and t2 returned by clock ( ) ,
double (t2-tJ) /CLOCKS_PER_SEC is the system's best approximation of the time in seconds
between the two calls.

If clock () isn't provided for a processor or if a time interval was too long to measure, clock ( )
returns clock_t ( -1 ) .

The clock () function is meant to measure intervals from a fraction of a second to a few sec
onds. For example, if clock_t is a 32-bit signed int and CLOCKS_PER_SEC is 1,000,000, we can
use clock () to measure from 0 to just over 2,000 seconds (about half an hour) in microseconds.

Please note that getting meaningful measurements of a program can be tricky. Other programs
running on a machine may severely affect the time used by a run, cache and pipelining effects are
difficult to predict, and algorithms may have surprising dependencies on data. If you try to time
something, make several runs and reject the results as flawed if the run times vary significantly.

To cope with longer time intervals and with calendar time, the standard library provides time_t
for representing a point in time and a structure tm for separating a point in time into its conven
tional parts:



906 Locales

typedef implementation_defined time_I;

AppendixD

/ / implementation-defined arithmetic type (§4.1.1 )
/ / capable of representing a period of time,
/ / often, a 32-bit integer

struct tm {
int tm_sec;
int tm_min;
int tm_hour;
int tm_mday;
int tm_mon;
int tmyear;
int tm_wday ;
int tmyday ;
int tm_isdst ;

} ;

/ / second ofminute [0,61 J; 60 and 61 to represent leap seconds
/ / minute ofhour [0,59J
/ / hour ofday [0,23J
/ / day ofmonth [1,31 J
/ / month ofyear [0, II J; 0 means January (note: not [I: 12J)
/ / year since 1900; 0 means year 1900, and 102 means 2002
/ / days since Sunday [0,6J; 0 means Sunday
/ / days since January I [0,365]; 0 means January I
/ / hours ofdaylight savings time

Note that the standard guarantees only that tm has the int members mentioned here. The standard
does not guarantee that the members appear in this order or that there are no other fields.

The time_t and tm types and the basic facilities for using them are presented in <clime> and
<time. h>. For example::

clock_t clock ( ) ;

time_t time (time_t* pt) ;
double difftime (time_t t2, time_t tJ ) ;

tm* localtime (const time_t* pt);
tm* gmtime (const time_t* pt);

time_t mktime (tm * ptm) ;

/ / number ofclock ticks since the start ofthe program

/ / current calendar time
/ / t2-t1 in seconds

/ / local time for the *pt
/ / Grenwich Mean Time (GMT) tmfor *pt, or 0
/ / (officially called Coordinated Universal Time, UTC)

/ / time_t for *ptm, or time_t(-I )

char* asctime (const tm* ptm) ; / / C-style string representation for *ptm
/ / for example, "Sun Sep 1601:03:52 1973\n"

char* ctime (const time_t* t) { return asctime (localtime (t) ); }

Beware: both localtime () and gmtime () return a tm* to a statically allocated object; a subsequent
call of that function will change the value of that object. Either use such a return value immedi
ately, or copy the tm into storage that you control. Similarly, asctime () returns a pointer to a stati
cally allocated character array.

A tm can represent dates in a range of at least tens of thousands of years (about [-32000,32000]
for a minimally sized int). However, time_t is most often a (signed) 32-bit long into Counting sec
onds, this makes time_t capable of representing a range just over 68 years on each side of a base
year. This base year is most commonly 1970, with the exact base time being 0:00 of January I
GMT (UTe). If time_t is a 32-bit signed integer, we'll run out of "time" in 2038 unless we
upgrade time_t to a larger integer type, as is already done on some systems.

The time_t mechanism is meant primarily for representing "near current time." Thus, we
should not expect time_t to be able to represent dates outside the [1902,2038] range. Worse, not all
implementations of the functions dealing with time handle negative values in the same way. For
portability, a value that needs to be represented as both a tm and a time_t should be in the



Section D.4.4.1 Clocks and Timers 907

[1970,2038] range. People who want to represent dates outside the 1970 to 2038 time frame must
devise some additional mechanism to do so.

One consequence of this is that mktime () can fail. If the argument for mktime () cannot be
represented as a time_t, the error indicator time_t ( - J) is returned.

If we have a long-running program, we might time it like this:

int main (int argc, char* argv [ ] )
{

/ / §6./.7

time_t tl =time (0);
do_a_lot (argc, argv);
time_t t2 =time (0);
double d = difftime (t2 , t I ) ;
cout« "do_a_lot () took ll « d« n seconds\n II i

If the argument to time () is not 0, the resulting time is also assigned to the time_t pointed to. If
the calendar time is not available (say, on a specialized processor), the value time_t ( - J) is
returned. We could cautiously try to find today's date like this:

int main ()
{

time_t ti

if (time (&t) == time_t (-I) )
cerr« II Bad time\n II i
exit (I);

/ / time_t(-I) means' 'time() didn't work"

tm* gt =gmtime (&t);
cout« gt->tm_mon+1 « ' /' «gt->tm_mday« ' /' « 1900+gt->tmyear« endli

D.4.4.2 A Date Class

As mentioned in §10.3, it is unlikely that a single Date type can serve all purposes. The uses of
date information dictate a variety of representations, and calendar information before the 19th cen
tury is very dependent on historical vagaries. However, as an example, we could define a Date
type along the lines from § 10.3, using time_t as the implementation:

class Date {
public:

enum Month {jan= I , feb, mar, apr, may, jun, jul, aug I sep, oct, nov I dec } i

class Bad_date {} i

Date (int dd, Month mm, int yy);
Date()i

friend ostream& operator« (ostream& s, const Date& d) i



908 Locales

/ / ...
private:

time_t d i / / standard date and time representation
} ;

Date: : Date (int dd, Month mm, int yy)
{

tm x ={0 } i

if (dd<O II 3/<dd) throw Bad_date ( ) i / / oversimplified.· see §/0.3.J
x.tm mday = ddi
if (m-;"<jan I I dec<mm) throw Bad_date ( ) i
x. tm_mon = mm-/ i / / tm_mon is zero based
x . tmyear = yy-1900; / / tmyear is J900 based
d = mktime (&x) i

Date: : Date ( )
{

d =time (0) i / / default Date: today
if (d == time_t (-/) ) throw Bad_date () i

The task here is to define locale-sensitive implementations for Date « and ».

AppendixD

D.4.4.3 Date and Time Output

Like numyut (§D.4.2), timeyut provides put () functions for writing to buffers through iterators:

template <class Ch, class Out = ostreambuf_iterator<Ch> >
class std:: timeJJut : public locale: :facet {
public:

typedef Ch char_type;
typedef Out iter_type i

explicit timeJut (size_t r = 0) i

/ / put t into s's stream buffer through b, using format fmt:
Out put (Out b, ios_base& s, Ch fill, const tm* t,

const Ch * fint_b, const Ch * fmt_e) const;

Out put(Out b, ios_base&s, Ch fill, const tm* t, char fint, char mod=O} const
{ return doJut (b, s ,fill, t ,fmt, mod) i }

static locale:: id id i / / facet identifier object (§D.2, §D.3, §D.3. J)

protected:
-timeJut () i

virtual Out dOJut(Out, ios_base&, Ch, const tm*, char, char} const;
} ;

A call put (b , S ,fill, t ,fmt_b ,fmt_e) places the date information from t into s's stream buffer
through b. The fill character is used where needed for padding. The output format is specified by a
printf() -like format string [fmt_b,fmt_e). The printf-Iike (§21.8) format is used to produce an



Section 0.4.4.3 Date and Time Output 909

actual output and may contain the following special-purpose format specifiers:

%a abbreviated weekday name (e.g., Sat)
%A full weekday name (e.g., Saturday)
%b abbreviated month name (e.g., Feb)
%B full month name (e.g., February)
%c date and time (e.g., Sat Feb 06 21 :46:05 1999)
%d day of month [01,31] (e.g., 06)
%H 24-hour clock hour [00,23] (e.g., 21)
%/ 12-hour clock hour [01,12] (e.g., 09)
%j day of year [001,366] (e.g., 037)
%m month of year [01,12] (e.g., 02)
%M minute of hour [00,59] (e.g., 48)
%p a.m.lp.m. indicator for 12-hour clock (e.g., PM)
%S second of minute [00,61 ] (e.g., 40)
%U week of year [00,53] starting with Sunday (e.g., 05); the first Sunday starts week 1
%w day of week [0,6]; 0 means Sunday (e.g., 6)
%W week of year [00,53] starting with Monday (e.g., 05); the first Monday starts week 1
%x date (e.g., 02/06/99)
%X time (e.g., 21 :48:40)
%y year without century [00,99] (e.g., 99)
%Y year (e.g., 1999)
%Z time zone indicator (e.g., EST) if the time zone is known

This long list of very specialized formatting rules could be used as an argument for the use of
extensible 1/0 systems. However, as with most specialized notations, it is adequate for its task and
often even convenient.

In addition to these formatting directives, most implementations support "modifiers," such as
an integer specifying a field width (§21.8), %/OX. Modifiers for the time-and-date formats are not
part of the C++ standard, but some platform standards, such as POSIX, require them. Conse
quently, modifiers can be difficult to avoid even if their use isn't perfectly portable.

The sprinif-Iike (§21.8) function strftime () from <ctime> or <time. h> produces output using
the time and date format directives:

size_t strftime (char* s, size_t max, const char* format, const tm* tmp) ;

This function places a maximum of max characters from * tmp and the format into *s according the
format. For example:

int main ()
{

char buf[20]; / / sloppy: no protection against buffer overflow
time_t t = time (0);
strftime (buf, 20, "%A\n II , localtime (&1) ) ;

cout« buf;



910 Locales AppendixD

/ / see §2J.3.8

On a Wednesday, this will print Wednesday in the default classic () locale (§D.2.3) and onsdag in
a Danish locale.

Characters that are not part of a format specified, such as the newline in the example, are simply
copied into the first argument (s).

When put () identifies a format characterI (and optional modifier character m), it calls the vir
tual doJJut () to do the actual formatting: doJJut (b , s ,fi", t ,I, m) .

A call put (b , s ,fi'l, t ,I, m) is a simplified form of put ( ) , where a format character if) and a
modifier character (m) are explicitly provided. Thus,

const char fmt [] = "%lOX" ;
put (b, s ,fill, t ,fmt ,fmt+sizeof(fmt) ) ;

can be abbreviated to

put (b , s ,fill, t, ' X' , J0) ;

If a format contains multibyte characters, it must both .Begin and end in the default state (§D.4.6).
We can use put () to implement a locale-sensitive output operator for Date:

ostream& operator« (ostream& s, const Date& d)
{

ostream : : sentry guard (s) ;
if ( !guard) return s;

tm* tmp =localtime (&d . d) ;
try {

if (useJacet< timeyut<char> > (s .getloc ( ) ) .put (s , s, s .fill ( ) , tmp, ' x ' ) .failed ( ) )
s . setstate (ios_base: :failbit) ;

}

catch ( ... ) {
handle_ioexception (s) ;

return s;

/ / see §D.4.2.2

Since there is no standard Date type, there is no default layout for date I/O. Here, I specified the
%x format by passing the character 'x' as the format character. Because the %x format is the
default for get_time () (§D.4.4.4), that is probably as close to a standard as one can get. See
§D.4.4.5 for an example of how to use alternative formats.

D.4.4.4 Date and Time Input

As ever, input is trickier than output. When we write code to output a value, we often have a
choice among different formats. In addition, when we write input code, we must deal with errors
and sometimes the possibility of several alternative formats.

The time_get facet implements input of time and date. The idea is that time_get of a locale can
read the times and dates produced by the locale's timeyut. However, there are no standard date
and time classes, so a programmer can use a locale to produce output according to a variety of for
mats. For example, the following representations could all be produced by using a single output
statement, using timeJJut (§D.4.4.5) from different locales:



Section D.4.4.4

January 15th 1999
Thursday 15th January 1999
15 Jan 1999AD
Thurs 15/ I /99

Date and Time Input 911

The C++ standard encourages implementers of time_get to accept dates and time formats as speci
fied by POSIX and other standards. The problem is that it is difficult to standardize the intent to
read dates and times in whatever format is conventional in a given culture. It is wise to experiment
to see what a given locale provides (§D.6[8]). If a format isn't accepted, a programmer can provide
a suitable alternative time_get facet.

The standard time inputfacet, time_get, is derived from time_base:

class std:: time_base {
public:

enum dateorder {
no_order, / / no order, possibly more elements (such as day ofweek)
dmy, / / day before month before year
mdy I / / month before day before year
ymd I / / year before month before day
ydm / / year before day before month

} ;

} ;

An implementer can use this enumeration to simplify the parsing on date formats.
Like num_get, time_get accesses its buffer through a pair of input iterators:

template <class Ch I class In = istreambuf_iterator<Ch> >
class time_get: public locale: :facet I public time_base {
public:

typedef Ch char_type i
typedef In iter_type;

explicit time_get (size_t r = 0) i

dateorder date_order ( ) const { return do_date_order()i

/ / read [b,e) into d, using formatting rules from s, reporting errors by setting r:
In get_time (In b I In e I ios_base& s I ios_base:: iostate& r, tm* d) const;
In get date (In b I In e I ios base& s I ios base:: iostate& r I tm* d) const;
In getyear (In b , In e , io~base&sl ios__base::iostate&r , tm*d) const;

In get_weekday(/n b , In e , ios_base&s, ios_base::iostate&r , tm*d) const;
In get_monthname (In b I In e I ios_base& s I ios_base:: iostate& r, tm* d) const i

static locale:: id idi / / facet identifier object (§D.2, §D.3, §D.3.1)

protected:
-time_get ( ) i

/ / virtual "do_" functions for public functions (see §D.4. 1)
} ;

The get_time () function calls do_get_time ( ). The default get_time () reads time as produced by



912 Locales AppendixD

the locale's timeyut (), using the %X format (§D.4.4). Similarly, the get_date () function calls
do_get_date ( ). The default reads time as produced by the locale's timeyut ( ) , using the %x for
mat (§D.4.4).

Thus, the simplest input operator for Dates is something like this:

istream& operator» (istream& s I Date& d)
{

istream: : sentry guard (s) ;
if ( !guard) return s:

/ / see §2/.3.8

ius_base: : iostate res = 0;
tm x = { 0 };
istreambu!_iterator<char I char_traits<char> > end;
try {

useJacet< time_get<char> > (s . getloc ( ) ) . get_date (s I end I s I res I &x) ;
}

catch ( ... ) {
handle_ioexception (s ) ;
return Si

/ / see §D.4.2.2

}

d = Date (x. tm_mday I Date: : Month (x. tm_mon) +/ I x. tmyear+1900);
return s;

The call get_date (s , end, s , res, &x) relies on two implicit conversions from istream: As the first
argument s is used to construct an istreambuf_iterator. As third argument, s is converted to the
istream base class ios base.

This input operator will work correctly for dates in the range that can be represented by time_t.
A trivial test case would be:

int main ()
try {

Date today;
cout « today « endl; / / write using %xjormat
Date d (/2, Date:: may, 1998);

cout « d« endl;
Date dd;
while (c;n» dd) cout« dd« endl;

}

catch (Date:: Bad_date) {
cout« "ex;t: bad date caught\n" i

/ / read dates produced by %x format

A _byname version (§D.4, §D.4.1) of put_time is also provided:

template <class Ch, class Out =ostreambuf_iterator<Ch> >
class std:: timeJJut_byname : public timeJJut< Ch lOut> { / * ... * / };



Section D.4.4.5 A More Flexible Date Class 913

D.4.4.5 A More Flexible Date Class

If you tried to use the Dale class from §D.4.4.2 with the I/O from §D.4.4.3 and §D.4.4.4, you'd
soon find it restrictive:

[ I] It can handle only dates that can be represented by a time_t; that typically means in the
[1970,2038] range.

[2] It accepts dates only in the standard format·- whatever that might be.
[3] Its reporting of input errors is unacceptable.
[4] It supports only streams of char - not streams of arbitrary character types.

P:. more interesting and more useful input operator would accept a wider range of dates, recognize a
few comnlon formats, and reliably report errors in a useful form. To do this, we must depart from
the time_t representation:

class Date {
public:

enum Month {jan= J , Jeb, mar, apr, may, jun, jul, aug, sep, oct, nov, dec } ;

struct Bad_date {
const char* why;
Bad_date (const char* p) : why (p ) { }

} ;

Date (int dd, Month mm, int yy, int day_of_week = 0) i

Date();

void make_tm (tm* t) const i
time_t make_time_t () const;

/ / place tm representation ofDate in *t
/ / return time_t representation ofDate

int year () const { return Yi }
Month month () const { return m i
int day () const { return d i }

/ / ...
private:

char di
Month mi
int Yi

} ;

For simplicity, I reverted to the (d, m, y) representation (§ 10.2).
The constructor might be defined like this:

Date::Date(int dd, Month mm, int yy, int day_oj_week)
:d(dd), m(mm), y(yy)

if (d==O && m==Month (0) && y==O) return; 1/ Date(O,O,O) is the "null date"
if (mm<jan I I dec<mm) throw Bad_date ( "bad month");



914 Locales

if (dd<1 II 31<dd) / / oversimplified; see §/O.3./
throw Bad_date ( II bad day of month" ) ;

if (day_oJ_week && day_in_week (yy I mm , dd) ! =day_of_week)
throw Bad_date ( II bad day of week II ) ;

Date::Date() :d(O), m(O), y(O) {} //a"nulldate"

AppendixD

The day_in_week () calculation is nontrivial and immaterial to the locale mechanisms, so I have
left it out. If you need one, your system will have one somewhere.

Comparison operations are always useful for types such as Date:

booI operator== (const Date& x, const Date& y)
{

return x . year ( ) ==y . year ( ) && x . month () ==y. month () && X • day () ==y . day ();

booI operator! = (const Date& x I const Date& y)
{

return! (x==y);

Having departed from the standard tm and time_t formats, we need conversion functions to cooper
ate with software that expects those types:

void Date:: make_tm (tm * p) const
{

tm x = { 0 } ;
*p =X;

p->tmyear = y-1900;
p->tm_mday =d;
p->tm_mon = m-l;

time_, Date:: make_time_, () const
{

/ / put date into *p

if (y<1970 II 2038<y) / / oversimplified
throw Bad_date ("date out of range for time_t");

1m x;

make_tm (&x);
return mktime (&x);

D.4.4.6 Specifying a Date Format

C++ doesn't define a standard output format for dates (%x is as close we get; §D.4.4.3). However,
even if a standard format existed, we would probably want to be able to use alternatives. This
could be done by providing a "default format" and a way of changing it. For example:



Section D.4.4.6 Specifying a Date Format 915

/ / default format
/ / current lonnat

class DateJormat {
static char fmt [ ] ;
const char* curr;
const char* curr_end;

public:
DateJormat() :curr(fmt) , curr_end(fmt+strlen(fmt)) { }

const char* begin ( ) const { return curr; }
const char* end () const { return curr_end; }

void set (const char* p, const char* q) {curr=p; curr_end=q ;
void set (const char* p) {curr=p; curr_end=curr+strJen (p); }

static const char* defaultJmt () { return fmt; }
} ;

const char DateJormat<char> : :fmt [] = II %A, %8 %d, %YII; / / e.g., Friday, February 5, 1999

DateJormat dateJmt ;

To be able to use that strftime () format (§D.4.4.3), I have refrained from parameterizing the
DateJormat class on the character type used. This implies that this solution allows only date nota
tions for which the format can be expressed as a char [ ]. I also used a global format object
(dateJmt) to provide a default Date format. Since the value of dateJmt can be changed, this pro
vides a crude way of controlling Date formatting, similar to the way global () (§D.2.3) can be
used to control formatting.

A more general solution is to add Date_in and Date_out facets to control reading and writing
from a stream. That approach is presented in §D.4.4.7.

Given DateJormat, Date: : operator« () can be written like this:

template<class Ch, class Tr>
basic_ostream<Ch, Tr>& operator« (basic_ostream<Ch, Tr>& s, const Date& d)
/ / write according to user-.\'pec(fiedlonnat
{

typename basic_ostream<Ch, rr> : : sentry guard (s); / / see _;o.sentry
if ( ! guard) return s;

tm t;
d .make_tm (&t) ;
try {

const timeyut<Ch>& f = useJacet< timeyut<Ch> > (s . getloc ( ) ) ;
if (f. put (s, s, s .fill ( ), &t, dateJrnt. begin ( ), dateJmt. end ( ) ) .failed)

s . setstate (ios_base: :failbit) ;
}

catch ( ... ) {
handle_ioexception (s) ;

return s;

/ / see §D.4.2.2

I could have used hasJacet to verify that s's locale had a timeyut<Ch> facet. However, here it
seemed simpler to handle that problem by catching any exception thrown by useJacet .



916 Locales

Here is a simple test program that controls the output format through dateJmt:

int main ()
try {

AppendixD

while (cin» dd && dd ! = Date () ) coul« dd« endl;

dateJmt.set( "%Y/%m/%d");

while (cin» dd && dd ! = Date ( ) ) coul« dd « endl;
}

catch (Date:: Bad_date e) {
cout« II bad date caught: It « e. why « endl;

/ / write using default dateJmt

/ / write using "%YI%mI%d"

D.4.4.7 A Date Input Facet

As ever, input is a bit more difficult than output. However, because the interface to low-level input
is fixed by get_date () and because the operator» () defined for Date in §D.4.4.4 didn't directly
access the representation of a Date, we could use that operator» () unchanged. Here is a templa
tized version to match the operator« ( ) :

template<class Ch I class Tr>
istream<Ch ITr>& operator» (istream<Ch ITr>& s I Date& d)
{

typename istream<Ch ITr> : : sentry guard (s) ;
if ( ! guard) return s;

ios_base: : iostate res = 0;
tmx={O};
istreambu!_iterator<Ch I Tr> end;
try {

useJacet< time_get< Ch> > (s . getloc ( ) ) . get_date (s Iend I s I res I &x) ;
}

catch ( ... ) {
handle_ioexceplion (s) ;
return s;

/ / see §D.4.2.2

}

d = Date (x. tm_mdaYI Date: : Month (x. tm_mon) +1 IX. tmyear+1900 , x. tm_wday);
if (res ==ios_base: :badbit) s. setstate (res) ;
return s;

This Date input operator calls get_date () the Istream's time_get facet. Therefore, we can pro
vide a different and more flexible form of input by defining a new facet derived from time_get:

template<class Ch I class In = istreambu!_iterator<Ch> >
class Date_in: public std:: time_get<Ch> {
public:

Date_in (size_t r = 0) : std:: time_get<Ch> (r) { }



Section D.4.4.7 A Date Input Facet 917

protected:
In do_get_date(ln b , In e , ios_base&s, ios_base::iostate& r, tm* tmp) const;

private:
enum Vtype { novalue, unknown, dayofweek, month } ;
In getval (In b I In e, ios_base& s, ios_base: : iostate& r I int* v, Vtype* res) const;

} ;

The getval () needs to read a year, a month, a day of the month, and optionally a day of the week
and compose the result into atm.

The names of the months and the names of the days of the week are locale specific. Conse
quently, we can't mention them directly in our input function. Instead, we recognize months and
days by calling the functions that time_get provides for that: get_monthname () and
get_weekday () (§D.4.4.4).

The year, the day of the month, and possibly the month are represented as integers. Unfortu
nately, a number does not indicate whether it denotes a day or a month, or whatever. For example,
7 could denote July, day 7 of a month, or even the year 2007. The real purpose of time_get's
date_order () is to resolve such ambiguities.

The strategy of Date_in is to read values, classify them, and then use date_order () to see
whether (or how) the values entered make sense. The private getval () function does the actual
reading from the stream buffer and the initial classification:

template<class Ch, class In = istreambuf_iterator<Ch> >
In Date_in:: getval (In b, In e, ios_base& s, ios_base:: iostate& r, int* v, Vtype* res) const

/ / read part ofDate: number, day_of_week, or month. Skip whitespace

ctype<Ch> const& ct = useJacet< ctype<Ch> > (s. getloc () );

Ch c = *b;

if (r. skipws) {
while (ct. isspace (c) I I ct. ispunct (c)) { / / skip whitespace and punctuation

if (++b==e) {
*res = novalue; / / no valuejound
return e;

}

c = *b;

if (ct. isdigit (c) )

int i =0;
/ / read integer without regard for numpunct

do { / / turn digit from arbitrary character set into decimal value:
static char const digits [] = "OJ23456789" ;
i =i*10 + find (digits I digits+10, ct. narrow (c, ' ')) -digits;
c =*++bi

} while (ct. isdigit (c) ) ;



918 Locales

*v =i;
* res = unknown;
return b;

/ / an integer, but we don't know what it represents

AppendixD

if (ct. isalpha (c)) { / / look for name ofmonth or day ofweek
basic_string<Ch> str;
while (ct. isalpha (c)) { / / read characters into string

str += c;
if (++b == e) break;
c = *b;

1m t;
basic_stringstream<Ch> ss (str);
get monthname (ss . rdbuf( ) , In ( ) , s , r, &t) ; / / readfrom in-memory stream buffer
if (-( r& (ios_base: : badbit Iios_base: :failbit) ) ==0) {

*v= t. tm_mon;
* res =month;
r= 0;
return b;

r = 0; / / clear state before trying to read a second time
get_weekday (ss. rdbuf( ), In ( ), s, r, &t); / / readfrom in-memory stream buffer
if ( (r&ios_base:: badbit) ==0) {

*v = t. tm_wday;
* res = dayofweek;
r = 0;
return b;

}

r I= ios_base: :failbit;
return b;

The tricky part here is to distinguish months from weekdays. We read through input iterators, so
we cannot read [b, e) twice, looking first for a month and then for a day. On the other hand, we
cannot look at one character at a time and decide, because only get_monthname () and
get_weekday () know which character sequences make up the names of the months and the names
of the days of the week in a given locale. The solution I chose was to read strings of alphabetic
characters into a string, make a stringstream from that string, and then repeatedly read from that
stream's streambuf

The error recording uses the state bits, such as ios_base:: badbit, directly. This is necessary
because the more convenient functions for manipulating stream state, such as clear () and set
state (), are defined in basic_ios rather than in its base ios_base (§21.3.3). If necessary, the »
operator then uses the error results reported by get_date () to reset the state of the input stream.

Given getval ( ) , we can read values first and then try to see whether they make sense later. The
dateorder () can be crucial:



Section 0.4.4.7 A Date Input Facet 919

template<class Ch, class In = istreambuf_iterator<Ch> >
In Date_in:: do_get_date (In b, In e, ios_base& s, ios_base:: iostate& r, tm* tmp) const
/ / optional day ofweek followed by ymd, dmy, mdy, or ydm
{

int val [3];
Vtype res [3] = { novalue } ;

/ / for day, month, and year values in some order
/ / for value classifications

for (int ;=0; b! =e && i<3; ++i) { / / read day, month, and year
b =getval(b,e,s,T,&val[i],&res[i]);
if (r) return b; / / oops: error
if (res [i] ==novalue) { / / couldn't complete date

r 1= ios_base:: badbit;
return b;

}

if (res [i] ==dayofweek) {
tmp->tm_wday = val[i];
- - i; / / oops: not a day, month, or year

time_base: : dateorder order = dateorder ( ) ; / / now try to make sense ofthe values read

if (res [0] == month)
/ / ...

/ / mdy or error

}

else if (res [ J1 == month) { / / dmy or ymd or error
tmp->tm_mon = val [J];
switch (order) {
case dmy:

tmp->tm_mday = val[O];
tmp->tmyear =val [2];
break;

case ymil:
tmp->tmyear = val [0];
tmp->tm_mday = val[J];
break;

default:
r I= ios_base: :badb;t;
return b;

}

else if (res [2] == month) {
/ / ...

}

else {
/ / ...

/ / ydm or error

/ / rely on dateorder or error

tmp->tmyear -= 1900; / / adjust base year to suit tm convention
return bi



920 Locales AppendixD

I have omitted bits of code that do not add to the understanding of locales, dates, or the handling of
input. Writing better and more general date input functions are left as exercises (§D.6[9-1 0]).

Here is a simple test program:

int main ()
try {

cin. imbue (loc (locale ( ) ,new Date_in) )ill read Dates using Date_in

while (cin » dd && dd ! = Date () ) cout« dd« endli
}

catch (Date:: Bad_date e) {
cout« II bad date caught: II « e. why « endl j

Note that do_get_date () will accept meaningless dates, such as

Thursday October 7, 1998

and

19991 Feb 131

The checks for consistency of the year, month, day, and optional day of the week are done in
Date's constructor. It is the Date class' job to know what constitutes a correct date, and it is not
necessary for Date_in to share that knowledge.

It would be possible to have getval () or do_get_date () guess about the meaning of numeric
values. For example,

12 May 1922

is clearly not the day 1922 of year 12. That is, we could "guess" that a numeric value that
couldn't be a day of the specified month must be a year. Such "guessing" can be useful in specific
constrained context. However, it in not a good idea in more general contexts. For example,

12 May 15

could be a date in the year 12, 15, 1912, 1915, 2012, or 2015. Sometimes, a better approach is to
augment the notation with clues that disambiguate years and days. For example, 1st and 15th are
clearly days of a month. Similarly, 751Be and 1453AD are explicitly identified as years.

D.4.S Character Classification

When reading characters from input, it is often necessary to classify them to make sense of what is
being read. For example, to read a number, an input routine needs to know which letters are digits.
Similarly, §6.1.2 showed a use of standard character classification functions for parsing input.

Naturally, classification of characters depends on the alphabet used. Consequently, a facet
ctype is provided to represent character classification in a locale.

The character classes as described by an enumeration called mask:



Section D.4.5

class std:: ctype_base {
public:

enum mask {
space = I,
print =1<< 1 ,
cntrl = 1«2,
upper =1«3,
lower = 1«4,
alpha = J«5,
digit = 1«6,
punct =1«7,
xdigit = 1«8,
alnum=alpha Idigit,
graph=alnum Ipunct

} i

} i

Character Classification 921

/ / the actual values are ;,nplelnentllt;on defined
/ / whitespace (in "C" locale: t tt '\n tt \t tt ••• )

/ / printing character.\'
/ / cOlltrol characters
/ / uppercase characters
/ / lowercase characters
/ / alphl/hetic characters
/ / deci/llal diRits
/ / pUJlctuation characters
/ / hexadec;'llal digits
/ / a/phl/1l1l111eric character.\'

This mask doesn't depend on a particular character type. Consequently, this enumeration is placed
in a (non-template) base class.

Clearly, mask reflects the traditional C and C++ classification (§20.4.1). However, for different
character sets, different character values fall into different classes. For example, for the ASCII
character set, the integer value /25 represents the character '} " which is a punctuation character
(punct). However, in the Danish national character set, /25 represents the vowel ' ti " which in a
Danish locale must be classified as an alpha.

The classification is called a "mask" because the traditional efficient implementation of char
acter classification for small character sets is a table in which each entry holds bits representing the
classification. For example:

table [ ,a'] == lower Ialpha Ixdigit
table [ , 1 '] == digit
table [' '] == space

Given that implementation, table [c] &m is nonzero if the character c is an m and 0 otherwise.
The ctype facet is defined like this:

template <class Ch>
class sId:: ctype : public locale: :facet, public ctype_base {
public:

typedef Ch char_type i

explicit ctype (size_' r = 0) i

bool is (mask m, Ch c) const i / / is "c" an "nl"'!

/ / place classification for each Ch in Ib:e) into v:
const Ch * is (const Ch * b, const Ch * e, mask* v) const i

const Ch * scan is (mask m, const Ch * b, const Ch * e) const i /1 find an In

const Ch * scan=not (mask m, const Ch * b, const Ch * e) const; / / find a non-m



922 Locales

Ch toupper (Ch c) const;
const Ch * toupper (Ch * b, const Ch * e) const; / / convert [h:e)
Ch tolower (Ch c) const;
const Ch * tolower (Ch * b, const Ch * e) const;

Ch widen (char c) const;
const char* widen (const char* b, eonst char* e, Ch * b2) const;
char narrow (Ch c, char de/) const;
const Ch * narrow (const Ch * b, const Ch * e, char def, char* b2) const;

static locale:: id id; / / facet ident~fierobject (§0.2, §0.3, §0.3./)

protected:
-ctype ();

/ / virtual · 'do_' t .filllctiollsfor puhlicfunctions (see §0.4. J)

} ;

Appendix D

A call is (m ,e) tests whether the character c belongs to the classification m. For example:

int count_spaces (const string& s, const locale& loe)

int i = 0;
char chi
for (string: : const_iterator p = s . begin ( ); P ! = s . end ( ); ++p)

if (loc. is (space I ch) ) ++i; / / whitespace as defined by loc
return i;

Note that it is also possible to use is () to check whether a character belongs to one of a number of
classifications. For example:

loc. is (space Ipunct I c) ; / / is c whitespace or punctuation in IDe?

A call is (b , e I v) determines the classification of each character in [b ,e) and places it in the cor
responding position in the array v.

A call scan_is (m, b ,e) returns a pointer to the first character in [b, e) that is an m. If no
character is classified as an m, e is returned. As ever for standard facets, the public member func
tion is implemented by a call to its" do_" virtual function. A simple implementation might be:

template <class Ch>
const Ch* std::ctype::do_scan_is(mask m, const Ch* b , const Ch* e) const
{

while (b! =e && ! is (m, *b) ) ++bi
return b i

A call scan_not (m , b ,e) returns a pointer to the first character in [b, e) that is not an m. If all
characters are classified as m, e is returned.

A call toupper (c) returns the uppercase version of c if such a version exists in the character set
used and c itself otherwise.

A call toupper (b , e) converts each character in the range [b, e) to uppercase and returns e. A
simple implementation might be:



Section D.4.5

template <class Ch>
const Ch* std: : ctype: : to_upper (Ch* b, const Ch* e)
{

for (i b! =e; ++b) *b = toupper( *b);
return e;

Character Classification 923

The tolower () functions are similar to toupper () except that they convert to lowercase.
A call widen (c) transforms the character c into its corresponding Ch value. If Ch's character

set provides several characters corresponding to c, the standard specifies that' 'the simplest reason
able transformation" be used. For example,

wcout « useJacet< ctype<wehar_t> > (weout . getloe ( ) ) . widen ( , e ' ) ;

will output a reasonable equivalent to the character e in wcout's locale.
Translation between unrelated character representations, such as ASCII and EBCDIC, can also

be done by using widen ( ). For example, assume that an ebcdic locale exists:

char EBCDIC_e = useJacet< etype<ehar> > (ebcdie) . widen ( , e ' ) ;

A call widen (b , e , v) takes each character in the range [b, e) and places a widened version in the
corresponding position in the array v.

A call narrow (ch, de/) produces a char value corresponding to the character ch from the Ch
type. Again, "the simplest reasonable transformation" is to be used. If no such corresponding
char exist, def is returned.

A call narrow (b , e , def, v) takes each character in the range [b, e) and places a narrowed
version in the corresponding position in the array v.

The general idea is that narrow () converts from a larger character set to a smaller one and that
widen () performs the inverse operation. For a character c from the smaller character set, we
expect:

c == narrow (widen (c), 0) / / not guaranteed

This is true provided that the character represented by c has only one representation in "the smaller
character set." However, that is not guaranteed. If the characters represented by a char are not a
subset of those represented by the larger character set (Ch), we should expect anomalies and poten
tial problems with code treating characters generically.

Similarly, for a character ch from the larger character set, we might expect:

widen (narrow (ch, de/) ) == ch II widen (narrow (ch, de/) ) == widen (de/) / / not guaranteed

However, even though this is often the case, it cannot be guaranteed for a character that is repre
sented by several values in the larger character set but only once in the smaller character set. For
example, a digit, such as 7, often has several separate representations in a large character set. The
reason for that is typically that a large character set has several conventional character sets as sub
sets and that the characters from the smaller sets are replicated for ease of conversion.

For every character in the basic source character set (§C.3.3), it is guaranteed that

widen (narrow (eh_lit, 0)) == ch_lit



924 Locales

For example:

widen (narrow ( 'x')) 'x'

AppendixD

The narrow () and widen () functions respect character classifications wherever possible. For
example, if is (alpha I c) , then is {alpha, narrow (c, ' a ' ) ) and is (alpha, widen (c) ) wherever
alpha is a valid mask for the locale used.

A major reason for using a ctype facet in general and for using narrow () and widen () func
tions in particular is to be able to write code that does I/O and string manipulation for any character
set; that is, to make such code generic with respect to character sets. This implies that iostream
implementations depend critically on these facilities. By relying on <iostream> and <string>, a
user can avoid most direct uses of the ctype facet.

A _byname version (§D.4, §D.4. I) of ctype is provided:

template <class Ch> class std:: ctype_byname : public ctype<Ch> { / * ... * / };

D.4.S.1 Convenience Interfaces

The most common use of the ctype facet is to inquire whether a character belongs to a given classi
fication. Consequently, a set of functions is provided for that:

template <class Ch> booI isspace (Ch c, const locale& loc) ;
template <class Ch> bool isprint (Ch c, const locale& loc) ;
template <class Ch> bool iscntrl (Ch c, const locale& loc) ;
template <class Ch> booI isupper (Ch c, const locale& loc) ;
template <class Ch> bool islower (Ch c, const locale& loc) ;
template <class Ch> bool isalpha (Ch c, const locale& loc) ;
template <class Ch> bool isdigit (Ch c, const locale& loe) ;
template <class Ch> bool ispunct (Ch c, const locale& loc) ;
template <class Ch> bool isxdigit (Ch c, const locale& loc) ;
template <class Ch> bool isalnum (Ch c, const locale& loc) ;
template <class Ch> bool isgraph (Ch c, const locale& loc) ;

These functions are trivially implemented by using useJacet. For example:

template <class Ch>
inline bool isspaee (Ch c, const locale& loe)
{

return useJacet< ctype<Ch> > (loc) . is (space, c) ;

The one-argument versions of these functions, presented in §20.4.2, are simply these functions for
the current C global locale (not the global C++ locale, locale ( ) ). Except for the rare cases in which
the C global locale and the C++ global locale differ (§D.2.3), we can think of a one-argument ver
sion as the two-argument version applied to locale ( ). For example:

inline int isspace (int i)
{

return isspace (i , locale ( ) ); / / almost



Section D.4.S.1

D.4.6 Character Code Conversion

Convenience Interfaces 925

Sometimes, the representation of characters stored in a file differs from the desired representation
of those same characters in main memory. For example, Japanese characters are often stored in
files in which indicators ("shifts") tell to which of the four common character sets (kanji, kata
kana, hiragana, and romaji) a given sequence of characters belongs. This is a bit unwieldy because
the meaning of each byte depends on its "shift state," but it can save memory because only a kanji
requires more than one byte for its representation. In main memory, these characters are easier to
manipulate when represented in a multi-byte character set where every character has the same size.
Such characters (for example, Unicode characters) are typically placed in wide characters
(wchar_l; §4.3). Consequently, the codecvl facet provides a mechanism for converting characters
from one representation to another as they are read or written. For example:

Disk representation:

Main memory representation: Unicode

I/O conversions controlled by codecvt

This code-conversion mechanism is general enough to provide arbitrary conversions of character
representations. It allows us to write a program to use a suitable internal character representation
(stored in char, wchar_I, or whatever) and to then accept a variety of input character stream repre
sentations by adjusting the locale used by iostreams. The alternative would be to modify the pro
gram itself or to convert input and output files from/to a variety of formats.

The codecvl facet provides conversion between different character sets when a character is
moved between a stream buffer and external storage:

class std:: codecvt_base {
public:

enum result { ok, partial, error, noconv } j

} ;

/ / result indicators

template <class I, class E, class State>
class sId:: codecvt : public locale: :facet, public codecvt_base {
public:

typedef 1 intern_type;
typedef E extern_type j

typedef State state_type;

explicit codecvt (size_t r = 0) ;

result in (State&, const E* from, const E* from_end, const E* & from_next, / / read
1* to, 1* to_end, 1*& to_next) const;



926 Locales AppendixD

result out (State&, const 1* from, const 1* from_end, const 1* & from_next, / / write
E* to, E* to_end, E*& to_next) const;

result unshift (State&, E* to, E* to_end, E* & to_next) const; / / end character sequence

int encoding () const throw ( ) ;
bool always_noconv () const throw ( ) ;

/ / characterize basic encoding properties
/ / can we do liD without code translation?

int length (const State&, const E* from, const E* from_end, size_t max) const:
int max_length () const throw ( ) ; / / maximum possible length()

static locale:: id id; / / facet identifier object (§D.2, §D.3, §D.3. J)

protected:
- codecvt ( );

/ / virtual' 'do_" functions for public functions (see §D.4. J)
} ;

A codecvt facet is used by basicJilebuf (§21.5) to read or write characters. A basicJilebuf
obtains this facet from the stream's locale (§21.7.1).

The State template argument is the type used to hold the shift state of the stream being con
verted. State can also be used to identify different conversions by specifying a specialization. The
latter is useful because characters of a variety of character encodings (character sets) can be stored
in objects of the same type. For example:

class JISstate { / * .. * / };

p = new codecvt<wchar t, char, mbstate t>;- -
q =new codecvt<wchar_t, char, JISstate>;

/ / standard char to wide char
/ / JIS to wide char

Without the different State arguments, there would be no way for the facet to know which encoding
to assume for the stream of chars. The mbstate_t type from <cwchar> or <wchar. h> identifies
the system's standard conversion between char and wchar_to

A new codecvt can be also created as a derived class and identified by name. For example:

class JIScvt : public codecvt<wchar_t I char I mbstate_t> { / * ... * / };

A call in (s,from,from_end,from_next, to, to_end, to_next) reads each character in the range
[from ,from_end) and tries to convert it. If a character is converted, in () writes its converted
form to the corresponding position in the [to, to_end) range; if not, in () stops at that point.
Upon return, in () stores the position one-beyond-the-Iast character read infrom_next and the posi
tion one-beyond-the-Iast character written in to_next. The result value returned by in () indicates
how much work was done:

ok: all characters in the [from ,from_end) range converted
partial: not all characters in the [from ,from_end) range were converted
error: out () encountered a character it couldn't convert
noconv: no conversion was needed

Note that a partial conversion is not necessarily an error. Possibly more characters have to be read
before a multibyte character is complete and can be written, or maybe the output buffer has to be
emptied to make room for more characters.



Section D.4.6 Character Code Conversion 927

/ / convert to uppercase

The s argument of type State indicates the state of the input character sequence at the start of
the call of in ( ). This is significant when the external character representation uses shift states.
Note that s is a (non-const) reference argument: At the end of the call, s holds the state of shift state
of the input sequence. This allows a programmer to deal with partial conversions and to convert a
long sequence using several calls to in ( ) .

A call out (s ,from, from_end, from_next, to , to_end, to_next) converts [from, from_end)
from the internal to the external representation in the same way the in () converts from the external
to the internal representation.

A character stream must start and end in a "neutral" (unshifted) state. Typically, that state is
State ( ). A call unshift (s , to , to_end, to_next) looks at s and places characters in [to, to_end)
as needed to bring a sequence of characters back to that unshifted state. The result of unshift ( )
and the use of to_next are done just like out ( ) .

A call length (s ,from ,from_end, max) returns the number of characters that in () could con
vert from [from ,from_end) .

A call encoding () returns
-1 if the encoding of the external character set uses state (for example, uses shift and unshift

character sequences)
o if the encoding uses varying number of bytes to represent individual characters (for exam

ple, a character representation might use a bit in a byte to indicate whether one or two
bytes are used to represents that character)

n if every character of the external character representation is n bytes
A call always_noconv () returns true if no conversion is required between the internal and the

external character sets and false otherwise. Clearly, always_no_conv ( ) ==true opens the possibil
ity for the implementation to provide the maximally efficient implementation that simply doesn't
invoke the conversion functions.

A call max_length () returns the maximum value that length () can return for a valid set of
arguments.

The simplest code conversion that I can think of is one that converts input to uppercase. Thus,
this is about as simple as a codecvt can be and still perform a service:

class Cvt_to_upper : public codecvt<char I char, mbstate_t> {

explicit Cvt_to_upper (size_t r = 0) : codecvt (r) { }

protected:
/ / read external representation write internal representation:
result do_in (State& s, const char* from I const char* from_end I const char* & from_next,

char* to, char* to_end I char* & to_next) const;

/ / read internal representation write external representation:
result do_out (State& s I const char* from, const char* from_end I const char* & from_next,

char* to I char* to_end I char* & to_next) const

return codecvt<char I char, mbstate_t> : :do_out
(8 ,from ,from_end,from_next , to, to_end, to_next);



928 Locales AppendixD

result do_unshift (State&, E* to, E* to_end, E* & to_next) const { return ok i }

int do_encoding () const throw () { return / i }
hool do_always_noconv () const throw () { return false i }

int do_length (const State&, const E* from, const E* from_end, size_t max) const;
int do_max_length () const throw ( ) ; I I maximum possible length()

} ;

codecvt<char, char, mbstate_t> : : result
Cvt_to_upper: :do_in (State& s, const char* from, const char* from_end,

const char* & from_next, char* to, char* to_end, char* & to_next) const

II ... §D.6[/6] ...

int main ()
{

I I trivial test

locale ulocale (locale ( ), new Cvt_to_upper);

cin . imbue (ulocale) i

while (cin»ch) cout« chi

A _byname version (§D.4, §D.4.1) of codecvt is provided:

template <class /, class E, class State>
class std:: codecvt_byname : public codecvt</, E ,State> { I * ... * I };

D.4.7 Messages

Naturally, most end users prefer to use their native language to interact with a program. However,
we cannot provide a standard mechanism for expressing locale-specific general interactions.
Instead, the library provides a simple mechanism for keeping a locale-specific set of strings from
which a programmer can compose simple messages. In essence, messages implements a trivial
read-only database:

class std:: messages_base {
public:

typedef int catalog i / / catalog identifier type
} i

template <class Ch>
class std:: messages : public locale: :facet, public messages_base {
public:

typedef Ch char_type i
typedef basic_string<Ch> string_type i

explicit messages (size_t r =0) i



Section D.4.7 Messages 929

catalog open (const basic_string<char>&fn, const locale&) const;
string_type get (catalog c, int set, int msgid, const string_type& d) const;
void close (catalog c) const;

static locale:: id id; / / facet identifier object (§D.2, §D.3, §D.3. J)

protected:
-messages ( ) ;

/ / virtual "do_" functions for public functions (see §D.4. J)
} ;

A call open (s, loe) opens a "catalog" of messages called s for the locale loe. A catalog is a set
of strings organized in an implementation-specific way and accessed through the
messages: :get () function. A negative value is returned if no catalog named s can be opened. A
catalog must be opened before the first use of get ( ) .

A call close (cat) closes the catalog identified by cat and frees all resources associated with
that catalog.

A call get (cat, set, id, "foo ") looks for a message identified by (set, id) in the catalog cat.
If a string is found, get () returns that string; otherwise, get () returns the default string (here,
string ( "/00 II ) ).

Here is an example of a messages facet for an implementation in which a message catalog is a
vector of sets of "messages" and a "message" is a string:

struct Set {
vector<string> msgs;

} ;

struct Cat {
vector<Set> sets;

} ;

class My_messages : public messages<char> {
vector<Cat>& catalogs;

public:
explicit My_messages (size_t =0) : catalogs (*new vector<Cat» { }

catalog do_open (const string& s I const locale& loc) const;
string do_get (catalog c,int s, int m, const string&) const;
void do_close (catalog c) const
{

/ / open catalog s
/ / get message (s,m) in c

if (catalogs. size ( ) <=cat) catalogs. erase (catalogs. begin ( ) +cat);

...My_messages () {delete &catalogs; }
} ;

All messages' member functions are eonst, so the catalog data structure (the vector<Set» is stored
outside the facet.

A message is selected by specifying a catalog, a set within that catalog, and a message string
within that set. A string is supplied as an argument, to be used as a default result in case no mes
sage is found in the catalog:



930 Locales AppendixD

string My_messages:: do_get (catalog cat I int set lint msg I const string& de/) const
{

if (catalogs. size ( ) <=cat) return del;
Cat& c = catalogs [cat];
if (c. sets. size ( ) <=set) return def;
Set& s = c. sets [set];
if (s. msgs . size ( ) <=msg) return del;
return s. msgs [msg];

Opening a catalog involves reading a textual representation from disk into a Cat structure. Here, I
chose a representation that is trivial to read. A set is delimited by «< and »>, and each message
is a line of text:

messages<char> : : catalog My_messages: :do_open (const string& n I const locale& loc) const
{

string nn = n + locale ( ) . name ( ) ;
ifstream f (nn . c_str ( ) ) ;
if ( !f) return - J ;

catalogs . push_back (Cat () ); / / make in-core catalog
Cat& c = catalogs. back ( );
string s;
while (/»s && s== II «< II) { / / read Set

c . sets . push_back (Set ( ) );
Set& ss = c . sets. back ( ) i
while (getUne (I, s) && s ! = II »> II) ss. msgs . push_back (s);

}

return catalogs. size ( ) - J ;

Here is a trivial use:

int main ()
{

/ / read message

if ( !hasJacet< My_messages > (locale ( ) )) {
cerr« II no messages facet found in II « locale ( ) . name () « '\11';
exit (J);

const messages<char>& m =useJacet< My_messages> (locale ( ) ) i
extern string message_directory; / / where I keep my messages
int cat = m . open (message_directory I locale ( ) ) ;
if (cat<O) {

cerr« "no catalog lound\nll i
exit (J) i

cout « m. get (cat 1010 I n Missed again! II) « endl i
cout« m . get (cat I J ,2 , n Missed again! ") « endli



Section D.4.7

cout« m.get(cat, 1,3, IlMissed again! ") «endl;
cout << m. get (cat, 3 , 0, II Missed again! ") << endl;

If the catalog is

«<
hello
goodbye
»>
«<
yes
no
maybe
»>

this program prints

hello
maybe
Missed again!
Missed again!

Messages 931

D.4.7.1 Using Messages from Other Facets

In addition to being a repository for locale-dependent strings used to communicate with users, mes
sages can be used to hold strings for other facets. For example, the Season_io facet (§D.3.2) could
have been written like this:

class Season_io : public locale: :facet {
const messages<char>& m; / / message directory
int cat; / / message catalog

public:
class Missing_messages { };

Season_io (int i = 0)
: locale: :facet (i) ,

m (useJacet<Season_messages> (locale ( ) ) ) ,
cat (m. open (message_directory, locale ( ) ) )

{ if (cat<O) throw Missing_messages ( ); }

-Season_io () { } / / to make it possible to destroy Season_io objects (§D.3)

const string& to_str (Season x) const; / / string representation ofx

bool from_str (const string& s, Season& x) const; / / place Season corresponding to s in x

static locale:: id id; / / facet identifier object (§D.2, §D.3, §D.3.1)
} ;

locale: : id Season_io : : id; / / define the identifier object



932 Locales

const string& Season_io:: to_str (Season x) const
{

return m- >get (cat, x, II no-such-season II ) ;

bool Season_io : :from_str (const string& s, Season& x) const
{

for (int i = Season:: spring; i<=Season:: winter; i++)
if (m->get(cat, i, nno-such-season ll

) == s} {
x = Season (i);

return true;
}

return false;

AppendixD

This messages-based solution differs from the original solution (§D.3.2) in that the implementer of
a set of Season strings for a new locale needs to be able to add them to a messages directory. This
is easy for someone adding a new locale to an execution environment. However, since messages
provides only a read-only interface, adding a new set of season names may be beyond the scope of
an application programmer.

A _byname version (§D.4, §D.4.I) of messages is provided:

template <class Ch>
class std:: messages_byname : public messages<Ch> { / * ... * / };

D.S Advice

[1] Expect that every nontrivial program or system that interacts directly with people will be used
in several different countries; §D.I.

[2] Don't assume that everyone uses the same character set as you do; §D.4.I.
[3] Prefer using locales to writing ad hoc code for culture-sensitive I/O; §D.I.
[4] Avoid embedding locale name strings in program text; §D.2.I.
[5] Minimize the use of global format information; §D.2.3, §D.4.4.7.
[6] Prefer locale-sensitive string comparisons and sorts; §D.2.4, §D.4.I.
[7] Makefacets immutable; §D.2.2, §D.3.
[8] Keep changes of locale to a few places in a program; §D.2.3.
[9] Let locale handle the lifetime of/acets; §D.3.
[10] When writing locale-sensitive I/O functions, remember to handle exceptions from user

supplied (overriding) functions; §D.4.2.2.
[11] Use a simple Money type to hold monetary values; §D.4.3.
[12] Use simple user-defined types to hold values that require locale-sensitive I/O (rather than cast-

ing to and from values of built-in types); §D.4.3.
[13] Don't believe timing figures until you have a good idea-of all factors involved; §D.4.4.1.
[14] Be aware of the limitations of time_I"; §D.4.4.1, §D.4.4.5.
[15] Use a date-input routine that accepts a range of input formats; §D.4.4.5.
[16] Prefer the character classification functions in which the locale is explicit; §D.4.5, §D.4.5.I.



Section D.6 Exercises 933

D.6 Exercises

I. (*2.5) Define a Season_io (§D.3.2) for a language other than American English.
2. (*2) Define a Season_io (§D.3.2) class that takes a set of name strings as a constructor argu

ment so that Seas~n names for different locales can be represented as objects of this class.
3. (*3) Write a collate<char>: : compare () that gives dictionary order. Preferably, do this for a

language, such as German or French, that has more letters in its alphabet than English does.
4. (*2) Write a program that reads and writes bools as numbers, as English words, and as words in

another language of your choice.
5. (*2.5) Define a Time type for representing time of day. Define a Date_and_time type by using

Time and a Date type. Discuss the pros and cons of this approach compared to the Date from
(§D.4.4). Implement locale-sensitive 1/0 for Time and Date_and_time.

6. (*2.5) Design and implement a postal code (zip code) facet. Implement it for for at least two
countries with dissimilar conventions for writing addresses. For example: NJ 07932 and
CB2IQA.

7. (*2.5) Design and implement a phone number facet. Implement it for at least two countries
with dissimilar conventions for writing phone numbers. For example, (973) 360-8000 and
1223 343000.

8. (*2.5) Experiment to find out what input and output formats your implementation uses for data
information.

9. (*2.5) Define a get_time () that "guesses" about the meaning of ambiguous dates, such as 12
May 1995, but still rejects all or almost all mistakes. Be precise about what "guesses" are
accepted, and discuss the likelihood of a mistake.

10. (*2) Define a get_time () that accepts a greater variety of input format than the one in §D.4.4.5.
11. (*2) Make a list of the locales supported on your system.
12. (*2.5) Figure out where named locales are stored on your system. If you have access to the part

of the system where locales are stored, make a new named locale. Be very careful not to break
existing locales.

13. (*2) Compare the two Season_io implementations (§D.3.2 and §D.4.7.1).
14. (*2) Write and test a Date_out facet that writes Dates using a format supplied as a constructor

argument. Discuss the pros and cons of this approach compared to the global data format pro
vided by dateJmt (§D.4.4.6).

15. (*2.5) Implement 1/0 of Roman numerals (such as Xl and MDCLll).
16. (*2.5) Implement and test Cvt_to_upper (§D.4.6).
17. (*2.5) Use clock () to determine average cost of (1) a function call, (2) a virtual function call,

(3) reading a char, (4) reading a I-digit int, (5) reading a 5-digit int, (6) reading a 5-digit dou
ble, (7) a I-character string, (8) a 5-character string, and (9) a 40-character string.

18. (*6.5) Learn another natural language.





Appendix E
Standard-Library Exception Safety

Everything will work just as you expect it to,
unless your expectations are incorrect.

- Hyman Rosen

Exception safety - exception-safe implementation techniques - representing resources
- assignment - push_back () - constructors and invariants - standard container
guarantees - insertion and removal of elements - guarantees and tradeoffs - swap ( )
- initialization and iterators - references to elements - predicates - strings, streams,
algorithms, valarray, and complex - the C standard library - implications for library
users - advice - exercises.

E.I Introduction
Standard-library functions often invoke operations that a user supplies as function or template argu
ments. Naturally, some of these user-supplied operations will occasionally throw exceptions.
Other functions, such as allocator functions, can also throw exceptions. Consider:

void !(vector<X>& v, const X& g)
{

v[2] = g;
v .push_back (g);

sort (v . begin ( ) I V • end ( ) ) ;
vector<X> u = v;
/ / ...

/ / X's assignment might throw an exception
/ / vector<X>'s allocator might throw an exception
/ / X's less-than operation might throw an exception
/ / X's copy constructor might throw an exception

/ / u destroyed here: we must ensure that X's destructor can work correctly



936 Standard-Library Exception Safety Appendix E

What happens if the assignment throws an exception while trying to copy g? Will v be left with an
invalid element? What happens if the constructor that v . push_back () uses to copy g throws
std: : bad_alloc? Has the number of elements changed? Has an invalid element been added to the
container? What happens if X's less-than operator throws an exception during the sort? Have the
elements been partially sorted? Could an element have been removed from the container by the
sorting algorithm and not put back?

Finding the complete list of possible exceptions in this example is left as an exercise (§E.8[ I]).
Explaining how this example is well behaved for every well-defined type X - even an X that throws
exceptions - is part of the aim of this appendix. Naturally, a major part of this explanation involves
giving meaning and effective terminology to the notions of "well behaved" and "well defined" in
the context of exceptions.

The purpose of this appendix is to
[I] identify how a user can design types that meet the standard library's requirements,
[2] state the guarantees offered by the standard library,
[3] state the standard-library requirements on user-supplied code,
[4] demonstrate effective techniques for crafting exception-safe and efficient containers, and
[5] present a few general rules for exception-safe programming.

The discussion of exception safety necessarily focuses on worst-case behavior. That is, where
could an exception cause the most problems? How does the standard library protect itself and its
users from potential problems? And, how can users help prevent problems? Please don't let this
discussion of exception-handling techniques distract from the central fact that throwing an excep
tion is the best method for reporting an error (§ 14.1, § 14.9). The discussion of concepts, tech
niques, and standard-library guarantees is organized like this:

§E.2 discusses the notion of exception safety.
§E.3 presents techniques for implementing efficient exception-safe containers and operations.
§E.4 outlines the guarantees offered for standard-library containers and their operations.
§E.5 summarizes exception-safety issues for the non-container parts of the standard library.
§E.6 reviews exception safety from the point of view of a standard-library user.

As ever, the standard library provides examples of the kinds of concerns that must be addressed in
demanding applications. The techniques used to provide exception safety for the standard library
can be applied to a wide range of problems.

E.2 Exception Safety

An operation on an object is said to be exception sa.fe if that operation leaves the object in a valid
state when the operation is terminated by throwing an exception. This valid state could be an error
state requiring cleanup, but it must be well defined so that reasonable error-handling code can be
written for the object. For example, an exception handler might destroy the object, repair the
object, repeat a variant of the operation, just carryon, etc.

In other words, the object will have an invariant (§24.3.7.1), its constructors will establish that
invariant, all further operations maintain that invariant even if an exception is thrown, and its
destructor will do final cleanup. An operation should take care that the invariant is maintained
before throwing an exception, so that the object is in a valid state. However, it is quite possible for



Section E.2 Exception Safety 937

that valid state to be one that doesn't suit the application. For example, a string may have been left
as the empty string or a container may have been left unsorted. Thus, "repair" means giving an
object a value that is more appropriate/desirable for the application than the one it was left with
after an operation failed. In the context of the standard library, the most interesting objects are con
tainers.

Here, we consider under which conditions operations on standard-library containers can be con
sidered exception safe. There can be only two conceptually really simple strategies:

[I] "No guarantees:" If an exception is thrown, any container being manipulated is possibly
corrupted.

[2] "Strong guarantee:" If an exception is thrown, any container being manipulated remains in
the state in which it was before the standard-library operation started.

Unfortunately, both answers are too simple for real use. Alternative [1] is unacceptable because it
implies that after an exception is thrown from a container operation, the container cannot be
accessed; it can't even be destroyed without fear of run-time errors. Alternative [2] is unacceptable
because it imposes the cost of roll-back semantics on every individual standard-library operation.

To resolve this dilemma, the C++ standard library provides a set of exception-safety guarantees
that share the burden of producing correct programs between implementers of the standard library
and users of the standard library:

[3a] "Basic guarantee for all operations:" The basic invariants of the standard library are
maintained, and no resources, such as memory, are leaked.

[3b] "Strong guarantee for key operations:" In addition to providing the basic guarantee, either
the operation succeeds, or has no effects. This guarantee is provided for key library opera
tions, such as push_back ( ) , single-element insert () on a list, and uninitialized_copy ( )
(§E.3.1, §E.4.1).

[3c] "Nothrow guarantee for some operations:" In addition to providing the basic guarantee,
some operations are guaranteed not to throw an exception This guarantee is provided for a
few simple operations, such as swap () and pop_back () (§E.4.1).

Both the basic guarantee and the strong guarantee are provided on the condition that user-supplied
operations (such as assignments and swap () functions) do not leave container elements in invalid
states, that user-supplied operations do not leak resources, and that destructors do not throw excep
tions. For example, consider these "handle-like" (§25.7) classes:

template<class T> class Safe {
T* p; / I p points to a T allocated using new

public:
Safe () :p (new T) { }

-Safe () {delete p; }
Safe& operator= (const Safe& a) { *p = *a.p; return * this ; }
II ...

} ;

template<class T> class Unsafe { / I sloppy and dangerous code
T* p; / / p points to a T

public:
Unsafe (T* pp) :p (pp) { }
- Unsafe () { if ( !p->destructible ( ) ) throw E ( ); delete p;



938 Standard-Library Exception Safety

Unsafe& operator= (const Unsafe& a)
{

AppendixE

} ;
II ...

p->-T() ;
new (p) T(a .p);
return *this;

I I destroy old value (§/O.4. /1)
I I construct copy ofa.p in *p (§JO.4.J J)

void f( vector< Safe<Some_type> >&vg, vector< Unsafe<Some_type> >&vb)
{

vg . at (J) = Safe<Some_type> ( ) ;
vb. at (J) = Unsafe<Some_type> (new Some_type) ;
II ...

In this example, construction of a Safe succeeds only if a T is successfully constructed. The con
struction of a T can fail because allocation might fail (and throw std: :bad_alloc) and because T s
constructor might throw an exception. However, in every successfully constructed Safe, p will
point to a successfully constructed T; if a constructor fails, no T object (or Safe object) is created.
Similarly, Ts assignment operator may throw an exception, causing Safe's assignment operator to
implicitly re-throw that exception. However, that is no problem as long as Ts assignment operator
always leaves its operands in a good state. Therefore, Safe is well behaved, and consequently every
standard-library operation on a Safe will have a reasonable and well-defined result.

On the other hand, Unsafe () is carelessly written (or rather, it is carefully written to demon
strate undesirable behavior). The construction of an Unsafe will not fail. Instead, the operations
on Unsafe, such as assignment and destruction, are left to deal with a variety of potential problems.
The assignment operator may fail by throwing an exception from Ts copy constructor. This would
leave a T in an undefined state because the old value of *p was destroyed and no new value
replaced it. In general, the results of that are unpredictable. Unsafe's destructor contains an ill
conceived attempt to protect against undesirable destruction. However, throwing an exception dur
ing exception handling will cause a call of terminate () (§ 14.7), and the standard library requires
that a destructor return normally after destroying an object. The standard library does not - and
cannot - make any guarantees when a user supplies objects this badly behaved.

From the point of view of exception handling, Safe and Unsafe differ in that Safe uses its con
structor to establish an invariant (§24.3.7.1) that allows its operations to be implemented simply
and safely. If that invariant cannot be established, an exception is thrown before an invalid object
is constructed. Unsafe, on the other hand, muddles along without a meaningful invariant, and the
individual operations throw exceptions without an overall error-handling strategy. Naturally, this
results in violations of the standard library's (reasonable) assumptions about the behavior of types.
For example, Unsafe can leave invalid elements in a container after throwing an exception from
T: : operator= () and may throw an exception from its destructor.

Note that the standard-library guarantees relative to ill-behaved user-supplied operations are
analogous to the language guarantees relative to violations of the basic type system. If a basic
operation is not used according to its specification, the resulting behavior is undefined. For



Section E.2 Exception Safety 939

example, if you throw an exception from a destructor for a vector element, you have no more rea
son to hope for a reasonable result than if you dereference a pointer initialized to a random number:

class Bomb {
public:

/ / ...
..., Bomb () {throw Trouble ( ); };

} ;

vector<Bomb> b (/0);

void f()

{

/ / leads to unde.fined behavior

int* p = reinterpret_cast<int* > (rand ( ) ) ; / / leads to undefined behavior
*p = 7;

Stated positively: If you obey the basic rules of the language and the standard library, the library
will behave well even when you throw exceptions.

In addition to achieving pure exception safety, we usually prefer to avoid resource leaks. That
is, an operation that throws an exception should not only leave its operands in well-defined states
but also ensure that every resource that it acquired is (eventually) released. For example, at the
point where an exception is thrown, all memory allocated must be either deaIlocated or owned by
some object, which in turn must ensure that the memory is properly deallocated.

The standard-library guarantees the absence of resource leaks provided that user-supplied opera
tions called by the library also avoid resource leaks. Consider:

void leak (bool abort)
{

vector<int> v (/0);
vector<int> * p = new vector<int> (/0);
autoytr< vector<int> > q (new vector<int> (/0) );

if (abort) throw Up ( );
/ / ...
delete p;

/ / no leak
/ / potential 111enlory leak
/ / no leak (§14.4.2)

Upon throwing the exception, the vector called v and the vector held by q wiIl be correctly
destroyed so that their resources are released. The vector pointed to by p is not guarded against
exceptions and will not be destroyed. To make this piece of code safe, we must either explicitly
delete p before throwing the exception or make sure it is owned by an object - such as an autoytr
(§ 14.4.2) - that will properly destroy it if an exception is thrown.

Note that the language rules for partial construction and destruction ensure that exceptions
thrown while constructing sub-objects and members will be handled correctly without special atten
tion from standard-library code (§ 14.4.1). This rule is an essential underpinning for all techniques
dealing with exceptions.

Also, remember that memory isn't the only kind of resource that can leak. Opened files, locks,
network connections, and threads are examples of system resources that a function may have to
release or hand over to an object before throwing an exception.



940 Standard-Library Exception Safety AppendixE

E.3 Exception-Safe Implementation Techniques

As usual, the standard library provides examples of problems that occur in many other contexts and
of solutions that apply widely. The basic tools available for writing exception-safe code are

[1] the try-block (§8.3.1), and
[2] the support for the "resource acquisition is initialization" technique (§ 14.4).

The general principles to follow are to
[3] never let go of a piece of information before we can store its replacement, and
[4] always leave objects in valid states when throwing or re-throwing an exception.

That way, we can always back out of an error situation. The practical difficulty in following these
principles is that innocent-looking operations (such as <, =, and sort ( ) ) might throw exceptions.
Knowing what to look for in an application takes experience.

When you are writing a library, the ideal is to aim at the strong exception-safety guarantee
(§E.2) and always to provide the basic guarantee. When writing a specific program, there may be
less concern for exception safety. For example, if I write a simple data analysis program for my
own use, I'm usually quite willing to have the program terminate in the unlikely event of virtual
memory exhaustion. However, correctness and basic exception safety are closely related.

The techniques for providing basic exception safety, such as defining and checking invariants
(§24.3.7.1), are similar to the techniques that are useful to get a program small and correct. It fol
lows that the overhead of providing basic exception safety (the basic guarantee; §E.2) - or even the
strong guarantee - can be minimal or even insignificant; see §E.8[ 17].

Here, I will consider an implementation of the standard container vector (§ 16.3) to see what it
takes to achieve that ideal and where we might prefer to settle for more conditional safety.

E.3.1 A Simple Vector

A typical implementation of vector (§ 16.3) will consist of a handle holding pointers to the first ele
ment, one-past-the-last element, and one-past-the-Iast allocated space (§ 17.1.3) (or the equivalent
information represented as a pointer plus offsets):

vector:
first
space
last

elements extra space :
~------------~ .

Here is a declaration of vector simplified to present only what is needed to discuss exception safety
and avoidance of resource leaks:

template<class T, class A = aUocator<T> > class vector {
public:

T* v; / / start ofallocation
T* space i / / end ofelement sequence, start ofspace allocated for possible expansion
T* last; / / end ofallocated space
A aUoc i / / allocator



Section E.3.1 A Simple Vector 941

explicit vector (size_type n, const T& val = T ( ), const A& = A ( ) ) i

vector (const vector& a) i / / copy constructor
vector& operator= (const vector& a); / / copy assignment

-vector ( );

size_type size () const { return space- v; }
size_type capacity () const { return last-v;

void push_back (const T&);

/ / ...
} ;

Consider first a naive implementation of a constructor:

template<class T, class A>
vector<T, A> : : vector (size_type n, const T& val, const A& a) / / warning: naive implementation

:al~oc (a) / / copy the allocator

v = aUoc . allocate (n ) ;
space = last = v+n ;
for (T* P = Vi p! =last i ++p) a. construct (p, val) i

/ / get memory for elements (§J9.4.J)

/ / construct copy afval in *p (§J9.4.J)

There are three sources of exceptions here:
[1] allocate () throws an exception indicating that no memory is available;
[2] the allocator's copy constructor throws an exception;
[3] the copy constructor for the element type Tthrows an exception because it can't copy val.

In all cases, no object is created, so vector's destructor is not called (§ 14.4.1).
When allocate () fails, the throw will exit before any resources are acquired, so all is well.
When Ts copy constructor fails, we have acquired some memory that must be freed to avoid

memory leaks. A more difficult problem is that the copy constructor for T might throw an excep
tion after correctly constructing a few elements but before constructing them all.

To handle this problem, we could keep track of which elements have been constructed and
destroy those (and only those) in case of an error:

template<class T, class A>
vector<T, A> : : vector (size_type n, const T& val, const A& a) / / elaborate implementation

:aUoc (a) / / copy the allocator

v = aUoc . allocate (n) ;

iterator Pi

try {

/ / get memory for elements

iterator end = v+n i

for (p=v; p! =end i ++p) aUoc. construct (p, val) i

last =space = P i

/ / construct element (§J9.4.J)



942 Standard-Library Exception Safety AppendixE

catch ( ... ) {
for (iterator q =Vi q! =P i ++q) aUoc. destroy (q) i / / destroy constructed elements
aUoc . deallocate (v ,n) i / / free memory
throw; / / re-throw

The overhead here is the overhead of the try-block. In a good C++ implementation, this overhead is
negligible compared to the cost of allocating memory and initializing elements. For implementa
tions where entering a try-block incurs a cost, it may be worthwhile to add a test if(n) before the
try and handle the empty vector case separately.

The main part of this constructor is an exception-safe implementation of uninitializedJill ( ) :

template<class For, class T>
void uninitializedJill(For beg, For end, const T&x)
{

For Pi
try {

for (p=beg i p! =end i ++p)
new (static_cast<void*> (&*p) ) T(x) i / / construct copy ofx in *p (§lO.4.J 1)

}

catch ( ... ) { / / destroy constructed elenlents and rethrow:
for (For q = beg i q! =Pi ++q) (&*q) ->-T() i / / (§lO.4.11)
throw;

The curious construct &*P takes care of iterators that are not pointers. In that case, we need to take
the address of the element obtained by dereference to get a pointer. The explicit cast to void*
ensures that the standard library placement function is used (§ 19.4.5), and not some user-defined
operator new () for T*s. This code is operating at a rather low level where writing truly general
code can be difficult.

Fortunately, we don't have to reimplement uninitializedJill ( ) , because the standard library
provides the desired strong guarantee for it (§E.2). It is often essential to have initialization opera
tions that either complete successfully, having initialized every element, or fail leaving no con
structed elements behind. Consequently, the standard-library algorithms uninitializedJill ( ) ,
uninitializedJill_n (), and uninitialized_copy () (§19.4.4) are guaranteed to have this strong
exception-safety property (§E.4.4).

Note that the uninitializedJil1 () algorithm does not protect against exceptions thrown by ele
ment destructors or iterator operations (§E.4.4). Doing so would be prohibitively expensive (see
§E.8[16-17]).

The uninitializedJill () algorithm can be applied to many kinds of sequences. Consequently,
it takes a forward iterator (§ 19.2.1) and cannot guarantee to destroy elements in the reverse order of
their construction.

Using uninitializedJil1 ( ) , we can write:



Section E.3.1 A Simple Vector 943

template<class T, class A>
vector< T, A> : : vector (size_type n, const T& val, const A& a) / / messy implementation

:aUoc (a) / / copy the allocator

v = alloc . allocate (n ) ;
try {

uninitializedJili (v, v+n, val);
space = last = v+n;

}

catch ( ... ) {
alloc . deallocate (v , n) ;

throw;

/ / get memory for elements

/ / copy elements

/ / free memory
/ / re-throw

However, I wouldn't call that pretty code. The next section will demonstrate how it can be made
much simpler.

Note that the constructor re-throws a caught exception. The intent is to make vector transparent
to exceptions so that the user can determine the exact cause of a problem. All standard-library con
tainers have this property. Exception transparency is often the best policy for templates and other
"thin" layers of software. This is in contrast to major parts of a system (' 'modules") that gener
ally need to take responsibility for all exceptions thrown. That is, the implementer of such a mod
ule must be able to list every exception that the module can throw. Achieving this may involve
grouping exceptions (§14.2), mapping exceptions from lower-level routines into the module's own
exceptions (§ 14.6.3), or exception specification (§ 14.6).

E.3.2 Representing Memory Explicitly

Experience revealed that writing correct exception-safe code using explicit try-blocks is more diffi
cult than most people expect. In fact, it is unnecessarily difficult because there is an alternative:
The "resource acquisition is initialization" technique (§ 14.4) can be used to reduce the amount of
code needing to be written and to make the code more stylized. In this case, the key resource
required by the vector is memory to hold its elements. By providing an auxiliary class to represent
the notion of memory used by a vector, we can simplify the code and decrease the chance of acci
dentally forgetting to release it:

template<class T, class A =aliocator<T> >
struct vector_base {

A aUoc; / / allocator
T* v; / / start ofallocation
T* space; / / end ofelement sequence, start ofspace allocated for possible expansion
T* last; / / end ofallocated space

vector base (const A& a, typename A:: size type n)
;-alloc (a), v (a. allocate (n) ), space (v+n), last (v+n) { }

-vector_base () {alloe. deallocate (v, last-v); }
} ;

As long as v and last are correct, vector_base can be destroyed. Class vector base deals with



944 Standard·Library Exception Safety AppendixE

memory for a type T, not objects of type T. Consequently, a user of vector_base must destroy all
constructed objects in a vector_base before the vector_base itself is destroyed.

Naturally, vector_base itself is written so that if an exception is thrown (by the allocator's copy
constructor or allocate () function) no vector_base object is created and no memory is leaked.

Given vector_base, vector can be defined like this:

template<class T, class A = aliocator<T> >
class vector: private vector_base<T, A> {

void destroy_elements() {for (T* p= Vi p!=spacei ++p) p->-T()i } II §JO.4.JJ
public:

explicit vector (size_type n, const T& val = T ( ), const A& =A ( ) ) i

vector (const vector& a)illcopy constructor
vector& operator= (const vector& a) ill copy assignment

-vector () {destroy_elements ( ) i }

size_type size () const { return space-v i }

size_type capacity () const { return last-v i

void push_back (const T&) i

II ...
} ;

The vector destructor explicitly invokes the T destructor for every element. This implies that if an
element destructor throws an exception, the vector destruction fails. This can be a disaster if it hap
pens during stack unwinding caused by an exception and terminate () is called (§14.7). In the case
of normal destruction, throwing an exception from a destructor typically leads to resource leaks and
unpredictable behavior of code relying on reasonable behavior of objects. There is no really good
way to protect against exceptions thrown from destructors, so the library makes no guarantees if an
element destructor throws (§E.4).

Now the constructor can be simply defined:

template<class T, class A>
vector<T, A>:: vector (size_type n, const T& val, const A& a)

:vector_base (a, n) I I allocate space for n elements

uninitializedJill (v , v+n , val) i / / copy elements

The copy constructor differs by using uninitialized_copy () instead of uninitializedJill ( ) :

template<class T, class A>
vector<T,A>:: vector (const vector<T,A>& a)

:vector_base (a, a. size ( ) )

uninitialized_copy (a . begin ( ) , a. end ( ) , v) i

Note that this style of constructor relies on the fundamental language rule that when an exception is
thrown from a constructor, sub-objects (such as bases) that have already been completely



Section E.3.2 Representing Memory Explicitly 945

constructed will be properly destroyed (§ 14.4.1). The uninitializedJill () algorithm and its
cousins (§E.4.4) provide the equivalent guarantee for partially constructed sequences.

E.3.3 Assignment

As usual, assignment differs from construction in that an old value must be taken care of. Consider
a straightforward implementation:

template<class T, class A>
vector<T, A>& vector<T, A>:: operator= (const vector& a) / / offers the strong guarantee (§E.2)
{

vector_base<T, A> b {aUoc, a. size ( ) );
uninitialized_copy {a. begin ( ), a. end ( ), b. v);
destroy_elements ( ) ;
aUoc. deaLLocate (v, last-v);
vector_base:: operator= (b);
b.v =0;
return * this i

/ / get memory
/ / copy elements

/ / free old memory
/ / install new representation
/ / prevent deallocation

This assignment is nice and exception safe. However, it repeats a lot of code from constructors and
destructors. To avoid this, we could write:

template<class T, class A>
vector<T, A>& vector<T, A>:: operator= (const vector& a) / / offers the strong guarantee (§E.2)
{

vector temp (a);
swap< vector_base<T, A> > (*this, temp);
return * this;

/ / copy a
/ / swap representations

The old elements are destroyed by temp's destructor, and the memory used to hold them is deallo
cated by temp's vectoT_base's destructor.

The performance of the two versions ought to be equivalent. Essentially, they are just two dif
ferent ways of specifying the same set of operations. However, the second implementation is
shorter and doesn't replicate code from related vector functions, so writing the assignment that way
ought to be less error prone and lead to simpler maintenance.

Note the absence of the traditional test for self-assignment (§ 10.4.4):

if (this ==&a) return *this i

These assignment implementations work by first constructing a copy and then swapping representa
tions. This obviously handles self-assignment correctly. I decided that the efficiency gained from
the test in the rare case of self-assignment was more than offset by its cost in the common case
where a different vector is assigned.

In either case, two potentially significant optimizations are missing:
[ I] If the capacity of the vector assigned to is large enough to hold the assigned vector, we don't

need to allocate new memory.
[2] An element assignment may be more efficient than an element destruction followed by an

element construction.



946 Standard-Library Exception Safety AppendixE

Implementing these optimizations, we get:

template<class T, class A>
vector< T, A>& vector< T, A> : : operator= (const vector& a) I / optimized, basic guarantee (§E.2)
{

/ / allocate new vector representation:
1/ copy a
I / swap representations

if (capacity () < a.size ()) {
vector temp (a) ;
swap< vector_base<T, A> > (*this, temp);
return *this;

if (this == &a) return *this; / / protect against selfassignment (§/O.4.4)

/ / assign to old elements:
size_type sz =size ( );
size_type asz =a . size ( ) ;
alloc =a. get_allocator ( ); 1/ copy the allocator
if (asz<=sz) {

copy (a . begin ( ) , a . begin ( ) +asz, v) ;
for (T* p =v+asz; p! =space; ++p) p-> -T( ); 1/ destroy surplus elements (§JO.4.J J)

}

else {
copy (a. begin ( ), a. begin ( ) +sz, v);
uninitialized_copy (a. begin ( ) +sz, a. end ( ), space); / / construct extra elements

space =v+asz;
return *this;

These optimizations are not free. The copy () algorithm (§ 18.6.1) does not offer the strong
exception-safety guarantee. It does not guarantee that it will leave its target unchanged if an excep
tion is thrown during copying. Thus, if T: : operator= () throws an exception during copy ( ) , the
vector being assigned to need not be a copy of the vector being assigned, and it need not be
unchanged. For example, the first five elements might be copies of elements of the assigned vector
and the rest unchanged. It is also plausible that an element - the element that was being copied
when T: : operator= () threw an exception - ends up with a value that is neither the old value nor a
copy of the corresponding element in the vector being assigned. However, if T: : operator= ( )
leaves its operands in a valid state if it throws an exception, the vector is still in a valid state - even
if it wasn't the state we would have preferred.

Here, I have copied the allocator using an assignment. It is actually not required that every allo
cator support assignment (§ 19.4.3); see also §E.8[9].

The standard-library vector assignment offers the weaker exception-safety property of this last
implementation - and its potential performance advantages. That is, vector assignment provides
the basic guarantee, so it meets most people's idea of exception safety. However, it does not pro
vide the strong guarantee (§E.2). If you need an assignment that leaves the vector unchanged if an
exception is thrown, you must either use a library implementation that provides the strong guaran
tee or provide your own assignment operation. For example:



Section E.3.3 Assignment 947

template<class T, class A>
void safe_assign (vector<T, A>& a, const vector<T, A>& b) / / "obvious" a =b
{

vector<T, A> temp (a. get_allocator ( ) ) i
temp. reserve (b . size ( ) ) i
for (typename vector<T,A>::iterator p=b.begin()i p!=b.end(); ++p)

temp .push_back (*p);
swap (a, temp) i

If there is insufficient memory for temp to be created with room for b. size () elements,
std: : bad_alloc is thrown before any changes are made to a. Similarly, if push_back () fails for
any reason, a will remain untouched because we apply push_back () to temp rather than to a. In
that case, any elements of temp created by push_back () will be destroyed before the exception
that caused the failure is re-thrown.

Swap does not copy vector elements. It simply swaps the data members of a vector; that is, it
swaps vector_bases. Consequently, it does not throw exceptions even if operations on the ele
ments might (§E.4.3). Consequently, safe_assign () does not do spurious copies of elements and
is reasonably efficient.

As is often the case, there are alternatives to the obvious implementation. We can let the library
perform the copy into the temporary for us:

template<class T, class A>
void safe_assign (vector<T,A>& a, const vector<T, A>& b) / / simple a =b
{

vector<T,A> temp (b) i

swap (a, temp);
/ / copy the elements ofb into a temporary

Indeed, we could simply use call-by-value (§7.2):

template<class T, class A>
void safe_assign (vector<T,A>& a, vector<T, A> b) / / simple a =b (note: b is passed by value)
{

swap{a,b)i

The last two variants of safe_assign () don't copy the vector's allocator. This is a permitted opti
mization; see §19.4.3.

E.3.4 push_back()

From an exception-safety point of view, push_back () is similar to the assignment in that we must
take care that the vector remains unchanged if we fail to add a new element:



948 Standard-Library Exception Safety

template< class T, class A>
void vector<T,A>: :push_back (cons! T& x)
{

AppendixE

if (space == last) { I I no morejree space,· relocate:
vector_base b (aUoc , size ( ) ?2*size ( ) : 2); I I double the allocation
uninitialized_copy (v , space, b . v) ;
new(b.space) T(x); II placeacopyojxin *b.space(§/O.4.//)
++b. space;
destroy_elements ( ) ;
swap<vector_base<T, A> > (b, *this) ; I I swap representations
return;

}

new (space) T(x);
++space;

I I place a copy ojx in *space (§/O.4./ /)

Naturally, the copy constructor used to initialize *space might throw an exception. If that happens,
the value of the vector remains unchanged, with space left unincremented. In that case, the vector
elements are not reallocated so that iterators referring to them are not invalidated. Thus, this imple
mentation implements the strong guarantee that an exception thrown by an allocator or even a
user-supplied copy constructor leaves the vector unchanged. The standard library offers that guar
antee for push_back () (§E.4.1).

Note the absence of a try-block (except for the one hidden in uninitialized_copy ( ). The
update was done by carefully ordering the operations so that if an exception is thrown, the vector
remains unchanged.

The approach of gaining exception safety through ordering and the "resource acquisition is
initialization" technique (§ 14.4) tends to be more elegant and more efficient than explicitly han
dling errors using try-blocks. More problems with exception safety arise from a programmer order
ing code in unfortunate ways than from lack of specific exception-handling code. The basic rule of
ordering is not to destroy information before its replacement has been constructed and can be
assigned without the possibility of an exception.

Exceptions introduce possibilities for surprises in the form of unexpected control flows. For a
piece of code with a simple local control flow, such as the operator= (), safe_assign ( ), and
push_back () examples, the opportunities for surprises are limited. It is relatively simple to look at
such code and ask oneself "can this line of code throw an exception, and what happens if it does?"
For large functions with complicated control structures, such as complicated conditional statements
and nested loops, this can be hard. Adding try-blocks increases this local control structure com
plexity and can therefore be a source of confusion and errors (§ 14.4). I conjecture that the effec
tiveness of the ordering approach and the "resource acquisition is initialization" approach com
pared to more extensive use of try-blocks stems from the simplification of the local control flow.
Simple, stylized code is easier to understand and easier to get right.

Note that the vector implementation is presented as an example of the problems that exceptions
can pose and of techniques for addressing those problems. The standard does not require an imple
mentation to be exactly like the one presented here. What the standard does guarantee is the sub
ject of §E.4.



Section E.3.5

E.3.5 Constructors and Invariants

Constructors and Invariants 949

From the point of view of exception safety, other vector operations are either equivalent to the ones
already examined (because they acquire and release resources in similar ways) or trivial (because
they don't perform operations that require cleverness to maintain valid states). However, for most
classes, such "trivial" functions constitute the majority of code. The difficulty of writing such
functions depends critically on the environment that a constructor established for them to operate
in. Said differently, the complexity of "ordinary member functions" depends critically on choos
ing a good class invariant (§24.3.7.1 ). By examining the "trivial" vector functions, it is possible
to gain insight into the interesting question of what makes a good invariant for a class and how con
structors should be written to establish such invariants.

Operations such as vector subscripting (§ 16.3.3) are easy to write because they can rely on the
invariant established by the constructors and maintained by all functions that acquire or release
re~ources. In particular, a subscript operator can rely on v referring to an array of elements:

template< class T I class A>
T& vector<T,A>::operator[] (size_type i)
{

return v [i] ;

It is important and fundamental to have constructors acquire resources and establish a simple
invariant. To see why, consider an alternative definition of vector_base:

template<class T, class A =allocator< T> > / / clumsy use ofconstructor
class vector_base {
public:

A aUoc; / / allocator
T* v; / / start ofallocation
T* space; / / end ofelement sequence, start ofspace allocated for possible expansion
T* last; / / end ofallocated space

vector_base (const A&a, typename A::size_type n) : aUoc(a), v(O), space(O}, last(O)
{

v =aUoc . allocate (n ) ;
space =last =v+n;

"'vector_base () { if (v) aUoc. deallocate (v, last-v) ;
} ;

Here, I construct a vector_base in two stages: First, I establish a "safe state" where v, space, and
last are set to O. Only after that has been done do I try to allocate memory. This is done out of
misplaced fear that if an exception happens during element allocation, a partially constructed object
could be left behind. This fear is misplaced because a partially constructed object cannot be "left
behind" and later accessed. The rules for static objects, automatic objects, member objects, and
elements of the standard-library containers prevent that. However, it could/can happen in pre
standard libraries that used/use placement new (§ 10.4.11) to construct objects in containers
designed without concern for exception safety. Old habits can be hard to break.



950 Standard.Library Exception Safety AppendixE

Note that this attempt to write safer code complicates the invariant for the class: It is no longer
guaranteed that v points to allocated memory. Now v might be O. This has one immediate cost.
The standard-library requirements for allocators do not guarantee that we can safely deallocate a
pointer with the value 0 (§ 19.4.1). In this, allocators differ from delete (§6.2.6). Consequently, I
had to add a test in the destructor. Also, each element is first initialized and then assigned. The
cost of doing that extra work can be significant for element types for which assignment is nontriv
ial, such as string and list.

This two-stage construct is not an uncommon style. Sometimes, it is even made explicit by
having the constructor do only some "simple and safe" initialization to put the object into a
destructible state. The real construction is left to an init () function that the user must explicitly
call. For example:

template<class T> / / archaic (pre-standard, pre-exception) style
class vector_base {
public:

T* v; / / start ofallocation
T* space; / / end ofelement sequence, start ofspace allocated for possible expansion
T* last; / / end ofallocated space

vector_base () : V (0), space (0), last (0) { }
"" vector_base () {free (v); }

bool init (size_t n) / / return true if initialization succeeded
{

if (v = (T*) malloc (sizeof( T) *n)) {
uninitializedJill (v , v+n, T( ) ) ;
space =last =v+n ;
return true;

}

return false;

} ;

The perceived value of this style is
[I] The constructor can't throw an exception, and the success of an initialization using init ( )

can be tested by "usual" (that is, non-exception) means.
[2] There exists a trivial valid state. In case of a serious problem, an operation can give an

object that state.
[3] The acquisition of resources is delayed until a fully initialized object is actually needed.

The following subsections examine these points and shows why this two-stage construction tech
nique doesn't deliver its expected benefits. It can also be a source of problems.

E.3.5.1 Using init() Functions

The first point (using an init () function in preference to a constructor) is bogus. Using construc
tors and exception handling is a more general and systematic way of dealing with resource acquisi
tion and initialization errors (§ 14.1, § 14.4). This style is a relic of pre-exception C++.

Carefully written code using the two styles are roughly equivalent. Consider:



Section E.3.5.1

int /1 (int n)
{

vector<X> v;

/ / ...
if (v. init (n)) {

/ / use v as vector ofn elements
}

else {
/ / handleyroblem

and

int 12 (int n)
try {

vector v<X> v (n) ;
/ I ...
/ I use v as vector ofn elements

}

catch ( ..• ) {
/ / handle problem

Using init() Functions 951

However, having a separate init () function is an opportunity to
[1] forget to call init () (§ 10.2.3),
[2] forget to test on the success of init ( ) ,
[3] forget that init () might throw an exception, and
[4] use the object before calling init ( ) .

The definition of vector<T> : : init () illustrates [3].
In a good C++ implementation,12 () will be marginally faster than /1 () because it avoids the

test in the common case.

E.3.5.2 Relying on a Default Valid State

The second point (having an easy-to-construct "default" valid state) is correct in general, but in the
case of vector, it is achieved at an unnecessary cost. It is now possible to have a vector_base with
v==O, so the vector implementation must protect against that possibility throughout. For example:

template< class T>
T& vector<T> : : operator [] (size_t i)
{

if (v) return v [i] ;
/ / handle error

Leaving the possibility of v==O open makes the cost of non-range-checked subscripting equivalent
to range-checked access:



952 Standard-Library Exception Safety

template< class T>
T& vector<T> : :at (size_t i)
{

if (i<v. size ( )) return v [i] ;
throw out_oj_range ( II vector index II ) i

Appendix E

What fundamentally happened here was that I complicated the basic invariant for vector_base by
introducing the possibility of v==O. In consequence, the basic invariant for vector was similarly
complicated. The end result of this is that all code in vector and vector_base must be more com
plicated to cope. This is a source of potential errors, maintenance problems, and run-time over
head. Note that conditional statements can be surprisingly costly on modern machine architectures.
Where efficiency matters, it can be crucial to implement a key operation, such as vector subscript
ing, without conditional statements.

Interestingly, the original definition of vector_base already did have an easy-to-construct valid
state. No vector_base object could exist unless the initial allocation succeeded. Consequently, the
implementer of vector could write an "emergency exit" function like this:

template< class T, class A>
void vector<T, A>:: emergency_exit ()
{

space = Vi

throw TotalJailure ( ) i

/ / set the size (~l *this to 0

This is a bit drastic because it fails to call element destructors and to deallocate the space for ele
ments held by the vector_base. That is, it fails to provide the basic guarantee (§E.2). If we are
willing to tru~t the values of v and space and the element destructors, we can avoid potential
resource leaks:

template< class T, class A>
void vector<T, A>:: emergency_exit ( )
{

destroy_elements ( ) i

throw TotalJailure ( ) i

/ / clean up

Please note that the standard vector is such a clean design that it minimizes the problems caused by
two-phase construction. The init () function is roughly equivalent to resize ( ) , and in most places
the possibility of v==O is already covered by size ( ) ==0 tests. The negative effects described for
two-phase construction become more marked when we consider application classes that acquire
significant resources, such as network connections and files. Such classes are rarely part of a
framework that guides their use and their implementation in the way the standard-library require
ments guide the definition and use of vector. The problems also tend to increase as the mapping
between the application concepts and the resources required to implement them becomes more
complex. Few classes map as directly onto system resources as does vector.

The idea of having a "safe state" is in principle a good one. If we can't put an object into a
valid state without fear of throwing an exception before completing that operation, we do indeed



Section E.3.5.2 Relying on a Default Valid State 953

have a problem. However, this "safe state" should be one that is a natural part of the semantics of
the class rather than an implementation artifact that complicates the class invariant.

E.3.5.3 Delaying resource acquisition

Like the second point (§E.3.5.2), the third (to delay acquisition until a resource is needed) misap
plies a good idea in a way that imposes cost without yielding benefits. In many cases, notably in
containers such as vector, the best way of delaying resource acquisition is for the programmer to
delay the creation of objects until they are needed. Consider a naive use of vector:

void f(int n)
{

vector<X> v (n) ;
I I ...

v[3] =X(99);

II ...

I I make n default objects oftype X

I I real Hinitialization" ofv[3J

Constructing an X only to assign a new value to it later is wasteful - especially if an X assignment
is expensive. Therefore, two-phase construction of X can seem attractive. For example, the type X
may itself be a vector, so we might consider two-phase construction of vector to optimize creation
of empty vectors. However, creating default (empty) vectors is already efficient, so complicating
the implementation with a special case for the empty vector seems futile. More generally, the best
solution to spurious initialization is rarely to remove complicated initialization from the element
constructors. Instead, a user can create elements only when needed. For example:

void 12 (int n)
{

vector<X> v;

II ...

v.push_back (X (99) );

II ...

I I make empty vector

I I construct element when needed

To sum up: the two-phase construction approach leads to more complicated invariants and typically
to less elegant, more error-prone, and harder-to-maintain code. Consequently, the language
supported "constructor approach" should be preferred to the "init ( ) -function approach" when
ever feasible. That is, resources should be acquired in constructors whenever delayed resource
acquisition isn't mandated by the inherent semantics of a class.

E.4 Standard Container Guarantees

If a library operation itself throws an exception, it can - and does - make sure that the objects on
which it operates are left in a well-defined state. For example, at () throwing out_of_range for a
vector (§ 16.3.3) is not a problem with exception safety for the vector. The writer of at () has no
problem making sure that a vector is in a well-defined state before throwing. The problems - for



954 Standard-Library Exception Safety AppendixE

library implementers, for library users, and for people trying to understand code - come when a
user-supplied function throws an exception.

The standard-library containers offer the basic guarantee (§E.2): The basic invariants of the
library are maintained, and no resources are leaked as long as user code behaves as required. That
is, user-supplied operations should not leave container elements in invalid states or throw excep
tions from destructors. By "operations," I mean operations used by the standard-library imple
mentation, such as constructors, assignments, destructors, and operations on iterators (§E.4.4).

It is relatively easy for the programmer to ensure that such operations meet the library's expec
tations. In fact, much naively written code conforms to the library's requirements. The following
types clearly meet the standard library's requirements for container element types:

[I] built-in types - including pointers,
[2] types without user-defined operations,
[3] classes with operations that neither throw exceptions nor leave operands in invalid states,
[4] classes with destructors that don't throw exceptions and for which it is simple to verify that

operations used by the standard library (such as constructors, assignments, <, ==, and
swap ( ) ) don't leave operands in invalid states.

In each case, we must also make sure that no resource is leaked. For example:

void f( Circle * pc, Triangle* pt, vector<Shape*>& v2)
{

vector<Shape*> v ( )0) ;
v[3] =pc;
v . insert (v . begin ( ) +4 I pt) ;

v2. erase (v2. begin ( ) +3);

v2 =Vi

/ / ...

/ / either create vector or throw bad_alloc
/ / no exception thrown
/ / either insert pt or no effect on v
/ / either erase v2[3Jor no effect on v2
/ / copy v or no effect on v2

When/() exits, v will be properly destroyed, and v2 will be in a valid state. This fragment does
not indicate who is responsible for deleting pc and pt. If / () is responsible, it can either catch
exceptions and do the required deletion, or assign the pointers to local autoyITS.

The more interesting question is: When do the library operations offer the strong guarantee that
an operation either succeeds or has no effect on its operands? For example:

void f(vector<X>& vx)
{

vx. insert (vx . begin ( ) +4, X (7) ); / / add element

In general, X's operations and vector<X>'s allocator can throw an exception. What can we say
about the elements of vx when/() exits because of an exception? The basic guarantee ensures that
no resources have been leaked and that vx has a set of valid elements. However, exactly what ele
ments? Is vx unchanged? Could a default X have been added? Could an element have been
removed because that was the only way for insert () to recover while maintaining the basic guaran
tee? Sometimes, it is not enough to know that a container is in a good state; we also want to know
exactly what state that is. After catching an exception, we typically want to know that the elements
are exactly those we intended, or we will have to start error recovery.



Section E.4.1

E.4.1 Insertion and Removal of Elements

Insertion and Removal of Elements 955

Inserting an element into a container and removing one are obvious examples of operations that
might leave a container in an unpredictable state if an exception is thrown. The reason is that inser
tions and deletions invoke many operations that may throw exceptions:

[I] A new value is copied into a container.
[2] An element deleted from (erased from) a container must be destroyed.
[3] Sometimes, memory must be allocated to hold a new element.
[4] Sometimes, vector and deque elements must be copied to new locations.
[5] Associative containers call comparison functions for elements.
[6] Many insertions and deletions involve iterator operations.

Each of these cases can cause an exception to be thrown.
If a destructor throws an exception, no guarantees are made (§E.2). Making guarantees in this

case would be prohibitively expensive. However, the library can and does protect itself - and its
users - from exceptions thrown by other user-supplied operations.

When manipulating a linked data structure, such as a list or a map, elements can be added and
removed without affecting other elements in the container. This is not the case for a container
implemented using contiguous allocation of elements, such as a vector or a deque. There, elements
sometimes need to be moved to new locations.

In addition to the basic guarantee, the standard library offers the strong guarantee for a few
operations that insert or remove elements. Because containers implemented as linked data struc
tures behave differently from containers with contiguous allocation of elements, the standard pro
vides slightly different guarantees for different kinds of containers:

[1] Guarantees for vector (§ 16.3) and deque (§ 17.2.3):
- If an exception is thrown by a push_back () or a pushJront ( ) , that function has no

effect.
- Unless thrown by the copy constructor or the assignment operator of the element type, if

an exception is thrown by an insert ( ) , that function has no effect.
- Unless thrown by the copy constructor or the assignment operator of the element type,

no erase () throws an exception.
- No pop_back () or popJront () throws an exception.

[2] Guarantees for list (§ 17.2.2):
- If an exception is thrown by a push_back () or a pushJront ( ) , that function has no

effect.
- If an exception is thrown by an insert ( ) , that function has no effect.
- No erase ( ) , pop_back ( ) , popJront ( ) , splice ( ) , or reverse () throws an exception.
- Unless thrown by a predicate or a comparison function, the list member functions

remove ( ), remove_if( ), unique ( ), sort ( ) , and merge () do not throw exceptions.
[3] Guarantees for associative containers (§ 17.4):

- If an exception is thrown by an insert () while inserting a single element, that function
has no effect.

- No erase () throws an exception.
Note that where the strong guarantee is provided for an operation on a container, all iterators,
pointers to elements, and references to elements remain valid if an exception is thrown.



956 Standard-Library Exception Safety

These rules can be summarized in a table:

AppendixE

Container-Operation Guarantees
vector deque list map

clear() nothrow nothrow nothrow nothrow
(copy) (copy)

erase() nothrow nothrow nothrow nothrow
(copy) (copy)

l-element insert() strong strong strong strong
(copy) (copy)

N-element insert() strong strong strong basic
(copy) (copy)

merge() - - nothrow -
(comparison)

push_back() strong strong strong -

pushJront() - strong strong -

pop_back() nothrow nothrow nothrow -

popJront() - nothrow nothrow -

remove() - - nothrow -
(comparison)

remove_if() - - nothrow -
(predicate)

reverse() - - nothrow -

splice() - - nothrow -

swap() nothrow nothrow nothrow nothrow
(copy-oJ-comparison)

unique() - - nothrow -
(comparison)

In this table:
basic means that the operation provides only the basic guarantee (§E.2)
strong means that the operation provides the strong guarantee (§E.2)
nothrow means that the operation does not throw an exception (§E.2)

means that the operation is not provided as a member of this container
Where a guarantee requires that some user-supplied operations not throw exceptions, those
operations are indicated in parentheses under the guarantee. These requirements are precisely
stated in the text preceding the table.



Section E.4.1 Insertion and Removal of Elements 957

The swap () functions differ from the other functions mentioned by not being members.
The guarantee for clear ( ) is derived from that offered by erase () (§16.3.6). This table lists
guarantees offered in addition to the basic guarantee. Consequently this table does not list oper
ations, such as reverse () and unique () for vector, that are provided only as algoritms for all
sequences without additional guarantees.

The "almost container" basic_string (§ 17.5, §20.3) offers the basic guarantee for all opera
tions (§E.5.1). The standard also guarantees that basic_string's erase () and swap () don't
throw, and offers the strong guarantee for basic_string's insert () and push_back ( ) .

In addition to ensuring that a container i~ unchanged, an operation providing the strong
guarantee also leaves all iterators, pointers, and references valid. For example:

void update (map<string, X>& m, map<string I X>:: iterator current)
{

x Xi

string s;
while (c;n»s»x)
try {

current = m. insert (current, makeyair (s ,x) ) ;
}

catch ( ... ) {
/ / here current still denotes the current element

E.4.2 Guarantees and Tradeoffs

The patchwork of additional guarantees reflects implementation realities. Programmers prefer
the strong guarantee with as few conditions as possible, but they also tend to insist that each
individual standard-library operation be optimally efficient. Both concerns are reasonable, but
for many operations, it is not possible to satisfy both simultaneously. To give a better idea of
the tradeoffs involved, I'll examine ways of adding of single and multiple elements to lists,
vectors, and maps.

Consider adding a single element to a list or a vector. As ever, push_back () provides the
simplest way of doing that:

void !<list<X>& lst, vector<X>& vec, consl X& x)
{

try {
lst . push_back (x);

}

catch ( ... ) {
/ / 1st is unchanged
return;

/ / add to list



958 Standard-Library Exception Safety

try {
vec.push_back(x);

}

catch ( ... ) {
/ / vee is unchanged
return;

/ / add to vector

AppendixE

/ / 1st and vee each have a new element with the value x

Providing the strong guarantee in these cases is simple and cheap. It is also very useful because
it provides a completely exception-safe way of adding elements. However, push_back () isn't
defined for associative containers - a map has no back ( ). After all, the last element of an
associative container is defined by the order relation rather than by position.

The guarantees for insert () are a bit more complicated. The reason is that sometimes
insert () has to place an element in "the middle" of a container. This is no problem for a
linked data structure, such as list or map. However, if there is free reserved space in a vector,
the obvious implementation of vector<X> : : insert () copies the elements after the insertion
point to make room. This is optimally efficient, but there is no simple way of restoring a vector
if X's copy assignment or copy constructor throws an exception (see §E.8[ 10-11 ]). Conse
quently, vector provides a guarantee that is conditional upon element copy operations not
throwing exceptions. However, list and map don't need such a condition; they can simply link
in new elements after doing any necessary copying.

As an example, assume that X's copy assignment and copy constructor throw
X : : cannot_copy if they cannot successfully create a copy:

void !(list<X>& 1st, vector<X>& vec, map<string,X>& m, const X& x, const string& s)
{

try {
lst. insert (lst. begin ( ) ,x) ;

}

catch ( ... ) {
/ / 1st is unchanged
return;

try {
vec. insert (vec. begin ( ), x);

/ / add to list

/ / add to vector
}

catch (X:: cannot_copy) {
/ / oops: vee mayor may not have a new element
return;

}

catch ( ... ) {
/ / vec is unchanged
return;



Section E.4.2

try {
m. insert (makeyair (s, x) );

}

catch ( ... ) {
I I m is unchanged
return;

Guarantees and Tradeoffs 959

II add to map

Ilist and vec each have a new element with the value x
I I m has an element with the value (s,x)

If X:: cannot_copy is caught, a new element mayor may not have been inserted into vee. If a
new element was inserted, it will be an object in a valid state, but it is unspecified exactly what
the value is. It is possible that after X : : cannot_copy, some element will have been "mysteri
ously" duplicated (see §E.8[11]). Alternatively, insert () may be implemented so that it deletes
some' 'trailing" elements to be certain that no invalid elements are left in a container.

Unfortunately, providing the strong guarantee for vector's insert () without the caveat
about exceptions thrown by copy operations is not feasible. The cost of completely protecting
against an exception while moving elements in a vector would be significant compared to sim
ply providing the basic guarantee in that case.

Element types with copy operations that can throw exceptions are not uncommon. Exam
ples from the standard library itself are vector<string>, vector< vector<double> >, and
map<string, int>.

The list and vector containers provide the same guarantees for insert () of single and multi
ple elements. The reason is simply that for vector and list, the same implementation strategies
apply to both single-element and multiple-element insert ( ). However, map provides the
strong guarantee for single-element insert ( ) , but only the basic guarantee for multiple-element
insert ( ). A single-element insert () for map that provides the strong guarantee is easily
implemented. However, the obvious strategy for implementing multiple-element insert () for a
map is to insert the new elements one after another, and it is not easy to provide the strong guar
antee for that. The problem with this is that there is no simple way of backing out of previous
successful insertions if the insertion of an element fails.

If we want an insertion function that provides the strong guarantee that either every element
was successfully added or the operation had no effect, we can build it by constructing a new
container and then swap ( ) :

template<class C, class Iter>
void safe_insert (C& c, typename C:: const_iterator i, Iter begin, Iter end)
{

C tmp (c. begin ( ), i);

copy (begin, end, inserter (tmp, tmp . end ( ) ) ) ;
copy (i, c. end ( ) , inserter (tmp, tmp. end ( ) ) ) ;
swap (c, tmp) ;

I I copy leading elements to temporary
I I copy new elements
I I copy trailing elements

As ever, this code may misbehave if the element destructor throws an exception. However, if
an element copy operation throws an exception, the argument container is unchanged.



960 Standard.Library Exception Safety AppendixE

E.4.3 Swap

Like copy constructors and assignments, swap () operations are essential to many standard
algorithms and are often supplied by users. For example, sort () and stable_sort () typically
reorder elements, using swap ( ). Thus, if a swap () function throws an exception while
exchanging values from a container, the container could be left with unchanged elements or a
duplicate element rather than a pair of swapped elements.

Consider the obvious definition of the standard-library swap () function (§ 18.6.8):

template<class T> void swap (T& a I T& b)
{

T tmp = ai
a =bi
b =tmpi

Clearly, swap () doesn't throw an exception unless the element type's copy constructor or copy
assignment does.

With one minor exception for associative containers, standard container swap () functions
are guaranteed not to throw exceptions. Basically, containers are swapped by exchanging the
data structures that act as handles for the elements (§ 13.5, §17.1.3). Since the elements them
selves are not moved, element constructors and assignments are not invoked, so they don't get
an opportunity to throw an exception. In addition, the standard guarantees that no standard
library swap () function invalidates any references, pointers, or iterators referring to the ele
ments of the containers being swapped. This leaves only one potential source of exceptions:
The comparison object in an associative container is copied as part of the handle. The only pos
sible exception from a swap () of standard containers is the copy constructor and assignment of
the container's comparison object (§ 17.1.4.1). Fortunately, comparison objects usually have
trivial copy operations that do not have opportunities to throw exceptions.

A user-supplied swap () should be written to provide the same guarantees. This is rela
tively simple to do as long as one remembers to swap types represented as handles by swapping
their handles, rather than slowly and elaborately copying the information referred to by the han
dles (§ 13.5, §16.3.9, §17.1.3).

E.4.4 Initialization and Iterators

Allocation of memory for elements and the initialization of such memory are fundamental parts
of every container implementation (§E.3). Consequently, the standard algorithms for construct
ing objects in uninitialized memory - uninitializedJil1 ( ), uninitializedJill_n ( ), and
uninitialized_copy () (§ 19.4.4) - are guaranteed to leave no constructed objects behind if they
throw an exception. They provide the strong guarantee (§E.2). This sometimes involves
destroying elements, so the requirement that destructors not throw exceptions is essential to
these algorithms; see §E.8[14]. In addition, the iterators supplied as arguments to these algo
rithms are required to be well behaved. That is, they must be valid iterators, refer to valid
sequences, and iterator operations (such as ++ and! = and *) on a valid iterator are not allowed
to throw exceptions.



Section E.4.4 Initialization and Iterators 961

Iterators are examples of objects that are copied freely by standard algorithms and opera
tions on standard containers. Thus, copy constructors and copy assignments of iterators should
not throw exceptions. In particular, the standard guarantees that no copy constructor or assign
ment operator of an iterator returned from a standard container throws an exception. For exam
ple, an iterator returned by vector<T> : : begin () can be copied without fear of exceptions.

Note that ++ and -- on an iterator can throw exceptions. For example, an
istreambu/_iterator (§ 19.2.6) could reasonably throw an exception to indicate an input error,
and a range-checked iterator could throw an exception to indicate an attempt to move outside its
valid range (§ 19.3). However, they cannot throw exceptions when moving an iterator from one
element of a sequence to another, without violating the definition of ++ and -- on an iterator.
Thus, uninitializedJill ( ) , uninitializedJill_n ( ) , and uninitialized_copy () assume that ++
and -- on their iterator arguments will not throw; if they do throw, either those "iterators"
weren't iterators according to the standard, or the "sequence" specified by them wasn't a
sequence. Again, the standard containers do not protect the user from the user's own undefined
behavior (§E.2).

E.4.5 References to Elements

When a reference, a pointer, or an iterator to an element of a container is handed to some code,
that code can corrupt the container by corrupting the element. For example:

void !(const X& x)
{

list<X> 1st i

1st . push_back (x) i

list<X>:: iterator i = 1st. begin ( );
*i = Xi / / copy x into list
/ / ...

If x is corrupted, list's destructor may not be able to properly destroy 1st. For example:

struct X {
int* Pi

X () {p =new int; }
- X () {delete p; }
/ / ...

} i

void malicious ( )
{

X x;

x.p = reinterpret_cast<int*> (7);

!(X)i

/ / corrupt x
/ / time bomb

When the execution reaches the end on f( ) , the list<X> destructor is called, and that will in
tum invoke X's destructor for the corrupted value. The effect of executing delete p when p
isn't 0 and doesn't point to an X is undefined and could be an immediate crash. Alternatively, it



962 Standard-Library Exception Safety Appendix E

might leave the free store corrupted in a way that causes difficult-to-track problems much later
on in an apparently unrelated part of a program.

This possibility of corruption should not stop people from manipulating container elements
through references and iterators; it is often the simplest and most efficient way of doing things.
However, it is wise to take extra care with such references into containers. When the integrity
of a container is crucial, it might be worthwhile to offer safer alternatives to less experienced
users. For example, we might provide an operation that checks the validity of a new element
before copying it into an important container. Naturally, such checking can only be done with
knowledge of the application types.

In general, if an element of a container is corrupted, subsequent operations on the container
can fail in nasty ways. This is not particular to containers. Any object left in a bad state can
cause subsequent failure.

E.4.6 Predicates

Many standard algorithms and many operations on standard containers rely on predicates that
can be supplied by users. In particular, all associative containers depend on predicates for both
lookup and insertion.

A predicate used by a standard container operation may throw an exception. In that case,
every standard-library operation provides the basic guarantee, and some operations, such as
insert () of a single element, provide the strong guarantee (§E.4.1). If a predicate throws an
exception from an operation on a container, the resulting set of elements in the container may
not be exactly what the user wanted, but it will be a set of valid elements. For example, if ==
throws an exception when invoked from list: : unique () (§ 17.2.2.3), the user cannot assume
that no duplicates are in the list. All the user can safely assume is that every element on the Jist
is valid (see §E.5.3).

Fortunately, predicates rarely do anything that might throw an exception. However, user
defined <, ==, and! =predicates must be taken into account when considering exception safety.

The comparison object of an associative container is copied as part of a swap () (§E.4.3).
Consequently, it is a good idea to ensure that the copy operations of predicates that might be
used as comparison objects do not throw exceptions.

E.5 The Rest of the Standard Library

The crucial issue in exception safety is to maintain the consistency of objects; that is, we must
maintain the basic invariants for individual objects and the consistency of collections of objects.
In the context of the standard library, the objects for which it is the most difficult to provide
exception safety are the containers. From the point of view of exception safety, the rest of the
standard library is less interesting. However, note that from the perspective of exception safety,
a built-in array is a container that might be corrupted by an unsafe operation.

In general, standard-library functions throw only the exceptions that they are specified to
throw, plus any thrown by user-supplied operations that they may call. In addition, any func
tion that (directly or indirectly) allocates memory can throw an exception to indicate memory
exhaustion (typically, std: :bad_alloc).



Section E.5.1 Strings 963

E.5.1 Strings

The operations on strings can throw a variety of exceptions. However, basic_string manipu
lates its characters through the functions provided by char_traits (§20.2), and these functions
are not allowed to throw exceptions. That is, the char_traits supplied by the standard library
do not throw exceptions, and no guarantees are made if an operation of a user-defined
char_traits throws an exception. In particular, note that a type used as the element (character)
type for a basic_string is not allowed to have a user-defined copy constructor or a user-defined
copy assignment. This removes a significant potential source of exception throws.

A basic_string is very much like a standard container (§ 17.5, §20.3). In fact, its elements
constitute a sequence that can be accessed using basic_string<Ch I Tr I A> : : iterators and
basic_string<Ch I Tr, A> : : const_iterators. Consequently, a string implementation offers the
basic guarantee (§E.2), and the guarantees for erase ( ) , insert ( ) , push_back () and swap ( )
(§E.4.1) apply to basic_strings. For example, basic_string<Ch, Tr, A>: :push_back ( )
offers the strong guarantee.

E.5.2 Streams

If required to do so, iostream functions throw exceptions to signal state changes (§21.3.6). The
semantics of this are well defined and pose no exception-safety problems. If a user-defined
operator« () or operator» () throws an exception, it may appear to the user as if the ios
tream library threw an exception. However, such an exception will not affect the stream state
(§21.3.3). Further operations on the stream may not find the expected data - because the previ
ous operation threw an exception instead of completing normally - but the stream itself is
uncorrupted. As ever after an I/O problem, a clear () may be needed before doing further
reads/writes (§21.3.3, §21.3.5).

Like basic_string, the iostreams rely on char_traits to manipulate characters (§20.2.1,
§E.5.1). Thus, an implementation can assume that operations op characters do not throw excep
tions, and no guarantees are made if the user violates that assumption.

To allow for crucial optimizations, locales (§D.2) and facets (§D.3) are assumed not to
throw exceptions. If they do, a stream using them could be corrupted. However, the most
likely exception, a std: : bad_cast from a useJacet (§D.3.1), can occur only in user-supplied
code outside the standard stream implementation. At worst, this will produce incomplete output
or cause a read to fail rather than corrupt the ostream (or istream) itself.

E.5.3 Algorithms

Aside from uninitialized_copy (), uninitializedJill ( ), and uninitializedJill_n () (§E.4.4),
the standard offers only the basic guarantee (§E.2) for algorithms. That is, provided that user
supplied objects are well behaved, the algorithms will maintain all standard-library invariants
and leak no resources. To avoid undefined behavior, user-supplied operations should always
leave their operands in valid states, and destructors should not throw exceptions.

The algorithms themselves do not throw exceptions. Instead, they report errors and failures
through their return values. For example, search algorithms generally return the end of a
sequence to indicate' 'not found" (§ 18.2). Thus, exceptions thrown from a standard algorithm



964 Standard-Library Exception Safety AppendixE

must originate from a user-supplied operation. That is, the exception must come from an opera
tion on an element - such as a predicate (§ 18.4), an assignment, or a swap () - or from an allo
cator (§ 19.4).

If such an operation throws an exception, the algorithm terminates immediately, and it is up
to the functions that invoked the algorithm to handle the exception. For some algorithms, it is
possible for an exception to occur at a point where the container is not in a state that the user
would consider good. For example, some sorting algorithms temporarily copy elements into a
buffer and later put them back into the container. Such a sort () might copy elements out of the
container (planning to write them back in proper order later), overwrite them, and then throw an
exception. From a user's point of view, the container was corrupted. However, all elements are
in a valid state, so recovery should be reasonably straightforward.

Note that the standard algorithms access sequences through iterators. That is, the standard
algorithms never operate on containers directly, only on elements in a container. The fact that a
standard algorithm never directly adds or removes elements from a container simplifies the
analysis of the impact of exceptions. Similarly, if a data structure is accessed only through iter
ators, pointers, and references to const (for example, through a const Rec*), it is usually trivial
to verify that an exception has no undesired effects.

E.5.4 Valarray and Complex

The numeric functions do not explicitly throw exceptions (Chapter 22). However, valarray
needs to allocate memory and thus might throw std:: bad_alloc. Furthermore, valarray or
complex may be given an element type (scalar type) that throws exceptions. As ever, the stan
dard library provides the basic guarantee (§E.2), but no specific guarantees are made about the
effects of a computation terminated by an exception.

Like basic_string (§E.5.1), valarray and complex are allowed to assume that their template
argument type does not have user-defined copy operations so that they can be bitwise copied.
Typically, these standard-library numeric types are optimized for speed, assuming that their ele
ment type (scalar type) does not throw exceptions.

E.5.5 The C Standard Library

A standard-library operation without an exception specification may throw exceptions in an
implementation-defined manner. However, functions from the standard C library do not throw
exceptions unless they take a function argument that does. After all, these functions are shared
with C, and C doesn't have exceptions. An implementation may declare a standard C function
with an empty exception-specification, throw ( ) , to help the compiler generate better code.

Functions such as qsort () and bsearch () (§ 18.11) take a pointer to function as argument.
They can therefore throw an exception if their arguments can. The basic guarantee (§E.2) cov
ers these functions.



Section E.6 Implications for Library Users 965

E.6 Implications for Library Users

One way to look at exception safety in the context of the standard library is that we have no
problems unless we create them for ourselves: The library will function correctly as long as
user-supplied operations meet the standard library's basic requirements (§E.2). In particulal, no
exception thrown by a standard container operation will cause memory leaks from containers or
leave a container in an invalid state. Thus, the problem for the library user becomes: How can I
define my types so that they don't cause undefined behavior or leak resources?

The basic rules are:
[1] When updating an object, don't destroy its old representation before a new representa

tion is completely constructed and can replace the old one without risk of exceptions.
For example, see the implementations of vector: : operator= ( ), safe_assign ( ), and
vector: :push_back () in §E.3.

[2] Before throwing an exception, release every resource acquired that is not owned by
some (other) object.
[2a] The "resource acquisition is initialization" technique (§ 14.4) and the language rule

that partially constructed objects are destroyed to the extent that they were con
structed (§ 14.4.1) can be most helpful here. For example, see leak () in §E.2.

[2b] The uninitialized_copy () algorithm and its cousins provide automatic release of
resources in case of failure to complete construction of a set of objects (§E.4.4).

[3] Before throwing an exception, make sure that every operand is in a valid state. That is,
leave each object in a state that allows it to be accessed and destroyed without causing
undefined behavior or an exception to be thrown from a destructor. For example, see
vector's assignment in §E.3.2.
[3a] Note that constructors are special in that when an exception is thrown from a con

structor, no object is left behind to be destroyed later. This implies that we don't
have to establish an invariant and that we must be sure to release all resources
acquired during a failed construction before throwing an exception.

[3b] Note that destructors are special in that an exception thrown from a destructor
almost certainly leads to violation of invariants and/or calls to terminate ( ) .

In practice, it can be surprisingly difficult to follow these rules. The primary reason is that
exceptions can be thrown from places where people don't expect them. A good example is
std: : bad_alloc. Every function that directly or indirectly uses new or an allocator to acquire
memory can throw bad_alloc. In some programs, we can solve this particular problem by not
running out of memory. However, for programs that are meant to run for a long time or to
accept arbitrary amounts of input, we must expect to handle various failures to acquire
resources. Thus, we must assume every function capable of throwing an exception until we
have proved otherwise.

One simple way to try to avoid surprises is to use containers of elements that do not throw
exceptions (such as containers of pointers and containers of simple concrete types) or linked
containers (such as list) that provide the strong guarantee (§E.4). Another, complementary,
approach is to rely primarily on operations, such as push_back ( ) , that offer the strong guaran
tee that an operation either succeeds or has no effect (§E.2). However, these approaches are by
themselves insufficient to avoid resource leaks and can lead to an ad hoc, overly restrictive, and



966 Standard-Library Exception Safety AppendixE

pessimistic approach to error handling and recovery. For example, a vector<T*> is trivially
exception safe if operations on T don't throw exceptions. However, unless the objects pointed
to are deleted somewhere, an exception from the vector will lead to a resource leak. Thus,
introducing a Handle class to deal with deallocation (§25.7) and using vector<Handle<T> >
rather than the plain vectoT<T*> will probably improve the resilience of the code.

When writing new code, it is possible to take a more systematic approach and make sure
that every resource is represented by a class with an invariant that provides the basic guarantee
(§E.2). Given that, it becomes feasible to identify the critical objects in an application and pro
vide roll-back semantics (that is, the strong guarantee - possibly under some specific condi
tions) for operations on such objects.

Most applications contain data structures and code that are not written with exception safety
in mind. Where necessary, such code can be fitted into an exception-safe framework by either
verifying that it doesn't throw exception (as was the case for the C standard library; §E.5.5) or
through the use of interface classes for which the exception behavior and resource management
can be precisely specified.

When designing types intended for use in an exception-safe environment, we must pay spe
cial attention to the operations used by the standard library: constructors, destructors, assign
ments, comparisons, swap functions, functions used as predicates, and operations on iterators.
This is best done by defining a class invariant that can be simply established by all constructors.
Sometimes, we must design our class invariants so that we can put an object into a state where
it can be destroyed even when an operation suffers a failure at an "inconvenient" point. Ide
ally, that state isn't an artifact defined simply to aid exception handling, but a state that follows
naturally from the semantics of the type (§E.3.5).

When considering exception safety, the emphasis should be on defining valid states for
objects (invariants) and on proper release of resources. It is therefore important to represent
resources directly as classes. The vector_base (§E.3.2) is a simple example of this. The con
structors for such resource classes acquire lower-level resources (such as the raw memory for
vector_base) and establish invariants (such as the proper initialization of the pointers of a
vector_base). The destructors of such classes implicitly free lower-level resources. The rules
for partial construction (§ 14.4.1) and the "resource acquisition is initialization" technique
(§ 14.4) support this way of handling resources.

A well-written constructor establishes the class invariant for an object (§24.3.7.1). That is,
the constructor gives the object a value that allows subsequent operations to be written simply
and to complete successfully. This implies that a constructor often needs to acquire resources.
If that cannot be done, the constructor can throw an exception so that we can deal with that
problem before an object is created. This approach is directly supported by the language and
the standard library (§E.3.5).

The requirement to release resources and to place operands in valid states before throwing
an exception means that the burden of exception handling is shared among the function throw
ing, the functions on the call chain to the handler, and the handler. Throwing an exception does
not make handling an error "somebody else's problem." It is the obligation of functions
throwing or passing along an exception to release resources that they own and to put operands
in consistent states. Unless they do that, an exception handler can do little more than try to ter
minate gracefully.



Section E.7

E.7 Advice

Advice 967

[1] Be clear about what degree of exception safety you want; §E.2.
[2] Exception safety should be part of an overall strategy for fault tolerance; §E.2.
[3] Provide the basic guarantee for all classes. That is, maintain an invariant, and don't leak

resources; §E.2, §E.3.2, §E.4.
[4] Where possible and affordable, provide the strong guarantee that an operation either suc-

ceeds or leaves all operands unchanged; §E.2, §E.3.
[5] Don't throw an exception from a destructor; §E.2, §E.3.2, §E.4.
[6] Don't throw an exception from an iterator navigating a valid sequence; §E.4.1, §E.4.4.
[7] Exception safety involves careful examination of individual operations; §E.3.
[8] Design templates to be transparent to exceptions; §E.3.1.
[9] Prefer the constructor approach to resource requisition to using init () functions; §E.3.5.
[10] Define an invariant for a class to make it clear what is a valid state; §E.2, §E.6.
[11] Make sure that an object can always be put into a valid state without fear of an exception

being thrown; §E.3.2, §E.6.
[12] Keep invariants simple; §E.3.5.
[13] Leave all operands in valid states before throwing an exception; §E.2, §E.6.
[14] Avoid resource leaks; §E.2, §E.3.1, §E.6.
[15] Represent resources directly; §E.3.2, §E.6.
[16] Remember that swap () can sometimes be an alternative to copying elements; §E.3.3.
[17] Where possible, rely on ordering of operations rather than on explicit use of try-blocks;

§E.3.4.
[18] Don't destroy "old" information until its replacement has been safely produced; §E.3.3,

§E.6.
[19] Rely on the "resource acquisition is initialization" technique; §E.3, §E.3.2, §E.6.
[20] Make sure that comparison operations for associative containers can be copied; §E.3.3.
[21] Identify critical data structures and provide them with operations that provide the strong

guarantee; §E.6

E.8 Exercises

1. (*1) List all exceptions that could possibly be thrown fromj() in §E.l.
2. (* 1) Answer the questions after the example in §E.I.
3. (* I) Define a class Tester that occasionally throws exceptions from basic operations, such

as copy constructors. Use Tester to test your standard-library containers.
4. (*1) Find the error in the "messy" version of vector's constructor (§E.3.1), and write a

program to get it to crash. Hint: First implement vector's destructor.
5. (*2) Implement a simple list providing the basic guarantee. Be very specific about what

the list requires of its users to provide the guarantee.
6. (*3) Implement a simple list providing the strong guarantee. Carefully test this list. Give

an argument why people should believe it to be safe.
7. (*2.5) Reimplement String from §11.12 to be as safe as a standard container.
8. (*2) Compare the run time of the various versions of vector's assignment and



968 Standard-Library Exception Safety AppendixE

safe_assign () (§E.3.3).
9. (*1.5) Copy an allocator without using an assignment operator (as needed to improve

operator= () in §E.3.3).
10. (*2) Add single-element and multiple-element erase () and insert () that provide the

basic guarantee to vector (§E.3.2).
11. (*2) Add single-element and multiple-element erase () and insert () that provide the

strong guarantee to vector (§E.3.2). Compare the cost and complexity of these solutions to
the solutions to exercise 10.

12. (*2) Write a safe_insert () (§E.4.2) that inserts elements into the existing vector (rather
than copying to a temporary). What constraints do you have to impose on operations?

13. (*2) Write a safe_insert () (§E.4.2) that inserts elements into the existing map (rather than
copying to a temporary). What constraints do you have to impose on operations?

14. (*2.5) Compare the size, complexity, and performance of the safe_insert ( ) functions
from exercises 12 and 13 to the safe_insert () from §E.4.2.

15. (*2.5) Write a better (simpler and faster) safe_insert () for associative containers only.
Use traits to write a safe_insert () that automatically selects the optimal safe_insert () for
a container. Hint: §19.2.3.

16. (*2.5) Try to rewrite uninitialized..JiII() (§19.4.4, §E.3.1) to handle destructors that
throw exceptions. Is that possible? If so, at what cost? If not, why not?

17. (*2.5) Try to rewrite uninitialized..Jill () (§ 19.4.4, §E.3.1) to handle iterators that throw
exceptions for ++ and --. Is that possible? If so, at what cost? If not, why not?

18. (*3) Take a container from a library different from the standard library. Examine its docu
mentation to see what exception-safety guarantees it provides. Do some tests to see how
resilient it is against exceptions thrown by memory allocation and user-supplied code.
Compare it to a corresponding standard-library container.

19. (*3) Try to optimize the vector from §E.3 by disregarding the possibility of exceptions.
For example, remove all try-blocks. Compare the performance against the version from
§E.3 and against a standard-library vector implementation. Also, compare the size and the
complexity of the source code of these different vectors.

20. (* 1) Define invariants for vector (§E.3) with and without the possibility of v==O (§E.3.5) .
21. (*2.5) Read the source of an implementation of vector. What guarantees are implemented

for assignment, multi-element insert ( ) , and resize ( ) ?
22. (*3) Write a version of hash_map (§ 17.6) that is as safe as a standard container.



## 162
** 263
-1 831
<> 855
16-bit character 580
8-bit char 580

and [] 838
operator 123
predefined 264
prohibiting 264

basic_ios 616
logical_not 516
valarray 664

!=
bitset 494
complex 680
generated 468
iterator 551
not equal operator 24
not_equal_to 516
string 591
valarray 667

# preprocessing directive 813
$ character 8J

I
Index

Knowledge is of two kinds.
We know a subject ourselves,

or we know where
we can find information on it.

- Samuel Johnson

%
format character 652
modulus 517
modulus operator 24
valarray 667

%: digraph 829
%: %: digraph 829
%=, valarray 664
%> digraph 829
&

bitset 495
bitwise and operator 124
predefined 264
prohibiting 264
reference 97
valarray 667

&&
logical and operator 123
logical_and 516
valarray 667

&=
of bitset 494
valarray 664

, ,character literal 73
() and initializer 84

*



970 Index

and [], - > and 290
complex 680
iterator 551
multiplies 517
multiply operator 24
valarray 667

* I end of comment 27
*=

complex 679
valarray 664

+
complex 680
iterator 551
plus 517
plus operator 24
string 593
user-defined operator 265, 281
valarray 667

++
increment operator 125
iterator 551
user-defined operator 264, 291

+=
advance () and 551
complex 679
iterator 551
operator 109
string 592
user-defined operator 264, 268, 281
valarray 664

complex 680
distance () and 551,554
iterator 551
minus 517
minus operator 24
negate 517
valarray 664, 667

decrement operator 125
iterator 551
user-defined operator 291

complex 679
iterator 551
operator 109
valarray 664

->
and * and [] 290
iterator 551
member access operator 102
user-defined operator 289

->*
operator 853
pointer to member 418

floating-point 74
member access operator 101

*
operator 853
pointer to member 418

... , ellipsis 154
I

complex 680
divide operator 24
divides 517
valarray 667

1*
comment 161
start of comment 27

II
comment 10
difference from C 816

1=
complex 679
valarray 664

arithmetic-if? 134
bit field 840
derived class 303
label 132

and virtual function, operator 312
explicit qualification 847
namespace and 169
operator 305
scope resolution operator 82, 228

: : *, pointer to member 418
: > digraph 829
;, semicolon 79, 101, 132
<

comparison 467
iterator 551
less 516
less than operator 24
string 591
template syntax 811
valarray 667
vector 457

<% digraph 829
<: digraph 829
«

bi tset 494-495
char 610
complex 612,680
example, Season 884,931
exception and 896
for output why 607
inserter 608
money-put and 902
num-put and 895
ostream 609



output 46
output operator 607
pointer to function 631
precedence 608
put to 607
streambuf 642
string 598
time-put and 915
valarray 667
virtual 612

«=
of bi tset 494
valarray 664

<=
generated 468
iterator 551
less than or equal operator 24
less_equal 516
string 591
valarray 667

<>, template 341, 344

generated 284
inheritance and 307
map 484
predefined 264
prohibiting 264
string 587
user-defined operator 281
valarray 663
vector 447

bitset 494
complex 680
equal operator 24
equal_to 516
equality without 468
iterator 551
string 591
user-defined 534
valarray 667
vector 457

>
and» 812
generated 468
greater 516
greater than operator 24
iterator 551
string 591
valarray 667

>=
generated 468
greater than or equal operator 24
greater_equal 516
iterator 551
string 591

valarray 667
»

> and 812
bi tset 494--495
char 615
complex 621,680
example, Season 884, 931
extractor 608
get from 607
input cin 50, 112
istream 614
money_get and 904
num_get and 897
pointer to function 632
string 598
time__get and 912,916
valarray 667

»=
ofbitset 494
valarray 664

? :, arithmetic-if 134
? : , operator 134
[]

, and 838
-> and * and 290
and insert () 488
bitset 494
design of 295
iterator 551
map 482
of vector 445
on string 584
valarray 663

\
backslash 830
escape character 73, 830

\ ' , single quote 830

bitset 495
bitwise exclusive or operator 124
valarray 667

of bitset 494
valarray 664

character 81

I
bitset 495
bitwise or operator 124
valarray 667

1=
of bitset 494
valarray 664

II
logical or operator 123
logical_or 516
valarray 667

Index 971



972 Index

and destructor 243
bitset 494
bitwise complement operator 124
valarray 664

o
constant-expression 835
false and 71
null pointer 835
string and S87
zero null 88

-1 and size_t 448
1, true and 71

A
Aarhus 536
abort () 218,380
abs () 660-661, 680

valarray 667
abstract

and concrete type 771
class 708
class 313
class and design 318
class, class hierarchy and 324
iterator 435
node class 774
type 34, 767, 769

abstraction
classes and 733
data 30
late 437
levels of 733

access 278
checked 445
control 225,402
control and base class 405
control and multiple-inheritance 406
control. cast and 414
control, run-time 785
control, using-declaration and 407
element 445
operator, design of 295
to base 850
to facet 882
to member 849
to member class 851
unchecked 445

accumulate () 682
acos ( ) ,valarray 667
acquisition

constructor and resource 950, 966
delayed resource 953
resource 364

action 776

Ada 10, 725
adapter

container 469
member function 520
pointer to function 521
sequence 469

add element to sequence 529
adding

facet to locale 877
to container 555
to sequence 55S
to standard library 434

address of element 454
addressing, unit of 88
adjacent_difference() 684
adjacent_find () 525
adjustfield 626,630
adoption of C++, gradual 718
advance () and += 551
aggregate

array 101
struct 101

aims
and means 694
design 700

Algol68 10
algorithm 56

C-style function and 522
and exception 963
and member function 520
and polymorphic object 63
and polymorphism 520
and sequence 508
and s tring 584
container and 507
conventions 508
design 510
exception and 566
generalized numeric 682
generic 41
modifying sequence 529
nonmodifying sequence 523
on array 544
return value 508
summary 509

<algorithm> 432,509
algorithms, standard library 64
alias

namespace 178
re-open, namespace 185

alignment 102
all, catch 362
allocate array 128
allocate () 567
allocation

C-style 577



-A-

and deallocation 127
static 843
unit of 88

allocator 567
Pool_alioc 572
copy of 941
general 573
nothrow 823
use of 568
user-defined 570

allocator, default 567
allocator_type 443,480
alternative

design 710
error handling 192, 355
implementation 320
interface 173
return 357
to macro 161

always_noconv(),codecvt 927
ambiguity

dynamic_cast and 412
resolution. multiple-inheritance 391

ambiguous
date 920
type conversion 276

ambition 693
analogy

bridge 724
car factory 698
plug 728
proofby 692
units 728

analysis
design and 696
error 711
experimentation and 710
method, choosing an 696
stage 697

and
keyword 829
operator &, bitwise 124
operator &&, logical 123

and_eq keyword 829
Annemarie 92
anomaly, constructor and destructor 245
anonymous union 841
ANSI

C 13
C++ II

any ( ) 494
app append to file 639
append to file, app 639
append (), string 592
application

framework 731, 786

operator 287
apply ( ) ,valarray 664
architecture 696
arg () 680
argc, main () argv 117
argument

array 147
command line 117
deducing template 335, 856
default 153
dependency on template 861
explicit template 335
function template 335
passing, function 145,283
reference 98
template 331
type check, function 145
type conversion, function 145
type, difference from C 817
types, virtual function 310
undeclared 154
value. example of default 227
variable number of 154

argv argc, main () 117
arithmetic

conversions, usual 122, 836
function object 517
mixed-mode 268
operator 24
pointer 88, 93, 125
type 70
vector 65, 662

arithmetic-if?: 134
array 26,88

aggregate 101
algorithm on 544
allocate 128
argument 147
array of 837
as container 496
assignment 92
associative 286,480
by string, initialization of 89
deallocate 128
delete 250
element, constructor for 250
element object 244
exception and 962
initializer 89
initializer, difference from C 818
layout 669
multidimensional 668, 677, 836
new and 423
numeric 662
of array 837
of objects 250

Index 973



974 Index

passing multidimensional 839
pointer and 91, 147
string and 589
valarrayand 663
valarray and vector and 662

ASCII 580,829
character set 73,601

asctime () 906
asin() 660

valarray 667
asm assembler 806
assembler 8, 11

asm 806
Assert () 750
assert () 750
<assert. h> 432
assertion checking 750
assign ()

char_traits 581
string 588
vector 447

assignment
and initialization 283
and template, copy 348
array 92
copy 246,283
derived 307
function call and 99
inheritance and 307
map 484
ofclass object 245
of istream 609
of os tream 609
operator 110, 268
string 587
to self 246, 945
valarray 663

Assoc example 286
associative

array 286, 480
array - see map
container 480
container and exception 955
container, sequence and 461

associativity of operator 121
asynchronous event 357
at() 53

on string 585
on vect01:" 445
out_of_range and 385

atan() 660
valarray 667

atan2 () 660
valarray 667

ate 639
atexit ()

and destructor 218
and exception 382

atof () 600
a toi () 589, 600
atol () 600
AT&T Bell Laboratories II
auto 843
automatic

garbage collection 247, 844
memory 843
memory management 844
object 244

auto...ptr 367

B
\b, backspace 830
back ( ) 446

of queue 476
back_inserter () 57, 555
back_insert_iterator 555
backslash \ 830
backspace \b 830
bad ( ) 616
bad_alloc 129

and new 384
exception 576,965
missing 823

badbit 617
bad_cast 410,882

and dynamic_cast 384
bad_exception 378, 384
bad_typeid and typeid () 384
balance 695
base

access to 850
and derived class 39, 737
class 303
class, access control and 405
class, initialization of 306
class, override from virtual 40 I
class, private 743
class, private member of 305
class, protected 743
class, replicated 394
class, universal 438
class, virtual 396
member or 740
override private 738
private 405,742
protected 319,405

base () 565
based container 438
basefield 626-627
Basic 725
basic guarantee 937

-A-



-B-

basic_filebuf, class 648
basic_ifstream 638
basic_ios 608,616,622,629

! 616
format state 606
stream state 606

basic_iostream 637
formatting 606

basic_istream 613
basic_istringstream 640
basic_ofstream 638
basic_ostream 608-609
basic_ostringstream 640
basic_streambuf 645

buffering 606
basic_string 582

begin () 584
const_iterator 583
const-pointer 583
const_reference 583
const_reverse_iterator 583
difference_type 583
end ( ) 584
iterator 583
member type 582
pointer 583
rbegin () 584
reference 583
rend ( ) 584
reverse_iterator 583
size_type 583
trai ts_type 583
value_type 583

basic_stringstream &W
BCPL 10
before () 415
beg, seekdir and
begin ( ) 54,481

basic_string 584
iterator 444

behavior, undefined 828
Bell Laboratories, AT&T 11
Bi 511
bibliography, design 719
bidirectional iterator 550
bidirectional_iterator_tag 553
big-O notation 464
binary

mode, binary 639
operator, user-defined 263
search 540,546

binary binary mode 639
binary_function 515
binary_negate 518

not2 () and 522
binary_search () 540

Index 975

bindlst () 518,520
bind2nd() 518-519
binderlst 518, 520
binder2nd 518-519
binding

name 860
strength, operator 121, 607

BinOp 511
BinPred 511
bit

field 125
field: 840
field, bi tset and 492
pattern 73
position 492
reference to 492
vector 124

bi tand keyword 829
bi tor keyword 829
bits

in char 658
in float 658
in int 658

<bi tset> 431
bitset 492

!= 494
& 495
&= of 494
« 494-495
«= of 494
== 494
» 494-495
»= of 494
[] 494
" 495
"= of 494
and bit field 492
and enum 492
and set 492
and vector<bool> 492
constructor 493
flip () 494
input 495
operation 494
output 495
reset () 494
set () 494
I 495
I= of 494
... 494

bitset (), invalid_argument and 385
bitwise

and operator & 124
complement operator'" 124
exclusive or operator " 124
logical operators 124



976 Index

or operator I 124
blackboard as design tool 703
BLAS 668
Blixen, Karen 2
Bomb example 939
bool 71

conversion to 835
input of 615
output of 611
vector of 458

boolalpha 611, 625
boolalpha () 634
break 109,116

case and 134
statement 116

bridge analogy 724
bsearch () 546

and exception 964
buffer

memory 575
os tream and 642
position in 642

Buffer 331,335
example 738

buffering 642
I/O 645
basic_streambuf 606

built-in
feature vs technique 43
type 70
type, constructor for 131
type, input of 614
type, output of 609
type, user-defined operator and 265

_byname facet 888
byte 76

c
C

/ / , difference from 816
ANSI 13
and C++ 7,14,199
and C++ compatibility 13, 816
and C++ global locale 924
and C++, learning 7
and C++ locale 880
and C++, mixing 719
and exception 383
argument type, difference from 817
array initializer, difference from 818
declaration and definition, difference from 818
difference from 816
enum, difference from 817
function and exception 382, 964
function call, difference from 816

function definition, difference from 817
initialization and goto, difference from 818
input and output 651
int implicit, difference from 817
jump past initialization, difference from 818
linkageto 205
locale 875
macro, difference from 818
programmer 14
scope, difference from 816
sizeof, difference from 816
standard library 599
struct name, difference from 818
struct scope, difference from 818
void* assignment, difference from 818
with Classes 10, 686

%c format 653
. c file 202
cache example 232
calculator example 107, 165, 190, 208
call

by reference 98, 146, 282
by value 146
function 145
of destructor, explicit 256
operator 287

callback, stream 650
callC () example 384
call_from_C () example 384
calloc () 577
capacity

of vec tor, decrease 457
of vector, increase 456

capaci ty ( ) , vector 455
car factory analogy 698
Car example 772
card, CRC 703
c_array 496
carriage return \ r 830
CASE 711, 725, 730
case and break 134
case-sensitive comparison 591
<cassert> 432
cast

C-style 131
and access control 414
cross 408
deprecated C-style 819
down 408
up 408

casting away const 414
catalog, message 928
catch all 362
catch 186,361

all 362
by reference 360

-8-



-c-

by value 359
every exception 54

catch ( ... ) 54
category

facet 887-888
iterator 553

categorY,locale 873
<cctype> 432,601
ceil () 660
cerr 609

and clog 624
initialization 637

<cerrno> 432
<cfloat> 433,660
C++ 21

ANSI 11
C and 7,14,199
ISO II
compatibility, C and 13, 816
design of 7, 10
feature summary 819
functional decomposition and 726
gradual adoption of 718
gradual approach to learning 7
introducing 718
large program and 9
learning 6, 718, 820
learning C and 7
library, first 686
locale, C and 880
meaning 10
misuse of 725
mixing C and 719
procedural programming and 725
programmer 14
pronounciation 10
properties of 724
standardization II
style subscript 674
teaching and 12
use of 12

change 700
incremental 684
response to 698
size of sequence 529

changing
interface 774
locale 880

char 73,76
8-bit 580
« 610
» 615
bits in 658
character type 71
get () 620
input of 615,618

Index 977

output of 610
signed 831
unsigned 831

char*, specialization and 344
character 580

$ 81
%, format 652
16-bit 580
\, escape 73, 830

81
buffer, streambuf and 642
classification 920
classification, convenient 924
classification, wide 601
code conversion 925
encoding, multibyte 925
in name 81
literal' 73
mask 920
name, universal 831
national 829
representation, converting 925
set 829
set, ASCII 73,601
set, large 831
set, restricted 829
special 830
string 432
thousands_sep() separator 893
traits 580
type 580
type char 71
valueof 580

CHAR_BIT 660
char_traits 580

assign() 581
char_type 580
compare () 581
copy ( ) 581
eof () 581
eq() 581
e~int_type () 581
find () 581
get_state () 581
int_type () 581
length () 581
It () 581
move ( ) 581
not_eof () 581
off_type 581
pos_type 581
state_type 581
to_char_type () 581
to_int_type () 581

char_traits<char> 580
char_traits<wchart> 581



978 Index

char_type 608
char_trai ts 580

check,range 445,561
checked

access 445
iterator 561
pointer 291

Checked example 565
Checked_i ter example 561
checking

assertion 750
for wild pointer 722
invariant 749
missing 823
of exception-specification 376
range 275, 781

choosing
a design method 696
an analysis method 696

cin 614
», input 50, 112
cout and 624
initialization 637
value of 276

circle and ellipse 703
class

:, derived 303
abstract 313
and design, abstract 318
and type 724
base 303
basic_filebuf 648
concept and 301
constructor for derived 306
conversion of pointer to 304
derived 15
destructor for derived 306
forward reference to 278
friend 279
function 776
handle 782
hierarchy 15,307, 734
hierarchy and abstract class 324
hierarchy and template 345
hierarchy design 314
hierarchy, reorganization of 707
initialization of base 306
interface 778
member, constructor for 247
member of derived 304
member, private 225
member, public 225
node 772
object, assignment of 245
operations, set of 237
override from virtual base 401

pointer to 304
private base 743
private member of base 305
protected base 743
storage 244
use of 725

class 16,32
abstract 708
abstract node 774
access to member 851
and concept 223
base and derived 39, 737
concrete 236, 241, 766
concrete node 774
declaration 225
definition 225
facet 880
free-standing 732
function-like 514
helper 293
hierarchy 38, 389
hierarchy navigation 411
kind of 765
lattice 389
leaf 774
locale 873
member 293
namespace and 849
nested 293
nota 705
random number 685
string 292
struct and 234
template and 348
typename and 858
union and 843
universal base 438
user-defined type 224

classes
and abstraction 733
and concepts 732
and real-world 734
design and 732
finding the 702,734
stream 637
use of 733

classic C locale 875
classic () locale 649, 879
classification 703

character 920
convenient character 924

cleanup, initialization and 364
clear goal 698
clear () 616

and exception 956
failure and 385

-c-



-c-

map 487
vector

<climi ts> 433,660
<clocale> 433,650
clock and timer 905
Clock example 398
clock () 905
CLOCKS_PER_SEC 905
clock_t 905
clog 609

cerr and 624
initialization 637

clone 424
clone () 426
close () 639

messages 929
closing

offile 638
of stream 639

closure 676
cloud example 700
Clu 10
Club_eq 516
<cmath> 434,660
Cmp 339,511
Cobol 725
code

bloat, curbing 342
exception-safe 943
uniformity of 767

codecvt
always_noconv () 927
encoding () 927
facet 925
in() 926
length () 927
max_length () 927
out () 927
unshift () 927

codecvt_base resul t 925
coders and designers 695
coercion 267
collaboration, design 708
collate

compare () 889-890
do_compare () 889
do_hash () 889
do_transform () 889
facet 889
hash () 889,891
transform () 889,891

collate_byname 892
collating

order 891
sequence 338

colJector,

conservative 846
copying 846

combine () 877
comma and subscripting 838
command line argument 117
comment 138

* / end of 27
/* 161
/ * start of 27
/ / 10

common
code and constructor 624
code and destructor 624

commonality 301
communication 694-695, 717
compare ()

char_traits 581
collate 889-890
string 590

comparison
< 467
case-sensitive 591
default 467
equality and 457
in map 484
locale used for string 880
operator, operator 24
requirement 467
string 590
string 889
user-supplied 467

compatibility, C and C++ 13,816
compilation

separate 27, 198
template separate 351
unit of 197

compile time, header and 211
compile-time polymorphism 347
compl keyword 829
complement operator -, bitwise 124
complete encapsulation 283
complex 64, 267

!= 680
* 680
*= 679
+ 680
+= 679
- 680
-= 679
/ 680
/= 679
« 612,680
== 680
» 621, 680
and complex<> 680
and exception 964

Index 979



980 Index

conversion 681
cos () 680
cosh () 680
expr() 680
input 680
log () 680
10g10 () 680
mathematical functions 680
operations 679
output 680
pow ( ) 680
sin() 680
sinh () 680
sqrt () 680
tanh ( ) 680

complex<>, complex and 680
complexity divide and conquer 693
component 70 I, 755

standard 698, 714
composite operator 268
composition, namespace 179,181
compositor 677
computation, numerical 64
concatenation, s tring 592-593
concept 15

and class 30I
class and 223
independent 327
locale 869

concepts, classes and 732
concrete

class 236,241, 766
class, derive from 780
node class 774
type 33,236,766-767
type, abstract and 771
type and derivation 768
type, problems with 37
type, reuse of 241, 768

condition 753
declaration in 135
exception safety 937

conditional expression 134
conj () 680
connection between input and output 623
const 94

C-sty]e string and 90
and linkage 199
and overloading 600
casting away 414
function, inspector 706
iterator 443,508
member 249
member function 229
physical and logical 231
pointer 96

pointer to 96
constant

enumerator as in-class 249
expression 833
in-class definition of 249
member 249
time 464

constant-expression 0 835
const_cast 131,232,414
const_iterator 54,443,480

basic_string 583
const_mem_funl_ref_t 518,521
const_mem_funl_t 518,521
const_mem_fun_ref_t 5]8,521
const_mem_fun_t 518,521
const-pointer 443

basic_string 583
const_reference 443,480

basic_string 583
const_reverse_iterator 443,480

basic_string 583
construct, two-stage 949
construct () 567
construction

and destruction 244
and destruction, order of 414
order of 248, 252
partial 366, 939
valarray 662

constructor 32-33, 226, 706
and C-style initialization 270
and conversion 272
and destructor 242, 246-247
and destructor anomaly 245
and initializer list 270
and invariant 949
and resource acquisition 950, 966
and template, copy 348
and type conversion 269,275
and union 257
and virtual base 397
bitset 493
common code and 624
copy 246,283
default 243
default copy 271
exception and 366-367,371
explicit 284
for array element 250
for built-in type 131
for class member 247
for derived class 306
for free store object 246
for global variable 252
for local variable 245
generated 284

-c-



-c-

inheritance and 307
init () and 953
locale 877
map 484
pointer to 424
protected 881
string 585
vector 447
virtual 323, 424

container 40, 52
STL 441
Simula-style 438
Smalltalk-style 438
adapter 469
adding to 555
and algorithm 507
and exception 953, 955
and iterator 435,444
and polymorphism 520
array as 496
associative 480
based 438
design 434, 441
guarantee 953
implementation of 465
input into 451
intrusive 438
iterator 464
kind of 461
memory management 455, 567
operation on 464
optimal 435
representation of 465
sequence and 512
standard library 56. 442
string as 491
summary 464
user-defined 497
valarray as 492

containers, list of 431
containment 738

and inheritance 740
context

of template definition 860
of template instantiation 860

continue 116
statement 116

contravariance 420
control, format 625
controlled statement 136
convenience

and orthogonality 431
vs. safety 847

convenient character classification 924
conventions

algorithm 508

Index 981

lexical 794
national 649

conversion 706
ambiguous type 276
character code 925
complex 681
constructor and 272
constructor and type 269, 275
explicittype 130,284
floating-point 834
implicit type 76,275-276,281,284,833
integer 834
of pointer to class 304
of s tring, implicit 590
oPerator, type 275
pointer 834
signed uns igned integer 834
string 589
to bool 835
to floating-point 835
to integer type 835
to integral 835
undefined enum 77
user-defined 347
user-defined pointer 349
user-defined type 267, 281

conversions 747
usual arithmetic 122, 836

converting character representation 925
cookbook method 692
copy 229,245,271

assignment 246, 283
assignment and template 348
constructor 246, 283
constructor and t emplate 348
constructor, default 271
delayed 295
elimination of 675
generated 284
istream 609
memberwise 283
of allocator 941
of exception 362
ostream 609
requirement 466

copy () 42, 529, 589
char_traits 581

_copy suffix 533
copy_backward () 529
copyfmt () 627

copyfmt_event 651
copyfmt_event, copyfmt () 651
copy_if () not standard 530
copy-on-write 295
cos () 660

complex 680



982 Index

valarray 667
cosh() 660

complex 680
valarray 667

cost of exception 381
count () 57,494, 526

in map 485
count_if () 62,526
counting, reference 783
coupling, efficiency and 768
cout 609

and cin 624
initialization 637
output 46

covariant return type 424
Cowboy example 778
_cplusplus 206
CRC card 703
create dependency 745
creation

localization of object 322
object 242

criteria
sorting 534
standard library 430

cross cast 408
<csetjmp> 433
cshift () 664
<csignal> 433
<cs tdarg> 433
<cstdio> 202,432
<cstdlib> 219,432,434,546,577,600,661
c_str () 589
<cstring> 432,577,599
C-style

allocation 577
cast 131
cast, deprecated 819
error handling 661
function and algorithm 522
initialization, constructor and 270
string and const 90
string, string and 579,589

<ctime> 431,433,906
ctype

facet 921
is () 922
narrow () 923
scan_is () 922
scan_not () 922
tolower () 923
toupper () 922
widen ( ) 923

ctype_base 920
<ctype. h> 432, 601
cultural preference, locale 869

cur, seekdir and
curbing code bloat 342
currency

symbol, international 900
symbol, local 900
symbol, standard 900

curr_symbol ( ) ,moneypunct 900
Currying 520
Cvt_to_upper example 927
<cwchar> 432,887
<cwctype> 432,601
cycle, development 698

D
%d format 652
Darwin, Charles 690
data

abstraction 30
abstraction vs inheritance 727
member, pointer to 853
Per-object 573
per-type 573

data () 589
date

ambiguous 920
format %x 909
format of 649
input of 910
output of 908
range 906

Date example 236,907,913
Date_format example 914
Date_in example 916
dateorder 911
date_order () 917
DBL_MINEXP 660
deallocate array 128
deallocate () 567
deallocation, allocation and 127
debugging 226
dec 626--627, 634
decimal 73

output 626
decimal-point() 893

moneypunct 900
decision, delaying 706
declaration 23, 78-79

and definition, difference from C 818
and definition, namespace member 167
class 225
friend 279
function 143
in condition 135
in for statement 137
of member class, forward 293

-c-



-0-

point of 82
declaration 803
declarations, keeping consistent 20I
declarator operator 80
declarator 807
decomposition, functional 725
decrease capacity of vector 457
decrement

increment and 29 I
operator - - 125

deducing template argument 335, 856
default

allocator 567
argument 153
argument value, example of 227
comparison 467
constructor 243
copy constructor 271
initializer 83
locale 879
template argument 340,824
value 239
value, supplying 500

default 109
#define 160
definition 78

class 225
context of template 860
difference from C declaration and 8I8
function 144
in-class 235
namespace member declaration and 167
of constant, in-class 249
of virtual function 310
point of 861
using-directive and 180

degrees ofexception safety 940
delayed

copy 295
resource acquisition 953

delaying decision 706
delegation 290
delete

element from sequence 529,534
from hash_map 501

delete
and garbage collection 845
array 250
delete [] and 250
operator 127
size and 421

delete (), operator 129,576
delete [] 128

and delete 250
delete [] (), operator 423,576
delete-ptr () example 531

Index

denorm_min () 659
dependency 15, 702, 706, 724

create 745
hardware 828
inheritance 737
minimize 173
on template argument 861
parameterization and 707
use 745

dependentname 857,861
deprecated

C-style cast 819
feature 818
non-canst string literal 819
static 818

<deque> 431
deque

and exception 955
double-ended queue 474

derivation, concrete type and 768
derive

from concrete class 780
without virtual 780

derived
and friend 852
assignment 307
class 15
class: 303
class, base and 39, 737
class, constructor for 306
class, destructor for 306
class, member of 304
exception 359

design 696
I/O 605
abstract class and 318
aims 700
algorithm 510
alternative 710
and analysis 696
and classes 732
and language 724
and language, gap between 725
and programming 692
bibliography 719
class hierarchy 314
collaboration 708
container 434,441
criteria, locale 872
error 711
for testing 7 I2
how to start a 708
hybrid 718
inheritance and 707
integrity of 716
language and programming language 730

983



984 Index

method 694
method, choosing a 696
object-oriented 692, 726
of C++ 7, 10
of [] 295
of access operator 295
reuse 709
stability of 708
stage 697
standard library 429-430
steps 701
string 579
template in 757
tool, blackboard as 703
tool, presentation as 704
tool, tutorial as 708
tools 711
unit of 755

designers, coders and 695
destroy () 567
destruction

construction and 244
order ofconstruction and 414

destructor 33, 283
and garbage collection 846
and union 257
anomaly, constructor and 245
atexit () and 218
common code and 624
constructor and 242, 246-247
exception and 366,373
exception safety and 937
explicit call of 256
for derived class 306
virtual 319
- and 243

development
cycle 698
process 696
software 692
stage 697

diagnostics 432
diamond-shaped inheritance 399
dictionary 480

-see map
difference

from C 816
fromC / / 816
from C argument type 817
from C array initializer 818
from C declaration and definition 818
from C enum 817
from C function call 8] 6
from C function definition 817
from C initialization and goto 818
from C int implicit 817

from C jump past initialization 818
from C macro 818
from C scope 816
from C sizeof 816
from C struct name 818
from C struct scope 818
from C vo i d * assignment 818

difference_type 443,480,552
basic_string 583

digits 658
digitslO 659
digraph

%: 829
%: %: 829
%> 829
:> 829
<% 829
<: 829

direct manipulation 730
directed acyclic graph 308
direction

of seek, seekdir
of seekg ()
of seekp ()

directive
# preprocessing 813
template instantiation 866

discrimination of exception 188
disguised pointer 844
dispatch, double 326
distance () and - 551,554
distribution

exponential 685
uniform 685

div() 661
divide

and conquer, complexity 693
operator / 24

divides / 517
div_t 661
do statement 114, 137
do_compare (), collate 889
documentation 714-715
do_hash ( ), collate 889
do_i t () example 777
domain error 661
dominance 401
dot product 684
do_transform ( ), collate 889
double

dispatch 326
quote 830

double 74
long 74
output 626

double-ended queue deque 474

-D-



-D-

doubly-linked list 470
down cast 408
draw_all () example 520
Duffs device 141
duplicate key 480, 490
dynamic

memory 127,576,843
store 34
type checking 727
type checking, misuse of 439

dynamic_cast 407-408
and ambiguity 412
and polymorphism 409
and static_cast 413
bad_cast and 384
implementation of 409
to reference 410
use of 774

E
%e format 652
eatwhite () 620
eback() 645
EDOM 661
efficiency 8, 713

and coupling 768
and generality 431
of operation 464

egptr() 645
element

access 445
access, list 472
access, map 482
address of 454
constructor for array 250
first 446
from sequence, delete' 529, 534
last 446
object, array 244
requirements for 466
to sequence, add 529

#elif 813
eliminate_duplicates() example 534
elimination

of copy 675
ofprogrammers 730
of temporary 675

ellipse9circle and 703
ellipsis . .. 154
#else 813
else 134
emphasis, examples and 5
Employee example 302
empty string 585
empty () 455, 489

string 598
encapsulation 754

complete 283
encoding ( ) 9codecvt 927
end9seekdir and
end () 54,481

basic_string 584
iterator 444

#endif 162
endl 634

andstd 632
ends 634
engineering, viewgraph 704
enum 76

and integer 77
bi tset and 492
conversion9undefined 77
difference from C 817
member 249
sizeof 78
user-defined operator and 265

enumeration 76
switch on 77

enumerator 76
as in-class constant 249

EOF 6209 653
eof () 616

char_traits 581
eofbit 617
epptr() 645
epsilon () 659
eq(),char_traits 581
e~int_type()9char_traits 581
equal operator == 24
equal () 527
equality

and comparison 457
hash_map 497
without == 468

equal_range() 540
inmap 485

equal_to == 516
equivalence9type 104
Erand 685
ERANGE 601,661
erase ()

and exception 955
in string 595
map 487
vector 452

errno 3839601,661
<errno. h> 432
error

analysis 711
design 711
domain 661

Index 985



986 Index

exception and 355, 374, 622
handling 566
handling 115,186,383
handling, C-style 661
handling alternative 192, 355
handling, multilevel 383
linkage 199
loop and 523
range 661
recovery 566, 966
reporting 186
run-time 29, 355
sequence 512
state 936
string 586

#error 813
escape character \ 73, 830
essential operators 283
evaluation

lazy 707
order of 122
short-circuit 123, 134

event
asynchronous 357
driven simulation 326

event 651
event_callback 651
example

(bad), Shape 417
Assoc 286
Bomb 939
Buffer 738
Car 772
Checked 565
Checked_i ter 561
Clock 398
Cowboy 778
Cvt_to_upper 927
Date 236,907,913
Date_format 914
Date_in 916
Employee 302
Expr 424
Extract_officers 524
Filter 786
Form 635
Hello, world! 46
Io_obj 774
IvaI_box 315, 407
Lock-ptr 366
Math_container 346
Matrix 282
Money 898
My_messages 929
My_money_io 901
My-punct 893

Object 417
Plane 729
Pool 570
Range 781
Rational 747
Saab 728
Safe 937
Season 883
Season« 884, 931
Season» 884,931
Set 769
Set_controller 785
Shape 774
Slice_iter 670
Stack 27
Storable 396
String 328
String_numput 895
Substring 596
Table 243
Tiny 275
Unsafe 937
Vector 341,780
Vehicle 734
Window 398
cache 232
calculator 107, 165, 190, 208
calle () 384
caIl_from_C () 384
cloud 700
delete-ptr () 531
do_it () 777
draw_all () 520
eliminate_duplicates() 534
identity () 531
iocopy () 617
iosbase: : Ini t 639
iseq () 513
member template 349
of default argument value 227
of input 114
of operator overloading 292
of reference 292
of user-defined memory management 292
of virtual function 646
oseq () 556
scrollbar 743
sort () 158, 334
update () 957

examples and emphasis 5
exception 29, 186, 355, 357

C and 383
C function and 382, 964
I/O 622
I/O stream and 963
algorithm and 963

-E-



-E-

and« 896
and algorithm 566
and array 962
and constructor 366-367,371
and destructor 366, 373
and error 355, 374, 622
and function 375
and interface 375
and invariant 949
and main () 54
and member 366,939
and member initialization 373
and multiple inheritance 360
and new 367, 369
and recursive function 374
and sub-object 366, 939
and undefined behavior 938
associative container and 955
atexi t () and 382
bad_alloc 576, 965
bsearch () and 964
catch every 54
clear () and 956
complex and 964
container and 953, 955
copy of 362
cost of 381
deque and 955
derived 359
discrimination of 188
erase () and 955
goto and 137
grouping 358
guarantee 937
guarantee summary 956
handler 812
handling 966
initial ization and 960
insert () and 955
invariant and 936
iostream and 963
istream and 963
iterator and 961
list and 955
map and 955
mapping 378
new and 576
ostream and 963
pointer and 961
pop_back () and 955
pop_front () and 955
predicate and 962
push_back () and 955
push_front () and 955
qsort () and 382, 964
reference and 961

Index

remove () and 955
remove_i f () and 955
rules for library 965
runtime_error 875
safety 936
safety and destructor 937
safety condition 937
safety, degrees of 940
safety, techniques for 940
sort () and 955
spl ice () and 955
standard 384
standard library and 935, 962
string and 963
swap () and 956, 960
transparency 943
type of 379
uncaught 380
unexpected 377
unini tial i zed_copy () and 960, 963
uninitialized_fill () and 960,963
unini tialized_fill_n () and 960,963
unique () and 955
valarrayand 964
vec tor and 955

<exception> 379-380, 384-385, 433
exception hierarchy 385
exceptions () 622, 896
exception-safe code 943
exception-specification 375

checking of 376
exclusive or operator'" , bitwise 124
exhaustion

free store 129
memory 965
resource 369

exit() 116,218
exp ( ) ,valarray 667
experimentation and analysis 710
explicit

call of destructor 256
qualification:: 847
template argument 335
template instantiation 866
type conversion 130, 284

exp1 i cit constructor 284
exponent, size of 659
exponential distribution 685
exponentiation, vector 667
export 205
Expr example 424
expr () 660

complex 680
expression

conditional 134
constant 833

987



988 Index

full 254
expression 798
extended type information 416
extensibility 700
extensible I/O 605
extern 205
extern 198
external linkage 199
Extract_officers example 524
extractor. >> 608

F
%f format 652
\ f. formfeed 830
fabs () 660
facet

Season_io, user-defined 883
_byname 888
access to 882
category 887-888
class 880
codecvt 925
collate 889
ctype 921
identifier id 881
lifetime of 881
locale and 869,874
messages 928
money_get 903
money..,.pu t 902
moneypunc t 899
num_get 897
num..,.put 894
numpunct 893
put () iterator 894
standard 887
time_get 911
t ime-put 908
to locale. adding 877
use of 882
user-defined 886

facilities, standard library 66, 429
factory 323
fail () 616
failbit 617
failed () 896
failure 709. 716

output 896
failure and clear () 385
false and 0 71
falsename () 894
fat interface 439, 761
fault tolerance 383
feature

deprecated 818

summary, C++ 819
vs technique, built-in 43

features, portability and 815
feedback 695,698
field

:, bit 840
bit 125
output 629-630
type of 75

fields, order of 75
file

.c 202

.h 201
and stream 637
closing of 638
header 27, 20 I
input from 637
mode of 639
opening of 638
output to 637
position in 642
source 197

filebuf 649
fill () 537,629
fill_n () 537
Fil ter example 786
finally 362
find () 57,525

char_traits 581
inmap 485
in string 594

find_end () 528
find_first_not_of () in string 594
find_first_of() 525

in s tring 594
f ind_i f () 62, 525
finding the classes 702, 734
find_last () 444
find_last_of () in string 594
fine-grained timer 905
firewall 383
first

c++ library 686
element 446

first-time switch 253, 640
fixed 626, 628
fixed() 634
flag manipulation 626
flags () 626
flexibility 700
flip () bitset 494
float 74

bits in 658
output 626

float_denorm_stYle 659
floatfield 626,628

-E-



-F-

<float. h> 433
floating-point

. 74
conversion 834
conversion to 835
literal 74
output 626, 628
promotion 833
type 74

float_round_stYle 659
floor () 660
FLT_RADIX 660
flush 634
flush () 631,642
flushing of output 626
fmod () 660
For 511
for

statement 26, 136
statement, declaration in 137

for{ii) 109
for_each () 62, 523
Form example 635
formal

method 711
model 730

format
%G 653
%X 652
%X, time 909
%c 653
%d 652
%e 652
%f 652
%g 653
%i 652
%n 653
%0 652
%p 653
%s 653
%u 653
%x 652
%x, date 909
character % 652
control 625
information, locale 606
modifier, POSIX 909
number 893
object 635
of date 649
of integer 649
of monetary amount 898-899
state 625
state, basic_ios 606
state, ios_base 606
string 652

formatted output 625
formatting

basic_iostream 606
in core 641

formfeed \ f 830
for-statement initializer 825
Fortran

style subscript 674
vector 668

forward
and output iterator 554
declaration of member class 293
iterator 550
reference to class 278

forwarding function 778, 780
forward_iterator_tag 553
foundation operator 706
frac_digits()

monetary 901
money...,punc t 899

fragmentation, memory 846
framework, application 731, 786
free

store 34, 127, 421, 576, 843
store exhaustion 129
store object 244
store object, constructor for 246

free () 577
free-standing

class 732
function 732

frexp{) 660
friend 16,278,852

and member 265, 280
class 279
declaration 279
derived and 852
function 279
of friend 852
template and 854

front operation 472
front () 446,472

of queue 476
front_inserter () 555
front_insert_iterator 555
<fstream> 432,638
fstream 638
full expression 254
function

adapter, pointer to 521
and algorithm, C-style 522
and exception, C 382, 964
argument passing 145, 283
argument type check 145
argument type conversion 145
argument types, virtual 310

Index 989



990 Index

body, try-block as 54, 373
call 145
call and assignment 99
call, difference from C 816
class 776
cons t member 229
declaration 143
definition 144
definition, difference from C 817
definition ofvirtual 310
definition, old-style 817
exampleofvirtual 646
exception and 375
forwarding 778, 780
free-standing 732
friend 279
get () 759
helper 273
higher-order 518
implementationofvirtual 36
ini t () 226, 950
inline 144
inline member 235
inspector cons t 706
member 224, 238
name, overloaded 149
nested 806
object 287, 514, 776
object, arithmetic 517
only, instantiate used 866
operator: : and virtual 312
pointer to 156
pointer to member 418
pure virtual 313
set () 759
specialization 344
static member 228,278
template 334
template argument 335
template overloading 336
type of overriding 424
value return 148
value return 283
virtual 310, 390, 706
virtual 15
virtual output 612
virtual template 348

functional
decomposition 725
decomposition and c++ 726

<functional> 431, 516--519,521
function-like class 514
functions, list of operator 262
functor 514
fundamental

sequence 469

type 23,70

G
%G fonnat 653
%g fonnat 653
game 685
gap between design and language 725
garbage

collection, automatic 247, 844
collection, delete and 845
collection, destructor and 846
collector 128, 130

gargantuanism 713
gbump() 645
gcount () 618
general allocator 573
generality

efficiency and 431
of sequence 512
of solution 70 I

generalized
numeric algorithm 682
slice 677

general-purpose programming-language 21
generate () 537
generated

!= 468
<= 468
= 284
> 468
>= 468
constructor 284
copy 284
specialization 859

generate_n () 537
generator

random number 537
type 348

generic
algorithm 41
programming 40, 757-758
programming, template and 327

get
area 645
from,» 607
position, tellp () 642

get () 618,643
char 620
function 759
messages 929
money_get 903
nwn_get 897

get_allocator () 457
from string 598

getchar () 653

-F-



-G-

get_date () 911
getline () 5L 618

into string 598
getloc () 646, 650
get_monthname () 911, 917
get_state(), char_traits 581
get_temporary_buffer() 575
get_time () 911

time_get 911
get_weekday() 911,917
get-year () 911
global 16

initialization of 217
locale, C and C++ 924
namespace 847
object 244, 252, 640
scope 82,847
variable 200, 228
variable, constructor for 252
variable, use of III

global () locale 649, 879
gmtime () 906
goal, clear 698
good() 616
goodbit 617
goto

and exception 137
and initializer 137
difference from C initialization and 818
nonlocal 357
statement 137

gptr () 645
gradual

adoption of C++ 718
approach to learning C++ 7

grammar 793
graph, directed acyclic 308
greater

than operator> 24
than or equal operator>= 24

greater> 516
greater_equal >= 516
grouping, exception 358
grouping () 893

moneypunct 900
growing system 711
gslice 677
gslice_array 677
guarantee

and tradeoff 957
basic 937
container 953
exception 937
nothrow 937
standard 827
strong 937

summary, exception 956

H
.h

file 201
header 821

hack, struct 809
half-open sequence 512
handle

class 782
intrusive 783

handle_ioexception() 896
handler, exception 812
handling

error 566
exception 966

hardware 75
dependency 828

has-a 741
has_denorm 659
has_denorm_loss 659
has_facet () 882
hash

function 502
function, hash_map 497
table 497

hash (), collate 889,891
hashing 502
hash_map 497

delete from 50 I
equality 497
hash function 497
lookup 500
representation 498
resize () 502

has_infinity 659
has_quiet_NaN 659
has_signaling_NaN 659
header 117,201

.h 821
and compile time 211
file 27,201
standard library 202, 431

heap 34,543,576
and priority_queue 543
memory 843
store 127

heap, priori ty_queue and 479
Hello, world! example 46
helper

class 293
function 273
function and namespace 240

hex 626-627, 634
hexadecimal 73

Index 991



992 Index

output 626
hiding

information 27
name 82

hierarchy 732
class 38,389
class 15,307, 734
design, class 314
exception 385
interface 708
navigation, class 411
object 739, 748
reorganization of class 707
stream 637
traditional 315

higher-order function 518
high-level language 7
Histogram 455
horizontal tab \ t 830
how to start a design 708
human activity, programming as a 693
hybrid design 718

I
%i format 652
id, facet identifier 88 I
ideas, real-world as source of 734
identifier 81

id, facet 881
meaning of 857

identity() example 531
lEe-559, is_iec559 659
iif 813
if

statement 133
swi tch and 134

_i f suffix 525
#ifdef 162
#ifndef 216
ifstream 638
ignore () 618
imag () 679-680
imbue () 644,647,650,880

imbue_event 651
iostream locale 871

imbue_event,imbue() 651
immutable, locale is 879
implementation

alternative 320
and interface 317
dependency type of integer literal 832
inheritance 400, 743
interface and 224, 314, 399, 758, 771
iterator 59
ofllO 606

ofRTTI 409
of container 465
of dynamic_cas t 409
of virtual function 36
pre-standard 820
priority_queue 478
stack 475-476
stage 697

implementation-defined 827
implicit

conversion of string 590
. type conversion 76, 275-276, 281, 284, 833
lmplicit_cast 335
in core formatting 64 I
In 51 I
in open for reading 639
in ( ) , codecvt 926
in_avail () 644,646
in-class

constant, enumerator as 249
definition 235
definition of constant 249
initializer 249

#include guard 216
include directory, standard 20 I
#include 27,117, 183,201
includes () 542
inclusion, template 350
increase

capacity of vector 456
size of vec tor 455

increment
and decrement 291
operator ++ 125

incremental change 684
indentation 138
independent concept 327
index 454
indirect_array 679
indirection 290
individual 7 16
inertia, organizational 713
infinity() 659
information hiding 27
inheritance 39,303,307, 703

and = 307
and assignment 307
and constructor 307
and design 707
and template 349
containment and 740
data abstraction vs 727
dependency 737
diamond-shaped 399
implementation 400,743
interface 400, 743

-H-



-M-

function, cons t 229
function, inline 235
function, pointer to 418
function, s tatic 228, 278
initialization 248
initialization, exception and 373
initialization, order of 247
initialization, reference 244, 250
initializer 247
object 244
object, union 244
of base class, private 305
of derived class 304
of template, static 854
orbase 740
or pointer 738
pointer to data 853
private class 225
protected 404-405
public class 225
reference 740
static 228,421
template 330
template example 349
template, missing 823
type, basic_string 582
type, map 480
type, vector 442
union 257,843

member-declaration 808
memberwise copy 283
memchr () 577
memcmp () 577
memcpy () 577
mem_fun () 63,518,521
mem_funl_ref_t 518,521
mem_funl_t 518,521
mem_fun_ref () 518,521
mem_fun_ref_t 518,521
mem_fun_t 518,520-521
mermnove () 577
memory

automatic 843
buffer 575
dynamic 127,576,843
exhaustion 965
fragmentation 846
heap 843
leak 939, 965
management 843
management, automatic 844
management, container 455, 567
management, example of user-defined 292
representing 943
stack 843
static 843

uninitialized 574
<memory> 431,574
memset () 577
merge ( ) 541

algorithm and lis t 541
stable, list 470

message
catalog 928
locale-sensitive 928
queue 477

messages
close () 929
facet 928
get () 929
open ( ) 929

messages_base 928
method 310

choosing a design 696
choosing an analysis 696
cookbook 692
design 694
formal 711

min () 544, 658
valarray 664

min_element () of sequence 544
min_exponent 659
min_exponentlO 659
minimalism 706
minimize dependency 173
minus operator - 24
minus - 517
mismatch () 516,527
missing

bad_alloc 823
checking 823
member template 823
namespace 822
specialization partial 823
standard library 822

misuse
of C++ 725
ofRITI 417,439
of dynamic type checking 439

mixed-mode arithmetic 268
mixin 402
mixing C and C++ 719
mktime () 906
ML 10
mode of file 639
model 708

formal 730
mathematical 711
waterfall 697

modf () 660
modifier 706

POSIX format 909

Index 999



1000 Index

modify
amap 487
locale 879

modifying sequence algorithm 529
modular programming 26
modularity 312

lack of 309
module

and interface 165
and type 30

modulus operator % 24
modulus % 517
monetary

amount, format of 898-899
amount, input of 903
amount, output of 902
amount, punctuation of 899

monetary frac_digi ts () 901
Moneyexample 898
money_base 899
money_get

and» 904
facet 903
get () 903

moneypunct
curr_symbol () 900
decimal-point () 900
facet 899
grouping () 900
neg_format () 900
negative_sign () 900
pattern 900
pos_format () 900
positive_sign() 900
thousands_sep () 900

money-punct frac_digits () 899
money-put

and« 902
facet 902
put () 902

moron 713,717
move ( ), char_trai ts 581
multibyte character encoding 925
multidimensional

array 668,677,836
array, passing 839

multilevel error handling 383
multimap 490
multi-method 326
multiple

inheritance 308,390, 735
inheritance, exception and 360
inheritance, use of 776
inheritance, using 399
instantiation 867
interface 172

multiple-element insert () 959
multiple-inheritance

access control and 406
ambiguity resolution 391

multiplies * 517
multiply operator * 24
multiset 491
mutable 232
mutual reference 278
My_messages example 929
My_money_io example 901
My-punc t example 893

N
%n format 653
\ n, newline 830
name 81

binding 860
binding, tempI ate 859
character in 81
clash 176
dependent 857, 861
hiding 82
locale 874-875
long namespace 178
lookup, namespace 177,265
namespace qualified 169
short namespace 178
string, locale 876

names, reserved 81
namespace

nested 848
transition to 182

namespace 27, 167,847
alias 178
alias re-open 185
and:: 169
and class 849
and overloading 183
composition 179, 181
global 847
helper function and 240
is open 184
linkage and 207
member declaration and definition 16~

missing 822
name, long 178
namelookup 177,265
name, short 178
operators and 265
purpose of 180
qualified name 169
re-open 185
rel_ops 468
selection from 180

-M-



-N-

std 46
unnamed 177, 200
using 183

naming convention, iterator 511
narrow () 644, 917

ctype 923
n-ary operators 675
national

character 829
conventions 649

natural operation 767
NDEBUG 750
negate - 517
negative_sign (), moneypunct 900
neg_format (), moneypunct 900
nested

class 293
function 806
namespace 848

nesting 756
<new> 384,433,576
new

and array 423
and exception 576
bad_alloc and 384
exception and 367,369
operator 127
placement 255
size and 421

new{)
operator 129,576
placement 576

new [] (), operator 423, 576
new_handler 129,576
_new_handler 370
newline \n 830
next-permutation () 545
Nicholas 49
noboolalpha () 634
Nocase 467
node

class 772
class, abstract 774
class, concrete 774

non-C++ program 217
non-cons t string literal, deprecated 819
none ( ) 494
nonlocal gato 357
nonmember operators, member and 267
nonmodifying sequence algorithm 523
non-standard library 45
non-tyPe template parameter 331
norm ( ) 680
noshowbase () 634
noshowpoint () 634
noshowpos () 634

noskipws () 634
not

a class 705
equal operator ! = 24

no t keyword 829
notl () 518

and unary_negate 522
not2 () 518

and binary_negate 522
notation, value of 261
not_eof ( ) , char_trai ts 581
not_eq keyword 829
not_equal_to ! = 516
nothrow guarantee 937
nothrow 576

allocator 823
nouppercase () 634
npos 586
nth_element () 540
null

ozero 88
pointer 0 835

NULL 88,433
number

format 893
punctuation 893
sizeof 75

numeric
algorithm, generalized 682
array 662
limits 658
value, input of 897
value, output of 894

<numeric> 434, 682
numerical computation 64
numeric_limits 658
num_get

and» 897
facet 897
get () 897

numpunct facet 893
num-put

and« 895
facet 894
put () 894

o
o notation 464
%0 format 652
object 32,84

110 774
array element 244
automatic 244
constructor for free store 246
creation 242

Index 1001



1002 Index -0-

creation, localization of 322
format 635
free store 244
function 287, 514, 776
global 244, 252, 640
hierarchy 739, 748
kind of 244
lifetime of 84
member 244
placement of 255
real-world 732
state of 748
static 244
temporary 244, 254
union member 244
variably-sized 243

Obj ect 438
example 417

object-oriented
design 692, 726
programming 37-38, 30I
pure 732

objects, array of 250
oct 626-627
oct () 634
octal 73

output 626
OOR the one-definition-rule 203
offset, pointer to member and 419
off_type 608,643

char_trai ts 581
ofstream 638
old-style function definition 817
one right way 693
one-beyond-Iast 512
one-definition-rule, OOR the 203
Op 511
open

for reading, in 639
for writing, eut 639
namespace is 184

open ( ) ,messages 929
opening of file 638
openmode 639
operation

bitset 494
efficiency of 464
front 472
iterator 551
list 452
natural 767
on container 464

operations
complex 679
on references 97
on structure 102

selecting 705
set of class 237
valarray 664, 667
vector 664,667

operator
, 123
! =, not equal 24
%, modulus 24
&, bitwise and 124
&&, logical and 123
*,multiply 24
+, plus 24
+, user-defined 265, 281
++, increment 125
++, user-defined 264, 291
+= 109
+=,use~defined 264,268,281
-, minus 24
- -, decrement 125
- -, user-defined 291
-= 109
- >, member access 102
- >, user-defined 289
->* 853
. , member access 101
. * 853
/, divide 24
:: 305
: : and virtual function 312
: :, scope resolution 82, 228
<, less than 24
«, output 607
< =, less than or equal 24
=, user-defined 281
==, equal 24
>, greater than 24
>=, greater than or equal 24
?: 134
" , bitwise exclusive or 124
and built-in type, user-defined 265
and enum, user-defined 265
application 287
arithmetic 24
assignment 110, 268
associativity of 121
binding strength 121, 607
call 287
comparison operator 24
composite 268
declarator 80
delete 127
design of access 295
foundation 706
new 127
operator comparison 24
overloaded 241



-0-

overloading, example of 292
precedence 121
predefined meaning for 264
stack 450
summary 119
ternary 636
type conversion 275
user-defined 263
user-defined binary 263
user-defined unary 263
I' bitwise or 124
I I, logical or 123
-, bitwise complement 124

operator
delete () 129, 576
delete [] () 423, 576
functions, list of 262
new () 129,576
new[] () 423,576
void* () 616

operator () 287
operator=,vector 946
operator [] 286
operator 810
operators

and namespace 265
bitwise logical 124
essential 283
member and nonmember 267
n-ary 675

optimal container 435
optimization 675
or

keyword 829
operator I' bitwise 124
operator I I, logical 123

order 467
collating 891
of construction 248, 252
of construction and destruction 414
of evaluation 122
offields 75
of member initialization 247
of specialization 343
string 891

or_eq keyword 829
organization

of I/O system 606
standard library 431

organizational inertia 713
orthogonality, convenience and 431
oseq () example 556
<ostream> 432

and <iostream> 608
ostream 608, 642

« 609

Index

and buffer 642
and exception 963
and iterator 558
and streambuf 642
assignment of 609
copy 609
put() 609
template and 608
write () 609

ostreambuf iterator 560
ostreambuf_iterator 560
ostream_iterator 60,558
ostringstream 641
ostrstream 641,656
Out 511
out open for writing 639
out (), codecvt 927
out_of_range 53,446

and at () 385
string 586

output 47
« 46
C input and 651
bits of int 495
bitset 495
complex 680
connection between input and 623
cout 46
decimal 626
double 626
failure 896
field 629--630
float 626
floating-point 626, 628
flushing of 626
formatted 625
function, virtual 612
hexadecimal 626
inputand 432,605
integer 627
iterator 550
manipulator 631
octal 626
of boo1 611
of built-in type 609
of char 610
of date 908
of monetary amount 902
of numeric value 894
of pointer 611
of time 908
of user-defined type 612
operator < < 607
padding 625
sequence 556
string 598

1003



1004 Index

to file 637
unbuffered 642
valarray 668
why, « for 607

output_iterator_tag 553
overflow, stack 476
overflow () 648
overf low_error and to_ulong () 385
overhead 8
overlapping sequences 529
overload

resolution 149
resolution, manual 151
return type and 151
scope and 151

overloaded
function name 149
operator 241

overloading
const and 600
example of operator 292
function template 336
namespace and 183

override 313, 395
from virtual base class 401
private base 738

overriding function, type of 424
overwriting vs insertion 555

p
%p format 653
padding 630

output 625
pair 482
paradigm, programming 22
parameter

non-type template 331
template 331

parameterization
and dependency 707
policy 757
template 707

parametric polymorphism 347
parentheses, uses of 123
parser, recursive decent 108
partial

construction 366, 939
sort 539
specialization 342

partial_sort() 539
partial_sort_copy() 539
partial_sum () 684
partition 542
parti tion () 542
partitioning of program 208, 211

passing multidimensional array 839
pattern 709

specialization 342
pattern, moneypunct 900
pbackfail () 648
pbase () 645
pbump () 645
peek() 643
people and machines, language 9
perfection 43
permutation 545
per-object data 573
per-type data 573
phone_book example 52
physical

and logical cons t 231
structure of program 198

placement
new 255
new ( ) 576
of object 255

Plane example 729
plug analogy 728
plus operator + 24
plus + 517
point

ofdeclaration 82
of definition 861
of instantiation 863

pointer 26, 87
O,null 835
and array 91, 147
and exception 961
arithmetic 88, 93, 125
checked 291
checking for wild 722
const 96
conversion 834
conversion, user-defined 349
disguised 844
input of 615
member or 738
output of 61 1
semantics 294
size of 75
smart 289, 291
to class 304
to class, conversion of 304
to const 96
to constructor 424
to data member 853
to function 156
to function, << 631
to function, >> 632
to function adapter 521
to function, linkage and 207

-0-



-p-

to member ->* 418
to member. * 418
to member: : * 418
to member and offset 419
to member function 418
tovoid 100
type 569

pointer 443, 552, 567
basic_string 583

pointers and union 845
pointer_to_binarY_funetion 521
pointer_to_unarY_function 518,521
polar () 680
policy parameterization 757
polymorphic 35

object, algorithm and 63
polymorphism 158, 312

algorithm and 520
compile-time 347
container and 520
dynamic_cast and 409
parametric 347
run-time 347
see virtual function

Pool example 570
Pool_alloe allocator 572
pop()

of priority_queue 478
of queue 476
of stack 475

pop_back () 450
and exception 955

pop_front () 472
and exception 955

pop_heap () 543
portability 9, 700, 828

and features 815
pas_format ( ), moneypunct 900
position

bit 492
in buffer 642
in file 642

positive_sign (), moneypunct 900
POSIX

format modifier 909
locale 649

postcondition 753
pas_type 608,643

char_traits 581
pow ( ) 660

complex 680
valarray 667

pptr () 645
#pragma 813
precedence

« 608

operator 121
precision () 628
precondition 753
Pred 511
predefined

I 264
& 264
= 264
meaning for operator 264

predicate 61, 63, 515
and exception 962
standard library 516
user-defined 516

preferred locale 875
prefix code 624
preprocessing directive, # 813
presentation as design tool 704
pre-standard implementation 820
prev-permutation() 545
printf () 651
priority queue 478
priority_queue

and heap 479
heap and 543
implementation 478
pop () of 478
push () of 478
top () of 478

private
class member 225
member of base class 305

private 402
base 405, 742
base class 743
base, override 738
public protected 849-850

private: 234
problems

of scale 715
with concrete type 37

procedural
programming 23
programming and C++ 725

process, development 696
product

dot 684
inner 684

productivity measurement 716
program 46, 798

and C++, large 9
large 211-212
logical structure of 198
non-C++ 217
partitioning of 208, 21 1
physical structure of 198
size of 8

Index 1005



1006 Index

start 217
structure of 8
termination 218
timing a 905

programmed-in relationship 746
programmer

C 14
C++ 14

programmers, elimination of 730
programming 16

and C++, procedural 725
as a human activity 693
design and 692
generic 40, 757-758
language 15
language, design language and 730
modular 26
object-oriented 37-38, 30 I
paradigm 22
procedural 23
purpose of 694
style 22
styles technique language 6
template and generic 327

programming-language, general-purpose 21
prohibiting

, 264
& 264
= 264

promotion
floating-point 833
integral 833
standard 833

pronounciation, C++ 10
proof by analogy 692
properties of C++ 724
protected 402

base 319,405
base class 743
constructor 881
interface, publ ic and 645
member 404-405
private,public 849-850

protection 226
unit of 754

prototypes 710
proxy 785
ptr 349
ptrdiff_t 122,433
ptr_fun () 518,521
pubimbue () 646
public class member 225
public 402

and protected interface 645
protected private 849-850

public: 225,234

pubseekoff ()
pubseekpos ( )
pubsetbuf () 646
pubsync () 646
punctuation

number 893
of monetary amount 899

pure
object-oriented 732
virtual function 313

purpose
of namespace 180
of programming 694

push()
ofpriority_queue 478
of queue 476
of stack 475

pushback ( ), vector 947
push_back () 55, 450

and exception 955
and realloc () 451
list 957
vector 957

push_front () 55,472
and exception 955

push_heap () 543
put

area 645
to,« 607

put()
iterator, facet 894
money-put 902
num-put 894
ostream 609
t ime-put 908

putback () 643
pword() 650

Q
qsort () 158, 546

and exception 382, 964
quadratic time 464
qualification : :, explicit 847
qualified name, namespace 169
qualifier, template as 858
quality 717
queue

deque, double-ended 474
priority 478

<queue> 431
queue

back () of 476
front ( ) of 476
message 477
pop () of 476

-p-



-Q-

push () of 476
quiet_NaN () 659
quote

\ I , single 830
double 830

quotient 661

R
\ r, carriage return 830
Ran 511
rand (), random number 685
Randint 685
RAND_MAX 685
random

number 538
number class 685
number generator 537
number rand () 685

random-access iterator 550
random_access_iterator_tag 553
random_shuffle() 537
range

check 445,561
check of s tring 584
check, valarray 664
checking 275, 781
checking Vee 53, 405
date 906
error 661
sequence and 512

Range example 781
Rational example 747
raw storage 574
raw_storage_iterator 575
rbegin () 481

basic_string 584
iterator 444

rdbuf () 644
rdstate () 616
rdstr () 640
read

line 618
through iterator 551

read () 618
readsome () 643
real () 679-680
realloc () 577

push_back () and 451
real-world

as source of ideas 734
classes and 734
object 732

rebind 567
use of 569

recovery, error 566, 966

recursion 148
recursive

decent parser 108
function, exception and 374

reduce 683
reduction 683
redundancy 712
reference

& 97
and exception 961
argument 98
c~lby 9~ 146,282
catch by 360
count 292
counting 783
dynamic_cast to 410
example of 292
initialization of 98
member 740
member initialization 244, 250
mutual 278
re turn by 148
return by 283
to class, forward 278

reference 443,480,552,567
basic_string 583
to bit 492

references. operations on 97
register 806
register_callback() 651
reinterpret_cast 130,256
relationship, programmed-in 746
relationships between templates 348
relaxation of return type 424
release, resource 364
reliability 383
rel_ops,namespace 468
remainder 661
remove () 536

and exception 955
list 472

remove_copy_if() 536
remove_i f () 536

and exception 955
list 472

renaming virtual function 778
rend ( ) 481

basic_string 584
iterator 444

re-open
namespace 185
namespace alias 185

reorganization of class hierarchy 707
replace () 535

in string 595
replace_copy () 535

Index 1007



1008 Index

replace_copy_if () 535
replace_i f () 535
replicated base class 394
representation

converting character 925
hash_map 498
of container 465

representing memory 943
requirement

comparison 467
copy 466

requirements for element 466
reserve (), vector 455
reserved names 81
reset () bi tset 494
resetiosflags () 634
resize () 52

and iterator 50 I
hash_map 502
of string 598
valarray 664, 666
vector 455

resource
acquisition 364
acquisition, constructor and 950, 966
acquisition, delayed 953
acquisition is initialization 366
exhaustion 369
leak 939, 965
release 364

response to change 698
responsibility 700, 706
restricted character set 829
restriction 9
result

of sizeof 122
type 122

result,codecvt_base 925
resumption 370
re-throw 362, 379
return

\ r, carriage 830
by reference 283
function value 283
type and overload 151
type, covariant 424
type of virtual 424
type, relaxation of 424
value, algorithm 508
value type check 148
value type conversion 148

return
alternative 357
by reference 148
by value 148
function value 148

of void expression 148
return; 148
return_temporary_buffer() 575
reuse 714

design 709
ofconcrete type 24 I, 768

reverse iterator 443, 557
reverse () 537

list 472
reverse_copy () 537
reverse_i terator 443,480,557

basic_string 583
reward 713
rfind () in string 594
right 625,630
right () 634
Ritchie, Kernighan and 654
roll-back 937,966
rotate () 537
rotate_copy () 537
round_error () 659
RTII 407

implementation of 409
misuse of 4 I7, 439
use of 417

rule of two 74 I
rules for library, exception 965
run-time

access control 785
error 29, 355
initialization 217
polymorphism 347
support 8
type identification 407
type information 407, 774

runtime_error exception 875

s
%s format 653
Saab example 728
Safe example 937
safe_assign() 946
safety

and destructor, exception 937
condition, exception 937
convenience vs. 847
exception 936

Satelli te 390
saving space 840
sbumpc () 646
scale 212, 692

problems of 715
scaling 665
scan_is ( ) ,ctype 922
scan_not ( ) ,ctype 922

-R-



-8-

scientific 626,628
scientific () 634
scope 278

and overload 151
difference from C 816
global 82, 847
local 82
manipulator and 632
of label 137
resolution operator :: 82, 228

scrollbar example 743
search, binary 540,546
search () 528
search_n () 528
Season

«example 884,931
>> example 884, 931
example 883

Season_io, user-defined facet 883
seekdir

and beg 643
and cur 643
and end 643
direction of seek

seekg( )
direction of 643

seekoff ()
seekp( )

direction of 643
set position 642

seekpos ()
selecting operations 705
selection from namespace 180
self, assignment to 246,945
self-reference this 230
semantics

pointer 294
value 294

semicolon; 79,101,132
sentry

I/O 624
iostream 624

separate
compilation 27, 198
compilation, template 351

separation of concerns 694
separator character, thousands_sep () 893
sequence 41,469

adapter 469
add element to 529
adding to 555
algorithm and 508
algorithm, modifying 529
algorithm, nonmodifying 523
and associative container 461
and container 512

Index

and range 512
change size of 529
delete element from 529,534
error 512
fundamental 469
generality of 512
half-open 512
input 513
iterator and 550
lexicographical_compare() of S44
max_element() of 544
min_element () of 544
output 556
set operation on 542
sorted 539
string 579

sequences, overlapping 529
set 124

of class operations 237
operation on sequence 542
position, seekp ( )

<set> 431
Set example 769
set 491

bi tset and 492
of Shape * 348

set ()
bitset 494
function 759

setbase () 634
setbuf () 647
Set_controller example 785
set_difference () 543
setf () 626,630
setfill () 634
setg () 645
set_intersection() 542
setiosflags () 634
<setjmp.h> 433
set_new_handler () 129, 576
setp () 645
setprecision () 633--634
setstate () 616
set_symmetric_difference() 543
set_terminate () 380
setting locale 880
set_unexpected() 379
set_union () 542
setw() 634
sgetc () 646
sgetn () 646
Shakespeare 709
Shape

example 774
example 37
example (bad) 417

1009



1010 Index

Shape*, set of 348
shift state 925
shift () 664
short namespace name 178
short 73
short-circuit evaluation 123, 134
showbase 626, 628
showbase () 634
showmanyc () 648
showpoint 626
showpoint () 634
showpos 626
showpos () 634
shuffle 538
sign extension 831
signal 357
<signal. h> 157,433
signaling_NaN () 659
signed

char 831
type 73
unsigned integer conversion 834

simple invariant 951
simplicity, invariant and 949
Simula 10, 38
Simula-style container 438
simulation 685, 71 I

event driven 326
sin() 660

complex 680
valarray 667

single quote \' 830
sinh () 660

complex 680
valarray 667

size
and delete 421
and new 421
of exponent 659
of mantissa 659
of number 75
of pointer 75
of program 8
of sequence, change 529
of string 147
of structure 102
of vector, increase 455

size () 455,489,494
of string 598
string 586
valarray 664

sizeof 75
difference from C 816
enum 78
result of 122

si ze_t 122,433

-1 and 448
size_type 443,480

basic_string 583
skipws 625
skipws () 634
slice, generalized 677
slice 664,668
slice_array 671
Slice_iter example 670
slicing 307
smallest int 658
SmalltaJk 725

style 417
Smalltalk-stylecontainer 438
smanip 633
smart pointer 289, 291
snextc () 646
software

development 692
maintenance 712

solution, generality of 701
sort 546

partial 539
stable 539

sort () 56, 539
and exception 955
example 158, 334
stable, list 470

sorted sequence 539
sort_heap () 543
sorting 338

criteria 534
source

code, template 350
file 197
of ideas, real-world as 734

space, saving 840
special character 830
specialization 859

and char* 344
and void* 341
function 344
generated 859
orderof 343
partial 342
partial, missing 823
pattern 342
template 341
use of 865
user 859

specialized, more 343
specifying interface 707
spl ice () 470

and exception 955
sputbackc () 646
sputc () 646

-s-



-s-

sputn () 646
sqrt () 660

complex 680
valarray 667

srand{) 685
<sstream> 119,432,640
stability of design 708
stable

list merge () 470
list sort () 470
sort 539

stable-partition() 542
stable_sort{) 539
stack

memory 843
operator 450

<stack> 431
Stack example 27
stack

implementation 475-476
overflow 476
pop () of 475
push () of 475
top () of 475
underflow 476

stage
analysis 697
design 697
development 697
implementation 697

standard
component 698, 714
currency symbol 900
exception 384
facet 887
guarantee 827
include directory 201
libraries 700
library 45, 182
library, C 599
library, adding to 434
library algorithms 64
library and exception 935, 962
library container 56, 442
library criteria 430
library design 429-430
library facilities 66, 429
library header 202, 431
library, missing 822
library organization 431
library predicate 516
manipulator 633
mathematical functions 660
promotion 833

standardization, C++ 11
start, program 217

Index

starting from scratch 708
state

error 936
format 625
machine 730
of object 748
stream 616
valid 936

statement
break 116
continue 116
controlled 136
do 114,137
for 26, 136
goto 137
if 133
loop 116
summary 132
swi tch 25, 133
while 136

statement 802
state_type, char_traits 581
static

allocation 843
memory 843
type checking 727

static
anachronism 200
deprecated 818
local 145
member 228, 421
member function 228, 278
member of template 854
object 244
store, local 25 I

static_cast 130, 159
dynamic_cast and 413

std
manipulator and 632
namespace 46

std:: 46
<s tdarg . h> 155, 433
<stddef> 433
<stddef . h> 433
<s tdexcept> 385, 432
<stdio. h> 182, 202,432
<stdlib. h> 432,434,546,577,600,661
steps, design 70 I
STL 66

container 441
iterator 441

Storable example 396
storage

class 244
raw 574

store

1011



1012 Index

dynamic 34
free 34,127,421,576,843
heap 127
local static 251

str () 640
strcat () 599
strchr () 599
strcmp () 599
strcpy () 599
strcspn () 599
stream 432

and exception, YO 963
callback 650
classes 637
closing of 639
file and 637
hierarchy 637
iterator 558
state 616
state, basic_ios 606
string 640-641

<streambuf> 432
streambuf 646-647,649

« 642
and character buffer 642
iterator 559
os tream and 642

streamoff 609
streamsize 609
strftime () 909
stride () 668
string

and cons t, C-style 90
character 432
comparison 889
comparison, locale used for 880
format 652
initialization of array by 89
literal 46, 90
literal, deprecated non-cons t 819
locale name 876
order 891
size of 147

<string> 48,432,580,598
String example 328
string 48,582

!= 591
+ 593
+= 592
< 591
« 598
<= 591
= 587
== 591
> 591
>= 591

» 598
[] on 584
algorithm and 584
and 0 587
and C-style string 579,589
and array 589
and exception 963
append () 592
as container 491
assign () 588
assignment 587
at () on 585
class 292
compare () 590
comparison 590
concatenation 592-593
constructor 585
conversion 589
design 579
empty 585
empty ( ) 598
erase () in 595
error 586
find () in 594
find_first_not_of () in 594
find_first_of () in 594
find_last_of () in 594
get_allocator () from 598
getline () into 598
implicit conversion of 590
input 598
insert () 592
iterator 584
length () 586
length () of 598
literal 294
locale 890
max_size () of 598
of user-defined type 583
out_of_range 586
output 598
range check of 584
replace () in 595
resize () of 598
rfind () in 594
sequence 579
size () 586
size () of 598
stream 640-641
subscripting of 584
substr () of 596
swap ( ) 599
unsigned 583

stringbuf 649
<string. h> 432, 577,599
String_numput example 895

-s-



-8-

stringstream 641
strlen () 599
strncat () 599
s trncmp () 599
s trncpy () 599
strong guarantee 937
strpbrk () 599
s trrchr () 599
strstr () 599
<strstream.h> 656
struct

aggregate 101
and class 234
hack 809
name, difference fronl C 818
scope, difference from C 818

structure 101
initialization of 102
internal 694
of program 8
operations on 102
size of 102

style, programming 22
subarray 663,668,671,677-679
subclass 303

superclass and 39
sub-object, exception and 366, 939
subrange 781
subscript

C++ style 674
Fortran style 674

subscripting 445, 454
comma and 838
map 482
of string 584
user-defined 286
valarray 663

substitution, Liskov 743
subs tr () of s tring 596
substring 596
Substring example 596
subtype 730, 742-743
successful large system 709
suffix

_copy 533
if 525

cude 624
Sum 514
sum ( ) , valarray 664
summary

algorithm 509
container 464
exception guarantee 956
syntax 793

sungetc () 646
superclass 303

and subclass 39
supplying default value 500
support 714

run-time 8
swap () 344, 457-458, 489, 538, 945

and exception 956, 960
string 599

swap_ranges () 538
switch

first-time 253, 640
last-time 640
on type 417

switch 109
and if 134
on enumeration 77
statement 25, 133

sync () 643,647
sync_with_stdio() 651
synonym, see typedef
syntax

<, template 811
summary 793

system
growing 711
successful large 709
working 709

T
\ t, horizontal tab 830
tab

\ t, horizontal 830
\ v, vertical 830

Table example 243
tan ( ) ,valarray 667
tanh ( ) 660

complex 680
valarray 667

Task 394
taxonomy 703
teaching and C++ 12
technique

built-in feature vs 43
language, programming styles 6

techniques for exception safety 940
tellg () 643
tellp () get position 642
template, use of 776
template 16,40,328,854

<> 341,344
and class 348
and friend 854
and generic programming 327
and inheritance 347
and macro 863
and ostream 608

Index 1013



1014 Index

argument 331
argument, deducing 335, 856
argument, default 340, 824
argument, dependency on 861
argument, explicit 335
argument, function 335
as qualifier 858
as template parameter 855
class hierarchy and 345
copy assignment and 348
copy constructor and 348
definition, context of 860
example, member 349
function 334
function, virtual 348
in design 757
inclusion 350
inheritance and 349
instantiation 859
instantiation, context of 860
instantiation directive 866
instantiation, explicit 866
member 330
missing member 823
name binding 859
overloading, function 336
parameter 331
parameter, non-type 331
parameter, template as 855
parameterization 707
separate compilation 351
source code 350
specialization 341
static member of 854
syntax < 811

template-declaration 811
templates, relationships between 348
temporary 98

elimination of 675
lifetime of 254
object 244.254
variable 244, 254

term, longer 699
terminate () 380
terminate_handler 380
termination 370

program 218
ternary operator 636
test () 494
testing 712

design for 712
this 278

self-reference 230
thousands_sep ( )

moneypunct 900
separatorcharacter 893

throw 186, 362, 379
tie () 623
time

constant 464
format %X 909
input of 910
linear 464
logarithmic 464
output of 908
quadratic 464
representation t ime_t 905
representation tm 905

time () 907
time_base 911
time_get

and» 912,916
facet 911
get_time () 911

<time .h> 431, 433, 906
time-put

and« 915
facet 908
put () 908

timer
clock and 905
fine-grained 905

t ime_t, time representation 905
timing a program 905
Tiny example 275
tinyness_before 659
tm, time representation 905
to_char_type ( ), char_trai ts 581
to_int_type (), char_traits 581
tolower ( ) , ctype 923
tools, design 711
top()

ofpriority_queue 478
of stack 475

to_ulong () 494
overflow_error and 385

toupper () 591
ctype 922

tradeoff, guarantee and 957
traditional hierarchy 315
traits, character 580
trai ts_type 608

basic_string 583
transform ( ) 530

collate 889,891
transition 717-718

and using·directive 183
to namespace 182

translation unit 197
transparency, exception 943
traps 659
traversal 61

-T-



-T-

tree 307
trigraphs 829
true and 1 71
truename () 894
trunc truncate file 639
truncate file, trunc 639
truncation 835
try 187
try-block 187, 812, 943

as function body 54, 373
tutorial as design tool 708
two, rule of 741
two-stage construct 949
type 23,69

abstract 34, 767, 769
abstract and concrete 771
arithmetic 70
built-in 70
char, character 71
character 580
check, function argument 145
check, return value 148
checking, dynamic 727
checking, misuse of dynamic 439
checking, static 727
class and 724
class user-defined 224
concrete 33,236,766-767
constructor for built-in 131
conversion, ambiguous 276
conversion, constructor and 269, 275
conversion, explicit 130, 284
conversion, function argument 145
conversion, implicit 76, 275-276, 281, 284, 833
conversion operator 275
conversion, return value 148
conversion, unions and 842
conversion, user-defined 267, 281
covariant return 424
equivalence 104
floating-point 74
fundamental 23, 70
generator 348
identification, run-time 407
information, extended 416
information, run-time 407, 774
input of built-in 614
input of user-defined 621
integer 70, 73
integral 70
literal of user-defined 273
module and 30
ofexception 379
offield 75
of integer literal 832
of integer literal, implementation dependency 832

Index lOIS

of overriding function 424
of virtual, return 424
output of built-in 609
output of user-defined 612
pointer 569
problems with concrete 37
relaxation of return 424
result 122
reuse of concrete 241, 768
safe VO 607
signed 73
string of user-defined 583
switch on 417
unsigned 73
user-defined 32, 70
user-defined operator and built-in 265

typedef 84
type-field 308
typeid () 414

bad_typeid and 384
<typeinfo> 384,415,433
type_info 414
typename 443, 856

and class 858
type-safe linkage 198

u
%u format 653
uflow() 648
unary operator, user-defined 263
unary_function 515
unary_negate 518

notl () and 522
unbuffered

110 647
input 642
output 642

uncaught exception 380
uncaught_exception() 374
unchecked access 445
undeclared argument 154
#undef 162
undefined

behavior 828
behavior, exception and 938
enum conversion 77

underflow, stack 476
underflow () 648
unexpected exception 377
unexpected () 375
unexpected_handler 379
unformatted input 618
unget () 643
Unicode 580, 925
uniform distribution 685



1016 Index

uniformity of code 767
uninitialized memory 574
uninitialized_copy() 574

and exception 960, 963
unini t ial i zed_f i 11 () 574, 942

and exception 960, 963
uninitialized_fill_n() 574

and exception 960, 963
union 841

and class 843
anonymous 841
constructor and 257
destructor and 257
member 257, 843
member object 244
pointers and 845
unnamed 841

unions and type conversion 842
unique key 480
unique () 532

and exception 955
list 472

unique_copy () 56, 532
unit

of addressing 88
of allocation 88
ofcompilation 197
of design 755
of protection 754
translation 197

unitbuf 626
units analogy 728
universal

base class 438
character name 831

UNIX 8,13
unnamed

namespace 177,200
union 841

Unsafe example 937
unsetf () 626
unshift (), codecvt 927
unsigned

char 831
integer conversion, signed 834
string 583
type 73

up cast 408
update () example 957
upper_bound () 540

in map 485
uppercase 626
uppercase () 634
Urand 685
use

case 704

count 292
dependency 745
of c++ 12
ofRITI 417
of allocator 568
of class 725
of classes 733
of dynamic_cast 774
of facet 882
of global variable III
of map 774
of multiple inheritance 776
of rebind 569
of specialization 865
of template 776

used function only, instantiate 866
use_facet () 882
user specialization 859
user-defined

== 534
allocator 570
binary operator 263
container 497
conversion 347
facet 886
facet Season_io 883
iterator 561
manipulator 635
memory management, example of 292
operator 263
operator + 265, 281
operator ++ 264, 291
operator += 264,268,281
operator - - 291
operator - > 289
operator = 281
operator and built-in type 265
operator and enum 265
pointer conversion 349
predicate 516
subscripting 286
type 32,70
type, class 224
type conversion 267,281
type, input of 621
type, literal of 273
type, output of 612
type, string of 583
unary operator 263

user-supplied comparison 467
uses of parentheses 123
using multiple inheritance 399
using

namespace 183
namespace, using vs. 847
vs. using namespace 847

-u-



-u-

using-declaration 169, 180
and access control 407
and inheritance 392
vs. using-directive 847

using-directive 171
and definition 180
and inheritance 392
transition and 183
using-declaration vs. 847

usual arithmetic conversions 122, 836
utilities 431
<utility> 431,468

v
\ v, vertical tab 830
va_arg () 155
<valarray> 434, 662
valarray 65, 662

! 664
!= 667
% 667
%= 664
& 667
&& 667
&= 664
* 667
*= 664
+ 667
+= 664
- 664,667
-= 664
/ 667
/= 664
< 667
« 667
«= 664
<= 667
= 663
== 667
> 667
>= 667
» 667
»= 664
[] 663
" 667
"= 664
abs () 667
acos () 667
and array 663
and exception 964
and vec tor and array 662
apply ( ) 664
as container 492
asin() 667
assignment 663

atan () 667
atan2 () 667
construction 662
cos () 667
cosh() 667
exp() 667
input 668
iterator 670
length of 664, 679
log () 667
10g10 () 667
mathematical functions 667
max() 664
min ( ) 664
operations 664,667
output 668
pow ( ) 667
range check 664
resize () 664,666
sin() 667
sinh() 667
size () 664
sqrt () 667
subscripting 663
sum ( ) 664
tan() 667
tanh ( ) 667
1 667
1= 664
II 667
- 664

valid
iterator 550
state 936

value
call by 146
catch by 359
default 239
key and 55, 480
mapped type 55
ofcharacter 580
of cin 276
of notation 261
return by 148
return, function 148
return, function 283
semantics 294

value_comp () 485
value_compare 485
value_type 443,480,552

basic_string 583
variable

constructor for global 252
constructor for local 245
global 200, 228
number of argument 154

Index 1017



1018 Index

temporary 244. 254
variably-sized object 243
Vec, range checking 53, 405
vector

Fortran 668
arithmetic 65,662
bit 124
exponentiation 667
mathematical functions 667
operations 664. 667

<vector> 431
Vec tor 435, 854

example 341, 780
vector 52,442, 469

< 457
= 447
== 457
[] of 445
and array, valarray and 662
and exception 955
assign () 447
at () on 445
capac i ty () 455
clear ()
constructor 447
decrease capacity of 457
erase () 452
increase capacity of 456
increase size of 455
input into 451
insert () 452, 958
member type 442
ofbool 458
of vector 836
operator= 946
push_back () 957
pushback () 947
reserve () 455
resize () 455
vector of 836

vector_base 943
vector<bool> 458

bi tset and 492
Vehicle example 734
vertical tab \ v 830
viewgraph engineering 704
virtual

function 15
function, renaming 778

virtual 34
« 612
base class 396
base class, override from 40 I
base, constructor and 397
constructor 323.424
derive without 780

destructor 319
function 310, 390, 706
function argument types 310
function, definition of 310
function, example of 646
function, implementation of 36
function, operator : : and 312
function, pure 313
output function 612
return type of 424
template function 348

vision 698
void 76

expression, return of 148
pointer to 100

void*
assignment, difference from C 818
specialization and 341

void* (), operator 616
volatile 808

w
waterfall model 697
wcerr 609
<wchar . h> 432, 887
wchar_t 72-73,925
wcin 614

wcout and 624
wclog 609
wcout 609

and wcin 624
<wctype. h> 601
wfilebuf 649
wfstream 638
while statement 136
whitespace 614-615

isspace () 114
wide

character I/O 608
characterclassification 601

wide-character literal L I 73
widen ( ) 644

ctype 923
width () 629

of input 616
wifstream 638
wild pointer, checking for 722
Window example 398
wiostream 637
wistream 614
wistringstream 641
wofstream 638
word 76
working system 709
wostream 608

-v-



-w-

wostringstream 641
wrapper 781
write through iterator 551
wri te (), ostream 609
ws 634
wstreambuf 649
wstring 582
wstringbuf 649
wstringstream 641
<wtype . h> 432

x
%X

format 652
time format 909

%x
date format 909
format 652

X3J16 II
xalloc () 650
xgetn() 648
xor keyword 829
xor_eq keyword 829
xputn() 648

y
Year 285

z
zero null, 0 88

Index 1019






