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Preface to the Second Edition

The first edition of this book was published in 1991. Since then; there has been a lotof - .
- progress in computing technology and also in software engineering. Certamly the pro-
liferation of the Internet has had a profound influence on education, research, devel-
~ opment, business, and commerce, We decided to produce this second edrtron in order,v
: to bring the book up to date with respect to the advances in' software engrneermg in
1 -the last 10 years. . |
o We were pleased to find that the basrc premrse of the: book——the durabrhty and
. -+ importance of principles—has been borne out by the: passage of time: Even though the
1+ . technology has improved, principles of software engineering have remained the same. * - ..
We have therefore been able to update every chapter without f‘hﬂng}ng tnc nglua‘r o

structure of the book. The- followrng is still the structure

Introduction: Chapters 1-3;

“The product Chapters 4 -6;

Process and management: Chapters 7-8;
' Tools and environments: Chapter 9.

The product related chapters follow the. sequence consisting of desrgn (4)
_ specrfrcatron (5), and verification (6). This is différent from the approach taken by
!" " other books, which cover specification before design. The reason for our choice fol-
i o
|

lows from the principles-based approach of the book. All of these activities—design, -
specification, and verificatiori—are basic activities that must be learned and applied
throughout the software life cycle. Fot example, design is somethmg we do not only
. with software architecture, but also with software specificatioris. The-modular design
approach helps us structure 'software and also the specification documents. Ot.ier
books present specification first and then design, allegedly because—according to
the traditional software processes—first we specify a software and then we design it.
By contrast, we believe that learning about the design activity and approaches first,
creates the needed motivation for the study of specrfrcatron and provides the skills
and techniques for structuring those specrfrcatrons
While all areas of software engineering have evolved since the first edition of the
book was written, the aisa of tools and environments has changed substantrally
- Chapter 9, therefore, is revised considerably. Our approach in this chapter also is to
present primatily principles rather than specific tools. We have seen over the years that
tools change as technology evolves, and the choice of what particular tools to study
depends on the student’s environment and focus. We therefore cover a framework for
studying and evaluating software tools without a detailed look at any particular tools.
" Besides many minor improvements and change: we have made the following
niajor additions:

xiii




Cxiv

- (CVS).

Preface to the Second Edition.

- In Chapter 3, we have added two new case studies, one of a simple compiler and
the other of the elevator system that we use throughout much of the book. The two
case studies are complementary in that they deal with different application areas and
pose different design challenges. They are presented in this chapter in a simple and
intuitive way to get the student oriented towards thinking of system issues. They are
intended to illustrate the use of general principles with concrete examples.

In Chapter 4, we have extended the treatment of object orientation, software
architecture, components, and distributed systems.
In Chapter 5, we have added a treatment of Z and UML. A new section gives a

- more systematic treatment of requirements engineering.

- In Chapter 6, we have added model checking and GQM as evaluation and verifi-
cation techniques.

In Chapter 7, we have included a treatment of the unified process the open-

source process, and the synchromze -and- stab111ze process. We have also added a new
case study on requ1rements engmeermg

In Chapter 8, we have added the capablhty maturity model and a descr1pt10n of
the Nokla software factories.

In Chapter 9, we have added a treatment of the concurrent vers1omng system

In Chapter 10, we have provided coverage of the Software Engineering Code

_of Ethics. .

*In the appendix, we have added a new case study on the use of formal methods
in industry.

* ‘THE ROLE OF OBJECT ORIENTATION

The book covers the principles of ob]ect or1entat10n in a balanced way, rather than as the
only way to do software engineering. Object-oriented analy51s design, and programmmg

" ‘have certainly evolved and become a dominant approach to software engineering. We

believe; however, that the principles underlying software engineering are deeper than
objects. What the student should learn are principles and methods that can be used in dif-
ferent approaches. The student should learn how to choose between approaches and
should be able to apply- Ob]CCt orientation when it is the right choice. For example the stu-
dent should learn about information hiding before learning about objects and inheritance.

THE PURPOSE OF CASE STUDIES

The case studies presented throughout the book and also in the appendlx have two
- purposes. One is to present the issues discussed in a larger context, in order to give the
“student a broader view of why the principles or techniques are important. The second
‘reason is to give those students who have not seen real projects a plcture of realistic

projects. The case studies are necessarily simplified to focus on important issues, but we

- have found that they are useful espec1ally to less experienced students. The study of

software engineering poses a challenge in a university setting because the typical stu-
dent has not been exposed to the problems that software engineers face daily. These

case studies attempt to overcome this challenge.
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Prefacé to the | F|rst Edltln _~

This is a textbook on software engineering. The theme underlying the book is the
i‘mportanée of rigor in the practice of software engineering. Traditional textbooks on
the subject are based on the lifecycle model of software development—that is, require-
‘ments, specification, design, coding, maintenance—examining each phase in turn. In:
4 contrast, our presentation is based on important principles that can be applied inde-:
) pendently of the lifecycle model and often in several phases of the lifecycle. Our
emphasis ‘is on' identifying and applying fundamental pr1nc1ples that are apphcable,
* throughout the software lifecycle. -
The general characteristics of the book are the following;

. lt deals with software engmeermg as opposed fo programmmg Thus we do not

_ discuss any programming issues. For example, we omit any discussion of - pro-
gramming language constructs such as goto, loops; etc. We believe that the stu-

dent of software engineering should have prior familiarity with these issues,

~which are more properly covered in textbooks on programming languages. On

the other hand, we do discuss the issue of mapping software design constructs

into spec1flc programming languages. We concentrate on irterinodule issues

and assume as prerequisite the ability to program individual modules..

, o It emphasizes pfinciples and techniques as opposed to specific tools (which may
Lo S be used-in examples). Many companies are actively developing software engi-
‘ neering tools and environments today and we expect that better and more
sophisticated tools will be invented as our knowledge of software engineering

increases. Once the student understands the principles and techniques that the

~ tool is based on, mastery of the tool will be easy. The principles and techniques

are applicable across tools while mastering the use of any particular tool does
not better prepare the student for the use of other tools. Further, use of tools

- without understanding their underlying principles is dangerous. _

o It presents engineering principles; it is not an engineering handbook. Principles
are general and are likely to remain applicable for many years while particular
techniques will change due to technology, increased knowledge, etc. An engi-:
neermg handbook may be consulted to learn how to apply a particular tech-

_ nique: it contains a set of prescriptions. This book, on the:other hand, aims to
( _ enable the reader to understand why a particular technique should be u v/d
and, just as important, why it should not be. Even though we do show ho
partlcular technique can be used to 1mplement a given pr1nc1ple our primary
emphasis is on the understandmg of the why question.

This book embodies our beliefs in the use of fundamental principles and the impor-
‘tance of theory in the practice of engineering. We have used the material in this book
in both university and professional courses on various aspects of software engineering.

Xvii
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Preface to the First Edition, _ _

AUDIENCE

~ This book is designed to be used as a textbook by students of software engmeerrng
_either in a classroom or for self-study. Professional engineers and managers will find

material here to convince them of the usefulness of modern practices of software. engi-

neering and the need to adopt them. It may be used by professionals who are willing to .
invest the time for serious study; it is not really appropriate for a cursory reading. In -
_ particular, wherever necessary, we have sacrificed breadth for depth. For the profes-

sional, the notes on further references will be especially helpful. An Instructor’s Manual
is available with ideas for course organizations and solutions to some of the exercises.

PREREQUISITES

The book is designed for junior; senior, or beginning-graduate level students in com-

puter science. The reader must have had a course in data structures and should be flu-

ent in one or more programming languages. We assume- that the reader is already

proficient in programming. Analytical reasoning, although not strictly necessary, will ’

greatly enhance the ability of the reader to appreciate the deeper concepts of the
book. This skill is developed by mathematics courses such as calculus, discrete mathe-
matics, or-even better-theoretical cornputer science. “Mathematical -maturity” is neces-
'sary for the student of any engineering discipline.

ORGANTZATION AND CONTENT

Software engmeermg is a large, multl d1mensrona1 drscrphne Organizing a textbook
on the subject poses a challenge because a textbook should present material sequen-
'tlally, but the ‘many facets of software engineering are so interrelated that there is no
optrmal sequence of toprcs We have orgamzed this textbook based on the view that in
software engmeermg -

- ‘We are bulldmg a product: the software
we use a process to build that product and
We use 100ls i in support of that process.

. The book thus has three technical sections dealmg in turn wrth the software

o .product (Chapters 4 through 6), the software engineering process and management

- (Chapters 7 and 8), and the software engineering environment (Chapter 9). Chapters 1

through 3 form a general introduction to the field and the subsequent more technical

N . sections of the book.

In Chapter 2, we dlscuss the many facets of software and common de51rable char-

| acterxstlcs for software. These characteristics impose constraints on the software builder
-and the. process to be used. In Chapter 3, we present principles for building high-quality

software. By studying principles rather than specific tools, the student ‘gains knowledge
that is independent of a particular technology and application environment. Because

~ -technology changes and environments evolve, the student should be armed with princi-

ples and techniques that can 'be atilized in different application areas. Chapters 4
through 8 present and discuss techniques for applying the principles of Chapter 3 to,
respectively, design, specification, verification, engineering process, and engineering

[




Laboratory Course  xix

management. In Chapter 9, we discuss the use of computers theruselves to help in the
building of software. We postpone the discussion of any specific tools to this chapter.
- While the material in the first two sections should withstand the passage of time,

it is likely that the material in the third section will become outdated (we hope) - |

because newer and better tools are being developed. Since programming languages
are a fundamental tool of the software engineer, we use Chapter 9 as a bridge between
the desrgn issues of Chapter 4 and specific programming language constructs.

EXERCISES

The book contains many exercises of three types:

* short, paper exercises, aimed at extendlng the knowledge galned from the
book or applying the knowledge more deeply, these exercises are 1nter5persed
throughout the chapters.

* longer paper exercises at the end of each chapter, requiring 1ntegrat10n of the
material in the chapter.

* term-projects requiring the development of some substantial software system
by a small téam.

. Solutions to some of the exercises are provrded at the end of each chapter. More
exercise solutions are given in the Instructor’s Manual. :

. CASE STUDIES

Several case studles are used in the text to demonstrate the integration of different
concepts and to contrast dlfferent approaches in realistic situations. In addition, three

case studies of real-life software engineering projects and their analyses are presented
~ at the end of the book. These case studies may be read and studied at different times

and for different purposes From these case studres the new student with little indus-
trial experience can gain a quick view of the diversity of problems faced in industrial

“practice. The student with some experience perhaps will identify with certain aspects of

these case studies and learn from others. The case studies may be read concurrently
with the main text. Several exercrses in the book refer to these case studies. .

LABORATORY COURSE

Many software engrneermg courses combme lectures and a laboratory project. To do
this in a single semester is rather difficult. The teacher will find himself discussing orga-
nizational issues while the students are concentrating on their daily forays into debug-
ging. We believe that software engineering must be taught as all other engineering
disciplines by first providing the student with a solid foundation in the “theory.” Only
after this has been achieved will laboratory experience enhance the student’s knowl-
edge. This implies that the student project must start closer to the middle of the semes-
ter rather than at the beginning. In our view, a better approach is to spend one semester.
on the theory and a $econd semester on the laboratory. The Instructor’s Manual offers
several ideas for organizing a laboratory course based on this text.
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Preface to the First Edition

READING GRAPH

The book may be read i in dlfferent sequences and at different Ievels Each of Chapters

4 through 7 contains material that-may be sklpped on the flrst readmg or for a less

detailed study. Chapters 1 through 3 are. required reading for the subsequent chapters.
The graph shows the dependencies among the chapters and the various paths through
the book. The notation nP refers to a partial reading of Chapter n, sklppmg some sec-
tions; nC stands for a complete reading.

‘The Instructor’s Manual discusses different course orgamzatlons based on the )

book. The conventxonal one-semester project software engineering course may follow
the sequence:1, 2, 3, 7P, 5P, 4P, 6P, 8,9, 10. We ourselves prefer the sequence 1,2, 3, 4P,
SP,6P, 7P, 8,9, 10. In elther case, the students should start on the pro;ect after S5P.
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Software engineering is the field of computer science that deals with the building of
_software systems that are so large or so complex that they are built by a team or teams

of engineers. Usually, these systems exist in multiple versions and are in service for

- ‘many years. During their lifetime, they undergo many changes: to fix defects, to

enhance existing features, to add new features, to remove old features, or to be adapted

" torunin a new environment.

.~ We may define software engmeermg as “the apphcatlon of engineering to soft-
ware.” More premsely, the IEEE :Std 610.12-1990’s Standard Glossary of Software
Engineering Terminology (ANSI) defines software engineering as the application of a
systematic, disciplined; quantlflable approach to the deveIOpment operatlon and
maintenance of software.

Parnas [1978] defined software engmeermg as the “multi-person construction of
multiversion software.” This definition captures the essence of software engineering

“and highlights the differences between programming and software engineering. A pro-

grammer writes a complete program, while a software engineer writes a software com-
ponent that will be combined with components written by other software engineers to
build a system. The component written by one software engineer may be modified by

“other software engineers; it may be used by others to build different versions of the

system long after the original engmeer has left the project. Programming is primarily a
personal activity, while software engineering is essentially a team activity. :
Indeed, the term “software engineering” was invented in the late 1960s after the
realization that all the lessons learned about how to program well were not helping to
build better software systems. While the field of programming had made tremendous
progress—through the systematic study of algorithms and data structures and the
invention of “structured programming”—there were still major difficulties in building
large software systems. The techniques that were used by a physicist to write a program
to calculate the solution to a differential equation for an experiment were not adequate

for a programmer working on a team that was frying to build an operating system or
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even an inventory-tracking system. What was needed in these complex cases was a clas-
sic engineering approach: Define clearly the problem you are trying to solve, and then
use and develop standard tools and techmques for solving it.

To be sure, software engineering has made progress since the 1960s. There are
standard technlques that are used in the field. Rather than being practiced as a craft,

_software engineering has moved closer to being practiced with more discipline that is

traditionally associated with engineering, Yet, differences with traditional engineering
disciplines still exist. In designing an electrical system, such as an amplifier, che electrical
engineer can specify the system precisely. All parameters and tolerance levelsare stated
clearly and are understood by the customer and the engineer. Such paramgtem are still
not known about software systems. We do not know what parameters to specify and
how to specify them. R

‘In classic engineering disciplines, the engineer has tools and mathematlcal training
to specify the properties of the product separately from those of the design. For example,
an electrical engineer relies on mathematical equations to verify that a design will not
violate power requiremerts. In software engineering, such mathematical tools are not
well developed, and their applicability is still under debate. The typical software engineer
relies much more on experience and judgment rather than mathematical techniques.
‘While experienc= and judgment are necessary, formal analysis tools also are essential in
the pract1ce of engineering.

This book presents software engineering as an engineering dlsc1phne We offer

~ certain principles that we believe are essential to the “multi-person construction of

multi-version software.” Such principles are much more important than any particular
notation or methodology for building software. Principles enable the software engineer

- to evaluate different methodologies and apply them when they are appropnate

Chapter 3 presents these principles; the rest of the book can be viewed as showmg theu'
application to the various problems in software engineering.

In this chapter, we review the evolution of software engineering and its rela-
: ttonshxp to other disciplines. The goat of the chapter isto place the fleld of software -
.engineering in perspective. . :

THE ROLE OF SOFTWARE ENGINEERING IN SYSTEM DESIGN-

A software system is often a-.component of a much larger system, The software engi-
neering activity is therefore a part of a much larger system design activity in which the
requirements of the software are balanced against the requirements of other parts of
the system being designed. For example, a telephone-switching system consists of com-
puters, telephone lines and cables, telephones, other hardware such as satellites, and,
finally, software to control the various components. It is the combination of all these
components that is expected to meet the requirements of the whole system.

A requlrement such as “the system must not be down'for more than a second in

20. years” or “when a telephone receiver is taken off the hook, a dial tone is played -
within half a second” can be satisfied with a combination of hardware, software, and -
special devices. The decision of how best to meet the requirement involves many trade- -
offs. Power plant or traffic-monitoring systems, banking systems, and hospital adminis-

tration systems are other examples of systems that exhibit the need to view the
software as a component of a larger system.
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Software is being increasingly embedded in diverse sySterns; from television sets

* 'to airplanes. Dealing with such systems requires the software engineer to take a broader

look at the general problem of systém engineering. It requires the software engineer to
‘participate in developing the requirements for the whole system. It requires that the
software engineer attempt to understand the application area before startmg to think of
what abstract interfaces the software must meet. For example, if the hardware device
that is the interface to the user has primitive data-entry facilities, a sophlstlcated word
processor will not be necessary in the system.

Considering software engrneermg as a part of system engrneermg makes us recog-
nize the importance of compromise, which is the hallmark of any engineering discipline.
A cldssic compromise concerns the choice of what should be done in software and what
should be done in hardware. Software implementation offers flexibility, while hardware:

- implementation offers performance. For example, in Chapter 2 we shall see an example

of a coin- operated m@éhme that could be built either with several coin slots, one for,
each type of coin, or a smgle slot, leaving it to software to recognize the different coins.
An even mote basic compromise involves the decision as to what should be automated
and what should be done manually

A SHORTENED HISTORY OF SOFTWARE ENGINEERING

The birth and evolution of software engineering as a discipline within computer science -
can be traced to the evolving and maturing view of the programming activity. In the
-early days of computing, the problem of programming was viewed essentially as how to
place a sequence of instructions together to get the computer to do something useful.
The problems being programmed were well understood—for example, how to solve a
differential equation. The program was written by, say, a physicist to solve an equation
of interest to him or her. The problem was just between the user and the computer; no
other person was involved.

As computers became cheaper and more common, more and more people
started using them. Higher level languages were invented in the late 1950s to make it
easier to communicate with the machine. But still, the activity of getting the computer
to do something useful was essentially performed by one person wrltlng a program for
a well-defined task.

It was at this time that “programming’ attarned the status of a profession: You
—could ask a programmer to write a program for you, instead of doing it yourself. This
arrangement introduced a separation between the user and the computer: Now the
user had to specify the task in a form other than the precise programming notation
used before. The programmer then read this specification and translated it into a pre-

~ cise set of machine instructions. This, of course, sometimes resulted in the prcgrammer

misinterpreting the user’s intentions, even in these usually small tasks.

Very few large software projects were being done at the time—the early 1960s—

‘and these were undertaken by computer pioneers who were experts. For example, the

CTSS operating system developed at MIT was indeed a large project, but it was done
_by highly knowledgeable and motivated individuals.

In the middle to late 1960s, truly large software systems were attempted to be

built commercially. The best documented of these projects was the OS 360 operating

system for the IBM 360 computer family. The people on these large projects quickly
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realized that bulldmg large software systems was significantly dxfferent from building
smaller systems. There were fundamental difficulties in scaling up the techniques of
small-program development to large software development. The term “software

engineering” was invented around this time, and conferences were held to discuss -
the difficulties these projects were facing in delivering the promised products. Large:

software projects were umversally over budget and behind schedule. Another term
invented at the time was “software crisis.”

It appeared that the problems seen in building large software svstems were not a
matter of putting computer instructions together. Rather, the problems being solved
were not well understood, at least not by everyone involved in the project or by any
single individual. People on the project had to spend a lot of time communicating with
each other rather than writing code. People sometimes even left the project, and this
affected not only the work they had been doing, but the work of the others who were
dependlng on them. Replacing an individual required an extensive amount of training
about the “folklore” of the project requlrements and the system design. Any change in
the original system requirements seemed to affect many parts of the prOJect further
delaymg delivery of the system. These kinds of problems just did not exist in the early

“programming” days and seemed to call for a new approach.

Many solutions were proposed and tried. Some suggested that the solution lay
in better management techniques. Others proposed different team organizations. Yet
others argued for better programming languages and tools. Many called for organiza-
tionwide standards such as uniform coding conventions. A few called for the use of

mathematical and formal approaches. There was no shortage of ideas. The final con-

sensus was that the problem of building software should be approached in the same
way that engineers had built other large complex systems, such as bridges, refineries;
factories, ships, and airplanes. The point was to view the final software system as a
complex product and the building of it as an engineering job. The engineering
approach required management, organization, tools, theones methodologies, and
techniques. Thus was software engineering born.

In a classic paper in 1987, Brooks, paraphrasing Aristotle, argued that there are two -

kinds of challenges in software development: essential and accidental. The accidental
difficulties are those which have to do with our current tools and technologxes——-for
example, the syntactic problems arising from the programming language we are using.
We can overcome such difficulties with better tools and technologies. The essential
difficulties, on the other hand, are not helped substantially by new tools. Complex
design problems—for example, creating and representmg a model that can be useful
for forecasting the weather or the economy-——requlre intellectual effort, creativity, and
time. Brooks argued that there is no magic—no “silver bullet”—for solving the essentlal
problems faced by software engineers. f ‘

Brooks’s argument exposes the false assumptions behind the term “software cri-
sis.” The term was invented because software projects were continually late and over
‘budget. The conclusion was that the problem was temporary and could be fixed by bet-
ter tools and management techniques. In reality, projects were late because the appli-
cation was complex and poorly understood by both customers and developers and

" neither had any idea how to estimate the difficulty of the task and how long it would -

take to solve it. Although the term “software-crisis” is still used sometimes, there is a

P
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general consensus that the inherent difficulties of software development are not short-
term problems. New and complex application domains are 1nherently difficult to
approach and are not subject to short-term, quick solutions.

The foregomg history emphasizes the growth of software engineering, startmg
from programming.-Other technological trends have also played significant roles in the
evolution of the field. The most important influence has been that of the change in the

. balance of hardware and software costs. Whereas the cost of a computerized system used
to be determined largely by hardware costs, and software was an insignificant factor,
today the software component is by far the dominant factor in a system’s cost. The declin-

"ing cost of hardware and the rising cost of software have tipped the balance further in the
direction of software, accentuating the economical importance of software engineering,. -

_ » Another evolutionary trend has been internal to the field itself. There has been a

3 ' © . growing emphasis on viewing software engineering as dealing with more than just “cod-
' ing.” Instead, the software is seen as having an entire life cycle, starting from conception

and continuing through design, development, deployment, maintenance, and evolution.

' '_ The shift of emphasis away from coding has sparked the development of methodologies

' - and sophisticated tools to support teams involved in the entire software life cycle.

We can expect the importance of software engineering to continue to grow for
several reasons. First is economics: Worldwide expenditures in software have risen
from $140 billion in 1985 to $800 billion in 2000. This fact alone ensures that software
engineering will grow as a discipline. Second, software is permeating our society:
‘More and more, software is.used to control critical functions of various machines; -
such as aircraft and medical devices, and to support worldwide critical functions, such
as electronic commerce. This fact ensures the growing interest of society in depend-
able software, to the extent of enacting legislation on specific standards, requirements,.
and certification procedures. No doubt, it will continue to be important to learn how
to build better software better

I 1.3 THE ROLE OF THE SOFTWARE ENGINEER

The evolution of the field has defined the role of the software engineer and the
required experience and education. A software engineer must, of course, be a good
programmer, be well versed in data structures and algorithms, and be fluent in one or
more programming languages. These are requirements for “programming-in-the-

-small,” roughly defined as building programs that can be written in their entirety by a
single individual. But a software engmeer is also involved in “programming-in-the-
large,” which requires more. -

The software engineer must be familiar with several design approaches, be able
to translate vague requirements and desires into precise specifications, and be able to
converse with the user of a system in terms of the application rather than in “comput-
erese.” These capabilities in turn require the flexibility and openness to grasp and

" become conversant with the essentials of different application areas. The software
engineer needs the ability to move among several levels of abstraction at different
stages of the project, from specific application procedures and requirements, to
abstractions for the software system, to a specific design for the system, and, finally, to
the detailed coding level.
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As in any other engineering field, the software engineer must develop skills_that
allow him or her to build a variety of models and to reason about those models in
order to guide choices of the many trade-offs faced in the software development
process. Nifferent models are used in the requirements phase, in the design of the soft-
‘ware architecture, and in the implementation phase. At some stage, the model might be
used to answer questions about both the behavior of the system and its performance.

The software engineer is a member of a team and therefore needs communication

skills and interpersonal skills. The software engineer also needs the ability to schedule

work, both his or her own and that of others. -
As already mentioned, a software engineer is responsible for many thlngs Often,
many organizations divide the responsibilities among several specialists with different

titles. For example, an analyst is responsible for deriving the requirements and for inter- -

acting with the customer and understanding the application area, while a performance
analyst is responsible for analyzing the performance of the system. Sometimes the same
engineer plays different roles in different phases of the project or in different projects.

THE SOFTWARE LIFE CYCLE

From the inception of an idea for a software system, until it is implemented and deliv-
ered to a customer, and even after that, the system undergoes gradual development

‘and evolution. The software is said to have a life cycle composed of several phases.

Each phase results in the development of either a part of the system or something
associated with the system, such as a test plan or a user manual. In the traditional life
cycle model, called the “waterfall model,” each phase has well-defined starting and
ending points, with clearly identifiable deliverables to the next phase In practice, how-
ever, things are rarely so simple.

A sample waterfall life cycle model comprises the followmg phases:

e Reqmrements analysis and specification. Requirements analysis is usually the
first phase of a large-scale software development project. It is undertaken
after a feasibility study has been.performed to define the precise costs and

. benefits of a software system. The purpose of this phase is to identify and doc-
ument the exact requirements for the system. Such study may be performed
by the customer, the developer, a marketing organization, or any combination
of the three. In cases where the requirements are not clear (e.g., for a system

. that has never been done before), much interaction must take place between
the user and the developer. The requirements at this stage should be in end-
user terms, but often are not. Various software engineering methodologies
advocate that this phase must also produce user manuals and even plans for
the system test that will be performed eventually, before the system is dehv-
ered. -

¢ System design and specnﬁcahon. Once the requlrements for a system have
been documented, software engineers design a software system to meet them.
This phase is sometimes split into two subphases: architectural or- high-level
design. and detailed design. Architectural design entails defining the overall
organization of the system in terms of high-level components and interactions
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among them. As we move through increasingly detailed design levels, compo-
nents are decomposed. into lower level modules with precisely defined inter-
faces. All design levels are documented in specification documents that keep
track of design decisions.

Separating the requirements analysis phase from the design phase is an
instance of a fundamental “what-how” dichotomy that we encounter quite
often in computer science. The general principle involves making a clear dis-
tinction between what th» problem is and how to solve the problem. In this
case, the requirements phase attempts to specify what the problem is. That is
why we said that the requirements should be stated in terms of the needs of the
end user. Usually, there are many ways to satisfy the requirements, sometimes -
including manual solutions that do not involve the use of computers at all. The - *
purpose of the design phase is to specify a particular software system that will
meet the stated requirements. Again, usually, there are many ways to build the -
specified system. In the coding phase, which follows the design phase, a particu-
lar system is coded to meet the design specification. We shall see many other
instances of the what-how dichotomy throughout this book.

¢ Coding and module testing, In this phase, the engineer produces the actual

" code ihat will be delivered tb the customer as the running system. The other

phases of the life cycle may also develop code, such as that for prototypes,

tests, and test drivers, but these are for use by the developers. Note that indi-

vidual modules developed in the coding phase are tested before being deliv-
ered to the next phase. '

. Integratmn and system testing. All the modules that have been developed
before and tested individually are put together—integrated—in this phase and
are tested as a whole system.

¢ Delivery and maintenance. Once the system passes all the tests, it is delivered
" to the customer and enters the maintenance phase. Any modifications made to
the system after the initial delivery are usually attributed to this phase.

Figure 1.1 gives a graphical view of the software development life cycle and pro-
vides a visual explanation of the term “waterfall.” Each phase yields results that
“flow” into the next, and the process ideally proceeds in an orderly and linear fashion.

~ As presented here, the phases give a partial, simplified view of the conventional
waterfall software life cycle. The process may be- decomposed into a different set of
phases, with different names, different purposes, and different granularity. Entirely
different life cycle schemes may even be proposed, not based on a strictly phased
waterfall development. For example, it is cledr that if any tests uncover defects in the.
system, we have to go back at least to the coding phase and perhaps to the design
phase to correct some mistakes. In general, any phase may uncover problems in previ-
ous plases, and when it does, that will necessitate going back to the previous phases
and redoing some earlier work. For example, if the system design phase uncovers
inconsistencies or ambiguities in the system requirements, the requirements analysis

_phase must be revisited to determine what requirements were really intended.

Another simplification in the preceding presentation is that it assumes that a
phase is completed before the next one begins. In practice, it is often expedient to start
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Requirements analysis
and specification

Design and specification

Code and module
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Integration and
system testing.

Delivery and

maintenance

FIGURE 1.1

The waterfall model of the software life cyclé.

a phase before a previous one is finished. This may happen, for example, if some data-

necessary for the completion of the requirements phase will not be available for some

“time. Or it might be necessary because the people ready to start the next phase are

available and have nothing else to do. Or we may decide to do the next phase in order
to reduce the product’s time to market. Concurrent engineering is the term commonly
used to refer to modern process organizations that try to achiéve early delivery of
products by introducing parallelism in the development steps of previously sequential
processes. We postpone these and other issues related to the software life cycle until
Chapter 7. .

Many books on software engineering are orgamzed accordlng to the traditional
software life cycle model, each section or chapter being devoted to one phase. Instead,
we have organized this book according to principles. Once mastered, these principles
can be applied by the software engineer in all phases of software development, as well

as in life cycle models that are not-based on phased development, as discussed earlier.

Indeed, resgarch and experience have shown that there is a variety of life cycle models

and that no single one is appropriate for all software systems. In. Chapter 7, we exam-

ine several different life cycle models.

'
!

THE RELATIONSHIP OF SOFTWARE ENGINEERING TO OTHER
AREAS OF COMPUTER SCIENCE - ‘ ’

Standmg now on its own as a discipline, software engmeermg has emerged as an
important field of computer science. Indeed, there is a synergistic relationship
between it and many other areas in computer science: These areas both influence and

are influenced by software engineering: In the subsections that follow, we explore the -

relationship between software engineering and some of the other important fields of
computer science.

.
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“1.5.1

Programmlng Languages

The influence of software engineering on programmmg languagcs is evident:
Programming languages are the central tools used in software development. As a result,
they have a profound influence on how well we can achieve our software engineering
goals. In turn, these goals influence the development of programming languages. -

The most notable example of this influence on programming languages is the
inclusion of modularity features, such as separate and independent compilation, and the
separation of specification from implementation, in order to support team development
of large software. Programming languages such as Ada 95 and Java, for example, sup-
port the development of “packages”—allowing the separation of the package interface

from its implementation—and libraries of packages that can be used as components in

the development of independent software systems. This is a step towards making it pos-
sible to build software by choosing from a catalog of available components and combin-
ing them, similarly to the way hardware is built. Another example is the introduction of
exception-handling constructs in programming languages to allow for detecting and
responding to any malfunction that may occur when the software is running. Such con-
structs support the engineer in building more reliable applications.

Conversely, programming languages have influenced software engineering. One
example is the idea that requirements and design should be described precisely, possibly
using a language as rigorous and machine-processible as a programming language.
Another example is the treatment of the input to a software system as a program
coded in some “programming” language. The commands that a user can type into a

- system -are not just a random collection of characters; rather, they form a language
-used to communicate with the system. Designing an appropriate input language is a

part of designing the system interface. _
Old operating systems such as OS 360 had an intricate and cryptic interface—

. called job control language (JCL)—that was used to instruct the operating system.

Later operating systems—UNIX in particular—introduced shell command languages
designed to program the operating system. The language. approach made the interface
much easier to learn and use. _ '

One result of viewing the software system interface as a programming language is
that compiler development tools—which are quite well developed—can be used for
general software development. For example, we can use grammars to specify the syntax
of the interface and parser-generators to detect inconsistencies and ambiguities in the
interface, and automatically generate the front end of the system.

User interfaces are an especially interesting case, because we also see an influ-
ence in the opposite direction: The software engineering issues revolving around
graphical user interfaces have motivated programming language work in the area of
visual languages. These languages attempt to capture the semantics of the wmdowmg
and interaction paradigms offered by graphical display devices.

Yet another influence of the programming language field on software engineer-
ing is through the implementation techniques that have been developed over the years

for language processing. The generative approach to software engineering relies on the

lesson learned in language processing that formalization leads to automation: Stating a
formal grammar for a language allows a parser to be produced automatically. This
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technique is exploited in many software englneerlng areas for formal specification and
automatic software generatlon

. Operating Systems

The influence of operating systems on software engineering is quite strong primarily

- because operating systeéms were the first really large software systems built, and
therefore, they were the. first instances of software that needed to be engineered.
Many-of the initial software desngn 1deas ongmated from early attempts at building
operating systems.

- Virtual machines, levels of abstractlon and the separation of policy from mecha-
nism are all concepts developed in the operating system field with general applicability
to any large software system. For example, the idea of separating a policy that an oper-
ating system wants to impose; such-as assuring fairness in task scheduling, from the

mechanism used to accomplish.concurrency, such as time slicing, is an instance of sepa- -

- rating the “what” from the “how”—or the specification from the implementation—and
the changeable parts from what remains fixed in a design. The idea of levels of abstrac-
tion is just another approach to modularizing the design of a system.

Examples of the influence of software engineering techniques on the structure of
operating systems can be seen in portable operating systems and operating systems that

are structured to contain a small. “protected” microkernel that provides a minimum of -

functionality for interfacing with the hardware and a “nonprotected” part that provides
the majority of the functionality previously associated with operating.systems. For
example, the nonprotected part may allow the user to control the paging scheme, which
has traditionally been viewed as an integral part of the operating system..
Similarly, in early operating systems, the command language interpreter was an
: mtegral part of the operating system. Today, it is viewed as.just another utility program
that allows, for example, each user to have a personalized version of the interpreter.
'On many UNIX systems, there are at least three different such interpreters.

Databases

-Databases represent another class of large software systems whose development
has influenced software engineeting through' the ‘discovery- of new design tech-
niques. Perhaps the most important influence of the database field on software
engineering is through the notion of “data independence,” which is yet another

instance of the separation of specification from impleméntation. The database -

allows applications to be written that use data without worrying about the underly-
ing representation of the data. Such independence allows the database to be
changed in certain ways—for example, to increase the performance of the system—
without any need to change the applications. This is an example of the benefit of
abstraction and separation of concerns two key software engmeermg principles, as
we shall see in Chapter 3. :

Another interesting impact of database technology on software engineering is
that it allows database systems to be used as components of large software systems.
Since databases have solved the-many problems associated with the management of
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concurrent access to large amounts of information by multiple users, there is no need
to reinvent these solutions when we are building a software system; we can 51mp1y use
an existing database system as a component.

One interesting influence of software engineering on database technology has its
roots in early attempts to use databases to support software development environ-
ments. This experience showed that traditional database technology was incapable of

dealing with the problems posed by software engineering processes. For example, the

following requirements are not handled well by traditional databases: storing large

- structured objects stch as source programs or user manuals;storing large unstructured
~ objects such as object code and executable code; maintaining different versions of the

same object; and storing objects, such as a product, with many large structured and
unstructured fields, such as source code, object code, and a user manual. ,
Another difficulty dealt with the length of transactions. Traditional databases
support short transactions, such as a bank account deposit or withdrawal. Software
engineers, on the other hand, need very long transactions: An engineer may require a
long-running job to rebuild a multimodule system or may check out a program and

- work on it for weeks before checking it back in. The problem posed for the database is
‘how to handle the locking of the code during those weeks. What if the engineer wants

to work only on a small part of the program? Are all other programmers forbidden
from accessing the program during this time?
These requirements have stimulated advances in the database area ranging from

new models for databases and transactions to adapting current models.

Artificial Intelligence

Artificial intelligence is another field that has exerted an influence on software engi-
neering. Many software systems built in the artificial-intelligence research community
are large and complex systems. But they have been different from other software sys-
tems in significant ways. Many of them were built with only a vague notion of how the

. system was going to work. The term “exploratory development” has been used for the

process followed in building these systems.

Exploratory development is the opposite of traditional software engineering, in
which the designer goes through well-defined steps attempting to produce a complete
design before proceeding to coding. Artificial intelligence has given rise to new tech-
niques in dealing with specifications, verification, and reasoning in the presence of
uncertainty. Other techniques advanced by artificial intelligence include the use of
logic in both software specifications and programming languages. v

Software engineering techniques have been used in those artificial-intelligence
systems known as expert systems. These systems are modularized, with a clear separa-
tion between the facts “known” by the system and the rules used by the system for
processing the facts—for example, a rule to decide on a course of action. This separa-
tion has enabled the building and commercial availability of “expert-system shells”
that include the rules only. A user can apply the shell to an application of interest by

~ supplying application-specific facts. The idea is that the expertise about the applica-

tion is provided by the user and the general principles of how to apply expertise to
any problem are provided by the shell.
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Some researchers have been trying to apply artificial-intelligence techniques
to improve software engineering tasks. For example, “programming assistants” have
been developed to act as consultants to the programmer, watching for common pro-

. gramming idioms or the system requirements. Such “assistants” have also been

developed to help in the testing activities of software development to debug the
software. :

The problem of providing interfaces for nonexpert users—for example, through
the use of natural language—was first attacked by artificial intelligence. Cognitive
models were also used to model the user. These works have influenced the area of

. user-interface design in software engineering.

Theoretical Models

Theoretical computer science has developed a number of models that have become

-useful tools in software engineering. For example, finite-state machines have served

both as the basis of techniques for software specifications and as models for software

~ design and structure. Communication protocoi$ and language analyzers use finite-state

machines as their processing model.

Pushdown automata have also been used—for example, for operational specifi-
cations of systems and for building processors for such specifications. Interestingly,
pushdown automata were themselves motivated by practical attempts to build parsers
and compilers for programming languages. ‘

Petri nets, which will be described in Chapter §, are yet another contribution of
the theoretical computer science field to software engineering. Petri nets were ini-

tially used to model hardware systems, but were later applied increasingly in the
modeling of software. As another example, mathematical loglc has been the basis for
many specification languages.

Conversely, software engineering has affected theoretlcal computer science.
Algebraic specifications and abstract data type theory are motivated by the needs of
software engineering. Also in the- area of specifications, software engineering has
focused more attention on non-first-order theories of logic, such as temporal logic.
Theoreticians used to pay more attention to first-order theories than higher order the-
ories, because the two are equlvalent in power, but first- order theories are more basic
from a mathematical viewpoint. They are not as expressive as higher order theories,
however. A software engineer, unlike a theoretician, is interested both in the power
and the expressiveness of a theory. For example, temporal logic provides a more com-
pact and natural style for specifying the requirements of a concurrent system than do
first-order theories. The needs of software engineering, therefore have ignited new
interest by theoret1C1ans in such higher order theories.

THE RELATIONSHIP OF-SOFTWARE ENGINEERING TO OTHER -
DISCIPLINES |

- Inthe 'foreg'oing sections, we examined the relationship between software engineering
- and other fields of computer science. In this section, we explore how software engi-

neering relates to flelds outside of computer science.
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Software engineering cannot be practiced in a vacuum. There are many problems
that are not specific to software engineering and have been solved in other fields. Their

solutions can be adapted to software engineering. Thus, there is no need to reinvent every -

solution. For example, cognitive science can help us develop better user interfaces and™ -

economic theory may help us in choosing among different development process models.

Management Science

Much of software engineering is involved with management issues. As in any kind of -

large, multiperson endeavor, we need to do project estimation, project scheduling,
human resource planning, task decomposition and assignment, and project tracking
Additional personnel issues involve hiring personnel, motivatrng people and assigning
the right people to the right tasks.

Management science studies exactly these issues. Many models have been devel-

oped that can be applied in software engineering, By looking to management science,

we can exploit the results of many decades of study.

In the opposite direction, software engineering has provrded management sci-
ence with a new domain in which to test management theories and models. The tradi-
tional management approaches to assembly-line production clearly do not apply to
human-centered activities such as software engineering, giving rise to a search for
more appllcable approaches

Systems Engineering

The field of systems enginegring is concerned with studying complex éystems. The
underlying hypothesis is that certain laws govern the behavior of any complex system

composed of many components with complex relationships. Systems engineering is

useful when one is interested in concentrating on the system, as opposed to its individ-
ual components. Systems engineering tries to discover common themes that apply to
diverse systems——for example, chemical plants, buildings; and bridges.

Software is often'a component of a much larger system. For example, the soft-
ware in a factory monitoring system or the flight software on an airplane are just com-
ponents of more complicated systems. Systems engineering techniques can be_applied
to the study of such systems. We can also consider a software system consisting of thou-
sands of- modules as a candidate complex system subject to systems engineering laws.

On the other hand, system engineering has been enriched by expanding its set of
analysis models—which were traditionally based on classical mathematics—to. mclude -

discrete models that have been in use in software engmeermg

CONCLUDING REMARKS

Software engineering is an evolving engineering discipline that deals with systematic
approaches to building large software systems by teams of programmers. We have ..

given a history of the evolution of the field, presented its relationship to other fields, ‘f, 7

and described the qualifications required of a software engineer. In this book, we shall

study the principles that are essential to the engineering activity of building software. .




14 Chapter 1 Software Engineering: A Preview
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CHAPTER 2

Software: Its Nature and
Qualltles

The goal of any engineering activity is to build something—an artifact or a product. The
civil engineer builds a bridge, the aerospace engineer builds an a1rplane and the elec-
trical engineer builds a circuit. The product of software engineering is a “software sys-
tem.” It is not as tangible as the other products, but it is a product nonetheless. It serves
a function.

In some ways software products are similar to other engineering products, and in
some ways they are very different. The characteristic that perhaps sets software ‘apart
from other engineering products the most is that software is malleable. We can modify
the product itself—as opposed to its design—rather easily. This makes software quite
different from other products, such as cars or ovens.

The malleability of software is often misused. Even though 1t is possible to
modify a bridge or an airplane to-satisfy some new need—for example, to make the
bridge support more traffic or the airplane carry more cargo—such a modification is
never taken lightly and certainly is not attempted without first making a design
change and verifying the impact of the change extensively. Software engineers, on
the other hand, are often asked to perform modifications of that nature on software.
Software’s malleability sometimes leads peop]e to think that it can be changed easily.
In practice, it cannot. = . - e

We may be able to change code easﬂy W1th a text editor, but meetmg the need
for which the change was intended is not necessarily done so easily. Indeed, we need

-to treat software like other engineering products in this regard: A change in software
must be viewed as a change in the design rather than in the code, which is just an
instance of the product. We can exploit the malleability property, but weneedtodoit
with discipline.

Another characteristic of software-is that its creation is human intensive: It
requires mostly engineering rather than manufacturing. In most other engineering dis-
ciplines, the manufacturing process determines the final cost of the product. Also, the
process has to be managed closely to ensure that defects are not introduced into the

15
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product. The same considerations apply to computer hardware products. For software,
on the other hand, “manufacturing” is a trivial process of duplication. The software pro-
duction process deals with design and implementation, rather than manufacturing. This
process has to meet certain criteria to ensure the production of high-quality software.
Any product is expected to fulfill some need and meet some acceptance stan-
dards that dictate the qualities it must have. A bridge performs the function of making
it easier to travel from one point to another; one of the qualities it is expected to have
is that it will not collapse when the first strong wind blows or when a convoy of trucks

" travels across it. In traditional engineering disciplines, the engineer has tools for

describing the qualities of the product distinctly from the design of the product. In soft-
ware engineering, the distinction is not so clear: The qualities of the software product
are often intermixed in specifications with the qualities of the design.
- In this chapter, we examine the qualities that are relevant in software products
“and software production processes. These qualities will become our goals in the practice
of software engineering. In the next chapter, we will present software engineering
principles that can be applied to achieve those goals. The p'resence of any quality will
also have to be verified and measured. We introduce this tpprc in Section 2.4, and we
study itin Chapter 6.

CLASSIFICATION OF SOFTWARE QUALITIES

There are many desirable software qualities. Some apply both to the product and to
the process used to produce the product. The user wapts the software product to be
reliable, efficient, and easy to use. The producer of the sq'ftware wants it to be verifiable,
maintainable, portable, and extensible. The manager of'the software project wants the
process of software development to be productive, predictable and easy to control.

~In this section, we consider two different classifications of software-related
qualities: internal versus external and product versus p_rocess.

External versus Internal Qualities

We can divide software qualities into external and mferna[ qualities. External qualities
are visible to the users of the system; internal qualities concern the developers of the sys-
tem. In general, users of software care only about external qualities, but it is the internal

"qualities—which deal largely with the structure of the software—that help developers
achieve the external qualities. For example, the internal quality of verifiability is neces-
sary for achieving the external quality of reliability. In many cases, however, the qualities
are related closely, and the distinction between internal and external is not sharp.

Product and Process Qualities -

We use a process to produce. the software product We can attribute some qualities to

the process, although process quahtres often are closely related to product qualities.

For example, if the process requires careful planning of test data before any design and
development of the system starts, product reliability will increase. When we discuss
qualities, we have to distinguish between process and product qualities.
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- The ‘word product usually refers to what is delivered to the customer. Even
though this is an acceptable definition from the customer’s perspective, it is not ade-
quate for the developer who produces a number of intermediate “products” in the
course of the software process. The customer-visible product consists perhaps of the
executable code and the user manual, but the developers produce a number of other
artifacts, such as the requirements and design documents, test data, etc. We refer to
these intermediate products as work products or artifacts to distinguish them from the
end product delivered to the customer. Work products are often subject to the same
quality requirements as the end product. Given the existence of many work products, it
is possible to deliver different subsets of them to different customers.

For example, a computer manufacturer might sell to a process control company:
the object code to be installed in the specialized hardware for an embedded applica-

tion. It might sell the object code and the user’s manual to software dealers. It might
even sell the design and the source code to software vendors who modify them to build
other products. In this case, the developers of the original system see one product, the

salespersons in the same company see a set of related products, and the end user and

the software vendor see still other, different products.
Configuration management is the part of the software productlon process that is
concerned with maintaining and controlling the relationship between all the refated work

- products of the various versions of a product. Configuration management tools allow the
_maintenance of families of products and their components. They help in controlling and
managing changes to work products. We discuss configuration management in Chapter 7.

REPRESENTATIVE QUALITIES

In this section, we present the most important qualities of software products and
processes. Where appropriate, we analyze a quality with respect to the classxﬁcations
discussed in the previous section.

Correct;-.ess; Reliability, and Robustness

- The terms “correctness,” “reliability,” and “robustness” are related and collectively .
characterize a quality of software which implies that the application performs its func-

tions as expected. In this section, we define these three terms and discuss their rela-

tionships to one another.

Correctness

A program is written to provide functions specified in its functional requirements spec-- -

ifications. Often, there are other requirements—such as performance and scalablity—

. that do not pertain to the functions of the system. We call these kinds of requirements

nonfunctional requirements. A program is functionally correct if it behaves according
to its stated functional specifications. It is common simply to use the term “correct”
rather than “functionally correct”; similarly, in this context, the term “specifications”
implies “functional requirements specifications.” We shall follow this convention when

- the context is clear.

-8y
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The definition of correctness assumes that specifications for the system are
available and that it is possible to determine unambiguously whether a program
meets the specifications. Such specifications rarely exist. for most current software

-systems, If a specification does exist, it is usually written in an informal style using

natural language. Therefore, it is likely to contain many ambiguities. Regardless of
these difficulties with current specifications, however, the definition of correctness is
useful because it captures a desirable goal for software systems.

~ Correctness is a mathematical property that establishes the equivalence
between the software and its specification. Obviously, we can be more systematic and
precise in assessing correctness, depending on how rigorous we are in specifying
functional requirements. As we shall see in Chapter 6, we may assess the correctness
of a program through a variety of methods, some based on an experimental approach
(e.g., testing), others based on an analytic approach (e.g., inspections or formal verifi-
cation of correctness). Correctness can be enhanced by using appropriate tools, such
as -high-level languages—particularly those supporting extensive static analysis.
Likewise, correctness. can.be -improved by using standard proven algorithms or
libraries of standard modules, rather than inventing new ones. Finally, correctness
can be enhanced by using proven methodologies and processes.

Reliability

Informally, software is reliable if the user can depend on it.' The specialized litera-
ture on software reliability defines reliability in terms of statistical behavior—the
probability that the software will operate as expected over a specified time interval;
we discuss this approach in Section 6.7.2. For the purpose of the current chapter,

_however the informal definition is sufficient.

Correctness is an absolute quality: any deviation from its requirements makes a

~ system incorrect, regardless of how minor or serious the consequence of the deviation

is. The notion of reliability is, on the other hand, relative: If the consequence of a soft-

‘ware error is not serious, the incorrect software may still be reliable.

Engineering products are expected to be reliable. Unreliable products, in general,
disappear quickly from the marketplace. Unfortunately, software products have not
achieved this enviable status yet. Software products are commonly released along with

“a list of “Known Bugs.” Users of software take it for granted that “Release 1” of a

product is “buggy”Thls is one of the most striking symptoms of the immaturity of the
software engineering field as an engineering discipline.?

1In classic engineering disciplines, a product is not released if it has “bugs.” You
do not expect to take delivery of an automobile along with a list of shortcomings or a

_bridge with a warning not to use the railing. Design errors are extremely rare and

worthy of news headlines. A collapsed bndge may even cause the designers to be
prosecuted in ¢ourt.

! “De.pendablé" is a term frequently used as a synonym for “reliable.”
2 Dijkstra [1989) claims that even the sloppy term “bug.” which is often used by software engmeers isa symptom of
unprofessionalism. :
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By contrast, software design errors are generally treated as unavoidable. Far
from being surprised when we find software errors, we expect them. Whereas with
all other products the customer receives a guarantee of reliability, with software we
get a disclaimer that the manufacturer is not responsible for any damages due to
product errors. Software engineering can truly be called an engineering discipline
only when we can achieve software rellablhty comparable to-the re11ab111ty of other
products.

Figure 2.1 illustrates the relatlonshlp between reliability and correctness, under
the assumption that the functional requirements specification indeed captures all the
desirable properties of the application and that no undesirable properties are erro-
neously specified in it. The figure shows that the set of all reliable programs includes

the set of correct programs, but not vice versa: Unfortunately, things are different in *
practice. In fact, the specification is a model of what the user wants, but the model

may or may not be an accurate statement of the user’s actual requirements. All the
software can do is meet the specified requlrements of the model; it cannot assure the
accuracy of the model.

Figure 2.1 represents an idealized situation wherein the requirements are them- -

selves assumed to be correct; that is, they are a faithful representation of what the
implementation must ensure in order to satisfy the needs of the expected users. As we
shall discuss thoroughly in Chapter 7, there are often insurmountable obstacles to
achieving this goal. The upshot is that we sometimes have correct applications

designed for “incorrect” requirements, so that correctness of the software may not be

sufficient to guarantee the user that the software behaves “as expected.” This situation
is discussed in the next subsection. .

Reliability

FIGURE 2.1

Relationship between correctness
and reliability in the ideal case.

Robustness

A program is robust if it behaves “reasonably,” even in circumstances that were not
anticipated in the requirements specification—for example, when it encounters incor-
rect input data or some hardware malfunction (say, a disk crash). A program that
assumes perfect input and generates an unrecoverable run-time error as soon as the
user inadvertently types-an incorrect command is not robust. It might be correct,
though, if the requirements specification does not state what the program should do in
the face of incorrect input. Obviously, robustness is a difficult-to-define quality; after
all, if we could state precisely what we should do to make an application robust, we
would be able to specify its “reasonable” behavior completely. Thus, robustness would
become equivalent to correctness (or reliability, in the sense of Figure 2.1).

-
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Again, an analogy with bridges is instructive. Two bridges connecting two sides
of the same river are both “correct” if they each satisfy the stated requirements. If,
however, during an unexpected, unprecedented earthquake, one collapses and the
other one does not, we can call the latter more robust than the former. Notice that the
lesson learned from the collapse of the bridge will probably lead to more complete
requirements for future bridges, establishing resistance to earthquakes as a correct-
ness requirement. In other words, as the phenomenon under study becomes better
known, we approach the ideal case shown in Figure 2.1, where spemﬁcaﬂons capture

the expected requirements exactly.

‘The amount of code devoted to robustness depends on the appllcatlon area.
For example, a system written for novice computer users must be more prepared to
deal with ill-formatted input than an embedded system that receives its input from a
sensor. This, of course, does not imply that embedded systems do not need to be
robust. On the cofitrary, embedded systems often control critical devices and require
extra robustness. :

In conclusion, we can see that robustness and correctness are strongly related,

~ without a sharp dividing line between them. If we put a requirement in the specifica-

tion, its accomplishment becomes an issue of correctness; if we leave the requirement
out of the specification, it may become an issue of robustness. The border line between
the two qualities is the specification of the system. Finally, reliability comes in because
not all incorrect behaviors signify equally serious problems; that is, some incorrect
behaviors may be tolerable.

We may also use the terms “correctness,” “robustness,” and “reliability” in rela-

‘tion to the software production process. A process is robust, for example, if it can

accommodate unanticipated changes in the environment, such as a new release of the

operating system or the sudden transfer of half the employees to another location. A -

process is reliable if it consistently leads to the production of high-quality products. In
many engineering disciplines, consxderable research is devoted to the discovery of

..reliable processes.

Performance

Any eng'ineering product is expected to perform at a certain level. Unlike other disci-

plines, in software engineering we often equate performance with efficiency, but they

are not the same. Efficiency is an internal quality and refers to how economically the
software utilizes the resources of the computer. Performance, on the other hand, is an
external quality based on'user requirements. For example, a telephone switch may be
required to be able to process 10,000 calls per hour. Efficiency affects, and often deter-
mines, the performance of a system.

Performance is important because it affects the usability of the system. If a soft-

ware system is t0o slow, it reduces the productivity of the users, possibly to the point of )

not meeting their needs. If a software system uses too much disk space, it may be too
expensive to run. If a software system uses too much memory, it may'affect the other
applications that are run on the same system, or it may run slowly while the operating
system tries to balance the memory usage of the different applications.

Underlying all of these statements—and also what makes the determination of
efficiency difficult—are the changing limits of efficiency as technology changes. Our
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view of what is “too expensive” is constantly changing as advances in technology
extend the limits. The computers of today cost orders of magntude less than comput-
ers of a few years ago, yet they provide orders of magnitude more power.

Performance is also important because it affects the scalability of a software sys-
tem. An algorithm that is quadratic may work on small inputs, but not work at all on
larger inputs. For example, a compiler that uses a register allocation algorithm whose
running time is the square of the number of program variables will run more and more
slowly as the length of the program being compiled increases.

There are several ways to evaluate the performance of a system. One method
is to analyze the complexity of algorithms used in the software. An extensive theory
exists for characterizing the average or worst case behavior of algorithms, in terms
of significant resource requirements such as time and space, or—less traditionally—
in terms of the number of message exchanges, in the case of distributed systems.

Analyzing the complexity of algorithms provides only average or worst case
information, rather than specific information, about a particular implementation. For
more specific information, we can use techniques of performance evaluation. The
three basic approaches to evaluating the performance of a system are measurement,
analysis, and simulation. We can measure the actual performance of a system by
means of hardware and software monitors that collect data while the system is run-
ning and that thereby allow us to discover bottlenecks in the system. In this case, it is
crucial to select input data that lead to representative executions of the system. The
second approach is to build a model of the product and analyze it. The third
approach is to build a model that simulates the product. Analytic models—often
based on queuing theory—are usually easier to build, but are less accurate, while
simulation models are more costly to build, but are more accurate. We can some-
times combine the two techniques: At the start of a large project, an analytic model
can provide a general understanding of the performance-critical areas of the prod-
uct, pointing out areas where more thorough study is required; then we can build
simulation models of these particular areas.

In many software development projects, performance is addressed only after the
initial version of the product is implemented. It is very difficult—sometimes even
impossible—to achieve significant improvements in performance without redesigning
the software. Even a simple model, however, is useful for predicting a system’s perfor-
mance and guiding design choices so as to minimize the need for redesign.

In some complex projects,in which the feasibility of the performance requirements
is not clear, much effort is devoted to building performance models. Such projects start
with a performance model and use it.initially to answer feasibility questions and later in
making design decisions. These models can help resolve issues such as whether a function
should be provided by software or a special-purpose hardware device.

The preceding remarks apply in the large—that is, when the overall structure or
architecture of the software is conceived. They often do not apply in the small, where
individual programs may first be designed with an emphasis on correctness and then
be locally modified to improve efficiency. For example, inner loops are obvious candi-
dates for efficiency-improving modifications.

The notion of performance also applies to a development process, in which case
we call it productivity. Productivity is important enough to be treated as an indepen-
dent quality and is discussed in Section 2.2.10.
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Usability

A software system is usable—or user friendly—if its human users find it easy to use.
This definition reflects the subjective nature of usability. Properties that make an
application user friendly to novices are different from those desired by expert users.
For example, a novice user may appreciate verbose messages, while an experienced
user will ignore them. Similarly, a nonprogrammer may appreciate the use of menus,
while a programmer may be more comfortable with typing a textual command.

The user interface is an important component of user-friendliness. A software sys-
tem that presents the novice user with a window interface and a mouse is friendlier
than one that requires the user to enter a set of one-letter commands. On the other
hand, an experienced user might prefer a set of commands that minimize the number
of keystrokes, rather than a fancy window interface through which he has to navigate
to get to the command that he knew all along he wanted to execute.

There is more to user-friendliness, however, than the user interface. For example,
an embedded software system does not have a human user interface. Instead, it
interacts with hardware and perhaps other software systems. In this case, user-

friendliness is reflected in the ease with which the system can be configured and .

adapted to the hardware environment.

In general, the user-friendliness of a system depends on the consistency and
predictability of its user and operator interfaces. Clearly, however, the other qualities
mentioned—such as correctness and performance—also affect user-friendliness. A
software system that produces wrong answers is not friendly, regardless of how fancy

its user interface is. Also, a software system that produces answers more slowly than .
the user requires is not friendly, even if the answers are displayed in beautiful color.

User-friendliness is also discussed under the subject of human factors. Human
factors and usability engineering play a major role in many engineering disciplines. For
example, automobile manufacturers devote a significant effort to deciding the position

,of the various control knobs on. the dashboard. Television manufacturers and

microwave oven makers also try to make their products easy to use. User-interface

decisions in these classical engineering fields are made after extensive study of user

needs and attitudes by specialists in fields such as industrial design or psychology.
Ease of use in many engineering disciplines is achieved through standardiza-

- tion of the human interface. Once a user knows how to use one television set, he or
- she can operate almost any other television set.? There is a clear trend in software

applications to more uniform and standard user interfaces, as seen, for example, in
Web browsers.

Exercise

2.1 Discuss the impact of the user interface on reliability.

* Although the standard interface for VCR programming seems to-be uniformly. confusing to all!
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Verifiability

A software system is verifiable if its properties can be verified easily. For example, it
is important to be able to verify the correctness or the performance of a software
system. As we will see in Chapter 6, verification can be performed by formal and
informal analysis methods or through testing. A common technique for improving
verifiability is the use of “software monitors,”—that is, code inserted into the soft-
ware to monitor various qualities such as performance or correctness. Modular
design, disciplined coding practices, and the use of an appropriate programming lan-
guage all contribute to verifiability. '
Verifiability is usually an internal quality, although it sometimes becomes an
external quality also. For example, in many security-critical applications, the cus-

tomer requires the verifiability of certain properties. The highest level of the secu--

rity standard for a trusted. computer system requlres the verifiability of the
operating system kernel

Maintainability

The term software maintenance is commonly used to refer to the modifications that are
made to a software system after its initial release. Maintenance used to be viewed as
merely “bug fixing,” and it was distressing to discover that so much effort was being
spent on fixing defects. Studies have shown, however, that the majority of time spent
on maintenance is in fact spent on enhancing the product with features that were not
in the original spec1flcat10ns or that were stated incorrectly there.

“Maintenance” is indeed not the proper word to use with software. Flrst asitis
used today, the term covers a wide range of activities, all having to do with modifying

- an existing piece of software in order to make an improvement. A term that pethaps

captures the essence of this process better is software evolution. Second, in Other
engineering products, such as computer hardware, automobiles, or washing
machines, maintenance refers to the upkeep of the product in response to the grad-
ual deterioration of parts due to extended use of the product. For example, transmis-
sions are oiled and air filters are dusted and periodically changed. To use the word
“maintenance” with software gives the wrong connotation, because software does
not wear out. Unfortunately, the term is used so widely that we are practically
obliged to continue using it here.

There is evidence that maintenance costs exceed 60 percent of the total costs of
software. To analyze the factors that affect such costs, it is customary to divide software
maintenance into three categories: corrective, adaptive, and perfective.

Corrective maintenance has to do with the removal of residual errors that are
present in the product when it is delivered, as well as errors introduced into the soft-
ware during its maintenance. Corrective mamtenance accounts for about 20 percent of

. maintenance costs.

Adaptive and perfective maintenance are the real sources of change in software;
they motivate the introduction of evolvability (defined shortly) as a fundamental soft-
ware quality and anticipation of change (defined in Chapter 3) as a general principle
to guide the software engineer. Adaptive maintenance accounts for nearly another 20
percent of maintenance costs, and perfective maintenance absorbs over 50 percent.
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2.2.5.1

Adaptive maintenance involves adjusting the application to changes in the envi-
ronment (e.g., a new release of the hardware or the operating system or a new data-
base system). In other words, in adaptive maintenance, the need for software changes
cannot be attributed to a feature in the software itself, such as the presence of residual

‘errors or the inability to provide some functionality required by the user. Rather, the

software must change because the environment in which it is embedded changes.

Finally, perfective maintenance involves changing the software to improve
some of its qualities. Here, changes are due to the need to modify the functions
offered by the application, add new functions, improve the performance of the
application, make it easier to use, etc. The requests to perform perfective mainte-
nance may come directly from the software engineer, in order to improve the status
of the product on the market, or they may come from the customer, to meet some
new requlrements

The term legacy software refers to software that already exists in an organization
and usually embodies much of the organization’s processes and knowledge. Therefore,
such software holds considerable value for the organization, represents past investments,
and may not be replaced easily. On the other hand, because of its age, it is usually written
in older languages and uses older software engineering technology. Legacy software is,
therefore, difficult to modify and maintain. For example, an old personnel system may

“embody an organization’s operational procedures and personnel policies. Such legacy

systems represent a challenge to software evolution. Reverse engineering and.
reengineering techniques and technologies are aimed at uncovering the structure of
legacy software and restructuring or in some way improving it. '

We shall view maintainability as two separate qualities: repairability and
evolvability. Software is repairable if it allows the fixing of defects; it is evolvable if
it allows changes that enable it to satisfy new requirements.

The distinction between repairability and evolvability is not always clear. For
example if the requirements specifications are vague, it may not be clear whether we -
are fixing a defect or satisfying a new requirement. We will discuss this point further in
Chapter 7. In general, however, the distinction between the two qualities is useful.

Repairability

A software system is repairable if its defects can be corrected with a reasonable
amount of work. In many engineering products, repairability is a major design goal.
For example, automobile engines are built with the parts that are most likely to fail
as the most accessible. In computer hardware engineering, there is a subspecialty

~ called repairability, availability, and serviceability (RAS).

In other engineering fields, as the cost of a product decreases and the product

assumes the status of a commodity, the need for repairability decreases: It is

~ cheaper to replace the whole thing, or at least major parts of it, than to repair it. For

example, in early television sets, you could replace a smgle vacuum tube. Today, a
whole board has to be replaced.

~In fact,a common technique for achieving repairability in such products is to
use standard parts that can be replaced easily. For instance, personal computers -

.




Section 2.2 Representative Qualities 25

were initially built from customized parts and proprietary interconnections.
Today, personal computers are built out of standard parts connected through stan-
dard bus systems. This standardization has led to a proliferation of companies that
specialize in producmg certain parts. Through specialization, these companies.can
concentrate on improving reliability of the parts and reducing cost. As a resuit,
the initial production of a computer is faster and cheaper, and a defect can be
repaired by replacing a failing part. But software parts do not deteriorate. Thus,

-while the use of standard parts can reduce the time and cost of software

production, the concept of replaceable parts does not seem to apply to software
repairability. Such parts help in reducing design time, because the designer con--
centrates on combining well-known components, which he or she does not have to,

- design.

Repairability is also affected by the number of parts in a product. For example,
it is harder to repair a defect in a monolithic automobile body than it would be if
the body were made of several regularly shaped parts. In the latter case; we could
replace a single part more easily than the whole body. Of course, if the body con-
sisted of too many parts, it would require too many connections among the parts,
leading to the probability that the connections themselves might need repair.

An analogous situation applies to software: a software product that consists of
well-designed modules is easier to analyze and repair than a monolithic one. Merely
increasing the number of modules, however, does not make a more repalrable prod-
uct: We have to choose the right structure for the modules, with the right interfaces
that avoid complex 1nterconnect10ns and interactions among modules. The right
modularization’ promotes repairability by enabling the engineer to locate errors

 more easﬂy In Chapter 4, we examine several modularization techniques, including

2.2.5.2

information hiding and abstract data types, in detail.
Repairability can be improved through the use of proper tools. For example,

using a high-level language rather than an assembly language leads to . better

repairability. Tools such as debuggers can help in isolating and repairing errors.
A product’s repairability affects its reliability. On the other hand, the need for .
repairability decreases as rehablhty increases.

E volvabilify

Like other engineering products, software products are modified over time to provide’
new functions or to change existing functions. Indeed, the fact that software is so mal-
leable makes modifications extremely easy to apply to an implementation. There is,
however, a major difference between software modification and the modification of
other engineering products. In the case of other engineering products, modifications
start at the design level and then proceed to the implementation of the product. For
example, if one decides to add a'second story to a house, one must first do a feasibility
study to check whether the addition can be done safely. Then one is required to do a
design, based on the original design of the house. Then the design must be approved,

after making sure that it does not violate the existing regulations. Finally, the construc-

tion of the new part may be commissioned.
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Such an organized approach is often missing in software modifications. Even for
radical changes in applications, people often skip the feasibility and design analysis
phases and proceed immediately to the modification of the implementation. Still

. worse, after the change is accomplished, the modification is not even documented a

posteriori, that is, the specifications are not updated to reflect the change. This makes

- future changes more and more difficult to apply.

On the other hand, successful software products are quite long lived. Their first

release is the first of many releases, each successive release being a step in the evolu-.

tion of the system. If the software is designed with evolution in mind, and if each mod-
ification is designed and applied carefully, then the software can evolve gracefully.
“As the cost of software production and the complexity of applications grow,
the evolvability of software assumes more and more importance. One reason for
this is the need to leverage the investment made in the software as the hardware
technology advances. Some of the earliest large systems developed in the 1960s are
today taking advantage of new hardware, device, and network technologies. For
example, the American Airlines SABRE reservation system, initially developed in
the middle 1960s, has been evolving for decades to include increasingly rich func-
tionality. This is an dmazmg feat, considering the increasing performance demands

- on the system.

Most software systems start out bemg evolvable but after years of evolution they
reach a state where any major modification runs the risk of “breaking” existing features.
Evolvability is achieved by proper modularization, but unanticipated changes-tend to
reduce the modularity of the original system—even more if modifications are applied
without carefully studying the original design and without describing precisely any
changes in both the design and the requirements specification.

~ Indeed, studies of large software systems show that evolvability decreases with
each release of a software product. Each release complicates the structure of the
~ software, so that future modifications become more difficult to apply. To overcome
this problem, the initial design of the product, as well as any succeeding changes,
must be done with evolvability in mind. Evolvability is an important software qual-
ity because of its economic impact. Several of the principles we present in the next
chapter helpin achieving evolvability. In Chapter 4, we present special concepts,
such as program and product families and software architecture, which are intended
to foster evolvability. The product-family (also called product-line) approach in
software architecture is a1med at flndmg a systematlc way to achieve evolvability in
software products o

Rehsabilit’y ,
Reusability is akin to evolvability. In product evolution, we modify a product to build
a new version of that same product; in product reuse, we use the product—perhaps

‘with minor changes—to build another product. Reusability may be applied at differ-
ent levels of granularity—from whole applications to individual routines—but it

- appears to. be more applicable to software components than to whole products.

A good example of a reusable product is the UNIX shell, which is a command




Section 2.2 Representative Qualities 27

language interpreter; that is, it accepts user commands and executes them. But it is

- designed to he used both interactively and in “batch.” The ability to start a new shell

with a file containing a list of shell commands allows us to write programs—scripts—
in the shell command language. We can view the program as a new product that uses
the shell as a component. By encouraging standard interfaces, the UNIX environment
in fact supports the reuse of any of its commands, as well as the shell, in building pow-

. erful utilities.

Numeric libraries were the first examples of reusable components. Several
large FORTRAN libraries, now rewritten in C, C++, and other languages, have
existed for many years. Users buy these libraries and use them to build their own
products, without having to reinvent or recode well-known algorithms. Several com-
panies are devoted to producing just such libraries. Nowadays, reusable libraries :
exist for different areas, such as graphical user interfaces, simulation, etc. One of the
goals of reusability researchers is to increase the granularity of components that may ,

" be reused. One of the goals of object- orlented programming is to achieve both
- reusability and evolvability.

‘So far, we have discussed primarily the reusab111ty of components, but the con-"
cept has broader applicability: It may occur at different levels and may affect both
product and process. In general, any-of the artifacts of the software process, such as’
the requirements specification, may be reused. Thus, the more modularly designed
these artifacts are, the more likely it is that they, or parts of them, may be reused in
the future. For example, a reusable requirements- specification. document allows
parts of the results of problem analysis and understanding to be reused in several -

~ applications.

Reusability apphes to the software process as well. Indeed, the various software -
methodologies can be viewed as attempts to reuse the same process for building differ-
ent products. Life cycle models are also attempts at reusmg higher level processes We .. "
discuss these in Chapter 7. ;

Reusability of standard parts characterizes the maturity of an industrial field.:
We see high degrees of reuse in such mature areas as the automobile industry and
consumer electronics. For example, a car is constructed by assembling together -
many components that are highly standardized and used across many models pro--
duced by the same industry. Certainly, the designs are routinely reused. from model"

to model. Finally, the manufacturing process is often reused. The level of reuse is - -

increasing in software but 1t stlll is short of that of other estabhshed engmeermg
disciplines. 2

Exercises

2.2 Discuss how 'reus'al)_"ility:may affect the reliability of products.

23  Reuse of 4 component may entail some adaptation of the component. Discuss how inheri- .

tance may be used in an ob]ect orlented language such as Java or C++ to perform such

adaptation.

o s o
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Portability _

Software is portable if it can run in different environments. The term “environment”
may refer to a hardware platform or a software environment, such as a particular oper-
.ating system. Portability is economically important becatise it’ helps amortize the
‘investment in the software system across different environments and different genera-
tions of the same environment. Many applications are independent of the actual hard-
ware platform, because the operating system provides portability across hardware
platforms. These days, the applications’ depefidencies are on operating systems and
other software systems, such as databases and user interface systems. Portability may
be achieved by modularizing the software so that dependencies on the environment

are isolated in only a few modules that must be modified to port the software to

another environment. With the proliferation of networked systems, portability has
taken on new importance because the eéxecution environment is naturally heteroge-
neous, consisting of many different kinds of computers and operating systems. In addi-
tion, the delivery devices have become diverse. For example, Internet browsers need to
be able to run not only on workstatlons and personal computers but also on palmtops
and even mobile phones..

Some software systems are inherently machine specific. For example an operat-

~ ing system is written to control a specific computer, and a compiler produces code for a
- particular machine. Even in these cases, however, it is possible to achieve some level of
portability. UNIX and its variant, Linux, are examples of an operating system that has

been ported to many different hardware systems. Of course, the porting effort requires
months of work. Still, we can call the software portable because writing the system

from scratch for the new environment would require much more effort than porting it.

Exercises

2. 4 Discuss portablhty as a special case of reusablhty

2.5 We may apply portability to Web pages DlSCUSS what it means for a Web page to be portable.

Understandablhty

Some software systems are easier to understand than others. Of course, some tasks are
mherently more complex than others. For example, a system that does weather forecast-
ing, no matter how well it is written, ,will be harder to understand than one that prints a
mailing list. Given tasks of inherently similar difficulty, we can follow certain guidelines
to produce more understandable designs and to write more understandable programs.
For example, abstraction and modularity enhance a system'’s understandability.

The activity of software maintenance is dominated by the subactivity of program
understanding. Maintenance engineers spend most of their time trying to uncover the logic
of the application and a smaller portion of their time applying changes to the application. |

. Understandability is an internal product quality, and it helps in achieving many
of the other qualities, such as evolvability and verifiability. From an external point of
view, the user considers a system understandable if it has predictable behavior.
External understandability is a factor in a product’s usability.

————
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Interoperability

“Interoperability” refers to the ability of a system to coexist and cooperate with other
systems—for example, a word processor’s ability to incorporate a chart produced by a
graphics package, the graphics package’s ability to graph the data produced by a
spreadsheet, or the spreadsheet’s ability to process an image scanned by a scanner.

Interoperability abounds in other engineering products. For example, stereo sys-
tems from various manufacturers work together and can be connected to television
sets and video recorders. In fact, stereo systems produced decades ago accommodate
new technologies such as compact discs! In contrast, early operating systems had to be-
modified—sometimes significantly—before they could work with new devices. The
generation of plug-and-play operating systems attempts to solve this problem by auto-
matically detecting and working with new devices.

The UNIX environment, with its standard interfaces, offers a limited example of
interoperability within a single environment: UNIX encourages software engineers to
design applications so that they have a simple, standard interface, which allows the

- output of one application to be used as the input to another. The UNIX standard

interface is a primitive, character-oriented one. It falls short when one application
needs to use structured data—say, a spreadsheet or an image—produced by another
application. :

With interoperability, a vendor can produce different products and allow the user
to combine them if necessary. This makes it easier for the vendor to produce the prod-
ucts, and it gives the user more freedom in exactly what functions to pay for and to
combine. Interoperability can be achieved through standardization of interfaces. An
example of such interoperability is the Web browser application that provides plug-in
interfaces for different applications. For ‘example, a new audio player provided by one
vendor may be added to the browser provided by another vendor.

A concept related to interoperability is that of an open system—an extensible
collection of independently written applications that function as an integrated system.
An open system allows the addition of new functionality by independent organiza-
tions, after the system is delivered. This can be achieved, for example, by releasing the
system together with a specification of its “open” interfaces. Any application developer
can then take advantage of these interfaces, some of which may be used for communi-

- cation between different applications or systems. Open systems allow different appli-

cations, written by different organizations, to interoperate.

An interesting requirement of open systems is that new functionality may be
added without taking the system down. An open system is analogous to a growing
(social) organization that evolves over time, adapting to changes in the environment.
The importance of interoperability has sparked a growing interest in open systems,
producing some recent efforts at standardization in this area. For example, the
CORBA standard defines interfaces that support the development of components that
may be used in open distributed systems. We discuss CORBA in Chapter 4.

Exercise

2.6 Discuss the relationship between evolvability and open systems.
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2.2.10 Productivity

2.2.11

Productivity is a quality of the software production process, referring to its efficiency
and performance. An efficient process results in faster delivery of the product.

Individual engineers produce software at a certain rate, although there are great
variations among individuals of different ability. When individuals are part of a team,
the productivity of the team is some function of the productivity of the individuals.
Very often, the combined productivity is much less than the sum of the parts.
Management tries to organize team members and adopt processes in such manner as
to capitalize on the individual product1v1ty of the members.

Productivity offers many tradeoffs in the choice of a process. For example, a
process that requires specialization of individual team members may lead to high
productivity in producing a certain product; but not in producing a variety of prod-
ucts. Software reuse is a technique that increases the overall productivity of an orga-
nization in producing a collection of products, but the cost of developing reusable
modules can be amortized only over many products.

While software productivity is of great interest due to the increasing cost of soft-
ware, it is difficult to measure. Clearly, we need a metric for measuring productivity—
or any other quality, for that matter—if we are to have any hope of comparing
different processes in terms of their productivity. Early metrics, such as the number of

lines of code produced, have many shortcomings. In Chapter 8, we discuss metrics for -

measuring productivity and team organizations for improving productivity. As with
other engineering disciplines, we shall see that efficiency of the process is affected
strongly by automation. Modern software engineering tools and environments lead to
increases in productivity. These tools will be discussed in Chapter 9.

Exercise

2.7 Critically evaluate the number of lines of code as a product1v1ty measure. (This issue will
‘be analyzed in depth in Chapter 8.)

Timeliness

Timeliness is a process-related quality that refers to the ability to deliver a product
on time. Historically, timeliness has been lacking in software production processes,
leading to the “software crisis,” which in turn led to the need for—and birth of—
software engineering itself. Today, due to increased competitive market pressures,

software projects face even more stringent time-to-market challenges.

The following example illustrates how one company handled its delivery difficulties
in the late 1980s: The company had promised the first release of its Ada compiler for a
certain date. When the date arrived, the customers who had ordered the product
received, instead of the product, a letter stating that, since the product still contained
many defects, the manufacturer had detided that it would be better to delay delivery

* rather than deliver a product contammg defects. The product was prom1sed for three
months later.

After four months, the product arrived, along with a letter stating that many, but
not all, of the defects had been corrected. But this time, the manufacturer had decided
that it was better to let customers receive the Ada compiler, even though it contained
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several serious defects, so that the customers could start their own product develop-
ment using Ada. The value of early delivery at this new time outweighed the risk of
delivering a defective product, in the opinion of the manufacturer. So, in the end, what
was delivered was late and defective.

Timeliness by itself is not a useful quality, although bemg late may sometimes
preclude market opportunities. Delivering on time a product that is lacking in other
qualities, such as reliability or performance, is pointless. But some argue that the
early delivery of a preliminary and still unstable version of a product favors the later
acceptance of the final product. The Internet has facilitated this approach. Vendors
are-able to place early versions of products on the Internet, enabling potentlal users
to try the product and providing feedback to the vendor.

Timeliness requires careful scheduling, accurate estimation of work, and clearly
specified and verifiable milestones. All other engineering disciplines use standard
project management techniques to achieve timeliness. There are even many computer-
supported project management tools.

Standard project management techniques are difficult to apply in software
engineering because of the inherent difficulties of defining the requirements and the
abstract nature of software. These difficulties in turn lead to problems in measuring
the amount of work required for producing a given piece of software, problems in
measuring the productivity of engineers—or even having a dependable metric for
productivity—and problems in defining precise and verifiable milestones.

Another reason for the difficulty in achieving timeliness in the software process
is continuously changing user requirements, Figure 2.2 plots user requirements against
actual system capabilities and indicates why most current software developments fail.
(The units of scale are not shown and can be assumed to be nonuniform.) At time ¢,
the need for a software system is recognized, and development starts with rather
incomplete knowledge of the requirements. As a result, the initial product delivered at
time ¢, satisfies neither the initial requirements of time ¢, nor the user’s requirements
of time ¢,. Between times ¢, and t;, the product is “maintained,” in order to get closer to
the user’s needs. Eventually, it matches the original user’s requirements at-time t,. For

g
o User
'g needs
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i system
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ly L hf Iy "
. Time '
FIGURE 2.2

Software timeliness shortfall. (From Davis et al. [1988],
. ©1988 IEEE, reprinted by permission of IEEE.)
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2.2.12

the reasons we have seen in Section 2.2.5, at time ¢, the cost of maintenance is so high
that the software developer decides to do a major redesign The new release becomes

- available at time ¢, but the gap with respect to the user’s needs at that point is even

greater than before.

Outside of software engmeermg, a classic example of the difficulty in dealing
with the requirements of complex systems is offered by advanced defense systems. In
several well-publicized cases, the systems became obsolete by the time they were deliv-
ered, or they did not meet the requirements, or, in many cases, both. But after 10 years
of development, it is difficult to decide what to do with a product that does not meet a
requirement stated 10 years before. The problem is exacerbated by the fact that
requirements cannot be formulated precisely in-these cases because the need is for the
most advanced system possible at the time of delivery, not at the time the requirements
are defined.

One technique for achieving timeliness is through the incremental delivery of
the product. This technique is illustrated in the following—more successful—exam-
ple of the delivery of an Ada compiler by a different company from the one we
described before. This company delivered, very early on, a compiler that supported
a very small subset of the Ada language—basically, a subset that was equivalent to
Pascal with “packages.” The compiler did not support any of the novel features of
the language, such as tasking and exception handling. The result was the early deliv-
ery of a reliable product. As a consequence, the users started experimenting with
the new language, and the company took more time to understand the subtleties of
the new features of Ada. Over several releases, which took a period of two years, a
full Ada compiler was delivered. Incremental delivery allows the product to become
available earlier, and the use of the product helps in reﬁning the requirements
incrementally.

Obviously, incremental delivery depends on the ability to break down the set of
required system functions into subsets that can be delivered in increments. If such
subsets cannot be defined, no process can make the product available incrementally.
But a nonincremental process prevents the production of product subsets even if such
subsets can be identified. Thus, the combination of a product that can be broken down
into subsets and an incremental process can-achieve timeliness.

Incremental delivery of useless subsets, of course, is not of value. Timeliness
must be combined with other software qualities. Chapter 4 discusses many tech-
niques for achieving product subsets, and Chapter 7 dlscusses techniques for ach1ev1ng
mcremental processes.

Visibility

- A software development process is visible if all of its steps and its current status are

documented clearly. Another term used to characterize this property is transparency.
The idea is that the steps and the status of the project are avallable and eas1ly accessible

for external examination.

‘In many software projects, most engineers and even managers are unaware of

~ the exact status of the project. Some may be designing, others coding, and still others

testing, all at the same time. This, by itself, is not bad. Yet, if an engineer starts to
redesign a major part of the code just before the software is supposed to be delivered
for integration testing, the risk of serious problems and delays will be high.
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Visibility allows engineers to weigh'the impact of their actions and thus guides

‘them in making decisions. It allows the members of the team to work in the same direc-

tion, rather than, as is often the case currently, in opposing directions. The most com-
mon example of the latter situation is; as mentioned earlier, ‘when the integration

“group has been testing a version of the software assuming that the next version will

involve fixing defects, while the engineering group decides to do a major redesign to

‘add some functionality. This tension between one group trying to stabilize the software

while another group is destabilizing it is common. The process must encourage a con-
sistent view of the status and current goals among all participants. -

Vmblhty is not only an internal quality; it is also external. During the course of a
long project, many requests arise about the status of the project. Sometimes these

. requests require formal presentations on the status, and at other times the requests are

informal. Sometimes thie requests come from the organization’s management for futurg
planning, and at other times they come from the outside, perhaps from the customer. If
the software development process has low visibility, either these status reports will not
be accurate, or they will require a lot of effort to prepare each time.

“ One of the difficulties of managing large projects is dealing with the tumover of per-

'sonnel With many software projects, critical information about the software requirements

and design has the form of folklore, known only to people who have been with the project
either from the beginning or for a sufficiently long time. In such situations, recovering -
from the loss of a key engineer or adding new engineers to the project is very difficult. In
fact, adding new engineers often reduces the productivity of the whole project as the folk-
lore is being transferred slowly from the existing crew of engineers to the new engineers.

The preceding discussion points out that visibility of the process requires not
only that all of its steps be documented, but also that the current status of the interme-
diate products, such as requirements specifications and design specifications, be main-
tained accurately; that is, visibility of the product is required as well. Intuitively, a
product is visible if it is clearly structured as a collection of modules, with clearly
understandable functions and available and accurate documentation.

QUALITY REQUIREMENTS IN DIFFERENT APPLICATION AREAS

The qualities described in the previous section are generic, in the sense that they apply to
any software system. But software systems are built to automate a particular application,
and therefore, we can characterize a software system on the basis of the requirements of
the application area. In this section, we identify four major application areas of software
systems and examine their additional requirements. We also show how these areas stress
in different ways, some of the general qualities that we have d1scussed ‘

Information Systems

One of the largest application areas for computers is the storage and retrieval of data.
We call this class of systems “information-based systems” or simply “information sys-
tems,” because the primary purpose of the system is managing information. Examples

. of information systems are banking systems, library-cataloguing systems, and person-

nel systems. At the heart of such systems is a database against which we apply
transactions to create, retrieve, update, or delete items. Many such systems provide a
Web mterface to operate on the information.
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2.3.2

Information systems have gained in importance because of the increasing value
of information as a resource. The data that these systems manage is often the most
valuable resource of an enterprise. Such data concern both the processes and.the
resources internal to the enterprise—plants, goods, people, etc.—as well as information

-on external sources—competitors, suppliers, clients, etc.

Information systems are data.oriented and can be characterized on the basis of
the way they treat data. Following are some of the qualities that characterize informa-
tion systems: :

. Data integrity. Under what circumstances will the data be corrupted when the
system malfunctions? :

s Security. To what extent does the system protect the data from unauthorized

_ access? '

¢ Data availability. Under what conditions wil] the data become unavailable and
for how long? :

e Transaction performance. Because the goal of information systems is to support
transactions against information, the performance of such systems can be uniformly
characterized in terms of the number of transactions carried out per unit of time.

Another important characteristic of information systems is the need for providing
interaction with end users who have little or no technical background (e.g., sales clerks,
administrative staff, and managers). Thus, human-computer interaction requirements,
such as user-friendliness, are of prime relevance in this case. Such interaction should use

~menu-based graphic interfaces. Menus should be designed uniformly, and navigation

among the different functions should be easy. Users should never get the feeling of
being lost; they should always be in control of the interaction with the application, and

. the application should guard against possible misuse by the users.

- Modern information systems go further in this direction. Not only do they sup-
port easy access by the user, but also, they encourage ‘active user involvement in the
creation of simple applications. In addition to providing a fixed set of functionality, -
many modern information systems offer simple customization facilities. With these
customizations, the user may, for example, define specialized new reports or formats
for reports. This feature is called end-user computing.

Real-Time Systems

Quite apart from information systems is another large class of software systems called
real-time systems. The primary characteristic of these systems is that they must respond to
events within a predefined and strict period of time. For example, in a factory-monitoring
system, the software needs to respond to a sudden increase in temperature by immedi-
ately setting certain switches or sounding an alarm. Similarly, flight software that controls
an airplane needs to monitor the environmental conditions and current position of the
airplane and control the flight path accordingly.

While the real-time classification is usually used to refer to factory automation,
surveillance systems, etc., real-time requirements can be found in many more tradi-

" tional settings. An unusual, but interesting, example is the mouse-handling software in

a computer system that needs to respond to mouse click interrupts within a certain
period. For example, in many systems, a smgle mouse click is a command to select an
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object, while a double click, if the two clicks are sufficiently close in time, is a (differ-
ent) command to “open” the object. This kind of interface establishes a real-time
requirement on the software, because the software must process the first click quickly
enough so that it can accept the second interrupt and determme whether the user initi-
ated a double click or two successive single clicks. :

There is a common misconception regarding real-time systems which says that
such a system requires “fast response times.” This is neither true nor sufficiently pre-
cise. “Fast” is a qualitative property of an application; what is required for a real-time
system is a quantitatively specifiable and verifiable notion of response time. Also, in
some real-time systems, a response that comes too early may be as incorrect as a

~ response that comes too late. For instance, in the previous mouse-click example, if the
first click is processed “too fast,” the double click may not be detected correctly.

Real-time systems have been studied extensively in their own right. We can call

: , information systems data oriented and real-time systems control oriented. At the heart
of real-time systems is a scheduler that orders or schedules the actions of the system.
There are two basic types of scheduling algorithms used: priority and deadline. In priority
scheduling, each action has an associated priority. Thé action with the highest priority is
the one executed next. In deadline scheduling, each action has a specified time by which
it must be started or completed. It is the responsibility of the scheduler to ensure that
actions are scheduled in such a way as to satisfy the scheduling requirements.

Another classification of real-time systems is event based versus time triggered. In
event-based systems, each component of the system responds when it detects an event.
In time-triggered systems, all components execute their actions at specified times. Time
synchronization is expected to ensure that all components observe the same time.

_In addition to the generic software qualities, real-time systems are characterized
by how well they satisfy the response time requirements. Whereas in other systems
i response time is a matter of performance, in real-time systems response time is one of
' the correctness criteria. Furthermore, real-time systems are usually used for critical:
operations (such as monitoring patients and in defense systems and process control)
and have very strict reliability requirements.’

In the case of highly critical systems, the term safety is often used to denote the
absence of undesirable behaviors that can cause system hazards. Safety deals with
requirements other than the primary mission of a system and requires that the system
execute without causing unacceptable risk. Unlike functional requirements, which
describe the intended correct behavior in terms of input-output relationships, safety
requirements describe what should never happen while the system is executing. In
some sense, they are negative requirements: They specify the states the system must
never enter. For example, an X-Ray medical system must observe the safety property .
that the radiation it applies is always below a certain limit,

Finally, other software qualities also may be important in the case of real-time
systems. We have shown that human-computer aspects are relevant in the case of infor-
mation systems. They may be relevant in real-time systems as well. For example, the
external interface with a control system monitoring a critical industrial plant must be
designed in such a way that the operator perfectly understands the state of the system
under control, so that he or she can always operate the plant safely.

4The term “mission critical” is used to characterize such systems. |
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Distributed Systems

Advances in processor and network technology have made it possible to build so-
called distributed systems, which consist of independent or semi-independent comput-
ers connected by a communication network. The high-bandwidth, low-error-rate
network makes it possible to write distributed software applications whose compo-

nents run on different computers.

While the generic software qualities apply to distributed software there are also
some new requirements. For example, the software development environment must
support the development of software on multiple computers, on which users are com-
piling, linking, and testing code.

The ability of components to be loaded and executed on different machines has

~driven the development of new languages such as Java and C#. For example, Java

defines an intermediate language (the Java bytecode) that can be efficiently inter-
preted on any computer of the distributed system. This allows components to be
loaded from the network dynamically as needed. ,

Among the characteristics of distributed systems are (1) the amount of distribu-
tion supported—for example, are the data distributed, or is the processing, or both?
(2) whether the system can tolerate the partitioning of the network—for instance,
when the network link makes it impossible for two subsets of the computers to com-
municate; and (3) whether the system tolerates the failure of individual computers.

One interesting aspect of distributed systems is that they offer new opportunities
for achieving some of the qualities discussed. For example, by replicating the same data
on more than one computer, we can increase a system’s reliability, and by distributing
the data on more than one computer, we can increase both the performance and the
reliability of the system. Of course, replicating or distributing data is not so simple and
requires significant design work. There are many established techniques for dealing
with these issues. We will see some of them in Chapter 4.

Another interesting issue is whether we can take advantage of the technology
that supports code mobility—that is, the ability of the code to migrate-over the network
at run time. Mobile code has advantages over the traditional client-server model when

- the network connections are not permanently enabled to support interactjons between

clients and servers. There may also be performance advantages if we can move the
code to the node that stores the data on which the code needs to operate. Java applets
are a simple example of mobile code.

Embedded Systems

Embedded systems are systems in which the software is one of many components and
often has no interface to the end user; rather, the software has interfaces with the other
system components and probably controls them. Embedded software is now used in
airplanes, robots, microwave ovens, dlshwashers refrigerators, automobiles, cellular
phones, and other apphances

What distinguishes embedded software from, other kinds of software is that the

interface of embedded software is with other devices rather than humans; for example,
* the software sends speed control data to the motors of a robot instead of displaying

A
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such data as a curve on the screen. This removes some requirements from the interface

. design and allows trade-offs to be made in deciding what the system interface will be

like. For example, it is often possible to modify the software interface—thereby com-
plicating the software—in order to simplify the design of a hardware device.

.Consider a coin-operated vending machine that accepts different-sized coins.
We can either build a hardware device to determine the monetary value of each
inserted coin—perhaps ¢ven having a different slot for each acceptable kind of

- coin—or let the hardware decide the weight and dimension of the coin and report

them to the software. In the latter case, the software is responsible for determining
the value of each coin and whether enough money has been-inserted. Putting the
decision-making capability in software allows a more flexible system: Changing the
machine to accept newly released coins, to raise the price of items dispensed, or to
work in a different country-will not require the design of a new hardware device.
With proper software design, such changes will requlre just the resetting of some
internal switches and tables.

Although in our discussion so far, we have assumed that the four preceding appli-
cation areas are distinct, in practice many systems exhibit characteristics that are com-

“mon to several of these areas. For instance, it is easy to imagine an information system

that may also have some real-time requirements. Such a system may, of course, be dis-
tributed. Furthermore, the system may be embedded in a larger monitoring system. As
another example, embedded systems are often real time in nature.

-A hospital patient-monitoring system is a good example of a system that may
exhibit multiple characteristics. It must maintain a database of patient histories. It can
be distributed to allow entry and retrieval of data from nurses’ stations or various lab-
oratories. It may have some real-time characteristics—for example, to monitor devices
in the emergency room. Finally, it may have some requirements of embedded systems,
because it may interact with laboratory devices in order to update patlent records
automatically on the basis of test results.

MEASUREMENT OF QUALITY

Once we have decided on the qualities that are the goals of software engineering,
we need principles and techniques to help us achieve them. We also need to be able
to measure a given quality. In software organizations, this act1v1ty is called quality
assurance. :

- If we identify a quality as important, we must be ready to measure it to determine
how well we are achieving it. This, in turn, requires that we define each quality pre-
cisely, so that it is clear what we should be measuring. Without measurements, any

~claims of improvement are without basjs. But without defining a quality precisely,.

there is no hope that we can measure it precisely—let alone quantitatively.

‘The established engineering disciplines have standard techniques for measur-
ing quality. For example, the reliability of an amplifier can be measured—among
other ways—by determining the range within which it operates. The reliability of a
bridge can be measured by—among other ways—the amount of pressure it can
withstand. Indeed, these tolerance levels are released with the product as part of the
product specification.
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2.5

Although some software qualities, such as performance, are measured rela-
tively easily, most qualities unfortunately have no universally accepted metrics. For
example, whether a given system will evolve more easily than another is usually
determined subjectively. Nevertheless, metrics are needed, and indeed, much

~ research work is currently under way for defining objective metrics. In Chapter 6, we

shall examine this issue in depth.

- CONCLUDING REMARKS

Software engineering is concerned with ap’plying engineering principles to the building
of software products. To arrive at a set of engmeermg principles that apply uniformly
to widely differing software’ products the first step is to devise a set of qualities that
characterize the products. That is what we have done in this chapter: We have pre-
sented a set of qualities that determine the merit of any software product. Our next
task is to learn what principles to apply so that we can build software products that

achieve these qualities. That is the topic of the next chapter.

FURTHER EXERCISES

2.8 In this chapter, we have discussed the software qualmes that we consxder to be the most
important. Some other qualities are testability, integrity, ease of use, ease of operation,
and learnability. Define each of these—and possibly other—qualities, give examples,

". and discuss the relationships between the qualities you have defined and the qualities
we have discusséd in the chapter. ~

2.9 Classify each of the qualities discussed in this chapter as internal, external, product, or

_process, giving examples. The classes are not mutually exclusive.

2.10 Show graphxcally the mterdependencc of the qualities discussed in thxs chapter: Draw a
graph in which each node represents a software quality and an arrow from node A to
node B indicates that quality A contributes toward achieving quality B. What does the
graph show you about the relative importance of the software quahtles'7 Are there any
cycles in the graph? What does a cycle imply?

2.11 Sometimes, new managers use many of the techniques they employed on their most
recent project. Using this as an example discuss the concept of reusability applied to the
software process.

2.12 -If you are familiar with the TCP/IP protocols (for example ftp and tclnet) discuss their
role in mtcroperablhty

2.13 We have discussed mteroperablhty as a product-related quallty We can-also talk about
the interoperability of processes. For example, the process followed by a quality assur-
ance organization must be compatible with that followed by a development organiza-
tion in the same company. Another example is offered by a company that contracts

~ with an independent organization to produce the documentation for a product. Use

these examples and others of your own to analyze mteroperablhty as apphed toa

process.
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HINTS AND SKETCHY SOLUTIONS

| 2.1 In some cases, human-interface decisions may affect the reliability of a system. For exam-
' ple, one should ensure that two switches which issue two commands with opposite effects
are not placed close to each other, in order to prevent the inadvertent choice of one switch
instead of the other.

2.2 Ascomponents are more and more reused, they are likely to become more and more reli- -
able, since residual errors are progressively eliminated.

k2
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CHAPTER 3

Software En‘gvinee‘ring

Principles

In this chapter, we discuss some important and general principles that are central to

- successful software development. These principles deal with both the process of soft-

ware engineering and the final product. The right process will help produce: the right
product, but the desired product will also affect the choice of which process to use. A
common problem in software engineering has been an emphasis on either the process
or the product to the exclusion of the other. Both are important. "

" The principles we develop are general enough to be applicable throughout the
process of software construction and management. Principles, however, are not suf-
ficient to drive software development. In fact, they are general and abstract state-
ments describing desirable properties of software processes and products. But, to
apply principles, the software engineer should be equipped with appropriate
methods and specific techniques that help incorporate the desired properties into
processes and products.

Note that we distinguish between methods and techniques. Methods are general
guidelines that govern the execution of some activity; they are rigorous, systematic, and
disciplined approaches. Techniques are more technical and mechanical than methods;
often, they also have more restricted applicability. In general, however, the difference

-between the two is not sharp. We will therefore use the two terms interchangeably.

Sometimes, methods and techniques are packaged together to form a methodology.
The purpose of a methodology is to promote a certain approach to solving a problem by
preselecting the methods and techniques to be used. Tools, in turn, are developed to sup-
port the application of techniques, methods, and methodologies.

Figure 3.1 shows the relationship between principles, methods- and techmques,
methodologies, and tools. Each layer in the figure is based on the layer(s) below it and
is more susceptible to change, due to the passage of time. The figure shows clearly that
principles are the basis of all methods, techniques, methodologies, and tools. The figure
can also be used to explain the structure of this book. In this chapter, we present essen-
tial software engineering principles. In Chapters 4, 5, and 6, we examine methods and

41
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"Relationship between principles, methods

Chapter 3 Software Engineering Principles

Tools

Methodologies

Methods
and Lechniques

FIGURE 3.1

Principles

and techniques. methodologies, and tools. .

techniques based on the principles of the current chapter. Chapter 7 presents some
methodologies, and Chapter 9 discusses tools and environments.

In our discussion of principles, we try to be general enough to cover every type of
application. The same applies to the specific methods and techniques we develop in the
chapters that follow. The emphasis we place on some principles and the particular meth-
ods and techniques we have selected, however, are deliberate choices. Among the quali-
ties that were discussed in the previous chapter, we stress reliability and evolvability; and
this choice, in turn, affects our emphasis in discussing principles, methods, and techniques.

As mentioned in Chapter 1, we consider the case where the software to be devel-
oped is not just an experiment to be run a few times, possibly only by its developer.
Most likely, its expected users will have little or even no knowledge of computers and
software. Or the software might be required to support a critical application—one in
which the effects of errors are serious, perhaps even disastrous. For these and other

reasons, the application must be reliable.

Also, we assume that the application is suff1c1ent1y large .and complex that a
special effort is required to decompose it into manageable parts. This is especially
true in team projects, but it is also true in the case of a single software engineer doing

the job. In both cases, there is a need for an approach to software development that
. helps to overcome its complexity.

In all the circumstances just described, which represent typical situations in soft-
ware development, reliability and evolvability play a special role. Clearly, if the soft-
ware does not have reliability and evolvability requirements, the need for software
engineering principles and techniques diminishes greatly. In general, the choice of
principles and techniques is determined by the software quality goals. -

- In this chapter, we discuss seven general and important principles that apply
throughout the software development process: rigor and formality, separation of con-
cerns, modularity, abstraction, anticipation of change, generality, and incrementality.
The list, by its very nature, cannot be exhaustive, but it does cover the important areas
of software engineering. Although the principles often appear to be strongly related,
we prefer to describe each of them separately in quite general terms. We will revisit
these principles at the end of the chapter with the help of two summarizing case stud-
les. They will also be taken up in more concrete, detailed, and specific terms in the
chapters that follow. In particular, the principle of modularity will be presented in

Chapter 4 as the cornerstone of software design.

RIGOR AND FORMALITY

. Software development is a creative activity. In any creative process, there is an inher-

ent tendency to be neither precise nor accurate, but rather to follow the inspiration of
the moment in an unstructured manner. Rigor—defined as precision and exactness—
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on the other hand, is a necessary complement to creativity in every engineering activ-
ity: It is only through a rigorous approach that we can repeatedly produce reliable
products, control their costs, and increase our confidence in their reliability. Rigor does
not need to constrain creativity. Rather, it can be used as a tool to enhance creativity:
The engineer can be more confident of the results of a creative process after perform-
ing a rigorous assessment of those results,

- Paradoxically, rigor is an intuitive quality that cannot be defined in a rigorous way.
Also, various degrees of rigor can be achieved. The highest degree is what we call formality.
Thus, formality is a stronger requirement than rigor: It requires the software process to be
driven and evaluated by mathematical laws. Of course, formality implies rigor, but the con-
verse is not true: One can be rigorous and precise even in an informal setting.

“In every engineering field, the design process proceeds as a sequence of well-
defined, precisely stated, and supposedly sound steps. In each step, the engineer fol-
lows some method or applies some technique. The methods and techniques applied
may be based on some combination of theoretical results derived by some formal
modeling of reality, empirical adjustments that take care of phenomena not dealt with
by the model, and rules of thumb that depend on past experience. The blend of these
factors results in a rigorous and systematic approach—the methodology—that can be
easily explained and applied time and again.

There is no need to be always formal during de51gn but the englneer must know
how and when to be formal, should the need arise. For example, the engineer can rely on
past experience and rules of thumb to design a small bridge, to be used temporarily to
connect the two sidés of a creek. If the bridge were a large and permanent one, on the
other hand, she would instead use a mathematical model to verify whether the design was
safe. She would use a more sophisticated mathematical model if the bridge were excep-
tionally long or if it were built in an area of much seismic activity. In that case, the mathe-
matical model would take into account factors that could be ignored in the previous case.

 Another—perhaps striking—example of the interplay between rigor and formal-
ity may be observed in mathematics. Textbooks on functional calculus are rigorous, but
seldom formal: Proofs of theorems are done in a very careful way, as sequences of
intermediate deductions that lead to the final statement; each deductive step relies on
an intuitive justification that should convince the reader of its validity. Almost never,
however, is the derivation of a proof stated in a formal way, in terms of mathematical
logic. This means that very often the' mathematician is satisfied with a rigorous descrip-
- tion of the derivation of a proof, without formalizing it completely. In critical cases,

however, where the validity of some intermediate deduction is unclear, the mathemati-

cian may try to formalize the informal reasoning to assess its validity.

These examples.show that the engineer (and the mathematician) must be able to
identify and understand the level of rigor and formality that should be achieved,
depending on the conceptual difficulty and criticality of the task. The level may even
vary for- different parts of the same system. For example, critical parts—such as the
scheduler of a real-time operating systems kernel or the security component of-an
electronic commerce system—may merit a fornial description of their intended func-

tions and a formal approach to their assessment. Well-understood and standard parts
would require simpler approaches

_ This situation applles in all areas of software engineering. Chapter 5 will go
deeply into.this issue in the context of software specifications. There, we shall show, for

example. that the description of what a program does may be given in a rigorous way
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by using natural language; it can also be given formally by providing a formal descrip-
tion in a language of logical statements. The advantage of formality over rigor is that

- formality may be the basis of mechanization of the process. For instance, one may hope

to use the formal description of the program to create the program (if the program
does not exist yet) or to show that the program corresponds to the formal description
(if the program and its formal specification exist).

Traditionally, there is only one phase of software development where a formal
approach is used: programming. In fact, programs are formal objects: They are written
in a language whose syntax and semantics are fully defined. Programs are formal
descriptions that may be automatically manipulated by compilers: They are checked’
for formal correctness, transformed into an equivalent form in another language
(assembly or machine language), “pretty-printed” so as to improve their appearance,
etc. These mechanical operations, which are made possible by the use of formality in
programming, can improve the reliability and verifiability of software. products.

Rigor and formality are not restricted to programming: They should be applied
throughout the software process. Chapter 4 shows these concepts in action in the case
of software design. Chapter 5 describes rigorous and formal approaches to software
specification. Chapter 6 does the same for software verification.

So far, our discussion has emphasized the influence of rigor and formality on the
reliability and verifiability of software products. Rigor and formality also have benefi-
cial effects on maintainability, reusability, portability, understandability, and interoper-
ability. For example, rigorous, or even formal, software documentation can improve all
of thes¢ qualities over informal documentation, which is often ambiguous, inconsis-
tent, and incomplete. : :

Rigor and formality also apply to software processes Rigorous documentation of
a software process helps in reusing the process in other, similar projects. On the basis
of such documentation, managers may foresee the steps through which a new project
will evolve, assign appropriate resources as needed, etc. Similarly, rigorous documenta-
tion of the software process may help maintain an existing product. If the various steps

~ through which a project evolved are documented, one can modify an existing product,

starting from the appropriate intermediate level of its derivation, not the final code.
More will be said on this crucial point in the chapters that follow. Finally, if the soft-
ware process is specified rigorously, managers may monitor it accurately, in order to
assess its timeliness and improve productivity. '

SEPARATION OF CONCERNS

Separation of concerns allows us to deal w1th different aspects of a problem, so that we
can concentrate on each individually. Separation of concerns is 2 commonsense prac-
tice that we try to follow in our everyday life to overcome the difficulties we
encounter. The principle should be applied also in software development, to master its.
inherent complexity.

More specifically, there are many demsmns that must be made in the develop-

~.ment of a software product. Some of them concern features of the product: functions

ta offer, expected reliability, efficiency with respect to space and time, the product’s

- relationship with the environment (i.e., the special hardware or software resources

required), user interfaces, etc. Others concern the development process: the develop-
ment environment, the organization and structure of teams, scheduling, control proce-
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dures, design strategies, error recovery mechanisms, etc. Still others concern economic

and financial matters. These different decisions may be unrelated to one another. In -

- such a case, it is obvious that they should be treated separately.
Very often, however, many decisions are strongly related and interdependent.
For instance, a design decision (e.g., swapping some data from main memory to disk)

may depend on the size of the memory of the selected target machine (and hence, the = . 4

cost of the machine), and this, in turn, may affect the policy for error recovery. When
different design decisions are strongly interconnected, it would be useful to take all the
issues into account at the same time and by the same people but this is not usually pos-
sible in practice.

The only way to master the complexity of a pro;ect is to separate the different

concerns. First of all, we should try to isolate issues that are not so closely related to the - -

others. Then, we consider i issues separately, together with only the relevant details of
related issues.

There are various ways in which concerns may be separated. First, one can separate

them in time. As an everyday example, a university professor might apply separation of =

- . concerns by scheduling teaching-related activities such as holding classes, seminars,
office hours, and department meetings from 9 A.M. to 2 PM. Monday through Thursday;
consulting on Friday; and engaging in research the rest of the time. Such temporal sepa-
ration of concerns allows for the precise planning of activities and eliminates overhead

~ that would arise through switching from one activity to another in an unconstrained way.
As we saw in Chapter 1 and will see in more detail in Chapter 7, separation of concerns
in terms of time is the underlying motivation of the software life cycle models, each of
which defines a sequence of activities that should be followed in software production.

~ Another type of separatxon of concerns is in terms of gualities that should be

treated separately. For example, in the case of software, we might wish to deal sepa-

rately with the efficiency and the correctness of a-given program. One might decide

first to design software in such a careful and structured way that its correctness is " .
expected to be guaranteed a priori and then to restructure the program partially to - -

improve its efficiency. Similatly, in the verification phase, one might first check the .
functional correctness of the program and then its performance. Both activities can be

done rigorously, applying some systematic procedures, or even formally (i.e., using for=""
mal correctness proofs and complex1ty analy51s) Verlflcatlon of program qualities is " .

the subject of Chapter 6.

Another important type of separation of concerns allows different views of the =~

software to be analyzed separately. For example, when we analyze the requirements of e
an application, it may be helpful to concentrate separately on the flow of data from

one activity to another in the system and the flow of control that governs the way dif- S o
ferent activities are synchronized. Both views help us understand the system we are. = -

working on better, although neither one gives a complete view of it. »
Still another type of separation of concerns allows us to deal with parts of the.f

same system separately; here, separation is in terms of size. This is a fundamental con-. . -+

cept that we need to master to dominate the complexity of software production. Indeed,

it is so important that we prefer to detail it shortly as a separate point under modularlty B

There is an inherent disadvantage in separation of concerns: By separating two or-
more issues, we might miss some global optimization that would be possible by tackling

them together. While this is true in principle, our ability to make “optimized” decisions in

the face of complexity is rather limited. If we consider too many concerns simultaneously,
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we are likely to be overwhelmed by the amount of detail and complexity we face. Some of
the most important decisions in design concern which aspects to consider together and
which separately. System designers and architects often face such trade-offs. -
Note that if two issues associated with one problem are intrinsically intertwined
(i.e., the problem is not immediately decomposable into separate issues), it is often possi-
ble to make some overall design decisions first and then effectively separate the different
issues. For example, consider a system in which on-line transactions access a database
concurrently. In a first implementation of the system, we could introduce a simple lock-
ing scheme that requires each transaction to lock the entire database at the start of the
transaction and unlock it at the end. Suppose now that a preliminary performance analy-
sis shows that some transaction, say, t; (which might print some complex report extract-
-ing many data from the database), takes so long than we cannot afford to have the
database unavailable to other transactions. Thus, the problem is to revise the implemen-
- tation to improve its performance yet maintain the overall correctness of the system.
Clearly, the two issues—functional correctness and performance—are strongly related,
so a first design decision must concern both of them: t; is no longer implemented as an
* atomic transaction, but is split into several subtransactions t;,, t;,, .., t;,, €achof
. which is atomic itself. The new implementation may affect the correctness of the system,
~because of the interleaving that may occur between the executions of any two subtrans- .-
actions. Now, however, we have separated the two concerns of checking the functional
- correctness of the system and analyzing its performance; we may, then, do the analyses
_ independently, possibly even by two different designers with different levels of expertise.
Perhaps the most important application of separation of concerns is to separate
- problem-domain concerns from implementation-domain céncerns. Problem-domain
properties hold in general, regardless of the implementation environment. For exam-
‘ple, in designing a personnel-management system, we must separate issues that are
true about employees in general from those which are a consequence of our imple-
mentation of the employee as a data structure or object. In the problem domain, we
may speak of the relationship between employees, such as “employee A reports to
employee B,” and in the implementation domain we may speak of one object pointing
to another. These concerns are often intermingled in many projects.
As a final remark, notice that separation of concerns may result in separation of
responsibilities in dealing with separate issues. Thus, the principle is the basis for divid-
- ing the work on a complex problem into specific assignments, possibly for different
- people with different skills. For example, by separating managerial and technical issues
in-the software process, we allow two types of people to cooperate in a software pro-
ject. Or, having separated requirements analysis and specification from other activities
in a software life cycle, we may hire specialized analysts with expertise in the applica-
tion domain, instead of relying on internal resources. The analyst, in turrs, may concen-
trate separately on functional and nonfunctional system requirements.

Exercises

3.1 Showina simple program (or program fragment) of your choice how you can deal sepa-
rately with correctness and efficiency.

3.2 Read about aspect-oriented programming, and examine it with respect to separation of
concerns. How is separation of concerns supported in aspect-oriented programming?
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MODULARITY

A complex system may be divided into simpler pieces called modules. A system that is
composed of modules is called modular. The main benefit of modularity is that it
allows the principle of separation of concerns to be applied in two phases: when deal-
ing with the details of each module in isolation (and ignoring details of other modules)
and when dealing with the overall characteristics of all modules and their relationships
in order to integrate them into a coherent system. If the two phases are executed in
sequence first by concentrating on modules and then on their composition, then we say
that the system is designed bottom up; the converse—when we decompose modules
first and then concentrate on individual module design—is top-down design.
Modularity is an important property of most engineering processes and products.
For example, in the automobile industry, the construction of cars proceeds by assem-

bling building blocks that are designed and built separately. Furthermore, parts are

often reused from model to model, perhaps after minor changes. Most industrial

processes are essentially modular, made out of work packages that are combined in

simple ways (sequentially or overlapping) to achieve the desired result.

Exercise

3.3 Describe the work packages involved in building a hbusc, and show how they are orga-
nized sequentially and in parallel. '

The next chapter emphasizes modularity in the context of software design.
Modularity, however, is not only a desirable design principle; it also permeates the whole
of software production. In particular, modularity provides four main benefits in practice:

- # the capability of decomposing a complex system into simpler pieces,
¢ the capability of composing a complex system from existing modules,
¢ the capability of understanding the system in terms of its pieces, and

e the capability of modifying a system.by modifying only a small number of its
pieces. ' '

The decomposability of a system is based on dividing the original problem top
down into subproblems and then applying the decomposition to each subproblem
recursively. This procedure reflects the well-known Latin motto divide et impera (divide
and conquer), which describes the philosophy followed by the ancient Romans to dom-
inate other nations: Divide and isolate them first, and then conquer them individually.

The composability of a system is based on starting bottom up from elementary
components and combining them in steps towards finally producing a finished sys-
tem. As an example, a system for office automation may be designed by assembling
together existing hardware components, such as personal workstations, a network,
and peripherals; system software, such as the operating system; and productivity
tools, such as document processors, databases, and spreadsheets. A car is another
obvious example of a system that is built by assembling components. Consider first
the main subsystems into which a car may be decomposed: the body, the electrical
system, the power system, the transmission system, etc. Each of them, in turn, is
made out of standard parts; for example, the battery, fuses, cables, etc., form the

electrical system. When something goes wrong, defective components may be
replaced by new ones.
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!

Ideally, in software production we would like to be able to assemble new applica-
tions by taking modules from a library and combining them to form the required prod-
uct. Such modules should be designed with the express goal of being reusable. By using
reusable components, we may speed up both the initial system construction and its
fine-tuning. For example, it would be possible to replace a component by another that
performs the same function, but differs in computational resource requirements.

The capability of understanding and modifying a system are related to each other
as understanding is often the first step to applying modifications. We have stressed
evolvability as a quality goal because software engineers areoften required to go back
to previous work to modify it. If the entire system can be understood only in its
entirety, modifications are likely to be difficult to apply, and the result will probably be
unreliable. When it is necessary to repair a defect or enhance a feature, proper modu-
larity helps confine the search for the fault or enhancement to single components.
Modularity thus forms the basis for software evolution.

To achieve modular composability, decomposability, understandability, and mod-
ifiability, the software engineer must design the modules with the goal of Aigh cohesion
and low coupling.

A module has high cohesion if all of its elements are related strongly. Elements
of a module (e.g., statements, procedures, and declarations) are grouped together in
the same module for a logical reason, not just by chance: They cooperate to achieve a
common goal, which is the function of the module.

Whereas cohesion is an internal property of a module, coupling characterizes a
module’s relationship to other modules. Coupling measures the interdependence of
two modules (e.g., module A calls a routine provided by module B or accesses a vari-
able declared by module B). If two modules depend on each other heavily, they have
high coupling. Ideally, we would like modules in a system to exhibit low coupling,
because it will then be possible to analyze, understand, modify, test, or reuse them sep-
arately. Figure 3.2 provides a graphical view of cohesion and coupling.

A good example of a system that has high cohesion and low coupling is the elec-
tric subsystem of a house. Because it is made out of a set of appliances with clearly
definable functions and interconnected by simple wires, the system has low coupling.
Because each appliance’s internal components are there exactly to provide the service
the appliance is supposed to provide, the system has high cohesion.

= | [ 1=
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; @ . (b)
FIGURE 3.2

Graphical description of cohesion and coupling. (a) A highly coupled structure. (b) A structure
with high cohesion and low coupling.
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Modular structures with hlgh cohes1on and low coupling allow us to see modules as

black boxes when the overall structure of a system is described and then deal with each

 module separately when the module’s functionality is described or analyzed. In other -

words, modularity supports the application of the principle of separation of concerns.

-

Exercises

prising small cubes 15 inches on a side. Discuss this modularization in terms of cohesion
and coupling. Propose a better way of modularizing the description, if there is any. Draw
_'some general conclusmns about how one should modularize a complex system

3.5 Explain some of the causes of, and remedies for, low cohesion in a software module.

modules

ABSTRACTION

Abstraction is a fundamental technique for understanding and analyzing complex
problems. In applying abstraction, we identify the important aspects of a phenomenon

and ignore its details. Thus, abstraction is a special case of separation of concerns
wherein we separate ! the concern of the: 1mportant aspects from the concern of the'less -

important details. - :
“What we abstract away and consider as a detall that may be ignored depends on

* the purpose of the abstraction. For example, consider a digital watch. A useful abstrac-

tion for the owner is a description of the effects of pushing its various buttons, which
allow the watch to enter various modes of functioning and react differently to sequences

- of commands. A useful abstraction for the person in charge of maintaining the watch is a

box that can be opened in order to replace the battery. Still other abstractions of the
device are useful for understanding the watch and performing the activities that are
needed to repair it (let alone design it). Thus, there may be many different abstractions of
the same reality, each providing a view of the reality and serving some specific purpose.

Exercise

3.7 Different people interacting with a software application may require different abstrac-
tions. Comment briefly on what types of abstractions are useful for the end user, the
designer, and the maintainer of the apphcatlon

Abstraction is a powerful technique practiced by engineers of all fields for mas-

- tering complexity. For example, the representation of an electrical circuit in terms of

resistors, capacitors, etc., each characterized by a set of equations, is an idealized
abstraction of a device. The equations are a simplified model that approximates the
behavior of the real components. The equations often ignore details, such as the fact
that there are no “pure” connectors between components and that connectors should
also be modeled in terms of resistors, capacitors, etc. The designer ignores both of these
facts, because the effects they describe are negligible in terms of the observed results.

3.4 Suppose you decide to modularize the description of a car by considering the car as com--

[y

3.6 Explain some of the causes of, and remedles for hlgh coupling between two software v
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This example illustrates an important general idea: The models we build of phe-
nomena—such as the equations for describing devices—are an abstraction from reality,
ignoring certain facts and concentrating on others that we believe are relevant. The
same holds for the models built and analyzed by software engineers. For example, when
the requirements for a new application are analyzed and specrfled software engineers

build a model of the proposed application. As we shall see in Chapter 5, this model may

be expressed in various forms, depending on the required degree of rigor and formality.
No matter what language we use for expressing requirements—be it natural language
or the formal language of mathematical formulas—what we provide is a model that
abstracts away from a number of details that we decide can be ignored safely.
Abstraction permeates the whole of programming. The programming languages
that we use are abstractions built on top of the hardware: They provide us with useful
and powerful constructs so that we can write (most) programs ignoring such details as
the number of bits that are used to represent numbers or the specific computer’s
addressing mechanism. This helps us concentrate on the solution to the problem we
are trying to solve, rather than on the way to instruct the machine on how to solve it.
The programs we write are themselves abstractions. For example, a computerized pay-
roll procedure is an abstraction of the manual procedure it replaces: It provides the

- . essence of the manual procedure, not its exact details.

Abstraction is an important principle that applies to both software products and

- software processes. For example, the comments that we often use in the header of a

procedure are an abstraction that describes the effect of the procedure. When the doc-
umentation of the program is analyzed, such comments are supposed to provide all the

~ information that is needed to understand the use of the procedure by the other parts of

the program.

As an example of the use of abstractron in software processea, consider the case
of cost estimation for a new application. One possible way of doing cost estimation
consists of identifying some key factors of the new system—for example, the number -
of engineers on the project and the expected size of the final system—and extrapo-
lating from the cost profiles of previous similar systems. The key factors used to per-
form the analysis are an abstraction of the system for the purpose of cost estimation.

Exercises

3.8 Variables provided in a programming language may be viewed as abstractions of memory
locations. What details are abstracted away by programming-language variables? What
are the advantages of using the abstractlon? What are the disadvantages?

3.9 Variablesin programs are also used as abstractions in the problem domain. Explain how a
variable called employee is an abstraction of a problem-domain concept.

3.10 A software life cycle model, such as the waterfall model outlmed in Chapter 1, is an
abstraction of a software process. Why?

~ ANTICIPATION OF CHANGE

Software undergoes changes constantly. As v we saw in Chapter 2,.changes are due both ‘

to the need for repamng the software-eliminating errors that were not detected before
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releasing the application-and to the need for supporting ¢volution of the application as
new requlrements arise or old requirements change. This is why we identified main-
tainability as a major software quality. :
The ability of software to evolve does not happen by accident or out of sheer
luck-it requires a special effort to anticipate how and where changes are likely to
occur. Designers can try to identify likely future changes and take special care to make
these changes easy to apply. We shall see this important point in action in Chapter 4 in
the case of design. In that chapter, we show how software can be designed such- that
likely changes that we anticipate in the requirements, or modifications that are
planned as part of the design strategy, may be incorporated into the application
“smoothly and safely. Basically, likely changes should be isolated in specific portions of
the software in such a way that changes will be restricted to such small portions. In
other words, anticipation of change is the basis for our modularization strategy.
Anticipation of change is perhaps the one principle that distinguishes software
the most from other types of industrial productions. In many cases, a software applica-
 tion is developed when its requirements are not entirely understood. Then, after being
released, on the basis of feedback from the users, the application must evolve as new
requirements- are discovered or old requirements are updated. In addition, applica-
tions are often embedded in an environment, such as an organizational structure. The
environment is affected by the. introduction of the application, and this generates new -
requirements that were not known initially. Thus, anticipation of change is a pr1nc1ple
that we can use to achieve evolvablhty
Reusability is another software quality that is strongly affected by anticipation of
change. As we saw, a component is reusable if it can be directly used to produce a new

- product. More realistically, the component might undergo some changes before it can

be reused. Hence, reusability may be viewed as low-grain evolvability—that is, evolv- -
ability at the component level. If we can anticipate the changes of context in which a
software component might be embedded, we may then design the component in a way
that such changes may be accommodated easily.

Anticipation of change requires that appropriate tools be available to manage
the various versions and revisions of the software in a controlled manner. It must be
possible to store and retrieve documentation, source modules, object modules, etc.,
from a database that acts as the central repository of reusable components. Access to
the database must be controlled. A consistent view of the software system must always
be available, even as we apply changes to some of its components. As we mentioned in
. Section 2.1.2—and as we shall see again in Chapters 7, 8, and 9—the discipline that
studies this class of problems is called configuration management.

In our discussion of anticipation of change, we focused attention more on soft-
ware products than on software processes. Anticipation of change, however, also affects
the management of the software process. For example, managers should anticipate the
effects of personnel turnover. Also, when the life cycle of an application is designed, it is
important to take maintenance into account. Depending on the anticipated changes,
. managers must estimate costs and design the organizational structure that will support
the evolution of the software. Finally, managers should decide whether it is worthwhile
mvestmg time and effort in the production of reusable components, either as a by-prod-
uct of a given software development project or as a parallel development effort. ’
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Exercise

3.11 Take a sorting program from any textbook. Discuss the program from the standpoint of
reusability, Does the algonthm make assumptions about the type of the elements to be
sorted? Would you be able to reuse the algorithm for different types of elements? What if
the sequence of values to sort is so long that it should be stored on secondary storage?
How would you modify the program to improve its reusability under these circum-

“stances? Based on this experience, produce a list of general suggestrons that would favor
antrcrpauon of change ina program

3.6  GENERALITY
The principle of generahty may be stated as follows: -

Every time you are asked to solve a problem, try to focus on the dlscovery of a more gen-
eral problem that may be hidden behind the problem at hand. It may happen that the gen-
eralized problem is not more complex—indeed, it may even be simpler—than the original

“problem. Moreover, it is likely that the solution to the generalized problem has more
potential for being reused. It may even happen that the solution is already provided by’
‘'some off-the-shelf package. Also, it may happen that, by generalizing a problem, you end
up designing a module that is invoked at more than one point of the apphcatlon rather
than having several specialized solutions.

On the other hand, a generalized solution may be more costly, in terms of speed
of execution, memory requirements, or development time, than the specialized solu-
tion that is tailored to the original problem. Thus, it is necessary to evaluate the trade—_
offs of generality with respect to cost and efficiency, in order to decide whether it is
worthwhile to solve the generalized problem instead of the original problem.

For example, suppose you are asked to merge two sorted sequential files into
one. On the basis of the requirements, you know that the two source files do not con-
tain any records withidentical key values. Clearly, then, if you generalize your solution
to accept source files that may contain different elements with the same key value, you
provide a program that has a higher potential for reusability. Also, you may be able to
use a merge program that is available in your system library.

' ~As another example, suppose that you are asked to design an application to
handleé a small library of cooking recipes. Suppose also that the recipes have a

~ header—containing information such as a name, a list of ingredients, and cooking

_information—and a textual part describing how to apply the recipes. Apart from
storing recipes in the library, it must be possible to do ‘a sophisticated search for
recipes, based on their available ingredients, maximum calories, etc. Rather than
designing a new set of facilities, these searches can be viewed as a special case of a
more general set of text-processing facilities, such as those provided by the AWK -
language under UNIX or the language PERL. Before starting with the design of the
specialized set of routines, the designer should consider whether the adoption of a
generalized text-processing tool would be more useful. The generalized tool is
undoubtedly more reliable than the specialized program to be designed, and it would

“probably accommodate changes in the requ1rements or even new requirements. On
the negative side, however, there may be a cost of acquisition, and possibly overhead,
in the use of the generahzed tool. :
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Generality is a fundamental principle that allows us to develop general tools or

- packages for the market. The success of such tools as spreadsheets, databases, and .

word processors is that they are general enough to cover the practical needs of most .

people when they wish to-handle their personal business with a computer. Instead of L

customizing specific solutions for each personal busm ess, 1t is more economical to use.
aproduct that is already on the market. : :

Such general-purpose, off-the-shelf products represent a rather general trend insoft-

ware. For every specific application area, general packages that provide standard solutions’

to common problems are increasingly available. If the problem at hand may be restated as

an instance of a problem solved by a general package, it may be convenient to adopt the - . .

package instead of implementing a specialized solution. For example, we may use macros -
" to specialize a spreadsheet application to be-used as an expense-report application. B

This general trend.is identical to what happens in other branches of industry. For .

example, in the early days of automobile technology, it was possible to customize cars 5

according to the SpClelC requirements of the purchaser. As the field became more -
industrialized, customers could only choose from a catalogue of models—which corre-,
spond to prepackaged solutions—provided by:each manufacturer. Nowadays it is not
possible for most people to acquire a personal car design. -

The next step in this trend in the software industry is the development of
application servers that provide the general functionality on remote server machines. In
‘this way, the user does not even need to install the application on his or her own machine; .-
but instead uses the functionality available remotely. For example, such common func- -

tions as mail and calendar management are-now routinely offered and used remotely.

'INCREMENTALITY -

Incrementality characterizes a process that proceeds in a stepwise fashion, in
increments. We try to achieve the desired goal by successively closer approximations to
it. Each approximation is an increment over the previous one.

Incrementality applies to many engineering activities. When applied to software,
it means that the desired application is produced as a result of an evolutionary process.

One way of applying the incrementality principle consists of identifying useful
early subsets of an application that may be developed and delivered to customers, in
order to get early feedback. This allows the application to evolve in a controlled man-
ner in cases where the initial requiréments are not stable or fully understood. The
motivation for 1ncrementahty is that in most practlcal cases there is no way of getting
all the requirements right before an application is developed. Rather, requirements
emerge as the application—or parts of it—is available for practical experimentation.
Consequently, the sooner we can receive feedback from the customer concerning the

“usefulness of the application, the easier it is to incorporate the required changes into

the product. Thus, incrementality is intertwined with anticipation of change and is one
of the cornerstones upon which evolvability may be based.
Incrementality applies to many of the software qualities discussed in Chapter 2

" We may progressively add functions to the apphcatlon being developed, starting from

a kernel of functions that would still make the system useful, although incomplete. For
example, in some ‘business automation systems, some functions would still be done
manually, while others would be done automatically by the application.
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3.8

3.8.1

We can also add performance in an incremental fashion. That is, the initial ver-
sion of the application might emphasize user interfaces and reliability more than per-’
formance, and successive releases would then improve space and time efficiency.

When an application is developed incrementally, intermediate stages may con-
stitute prototypes of the end product; that is, they are just an approximation of it.
The idea of rapid prototyping is often advocated as a-way of progressively develop-
ing an application hand in hand with an' understanding of its requirements.
Obviously, a software life cycle based on prototyping is rather different from the
typical waterfall model described earlier, wherein we first do a complete require-
ments analysis and specification and then start developing the application. Instead,
prototyping is based on a more flexible and iterative development model. This dif-
ference affects not only the technical aspects of projects, but also the organizational

 and managerial issues. The unified process, presented in Chapter 7, is based on

incremental development

As we mentioned in connection with anticipation of change, evolutlonary soft-
ware development requires special care in the management of documents, programs,
test data, etc., developed for the various versions of software. Each meaningful incre-
mental step must be recorded, documentation must be easily retrieved, changes must
be applied in a controlled way, and so on. If these are not done carefully, an intended
evolutionary development may quickly turn into undisciplined software development,
and all the potential advantages of evolvability will be lost.

‘Exercise

3.12 Discuss the concept of the software prototype illustrated here, as opposed to the concept
of a prototype used by engineers in other industrial branches (e.g., the prototype of a
bridge or a car).

TWO CASE STUDIES ILLUSTRATING SOFTWARE ENGINEERING
PRINCIPLES

In this section, we present two case studies that will help us understand more deeply
the principles illustrated in this chapter. The first examines a fairly typical software
product, namely, a compiler; the second examines a nonsoftware system, namely, an

‘elevator system. Both case studies show how the principles illustrated in the chapter

are general engineering principles. Both also serve to better illustrate commonalities
and differences between traditional engineering and software engineering. This chap-
ter—and indeed, the entire book—try to emphasize the relationships of software engi-
neering to other engineering disciplines. The second case study will also help
emphasize the notion that in most cases software is just a component of a more com-
plex system that integrates artifacts of different types.

A Case Study in Compiler Construction

" Let us examine how the prmc1p1es 111ustrated in this chapter can be applied during the

development of a compiler.
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Rigor and formal:ty

There are many reasons that compller designers should be rigorous and, possibly,

- formal. First, a compiler is a critical product: A compiler that generates incorrect -
‘code is as serious a problem as a processor that executes an instruction incorrectly.

An incorrect compiler can generate incorrect applications, regardless of the quality
of the application itself. Second, when a compiler is used to generate code for mass-
produced software such as databases or word processors, the effect of an error in the.
compiler is multiplied on a mass scale. Thus, in general it is important to approach
the development of a compiler rigorously, with the aim of producing a high-quality
compiler.

Compiler construction is one of the fields in computer science where formality.
has been exploited well for a long time. In fact, formal languages and automata theory.
were largely motivated by the need for making compiler construction more effective
and reliable. Nowadays, the syntax of programming languages is formally defined
through Backus-Naur form (BNF) or an equivalent formalism. It is not by chance that,
most often, problems associated with compiler correctness are related to the semantic
aspects of the language, which are usually defined informally, rather than the syntactic
aspects, which are well defined by BNE. _

The formallty achieved through BNF and the application of automata theory :
also produce major benefits in terms of generality, as we will see in Section 3.8.1.6.

Separation of concerns

As in most nontrivial engineering artifacts, the construction of a compiler.involves
several concerns. Correctness (i.e., producing an object code consistent with the
source code and producmg appropnate error messages in the case of erroneous
source programs) is, as usual, a primary concern. Other 1mpo_rtant issues are effi-

““ciency and user friendliness. Efficiency could be related to compile time (in which

case it amounts to performing source code analysis and translation quickly or using
little memory) or to run time (in which case it involves producing an object code that
is itself efficient). User-friendliness also has several aspects, ranging from the preci-
sion, thoroughness, and helpfulness of the diagnostics to.the ease of interacting with
the human-computer interface (e.g., through well- de51gned windows and other
graphical aids).

These and other aspects of the compiler should be analyzed separately, as far as
possible. For instance, there is no reason to worry about diagnostic messages while one is
designing a sophisticated algorithm to optimize register allocation. This is not to say, as -
we already noticed in general, that different concerns do not affect each other. Typically,
in an attempt to make object code as efficient as possible, we might incorrectly overload
some register. Also, attempts to produce good run-time diagnostics (e.g., checking that
array indexes are within their bounds) may produce run-time inefficiencies.

Run-time diagnostics and efficiency are a typical case where separation of con-
cerns can and should be applied keeping in mind the mutual dependencies between
the different aspects. In this case, in fact, the two concerns are often well separated
by offering the user the option of enabling or disabling run-time checks. During the
development and verification phases, when correctness is still being established and
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is a major concern, the user turns on run-time checks, making diagnostics the prevail-
ing concern for the compiler. Once the program has been thoroughly checked, effi-
ciency becomes the major concern for its user and, therefore, for the compiler, too;
thus, the user could turn off the generation of run-time checks by the compiler.

Modularity

A compiler can be modularized in several ways. Here, we propose a fairly simplistic
and traditional modularization based on the several “passes” performed by the com-
piler on the source code. Such a modular structure should be good enough for our
initial purposes. In Chapter 4, we criticize the sctiema proposed here, and we show that-
alternative solutions may produce better results from the point of view of other princi-
ples, such as-generality and design for change.

The well-established literature on compiler construction suggests that compilation

~proceeds in several phases or passes, €ach one performing a partial translation from an
- intermediate representation to another one, that the last pass eventually transforming

its input intermediate code into the object code, which is then (almost) ready to run.
The following are the usual compiler phases:

e Lexical analysis, which analyzes program identifiers, replaces them wrth an
internal representation, and builds a symbol table with their description. It
also produces a first set of diagnostic messages if the source code contains lex-
ical errors (e.g., ill-formed identifiers).

e Syntax analysis or parsing, which takes the output of the lexrcal analysrs and
builds a syntax tree, describing the syntactic structure of the original code. It
also produces a second set of diagnostic messages related to the syntactic
structure of the program (e.g., missing parentheses).

* Code generation, which produces the object code. This last phase is itself usu-
~ ally done in several steps. For example, a machine-independent intermediate

Lexical
: : Symbol o .
dragnostrcT tablé ! !
Source > Object
d i .
code Lexrcal . . Parsing - Code i _code
analysis Parse generation
“Tokenized” tree
code _
Syntax diagnostics
FIGURE 3 3a

The modular structure of a <omp1ler Boxes represent modules and arrows

- represent inputs and outputs:
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FIGURE 3.3b

A further modularization of the code-generation module.

code is produce'd‘as a first step, followed by a translation into machine-ori-
ented object code. Each one of these partial translations may include an opti-
mizing phase that rearranges the code to make it more efficient.

The foregoing description suggests a corresponding modular description of the
structure of the compiler, depicted graphlcally in Figure 3.3a. ‘

Despite the oversimplification present in the figure, we can already derive a few
distinguishing features of modular design: : :

¢ System modules can be drawn naturally as boxes of any shape—here they are

rectangular.

Module interfaces are drawn as directed lines connecting the boxes represent-
ing the modules. An interface is an item that somehow connects différent.
modaules; it represents anything that is shared by them. Notice that the graphi-
cal metaphor suggests that everything that is inside .a box is hidden from the
outside; the rest of the system can communicate with a module’ exclusively"
through its interface. In the figure, it is convenient to represent interfaces with
arrows to emphasize the fact that the item they describe is.the output of some
module and the input to another one. We shall see other cases in which the
notion of an interface may be more symmetric- (e. g., a shared data structure);
in such cases, it is more convenient to represent the item w1th an undirected
line. ; 3

Notice also that the lines representing the source code the dlagnostlc mes- .
sages, and the object code are the input or output of the whole “system”; they
are, therefore, drawn without source and target, respectively. '

¢ The modular structure of Figure 3.3a lends itself to a natural iteration of the

decomposition process. For instance, according to the description of the code-

generation phase, the box representlng this pass can be refined as suggested in
Figure 3. 3b
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Such dlagrams as we have used here are referred to as box-and-line diagrams and
are commonly used to informally show the overall structure or architecture of soft-
ware systems. Many variants of box-and-line diagrams have been developed to make

. them more formal. We give examples of such graphical notations in Chapters 4 and 5.

Abstract:on

- Abstraction can be apphed in compiler design along several directions. Froma syntac-

tic point of view, it is fairly typical to distinguish between concrete and abstract syn-

- tax. Abstract syntax aims at focusing on the essential features of language constructs,
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neglecting details that do not affect a program’s structure. For instance, a conditional
statement consists of a condition paired with a “positive” statement to be executed if
the condition holds and, possibly, a negative one to be executed if the condition does
not hold. This description remains valid both if we include the keyword theén before
the positive statement, as it happens in Pascal, and if we do not, as it happens in C.

Similar remarks apply to the use of the C-like pair “{, }” and of the Algol-like pair
“begin-end.’

- Another typical abstraction is often apphed with respect to the target code: As we
saw in the previous section, the first phase of code generation produces an intermediate
code, which can be viewed as the code for an abstract machine. The second phase then
translates thie code of this abstract machine into code for the concrete target machine. In
this way, a major part of the compiler construction abstracts away from the peculiarities of
the particular processor that must run the object code. The Java language, indeed, defines
a Java Virtual Machine, whose code (Java bytecodes) can be executed by mterpretmg iton
different concrete machines. _

In both examples of abstraction in this section, abstraction is naturally combined
with the generality principle, as we shall emphasize further in Section 3.8.1.6. For
instance, producing intermediate code for an abstract machine, rather than producing

“object code dlrectly for a concrete one, allows us to build a general compiler that can

be adapted, with minor modifications, to the productxon of code for different machines,
thus enhancing the reusability quality.

Antrc:pat:on of change
Several changes may occur durmg the hfetlme of a compiler:

* New releases of the target processors may become available with new, more
- powerful, instructions.

¢ New input-output (I/O) devices may be introduced, requiring new types of /'O
statements.

¢ Standardization commlttees may defme changes and extensions to the source
language. :

‘'The design of the compiler should anticipate such changes. For instance, the
Pascal language tried to “freeze” I/O statements within a rigid language definition.
This decision conflicted with typical machine dependencies, and the result was often a
number of dialects of the same language differing mainly in the I/O part. Later, it was
recognized that attempts to freeze language I/O were not effective. Thus, languages
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such'as C and Ada encapsulated 1/0 into standardized libraries, reducmg the amount -
of work to be redone whenever I/0 changes occurred. .
Also, the more likely it is to want to adapt the compiler to different target
machines, the higher are the benefits of separatlng the code-generation phase into two
subphases as we showed above. -

3.8.1.6 Generality

Like abstraction, generallty can be pursued along several dimensions in compller'
construction, depending on the overall goals of the project (e.g., producing a fairly
wide family of products, as opposed to a highly specialized compiler).

Earlier, we mentioned the need to be parametric with respect to the target
machine. The case of Java’s bytecodes is a striking example of general design and its’
benefits. In fact, bytecodes are also independent of the source language, allowing them
to be used as the target for compilers of languages other than Java. '

. Sometimes, a compiler can be parametric even with respect to the source lan- -
guage. A fairly extreme example of such a generality is provided by so called compiler-
compilers: They take as input the definition of the source—and possibly of the target—
language and automatically produce a compiler translating the source language into
the target one. Perhaps the most successful and widely known example of a compiler
compiler is provided by the UNIX lex and yacc programs that are used to automati-
cally produce the lexical and syntactic modules of a compiler.

Such generality can be achieved thanks to the formah;atlon of the syntax of the
language; thus, the generality principle is exploited in conj/unctlon with formality.
Another fairly obvious relation exists between the principlés of generality and design
for change: we usually want to be parametnc—-general——wﬁh respect to those features:
which are most likely to change.

3.8.1.7 Incrementality

3.8.2

Incrementality, too, can be pursued in several ways. For instance, we can first deliver a
kernel version of a compiler that recognizes only a subset of the source language and -
then follow that by subsequent releases which recognize increasingly larger subsets of
the language. Alternatively, the initial release could offer just the very essentials: trans-
lation into a correct object code and a minimum of diagnostics. Then we can add more
diagnostics and better optimizations in further releases. The systematic use of libraries’

offers another natural way to exploit incrementality: It is quite common that the first

release of a new compiler includes a very minimum of such libraries (e.g., for I/O and -
memory management) and later on new or more powerful libraries are released (e.g.,
‘graphical and mathematical libraries).

A Case Study in System Engineering

Suppose that we want to design an elevator system, to be included as a part of one or

more buildings. Notice that we are talking about the design, not about a smgle physmal'-}. el
instance of the elevator. :
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As a preliminary remark, let:us address the question, “What does the design of

-an elevator system have to do with software engineering?” This is a typical example

of the strong relationships software engineering has with system engineering: As we
pointed out in Section 1.6.2, most software products are part of more complex sys-
tems, such as manufacturing plants, buildings, and cars. Thus, a software engineer
must be able to act as a system engineer. Most of the initial analysis and design of

any system will have to be done at the system level, possibly involving specialists,
from different engineering fields. Only in later phases will the designers be able to

focus exclusively on software issues, such as coding the programs that control the

computer devices, which in turn control the whole system. Not surprisingly, most of

the qualities and principles examined in Chapters 2 and 3 apply to any engineering
activity, not only to software construction.

Let us therefore verify how the principles examined in this chapter can be
applied to the design of an elevator system. We shall use this same example in other
parts of the book to 1llustrate several techmques

Rigor and formality

There are several fairly obvious reasons for a designer to be rigorous in developing our
hypothetical elevator system throughout its phases. First of all, the system is safety critical,
because failures can cause serious damage and even the loss of human lives. Thus, we
must first rigorously define applicable safety requirements, such as the following:

. Any elevator will be able to carry up to 400 kilograms without a failure occur-
ring. ' '

e Incase of cable separatlon emergency brakes will be able to stop the elevator
within 1 meter and 2 seconds after separation under all circumstances.

* A safety warning will be sounded if the elevator is overloaded and in such a
case 1t will be impossible to operate the elevator.

Later, we will have to verify that such requirements are actually enforced by our
design and fulfilled after installation of the elevator.
Second, being rigorous and precise is mandatory to avoid contractual disputes.

For instance, if the initial specifications used as the basis of the contract between the |
customer and the suppher do not state the speed of the elevator, how can complaints’

that the elevator is slow be handled after installation?

~ Third, suppose that during a test of the system we verify the correct behavior and
performance of any elevator by pushing all internal and external buttons. For example,
we verify that pushing internal button number 4 once causes the elevator toreach the
fourth floor within the specified time. Later, during the elevator’s actual operation, it
may happen that a strange combination of several internal and external buttons being
pushed causes an overloading of part of the memory of a microprocessor that controls
the system. In turn, this causes an undesired behavior, such as the elevator’s missing a
floor. Certainly, such behavior could and should be prevented by a more rigorous
aralysis of all possible sequences of events that could occur during system operation.

_ Finally, suppose that, under the pressure of our customer, we 51gned a contract

that calls for the followmg requirements:

S S S




3.8.2.2

3.8.2.3

Section 3.8 Two Case Studie.,s,.llIUstrati_ngvSovftware Engineering Principles 61

¢ Given some probablhstlc conditions about user requests and the speed of the
elevator, the elevator’ s service pohcy should minimize the average waiting
time of the users.

¢ Every request must be eventually served.

It may happen that adopting a policy which optimizes performance from a statis-
tical point of view does not guarantee fairness (i.e., eventually serving every request),
or conversely. Thus, a rigorous analysis of requlrements must uncover and avoid con-
flicting spec1f1cat10ns

As we stated in Section 3.1, applying some formal techmque can help in being
rigorous in specifying and verifying requirements such as those just discussed. We shal]
see some examples of appropriate techniques in Chapter 5.

Separation of concerns

An elevator system exposes the designer to several concerns that are fairly typical of
most engineering artifacts. The following are some examples of such concerns:

Safety

Performance:

Usability (space, acce331b111ty, 1llum1nat10n of buttons and so on)
¢ Cost

Of course, most of these concerns are interrelated, so that a design decision about
one of them may easily affect another. For instance, if we reduce costs by using cheap
material, we may easily endanger safety. Nevertheless, separation of concerns remains a
useful design principle. For example, we may perform cost analysis in a different time and
with different techniques than safety verification, still keeping in mind that requirements
referring to both concerns must be satisfied. Similarly, at a different time we may pay
attention to usability, later verifying that the choices we adopted do not exceed cost limits.

Modularity

A rough modularization of an elevator system is shown in Figure 3.4a. Here, too, we
can comment on a few distinguishing features of modular design from the diagram:

* As we did in describing the modular structure of a compiler in Figure 3.3a, in
Figure 3.4a we use boxes to denote modules and lines to denote their inter-
faces. In this case, however, we use undirected, and not directed, arrows. This
choice emphasizes that the lines represent items (say, electric signals) that
flow in both directions. Perhaps, at a more refined stage of the design we could
represent unidirectional items. For instance, we might represent a command
given by the control apparatus to the elevator engine by an arrow going from
the former to the latter. Conversely, we could represent the information about
the current location of the elevator by an arrow going from the elevator box to
the control box. :

¢ This example also emphasmes the fact that itis often convenlent to modular-
ize a system by describing it as a‘COHCCtIO.n of objects. This is the case, in fact,
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Control
apparatus

e 'Elevafor

FIGURE 3.4a

A modular description of a simple elevator system.

for most systems that we have to design. For many such systems, we may iden-
tify and derive objects as natural units of modularization. The notion of an
object, however, must be seen in a more general way than just physical objects:
Typically, a piece of software such as a table of names or a queue of requests to
be served can also be seen as an object. Consider the difference between the
elevator, viewed as a set of cooperating objects, and the compiler, viewed as a
collection of modules associated with different functions or passes of the com-
pilation. We investigate object- orlented vs. function-oriented design thor-
oughly in Chapter 4.

* Here, too, the modular structure of Figure 3.4a can be further decomposed
naturally. For instance, the box representing the elevator can be refined as sug-
gested in Figure 3.4b.

Furthermore, the control apparatus can be described as the pairing of a micro-
processor (the hardware part) and some software that implements the control policies
(e.g., managing the queue of requests, sending commands to the engine or the brakes,

or governing the illumination of the elevator buttons). Here we see clearly that the

notion of object goes beyond purely physical objects.
Buttons, too—both the buttons on the floors and those inside the elevator—can be

defined in more detail by showing the individual buttons on each floor and in the elevator.

3.8.2.4 Abstraction

The principle of abstraction can be applied to the design of our elevator system in many
ways. First, notice that parts a and b of Figure 3.4 themselves are abstractions of the
whole system, focusing on the modular structure while neglecting most other aspects,
such as the mechanical and electrical behavior of the elevator and of its engine.

A different abstract view may concentrate just on those factors neglected in the
figures, to help decide the required power of the engine and the brakes. Yet another
abstraction should focus on the illumination of buttons, using a Boolean variable to
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FIGURE 3.4b

A further decomposition of the
elevator system.

represent the fact that a button is 1llum1nated or is not, thus abstracting from say, the
power of the bulb in the physical button.

Finally, yet a different abstraction could describe the external layout of the buttons
with respect to the concern of usability: how big they are, how strong their 1llum1nat10n Is,
and how far above the floor of the elevator they are.

3.8.2.5 Anticipation of change, generality, and incrementality

The principles of anticipation of change, generality, and incrementality enlighten the
main difference between software engineering and more traditional system engineer-
ing, a difference due to software’s malleability. For instance, whereas it is quite natural
to build and deliver a subset of a compiler and then augment it, for example, by deliv-
ering new libraries, it is unlikely that we deliver, say, an elevator without doors and
then deliver doors and other accessories later on. The principles, nevertheless, do have ‘
their relevance in system engineering, too, but, in general, their application is
restricted to the design phase, which is more sharply separated from the delivery and-
maintenance of the product.

- As an example, we. may want a design of an elevator system that can be applied
to several similar—but not identical—buildings. In this case, we may decide to make
our design parametric with respect to a few distinguishing features that are likely to
change from instance to instance, but whose range of variation can be easily stated a
priori. We could design a system suitable for skyscrapers, with the number of floors
ranging from 30 to 80, with the number of elevators ranging from 4 to 10, with variable
speed and power, etc. Then, whenever we need to build a new skyscraper whose fea-
tures satisfy these ranges, we merely have to instantiate those parameters in our eleva-
tor system design, obviating the need to redo the design from scratch.

Even the design notation could be adapted to emphasize such a parametric
design. For instance, Figure 3.5 depicts the system of Figure 3.4a, but with the elevator

- and button boxes modified to denote a parametric number of instances of the same

object type.
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A parametric structure of an elevator 4 g
system.

In this case, generality can go a little further than just the design phase. In fact, we
could build several components, such as cabins, engines, and control apparatuses, that
are usable in several buildings of the same category. Then, when we build the actual
skyscraper, we only have to assemble those components according to the particular
design, which in turn consists simply of fixing up a few parameters, as we stated earlier.

CONCLUDING REMARKS

In this chapter, we have discussed seven important software engineering principles that
apply throughout the software development process and during software evolution. We
emphasized that these principles are, first of all, engineering principles and that analyzing
similarities and differences in the way they are applied in d1fferent engineering fields
may help one understand them more deeply.

Because of their general applicability, we have presented the principles sepa-
rately, as the cornerstones of software engineering, rather than in the context of any
specific phase of the software life cycle. Another reason for presenting the principles
separately is to establish a uniform terminology that we will use in the rest of the book.

The software engineering principles, as stated here, might seem too abstract. We
shall make them concrete with more details in the rest of this book in the context of
software design, specification, verification, and management. We shall do so partly
explicitly, by pointing out the relevant principles (where appropriate), and partly
implicitly, leaving it to the reader to recognize them as they come up. :

We emphasized the role of general principles before presenting specific methods,
techniques, and tools. The reason is that software engineering—Ilike any other branch

- of engineering—must be based on a sound set of principles. In turn, principles are the

basis for the set of methods used in the discipline and fox the specific techmques and
tools used in everyday life. -

As technology evolves, software engmeenng tools will evolve. As our knowledge
about software. engineering increases, methods and techniques will evolve, too— -
although less rapidly than tools. Principles, on the other hand, will remain more stable;
they constitute the foundation upon which all the rest may be built. They form the
bases for the concepts discussed in the remainder of this book:
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L FURTHER EXERCISES

-Suppose you are writing a program that' mampulates flles Among the facilities you offer is
a command to sort a file in both ascending and descending order. Among the files you

_manipulate, some are kept automatically sorted by the system. Thus, you might take

advantage of the fact: If the file is already sorted, you do not take any action; or you apply
a reverse function if the file is sorted in the opposite order. Discuss.the pros and cons of -
using such specialized solutions instead of executing the sort algorlthm every time the sort
command is issued.

Discuss briefly the relationships between generahty and anticipation of change.
Discuss briefly the relationships between generality and abstraction.
Discuss briefly the relationship between increméntality and timeliness.

Discuss briefly the relationship between formahty and anticipation of change.
Complete the case studies of Section 3.8 along various directions: You may consrder more

y

. requirements; you may go deeper into the modular structure of the systems; you can bet-

ter investigate interfaces with the environment of the systems; you may investigate other
cases where, 1ncrementahty could be applied.

A railroad crossing (RC) consists of one or more rail tracks that intersect a street. The

crossing is protected by a gate that must be operated automatically in such a way that cars
cannot enter the crossing while a train is going through it.

¢ Describe the structure of the railroad-crossing control systern by showmg its compo-
nents and their interfaces.

e State clearly and precisely the requirements that should be satisfied by the system in

order for it to operate safely and usefully. For instance, deciding to keep the gate
always closed would be safe, but useless, since no car could ever cross the track.

e Which features of the system are likely to change in different contexts?

HINTS AND SKETCHY SOLUTIONS |

35

~3.6

3.7

U ———

Dividing a long program into contiguous pieces does not necessarily generate a good

~structure with high cohesion. Grouping together statements that realize some conceptual

function gives higher cohesion. (This approach corresponds to the conventional decompo-
sition of programs into subroutines.) It is even better if we can group together the data
and the routines that access the data, because doing so enhances the program’s readability
and modifiability. :

Modules that do not interact with each other have minimum coupling but this also means

that they do not “cooperate” in any sense. If one module can access the local variables of
another—that is, if it can directly modify the state of the other module—the coupling is
higher than it is if a module calls a procedure defined in another module.

The end user is interested only in an abstract description of how to operate the applica-
tion; all details concerning how the application has been designed and implemented may
(and should) be abstracted away. The designer should know what the requirements are
and, when designing a part, should have an abstract view of the rest of the system that
allows him or her to have a clear picture of how that part interacts with the rest, without

having to take into account the details. When maintaining a system, one should also have

an abstract view of the rationale of the design (why certain design decisions were made
and why others were discarded). This would allow a system to be modified in a reliable
way without impairing its structure.
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3.10 We will see in Chapter 7 that the waterfall life cycle is an idealized view of software develop-
ment. For example, the model of Figure 1.1 ignores the fact that some steps must be
- repeated as one phase reveals inconsistencies or mistakes in the previous phase.

3.12 The software prototype illustrated here is an evolutionary prototype, whereas in other
fields we see more of throwaway prototypes. These terms will be discussed in Chapter 7.

3.16 By delivering an application incrementally, we might deliver a useful subset of the
application garlier. That is, we can be early on the market with a product, although it is
incomplete.-
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prototype systems that have implemented the idea in Java and other languages.

.The concepts of cohesion and coupling are discussed by Yourdon and Constantine [1979] and
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tion..Bennett and Rajlich [2000] goes so far as to say that, since maintenance consumes such a
large portion of software costs, labeling the last phase of the development process as mainte-
riance is no longer sufficient. The authors propose a software life cycle that takes evolution
explicitly into account. The cycle involves development, servwmg, and the phaseout of the soft-
ware.

Conﬁguranon management is discussed by Babich [1986], Tichy [1989], Estublier [2000], and
later in this bookin Chapters 7 and 9. The language AWK is presented by Aho et al. [1988].

Rapid prototyping is discussed by Boehm et al. [1984]; the special issue of JEEE Computer
edited by Tanik and Yeh (Computer [1989a]) contains several papers on the subject.
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subject of Exercise 3.19 have been proposed and widely explored in the literature as bench-
marks for testing the suitability of software engineering techniques for the solution of realistic -
problems. The elevator system was initially proposed in IWSSD[1987]; the railroad-crossing sys-
tem is presented and thoroughly investigated in Heitmeyer and Mandrioli [1996].
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Design and Software
Architecture

Design is a fundamental human activity. In a general sense, design provides a structure
-to any complex artifact. It decomposes a system into parts, assigns responsibilities to

each part, and ensures that the parts fit together to achieve the global goals of the sys-

tem. This is true in any field, not only software: Architects design shopping malls (i.e.,

the layout, buildings, parking lots, air-conditioning and heating system, power supply,.

etc.), and novelists design novels—their characters, the overall plot, and the decompo-

sition into chapters. Some design principles—how to decompose a system into parts,
~ what properties the parts should have, and the like—are fairly general; others are
" domain specific.

In the case of software, the concepts of design apply in two different, but strictly -
related, contexts. On the one hand, design is the activity that acts as a bridge between
requirements and the implementation of the software. Once we have determined the
need for a software system and we have decided on its desirable qualities, including the
interface it provides for interaction with the extérnal world, we must proceed to design -
that system. The first result of our design activity is an architectural design that shows
the major parts of the system and how they fit together and cooperate. The architec-
ture shows the gross structure of the system. On the other hand, as we said, any com-
plex artifact must be designed. According to this context, design is the activity that
gives a structure to the artifact. So, for example, the requirements specification docu-
ment itself must be “designed”; that is, it must be given a structure that makes it easy to
understand and evolve. This chapter deals with both these contexts for design.

There is a mutual dependency between this chapter and the next, which talks
about specification: On the one hand, according to the first context of design that we
have mentioned, in a typical development life cycle, requirements specification occurs
before architectural design. This argues for discussing specification before design. On
the other hand, according to the second context, the principles of structuring large arti-
facts apply equally well to the structuring of requirements specifications. In addition,
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architectural designs must be specified. As a ’result we have decided to talk about
design prior to dealing with specification in the Dext chapter.

The current chapter starts by discussing the design activity and its fundamental
goals. The chapter shows how we can achieve the desired qualities illustrated in Chapter
2;in particular, it emphasizes the need for designing systems that are reliable and evolv-

“able. The principle of rigor and formality will inspire us to adopt appropriate notations
for describing the resulting designs. Separation of concerns, modularity, and abstraction
will be applied to tame the complexity of the design activity and produce designs that -
are characterized by high understandability, to enhance our confidence in the correct-
ness of our solutions. Finally, anticipation of change and incrementality will allow us to
design systems that can evolve easily as requirements change, or systems that can be

“enriched progressively in their functions, starting from an initial version with only lim-
ited functionality. Design for change is the motto we adopt from Parnas to stress the
principles of anticipation of change and incrementality in the context of design.

We also tackle the problem of designing families of applications. Very often, the
applications we design are not just individual products, but a family of products that
may differ in some of the functions they offer, the hardware configuration on which
they run, the set of services they provide, etc. Despite their differences, there is much in

~common that can be analyzed and designed once for the whole family. The principles
of generality and anticipation of change support the design of product families. In fact,
various members of the family may be designed on the basis of the same architecture.
A carefully designed family architecture supports the development of different system
designs for individual members of the family.

' To achieve high quality of design, the software engineer must address two crucial
and strictly related issues. First, the engineer must provide a careful definition of the
modular structure of the system—a definition that specifies the modules and their.
interrelationships. These concepts are discussed in Section 4.2.1. Second, the engineer
must choose appropriate criteria for decomposing a system into modules.

The main criterion we introduce in Section 4.2.2 and discuss throughout the book:
is information hiding: A module is characterized by the information it hides from other
modules, which are called its clients. The hidden information remains a secret of the
client modules. Section 4.2.3 introduces a design notation (TDN/GDN) that is used to
document the results of the design activity. Information hiding is further analyzed and

“specialized to deal with the changeable nature of data, leading to the concept of abstract
data types, presented in Section 4.2.4. Further techniques supporting design for change
are discussed in Section 4.2.5. Section 4.2.6 introduces a ‘popular design technique called
stepw1se refmcment This techmque produces software designs in a top-down manner,
whereas information hiding proceeds mainly from the bottom up. Design strategies (top
down vs. bottom up) are contrasted in Section 4.2.7 from several viewpoints, -

To achieve the goal of reliability, we deal with the problem of designing software
that can respond to adverse events and behave in an acceptable manner even when it
enters anomalous processing states. A careful design activity must address this robust-

" ness requirement, which is extremely unportant in safety cntlcal applications. These
issues are treated in Section 4.3.

- The principles of good design cann‘ot be taught as a fixed set of rules to be

-applied according to a rigid recipe. If they are formulated in abstract terms, they do not
provide designers with deep insights and convincing suggestions. Their effectiveness is
best communicated through examples. Unfortunately, for reasons of space, it is impos-
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sible to illustrate the complete designs of real applications in a textbook. Thus, we illus-
trate the various design concepts through small practical examples. We do, however,
provide a more comprehensive design case study in Section 4.4.

~In Section 4.5, we discuss how concurrency, distribution, and real- tlme issues
affect de51gn We do not go deeply into this subject here, for several reasons. First, a dis-
cussion of how concurrent components may interact and be synchronized is a special-
ized topic that deserves a separate treatment. Traditionally, this subject is studied in
courses and textbooks on operating systems, distributed systems, real-time software,
etc. Second, the issue is highly related to the specific constructs available in the operat-
ing system or the programming language used to implement concurrency. Thus, going
deeply into details would require dealing with several dlfferent notations. Accordingly,
we stick to general concepts and refer to selected concurrency schemes in our discus-
sion, without aiming for completeness. ‘

Our discussions in Sections 4.2-4.5 are mostly based on traditional design con-
cepts. Section 4.6 shows how the concepts of information hiding and abstract data
types eventually found a coherent unified application in object-oriented design. We
discuss the specific additional concepts introduced by object-oriented design, and we
show how that technique supports software evolution and reuse. Furthermore, we

introduce the Unified Modeling Language (UML) standard design notation.

Designs are ultimately mapped onto programs; that is, the structures and compo-
nents we identify during the design activity will be represented in terms of constructs
of the programming language that we use to implement our software. This mapping of
designs onto programs can be done more easily for some languages than for others; in
particular, there are languages for which the design techniques we present can lead to
programs almost directly. For example; information hiding and the design structures
illustrated in this chapter may be easily mapped onto conventional modular languages

- such as Ada. Object-oriented languages, such as C++ or Java, would be the natural can-

didates for implementing object-oriented designs.

Increasingly, software is not built from scratch, but rather integrates components
that may be bought off the shelf. The long-anticipated goal of reuse through “compo-
nentization” is becoming reality, both because new languages allow reusable compo-
nents to be designed and because generalized support is becoming available for
making different components that are capable of being integrated into a coherent
architecture. Examples include the STL library of C++, Java and Java Beans, COM,

-and CORBA. The problem of specifying a software architecture at a higher level than
TDN/GDN or even UML is also becoming increasingly important, and is a topic of
active research. Other important problems are the identification of common design
patterns that can be collected and classified for later reuse and the definition of adapt-
able architectures that define some generalized application framework. Such issues of
component-based development are discussed in Section 4.7.

‘ Design is a difficult and critical activity. It is also highly creatlve In each new
design, the engineer invents something that never existed before. There are many deci-
sions and trade-offs to be made along the way. This chapter is about the methods we
can use to overcome these difficulties and to guide and discipline the creative process.
Systems, however, may be complex, requirements may be conflicting; and the general
methods to apply are far from precise prescriptions. Unfortunately (or fortunately?),
in software design there are no general and easy-to-use recipes that can be adopted
once and for all and followed faithfully in all circumstances. Specific prescriptions are




70

4.1

Chapter4  Design and Software Architecture

applicable only in restricted domains. The designer must be equipped with general
principles and methods whose practical application will then depend on how and
where they are to be applied and other constraints, such as the qualities desired of the -
product, the composition of the development team, and schedules. It is important for
the designer to practice applying the principles and methods we present here, so that
they become second nature to him or her, just like the laws of mathematics.

To ease the application of good principles and methods, some have been
prepackaged into standardized methodologies. There is a high demand for such
methodologies from industry, because they tend to standardize software development
by making the application of methods more uniform within an organization.
Standardization, in turn, makes it easier to cope with management issues such as per-
sonnel turnover in software development groups. Some of these methodologies have
been widely adopted in practical software development, although quite often they are

" just based on common sense and lack truly convincing, general, and rigorous founda-

tions. We briefly account for some of the important methodologies in Chapter 7, which
deals with the organization of the software life cycle. In the current chapter, we con-
centrate on general, application-independent design pr1n01ples that can be used-to
meet the software quahty goals stated in Chapter 2.

THE SOFTWARE DESIGN ACTIVITY AND ITS OBJECTIVES

The design activity is a fundamental phase in the software development process that
progressively transforms the system requirements through a number of intermediate
stages into a final product. The output of the design activity is a software design.! We
define a software design as a system decomposition into modules—a description of
what each module is intended to do and of the relationship among the modules. Often,
a software architecture is produced prior to a software design, and it guides the devel-
opment of the design. The architecture shows the gross structure and organization of
the system to be defined. A description of a software architecture includes a descrip-
tion of the main components of a system, the relationships among those components,
the rationale used for the decomposition of the system into its components, and the

" constraints that must be respected by any design of the components. The goal of the

architectural design act1v1ty is to define the software architecture; the goal of the soft-
ware design activity is the definition of the software design according to the guidelines
set forth in.the software architecture. Because the principles used in developing an
architecture and a design are similar, in this chapter we will often refer to design and
architecture interchangeably.

We can view design as a process in which the views of the system are described
through steps of increasing detail. First, the architecture is developed on the basis of
the system requirements; next, a high-level design is produced on the basis of the archi-
tecture; then, a low-level design is derived on the basis of the high-level design; and so
on. Each new step implements the requirements specified in the previous one, the final
step being the implementation, which completes the transformatlon of the software..
architecture into programs.

1As we observed earlier. the term * desxgn is used to denote both the activity and its result. When an ambngulty may
arise. we explicitly call the former “design activity™ and the latter “software design™ or* architecture.”
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The modularity principle is of paramount importance in the design of software; it
is why the components of a system identified during the design activity are called, sim-
ply, modules. In the software literature, however, the concept of a module is rather elu-
sive. Sometimes the term is used to name a boxlike iconic symbol in a blueprint that is
intended to represent a design. In other cases, it is used to denote a well-identified
piece of a program, such as a collection of routines. In still other cases, it is used to
denote individual work assignments within a complex system. We will clarify our idea
of a module in the sections that follow; for now, we rely upon an intuitive notion that
may encompass all of the foregoing possibilities. -

The decomposmon of a system into modules can be aocomphshed in several

~ways and in several steps. For example, as we mentioned, one might first decomposg

the system into higher level components. Relations among the components are then
defined, and their intended behavior is agreed upon by the designers. Next, each com-
ponent is analyzed separately, and the procedure is iterated until we reach the point

where the complexity of each component is sufficiently small that 1t can be 1mp1e-
‘mented readily by a single person.

~ When a module M is decomposed into other modules, we say that these are used
to implement M. Thus, in this approach, implementation is performed by recursively
decomposing (sub)modules into modules, until we reach the point where implementa- '

-tion can be done in terms of a programming language in a straightforward way.

‘The reader will recogmze here several of the principles and concepts that were

‘presented in Chapter 3, in addition to modularity. ngor and formality are useful in the
-descrlptlon of the software architecture: The more precise the dCSCl‘lpthl’l the easier it

is to divide software development into separate tasks that can proceed in parallel with

+ - little risk of inconsistencies. Also, precision makes it easier to understand the system

should the need arise to modify it. Finally, the effectiveness of the aforementioned
design process depends on how well the techniques selected for. modularization allow

us to deal with each module separately, according to the principle of separation of con- -
cerns. Using two concepts already introduced in Chapter 3, we may state that modules ,
'should have high cohesion and low couphng

According to the definition we gave in Chapter 3, the process of module decom- "

position just described can be called top down. It is also possible to proceed in a
‘bottom-up manner. For example, a module may be designed to provide an easy,
~ . .abstract way of accessing a peripheral device, masking the low-level hardware-ori-
“ented primitives provided by the device. The module acts like a layer that applies cos-

metics (i.e., abstraction) to the device and lets it appear with a better and
easier-to-deal-with look. Here, the process is intrinsically bottom up: We start from an

existing, but intricate, object, and we build an abstraction around it.

According to a bottom-up strategy, the design process consists of defining mod-

"‘ules‘ that can be iteratively combined together to form higher level components. This is
‘typical when we are reusing modules from a library to build a new system, instead of
‘building such a system from scratch. The entire system is- constructed by assembling

lower level components in an iterative fashion.

The topic of bottom—up versus top-down deS1gn will be taken up later, in Section . .
- 4.2.7. We will see that it is possible—and often convenient—to comblne the two, for

different parts of the system or at different points in the design activity.
Before discussing the criteria that may be followed to modularize a system, we

-examine two important goals that drive the design of a software architecture: design
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for change, in Section 4.1.1, and product families, in Section 4.1.2. Design for change is
a way to design software that can be modified easrly as requirements change. Similarly,
the concept of a product family allows us to view several end products as a family of
products that share a single architecture that is reused—specialized and modified in
varying degrees—in different contexts, giving rise to different designs. Thus, both con-
cepts—design for change and product families—fall within the general framework of
software reusablhty and support software evolvability. -

Desngn for Change

In Chapter 3, we presented antlclpatlon of change as a general softwarc principle to

cope with the evolutionary nature of software. To apply this principle in the context of

_software design means that during the design activity we anticipate the changes that

the software . may undergo during its lifetime and, as a result of this anticipation, pro-
duce a software design that will accommodate the cﬁ'aﬁges easily. Following Parnas, we
refer to the techniques used to accomplish this goal as design for change.

Design for change promotes a design- that is flexible enough to accommodate
changes easily. This, however, cannot be achieved in general, fot every type of change.
Special care in the initial phase is necessary to anticipate likely changes when the
requirements for software are stated. At this initial stage, we should not concentrate
exclusively on what is presently needed in terms of functions to offer or even, more

. generally, qualities to achieve. We must also consider the expected or possible evolu-

tion of the system. In fact, very often, the application we are designing is the first step
of a known, preplanned sequence of steps that will lead to the final automated system.
In such cases, we must make sure that the initial design will easily accommodate the
anticipated evolution of the product.

Still more often, however, requ1red changes are not prec1sely known a pr:orz,
although they will almost inevitably arise afterwards. Here, the previous experience of
the software engineer and the deep understanding of the problem domain by the end
user may play a major role in identifying potential areas of change and the future evolu-

- tion of the system. Afterthe requirements for changes are identified, the designer should

4.1.1.1

ensure that the product’s design will easily accommodate those changes in the future.

Software engineers must realize the importance of design for change. A common
mistake is to design a system for today’s requirements, paying little or no attention to
likely changes. The consequence of this approach is that even a marvelous design may
turn out to be extremely difficult and costly to adapt to requests for changes, and it will -
have to be redone almost completely in order to incorporate even seemingly “minor”
changes. Another unfortunate consequence is that, in the process of trying to accom-
modate changes, the designer may have to clutter the initial elegant structure, resulting
in an application that is more and more difficult to mamtam and that inspires little
confidence in its rehablhty

What changes? The nature of evolvability

What types of charlges should a design try tdanticipate" To6 understand this issue, we
must go back to the problems we discussed in Chapter 2 under the rubric of maintain-

 ability and, in partrcular to the notion of evolvabllrty (Sectlon 2.2.52). As we saw, it has
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been reported in the literature that maintenance usually accounts for more than 60
percent of software costs. One reason these costs are so high is that software engineers’
~ tend to overlook ‘the issue of mamtamablhty during software development In fact,
they do not anticipate it at all.

Recall from Chapter 2 that maintenance may be classified into three categories:
 perfective, adaptive, and corrective. Adaptive and perfective maintenance are the real
- sources of change in software; they motivated the introduction of evolvability as a fun-

damental software quahty and ant1c1patlon of change as a general pr1nc1p1e that should
- guide the software engineer.

“In this section, we mostly discuss changes that may fall under perfective or adaptlve
maintenance. These changes are not exhaustive of all such changes, but they are a sample-
of common ones. Other important cases of change, which are more under the software'
engineer’s control, occur in the case of a development strategy based on iterative proto-
typmg In such a strategy, at a certain stage, certain parts are designed and implemented-
ina prehmmary form;at a later stage they are turned into a more finished version.

' Change of algorlthms. ThIS change is probably the best understood type of change'
that we can apply to software: To i improve the eff1c1ency of some part, to deal with a
more general case, etc.

Consider, for example, sorting algorlthms In order to choose among the many
existing algorithms, we should know the size of the list to be sorted, the likely distribution
of the data in the list, etc. Consequently, the choice of the most suitable algorithm to be
used in an application may depend on experimental data acqulred after the system is
operational. We might start with a simple and straightforward algorithm as our initial

“choice and then replace it with a better solution as more experimental data are acquired.
If the algorithm is confined to a well-identified module (e.g., a routine of the program-
ming language), the change will be easy to apply because the portion of the program that
requires changlng is easily 1dent1f1ed being bound by its unique entry and exit points.

Exercise’

4.1 Give an example of two sorting algorithms whose execution profiles depend strongly on
‘the distribution of data in the array to be sorted. Discuss how data distribution affects the
execution profiles. .

Change of data representation. The efficiency of a program can change dramatically if
one changes the structure used to represent some relevant data. As an example, chang-
ing the structure used to represent a table from a sequential array to a linked list or to a
hash table can change the eff1C1ency of the operations accessing the table. Typically,
inserting an element into an array is costly if array entries are to be kept sorted accord-
ing to, say, increasing index values. In fact, inserting an element at position i must be
preceded by an operation that shifts all the elements at positions i through n, n being
the number of stored entries, in order to provide room for the entry to be stored at posi-
tion i.This shift operation, whose average cost in terms of processing time is propor-
tional to n, is not needed if we choose a linked-list implementation of the table. ‘
Another example is a tree data structure, implemented via pointers. Each node of
the tree has two pointer fields, one pointing to its right sibling, if any, the other pointing
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- to its first direct descendant, if any. (See Figure 4.1(a).) One more pointer may be
. added to make it easier (i.e., more efficient) to move along the data structure from the
_ leaves towards the root of the tree. The pointer we add connects any node to its parent

Design and Software Architecture

" node, if there is any (See Figure 4.1(b).)

" As another example of a change in data representation, not dictated by efficiency
issues, one might wish to add fields to (or delete fields from) records as more (or less)
information is needed to be saved in a file. One instance of this is when a new field is
added to records representing students enrolled in a class in order to store the data on

the other courses the student is currently taking.
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Two sample data structures representing a tree.
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It has been reported that changes in data structures have a profound influence on
the costs of maintenance (about 17 percent of total maintenance costs!).2 -

- Although we have discussed change of algorithms and change of data structures
separately, they are often related. For example, we may apply a change in a data struc-
ture in order to provide a better algorithm. Or, vice versa, a change in algorithms may
require changes in a data structure.

Exercise

4.2 Discuss some possible motivations for changing the tree data structure presented in
Figure 4.1: Discuss whether (and why) the change of data structure requlres a change of
algorithms.

[y

Change of underlying abstract machine. The programs we write are run by some
abstract (or virtual) machine. The machme coincides with the hardware in the (happily
unlikely) case where no higher level languages are available for programming. More
frequently, the abstract machine we use corresponds to the high-level language in
which we write programs, the operating system to which we issue system calls, possibly
the database management system we use to store and retrieve persistent data, etc. The
abstract machine, by itself, hides details of the underlying physical machine.

~ Very often, however, we need to modify applications in order to be able to run
them under a new release of the operating system and take full advantage of the new
facilities offered. Similarly, new releases of the compiler we use may be available, and
the new version might perform additional optimizations in order to generate faster
and smaller object code. Or there might be a new version of the database management
system (DBMS) that saves disk space and offers improved functions in terms of pro-
tection from undesired access and recovery from failures. Or again, a newer, more effi-
cient, more reliable version of some library used by the application may become
available. This means that the underlying abstract machine changes, and the changes
may affect our application. Sadly, the benefits do not come for free. For example, if the
new DBMS is able to store our data in half the original space, we have to reformat our
existing databases. We may also have to change our data access programs to take
advantage of the saving in space. Even if the functions offered by our software remain
totally unchanged, the change in the underlying abstract machine affects the software.

Exercise

43 Do you have any personal experience with software changes in the underlying abstract
machine? Briefly present your experience and discuss what made your software difficult
" tochange.

Change of peripheral devices. A change of peripheral devices is strongly related to a
change of the underlying abstract machine. We can view it as a specialization of that type
of change in such cases as embedded computer applications, avionic systems, and process
control systems, in all of which control software needs to interact with many different

2See Lientz and Swanson [1980].
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‘and Special-purpose peripheral devices. Such devices may be subject to change;in partic-

ular, they are progressively becoming “more intelligent”; that is, data-processing func-
tions are being progresswely decentralized to be performed locally, without disturbing

“ the main application running on the main machlne Ideally, we would like to be able to

aocomx_nodate such changes without affectmg or redesigning the entire application.

Change of social environment. A change of social environment is similar to the pre-
vious two types of change. It is, however, not motivated by the need for modification -
arising in the software itself. Rather, the social environment in which the application is
embedded requires our software to change

~ For example, in a tax application, suppose that a change in leglslatlon requires
the rules for deductions to change slightly. Then the concept of a deductible item
remains, but the list of dcductlble items changes Software must change accordmgly, in -
order to make the application valid for the new tax rules. ~ °

As another example, several countries of the European Union decided.to unify

thelr currencies by introducing the euro. This change in legislation affects existing soft-
ware. Think of banking applications or any type of financial system that must now deal
with euros instead of Italian lire or Austrian schillings. Eventually, all the software that
deals with specific currencies and conversions among them will be retired. -

Exercise

4.4 . For some existing or hypothetical application, give an example of a software change that
might be due to a change in the social environment.

" Change due to the development process. : Following the moﬁv_a'tion we discussed in

Chapter 3, software is often developed incrementally. Incrementality is another source
of change that requires special care. For example, we may try to isolate useful portions.
of the application and release them so that the customer can start using the system and
give us feedback based on experience. Later; when new parts are added to the system,
it is important that we concentrate on the new developments and leave the early sub-

- sets unchanged. To make the approach feasible, the new and old parts must fit together
. cleanly, so that complex software changes will not be necessary as the new parts are -

released and integrated with the previously running, but incomplete, application.

Product Families

In many practical situations, changes consist of building new versions of the same soft-
ware; every version constitutes an individual product, but the set of versions constitutes a

~ family. Often, a new version is supposed to supersede the previous one; say, it eliminates

some known errors or adds improved features to the product In other cases, a new ver- .
sion is simply another product that coexists with the previous one; maybe it works on a

‘different hardware, it has special requirements in terms of memory available, or it pro-
- vides different functions for some parts of the system. The reason we regard the different

versions of a software product as.a family, rather than a set of different products, is that

-all'members. in the family have much in common and are only: partially different.

Frequently, they share the same architecture. By designing a common architecture for all
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members of the family jointly, rather than doing separate designs for each member of the
family, we avoid the cost of designing the common parts separately.

A good example of a product family is the mobile (cellular) phone. Manufacturers
want to sell their phones in different countries. While the basic functionality of the
phones are the same in different countries (placing calls, receiving calls, maintaining a
list of phone numbers, etc.), the phones may need to deal with different network stan-
dards, different natural languages for interaction with the user, different safety require-
ments, and so forth. The basic software that controls the phone is the same, but its
interface to the environment depends on the geographic location.

Another example is a database management system that is required to run on dif-
ferent machines, possibly on different operating systems, and for various configurations.

In both cases, we should identify commonalities among the different versions of
the software and delay the point at which any two versions start being different. The
more we stress commonality, the less work is done for each new version. This decreases
the chance of inconsistencies and reduces the combined maintenance effort expended
on all the products. .

Earlier approaches to software and product development did not pay special atten-
tion to designing product families, but rather proceeded from version to version in a
sequential manner. A common mistake is illustrated by the very informal, but intuitive,
trees shown in Figure 4.2. Starting from the requirements, version 1 of the application
(corresponding to node 3 in Figure 4.2(a)) is developed through a sequence of design
steps (represented by directed edges). Nodes represented by circles stand for intermediate

Requirements ~ Requirements Requirements
Version 1 3 Versionl | 3 Versionl | 3
(a)
4 6
5 | Version 2 Version2 | 5 7 |Version 3
(b) ()
FIGURE 4.2

Sequential design of a product family.
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design descriptions; nodes represented by squares represent a complete, executable ver-

. sion of the software. Thus, Figure 4.2(a) illustrates that the requirements are first trans-

formed into the intermediate design stage 1, then 2, and, finally, version 1 of the product.

At this point, if the need for a new version—version 2—arises, we start modifying
version 1. Initially, the application is put in the intermediate design stage represented by
node 4 (Figure 4.2(b)) by deleting parts of the code of version 1; then it is transformed
into a fully operational version, represented by node 5, which in turn may be the start-
ing point of the derivation of further versions not illustrated in the figure. Also, a branch
representing a different version may start from node 3, as illustrated in Figure 4.2(c).

This type of approach for deriving the members of a product family is not satis-
factory. In fact, the family illustrated in Figure 4.2 must be biased by the design deci-
sions made while version 1 was initially developed, since versions 2 and 3 are derived
as modifications of version 1. No effort was made to isolate what is common to all ver-
sions and, iteratively, what is common to smaller and smaller subsets of the family.
Thus, the derivation of a new member of the family becomes particularly difficult if the
new member differs substantially from the previous member.

New versions of software are derived by modifying the code of the previous ver-
sion because, often, intermediate design steps (represented in the figure by circles) are
not documented. Programs are the only available trustable descriptions that can be
used as a starting point for modifications. But programs (even well-written and well-
documented ones) may be difficult to understand in sufficiently precise terms to allow
modifications to be applied reliably. We can never be sure whether a modification done
to a part of the system will adversely affect other parts. Also, we may inadvertently
make design decisions that were discarded before, but never documented. ,

A systematic approach to the design of product families that solves these prob-
lems will be presented in Section 4.2. This approach is based on the general principle of

. designing for change, where changes are restricted to capturing the differences among

the various members of the family. In the late 1990s, several techniques were devel-
oped to deal with the systematic development of product families. These techniques
exploit better analysis techniques, software architectures, and modularization.

MODULARIZATION TECHNIQUES

In this section, we discuss techniques that can be used during design to achieve the
objectives stated in Section 4.1. In particular, we distinguish between two complemen-
tary aspects of design—one (Section 4.2.1) that addresses the problem of defining the
overall structure of the architecture in terms of relationships among modules and the
other (Section 4.2.2) that deals with the design of each module, to which we apply the
principle of information hiding.

As stated in Chapter 1, these two aspects are often called archztectural (or high-
level) design and detailed design. Even though several design methodologies suggest

that the‘two be performed as two consecutive steps, we do not see them as separate

steps, whereby the second necessarily follows the first. Rather, we view design as a con-
tinuum in which the interplay between these two activities takes place in a flexible way.
In order to document and analyze our designs, we need a design. notation. We

/introduce a simple design notation in Section 4.2.3. The purpose of this notation, which
.comes in both a textual and a graphical form, is to serve our pedagogical needs in this
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book: It is not intended that the notation be used in industrial software development.
Rather, the notation serves to show the features needed in a design notation and why
they are needed. Later, in Section 4.6, we will refer to a standard notation (UML), -
when we discuss object-oriented design. o

After introducing information hiding as a general principle, we illustrate a partic-
ular instance of it that leads to the important concepts of abstract objects and abstract
data types, defined and illustrated in Section 4.2.4. Then we analyze design strategies
and distinguish between top-down and bottom-up design. The two approaches are
compared critically in Sections 4.2.6.and 4.2.7. '

4.2.1 The Module Structure and its Representation

A module is a well-defined component of a software system. It is common to equate . .
modules-and routines, but this view of a:module is too narrow. A module is a soft-
ware fragment that corresponds to more than just a routine. It may be a collection
-of routines, a collection of data, a collection of type definitions, or a mixture of all of
these. In general, we may view a module as a provider of computational resources or
services. ) : : _ :

When we decompose a system into modules, we must be able to describe the over-
all modular structure precisely and state the relationships among the individual modules.

~ We can define many relationships among modules. For example, we may define a
relation which states that one module must be implemented before another or that it is
more important than another. The first relation may be used by a manager to monitor
the development of the system; the second may be used as a guideline for assigning
work to programmers according to their skills and experience. ,

What we are interested in here, however, are the kinds of relations on modules
that define the software architecture and that help us understand and control it—for-
example, whether a module uses the facilities provided by another module or is a part
of the other module. As we shall see soon, these are two useful relationships among, ..
modules that may be used to define our system architecture. - -

In what follows, we address three particular issues: What is the structure of soft-
ware in terms of its constituent modules? How can we define that structure precisely?
And what are the desirable properties of such a structure?

First, from an abstract viewpoint, the modular structure of a system can be
described in terms of various types of mathematicai relations. Let S be a software sys-
tem composed of modulesM,, M,..., M;thatis, :

S = {M, M, ..., M]}.

A relation r on S is a subset of S X . If two modules M, and M, are in S, we rep-
resent the fact that the pair <M;, M,> is in r by using the infix notation™; r M;.Since
we are interested in describing the mutual relationships among different modules, we
will always implicitly assume the relations of interest in this text to be irreflexive. This

. means thatM, r M, cannot hold for any module M in S. ;

‘ The transitive closure of a relation r on S is again a relation on S, writteh r*. Let M;
and Mj be any two elements of S. Then r* can be defined recursively as follows: I:Iir*Mj
if and only if M; r M, or there is an element 1, in S such that M; r M, and M x”M;. A
relation is a hierarchy if and only if there are no two elements M; M; such that M, r"M,
andM; r’ M;. : ‘

\
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4.2.1.1

The transitive closure of a relation captures the intuitive notion of direct and
indirect relationships. For example, for two modules A and B, A CALLS' B implies
that either A CALLS B directly or A CALLS B indirectly through a chain of CALLS.

Mathematical concepts can usually be grasped more effectively and intuitively if
we can give them a graphical representation. Relations are a good example of this gen-
eral principle. A relation can be represented in graphical form as a directed graph
whose nodes are labeled by elements in S, and a directed arc exists from the node
labeled M; to the node labeled M; if and only if M, r M,.

A relation is a hierarchy if and only if there are no cycles in the graph of the rela-
tion; this type of graph is called a directed acyclic graph (DAG). Figure 4.3(a) illustrates
a generic graph, and Figure 4.3(b) represents a hierarchy (a DAG).

The next two subsections discuss two types of relations among modules that are
very useful for structuring software designs: USES and IS_COMPONENT_OF.

The USES relation

A useful relation for describing the modular structure of a software system is the so-
called USES relation. For any two distinct modules M; and M;, we say that M; USES I,
if M, requires the presence of M, because M; provides the resources that M; needs to
accomplish its task. If M; USES M;, we also say that M, is a client of M, since M,
requires the services that M, provides. Conversely, 14 is called the server. More con-
cretely, a USES relation is established if module M, accesses a resource provided by
module M,. For example,M; USES M, if M; contains a call to a procedure contained in
module M, or if M; uses a type defined in M..

A good restriction to impose on the USES relation is that it should be a hierarchy.
Hierarchical systems are easier to understand than nonhierarchical ones: Once the
abstractions provided by used components are understood, client components may be
understood without looking at the internals of the used modules. In other words, sepa-
ration of concerns can be applied by traversing the USES structure, starting with the
nodes of the DAG that do not use any other nodes, up to the nodes that are not used
by any other node. When we encounter a node, the corresponding module may be

M,

M, \ /l\
/ \ ’ My My, M3
M, My /\ /
l / 1 M2 My,2,2
/ } N
Mg—""" ¥ My,2.1.1 My M,
\\ / A
/ ) M,
Mg
FIGURE43 (a) , ‘ (b)

Graph representation of a relation among modules. (a) General graph. (b) Directed
acyclic graph (DAG).




PIERS 14869-

i< Mo‘*dﬁfarrzatlon ?echﬁlhues 81

understood by referrln'g"tO“‘the a‘bstrac""ons pro”“"”""' by use
have been previously encolntered and understodd’
As a consequence of the h1erarclncal USES structura; we thalﬂ another beneficial
hierarchical, “we may ¢ end up with

73T fact ce of acycle

" modul { m the cycle

machmes untﬂ o fﬁrther’levefs are grven .

it A A example] consider the” casé fof ¥ module M

record values. Let M use another module VM, that provides input- outpiit of*a‘Smgle byte

at a time. When M, is used to output record values, its job consists of transforming the
- record-intoca:sequence of-bytes:andiisalating a-single:byte:atia: time, to be output by
srmeans of the: outputioperationsprovided; by .M, -As viewed:byits clients, module M is a

virtual machine that 1mp1ements input andsoutpyt.operations forxx'ecord values. But in

3Parnas [1979].

id’ modulés (1f any) that




82 Chapter4  Design and Software Architecture

1o clarify this issue, consider a module M that uses modules M, and M, by calling one of
their procedures. If the client module M contains the code structure

if cond then procl else proc2

where procl is a procedure of module M, and proc?2 is a procedure of module M,,
then M USES M, and M USES M,, although during any particular execution it may well
happen that elther M, or M,, but not both, is invoked.

As another example con51der the dynamic reconfiguration of a distributed sys-
tem: At run time, module M; may use module M; up to the point where dynamic recon-
figuration causes M; to use module M,, ¥; and M, provide exactly the same
functionality, but reside on different nodes of the distributed system. Upon failure of
the node where M, resides, any request for the services that were provided by M, is redi-
rected to M,. Thus in terms of the USES relation, we have both M; USES M, and M
USES M,, although only M, is actually used in the normal case.

The graphical view of the relation USES provides an intuitive, although partial,
description of the coupling among modules. If each node of the graph is connected to k
every other node of the graph (i.e., the graph is complete: There is a pair <M;, M,> in |
USES for each M;, M, in S), then the modular structure is highly intricate and does not
provide a manageable partitioning of the entire system into parts.

Actually, these comments also hold for most other relations among modules. If
the graph of a relation r is such that every module is related to every other module,
then no part is independent of the whole. In such a case, the cardinality of r is
n(n - 1),where n is the cardinality of S. On the opposite side, if r is empty, then the
relation describes a modular structure in which no two modules are related. Thus, the
system is split into parts that can be designed and understood in complete isolation.
While an empty r is unrealistic in practice, this situation shows that we should try to i
achieve modular structures in which the cardinality of r is much smaller than n?.

The USES relation provides a way to reason about coupling in a precise manner.
With reference to the USES graph, we can distinguish between the number of outgoing
edges of a module (called the module’s fan-out) and the number of incoming edges
(called fan-in). It has been suggested that a good design structure should keep the fan-out
low and the fan-in high. A high fan-in is an indication of good design because a module
with high fan-in represents a general abstraction that is used heavily by other modules.

In order to evaluate the quality of a design, however, merely evaluating the
structure of the USES relation is not sufficient. Also important is the nature of the
interaction among modules. Here are examples of how modules may actually use
one another: -

1. An unstructured type of use occurs when a module modifies data—or even
instructions—that are local to another module. This may happen in the case of
assembly-language programs.

2. A module may use another module by communicating with it through a com-
mon data area, like a C static variable or a FORTRAN COMMON block.

3. The data exchanged between two modules may be “pure” data, or they can be
control information, such as flags. Exchanging -control information often -
results in a tricky kind of interaction that impairs the readability of programs.
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4. A subprogram may communicate with another by invoking it with suitable
parameters. This is a disciplined and traditional way of how two functional
modules interact.

5. In a concurrent environment, a client module may communicate with a server
through a remote procedure call (or a remote method invocation, as in Java).
In a similar fashion, in the Ada programming language, a module M enclosing
task T,. may use a module M' enclosing task T,. by having a call to an entry of
task T,.. These are disciplined ways for two concurrent modules to communi-
cate with each other.

Exercises

4.5 Consider the case where the USES relation is defined by a tree. What does the fact that the
structure is a tree, and not a DAG, represent? In general, would you prefer a design in
which the USES relation is a tree or a design in which the relation is a DAG?

4.6 Consider procedure calls that may be taken to be instances of the USES relation. Mutually
recursive. modules do not form a hierarchy. Direct recursion within a module, however, is
allowed in a hierarchy. Are these statements correct? If so, what is their justification?

4.7 Can you define the concept of level for a general graph rather than for a DAG? Why? Why
not? What does this imply about a USES relation that is not a hierarchy?

4.8 Suppose that we use a language supporting procedure parameters. For example, module

M. may call a procedure P of module M, passing to it procedure Q of module M, as a para-

- meter. How could you define the USES relation for 1, considering the modules it uses by
calling its formal procedure parameter?

The 1S_COMPONENT_OF relation

IS_COMPONENT_OF is another relation among modules that is useful for describing
designs. This relation allows designers to describe an architecture in terms of a module
that is composed of other modules that may themselves be composed of other mod-
ules, and so on. . ,

Let S be a set of modules. For any M; and M, in S, M; IS_COMPONENT_OF M,
means that M, is realized by aggregating several modules, one of them being ;. It is also
possible to define COMPRISES as the inverse relation of IS_COMPONENT_OF; that is,
for any two elements M; and M, in S, we say that M; COMPRISES M; if and only if M,
IS_COMPONENT_OF M,;.LetM, ; be asubset of S defined as follows:

M, .= { MM, is in S and M, IS_COMPONENT_OF N }

Then we can say that M; IS_COMPOSED_OF My ; and, conversely, Mg ; IMPLE--
MENTS M;.

Ifa module M, is composed of a set of other modules M; ;, then the modules of
set My, actually prov1de all of the services that M, should provrde They are the result -
of M;’s decomposmon into components, and therefore they implement M;.
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In design, once M is decomposed into the set M, , of its constituents, it is replaced
by them; that is, M, is an abstraction that is implemented in terms of simpler abstrac-
tions. The only reason to keep M, in the modular description of a system is to be able to
refer to it, thus making the design structure more clear and understandable. At the end
of the decomposition process, however, only the modules that are not composed of any
other modules can be viewed as composing the software system. The others are kept
just for descriptive purposes.
The relation IS_COMPONENT_OF can also be described by a directed graph, as
shown in Figure 4.4(a). The relation is irreflexive and is also a hierarchy. Therefore, in
this relation, we can define one module as being at a higher level than another module,
as we did in the case of the USES relation. In practice, it is more useful to introduce the ,
concept of level with reference to the relation COMPRISES. Figure 4.4(b) describes the ]
system of Figure 4.4(a) in terms of this relation. 2
The concept of level defined by IS_COMPOSED_OF is such that if M; IS_COM-
POSED_OF {M; ,,M; ,, ..., M; .}, then M, is a higher level module than any of
M; . M;,, ..., M . Note that the concept of a level of abstraction used in design :
descriptions is ambiguous, unless we explicitly specify whether it is intended as the level g
with respect to the USES relation or the COMPRISES relation. In the case of USES, all 8
modules M, ,, M; ,, ..., M; jusedby a given module M; are lower level modules
than M, ; thus, M, provides the services it exports to its clients by using the services pro-
vided by the lower level modules M; ,, M; ,, ..., M, ..Inthe case of COMPRISES,
all modules implementing a given module M; are lower level modules than M,: They
actually stand for M; (i.e.,M; is refined by substituting™M; ,, M. ,, ..., M;  forit).
The graphical representation of IS_COMPONENT_OF also describes IS_COM-
' POSED_OF, IMPLEMENTS, and COMPRISES. For example, in Figure 44, M,,M,, and M,
” are components of M,;M;, IS_COMPOSED_OF {M,, M,, M,}; {M,, M,, M,}
IMPLEMENTS M,;and M, COMPRISES M, ,for 2 < i < 4.The entire software system is
ultimately composed of modules M,, M, M, M,, M,, and M,. The other modules that
appear in the graph do not have a physical existence; their only purpose is to help describe
the modular structure in a hierarchical way.
For example, suppose that Figure 4.4 describes the modular structure of an applica-
tion in which M, is the module providing input facilities, M, is the heart of the system, pro-
viding all the processing, and M, provides output facilities. In turn, module M, is composed

4

£ of various modules (M,, M,, and M,), each providing certain input services, such as input
y through digitalization of input forms, input through I/O terminals, etc. Module M, is
; M, Mg M M5 Mg M, 4.2
M, My M, / l \\
/ M, My M,
M, M, Mg M, Mg Mg
(a) (b)

FIGURE 4.4

An example of the IS_COMPONENT_OF relation (a), and the corresponding
COMPRISES relation (b).
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decomposed into M, and M,. The final system contains only physical modules that corre-
spond to the elements of the IS_COMPOSED_OF relatlon that are not further decom-
posed into other modules—in the-example,M,, M, M,, M,, Mg, and M,. :

So far, in our discussion of IS_COMPONENT_OF, we have assumed that a module
isa component of at most one module. Although this represents the typical case, we do
not impose such a restriction in the definition of the IS_COMPOSED_OF relation.
Therefore, it is possible to complete the graph of Figure 4.4 with a directed arc from
node M, to, say, node M,, to indicate that M, is a component of both M, and M,. When a
module 1 is a component of both modules M, and M,, one can give an obvious alterna-
tive. description according to which I, is a component of just M, and use a copy of 4; as
a component of M,. Another solution adopted by some languages consists of defining a.
macro or a generic (template) module and then generating instances to be used in the;
different contexts in which they become actual components. We will elaborate on this
later. : :
The two relations USES and IS_COMPONENT_OF can be, and usually afe, used
together. For example, we may start a higher level description of a system’s architec-
ture by saying that SYSTEM is composed of modules M, M,, and M,, where M, uses
both M, and M,. Later, we specify M, as composed of M, and M, and so on.

Although we have dlscussed the USES and IS_COMPONENT_OF relations in
the context of software architectural design, the concepts those relations embody
apply equally to any other kind of design. In the context of requirements specifica-

tion, for example, we should come up with specification modules and relations that

describe their dependencies. A specification module may use another module if it
refers to a concept that is specified in the other module. A specification module may
also be a component of another module if it specifies a part of the system that is

- specified by the other module.

4.2.1.3

Exercises

4.9 Are IS_COMPOSED_OF and IMPLEMENTS relations on S?

4,10 Suppose you decide to adopt the following policy: A module M, may be implemented
before a module M, if M, has no components and does not use M, or any module compris-
ing M, Describe this policy formally as a relation between modules.

Product families revisited

We can use the relations USES and IS _COMPONENT OF to restate some points con-
cerning product families. :

Suppose you are demgnmg a system S that you decompose into the set of mod-
ules M,, M,, ..., M;, with some USES relation on it. Then, suppose you turn to the
design of any of such modules, say, M, 1 < k < i.At this point, you may realize that
any design decision you take will separate one subset of family members from others;
for example, M, is an-output module, and its design may need to discriminate between
textual output and graphical output, to be dealt with by twe different family members.
Suppose you make the decision to follow one of the design options (in the example,
the graphical output), which leads you to decompose M, into M, ;M .5, ..., My
with some USES relation defined on this set.

A
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You should record these des1gn decisions carefully, so that future changes will be
' made reliably. Suppose that at some later time a different member of the family needs
- to be designed (for example, the system that provides support for textual output). You
should never allow yourself to modify the final implementation by changing the code
in order to meet the new requirements. Rather, the recorded documentation of the
structure of the modules should force you to resume the design from the decomposi-
tion of module M,, so that you may provide a different implementation in terms of
*lower level components Note, however, that the rest of the system will remain
untouched; that-is, modules M, ..., M, and M,,,, ..., M, will not be affected by.
the design of the new family member. ' ‘

422 Interface, Implementation, and Intormation Hiding

The relations USES and IS_COMPONENT_OF provide only a partial description of the
'software architecture. For example, more remains to be said regarding the exact nature of ‘
the interaction between two modules participating in the USES relation and about the i
details of IS_COMPONENT_OF. That is, when a module M; that uses module M, is refined
into its components M; ,,M; ,, ..., M, ., it is necessary to state exactly what the USES
relation between the modules in the set ;..M 5, ..., M; .} and M, means: ,

Intuitively, we would like to divide the software into coin-ponents such that each
component can be designed independently of the others. If each component becomes a i
work assignment to a different programmer on a team, then each programmer should f
be able to.work.on a:component with as little.knowledge as possible about how other [
members of the team are building their components. Once again, this is the essence of ‘
-separation of concerns and modularity, as discussed in general terms in Chapter 3. B |

To be more precise, we must de_fine how the interaction among modules actually r
takes place—that is, the exact nature of the USES relation between any two modules. The -
set of services that each module provides to its clients (i.e., the purpose of the module as it
relates to other modules) is called its intgrface. The correspondmg services are said to be
exported by the module and imported by the clients. The way these services are accom-
plished by the module is the module’s secret and is embedded in its implementation. A
clear distinction between the interface of a module and its implementation is a key aspect
of good design, because it supports the principle of separation of concerns.

The interface of a module M describes exactly what the client modules need to
know in order to utilize the services provided by M. The interface is an abstraction of
the module as viewed by its clients, The designer who is in charge of M, while working
‘on the design, needs to know only the interfaces of the other modules used by M and

* may ignore their implementation. M’s interface is viewed by the designer as his or her
task description: The goal is to provide exactly these services through a suitable mele-
mentation. An implementation of a module is its decomposition in terms of compo-
nents—described by the relation‘IS_COMPONENT._OF—or, if the module is sufficiently

snnple its representation in terins of code in some programming language, which pos-

: 51bly uses the services provided by other, lower level modules.

The interface of a module M may be viewed as a contract between M and its clients; -

_ that is, the interface records all and only the facilities the designer in charge of M agrees to
s provide to other designers. Clients may depend only on what is listed in the interface..
~.© - Thus,aslong as the interface remains the same, M may change without affecting its clients.
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4.2.2.1
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In most practical cases, 1nterfaces describe computat10nal resources, such as«(1). a_i

form of interaction or (2) procedures (functions) that must be called to have some -
operation performed. The examples we give here also make this assumption. = .
Interfaces, however, are not limited to these types of resources. For example, informa-
tion concerning the response time of an exported routine may be part of the nonfunc-' B

 tional descrlptlon of the interface in the case of a real-time application. It is a kind of - :

information that clients need to know in order to decide whether and how to use’ the : :
module. , : : .
We can go deeper into the dlstmctlon between an 1nterface and an 1mplementa- E

‘tion by introducing the concept of information hiding. The clients of a- module know ; .

“about its services only through its interface; the implementation is hidden from them. : >

This means that the implementation may change without affecting the moduile’s

clients, provided that the interface remains unchanged. Thus, a crucial aspect of design i
- consists of defining precisely what goes into a module’s interface—and therefore is vis-:

ible to its potential clients—and what remains hidden in the implementation and can :
be changed at any time without affecting the clients. The addition of facilities. for_,'the
definition of module interfaces in the current generation of programming languages
marks a significant development in programming- language technology in the direction
of better support for software engineering.

: Exercisés o

4 11 For the Ada programmer, Consider the specrfrcatron part of Ada packages as a module -
interface description. What is the difference between exporting a type and exporting a pri--
vate type? Describe this difference in terms of the exported functronahty

4.12 For the Java programmer; The mterface construct in Java allows a programmer to speclfy

an interface of a module independently of its implementation. What entities are
exportable in Java interfaces? How does the programmer provide an implementation for
‘an interface? Is it possible to have two implementations for the same mterface? .

4.13 Compare and contrast the support for interface definition in Eiffel, Ada95,C++,and Java.

How to des:gn module mterfaces

A commonly used analogy to describe the concepts of an interface, an 1mplementatron
and information hiding is illustrated in Figure 4.5: A module is like an iceberg, the
interface—the visible part—is like the tip of the iceberg, and the implementation is
what i is hrdden by the surface of the sea. The tip is just a small part of the whole. -

If we scratch the surface of this analogy, however, we observe that it is far from
satisfactory: The tip does not provide a very satisfactory abstraction of the 1ceberg as
viewed, for example, by a ship. That is, relying upon the shape of the tip does not prevent
the ship from crashing into the iceberg! As opposed to the tip of the iceberg, the inter-

~ face of a module describes all that must be known to operate the module correctly.

Still, the icéberg analogy sheds light on a very important point: What should goin

the description of the interface and what should remain hidden in the implementation? - -

Clea:ly, the mterface of a module should reveal as little information as poss1ble, butf
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FIGURE 4.5

The interface as the tip of the
iceberg.

~sufficient information for other modules to use the services provided by the module.
Revealing unnecessary information makes the interface unnecessarily complex and
reduces the understandability of the design of the system. Also, by revealing knowl-
edge of internal details that is not necessary, it is more likely that a change to a module
will affect not only its implementation, but also its interface. Even worse, other mod-
ules might take advantage of the information we make public by operating on it in an
undesirable manner. On the other hand, not exporting services that need to be

~ imported by clients would make the module less usable. :

Exercise

4.14 Discuss a remote-control device as an interface for the user who wants to watch TV. Is the
interface adequate if the user wants to connect the appliance to other devices (e.g., a -
stereo system, VCR, or video camera) through its input and output channels?

Exercise 4.14 illustrates an important concept: The interface we design depends
on what services we wish to offer to clients and, conversely, on what we decide to hide
within the module. We can hide certain things if we expect that the clients will not use
them, but we cannot hide them if the clients are expected to use them. The art of
designing module interfaces consists of balancing carefully what we want to hide and
what we need to provide. If everything is hidden, then modules neither communicate
nor cooperate with one another, they are autonomous subsystems. If everything is visi-
ble, then the module s structure is intricate and characterlzcd by too high a coupling.

Example 4.1

Suppose we are designing an 1nterpreter for a very simple programming language,
MINI, operating on integers and integer arrays. We provide a symbol-table module
that is used to store information about the variables of a program. The symbol table
exports a procedure GET that accepts as input the symbolic name of a variable and,
possibly, the value of an index (in the case of an array) and returns.the value of the
variable. Similarly, a procedure PUT makes it possible to store a new value for a given -
variable. When a new variable declaration is encountered, a new entry is created in the
-symbol table by callmg a procedure CREATE, passing it the name of the variable and its
size (the number of integer entries it represents).

~'The purpose of the interface we are designing is to hide the physxcal structure of
the table from the clients of the symbol-table module. To warn clients when they
either try to read or write the value of a variable that does not exist or try to access an
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array with an invalid index value, the procedures GET and PUT return an additional
parameter, POS. The value returned for POS is a pointer to the variable stored in the
table if such variable exists, or it is the null pointer if the variable does not exist. ‘
This design can be criticized because of the redundancy in the interface. If our pur-
pose is just to provide operations to store and retrieve data (and signal the case where
access to the data is incorrect), then we are providing additional information (i.e., the
position in the table where the data are stored). Such redundancy has negative side
effects on the ease of changing the design, as we shall show shortly. It also provides a
loophole into information hiding. : : [

So how should we proceed in the desrgn of modules through information h1d1ng ;
in order to 1mprove cohesion and reduce coupling, in terms of both the number of :
interconnections in the graph of the USES relation and the type and amount of infor-
mation exported through interfaces? S

To answer this question, we should first define what the overall primary goal of our
desrgn actually is. As before; we assume here that ease of change is a primary goal: We
want our design to be able to evolve easily and reliably according to some anticipated
changes and possibly others. The next section gives some guldelrnes on how to design
modules that can accommodate future changes

Exercise P | S

'4.15 Consider changing the int'erfac_e of the module of Example 4.1 to have a separate call for
asking whether a variable exists (and thus can be read or written safely). Discuss -this
change in terms of the quality of the modular structure, the efficiency of the system, etc. k

4.2.2.2 Module secrets and design for change |

To maximize the evolvability of a module. 1mplementaﬂen, its interface should export_‘ .
the minimum possible amount of detail. Another goal is to hide low-level details and
provide an abstract interface in order to make the design more understandable. Doing

" this would be an application of the principles of abstraction and separation of con-
cerns. Once the changes we wish to facilitate are identified, we can try to structure the
system in such a way that changeable decisions are hidden in the implementation part.
of some modules, whereas module interfaces represent stable 1nformat10n (i.e., infor-
mation that is not affected by the changes).

We say that the changeable, hidden 1nformat10n becomes the secret of the mod-

ule; also, according to widely used jargon, we say that such information is encapsulated
within the module implementation.

Example 4.2

The secret of the symbol-table module of Example 4.1 is the data structure chosen for inter-
nal representation. We may choose to use a linear array, a hash table, a linked list, a binary
tree, or even other, more sophisticated data structures. The imiportant goal we wish to reach
is the ability to change the data structure without affecting client modules. The'teason is that:
we want to design and implement the system quickly, by first concentrating on the module’s
structure, without spending too much time designing and tuning the data structures in each
module. We want to postpone the decision about the nature of the internals of each module,
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-:-._such as the “best” type of data structure, to a later point, after we have completed the entire
_deSIgn of the mterpreter and, maybe, collected some execution profiles.

‘. neces8ary; in particular, it reveals part of i its (supposed) secret. By knowmg the address -
" of the storage area for a variable (revealed by both GET and PUT), we are allowed to
- access that variable directly, without being obliged to go through the interface proce-
~ dures. For example, if a client accesses the same simple variable—say, X—repeatedly,
. the client might be tempted to obtain the value of POS and then use the pointer
" directly to access the variable X. This method would work correctly only if the position
* :.at which the value is stored does not change over time. That would be the case in'a sim-
- . ple implementation of the symbol table module in which new declaration_s encoun-
" tered are merely appended at the end of a sequential data structure.
- Even if the software might work in this case, which may correspond to the initial
“release of the system, it would become incorrect in a future release of the symbol table
" that replaces the sequential data structure by one that keeps its entries sorted. In fact, as
“‘new declarations were encountered, they would have to be recorded in the appropriate
- position in the data structure, and this might imply shlftlng some ex1st1ng entries, invali-
.__datmg the values previously retumed by POS. g o |
_ As we an_ticipated in Section 4.1.1.1, details of the abstract machine underlying the
software are examples of information that should be hidden. This includes details of some
operatlng system calls, as well as intricacies of the required interactions with some special
f-;,.rperlpheral devices. The main reason for hiding these details is to protect the application
' against changes in the undetlying abstract machine. Such changes may result from antici- -
pated hardware evolution-or to achieve portability of the application. Another strong rea-
n. for encapsulatmg abstract-machine-dependent aspects in ad hoc modules is
separatlon of concerns: Mixing low-level machine:dependent details with higher level
apphcatlon dependent features would hamper the understandablhty of the software

L E ample43 g

Suppose that a computer is used to control a remote plant ‘The computer must prov1de
" -an.input acquisition capability to get measurements from some physical devices located
,;at different points in the plant. For example, the computer would receive the value of the -
o _'itemperature at points P,, P,; and P, the value of the pressure at points P,, P,,and P, etc.
- +As afunction of input data, control signals must be sent back to the controlled plant, and -
“a history log must be kept in a file to facilitate maintenance of the plant. Input data are
presently received as sequences of bytes that must be decoded by the control application
being designed. It is anticipated, however, that the system will evolve to a new distrib-
uted configuration in which physical inputs will be processed remotely by special devices
and sent to the controlling computer as recordlike structured information.

An appropriate design here would define an input acquisition module whose
secret would be the physical way input data are acquired. Such a module would pro-
vide client modules with a query operation to be invoked to get the next input datum
(what kind of measure it was, where it was measured, etc.) and the value of the mea-
sure (an integer or real value, depending on the type of measure). |

In conclusion, the purpose of information hiding is to design modules that protect
some changeable design decision by making it a secret and to provide a meaningful

b
4

-If we examine the interface closely, however, we see that it reveals more than is . -
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_ abstraction through stable module interfaces. The identification of likely changes is cru- =~
cial to this approach. A tentative set of likely changes should be found in the require- -
ments document that sets the objectives for the application. As already mentioned, when -
the requirements of a new system are being determined, special attention should be paid -
to define not only what is needed now, but also what is likely to be needed in the future. -

E xample 4.3 111ustrates this point. Other pomts are- 1llustrated by the next example. .

Example 4.4

Suppose that the requrrements for the control applrcatlon of Example 43 contaln a
- description of how historical data must be processed. Suppose they also describe a pre-
~defined set of fixed-format queries that can be used to extract information in the main-
tenance phase of the software. Future enhancements of the system are antrcrpated that-"a
will allow natural-language-like gueries. ‘
A good modularization in this case will encapsulate in one ‘module the physical struc-
ture of the files used to store the historical data; that is, the module will provide proce-
dures to access the various items- stored in the data structure. Another module will
provide abstract queries; that is, it will encapsulate the way queries are actually provided, -
by the user—in natural language or in a fixed format—and how they must be analyzed in-
. order to extract.the exact meanmg of the user’s request. v .

As we saw in Chapter 3,an 1mportant class of likely changes has to do wrth the
-strategy,followed to produce the application. The strategy of incremental development _
tries to identify useful subsets of the application that might be developed and deliv- " -

~ ered earlier than others. Although some parts of the system are not dealt with at'some
point and are delayed to a later effort, special care is needed in the design stage to -
define exactly the interfaces with respect to the parts that are left for.later develop- -
ment. This will allow those parts to be added to the system without disturbing the pre-
viously delivered functions. In other cases, in the initial stage, some parts of the system

and reimplemented at a later stage. ‘The symbol table of Example 4.1is one such exam- %
ple. Another example is 1llustrated next.

Example 45

Suppose we are developing a completely new type of database management system .

" that we hope will become a revolutionary product in the marketplace. The great new
features of the system are in the language used for queries, which perniits the SOphlS- e
ticated use of both natural language and pictorial interaction.

‘Before starting development of this new system, we would like to be able to
assess the validity of the approach with respect to its-innovative human-computer .
interaction aspects. Thus, we decide to implement the user interface, but delay the ...~ -
implementation of the “real” database management system (i.e., the definition of the
physical file structures, the various algorithms for storage and retrieval, recovery
procedures, concurrency control, etc.). o

What we will implement is a prototype of the applrcatlon that can only deal with -~ .-
a limited amount of information, because all data will be kept in main memory using ___." -

- arrays. Potential users will be asked to play with the system and give feedback to the . -

_designers regarding its usability. They will be warned that the performance, robust-
ness, reliability, etc., of the prototype have nothing to do with the expected perfor-

~ are deliberately implemented in a highly simplifi~d manner. They are.then redesigned - -
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mance of the future system: They should pay attention only to the way queries may
be submitted with a mixture of natural language and pictures.

If the interface between the module providing human-computer interaction and
the module providing database access has been designed carefully, then the two
modules may evolve independently. For example, we may concentrate first on imple-
menting a robust version of the human-computer interaction module and later turn

- the prototype implementation of the database module into a realistic version with-

- 4.2.2.3

out affecting the rest of the system. In other words, if we design stable interfaces
among the various modules, then modules may evolve mdependently from the pro-
totype implementation to their final version. _ n

More on likely changes

The examples we gave in the previous sections are just a small sample of software
change requests that may be encountered in practice. We can divide changes that we
might anticipate into a few classes. Information-hiding modules should then be
designed to accommodate these classes of changes reliably and efficiently. In Section
4.1.1, we discussed a list of likely changes: in algorithms, in data representation, in the
underlying abstract machine, and in the social environment. Encapsulation via infor-
mation-hiding modules supports such changes. For example if we use a procedure to
encapsulate an algorithm, changing the algorithm requires changing the body of the
procedure, and this can be done without affecting the procedure’s clients. Similarly, by
hiding a data structure and providing abstract interface operations to access and mod-

“ify it, we can protect users of the data structure frorn changes in the reprcsentatlon of -
‘data.

Policies are another kind of design decision that should be encapsulated within
information-hiding modules. Often, they involve the order in which certain operations
are performed. For example, suppose we are designing a module to provide clients
with a sorted list of items. Suppose also that it must be possible to INSERT an item in
the list, DELETE it from the list,and PRINT the list of item names in alphabetical order.
Then INSERT, DELETE, and PRINT constitute the module’s interface.

- This module can hide various kinds of policies—for example, in an eager policy,
the llst is kept sorted as each item is inserted or deleted; in an incremental policy, the
list is sorted just prior to printing it; in a lazy policy, the listis never kept sorted but the
PRINT operation simply prints the items in the right order. Note, however, that a
change in the policy would leave the clients unaffected, as the policy is a secret of the

module. The policy, however, would affect the execution time of ‘each operation. That

- is, an eager policy makes it possible to support a fast PRINT at the expense of a slow

INSERT and DELETE, since these must keep the list sorted.

As another example of this issue, consider the case of the concurrent application,
where it is vital to distinguish between mechanisms and policies. In this type of applica-
tion, we need mechanisms to suspend processes if they need to access some shared
resqurce (e.g., a printer or a buffer). The underlying scheduler should then use some
policy to resume suspended processes; for example, it might resume processes on a
purely first-in, first-out basis, or it might use more complicated policies on the basis of,
say, priorities or execution times. Either of these policies can be implemented by pro-
v1dmg a module that exports the mechamsms to suspend-and resume processes:

* suspend (P) would be invoked to suspend process P;
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o resume (P) would be invoked to resume the next process; it also provides
the identifier of the resumed process in the output parameter.

" The module would hide the policy used to select the next process to be resumed.
Future changes in the policies will then integrate smoothly with the rest of the system:

~ Only performance will be affected, not correctness.

What can be hidden depends also on the type of application. For example, in
many real-time applications, scheduling policies cannot be hidden from client modules.
They are thus made. part of the interface. They are not hidden in the implementation
because they cannot be changed irrespective of the clients’ wishes. Rather, the fact
that, say, certain events are handled according to one policy or another (e.g., FIFO ver-
sus priority-based events) may affect the ability of a module to react to some incoming
stimuli within specified time constraints, and a failure in this regard may cause serious,
dangerous or even catastrophic effects in the real time system.*

Exercise

4.16 Discuss the previous example of the sorted list of items in the case of real-time applica- |
tions. Can a change in policy affect the clients? Why? Why not?

4.2.2.4 Summing up

4.2.3

No matter what method we follow to modularize an application, module interfaces
should represent all and only the information that client modules need to know in
order to'make use of the module’s services. By examining just the interface, the design-
ers of other modules must be able to decide whether.they would benefit from using the
module. This obviously requires a way to describe module interfaces precisely, so that
no ambiguities arise in the interpretation- of the exported services. We examine the
issue in the next section {and partly in Chapter 5). Before tackling this problem, how-
ever, two summary comments are in order here. ' '

First, a clear distinction between the interface and-thé 1mplementat10n and a pre-
cise definition of the interface are necessary for module (re)usability. A module may
be (re)used in any context, provided that the services listed in its interface match the
clients’ expectations, no matter what the implementation is.

Second, the interface must contain all the information that is needed to charac-
terize the module’s behavior as viewed by the clients. As we pointed out, in most cases
interfaces provide descriptions of routines to be invoked by client modules. They can
also provide a description of shared data. Furthermore, in real-time applications, the
response time of an exported operation is part of the mterface

Design Notations

We have so far discussed software design issues informally: Architectures have been
described in a colloquial style, using English prose. But English prose, or any other form of
natural language description, is not an adequate medium for describing artifacts like soft-
ware designs. More precision, rigor, and even formality are required for an unambiguous
description. Thus, software engineéTs need special notations to specify their designs. '

© 4Actually, note that often it is not necessary—or useful—to make the policy manifest in the interface. For example, one

can provide a more abstract view of the policy by stating constraints on the response times of certain operations.
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4.2.3.1

Actually, the preceding statement is true for every field of engineering. For example.
electrical engineers produce blueprints in which complex appliances are described in
terms of interconnected iconic symbols representing elementary devices such as resistors,
capacitors, and transistors. These elementary devices may be viewed as standard compo-
nents that may be assembled to produce a new system. Suitable annotations describe the
types of elementary devices to be assembled—for example, the voltage to be supplied
between two given points or the value, in ohms, of resistors. The layout of such blueprints
is standardized, and no ambiguities arise when descriptions are interpreted in the con-
struction phase, when the circuit is built. (The blueprint may be analyzed to uncover
inconsistencies or errors before the implementation phase begins.) Similar considera-
tions apply to the case of civil or mechanical engineering: In all such cases, designs are
expressed in a standardized, graphical notation.

No standardized notation for expressing software designs has emerged yet,
although various proposals have been entertained and some have been adopted in
practice. The Unified Modeling Language (UML) is a combination of several earlier
notations and is being promoted as a universal standard for object-oriented design. In
the next two subsections, we illustrate two notations, one based on a programming-lan-
guage-like textual syntax (called TDN) and the other based on a graphical interface
(called GDN). These notations have many similarities to the notations used in practice.
The reason we chose our own notation is that we do not want to be distracted by details
of syntax that do not add much to the expressiveness of the notation. Later, when we
address object-oriented design, we will instead refer to the standard UML notation.

The notations we introduce next describe the software architecture by specifying
modules and their relationships. The notation is formal as far as the syntax of interfaces
is concerned. For example, it says, in a syntactically correct form, how to formulate a
request for a service exported by a module. But it does not formally specify the
semantics of the exported services (i.e., what a service actually accomplishes for the
clients, along with possible constraints or properties that clients need to know). The
semantics is described only informally, by means of comments. The issue of formally
specifying the semantics of modules is examined in Chapter 5.

TDN: A textual design notation

In this section, we illustrate TDN, our textual design notation. It is somewhat
inspired by the syntax of traditional modular programming languages such as Ada or
Modula-2, but its aim is to focus on issues of modularization. Thus, some features are
added, and a large number of details typical of programming languages are deliber-
ately ignored. Also, some aspects of the language are deliberately left informal and
can be filled in by the designer, depending on his or her taste, in accordance with the
type of application being designed, the programming language that will be ultimately
used for implementation, etc. Above all, assuming that the reader knows a modular
programming language such as C++, Modula-2, Ada, or Java, the notation should be
self-explanatory.

We assume that a module may export any type of resource: a variable, a type, a
procedure, a function, or any other entity defined by the language. As we mentioned,
comments are used to provide semantic information about the exported services. In
particular, comments are used to specify the protocol to be followed by the clients so
that exported services are correctly provided. For example, the protocol might require

Fi
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‘that a certain Operat1on which does the initialization of the module be called before
. any other operation. Or the protocol may require that the cl1ents of a table- -handling

module not insert items into the table if it is full. :
In general, if a module requ1res a special protocol to be followed to request one _

“of the module’s exported services, then-this requirement should be stated as a com-

ment associated with the syntactic description of the exported service in the module
interface: Although written informally, the protocol is-an essential part of the contract

between the module’s clients and the module’s 1mplementer and it should be agreed

upon by the designers and users of all such modules.
Comments are also used to describe the exact nature of the exported resource,

‘once the required protocol is satisfied by the clients. Finally, comments are used to

specify aspects of the interface that do not correspond to computatlonal Iesources,.
such as routines or variables, but that deal with response times or other aspects. Time

‘bounds and any other kind of additional constraints or properties of the exported enti-

ties may be stated as comments written in natural language when appropriate.

- The parts of the module’s description discussed so far define the interface—that is,
what is visible to client madules. TDN, in addition, supports the description of other
aspects of the architecture that may be necessary for its proper documentation. In partic-

ular, a uses part specifies the names of used modules (if any), and an

implementation part gives a high-level description of the implementation, which may

“be useful for understanding the module’s rationale. Typically, the implementation

part gives the list of internal components, according to IS_COMPOSED_OF Using infor-
mal comments, we may also describe which secrets are encapsulated within the module
and why. This part may constitute a guideline for the implementation, or, after develop- ’

‘ 1ng an implementation, it may document the important 1mplementat10n choices. In any

case, it does not concern the clients. -

Figure 4.6 provides a sample TDN module description, and the reader is invited
to read it carefully before proceeding. Note that the TDN description does not specify
a module by itself, but rather a module that is part of an architecture. y

module X’

uses Y, Z

exports var A: integer;
type B: array (1..10) of real; T
procedure C (D: in out B; E: in integer; F: in real);
Here is an optional natural-language description of what
A, B, and C actually are, along with possible constraints
or properties that clients need to know; for example, we
might specify that objects of type B sent to procedure C

" should be initialized by the client and should never

contain all zeroes.

implementation
If needed, here are general comments about the rationale
of the modularization, hints on the implementation, etc.
is composed of R, T

end X

FIGURE 4.6

A sample TDN module description.
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module R
uses Y _
exports var K: record ... end;
type B: array (1..10) of real;
procedure C (D: in out B; E: in integer; F: in real);
implementation

end R

module T

uses Y, Z, R

exports var A: integer;
implementation

™ .
end T
FIGURE 4.7

Sample componen'té of module X in Figure 4.6. , o -

What characterizes a module from its client’s viewpoint (i.e., the module’s inter-
face) is exactly what appears in the exports section. The rest of the description does
not deal with the interface, but serves to document the architecture in a precise man-
ner. Thus, a change in the exports clause will affect the functional correctness of the
clients, whereas changes to other sections will not. -

The benefit of using a design notation like TDN instead of an unstructured and
colloqulal description lies not only in the rigor and precision of such a notation, but also
in the fact that the design description can be checked for consistency and completeness.
The check can be done manually, by carefully examining the textual description, or
mechanically if we provide a specific tool to perform it. The way it can be done is
explained next.

In the example of Figure 4. 6 modules R and T eventually must be deflned if they
aren’t, we have a manifest case of incompleteness. Since R and T actually replace X, one
or both must use one of Y or z, or both. (Otherwise the uses clause of X would be
wrong.) In addition to 1rnpbrt1ng from Y and Z, R and T may import from one another.
Also, what X exports should be a subset of the union of the sets of resourees exported
by R and T.5 All of these constraints should be checked to assess the consistency and
completeness of the description. One correct description of modules R and T is given in
Figure 4.7.

The uses clause in a module specification describes exactly the USES relation
introduced in Section 4.2.1.1. The clause simply states that a module may access any
resource exported by another module. It may be useful to refine the uses clause by
stating exactly which resources are 1mported by the module. Should this be required,

- we will use the notation

uses <module_name> imports (<resource_name_list>); t

*Por simplicity, we assume that the sets exported by R and T are disjoint.
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module W

uses X imports (B, C),
' XX

exports

implementation

FIGURE 4.8

An example of a module with selective import. end W

If no imports clause is provided, all exported resources may be imported by the mod-
ule. An example of a module W that uses modules X and XX is given in Figure 4.8. The
example shows that W imports specific resources from X (selective ‘import), whereas it
imports all of the resources exported by XX.

When we refer to an entity E exported by a module M, we can use the dot notation
M. E or, if no ambiguity arises, simply E. We might keep on adding new features to TDN
and defining all the syntactic and semantic details. For example, if a module uses several
modules and imports resources from them that have the same name in the exporting
modules, the language might provide a way to resolve naming conflicts by renaming
imported resources. We will not follow this path, however, in order to keep TDN as con-
cise and general as possible. By adding features to TDN, we would make it closer to
some programming language, and this would reduce its generality. We leave it up to the
designer to add new features to the language if doing so turns out to be useful.

If TDN is to be used only with a specific programming language, it is possible to
extend it with some language-specific features. But this must be done carefully, since
a useful design notation should stay away from the low-level details of a program-
ming language.

Example 4. 6

Example 4.1 and Example 4.2 introduced the problem of writing an interpreter for the
MINI programming language. Here we address the problem of defmmg a compiler for
MINI. One possible architecture is the following: :

module COMPILER
- exports procedure MINI (PROG: in file of char;
CODE: out file of char);
MINI is called to compile the program stored in PROG and produce
the object code in file CODE
implementation
A conventional compiler implementation. ANALYZER performs both
lexical and syntactic analysis and produces an abstract tree, as well
as entries in the symbol table; CODE_GENERATOR generates code .
starting from the abstract tree and information stored iIn the symbo.l
table. Module MAIN acts as a job coordinator.
is composed of ANALYZER, SYMBOL_TABLE,
ABSTRACT_TREE_HANDLER,
CODE_GENERATOR, MAIN :
end COMPILER
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Modules MAIN, ANALYZER, and CODE_GENERATOR are specified as follows: -

module MAIN
uses ANALYZER, CODE_GENERATOR
exports procedure MINI (PROG: in £ile of char;

_ CODE: out file of char);

end MAIN

module ANALYZER ) ‘
uses SYMBOL_TABLE, ABSTRACT_TREE_HANDLER
exports procedure ANALYZE (SOURCE: in file of char); -

SOURCE 1is analyzed; an abstract tree is produced by using the
services provided by the tree handler, and recogriized entities, with

their attributes, are stored in the symbol table.

end ANALYZER

module CODE_GENERATOR
uses SYMBOLiTABLE, ABSTRACT_TREE_HANDLER _
- exports procedure CODE' (OBJECT: out file of char);

~The abstract tree is traversed by u51ng the operatlons exported by the
ABSTRACT _ TREE HANDLER and accessing the information stored
in the symbol table in order to generate code in the output file.

i

end CODE_GENERATOR

4.2.3.2

The reader is invited to complete the deSCI'lptIOIl of the remaining modules as an
exercise. In particular, for the symbol-table module, we suggest gomg back to Example
4.1 and Example 4.2. n

EXxercise

4.17 Does the module structure described in Figure 4.6 represent a hierarchy? If not, how could
you turn it into a hierarchy? If so, how could you turn it into a nonhierarchical structure?

3

.GDN: A graphical design notation

The reason engineers customarily adopt pictorial notations for their blueprints is that
graphical descriptions can be more intuitive and easier to grasp than textual descrip-
tions. A picture is worth a thousand words, according to folk wisdom. In this section, we
provide a graphical design notation (GDN) that reflects the TDN textual description
we defined in Section 4.2.3. land that is based on the graphical descriptions referred to
earlier to describe relations among modules. :
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A module is represented by a box whose incoming arrows represent its interface
(i.e., the exported resources). The .reason exported resources are represented by
incoming arrows is motivated by the fact that exported resources are accessible from
the outside; that is, they represent an access path info the module.

Figure 4.9 gives a graphical description of the module X described textually in
Figure 4.6. The fact that X uses modules Y and Z is shown by bold directed edges con-
necting X to Y 'and Z. Details of the exported resources—such as the number of proce-
dure parameters, their type, and the type of variables—are omitted for simplicity, but
may be added as annotations on the incoming arrows.

A box is empty if the module is elementary—that is, if it is not composed of any
subcomponents. This is not the case with module X, which is composed of R and T.
Since modules R and T are components of X, we can expand their definition, according
to Figure 4.7, inside X; the resulting description is shown in Figure 4.10.

Module X

Module| [Module

: A B C
FIGURE 4.9 I I I

Grapbhical description of .
module x of Figure 4.6. _ I

Module Z

Module Y |

Module X

FIGURE 4.10

Module 2

‘Module X is composed of modules
.RandT. , ) ’ i
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Figure 4.10 shows explicitly which inner modules actually originate the resources
exported by module X: B and C are provided by R, and A is provided by T. Graphically,
this relationship is depicted by using shadow lines to connect export arrows of module
X with the corresponding export arrows of modules'R and T. Similarly, boldface
shadow lines are used to specify which of R and T actually uses the modules used by X.

If a module M is a component of both modules L and N, we draw a box labeled M
in both L and N. Should M be composed of other modules, the IS_COMPONENT_OF
structure for M is described separately. This is sketched in Figure 4. 11 in the case where
M exports A and B and is composed of G and H.

Exercises L .

¢

4.18 Give a TDN description of module T of Figure 4.10.

4.19 De;cribé the module structure of Example 4.6, using GDN ,
4.20 Describe the module structure of Figure 4.11, using TDN.

Categories of Modules

Modules can often be designed to export any combination of resources (variables, -
types, procedures and functions, events, exceptions, etc.). Of course, the nature of the
exported resources also depends on what the programming language used to imple-
ment the modules actually supports. In general, however, modules can be classified
into standard categories. Such a categorization is useful because it provides a uniform
classification scheme for documentation and, possibly, for retrieval from a component
library. Also, using a limited set of module categories makes a design more uniform
and standard. As we discussed in Chapter 2, standard parts are the sign of the maturity

Module L Module N

Module M Module M

Module R Module S
Module M

Module H Module G

FIGURE 4.11

Modu?le‘M is a-member of both L and N.
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of an engineering discipline. Categorization of modules is a step towards the develop-
ment of standard software engineering components.

In this section, we illustrate three standard categories: procedural abstractions,
libraries, and common pools of data. Two more general and abstract categories—
abstract objects and abstract data types—are illustrated in the sections that follow.

A commonly used type of module provides just a procedure or a function that
implements some abstract operation. In other words, such modules provide a
procedural abstraction and are used to encapsulate an algorithm. Typical examples are
sorting modules, fast Fourier transform modules, and modules performing translation
from one language into another. The usefulness of procedural abstractions has been
recognized since the early times of computing, and programming languages provided
special support for them via routines.

A module may also contain a group of related procedural abstractions. A typi-
cal and successful example is represented by libraries of mathematical routines.
Such libraries provide solutions to the most commonly encountered mathematical
problems, such as those involving gradients and derivatives. Another example is a
library of routines that provide algebraic operations on matrices. Still another is a
library of routines for manipulating graphical objects. Modules of this type are used
to package together a related set of routines. We use the term library to denote this
class of modules.

Another common type of module provides a common pool of data. Once the
need for sharing data among several modules is recognized, we can group such data
together in a common pool that is imported by all client modules, which are then
allowed to manipulate the data directly, according to the structure used to represent
the data, which is visible to them.

An interesting use of a common data pool module is one that groups system
configuration constants. For example, suppose that the supervisor of a control system
is parameterized with respect to the number of input lines and the length of buffers
in which inputs are temporarily stored. Each installation of the control system
requires constant values to be assigned to these parameters, which are accessed by
the modules that make up the supervisor. A typical solution consists of grouping all
configuration constants in a common pool of data that may be easily accessed for
configuration purposes.

In general, however, a common pool of data is a rather low-level type of module.
Such a module does not provide any form of abstraction: All details of the data are vis-
ible and manipulable by all clients. The ability to group shared data in a common block
only provides limited help in terms of readability and modifiability.

Establishing common pools of data is easily implemented in conventional pro-
gramming languages. For example, it can be done in FORTRAN by means of the
COMMON construct, or in C and Java with the use of static variables.

Most of the examples we gave in Sections 4.2.2 and 4.2.3, however, demand more
abstract modules that can hide particular data structures as secrets of the module. For
example, the symbol table module used in the interpreter (Example 4.1 and Example
4.2) and in the compiler (Example 4.6) of language MINT hides the specific data struc-
ture used to represent the table and exports the operations used to access it. This mod-
ule is an example of the important class of modules that package together both data
and routines, a class that is discussed in the next subsection. , :

Pty ‘w)'
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4.2.4.1 Abstract objects

4 We have already mentioned that nearly 17 percent of the costs involved in software

; maintenance are due to changes in the representation of data. Thus, a very important -

' type of encapsulation is one that hides the details of data representations and shields
clients from changes in them.

A symbol-table module illustrates a typlcal module that hides a data structure as
a secret and exports routines that may be used as operations to access the hidden data
structure and modify the values stored in it. Should the data structure change, all we
need to change are the algorithms that implement the access routines, but client mod-
ules do not need to be changed, since they continue to use the same calls to pcrform
the required accesses.

From their interface, these types of modules look like libraries. But they have a
special property that mathematical libraries do not exhibit: They have a permanent,
hidden, encapsulated data structure in their implementation part which is visible to
routines that are internal to the module, but is hidden from client modules. In the sym-
bol-table example, the data structure is used to store the entries as they are inserted
into the table.

The hidden data structure provides these modules with a state. In fact, as a conse- .
quence of calls to the routines exported by the module, the values stored in the data -
structure may change from call to call; therefore; the results yielded by two calls with
exactly the same parameters may be different. This behavior is unlike that of a pool of
procedures or functions that constitute a library, because the library does not have a
state: Two suctessive calls of the same function with the same parameters always yield
the same result. ’

-The difference between a module with state and library modules does not show
through the syntax of the interface. In both cases, the module exports just a set of rou-
tines. We, however, distinguish between these two types of modules in our classification
scheme. Modules that exhibit a state will be called abstract objects. We use a comment
to indicate that a module is an abstract object.

Example 4.7

Arithmetic expressions may be written in parenthesis-free form by using so-called
Polish postfix notation, wherein operators follow their operands. An example of an
expression written in Polish postfix form is

abgc+ *,

which corresponds to the infix expression

a*(b + c).

We restrict our attention to arithmetic expressions with only binary operators and
integer operands. Also, we assume here that the input string is a syntactically correct
postfix expression.
- A way to evaluate arithmetic postflx expressions is to use a last-in, first-out data
 structure—a stack. The expression is scanned from left to right, and the values of the
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; operands are pushed onto the stack as they are encountered. When the next symbol

scanned is an operator, the two topmost values are taken off the stack, the operator is
applied to the two operands, and the result is pushed on top of the stack. As an exam-
ple, the reader is invited to simulate by hand the evaluation of the expression
abc+ *whena = 2,b = 3,andc = 5,

Stacks can be implemented in several dlﬁferent ways, as any textbook on data
structures illustrates. If their size is bounded, we may use an array; otherwise, we may
use a linked list.

If we wish to encapsulate a stack in a module, we may define the following interface:

exports .
procedure PUSH (VAL: in integer); .
procedure POP_2 (VALl, VAL2: out integer); .

Procedure PUSH is used to insert a new operand on top of the stack; procedure
POP_2 is used to extract the pair of topmost operands in the stack.

The hidden part of the module may then c¢hoose any data structure to represent
the stack; the data structure is a secret of the module. - u

The design of the abstract object described in Example 4.7 may be criticized with
respect to its generality and hence its reusability. First, it provides a specialized primi-
tive to pop two elements at a time. This approach is useful when we have only binary
operators; it fails when we extend the expression evaluator to the more general case
where we can also have unary operators. To accommodate both binary and unary oper-
ators, one could provide a pop operation that paps one element at a time and let client
modules call the operation twice when needed. The second shortcoming is that the
de51gn is based on the assumption that the expression to be evaluated is correct. If this
is not the case, a run-time error will occur when we try to, say, pop an element from the
stack when it is empty.

A more reliable design would define another interface routine, called EMPTY,
that would deliver a Boolean result if the stack is empty. Of course, this design does not
prevent the run-time error, but it provides a way for the client to avoid it. Notice, of
course, that such a solution requires more from the client, but it is the price we pay to
make our design more reusable and reliable.

Exercises -

4.21 Redesign the interface of the stack module so ithat it takes account of the previous com-
ments. Also, discuss the use of a fixed-size data structure to implement the stack. Under
what assumption is the interface correct? Is the module easily reusable? If not, how can
you improve its reusability?

4.22 An output module is used to print single characters. As viewed by client modules, output is
performed one character at a time. The output module, however, hides the exact way out-
put is performed. This allows a family of programs to be designed in which the different
members differ in the type of devices to which the output is directed. Somie devices output
data on a character-by-character basis, while others group characters in longer sequences
and add special control characters.
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Would you classify this output module as a procedural abstraction or as an abstract
3 object? Sketch the TDN and GDN descriptions of the output module in the case where

& physical output is performed by a (hardware) module that buffers up to 16 characters.

4.2.4.2 Abstract data types

In this section, we introduce modules defining abstract data types as another category
of modules that help in structuring our designs in a uniform and standard manner. We
use Example 4.7 to motivate the introduction of this new category. The example uti-
lized a stack abstract object. What if an application requires more than one stack? In
r this situation, we need the ability to define a type and then generate instances of that
! type. We also need a way to (a) associate a set of procedures with the type, in order to
manipulate instances of that type, and (b) encapsulate the details of the type in the
module, so that it can be changed without affecting the interface. Figure 4.12 illustrates
this kind of module, using our textual design notation
A new notational device is introduced in the figure: the “?” symbol. It is used to
export a type definition, leaving the details of the corresponding data structure hidden
in the implementation part of the module. The fact that a type is exported allows client
modules to declare variables of that type; the fact that the type definition is hidden.
: however, implies that variables of that type can be manipulated solely by procedures
.4 : or functions exported by the module, since they are the only ones that “know” about
E the secret. Client modules must pass variables of the type in question as parameters to
the exported routines for proper manipulation.
: An abstract data-type module is a module that exports a type, along with the
operations needed to access and manipulate objects of that type; it hides the represen-
tation of the type and the algorithms used in the operations. Such a module can be
implemented directly in Ada by exporting a (limited) private type, in Modula-2 by
exporting an opaque type, and in Java and C++ by a class.
Instances of an abstract data type are abstract objects that behave exactly like
those discussed before. In particular, they can be manipulated only by the routines
implemented and exported by the abstract data-type module.S Such routines may

,mgwm

module STACK_ HANDLER

exports
type STACK = ?;
This is an abstract data-type module; the data structure
is a secret hidden in the implementation part.
procedure PUSH (S: in out STACK ; VAL: in integer);
procedure POP (S: in out STACK ; VAL: out integer);
function EMPTY (S: in STACK) : BOOLEAN;

end STACK_HANDLER
FIGURE 4.12

v

An abstract data-type module in TDN.

The only syntactic difference in the case of an instance of an abstract data type is that the object to which an
operation must be applied is a parameter of the operation.
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include those needed to assign an abstract object to a variable and those needed to com-
pare two abstract objects for equality. To simplify the notation, instead of listing these
operators among exported routines, we use the conventional operators “: =" and “=" for
them and list the operators after the “?” symbol in the type clause. Thus, writing

type A_TYPE: ? (:=, =);

in a module interface means that clients can assign an object of type A_TYPE to a
variable of the same type and can compare two objects of type A_TYPE for equality. If
113 . =” OI' £‘=7’ 3

is missing in the type declaration, the corresponding operation would not
be available to clients.

Example 4.8

Suppose we are designing a simulation system for a gasoline station. The purpose of
the system is to find the “optimal size” (in terms of number of service lines, length of
lines, etc.) of the station, given the expected arrival rates of cars, together with their
requests for service. Each request for a service is characterized by a certain duration.

We represent each service line (gasoline, car wash, etc.) by an abstract object that
represents the cars waiting for their turn to be served. There will be an operation to
place a car in a service line, another to extract a car from the line, another to check
whether the line is empty, and another to merge two lines associated with the same
kind of resource, should the resource provided by one of them be exhausted. The pol-
icy is strictly first in, first out for all service lines.

We introduce an abstract data-type module FIFO_CARS that describes FIFO
queues of cars. We also assume that cars are described by another abstract data-type
module CARS, exporting type CAR, used by FIFO_CARS to perform operations on the
cars extracted from the queues. The following is a sketch of module FIFO_CARS:

module FIFO_CARS
uses CARS
exports
type QUEUE : 7;
procedure ENQUEUE (Q: in out QUEUE; C: in CARS);
procedure DEQUEUE (Q: in out QUEUE; C: out CARS);
function IS_EMPTY (Q: in QUEUE): BOOLEAN;
function LENGTH (Q: in QUEUE): NATURAL;
procedure MERGE (Ql, Q2: in QUEUE; Q: out QUEUE) ;
This is an abstract data-type module representing queues of cars,
handled in a strict FIFO way; queues are not assignable or checkable
for equality, since “:=” and “=” are not exported.

end FIFO_CARS
This module allows other modules to declare instances of type QUEUE, such as

gasoline_1, gasoline_2, gasoline_3: QUEUE;
car_wash: QUEUE;

and operate on them using the exported operations. For example, we might write
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ENQUEUE (car_wash, that_car);
MERGE (gasoline_l, gasoline_2, gasoline_3); n

There is an important reason for distinguishing between abstract object modules
and abstract data-type modules, even though an abstract object can certainly be
obtained by generating an instance of the abstract data type encapsulated in the
abstract data-type module. The reason is that, intrinsically, an abstract data-type mod-
ule can generate any number of instances, but we know a priori that abstract objects
exist in only a single instance. Also, an abstract object module has a state, and an.
abstract data-type module does not. In an object-oriented framework, however, the
two concepts are unified. Abstract data types are implemented by classes. Abstract
objects exist only at run time, as instances of an abstract data type.

Exercise

4.23 A key-manager module provides a different key every time a key is requested by a client.
A key-manager can return keys to its clients, compare them for equality, and determine
which of two keys is smaller. Design the key-manager module and describe the design,
using TDN. '

Generic modules

In this section, we present an extension of TDN that provides a powerful tool for writ-
ing reusable components: This extension, called generic modules, can be motivated by
going back to Example 4.7.In that example, the physical way of storing the values and
managing the LIFO structure was hidden from clients through an interface that listed
the appropriate operations to be invoked. If we need to evaluate expressions of other
types, such yéal values or Booleans, we should provide new, specialized modules. All
such modulés, however, would behave similarly, differing only in the types of the values
stored in their stacks. ' S

It would be useful to be-able to provide a single (abstract) description for all -
such modules implementing an abstract object, by factoring all the variations into a
single module, instead of duplicating a number of almost identical modules. By pro-
viding just one description for all modules, we eliminate the chance (and danger) of
having inconsistencies among different modules; moreover, we localize the effect of
possible modifications to exactly one unit. What we obtain is a single, highly
reusable component. ‘ _

A solution-to this problem is given by enriching TDN to support generic mod-
ules. A generic module is a module that is parameterized with respect to a type. In our
case, we would write ’

generic module GENERIC_STACK_2 (T)
uses ... '
. exports
procedure PUSH (VAL : in T);
procedure POP_2 (VAL1l, VAL2 : out T);

end GENERIC_STACK_2
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Here, module GENERIC_STACK_2 is generic with respect to type T, and the routines
PUSH and POP_2 require parameters of that type. A generic module is not directly
usable by clients. In fact, strictly speaking, it is not even a module; rather, it is a module
template. In order to be used, it must first be instantiated by providing actual parame-
ters. For example, to instantiate a stack module for integers, we write -

module INTEGER_STACK_2 is GENERIC STACK_2 (INTEGER)

If there are constraints on the poss1b1e types to be sent as parameters at instanti-
ation time, these constraints should be spemfled via comments in the interface of the
generic module.

If the generic module requlres its parameter type to support a particular opera- -
tion, this must be specified in the module header. For example, :

‘genoric module M(T) with OP(T)
uses ...

‘end M ‘
indicates that the operation OP must be supported by any type that is provided to mod-

ule M when it is instantiated. At instantiation time, an actual procedure must be passed
as a parameter along with the type, as in the declaration:

module M_A_TYPE is M(A_TYPE) PROC (M_A_TYPE)

As the previous examples have shown, generic modules allow software,designers
to factor several algorithms into a single, abstract, generic representation that is instan-
tiated before being used. A typical example would be a generic sorting module, which
is left parametric with respect to the type of the elements to be sorted. Thus, intrinsi-
cally, a generic module is a reusable component, because it factors several modules
into a unique algorithmic abstraction that is easily reused in different contexts by sim-
ple instantiation.

Similar situations arise in the case of abstract data types, wh1¢h can often be written
as generic modules and then instantiated in various specialized modules. For instance, in
Example 4.8, we introduced a module to represent FIFO queues of cars. Suppose now
that we wish to model the tellers in a bank, where customers queue up waiting to be
served. In both cases we must describe what a queug is, the only difference being the types
of items we end up queuing in our abstract objects, Thus, again, we might solve the prob-

lem by defining a generic abstract data-type module (call it GENERIC_FIFO_QUEUE) andf""

then generating as many module instances as are necessary. 7

The use of generic modules can be viewed as an apphcatlon of the prmcxple of
generality: Instead of solving a specific problem for, say, integers, we solve a more gen-
eral problem for a class of types. Special-case solutions can then be derived from the
general solution. Viewed in this way, generic modules can be useful for -developing
families of programs.
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Exercises

4.24 Define precisely module GENERIC_FIFO_QUEUE, and instantiate a module that repre-
sents the abstract data type “queue of integer values.” Show how you can then generate an
abstract object instance.

4.25 We have described a generic module as parameterized by types. Propose other possibili-
ties for parameterizing modules.

4.26 Give an example of a module that allows an array of elements of any type to be sorted. The
constraint is that it must be possible to compare elements of such a type to see which is bigger.

4.2.5 Some Specific Techniques for Design for Change

So far in this chapter, we have presented a body of general methods that may be used
for designing well-structured software—software that can be easily understood and.
most important, easily modified. These methods are valuable also for achieving the two
significant goals of producing families of programs and generating reusable compo-
nents. Modularization via information hiding may be used to encapsulate the differ-
ences between family members, so that such differences are invisible outside the
generic module. Similarly, the definition of simple, nonredundant, and clear interfaces
can favor the reuse of modules: To understand whether a component is reusable, one
should conform to its interface. As mentioned earlier, reusability is further enhanced
by genericity.

As a complement to the general principle of information hiding and the methods
we have been discussing so far, the sections that follow illustrate some specific tech-
niques for implementing modules that accommodate change easily.

4.2.5.1 Configuration constants

One difficulty with software modifications is that the specific information which is
going to change may be hard coded into, and spread throughout, the program. As a
simple example, consider the size of an integer table that is initially set to 10, but is
required to become 50. The initial system might contain declarations such as

a: array (1..10) of integer;

if we want a to store a local copy of the table. If we want to check whether an integer k
used as an index in the table does not exceed its bounds, the program might contain a
statement like

if k 2 1 and k £ 10 then
perform indexing;

else

do other actions;

end if;
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Clearly, changing the upper bound of the array to 50 requires changing both dec-
larations and statements like those just shown. However, in cases where the required
changes in software can be factored out into a set of constants (called configuration
constants), the problem may be solved by changing the values of those constants and
then recompiling the program. :

Many languages, such as C, Ada Java, and C++, provide symbolic constants as a
simple solution to the problem of making programs easily adaptable to a change of
configuration constants. Being constants, configuration data may not be changed inad--
vertently by the program; being symbolic, they may be given names that suggest thelr
meaning, in order to improve readability and modifiability.

As we mentioned before, conflguratlon constants may be grouped together in a

module that provides a common pool of data. This module would then be used by ali - -

clients that need to access the configuration data. '
Another example of the use of symbolic configuration constants is'the case of a
device handler in which the lengths of buffers may vary from configuration to configu-
ration. Each configuration may be viewed as a different member of the same family, —
and different family members may be generated by recomplllng the application with
d1fferent values of conflguranon constants. ‘

Exercise

4.27 Changing the value of a configuration constant requires recompilation. Is it always neces-
sary to perform a complete recompilation (i.e., a compilation of all the modules)? Discuss
the issue by giving examples in C, Pascal, Modula-2, Java, C++, or Ada. ‘

Conditional compilation

Configuration constants support only simple ways of representing multiple-version
software. More ﬂex1ble and general schemes may be prowded by means of cond1t10nal e

* compilation.

With this' approach, all versions of a family are represented by one smgle source
copy, and the differences between various versions are taken into account by coadi-
tional compilation. Source code that is relevant to only some versions is bracketed by
macro commands. recognized by the compiler. When the compiler is invoked, some
parameters must be specified that describe which vergion of object code is to be pro-
duced; the compiler automatically ignores source statements that are not part of the - '
proper version. :

Example 4.9

Suppose we are requested to write a program in which some parts (e.g., device drivers)
must be tailored to a specific hardware configuration. During the design, we try to fac-
tor out all parts that do not depend on the specific hardware. If the final program is to
be written in the C programming language, we may use the C preprocessor to specify -
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what parts are to be tailored to the chosen hardware architecture. This is a sketchy
example of what the C program would look like:

.source fragment common to all versions..
# ifdef hardware-1

.source fragment for hardware 1...
# endif '

# ifdef hardware 2

.source fragment for hardware 2..
# endif :

If, at compilation time, we specify the switch' D = hardware-1,only the code associ-
ated with hardware-1 will be compiled. : ]

Exercises .

4.28 Discuss the effectiveness of conditional compilatioh as the differences between the vari-
ous versions become complex

4.29 How can you use the generic facility in Ada to carry out the same task as in Example 4 9
without resorting to conditional compilation? - : :

Software generation

Symbolic constants and conditional compilation achieve evolvability by allowing pro-
grams to be sufficiently general to cover some anticipated changes and to be able to be
specialized at compilation time. Another appealing strategy is to generate automati-
cally a new solution for each requested change.

Generators have been used successfully in restricted application domains. A typi- -
cal example is a compiler generator, such as yacc in the UNIX environment, which can
generate (part of) a compiler, given the formal definition of the language to be trans-

lated. If we decide to change the source language for which we have developed a com-

piler, we do not need to modify the compiler directly; rather, we rerun yacc on the .
newly defined language. This approach is particularly useful when the source language
is not frozen yet and is sub]ect to modifications.

Another example is a system for generating user interfaces that can be found in
most database management systems on personal computers. In such systems, the lay-
out of the panels used for human-machine interaction is directly “painted” on the com-
puter screen. This declarative description is then automatically transformed into
run-time actions that support the interaction of the user with the application. Changing
the layout of the screen according to the user’s taste can be accomphshed quite easily
and does not require any coding—just regeneration.

Other examples of software generators will be given in Chapter 5, where we,
show that certain specification languages may be executable. In some cases, the specifi-
cation is translated into an implementation, thus generating the application directly
from some abstract description. Although this approach is not in common practice
today, it is used in restricted domains in many software production environments. We
discuss this point further in Chapter 9. '
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Stepwise Refinement

Introductory programming courses often focus the attention of students on systematic
approaches to program design and validation. The most popular approach followed is
called design by stepwxse refinement. Such a design strategy is easy to descrlbe and
understand.

As its name states clearly, stepwise refinement is an iterative process‘ At each
step, the problem to be solved is decomposed into subproblems that are solved sepa-
rately. The subsolutions that constitute the solution of the original problem are then
linked together by means of simple control structures. They may be executed in a
sequence, they may be selected alternatively, or they may be iterated in a loop. Thus, if
P is the statement of the original problem, P,, P,,. .". P, are the statements of the sub- :
problems, and C is a Boolean expression that represents a condition, P may be decom- :
posed and solved according to one of the following patterns:

(1) Py; Py; ...; P,
- (2) if.C then
P,;
else
P2;
end if;
(3) while C loop
. Py
end loop;

Often, we need to express multiple branch selection. Thus, instead of using
deeply-nested if statements, which may adversely affect a program’s readablllty, we
may employ a generalized case statement:

(2') case
Cl: Py;
c2: P,;
Cn: P ;
otherwise Pw
end case;

~Each ¢, represents a Boolean expression, and all the C,’s are required to be mutually
dlS]omt

Problem statements at each step of the decomposmon are usually given as nat-
ural-language-like descriptions. Each refinement step is represented by rewriting the
natural-language description in terms of subproblem statements glued together by
means of the control structures represented by the foregoing patterns. Subproblem
statements, in turn, are made more detailed at the next refinement step.

Thus, the design process starts with an overall description of the problem to be
solved (the “top” function), recursively applies functional decomposition, and termi-
nates as we reach the point where each subproblem is easy to express in terms of a few
lines of code in the chosen programming language. (In turn, one may view program-
ming-language statements as formal statements of very simple subproblems whose
solutions are directly provided by the underlying abstract machine.)
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Example 4.10

As an example, we discuss the derivation of the selection sort algorithm by stepwise
refinement. This is a small programming example, not a design exercise. However, the
example clearly illustrates how stepwise refinement works. Shortly, we shall see another
example in which stepwise refinement is applied at the design level. The selection sort
algorithm proceeds as follows: o
Step 1. o A
let n be the length of the array a to be sorted;
ii=15 0 |
. while i < n loop

find the smallest of a; .. .a

element at position. i;

i =1+ 1; ' '

end loop; ‘

and exchange it with the

n’

Step 2
let n be the length of the array a to be sorted;
i =1
while i < n loop
j := n; .
while j > i loop .
if af{i) > a(j) then .
interchange the elements at positions j and i;

‘end if;-
jo=3-1;
end loop;
i:=1 + 1;
end loop;
Step 3 _ :
~let n be the length of the array a to be sorted;
i :=1 3 ' :
while 1 < n loop
J = n;

while j > i loop
if a{i) > a{j)then

x :=a(i); afi) :=a(j); a(3i) := x;
end if; : 3
Coges= -1
end loop:;
i =1 + 1; .
end loop; : B
' P
v P, P, P,
o '
FIGURE 4.13 : \PC
P32

Graphical representation of stepwise c. "

: L oo~ DOt C;
refinement. (Legend: solid arc represents /‘\"’\ ,

iteration; dotted arc represents selection.) Py11 P12
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Design by stepwise refinement can be represented graphically by means of a
decomposition tree (DT)—a tree in which the root is labeled by the name of the -
“top” problem, every other node is labeled by the name of a subproblem, and the
child nodes of any given node are labeled by the names of the subproblems that
detail it in a refinement. The left-to-right order of child nodes of a given node repre-
sents the order in which subproblems are to be solved during program execution.
Nodes representing alternative subproblems are identified by a dotted line which
groups the arcs that connect the nodes to their parent node; arcs are also labeled by

‘the condition under which the connected subproblems must be chosen. Tteration is

represented by a solid line, to which the condition governing the while structure is
added as a label. ‘ '

For example, Figure 4 13 represents the DT corresponding to the following step-
wise refinement: : ,

Step 1
‘P; : P is the problem to solve.
Step 2 _ .
P,; P,; Py P is decomposed into the
‘sequence of ‘P,, followed by P,,
followed by P;.
Step 3 '
"By
while C loop
' P, i P, is decomposed into
end loop; : an iteration.
Py;
Step 4
P,;
while C loop _ .
if C, then P, . is decomposed into
Pyt a selection.
else
Py2i
end if;
end loop;
Py

One might wonder about the relationships that obtain between a DT and the
graph of the IS_COMPOSED_OF relation or, equivalently, between top-down design
achieved through iterative decomposition of a module in terms of its components and
stepwise refinement. Indeed, they are similar concepts; but there are differences, too.

For example suppose you wish to describe the stepwise refinement illustrated in
Figure 4.13 in terms of the IS_COMPONENT_OF relation or, more conveniently, in
terms of IS_COMPOSED_OF. Let M, M, M,, and M, be the modules that represent P, P,
P,,and P,, respectively. Notice that we cannot simply state the relation

M IS_COMPOSED_OF {M,,M,,M,}

because there woul_d‘be no component in the system responsible for arranging the
sequential flow of execution from M, to M, and then M, which is implicit in Figure 4.13.
Thus, we need to introduce an additional control module M, that acts like a glue to
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impose the sequential flow from M, to M, to M,. This would allow us to state the follow-
ing relation: s : : _ i

M IS_COMPOSED_OF {M;,M, M, M,}

In turn, M, would be decomposed in terms of M, , (associated with P, ;)andM

2,2
which acts as a control module used to impose iterative use of M, ,:

M, IS_COMPOSED_OF {M, ,, M,,}

Finally, M, , would be decomposed into M, 1,12M; ; , (associated with P, , , and
P, , ;s respectively), and I, , 5, which acts as a control module performing selection
betweenM, , ; and M, , , according to the value of C;:

M;,, 1S_COMPOSED_OF {M2,l,i’M2,l,2’ My .51 o ' . | I

This example shows that a design produced by stepwise refinement may also be
described top down in terms of the IS_COMPOSED_OF relation. In fact, the method we
used may be applied in general to transform one description into the other. The result-
ing description in terms of IS_COMPONENT_OF, however, does not correspond to a

" meaningful modularization. Actually, stepwise refinement should be considered more
a method for describing the logical structure of a given algorithm, implemt_-:nted/by a
single module, than a method for describing the decomposition of a system into mod-
ules. The description of the sorting program we just gave is an illustration of the virtue
of the method when it is applied in the small. A complex and large system cannot be
designed and described via stepwise refinement; rather, its design requires decomposi-
tion into modules, the separate development of each module, and the consistent appli- -
cation of information hiding.

Exercises

4.30 Describe the USES relation among the modules we introduced to represent the stepwise
refinement illustrated in Figure 4.13, and show the module structure, using GDN.

4.31 Describe the stepwise refinement of the sort-by-straight-selection example discussed in
Example 4.10 in terms of the corresponding decomposition tree. '

4.2.6.1 An assessment of stepwise refinement

A common misconception about stepwise refinement is that it can provide a strategy
for finding a solution to a problem by suggesting a smooth and almost mechanical way
of recursively decomposing the problem into simpler.subproblems. This misconception
derives from examples of derivations found in some introductory textbooks, where the
program seems to come out naturally by stepwise refinement. Contrary to appear-
ances, however, the process of deriving a program often demands creativity and may
require that various alternatives be explored before the appropriate solution is found.
Take a well-known problem like sorting; it is certainly not by following stepwise refine-
ment carefully that we can invent a good solution like, say, a quicksort, as opposed to,
say, a bubblesort or a selection sort!

’ i o .
K .




Section4.2 . Modularization Techniques. 115

What is certainly true is that stepwise refinement is an effective way of describing
a solution after it has been invented. It is a way of describing—a posteriori—the ratio-
nale behind an algorithm by positing an ideal and rational process whereby the algo-
rithm is derived. Hence, stepwise refinement can be a good program documentation
technique. Furthermore, if code is written by following stepw1se refmement systematl-
cally, the resulting program is easy to read and understand.

Stepwise refinement is an effective technique for describing small programs. It
fails, however, to scale up to systems of even moderate _complexity. Thus, stepwise
refinement is a method that works in the small, but fails in the large. In particular, it
neither matches the goals that information hiding tries to solve nor helps designers

reuse components from previous applications or design reusable components for
larger programs. Here are a few reasons that explain these shortcomings: -

Subproblems tend to be analyzed in isolation. No emphasis is put by stepwise refine-
ment on trying to generalize subproblems in a way that would make them reusable at
different points within the derivation of the system, let alone across different designs.
When a problem is to be made more detailed, it is studied in the context of the
decomposition subtree in which it appears. On the other hand, when a problem is

being decomposed into subproblems, it may be useful to see whether a suitable gener-

alization of the problem would make it similar to another problem being solved else-
where, so that we can unify the two problems and design a single module for them.

No_attention is paid to infd:mation hiding. Stepwise refinement does not draw the
designer’s attention to the need for encapsulating changeable information within mod-
ules. In fact, the modules we derive when we apply stepwise refinement are pure pro-
cedural abstractions. A problem represented by some abstract function is recursively
decomposed into subproblems, all of which are represented by abstract functions.

In stepwise refinement, the strategy never emphasizes the need for grouping
together functions to define an abstract object or data type, nor is there a way to derive
modules that provide selective export of a collection of resources. The only principle
that guides functional decomposition by stepwise refmement is the striving for read-
ability of the resulting solution.

No attention is paid to data. This is a corollary of the previous point. Stepwise refine-
ment does not stress the use of information-hiding modules. For example, the method
does not stress the derivation of modules that hide a data structure and export abstract
operations to access it.

The top function may not exist. The method starts by stating the top problem, which
is recursively detailed in terms of subproblems. A minor, but annoying, issue is that the
top problem may be unnatural to state. Remember that the top problem should
describe the problem as a very high-level function that transforms the input data into
the expected results. Such a function, however. does not always exist.

For example, what is the function performed by a word processor? Clearly, a
word processor is a system that reacts to input commands that create text, append or
insert new characters into an existing file, and do complex text manipulation in
response to commands supplied by the user. Of course, one can always write the top

function as “respond to all user commands.” but this is of little help in the subsequent

decomposition steps. : ,
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- There is a premature commitment to the control structures that govern the flow of
control among modules. The case study of translating the stepwise refinement of
Figure 4.13 into a hierarchy of IS_COMPOSED_OF illustrates this point clearly. When -
P, is decomposed into the iteration of P, ,, two modules are introduced conceptually:
M, ,and M, ,.M, , corresponds to P, ;; M, , is just a control module that simply con-
tains the statement :

while C loop P, end ioopf

to force the repeated execution of M, ;. A similar situation then arises in the
decomposition of M, ,.The concept is further emphasized by Example 4.11.

Example 4.11

Suppose we are designing a program to check the syntactic correctness of programs
written in a given computer language. In accordance with stepwise refinement, we may
write the following: :

Step 1 ;
Recognize a program stored in a given file f;

Step 2
correct:= true; '
analyze f according to the language definition;
" if correct then ’
print message “program correct”;
else
print message “program .incorrect”;
end if;
Step 3
" corxrect:= true;

perform 1ex1cal analysis:
store the program as a sequence of tokens in flle f. and the
symbol table in file f,, and set the Boolean variable
error_in lex1cal_phase accordlng to the result of lex1cal
analyszs,

if error_1n_lex1cal_phase then
correct:= true;

else
perform syntactic analysis on file £, and set the
Boolean variable error_in_syntactic_phase according to the
result of the analysis;
if error_in_syntactic_phase then

correct:= false,,

end if;
end if;
if correct then
‘print message “program correct”;
else o s .
print message “program incorrect”; -
‘end if;

Without proceeding any further with the example, we can see that we have made
- strong commitments about the flow of control from the early stages of our development.
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For example, we decided that lexical analysis should come first, that it should operate on
the entire input program, and that it should produce the corresponding sequence of
tokens in an intermediate file, to be used by the subsequent phase of syntactic analysis.
Suppose now that we decide to change strategy; for example, we decide that we
- do not want to perform recognition in two passes, but we wish to let the syntactic ana-
lyzer drive the process. In this case, the syntactic analyzer repeatedly activates the lexi-
cal analyzer, asking for the next token. This change has a profound impact on the
structure of the program as described by stepwise refinement: Everything must be
redone, starting from Step 3. , v
The impact of this change would not be so dramatic, however, if we followed an
approach based on information hiding—for example, by defining the following sample
modules: E . ' ]
* CHAR_HOLDER: hides the physical representation of the input file and exports an
operation for accessing the source file on a character-by-character basis; )
* SCANNER: hides the details of the lexical structure of the language from the rest of
the system and exports an operation for providing the next token in the sequence;

* . PARSER: hides the data structure used to perform syntactic analysis (the parse tree),
which might be encapsulated in an internal abstract-object module (PARSER). ]

Exercise

4.32 Complete the design of the language recognizer. Use both TDN and GDN to describe
your design. Describe what changes are needed to transform a two-pass solution into a
- one-pass solution. ' ‘

4.2,7 Top-Down Versus Bottom-Up Design

What strategy should we follow when we design a system? Should we proceed from
the top down, by recursively applying decomposition through IS._COMPOSED_OF,
until we break down the system into manageable components? Or should we proceed
from the bottom up, starting from what we wish to encapsulate within a module, recur-
sively defining an abstract interface, and then grouping together several modules to
form a new, higher level module that comprises them?

Stepwise refinement is an intrinsically top-down method. Some of the criticisms
we raised about the method are attributable to its specific characteristics. In particular,
the premature commitment to control structures and the orientation to design in the
small are due to the programming-language-based style used to describe the refine-
ments. Other major criticisms, however, apply to the top-down strategy in general.
Among these are the facts that subproblems tend to be analyzed in isolation, that no
emphasis is placed on the identification of commonalities or on reusability of compo- -
nents, and that little attention is paid to data and, more generally, to information hiding.

Information hiding proceeds mainly from the bottom up. It suggests that we should
first recognize what we wish to encapsulate within a module and then provide an abstract
interface to define the module’s boundaries as seen from the clients. Note, however, that
the decision of what to hide inside a module (such as the decision to hide certain policies)
may depend on the result of some top-down design activity. Since information hiding has
proven to be highly effective in supporting design for change, program families, and
reusable components, its bottom-up philosophy should be followed in a consistent way.
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Design, however, is a highly critical and creative human activity. Good designers
do not proceed in either a strictly top-down or strictly bottom-up fashion. For example.
should they decide to proceed from the top down, they also tend to pay attention to
identifying commonalities and possible reusable components (i.e., they combine a pre-
dominantly top-down strategy with a bottom-up attitude).

A typical design strategy may proceed partly from the top down and partly from
the bottom up, depending on the phase of the design or the nature of the application
being designed, in a way that might be called yo-yo design. As an example, we might
start decomposing a system from the top down in terms of subsystems and, at some later
point, synthesize subsystems in terms of a hierarchy of information-hiding modules.

The top-down approach, however. is often useful as a way to document a design.
Even though the design activity should not be constrained to proceed according to a
fixed, rigid pattern, but should be a blend of top-down and bottom-up steps, we recom-
mend that the description of the resulting design be given in a top-down fashion. Such
descriptions make it easier to understand the system because they give the big picture
first before showing the supporting details.

HANDLING ANOMALIES

A systematic design approach followed by a rigorous and disciplined implementation is
the best way of dominating the complexity of software development and building reli-
able products. Unfortunately, software products can be quite complex, subjecting soft-
ware production to human fallibility. No matter how careful we are during development.
we cannot trust our software unconditionally. This lack of complete trust can be frustrat-
ing to the conscientio us programmer who must be aware of the criticality of many appli-
cations, for which the effect of a program failure may lead to disastrous consequences.

Any engineering product, from bridges to airplanes to software, is prone to fail-
ure. The designer must anticipate failures and plan to either avoid or tolerate them.
That is, the designer must employ defensive design. He or she should try to shield the
application from errors that may creep in during development or that may arise due to
adverse circumstances during program execution. We must build robust systems: Our
programs should continue to behave reasonably even in unexpected circumstances.

We define a module to be anomalous if it fails to provide a service as expected
and as specified in its interface. So far, our design descriptions—whether textual or
graphical—are mainly syntactic in nature and do not support a formal description of
the semantics of the services exported by a module. A semantic enrichment of the
notation may be given according to the concepts we shall discuss in Chapter 5. For sim-
plicity, we assume here that semantics is specified by means of comments appearing in
the interface, as explained in Section 4.2.3. We do, however, extend our design nota-
tions to associate a set of exceptions (defined next) with each service exported by a
module. The exceptions associated with a service denote the anomalies that may occur
while that service is being performed. For simplicity, we assume that the services
exported by a module correspond to routines; what we say here, however, may be
restated for other types of services.

Either a module executes correctly, in which case it performs the requested ser-
vice and returns to the client in a normal way, or it enters an anomalous state. Defensive
design requires that in the latter case the module should signal the anomaly by raising
an exception to the client. In other words, we distinguish between the correct behavior




L

Section4.3  ‘Handling Anomalies 119

‘and the anomalous behavior of the module. If something goes wrong ahd the module

cannot complete the requested service correctly, it should return with an indication of
the anomalous situation by raising an exception, which may be viewed as an event that

is signaled to the client. The server module terminates execution, and the client, notified -
of the occurrence of the exception, responds by suitably handling the exception.

~ Why should a module M fail to provide its service as specified? Following what we
said in Section 4.2.2, this may happen because M’s client does not satisfy the required
protocol for invoking one of M’s services. For example, M’s exported operation op
requires a positive parameter, but the client may invoke op with a negative value for the
parameter. Failure also may occur if M does not satisfy the required protocol when try-
ing to use a service exported by another module—say, N. In the latter case, N's failure is

signaled back to M, and M’s exception handler is activated accordingly: The handler may .

try to recover from the anomaly, or it may simply do some cleanup of the module’s state
and then let the routine fail, signaling an exception to its caller.
If the recovery is successful, M does not fail; otherwise, some cleanup may be neces-

LR

sary to ensure that subsequent uses of M by other clients do not find the module in an

inconsistent state. Note, however, that exception handlers are hidden in the module’s

body; that is, the exact way an exception is handled by a module is part of the module’s.

secret. Therefore, we do not go deeply into the issue here. We do not examine how sig-

naled exceptions are bound to handlers or what happens if a client module does not pos-.

sess a handler for the signaled exception. These issues are very much dependent on the
programming language we choose for the unplementatlon From a design point of view,
the important point is that clients of a module can determine from its interface what
exceptions they may expect from the module. In a robust system, clients anticipate and
handle all possible exceptions that may be raised by server modules that they use.

Apart from these types of failures,ra module may fail to provide its service
because of an unforeseen condition, such as an overflow or an array index that'is out of
bounds, occurring during execution of the module. In the latter case, we dssume that
the underlying abstract machine is able to trap the abnormal condition and pass it on
to the software for appropriate handling. Many programming languages are also capa-
ble of detecting and reporting the violation of logical-correctness assertions during
executlon Once such violations are passed to the software they may be treated as

module M
exports . :
‘ procedure P (X: INTEGER; )
raises X_NON_NEGATIVE_. EXPECTED
INTEGER_OVERFLOW; )
X is to be positive; if not, exception
X_NON_NEGATIVE_EXPECTED is raised; ’
INTEGER_OVERFLOW is raised if internal
computation of P generates an overflow

end M

FIGURE 4.14

A partial module interface, includin'g exceptions.
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module L
uses M imports P (X: INTEGER;..)
exports ...;
procedure R (...)
raises INTEGER_OVERFLOW;

implementation
If INTEGER OVERFLOW is raised when P is invoked, the
exception 1s propagated

end L
FIGURE 4.15

A design fragment with a propagated exception.

were the previous types of exceptions. In addition, it is possible to specify that certain
conditions should be treated as exceptions that deserve special treatment on the L
client’s side after they are detected by the server module.

In the discussion that follows, we extend TDN interface descriptions so that a list |
of exception names may be associated with exported services. These are the names of
exceptions that may be raised by the service to signal its anomalous completion. 2

Let us give some examples. Suppose that when interfaces are defined, designers ~ §& £
agree on certain restrictions that apply to parameters of a procedure P enclosed in | ;
some module M. For example, they might agree that P should receive a nonnegative
value for parameter X. This decision is recorded in M’s interface as a comment. (See
Figure 4.14.) Of course, in a perfect world, there is no reason to suspect that client
modules do not satisfy this requirement. Defensive design, however, requires that we
not trust clients to behave properly and that we therefore protect M by sending back an
exception if P is called with a negative value for X.

As another example, consider Figure 4.15, in which module L uses module M of
Figure 4.14. Should the exception INTEGER_OVERFLOW occur when procedure P is
called by procedure R of L, we might decide that R’s handler will do some cleanup and
bookkeeping and then raise an appropriate exception (perhaps INTEGER_OVERFLOW
again) to be handled by M’s client. The same policy might also be followed by the client,
and so on. Indeed, this can be a way of performing an organized shutdown of the sys-
tem as a consequence of an unrecoverable error.

From the fragment of Figure 4.15, we observe that L does not raise an exception
corresponding to the condition X_NON_NEGATIVE_EXPECTED, which may be raised
by p. This means that either L guarantees that the exception never arises or L will
recover from it. )

Exercises

4.33 Define the interface of a module that implements the abstract data-type STACK, where
operation pop raises an exception if called to operate on an empty stack.
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4.34 Suppose we are asked to build a cross-reference table for the variables appearing in a pro-
gram. A cross-reference program is an aid to reconstructing documentation from other
programs that are, by assumption, correct. Thus, according to the specification, it should
never happen that a variable is used without or before being declared. For simplicity, we
assume that the language does not provide rules spec1fy1ng the scope of variables: All var1-
able names are global. :

We design a cross-reference table modulc CRT—an abstract object—that exports two
operations: (1) Procedure NOTIFY is called to insert a variable’s name in the table,
along with the number of the line on which the declaration of the variable occurred.
(2) Procedure OCCUR is called to record the occurrence of a variable in a statement, by
specifying the variable’s name and the number of the line on which the variable occurs.
.As part of the contract with client modules, we specify in the interface that NOTIFY can- :
not Be called if a variable with the same nam¢ is already in the cross-reference table. Also, ®
OCCUR can be called only if the variable we are transmitting as a parameter has already -
been declared (i.e., it was in the cross-reference table). These protocols are cons1stent with
" the assumption that the source program is correct.
Design a robust CRT module and provide its TDN description. Implement your design in a
‘programming language ofyour choice, assuming that suitable other modules drive CRT."
.Discuss the pros and cons of the language as far as exception handling is concerned.

" 4.35 Compare and contrast the exception-handling facilities of C++ and Java. Is it possible i in
one of these languages for a client module to not have a handler for an exception that it
may encounter? Which language enforces defensive design?”

44 A CASE STUDY IN DESIGN

In this section, we 111ustrate the concepts presented in the previous sections in the con-
" text of a case study in design. Our goal is not to provide a general recipe of “what
. makes a good design.” Design is a creative activity that cannot be done mechanically; it
" requires human insight and experience. Accordingly, we examine here a hypothetical
design process in action, showing some of the problems that may arxse m practlce and
discussing examples of what makes a good module.
Let us consider a small group of software engineers demgmng the compller of yet
another programming language: MIDI is considerably more complex than the MINT lan-
guage of Example 4.1 and Example 4.6 and is an ALGOL-like, block-structured pro-

module SYMBOL_TABLE
Supports up to MAX _DEPTH block nesting levels
uses ... imports (IDENTIFIER, DESCRIPTOR)
exports procedure INSIZRT (ID: in IDENTIFIER;
' DESCR: in DESCRIPTOR) ;
procedure RETRIEVE (ID: in IDENTIFIER;

' DESCR: out DESCRIPTOR) ;
procedure LEVEL (ID: in IDENTIFIER; L: out INTEGER);
procedure ENTER_SCOPE;
procedure EXIT_SCOPE;

" procedure INIT (MAX_DEPTH: in INTEGER) ;
end SYMBOL_TABLE

FIGURE 4.16

TDN fragment representing the initial version of the symbol table interface.
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gramming language. The overall design of Example 4.6 is supposed to be valid here, too,
and is not discussed any more. In' what follows, we concentrate our attention on the
design of the module SYMBOL_TABLE. The designers agree on the following design deci-
sions, which affect module interfaces: First, SYMBOL_TABLE’s operations are invoked
only as long as the program is syntactically and semantically correct. In particular, blocks
are correctly bracketed by begin, end pairs, no two identifiers with the same name
appear in the same block, and each variable is declared before being used. Second, for
reasons of style, the maximum depth of block nesting is predefined, and programs with a
_ nesting level higher than the predefined value are considered erroneous.

SYMBOL_TABLE is. an abstract object that hides the physical data structure used
to represent the table it creates. Its interface is tentatively represented by the TDN
fragment in Figure 4.16. According to the figure, client modules may insert an identi-
fier, along with its attributes, into the table via procedure INSERT. Clients are also
allowed to retrieve the attributes of previously recorded identifiers via procedure
RETRIEVE. Attributes are supposed to be stored in a descriptor. Operations are avail-
able to signal when a new lexical scope is entered (via procedure ENTER_SCOPE) and
when a scope is exited (via procedure EXIT_SCOPE). An operation (LEVEL) is avail-
able to compute the lexical nesting level of an identifier, The level is zero if the identi-

~ fier is declared locally—that is, in the most recently entered, and not yet exited, scope;
“the level is one if the identifier is. nonlocal and declared in the previously entered
scope; and so on.

The designers of the MIDI compller soon realize that the current version of the
SYMBOL_TABLE interface is not satisfactory. The assumption of syntactic and seman-
tic program correctness and the assumption that the maximum depth of block nesting
levels should not be exceeded might be violated by an incorrect behavior of client
modules. Consequently, to improve the compiler’s robustness, it is decided that illegal
invocations should raise an exception. This improvement in the design of

. SYMBOL_TABLE’s interface has the additional beneflt of making the module reusable

module SYMBOL_TABLE
uses ...imports (IDENTIFIER, DESCRIPTOR)
exports ' o
Supports up to MAX DEPTH block nesting levels; INIT
must be called before any other operation is invoked
procedure INSERT (ID: in IDENTIFIER;
' DESCR: in DESCRIPTOR)
raises MULTIPLE_DEF,
procedure RETRIEVE (ID: in IDENTIFIER;
: DESCR: out DESCRIPTOR)
raises NOT VISIBLE;
procedure LEVEL (ID: in IDENTIFIER;
L: out INTEGER)
raises NOT_VISIBLE;
procedure ENTER_SCOPE raises EXTRA_LEVELS;
procedure EXIT_SCOPE raises EXTRA_END;
procedure INIT (MAX_ DEPTH: in INTEGER) ;
end SYMBOL_TABLE

FIGURE 4.17

TDN fragment representing a revised version of the symbol table interface.
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in other contexts, in which the assumptions of syntactic and semantic correctness do

‘not hold. In conclusion’ the following design decisions are adopted:

1. Operatlon INSERT raises an exceptlon if 1nsert10n cannot be accomphshed
because an identifier with the same name already exists in the current scope.

2. Operations RETRIEVE and LEVEL raise an exception if an identifier with the
specified name is not currently visible.

3. Operatlon ENTER_SCOPE raises an exceptlon if the maximum nestmg depth
is exceeded;

4. Operation EXIT_ SCOPE raises an exception 1f no matchmg block entry exists.

Based on these three points, the designers produce a revised version of the
SYMBOL_TABLE interface, shown by the fragment in Figure 4.17. , ‘
Let us now follow the job of the designer of SYMBOL_TABLE. The program’s
block structure requires that information concerning the various scopés be allocated
and deallocated according to a LIFO policy. Thus, when a new scope is entered, a new

block of descriptors is allocated, and the block is deallocated upon exit from the scope.
‘We can, therefore,use a stack for storing descriptors. Thanks to the information on the

maximum nesting level, the designer decides to implement the stack as an array (of
size MAX_DEPTH) of lists, each list represénting the declarations occurfing in a block in -
terms of <identifier, descriptor> pairs.

Defining a list is not a new problem for our designer. She has faced the same
problem over and over—redefining a new list from scratch every time it is needed—
and this is qu1te frustrating! Thus, the designer decides to define a rather general
list-handling module that will be reusable in future designs. :

LIST is designed as a generic abstract data type. Being generic, it can be |
instantiated to a module that handles a list of elements of any specific type. Being
an abstract data type, it allows several list objects to be instantiated. A tentative ver- .
sion of the module’s interface is shown by the TDN fragment of Figure 4.18.

~ LIST exports a SEARCH procedure that searckes the list to find an element .
that “matches” a given parameter. In the SYMBOL_TABLE example, since T is an

generic module LIST(T) with MATCH (EL_1, EL_2: in T)
exports :
type LINKED LIST:?;
procedure IS EMPTY (L: in LINKED_LIST): BOOLEAN;
Tells whether thé list is empty.
procedure SET_EMPTY (L: in out LINKED_LIST);
Sets a list ta empty.
procedure INSERT (L: in out LINKED_LIST; EL: in T);
Inserts the element into the list
procedure SEARCH (L: in LINKED_LIST; EL_1: in T;
’ EL_2: out T; FOUND: out boolean):;
Searches L to find an element EL_Z2 that
matches E7_1 and returns the result in FOUND.
end LIST(T)

FIGURE 4.18

TDN fragn{ent representing the initial version of the interface for a list-handling module.
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4.5.1

<identifier, descriptor> pair, two elements of type T match if their identi-
fiers are the same. In general, what “match” means should be specified by a proce-
dure associated with the formal parameter T and sent as an actual parameter when
the module is instantiated. Also, the module provides a procedure INSERT to store
an element of type T. Where the element is actually stored is not specified in the
interface: It may be at the beginning of the list, at the end, or at any intermediate
point (e.g., in order to keep the list sorted). The choice is thus left to the
implementation.

Exercises

4.36 Consider the design of module SYMBOL_TABLE shown in Figure 4.16. Consider a MIDT
program in which the number of begin symbols is greater than the number of end sym-
bols. Clearly, the program is syntactically incorrect. How does the module of Figure 4.16
behave in this case? How can you improve the design to deal with such a situation?

4.37 The module SYMBOL_TABLE shown in Figure 4.16 requires client modules to follow a
precise protocol in the invocation of the exported services. (INIT must be called
before any other operation.) How can this policy be enforced through
SYMBOL_TABLE’s interface via exceptions? R '

CONCURR'ENT SOFTWARE

So far, we have implicitly assumed that the application we are designing has a single
stream of execution (also called thread of control)—that is, that it is a purely
sequential system. With the proliferation of networked computers and other com-
puting devices such as personal digital assistants, many applications must deal with
multiple threads of control, and the consequence is additional complexity of both
design and analysis. Such classes of applications are increasingly important, and
they deserve special treatment. Usually, they are studied as a separate topic in the
courses and textbooks on operating systems, distributed systems, or real-time sys-
tems. Here, we examine the fundamental characteristics of these applications in
relation to other types of software and show how the previously examined design
techniques are affected by concurrency. -

One of the key problems in designing concurrent software is to ensure the

“consistency of data that are shared among concurrently executing modules. We dis-

cuss this problem and solutions to it in Section 4.5.1. We then consider two particu-
lar classes of concurrent software: real-time software, in Section 4.5.2, and
distributed software, in Section 4.5.3. -

Shared Data

We can generalize the concepts of modularity we have studied thus far to the case
where we have an abstract object that is accessed by more than one sequential activity
(or process)’ at a time. For example, suppose we have the abstract object BUFFER of

“In general. one should distinguish between threads and processes (i.c.. sequential activities within a given name space
or in different name spaces). For our purposes. we may ignore this distinction.

.
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type QUEUE of characters. This 6bject might be an iﬁstance of a type obtained by first
instantiating the generic type of Figure 4.19, that is,

‘module QUEUE_OF_CHAR is GENERIC_FIFO_QUEUE (CHAR)
andthen instantiating a variable
BUFFER: QUEUE_OF_CHAR.QUEUE;

assuming that QUEUE is the name of the type exported by GENERIC_QUEUE and using
dot notation to specify the selection of a resource exported by a specific instance.

We assume here that the following operations on objects of type QUEUE of char-
acters are available: :

e PUT: inserts a character in a QUEUE;. :
* GET: extracts a character from a QUEUE; '
e NOT_FULL: returns true if its QUEUE parameter is not full;?

¢ NOT_EMPTY: returns txue if its QUEUE parameter is not empty.

. Object BUFFER is accessed concurrently by client processes that produce char-
acters (say, PRODUCER_1, PRODUCER_2, etc.) and call operation PUT to insert a new
character into the buffer. BUFFER is also accessed concurrently by client processes
that remove characters (say, CONSUMER_1, CONSUMER_ 2, etc.), and call procedure
GET to extract one character from the buffer. Assume that operation PUT may be
called only if the buffer is not full and that operation GET may be called only if the
buffer is not empty. '

- To use the module BUFFER correctly, we might try to embed calls to GET and PUT
issued from the clients into the following structures:

(i) if QUEUE_OF_CHAR.NOT_FULL (BUFFER) then
QUEUE_OF_CHAR.PUT (X,BUFFER) ;
end if; '

(ii) 4f QUEUE_OF_CHAR.NOT_EMPTY (BUFFER). then -
QUEUE_OQF_CHAR.GET _( X, BUFFER) ;
end if;

Unfortunately, this-approach does not suffice to access the buffer correctly, for it
may happen that CONSUMER_1 checks the buffer and does not find it empty. Thus, it
chooses to enter the then branch and gets ready to perform a GET. Before it actually
executes GET, however, CONSUMER. 2 also checks the buffer and finds it nonempty; it,
too, enters the then branch and gets ready to perform a GET. If BUFFER initially con-
tained only one character, we reach an invalid state in which two authorizations to GET
a character have been issued. This will certainly lead to an error during execution.

8We assume that queues have a finite capacity. Unbounded queues are similar (and simpler) to deal with. They do no
require this operation. :
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Exercise

4.38 Suppose that the code implementing operation PUT contains the statement
TOT := TOT + 1,TOT being the total number of buffered characters, while operation
GET contains the statement TOT := TOT - 1.Suppose also that PRODUCER_1 and CON-
SUMER_2 are concurrently performing pUT and GET on the buffer. Show that the system
may enter an invalid state.

The BUFFER example illustrates the need for synchronization of concurrent
activities. Two concurrent activities proceed in parallel as long as their actions do not
interfere with one another. But if they need to cooperate or compete for access to a
shared resource, such as BUFFER in the example, then they cannot simply proceed
independently and must synchronize their actions.

There are several ways to effect synchronization of processes. One is to ensure
that any shared resource the processes access is used in mutual exclusion. This means
that when a process is executing a PUT (or a GET), no other process should be allowed
to access BUFFER; otherwise an error, as in Exercise 4.38, might arise. Also, the struc-
ture containing operations (i) and (ii) shows that when a consumer executes operation
(ii), it should access the object in mutual exclusion; that is, no other process should be
allowed to execute any other operatlon on the shared buffer. The same holds if a pro-

.ducer executes operation (i).

More generally, operations that affect the internal state of a shared object
should always be executed in mutual exclusion, so that they leave the object in a con-
sistent state. The same holds for sequences of operations that test the value of an
object and possibly modify the value, depending on the result of the test.

The problem of accessing shared data in a concurrent environment is actu-
ally a generalization. of the same problem in the sequential environment.
Variables that are shared among modules in a sequential environment "also

- require special care, because two successive calls to a module M may observe dif-

ferent values of a variable due to an intervening call to M issued by some other
module. This arrangement may be intentional (in the case of an abstract object),
or it may be an error. In the sequential environment, such interactions of modules
are exphc1t in the design of the application.

In a concurrent environment, however, the mteractlons are dependent not
only on the design of the application, but also on the particular implementation of
concurrency in the execution system. This additional difficulty is due to the fact that
the order of execution of operations (e.g., accesses to the shared data) cannot in
general be determined at the time the program is written, but rather depends on the
speed of execution of the various tasks. Indeed, different tasks may be executed on

different processors and exhlblt different speeds durmg different executions of the

apphcatlon

The potential problems we observed in the case of producers and consumers
concurrently accessing the same buffer are due to the unfortunate occurrences of
particular sequences of actions. It may happen that the system works correctly in the
majority of executions, but when the actions occur in some particular sequence, the
system fails. Different sequences of actions in the access to the buffer may corre-.
spond to different speeds of execution of processes.
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, There are several ways of lnfluencmg the speed of execution of processes.
First, processes may share the same processor, and the scheduler may assign'them a
fixed slice of processing time periodically. Or, alternatively, some processes may
have a higher priority than others. Or each process may run on a separate, dedi-
cated physical processor. In these three cases, the speed of execution of the
processes is subject to variation.

We would like to be able to design our software in a way that its correct
behavior is ensured, independently of the speed of execution of processes. The sys-
tem should have the same correct behavior whether it is executed on a uniproces-
sor-or a multiprocessor, whether the time-shared uniprocessor uses fixed time
slices or pr10r1t1es and so on. This would make our solution more general, allowing
it to work for a family of implementations of the underlying abstract machines.
Thus, changing the underlying abstract machine would affect only the performance
of the software, not its correctness. Also, reasoning about the correctness of the
design would be easier, since the design could be assessed without taking executlon
speeds of processes into consideration.

To do this, we extend the concepts and the notation of abstract objects and
abstract data types to the case of concurrent software. In partlcular we follow two

. common paradigms of concurrent software design. These paradigms, in turn, are

reflected in the constructs provided by some existing concurrent programming
languages .

The first approach inspired by the Concurrent Pascal programmmg language
and now popularized by Java, leads to the notions of monitors, which represent concur-
rently accessed objects as proteéted passive entities. We shall call this approach

~ monitor based. The second approach inspired by the Ada programming language,
~ leads to the concept of a resource guardian, which is used to represent a concurrent

active object. The mechanism used for synchronization is called rendezvous, and thus
we call this approach rendezvous based. ' '

Although the approach chosen for descrlblng a software des1gn is independent
of the implementation language, the mapping of a design onto a program is more

direct if the two are based on the same philosophy. Certain design structures (e.g., a

rendezvous-based design) are easier to map onto.a certain language (e.g., Ada). Also,
considerably more effort goes into the implementation if the language we use is
sequential, and concurrency must then be achieved via calls to the underlying oper-

~ ating system.

4.5.1.1

Monitors

A monitor is an abstract object that may be accessed in a concurrent environment. The
monitor guarantees to its clients that the operations it exports are executed in mutual
exclusion. If a process P requests the execution of an operation in a monitor while
another process is already executing an operation in the same monitor, the monitor
suspends the execution of P. Execution is resumed only when P can gain exclusive
access to the operations of the monitor,
From the clients” vrewpornt mutual exclusion is guaranteed by the monitor
through its interface; the way it is actually provided by the monitor depends on the
monitor’s implementation. If we implement our system in a language like Concurrent
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Pascal or Java, mutual exclusion can be guaranteed directly by the language. If the lan-
guage does not provide any automatic way of enforcing mutual exclusion, then we
must guarantee it in implementing our application.

Of course, mutual exclusion in the execution of individual operations is not suffi-
cient to guarantee correctness in the access to shared objects. As we saw earlier, two
consumers may invoke operation NOT_EMPTY to check whether the buffer is not
empty, and both may be authorized to perform the removal of a character. If the buffer
originally contained a single character, the second attempt to remove a character
would generate an erroneous state.

To solve problems of this kind, we extend our textual design notation by permit-
ting exported operations to be coupled with an optional requires clause. As viewed
by clients, this clause is automatically checked when the operation is called. If its result
is true, then the operation is executed normally, but in mutual exclusion. If the result
is £alse, the process issuing the call is suspended and waits for the condition to
become true. Suspension of the process releases the mutual exclusion that was previ-
ously acquired. so that other processes may be allowed to enter the monitor. At some
point, a process executing some monitor operation might cause the condition on which
other processes were suspended to become true. Such processes would then become
eligible for resumption; when resumed, a process executes the operation in mutual
exclusion, as if it had requested the operation just then. In this way, testing the
requires clause and executing the associated operation result in an atomic action.

If we choose—say—Java as a programming language, all the suspensions and
resumptions needed to handle the requires clause properly are automatically pro-
vided by the monitor implementation. If we use a sequential programming language,
mutual exclusion and the requires clause may be implemented by appropriate calls
to the operating system.

Figure 4.20 is an example of a monitor representing a buffer of characters. We sim-
ply add the keyword concurrent to specify the monitor’s semantics for the module.

Monitor types can be defined accordingly and can be generic. An example of a
generic monitor type representing FIFO queues of any component type is illustrated
in Figure 4.19.

Operations exported by a monitor may raise exceptions, and the syntax for speci-
fying the exception associated with an operation is the same as before. For example, in
the case of the CHAR_BUFFER monitor, suppose that the interface specifies that the
character sent to PUT should satisfy some constraint. The specification of PUT would
then be modified to read

procedure PUT (C: in CHAR) requires NOT FULL
raises PAR_ERROR;
where PAR_ERRCR is the exception raised by PUT if the parameter does not satisfy the
constraints specified in the interface.

We conclude our brief discussion of monitors and monitor types at this point,
without trying to add details to our design notation. Going into details would raise sev-
eral critical issues that would make our notation more intricate and more program-
ming-language oriented.
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\e lan- = concurrent module CHAR_BUFFER
en we = This 1s a monitor (i.e., an abst‘ract object module in a
concurrent environment.)
t suffi- uses
exports
T, two procedure PUT (C: in CHAR) requires NOT_FULL;
1s not procedure GET (C: out CHAR) requires NOT_EMPTY;
buffer NOT_EMPTY and NOT _FULL are hidden Boolean
rracter \‘ functions yielding TRUE 1f the buffer is not empty and not
‘ full, respectively. T}'qey are not exported as operations,
ermit- ‘ because their purpose is only to delay the calls to PUT and
rnewed GET if they are issued when the buffer is in a state where it
s result ] cannot accept them.
‘result
ion to
previ- end CHAR_BUFFER
t some ]
which ] FIGURE 4.19
ecome Example of a monitor in TDN.
mutual '
ng the . :
Hom. - generic concurrent module GENERIC_FIFO_QUEUE (EL)
ns and This is a generic monitor type (i.e., an abstract data type
| _ accessed in a concurrent environment.)
y pro uses
lguage, exports
te calls type QUEUE: ?;
procedure PUT (Ql:in out QUEUE; El: in EL)
Ve sim- - requires NOT_FULL (Ql: QUEUE);
dule. i procedure GET (Q2:in out QUEUE; E2: out EL)
le of a requires NOT_EMPTY (Q2: QUEUE) ;
strated
I speci- :
. end GENERIC FIFO_QUEUE (EL)
nple, in ‘ -
hat the 1 FIGURE 4.20
* would ] ’ Example of a monitor type in TDN.
Exercise
4.39 Extend GDN by providing a graphical notation for monitors and monitor types.
isty the
4.5.1.2 Guardians and the rendezvous
.Sisle):(;?\;[: The monitor-based approac}} to the dejs.ign of 'concur.rfant §oftware views a spftware
ogram- ; system as composed of two kinds of entities: active entities (i.e., processes), which have

independent threads of control, and passive objects. Passive objects may be either
2 instances of an abstract type or single-instance abstract objects. Passive objects may be
shared among processes or may be used as private resources by a process. A shared
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object must be either a monitor or an instance of a monitor type; otherwise, there
would be no guarantee that access to the object would preserve a consistent state.

As we anticipated, there are other paradigms for the design of a concurrent sys-
tem. One such paradigm is exemplified by the approach taken by the Ada program-
ming language. In this approach, private objects are the only passive entities of a
system. Active objects come in two “flavors™ processes, as before (called rasks in Ada),
and guardians of shared resources.

Guardians are themselves tasks whose sole purpose is to guarantee orderly
access to a hidden secret representing an encapsulated resource, possibly a data struc-
ture. Guardians are never-ending tasks that await requests to perform some operation.
A guardian may or may not accept a request, depending on some condition based on
the internal state of the resource controlled by the guardian. A guardian accepts
requests one at a time.

A task issuing a request to a guardian becomes suspended until the guardian
accepts the request and completes execution of the associated action Following Ada ter-
minology, this form of interaction between a task and a guardian is called a rendezvous.

The same syntactic notation we gave before in the case of the monitor-based
approach may be used to describe a rendezvous-based design approach. What changes,
of course, is the semantics. As an example, take the concurrent module CHAR_BUFFER
of Figure 4.20. If we interpret the design notation in the context of the rendezvous-
based approach, CHAR_BUFFER is a task that accepts requests to operate on its
guarded state by performing either a GET or a PUT. A GET request is accepted only if
the buffer is not empty; a PUT request is accepted only if the BUFFER is not full. A task
issuing one of these requests (via a suitable call) is suspended until the request is ful-
filled by the guardian—that is, until the guardian finds the when clause true, decides to
respond to the request, and executes the body of the request. The guardian repeatedly
accepts valid requests in a never-ending loop.

To clarify these issues, one may assume that, in a rendezvous-based language, the
internals of module CHAR_BUFFER might look like the sketchy program of Figure
4.21. The program, written in a self-explaining Ada-like style, describes the structure of
a guardian implementing the CHAR_BUFFER concurrent module of Figure 4.20. The
example shows that the guardian repeatedly checks for requests from clients.

Both the monitor-based approach and the rendezvous-based approach provide
nondeterministic solutions to concurrency problems. The CHAR_BUFFER guardian is
specified as a server accepting requests to access the buffer, either to add new char-
acters to it or to remove characters from it. Requests to add new characters are
accepted if the buffer is not full; similarly, requests to extract symbols from the buffer
are honored if the buffer is not empty. From the client’s viewpoint, when the buffer is
neither full nor empty, pending requests (if any) are handled nondeterministically, as
is suggested by the select ... or ... end select construct of Figure 4.21. Note
that we do not specify what happens when several requests of the same kind
(e.g., GET) are issued to the same guardian. Here, too, we may assume that the choice
of which request to fulfill is made nondeterministically.® Similarly, in the monitor-
based approach, several processes may be waiting for the mutual exclusion condition
to be released. Which of them is actually resumed when the monitor is freed? Finally,

9Actually, Ada says that these requests must be handled in a first-in, first-out fashion.
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loop
select
when NOT_ FULL
' accept PUT (C: in CHAR); _ L
' This is the body of PUT; the client calls it as if it
were ‘a normal procedure '
end;
or
when NOT_EMPTY
‘accept GET (C: out CHAR);
This is the body of GET; the client calls it as if it
were a normal procedure . N
_ end; ‘ : , ' '
end select; :
end loop; -

FIGURE 4.21

Typical internal structure of a guardian task.

if some processes are suspended on a rem:.ras clause and the condmon becomes
true, which of them is chosen?

In all these cases, the module’s behavior, as viewed by its clients, is nondetermin-
istic. That is, the interface does not reveal how the module actually makes its choices.
Nondeterminism is an important property at the specification level, because it is inde-
pendent of particular implementations of concurrency. Thus, our design is not sensitive
to the ways the nondeterminism is resolved later. The programming language we use to
implement the system may make specific choices where we have left things nondeter-
ministic, and other choices may be made by the abstract machine that supports the
execution of the programming language. Whatever choices are made by the implemen-
tation, the system will be correct, and only its performance will be affected. Avoiding
nondeterminism at the specification level forces the designer to overspecify the behav-
ior of the system, constraining implementations unnecessanly '

In designing a concurrent system, spec1a1 care is needed to prevent certain unde-
sirable anomalous situations from occurring during execution, which would cause the
entire system (or a subsystem) to become blocked indefinitely. This anomalous situa-
tion is called a deadlock. For example, consider the case where a process A is sus-
pended on a requires X clause of a monitor. Suppose that the only way for X to
become true is to have another process B execute another fragment of code. But
process B is also blocked on a requires clause Y of some monitor, and the only way
for ¥ to become true is to have process A terminate its call to the monitor and execute
a certain fragment of codé that follows the call to the monitor. Processes A and B are
thus blocked indefinitely. They wait for each other to proceed further in their respec-
tive computations. Chapters 5 and 6 discuss how anomalous situations of this kind may
be detected. Detection may be performed by first providing a formal model for the
software architecture and then applying suitable’ analysis methods to the formal
model. For example, we shall illustrate Petri nets as a formal notation in which a con-
current architecture of this kind may be modeled, and we shall show how potential
deadlocks can be detected by analyzing the Petri net model.
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Exercise

4.40 Consider a programming environment composed of a sequential programming language
(e.g., C) and an operating system (e.g., UNIX). Provide implementation guidelines for
both monitor-based and rendezvous-based designs.

Real-Time Software

In the previous section, we solved the problem of concurrent access to shared data by

assuming that we can resolve contention for resources by suspending the execution of

competing processes for a period of time. For example, in monitor-based design, pro-
* ducers could be suspended if the buffer they were accessing was full.

Unfortunately, suspending processes is not always feasible. For example, an oper-
ation invoked on an abstract object may belong to the thread of control of a process
that cannot be suspended, perhaps because the process is a physical activity existing in
an environment whose temporal evolution is not under the control of the computer
system. Suppose, for example, that in a controlled chemical plant a producer'is a sensor
that samples data sent to the controller (a computer). In this case, there is no way to,

~ say, slow down or suspend the plant! If a datum sent by the plant is not accepted in

time by the controller, it will 51mply be lost. It is the controller’s job to comply with the
speed requirements of the plant in such a way that the data sent on the line are
accepted, with no losses. Problems of this kind characterize real-time systems, which
may be defined as systems for which reasoning about their correct behavior requires
dealing with the speed of execution of the processes that make up the system. When
we design such systems, we must comply with requirements that specify time limits
within which certain operations must be executed. If some operations are not executed
within the limit (i.e., if they occur either too early or too late), the system is incorrect.
This time constraint shows the fundamental difference between a pure concur-
rent system and a real-time concurrent system. A concurrent system is designed by
ignoring the speed of processes. By applying suitable design principles, we may ensure

- that the system is correct independently of the speeds of the processes that constitute

the system. Processes may be explicitly suspended (i.e., they may be slowed down as
much as we wish) in order to ensure the validity of certain logical properties. For exam-
ple, in the case of the monitor-based solutions discussed in the previous section, we are

- able to say, “At the future point where the producer will be allowed to perform a PUT

operation, the buffer will have some free space to store the value delivered by the
client.” This was stated by means of the requires clause. Such statements do not
make any sense in the case of a real-time system. If incoming signals arrive at a fre-
quency of, say, one every 5 milliseconds, and, for security reasons, no incoming signal
must be lost, knowing that “eventually the incoming signal will be buffered” does not
solve our problems: The signal must be buffered within 5 milliseconds (i.e., before the
next signal arrives); otherwise the signal is lost. '

To deal with real-time issues in our design notations, we do not propose any spe-
cialized constructs, but rather suggest using comments to attach the needed require-
ments. For 'example, a comment may be used to say that the execution time of a certain
exported routine is bounded by given lower and upper bounds.

Real-time systems often interact with an external environment that produces
stimuli autonomously, at unpredictable times. Therefore, such systems may be viewed
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.concurrent module REACTIVE_CHAR_BUFFER

This is a monitorlike object Working in a real-time environment.

uses ' '

exports

' reactive procedure PUT (C: in CHAR);

PUT is used by‘external-processes, and two consecutive
PUT requests must arrive more than 5 msec apart;
otherwise, some characters may be lest
procedure GET (C:out CHAR);

end REACTIVE_CHAR_BUFFER o .
(@) o

/\/\ Module _
S —

- FIGURE 4.22 : . PUT 'REACTIVE_CHAR_BUFFER GET

(a) Textual and (b) graphical design
notation describing events. ' (b)

as reactive systems that respond to incoming stimuli provided by the external world.!0 |
It is thus useful to have a way to specify that a given routine represents the response to

an unpredictable request coming from the external environment. In TDN, we specify

that by using the keyword reactive; in GDN, we indicate it by means of a zigzag
arrow. (See Figure 4.22.) _

If an operation is classified as reactive, it means that its execution cannot be
delayed—for example, by suspending the caller and resuming it at a later, more conve-
nient time. In practice, reactive operations are specified by stating constraints on their

“execution times (e.g., “The operation can occur every x milliseconds, with 5 < x < 15”).

Thus, it is the designer’s responsibility to make sure that when an incoming request for
such an operation arrives, no other operation of the module is being executed.
Otherwise, the result would be unpredictable.

‘ Practical experience has shown that timing issues are extremely critical, and this is
what makes real-time systems difficult to design and verify. The complexity of design and
verification scales up as we move from purely sequential systems to concurrent systems
and from purely concurrent systems to real-time systems, and what makes the difference
is time, In the case of sequential systems, time has to do only with the performance of a
program. In the case of a concurrent system, we can suitably organize the system so that
proper synchronization ensures correctness in a time-independent manner. Thus, again,

" time affects only the performance of the resulting program. In the case of real-time sys-

tems, however, time affects correctness. Accordingly, it introduces one more dimension

that must be taken into account when we design, implement, and verify our systems.
Besides being intrinsically complex, real-time systems often provide critical func-

tions, so that the effect of errors may be disastrous, possibly causing heavy financial

- losses or even loss of human lives. Thus, one of the qualities required of many real-time

10The fact that the environment activates some operation at unforeseen instants of time is typical of, though not
exclusive to, real-time systems.
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software systems is dependability. The design and verification of dependable real-time
systems are subjects of active current research.

Distributed Software

One important class of concurrent software consists of concurrent activities that run
on different computers connected by a communication network. For example, comput-
ers in an organization or in a home are often connected by a local area network
(LLAN). Such a network allows the users of the different computers to communicate
(e.g., via electronic mail), share resources (e.g., printers and files), and otherwise coop-
erate. A set of LANs that are geographically distributed may be connected over a wide
area network (WAN). Such an interconnection of networks is called an internet. An
internet that belongs to, and is under the control of, a single organization is called an
intranet. An intranet may support several distributed applications, including an internal
mailing service or an internal web-based service to disseminate relevant information
to employees.

In this section, we provide an initial overview of the issues involved in dealmg
with distributed software. Additional comments will be provided after we introduce
object-oriented design in the next section. We start by observing that distribution
imposes further requirements on the concepts of modules and relationships among
modules studied so far. The resource guardian modules developed in Section 4.5.1 are
directly applicable to a distributed software application and can serve as a unit of dis-
tribution. We must, however, impose certain restrictions on the USES relation between
two modules that reside on different machines. In particular, because the modules on
different machines have independent address spaces, we cannot allow one module
directly to access variables defined in other modules. We will however, allow indirect
access of such variables, through access procedures exported by the module, described
in Section 4.6.3.3. : '

With distributed software, we must consider these new design issues:

¢ Module-machine binding. Sometimes a module is required to run on a partic-
ular machine. For example, if the module’s purpose is to provide a printing ser-
vice, the module may have to run on a computer that is attached to a printer.
Other times, the module may be able to run on any number of a class of
machines—for example, those that have a gateway connection to enable them
to reach networks outside the organization.

¢ Intermodule communication. If two modules reside on different machines,
how should they communicate? We have seen that modules which reside on -
the same machine can communicate by using a shared global area: One mod-
ule records some information in the global area, and the other reads the infor-
mation. This approach, which works for both sequential programs and
concurrent programs, does not extend directly to the distributed environment,
because the two modules are on different machines. Another approach to
intermodule communication in the sequential environment is through para-
meter passing at procedure call and return times. The procedure call mecha-
pism has been extended to a remote procedure call (RPC) in which the caller
and the callee are not required to be on the same machine. The Java language |
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introduced the notion of remote method invocation (RMI), which allows an
object to call a procedure in an object that resides on another machine.!!
Another approach to intermodule communication in a distributed environ-
ment is sending messages. A number of libraries and operating system facili-
ties support the development of applications using remote procedure calls or
nessage passing.

« Efficient access to abstract objects. We have identified abstract objects as
important types of modules that are derived naturally during the design of a
system. If a centralized system, we do not incur a large cost by encapsulating a
piece of data needed by module M, as part of an abstract object M,. In a distrib-
uted system, however, if the two modules are located on different machines, it
takes M, a much longer time to access data in M, through, say, a remote proct-
dure call than the data that are local in M,. Nonlocal access iimes may be
orders of magnitude higher for remote data. Two approaches to making
abstract -objects more efficient in a distributed environment are replication
and distribution.

We examine the preceding iésues more closely in Sections 4.5.3.2 through 4.5.3.4.
- But first, in Section 4.5.3.1, we discuss briefly a particular model for structuring a dis-
tributed system: the client-server model. :

4.5.3.1 The client-server m_odel

We have said that the role of modules is to provide services to other modules called
client modules. This model is directly applicable to distributed architectures. The most
popular architecture for a distributed application is in terms of clients and servers
residing on different machines. For example, consider a printing service facility on a
network of computers. In this network, some computers have printers attached to
them and others do not. We can design the printing service to consist of client and
server modules. The server receives a file and prints it on a printer. The client accepts a
file name from the user and sends the contents of the file to a server module, along
with information about the user who requested the print operation.

Some of the modules that we have encountered already can be viewed naturally
as server modules in a client-server architecture. For example, a module similgr to the
BUFFER example of Section 4.5.1 can be used by client modules of the printing service

-application to deposit the files to be printed. The client modules are the producers, and
‘the server module is then the consumer, of the application. Similarly, the resource
guardian modules of Section 4.5.1.2 can model servers in a distributed application.

Exercise

4.41 The same module may be a client in one context and a server in another. For example,
consider a printing service facility that consists of a number of client modules running on
machines without printers, a number of BUFFER modules running on any machine, and a

e

* 1'The terms object and method are defined in Section 4.6, which deals with obj;(:t-oriented design.
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number of server modules running on machines that have printers. Discuss whether thie
BUFFER is a client or a server.

Binding a module to a machine

As we have said, an issue that we face in a distributed software architecture is that of
binding modules to machines. Sometimes, as in the print server example, the binding is
imposed by the physical environment or underlying infrastructure. Other times, there
is a choice, and this choice may be guided by several considerations. For example, in
order to reduce the cost of communication, we may want to place server modules on

. machines that are close to their clients, perhaps even on the same machine if possible.

4.5.3.3

Another issue is whether the binding is static or dynamic. A static binding is sim-
pler, but the ability to choose the location of execution of a module dynamically allows
us, for example, to choose a lightly loaded system in order to improve the application’s
performance: This ability is also essential for supporting highly reliable systems,
because the failure of one machine can be tolerated by moving the modules that were
running on it to another machine. Such dynamic movement of processes is called
ngratlon We will not deal with the many details of this problem, wh1ch may be found
in the specialized literature.

A special issue pertaining to the static or dynamic blndmg of modules to
machines is whether a module can be instantiated (i.e., created) dynamically in the first
place. Some systems support the creation of processes at run time, and others do not. If
processes may be created dynamically, then the application can determine at run time
how many instances of the process it needs to run. The ability to create a process on a
specific machine is an additional feature. Different languages and libraries that sup-
port distributed software offer a large variety of options for the designer.

Exercises

4.42 Explain why the dynamic creation of processes may not be dgsirable in real-time systems.

4.43 Consider an application that is required to be accessible from any machine on a particular
network. There are thousands of machines on the network, but we expect that the applica-
< tion will not be run by more than 10 users at any one time. Design a solution to this prob-
lem. Is the dynamic binding of modules to machines useful in this example? How can you
use process migration in this application? What is your solution if you are required to have
a static binding of modules to machines?

Intermodule communication

Two models of communication are used n dlstnbutcd apphcatlons remote procedure
call and message passing. .. -.c ~

The remote procedure call mechamsm is an extension of the traditional proce-
dure call that allows the calling and the called modules to reside on different
machines. Commercial packages are available that support this type of interaction
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under different operating systems. These packages offer an Interface Definition
Language (IDL) and a compiler. Using IDL, the designer defines an interface for
any procedure that may be called by remote clients. The compiler processes the def-
initions and generates header (or include) files that are included by clients and
servers at compile time and that provide access to stub procedures which support

‘the inter-module communication. Because of the similarity of remote procedure
‘calls to traditional procedure calls, it is possible to design applications without mak-

ing any distinction between service requests for local and remote modules: Any
module interface that is written in terms of procedure calls can be supported in a
distributed application. In practice, however, there are many detarls that hamper
this approach. :

The first difference betwcen Tocal and remote procedure calls is in performance
Since the call parameters have to be transmitted over the network, the overhead of an -
RPC is an order of magnitude higher than that of a local call. Switching a call from
local to remote can have a significant impact on the performance of an application.
Whereas a compiler may sometimes generate in-line code for local calls in order to

_improve efflclency, this is not possible for remote calls.

Another major difference between local and remote procedure calls is in the
forms of parameter passing. Even if the ideas of a procedure call and a return are
implemented rather naturally, not all forms of parameter passing can be supported
remotely. For example, because the calling and called modules reside in two different
address spaces, the two modules cannot communicate in terms of pointers. This means
that parameter passing by reference, or passing linked data structures, is problematical,

if possible at all. Thus, commercial remote procedure call systems generally do not sup-

port the passing of pointer structures.

The message-passing paradigm for intermodule interaction may be thought of -
in terms of mailboxes. Each module may be considered to have a mailbox in which
it can receive messages from other modules. Client modules can send requests to
the mailbox of a server module. A server picks up a request from its mailbox, acts
upon it, and, if necessary, sends a reply to the mailbox of the appropriate client. The
chief considerations in the use of message passing involve the size of mailboxes
(how many messages can be buffered), whether message sending is synchronous or

asynchronous, and whether a module can choose a target mailbox dynamically or

the choice is static. :

Although the two paradigms of remote procedure call and message passing are
equal in power, in that each can be simulated with the other, they are-appropriate for
different software architectures. The most significant difference between the two is
that remote procedure <call is inherently a synchronous form of interaction and mes-
sage passing is asynchronous. This means that a module making a procedure call must
wait until the callee returns, but a client sending a message may continue with its
thread of control. The existence of different threads of control means that the designer
must deal with concurrent threads explicitly.

Exercises

4.44 Consider an application in which a sensor module reads a series of values on an incoming
line and sends these values to-a recorder module for further processing. If these two mod-




138 Chapter4  Design and Software Architecture

ules are distributed on two different machines, which form of inter-module commumcan
tion would you choose to use? Why?

4.45 Yor the previous exercise, sketch each module in a suitable extension of TDN, once using
remote procedure call and once using message passing.

4.5.3.4 Replfcation and distribution

The final consideration in software design for a distributed environment is to make
access to data efficient. In particular, we have emphasized that one useful type of module
Is an abstract object, which provides client modules with access to an encapsulated
data structure. This means that-the client module makes a request—usually through a
procedure call-—for any data that it must access. The cost of accessing a piece of data
through a procedure call rather than through memory directly—which is done for local
- data—is considered excessive even in some centralized applications. The cost is consid-
erably higher if the abstract object is on a remoté machine. The cost of a remote access
on the fast=st networks is around four times the cost of a local access and can be as
much as an order of magnitude higher. We therefore need a way to make access to
abstract objects efficient if we are going to use them ina: dlstrlbuted application. Two
- general methods exist for doing this.

The first approach is to replicate the distributed Ob]CCt on several machines—
indeed, on every machine if necessary. In the latter case, each client has access to the
abstract object locally. The problem now is that if a client modifies a copy of the object,
all copies of the object must be kept consistent so that the different clients continue to
observe the same abstract object rather than many different objects. Numerous tech-
niques have been developed, in both the operatmg system and database areas, for solv-
ing this data consistency problem.

Another solution to speed up access to remote data is to dlstnbute the abstract
object-on different machines. That is, even though logically the object is a single object,
we can partition it physically and store the partitions on different machmes, with each
partition close to the clients that are likely to access it.

For each particular abstract object to be used in a distributed application, we
must consider whether it makes sense to replicate it, partition it, do both, or do aeither.

Exercises

4.46 Extend both TDN and GDN to cope with the problems of dynamlc allocatlon, intermod-
_ ule communication, replication, and distribution.

4.47 Consider a printing service application. A BUFFER module stores the job rcquest& Should
- we-partition or replicate BUFFER? Why or why not? .

' 4.48 Consider an application for managing bank accounts in a bank. An abstract object repre-
sents all the customer accounts in the bank, which has many branches all over the country.
Each branch has a computer that is used to access the customer—account object. Would you
replicate or partition the object? Why or why not?

- 4,49 Sketch the design of a conference room reservation application. Hundreds of rooms may
be reserved for any particular time. The: application may be accessed from thousands of
~ machines or the network. :
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4.50 Consider an application that is expected to receive stock market data that arrive on an
incoming wire service and make it available to all the computers on a network for differ-
ent types of queries. We decide to-use an abstract abject to represent the stock market
data. Would you partition or replicate the data? Why or why not?

4.5.3.5 Middleware

4.6

The proliferation of networks, internets, and intranets has resulted in the development
of many distributed software applications that rely on many of the same underlying
facilities to perform their tasks. For example, they all need to locate services such as a
print service on the network, and they need to locate. various processes and communi- :
cate with them. The recognition of such common services has given rise to a new layer;
of software called middleware. The middleware layer resides between the network,
operating system layer and the application layer. Just as operating systems provide, for_
example, file and directory services to application programs, middleware provides dis-
tribution services -to distributed apphcatlons Typically, middleware provides the fol-
lowing two services: :

« Name services: to find processes or resources on the network.
* Communication services: various forms of communication between processes,
such as message passing or remote procedure call.

The facilities that make these services available are used by almost all distributed
applications. The communication facilities provide the important service of packaging
the parameters and transporting them across heterogeneous machines. Without such

#1 facilities, the application developer would have to take care of data type conversions

when processes on different computers communicate.
Today’s middleware systems provide services for building apphcatmns that are
distributed across local area networks. Research systems attempt to extend these facil-

ities to operate across Internet-scale systems. The challenges in these middleware sys- -

tems are to deal with scalability and reliability issues. Internet-scale applications must
be able to handle millions of clients and cope with partial network failures.

Thanks to middleware, a software architect designing a distributed system does
not start from scratch. The architect can depend on;’and indeed use, preexisting com-
ponents. Middleware systems provide many such components besides those associated

“with naming and communication. Common services are logging, transactions, event

notification, secur1ty, and so on. We illustrate CORBA, a typical, standard middleware
spec1f1cat10n in Sectlon 4.7.

OBJECT-ORIENTED DESIGN

Object-oriented (OO) design is a technique that pushes to the extreme a design
approach based on abstract data types. OO design became increasingly popular as 00
languages——Smalltalk C++, Java, and others—becarhe more and more widely used in
practice. In OO design, there is only one kind of module: the abstract data-type mod-
ule. Using OO design terminology, we call such modules classes. A class exports the
operations that may be used to manipulate its instances. Such operations are defined

- . . ——
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by procedures, usually called methods in OO terminology. Classes can also disclose -

part of their internal secrets, through exported attributes.’> Objects are instances of
classes and variables are references to objects.13

We modify TDN to express the fact that all modules implement just abstract, data
types. Instead of using the notation “type X = ?” in the interface of some module X to
introduce the type’s name, we let client modules use the class name directly. Hence,
instead of declaring, say, a reference to an object of the abstract data type XX exported by
module X as “a: XX.X”, we would write “a: X”. Since classes implement abstract data
types, we use the abbreviation “object a is of class X” to mean—more precisely—*“a is a
reference to an instance object of the abstract data type implemented by class X.” '

Another substantial change occurs in the syntax of operations that are
invoked on instance objects. In the case of the abstract data-type module X export-
ing XX, the invocation of operation op that manipulates the object referenced by a

is written as

op(a,other_parameters)
In the case of OO design, we write

a.op (other_parameters)

indicating the invocation of operation op provided by instance a of class X. Thus, all
operations exported by an OO module operate on a current instance object.

‘OO0 design insists on identifying classes and reiations among classes. Relations
are used by OO in a very broad and abstract way. We discuss the various kinds of
OO relations in Sections 4.6.1 through 4.6.3. Along with this discussion, we intro-

duce a graphical notation that specializes and replaces our GDN in the case of OO

design. This notation, called Unified Modeling Language (UML), is commonly used
for describing OO designs. UML is discussed further in Section 4.6.4.

Generalization and Specialization

00 de51gn allows abstract data types to be organized in a hierarchy through general-

ization-specialization relations. Such a hierarchy defines a classification scheme for
abstract data types. If class B specializes class A (conversely, A generalizes B), then the
abstract data type implemented by B defines objects that behave like A’s instances, but
may provide more methods and attributes. Thus, all methods and attributes defined for

- A can be used to manipulate B’s objects (which also may be manipulated by the meth-

ods and attributes defined specifically for B). B is said to be a subclass of A, with A
bemg B’s superclass. :

Generalization-specialization can be 1mplemented in a straightforward way
through the inheritance mechanism provided by OO programming languages. This is
why we often say “B inherits from A” as a synonym of “B specializes A” Accordingly, we
can also say that B is A’s heir class and A is B’s parent class.

As an example, consider class EMPLOYEE defined in TDN in Figure 4.23. Class
EMPLOYEE defines what is common to any kind of employee. All instances of EMPLOYEE
(representing individuals) are characterized by the operations provided by the class for

manipulation of the instances. For example an employee instance may be hired with an -

12A read-only attribute is like an exported funetion that yields the value of the attribute.
1*We implicitly refer to the data model supported by Java. :




Section 4.6.  Object-Oriented Design 141

class EMPLOYEE

exports
function FIRST_NAME() : string_of_char}
function LAST_NAME(): string_of_char;
function AGE(): natural; _
function WHERE(): SITE;

function SALARY: MONEY;
procedure HIRE (FIRST_N: string of_char;
LAST_N: string_of_char;
INIT_SALARY: MONEY) ;
This operation initializes.a new EMPLOYEE, assigning a
new unigue identifier..
procedure FIRE();
procedure ASSIGN (S: SITE);
It is not possible to assign an employee to a SITE if he o she is.
already assigned to it (i.e., WHERE must be different from S). It is the’
client’s responsibility to ensure the‘truth of this property. The effect is
to delete the employee from those in WHERE, add the employee to
those in §, generate a new id card for the employee with security code
to access the site overnight, and updaté WHERE.
end EMPLOYEE ) )

FIGURE 4.23

Class EMPLOYEE defined in TDN.

initia] salary, by which it receives a unique identifier; it may be fired, by which the unique
identifier is released; it may be assigned to a work site of the company, it may be pro-
.moted, and it may be queried for its name, age, salary, unique identifier, etc.

Some employees are members of the technical staff, others are members of the
administrative staff, and still others are a member of neither staff. For this purpose,
we define in Figure 4.24 two subclasses: TECHNICAL_STAFF and ADMINISTRA-
TIVE_STAFF. A member of the administrative staff enjoys all properties of employ-

class ADMINISTRATIVE_STAFF inherits EMPLOYEE
exports )
.procedure DO_THIS (F: FOLDER);
This is an additional operation that is specific to
administrators; other operations may also be added.
end ADMINISTRATIVE_STAFF.

class TECHNICAL_STAFF inherits EMPLOYEE
exports ‘
function GET_SKILL(): SKILL;
procedure DEF_SKILL (SK: SKILL);
These are additional operations that are specific to
technicians; other operations may also be added.
end TECHNICAL_STAFF : '

FIGURE 4.24

Defining subclasses in TDN.
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ees: indeed, he or she is an employee' From an abstract data- -type viewpoint, thls
means that the corresponding objects may be mampulated by all operations defined
by the parent class EMPLOYEE, as well as others that characterize the heir module
itself. In OO terminology, we say that ADMINISTRATIVE_STAFF inherits automati-
cally all methods and attributes defined from EMPLOYEE That is, members of the
administrative staff may be hired, fired, etc. In addition, they may be assigned some
work to do by passing them a folder. The latter operation is specific to the heir class;
it is not inherited from the parent class. Similarly, members of the technical staff,
apart from the methods and attributes inherited from EMPLOYEE, are characterized
by additional methods that make it. p0551ble to define and query their main skill.

: Fmally, those individuals who are neither members of the technical staff nor mem-
bers of the administrative staff are represented as mstances of class EMPLOYEE and
do not belong to any of its subclasses. .

-From a software design perspective, generalization- spec1ahzat10n may. be used to
factor out in a parent class what is common to different components,-and then single
out the variations in heir classes. This approach has the potential to improve reusabil-
ity. In fact, we may try to factor out in a module all features that are likely to be suffi-
ciently general to be reusable. The additional features needed in specific apphcatlons
may be added afterwards by means of heir. modules.

We can also look at inheritance as a way of building software incrementally. Thus,
inheritance facilitates system evolution as new requlrements arise. More generally, it
can make maintenance easier to perform. The idea'is that whenever the need arises to
modify an existing module M, in order to obtain a new behavior as described in a mod-

- ule M,, instead of modifying M,, we inherit from M, and apply the changes that would
transform M, into M,. The types of changes we have examined so far consist exclusively
of adding new operations to the abstract data types. We will examine other typcs of

- changes shortly.

In essence, we used incrementality to define the two helrs of EMPLOYEE. The two
heir. modules were defined by just listing the differences with respect to.the parent
module. To be more precise, the heir modulé is obtained from its parent module as a
copy of its implementation with some new resources added. :

Another way of looking at the generalization-specialization hxerarchy istosee an
heir class as implementing a subtype of the type defined by its superclass. An element’
of a subtype should be allowed to appear wherever a member of its parent type may
appear. This is often called the substitutability principle. Since all instances of a subclass
inherit the attributes and methods of its parent class, the substitutability principle is
trivially satisfied. OO design, however, adds more.features to the generalization-spe-
cialization relation. A subclass cannot only add new attributes and methods It can
redefine the methods defined in-its parent class.

For example, suppose that EMPLOYEE provides a method for promotion, which
increases the salary of an employee by a given fixed amount. Classes TECHNICAL_STAFF
and ADMINISTRATIVE_STAFF might each redefine the method by increasing the salary
by different amounts. Suppose now that some code manipulates an object X of type
EMPLOYEE. According to the substitutability principle,; such code should work fine if an
instance of any of EMPLOYEE’s subtypes is actually provided (e.g., TECHNICAL_STAFF).

_ If the method for promotion is invoked on X, then, since X is bound to an instance of class
TECHNICAL_STAFF, the method for promotion redefined in class TECHNICAL_STAFF
is actually called. The important concepts behind this approach are polymorphism and

—
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EMPLOYEE "

ADMINISTRATIVE_STAFF v TECHNICAL;STAFF'

FIGURE 4, 25

: 'UML representation of generahzanon

| 'dyﬁamic binding. Since X is an objeet of type EMPLOYEE Wwe san Bind it to, objects of any
~ of its subtypes (polymorphlsm) and the methods that get invoked depend on the type of

the object that is bound to X at run time (dynamlc binding).
- Let us conclude our discussion of general1zatlon-spe01ahzat10n by prOV1d1ng a

: graphlcal notation that can describe it. As we mentioned, in this section we will gradu-

ally introduce elements of the UML notation, where classes are represented by boxes .
divided into three parts——correspondmg to the class name, attributes, and methods—
and the generalization- SpCClallzatIOIl relation is represented by a triangular connector
between classes. -

. Figure 4.25 shows a UML description of the textual representation shown in Figure
4.23 and Figure 4.24. Observe that the uses relation between classes is not shown explic-
itly. Rather, it is implicit in the fact that the types of certain attributes or method parame-
ters are not elementary, but are defined by other classes (which are therefore used).

Assoqatmns

Associations represent relations that the 1mplementat10n is required to support
between instances of classes. For example members of the technical staff may be asso-

TECHNICAL * : 1

PROJECT
_STAFF project_member -

A

manages

MANAGER

FIGURE 4.26

Representation of associations in UML.
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ciated with the project they are working on. (Each technician works on exactly one
project, but several technicians may work on the same project)

Figure 4.26 shows how associations can be represented by a UML fragment of a
class diagram. The fragment introduces another subclass of TECHNICAL_STAFF,
called MANAGER, and a further association between managers and projects. The dia-
gram shows that managers are particular kinds of technical staff members (that is, in
the particular world we are dealing with, a member of the administrative staff cannot
be a manager), and a manager is associated with one or more projects that he or she
manages. For simplicity, Figure 4.26 does not provide the details of the interface of the
classes. (For classes EMPLOYEE and TECHNICAL_STAFF, the reader may refer to
Figure 4.24.)

Associations in UML are represented by links—Ilabeled by the name ot&the
association—connecting the boxes that represent classes. Associations can involve
several classes. In most cases, however, they are binary relations (i.e., they involve
two classes). In what follows, we implicitly assume associations to be binary.
Furthermore, associations may be described by specifying the multiplicity con-
straints on them, indicating how many objects can participate in the relation. For
example, Figure 4.26 shows that any number of technicians can be involved in a pro-
ject (indicated by the multiplicity constraint “*” on the end of the association at the
TECHNICAL_STAFF side), while a technician may be associated with only one pro-
ject (indicated by the multiplicity constraint “1” on the association at the PROJECT
side). In general, multiplicity constraints are given by specifying “lower_
bound. .upper_bound”. The abbreviation “*” actually stands for.
“0..infinity”,and “1” stands for “1. .1”. For example, should we require that at
least one technician be in a project, the multiplicity constraint “*” would be replaced
by “1..*”. The multiplicity constraints given on the association between MANAGER
and PROJECT show that a manager can manage several projects (but at least one!).
If we require that managers may not manage more than three projects, the multiplic-
ity constraint “1. . *” should be replaced by “1..3”.

The specification of associations in a class diagram like the one shown in Figure
4.26 does not provide enough information to derive an implementation. For example, it
specifies that managers are associated with the projects they manage and projects are
assoclated with the technicians who manage them. But is the implementation required to
support navigation both from the projects to their managers and from the managers to
the projects they manage? By navigation from managers to projects, we mean that, given
a manager, we are able to determine all the projects he or she manages. Similar questions
may be asked for the association between TECHNICAL_STAFF and PROJECT. To
answer such questions, UML allows one to decorate associations with a navigability
arrow. For example, the design fragment shown in Figure 4.26 indicates that the associa-
tion between MANAGER and PROJECT is such that we only need to navigate from a man-

~ ager to the projects he or she is responsible for. However, if no navigability arrows are
provided to guide the implementation, we should assume that navigation can occur in
both directions. So, for example, one should support navigation from a technician to the
project he or she is assigned to and from a project to the technicians assigned to it.

The preceding discussion shows that the associations we introduce at the design
level constrain implementation to support a way to navigate among classes. For exam-.
ple, a possible implementation of the association between MANAGER and PROJECT
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may consist of having a variable in each instance of MANAGER that is an array of refer-
ences to objects of class PROJECT. Furthermore, the discussion illustrates that an asso-
ciation between classes implicitly defines a USES relation—for example, in the case of
Figure 4,26, MANAGER USES PROJECT. ,

As a final remark, we wish to point out that, during design, the distinction
between attributes (or methods) and associations is not always obvious. For example,
in Figure 4.26, we decided that method DO_THIS is used to assign a folder to a member
of the administrative staff. Alternatively, we could have defined a class FOLDER and an
association between ADMINISTRATIVE_STAFF and FOLDER to describe the binding
between a member of the administration and the folder he or she is working on. Of
course, the difference would be that the explicit association would imply support for
navigation from folders to members of the administration. :

Aggregation

In describing a class, it may be useful to define the objects of that class as composed of
simpler components that constitute the parts of those objects. This is often called the -
PART__OF relation. For example, we may define a class TRIANGLE and its relation to
class POINT as an aggregation (Figure 4.27). For simplicity, the figure does not provide
the details (methods and attributes) of class interfaces, but shows the cardinality con-
straints for the aggregation relation: Three points constitute one triangle.

Notice that the PART_OF relation differs from the IS_COMPOSED_OF relation
we introduced in Section 4.2.1.2. In fact, the component that comprises the parts has its
own properties which are not directly provided by the parts. Rather, the component
uses its parts to provide its own behaviors (i.e., attributes and methods). ’

A—say—Java implementation of the design fragment shown in Figure 4.27
requires that class TRIANGLE provide the methods and attributes needed to manipu-
late triangles, represented as three references to objects of class POINT. Thus, implic-
itly, this says that TRIANGLE USES POINT.

TRIANGLE ’ ’ package_name
1 Class 1 :
Class 3
: Class 2 - '
3
FIGURE 4.28
POINT :
Package construct of UML for

the IS_COMPONENT_OF rela-

FIGURE 4.27 tion.

Example of aggregation.
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“More on UML Class Dlagrams

UML class diagrams can be seen as an evolutlon of the 51mp1e GDN we 1ntroduced'
earlier for documenting designs. The USES relatlonshlp we introduced for GDN is
replaced by a variety of relations: generalization-specialization, associations of various
kinds, and aggregation. Generalization-specialization is implemented through inheri-
tance by using OO languages. The other kinds of relations can be implemented
straightforwardly by embedding in an object references to the objects it is related to. In
all cases, USES relations are implied. If a class B inherits from class A, B USES A.Ifan
association exists between classes A and B, with a navigability constraint indicated
from B to A, then B USES A.!¢ If B is described as an aggregation of A, then again, B

~ USES A.In asense, we may conclude that UML introduces a number of more abstract

relations than the USES relation we used for TDN and GDN. These relations are more
- abstract because they describe semantically richer relational concepts that may even-
tually be implemented in terms of the USES relation.

- UML also provides a notation to describe the IS_COMPONENT_OF relation: the
package construct. The package groups several classes or packages (see Figure 4.28).
It is also possible to draw dependency links between packages to show that the enti-
ties enclosed in a package depend in some loose sense on the entities defined in
another package.

-Besides providing notatlons to describe the static structure of an architecture,
UML ‘provides notations that can be used to complement class diagrams by
describing dynamic aspects of an architecture: state diagrams and activity dia-
grams. State diagrams describe all possible states the objects of a given class may .
enter and how an object’s state changes as results of operations performed on the
object. Activity diagrams describe work flows that traverse the executions of meth-
ods of different objects. The key concept of activity diagrams is that they define
work flows that can proceed i in parallel. State dlagrams and activity diagrams are
111ustrated in Section 5. 7 : :

ARCHITECTURE AND COMPONENTS

An architecture of a system describes the overall organization and structure of the sys-
tem in terms of its- major constituents and their interactions. For example, for a modern
hospital administration system, the architectural description might show that the system
consists ‘'of many subsystems, such as patient-monitoring devices, nurses’ stations,
portable data entry devices to be used by doctors, a patient database, and so on. The
architecture is the first high-level design of the system. In coming up with an architecture,
the designer considers many options, constraints, and trade-offs. The trade-offs deter-
mine many of the overall properties .of the system, such as its performance reliability,
and security. The architecture, therefore, prov1des the medium for reasoning about and
analyzing the global properties of the system, since global properties are determined not
by individual components, but by the interaction of the whole set of components.

In designing  the architecture, the designer must consider many functional
requirements as well as many nonfunctional requirements, such as cost and reliability.

" 1Notice that if navigability is in both directions, then the resulting USES relation is not a hierarchy.




W

w

al
ty.

4.7.1

Section 4.7  Architecture and Components 147 -

' While the architecture of a system is, of course, influenced by these requirements, there

are also some structuring principles that govern the design of the architecture. In par-
ticular, depending on the system requirements, some specific decomposition of the sys-
tem into components.and modes of interaction among those components is most
appropriate We have already seen an example of such structure for distributed sys-
tems in the client-server architecture, which provides guidance to the architect of any
distributed system that may be orgamzed as a set of prov1ders of services and clients
that seek those services.

_There are many benefits to developing and studying such architectures. First,
knowing about architectures that have already been tried and tested in previous sys-
tems allows the architect to start on a design quickly and with confidence. Such an
architecture embodies the experiences of previous designers, and its use builds on
those experiences. Associated with each architecture are the design decisions that
must be addressed. Second, because an architecture establishes the modes of com-
munication among the components of the system, it defines a kind of generic inter-
face at which those components meet. The existence of such interface spemﬁcatlons

'supports the development of standard components which may be used in systems
- that use the architecture. Third, an architecture serves as an integration platform for

interconnecting the different s',ubsystfer‘ns of the system. Some of these subsystems
may be developed for the particular system to be designed, or they may be existing

software systems, such as databases: In the subsections that follow, we will study
these issues in detail. ’

Standard Architectures o

By studying existing systems, designers and researchers have found that certain archi-

tectures occur frequently. Here we list some of the promlnent ones. We examine archi-
tectures for d1str1buted systems in Sectlon 4.74.

Pipeline architectures. Sometimes, subsystems may be organized to form a pipeline of
processing elements. Each subsystem accepts input from the previous subsystem,

processes the input, and delivers output to the next subsystem. The first subsystem
reads the system input, and the last subsystem produces the system output. Such an
architecture may be useful, for example, for the part of a plant-monitoring system in

| (a). e

O

FIGURE 4.29 ' o 1 1 1 * 1

\ 2 Yy oy 4 r
The relationship of components in various . : '
architectures: (a) pipeline; (b) blackboard; E——J L—-i I———' L——J E]
(c) event based. _ (©)
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which sensors read environmental data and pass them on to other subsystems for
further processing. A pipeline architecture is also called a pipe-and-filter architecture,
because each subsystem is viewed as filtering the data it receives and the data are
considered to flow along pipes between the filters. By starting with a pipeline architec-
ture, the designer can immediately concentrate on issues such as the performance
requirements for data flow on the pipes, the synchronization requirements among
neighboring filters, potential bottlenecks in the pipeline, and so on. A graphic view of
this architecture is shown in Figure 4.29a.

Blackboard architecture. In a pipeline architecture, the communication between two
filters is local. Sometimes, it is necessary for subsystems to be able to communicate
with more than just their neighbor subsystem. If many subsystems need to communi-
cate with each other, then a blackboard architecture may be appropriate. In this archi-
tecture, one subsystem is designated as the “blackboard” and. serves as the
communication medium among the other subsystems. Essentially, the blackboard is an
interfaces for writing information and receiving queries. A stock market brokerage
system or an auction system may be structured as a blackboard system, with requests
and offers posted to the blackboard and clients querying the blackboard for informa-
tion. A graphic view of this architecture is shown in Figure 4.29b.

Event-based architecture. In traditional architectures, components communicate and
invoke operations by way of procedure calls. In an event-based architecture, compo-
nents respond to the occurrence of events. An event might be the detection of a signal
by a sensor or the arrival of a message. Components are designed to create events or
start their operations when they receive an event. Event-based architectures are
appropriate when components wait for input from the environment or when clear
client-server relationships are not definable. User interfaces are often structured to
utilize mouse clicks or mouse drags as events. Conceptually, we may imagine a bus on
which events are announced and propagated. Different models of event-based systems
support component operations such as advertising of events and subscribing to events.
Types of events are dependent on the application. '

Event-based architectures satisfy a publish-subscribe paradigm or pattern.
Components publish events that are delivered to those components which have previ-
ously subscribed to those events. Key to this architecture is an event dispatcher, which
is responsible for the run-time distribution of events from publishers to subscribers.
The event dispatcher may be provided as part of middleware. A graphic view of this
architecture is shown in Figure 4.29¢. :

- Domain-specific architectures. Pipeline, blackboard, and event-based architectures
codify a certain set of components, along with their relations and communication pat-
terns. Many such standard architectures are emerging in practice. These architectures
are aimed at abstracting the common structural properties of classes of systems with-
out paying particular attention to the domain of use of those systems. Another class of
standard architectures tries to exploit the common properties of a given application
domain. These architectures are called domain-specific architectures. For example,
domain-specific architectures have been developed for the domains of real-time sys-
tems and user-interface systems. Domain-specific architectures embody many assump-
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tions about the domain—for example, the way that components communicate, the
speed with which they must communicate, and the existence of time-out mechanisms
in connection with communicating messages. Domain-specific architectures speed up
the development of systems in particular domains. Further, they encourage and sup-
port the development of components that may be reused in many systems in the
domain. Finally, they enable tools such as editors, generators, and analyzers to be
developed in support of the domain. For example, user-interface generators can be eas-
1]y based on a standard user-interface architecture.

Example 4.12

One well-known domain-specific architecture is the model-view-controller for soft-:
ware that has a significant amount of user interaction. The architecture is composed’
of three separate components: the model, which purports to be a model of the “real
world,” the view, which displays the model to the user, and the controller, which com-’
municates with the user and controls the other two components. As an example of
the use of the model-view-controller architecture, consider a file editor that stores:
the user’s data for subsequent display in different formats, such as textual or graphic.
The model would manage the storage of the data, the view would request the data
from the model and then display the data, and the controller would interact with the
user to decode the user commands and would update the data in the model. By pro-
viding different view components, the system can support different viewing options
in a modular way. For example, one view component can display an outline and
another a page. Each component specializes in its own semantics or hides its format-
ting information. Figure 4.30 shows the structure of the model-view-controller archi-
tecture. The arrows in the figure represent requests for services.

Many actual libraries for user-interface development, such as the Java Swing
library, implement the model-view-controller architecture. |

4.7.2 Software Components

In engineering disciplines, products are almost always constructed from parts, or com-
ponents. Component-based software engineering has been a goal of software engi-
- neering from the beginning of its history. Much research and development have gone
into efforts to make it possible to use standard components in building software prod-

Controller
(interact with user;
perform commands)

NI

Model (store
data eg. text)

View (display
model for user)

FIGURE 4.30

The model-view-controller architecture.
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ucts. Software technology has finally developed to a level where languages and
methodologies support the development and use of components.

The most fundamental question about software components is what form they
should take. That is, what is the unit of packaging for a software component as an inde- -
pendent ent1ty‘7 Until the early 1990s, the only successful units of packaging in soft-.
ware engineering were routines and libraries of routines. For example, scientific
libraries of routines for matrix manipulation are widely and commercially available.
There are several reasons for the success of these libraries as components, among
which the most 1mportant are the following:

¢ Clear interfaces. The specification of the component is preC1sely defined by its
‘mathematical properties. Further, those properties are purely functional,
which makes the component easier to describe, understand, and 1ntegrate with
other components.

e Useful and separable service. The service prov1ded by a component is clearly
identifiable as useftl'to many chents and is separable from the functions of the
client itself.

e Clear domain of applicability. Programmers and engineers writing sc1ent1f1c
programs are deeply knowledgeable about the domain of mathematics
involved and the boundaries of applicability of the components in that domain.

Given these properties it is easy for engineers to know when they might need a com-
ponent, to examine and understand the interface of a component and to make use of
the component in their apphcatlons »

In the 1990s, with advances in programmrng language technology, component-
packaglng mechanisms other than routines became possible. Among these mecha-
nisms are (1) generic constructs in languages such as Ada and C++ and (2) objects and
frameworks in object-oriented languages. We examine one example of each of these
mechanisms next. :

STL. The standard template hbrary is a collection of software components
designed for C++ and eventually merged into the C++ standard library. The library
consists of common data structures, such as lists and stacks, and frequently used
algorithms, such as those for searching and sorting. By defining a uniform interface
for both algorithms and data structures, STL achieves an orthogonal design that
allows most algorithms to be applied to most data structures. For example, a single
find algorithm for searching for an element in a collection may be applied to
arrays, singly linked lists, and doubly linked lists. Algorithms and data structures in
STL are packaged 4s Ct+ templates. This means that the source code in the STL
library must be available to the programmer so that it can be compiled with the C++
program. :

STL uses a uniform pr1nc1ple for structuring the interfaces of components. Most
algorithms that operate on collections of items take references to the first and last ele-
ments of the collection as input. For example, the interface for the £ind algorithm, a
function that searches a sequence of elements for a particular element, is '

template < class InputIterator, class T >
InputIterator find(InputlIterator first, InputIterator last,
const T& value);
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The generic algorithm is defined for any sequence of elements of type T. Data struc-
tures—collections—are able to return references to their first and last elements. This
'uniform structure for interfaces establishes guidelines for designers of new algorithms
and data structures to follow. If an algorithm adheres to these guidelines, then it may
be combined with any of the data structure components of STL. Likewise, if a-data
structure follows the guidelines, it may be combined with any of the algorithms of STL.
This means that with m data structures and n algorithms, we have m X n possible com-
ponent combinations. ’ U

A unique feature of STL is its use of C++ templates. Templates allow the
expression of generic algorithms and data structures, while preserving the type-
checking ability of the compiler. STL includes over 100 components. A typical:
component is quite small in terms of number of lines. The components achieve;
their power by their generality and their being able to be composed with other
components.

JavaBeans. The object-oriented languages promote components constructed as
‘classes and objects. The Java programming language also offers packages and
archive files (Jar, for “Java archive” files) to augment facilities for component-based
development. The JavaBean component framework promotes the visual approach
to software development in an environment where components are represented by -
icons that may be dragged and positioned on the screen and connected to other
icons. A framework is a collection of related classes that are designed to be used
together in developing applications in a certain domain. The JavaBean framework
defines a set of methods that must be supported by each component. These methods
ensure that components may be composed visually. The framework -defines the
semantics that each prescribed method must provide to ensure that the connections
between components work properly. ‘ o

Swing. Java has a number of libraries to support software development for different
applications. For example, there are libraries for networking and security. The Swing
library supports the development of graphical user interfaces. Swing is representative
of a number of domain-specific component libraries designed for graphical user inter-
faces. Because the representation of these interfaces has become rather standard, con-
sisting of windows, buttons, menus, and so on, libraries like Swing provide facilities for
constructing user iqterfaces by combining such so-called widgets. The object-oriented
paradigm is ideally shiited for this domain. Each widget is represented as an object that
supports methods which specify what the widget does if the mouse points to it, if it is
dragged, if it is clicked, and so on. As we mentioned before, Swing follows the model-
view-controller architecture.

One of the issues researched in the development of software components is
the granularity of the components. STL components are fine-grained code-level
components, while Swing and JavaBeans are medium-grained components. It is also
possible to use large-grained components such as database management systems.
Indeed, since many applications utilize databases, it is quite beneficial to be able to
use database management systems as components in applications. To be able to use
existing database management systems as components, the Open Data Base
Connectivity (ODBC) standard defines a set of interfaces to a relational database.
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These interfaces have been mapped to most existing relational database manage-
ment systems. The availability of the mappings means that a designer may assume
the existence of a relational database as a component in the architecture of the sys-
tem. At the design and implementation levels, a particular database management
system may be selected on the basis of cost, performance, compatlblhty with other
products, and so on.

“Architecture As the Framework for Component Integration

The component-based development of software assumes a two-step process. First, a
high-level architecture or design of the system is developed, identifying components
that should be combined to make the system. Second, an attempt is made to find the
needed components off the shelf, already available on the market. Obviously, these
two steps are mutually reinforcing. On the one hand, knowing what components are
available on the market motivates architects to select architectures that can take
advantage of those components. On the other hand, knowing about architectures that
architects design motivates component developers to develop components that fit
within popular architectures.

As particular domains mature, more and more components become available for
those domains. In these cases, designing an architecture for an application becomes
more an attempt to compose an existing set of components in order to achieve the goals
of the application. In this way, we can view an architecture as a framework for integrat-
ing a set of components. The architecture specifies the way that the components should
be arranged and connected in order to meet the application’s requirements.

The Common Object Request Broker Architecture (CORBA) is an example of a
standard architecture that may be viewed as such an integration platform. CORBA
assumes a client-server paradigm in a distributed environment. It assumes that clients and
servers reside on a network and establish connections with each other through an Object
Request Broker (ORB). Servers inform the ORB of their availability, and clients query
the ORB for the availability of servers. Once a ciient finds out about a server through the
ORB, it can communicate directly with the server. The ORBs on different networks may
communicate with each other (through an Inter-ORB protocol) in order to provide

Application - Domain CORBA
Objects Interfaces Facilities

N .

Object Request Broker

] | ]
: 550

CORBA Services

~ FIGURE 4.31
The CORBA architecture.
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access to servers across multiple networks. Thus, ORB serves as the name server in the
CORBA architecture. In Section 4.5.3, we mentioned that one of the tasks pursued in dis-
tributed software design is to bind a module to a machine. The ORB makes it possible to
query for this binding at run time. Once the CORBA standard was defined, a number of
commercial ORBs became available, and they are now widely used.

The CORBA standard essentially defines the architecture of a generic distrib-
uted system based on clients and servers. Figure 4.31 shows the CORBA architec-
ture. The job of a designer of a particular system is to provide clients and servers that
fit within this framework—that is, they are able to communicate with ORBs.

One of the most influential contributions of the CORBA standard is its Interface
Definition Language (IDL). The designer of a server uses this language to define the:
interfaces provided by the server. Clients use the interfaces to compile and link pro-:
grams. The language provides a set of data types that may be used in procedure signa-.
ture definitions. Interfaces may inherit from other interfaces. From a software
engineering point of view, the existence of IDL is quite significant. The IDL specifica-
tions clearly separate the responsibilities between designers and programmers of
clients and servers. The IDL specification serves as a module specification for servers.

CORBA provides a framework for building distributed applications. It is espe-
cially suitable for building new distributed systems. We can build new components and

_integrate them into the CORBA framework. In many cases, however, we may want to

integrate already existing components into the framework. For example, we may have a
personnel system or other legacy software that we want to make available to the distrib-
uted network. One way to integrate such systems into a CORBA framework is to write
IDL specifications for their services and then write programs that map the interface
into interactions with the legacy software. Such mapping software is called wrapper soft-
ware, because it wraps the legacy software into a package that may be used in a new
environment. Wrapping is not always possible, however. For example, an interactive
legacy software cannot be easily wrapped to operate in a client-server environment.

In the Microsoft world, the Distributed Component Object Model (DCOM) was
designed specifically to be able to integrate legacy software. One of the design goals
for the model was to allow integration of binary code. DCOM is in many respects simi- -
lar to CORBA, but it is proprietary and continuosly evolving.

Architectures for Distributed Systems

One of the main advantages of modeling a" system at the architecture level is that it is
then possible to understand the overall structure of the system and analyze its global

properties. We can even discover structural patterns that are more generally useful
‘than the system we are currently designing. For example, we have seen that the client-

server paradigm has been codified in the CORBA standard as a standard architecture
for distributed systems.

With the proliferation of networks and the increasing avallablllty of distributed
environments, the importance of standard architectures for distributed systems and
applications has grown. In this section, we review two related architectural approa«,hes
for distributed systems: the three-tiered architecture and application servers.

The three-tiered architecture is an outgrowth of the client-server architecture,
which may be viewed as two tiered. In a client-server architecture, there are two levels
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FIGURE 4.32

(a) Two- and (b) three-tiered architectures.

of components: the client level and the server level. The client level relies on the ser-
vices of the server level. For example, the World Wide Web (WWW) architecture

~ ‘exhibits this structure. The Web browser resides on the client’s computer and commu-
- nicates with the Web server that resides on the server’s computer. The browser sends

" requests for pages to the server and dlsplays them on the screen when it receives them.

~ There are only two kinds of components clients and servers. This archxtecture is shown

in Figure 4.32a.
In many distributed applications, however we may d1st1ngu1sh a third layer of

. functionality. Suppose that the request from the browser is not for a simple page, but

for a service such as a database access. In this case, the Web server must send: the
request to the machme that hosts the database (which may, of course, be the same
physical machine on which the browser resides), retrieve the results, and forward them
to the client. We can characterize such applications as three tiered, consrstmg of the
'chent tier, which runs the user interface; the business logic layer, which interprets the
user’s requests and detérmines what is to be done; and the application tier, which actu-
ally performs the requested service. The application is often, but not always, a database
server. A three- tiered architecture is shown in Figure 4.32b.
- With the spread of three-tiered archltectures, it becomes possible to identify spe-
cific applications that are commonly requested from the application tier. In this regard,.
it is possible to construct application servers that provide a single application. For
example, an entire application such as a mail service may be provided by a mail appli-
cation server. The application server approach promotes the creation of highly special-
ized and optrmrzed servers aimed at carrying out specific tasks. Such servers may be
viewed as large- gramed components to be integrated in distributed architectures. The
architect merely has to select, from among avallable apphcatlon servers, the one that
best fits into the system bemg built.’

9

CONCLUDlNG REMARKS

In thls chapter, we have exammed the various facets of software desrgn and architec-
ture. Most of the general software principles we presented in Chapter 3 have been
examined in more depth here, in the context of software design. In particular, we
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emphasized modularity, which is the very essence and the common theme underlying
the whole chapter. Separation of concerns, abstraction, generality, and incrementality
have also been discussed extensively. In particular, they have been viewed as benefits
derived from appropriate modularization techniques. Finally, rigor and formality have
been shown to be essential goals of our design documentation, inspiring the definition
of a design notation that was presented in two forms: textual (TDN) and graphical
(GDN). Such notation provides a clear way of documeriting a software design, to facil-
itate communication among software designers and future maintainors of the system.

Design is a critical and creative activity. It can be inspired by general principles
and guidelines, but it cannot be mechanized by fixed, absolute rules or theorems. We
have shown that design consists of (1) defining an architecture in terms of a set of rela-.
tions on modules and (2) defining the interfaces between the modules. These activities
may be driven by the general principles that the architecture should have low couphng
and high cohesion and that interfaces should enforce information hiding. Putting such
principles into practrce however, requires insight, maturity, and experlence on the part
of the designer. The principles are not recipes!

" Information hiding was assumed as a cornerstone upon which a solid design is
based. Thus, we paid much attention to the question of how to design interfaces -

through information hiding. In particular, we identified several categories of modules
that may be used as guidelines durmg demgn Most notable were abstract objects and
abstract data types.

Among the qualities of software de51gn, we stressed evolvability and reliability.
Evolvability is achieved through design for change. Reliability is also a by-product of a
disciplined approach to design. Good methods help overcome the complexity of design
and hence promote the likelihood that flaws are absent from a particular design. But we
also addressed the issue of defensive design, by showing that possible anomalies should
be considered during the design phase and described in the documentation,

We addressed the issue of design for concurrent, real-time, and d1§tr1buted sys-
tems, by extending the design principles and the proposed design notafion to these

cases. Our goal here was to show that the principles and the approaches?that we pre- - a

sented for designing sequential software may be extended to deal with concurrency,
Ieal time, and distribution.

Information hiding, abstract objects, and abstract data types led to the concept of -
object-oriented design, an approach to software design that has become dominant in

the past decade because of the advent of programming languages, such as C++ and - 2

Java, that support the approach by providing linguistic features missing in traditional

languages. Object-oriented design, together with its related languages, takes the idea of |
‘information hiding to its logical conclusion, with the aim of helping software designers

get closer to such goals as design for change, the design of program families, incremen-
tal development, the production of reusable components, and ease of maintenance.
The UML design notation has been introduced for object-oriented design. UML is .
increasingly adopted as a standard notatlon to document the archltecture of object-
oriented applications. : B

Finally, we examined a number of issues related to the component-based devel-

opment of software. These issues revolve around standard architectures and interfaces - :

that allow the development of standard components and their integration into applica- ;.
tions. We concluded the chapter with a discussion of the evolution of two-tiered and -

three-tiered architectures for distributed systems.
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FURTHER EXERCISES

4.51
4.52

4.53

4.54
4.55

4.56

- 4.57.

4.58
4.59

4.60

4.61

Define some useful relations among modules other than the relations discussed in this
chapter. '

Classify the changes discussed in Section 4.1.1.1 as either perfectivé, adaptive, or correc-
tive maintenance.

Consider a program you have written in the past in a programming language like Ada,
Modula-2, C, or Pascal. (Here we employ Ada, but the exercise can be adapted quite easily

. to any of these 1anguages) Consider Ada library units as corresponding to the concept of

a module that we are using in this chapter. Also, define a relation CALLS between any two
modules such that M; CALLS ¥, if and only if a call to a procedure or function in M; is
issued within M;.

a. Unlike the assumption we made in Section 4.2.1, would it make any sense to define
CALLS as a reflexive relation?

b. What follows from requiring CALLS to be a hierarchy?

¢. Draw the CALLS graph for your 'sample program, and check whether the graph is a
- DAG or not.

Prove that the inverse of a hierarchy is also a hierarchy.
With reference to Figure 4.4, we may say that

{M;} ENCAPSULATES {M, M; M M, Mg M,}
{M,} ENCAPSULATES {M, M, M;}

{M,} ENCAPSULATES {M; M)

Thus, the relation ENCAPSULATES relates each module to the set of elementary modules
that it comprises. Define ENCAPSULATES formally.

'Explain why a design'with low coupling helps maintainability.

Study the COMMON construct of FORTRAN, and discuss the difference between labeled
and unlabeled COMMONS, as well as their possible use. Also, dlSCUSS the mechanisms pro-
vided by FORTRAN to initialize COMMON areas.

Describe how to use C to define a common area for storing data. Do the same 10r Pascal.

We have criticized the POP_2 interface to the stack of Example 4. 7 on the grounds of
being too specialized. We said that if we generalize the interface to POP, clients have more
flexibility in its use. Specialization, however, is sometimes recessary for reasons of effi-
ciency. For example, consider a stack that is implemented on one node of a distributed sys-
tem. Compare POP and POP_2 in terms of efficiency of the interface for clients.

According to the definition of the Ada programming language, what is the difference -

between private and 1imited private types exported by a package as far as client
modules are concerned?

Example 4.8 used objects of type FIFO_CARS to represe_nt any queue at the gas station.
We would like, however, to treat a queue of cars waiting for gas differently from a queue
of cars waiting' for, say, a tune-up. In particular, if there is no gas left, we do not want to
merge the two queues. In Example 4.8, the proper handling of queues was left to the
client modules. Clients would choose appropriate names for objects (such as gaso-
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line_1 or car_wash) in order to avoid merging i'nhomo‘geneous queues inadvertently.
Suggest a better solution using generic modules.

In Section 4.2.4.3, we described generic modules parameterized by types. Sfudy the Java
language specification. Does it support parameterized modules? Does C++?

We did not provide an enrichment of GDN to describe ekceptions and exception han-
dling. Propose a notation to describe the fact that an exception may be raised by a module

‘when a request for a service is being served. Your notation should also provide a way to

show that an exception is propagated after being signaled to a client.

Suppose you wish to model the elevator system of a multifloor building. The system is
composed of m floors and n elevators. Each elevator has a set of buttons, one for each
floor. The buttons light up when pressed and cause the elevator to visit the corresponding
floor. The light goes.out upon the elevator’s reaching the floor, Each floor (except for the
ground and top floors) has two buttons, one to request an up elevator and one to request a
down elevator. The illumination goes out when the elevator visits the floor and either is
moving in the desired direction or has no outstanding requests. Each elevator has an
emergency button that, when pressed, causes a warning signal to be sent to the site man-
ager. The elevator is then deemed “out of service.” Each elevator has a mechanism to can-
cel its out-of-service status.

a. Model this system in an obj ect-oriented style.

b. Suppose that the elevators are divided into two sets, the first comprising the elevators
that serve floors zero through m;, the second comprising those which serve floors m.
through m. What would change in your design to accommodate this feature?

After the first step of design described at the beginning of Section 4.4; the designer of the
SYMBOL_TABLE module anticipates that he will store the information contained in the

‘various blocks in contiguous locations. Therefore, the algorithms for RETRIEVE and

LEVEL will be almost identical: To search for the value of a variable, first the most recently
entered block is searched, and then, if the variable is not found, the previously entered
block is searched, and so on. The designer proposes to his colleagues that they should take
advantage of this near identity of algorithms and change the interface. Toward that end.
instead of having procedures RETRIEVE and LEVEL, he will provide a procedure
(RETRIEVE_LEVEL) that merges the two. Its proposed interface is as follows:

procedure RETRIEVE_LEVEL (ID: in IDENTIFIER;
DESCR: out DESCRIPTOR; L: out integer);

After some discussion, the designer’s colleagues convince him that merging the two oper-
ations into one is not such a good idea. Do you agree with this decisicn? Why? Why not?

Referring to the module QUEUE_OF_CHAR discussed in ‘Section 4.5, do you expect two'
concurrent executions of NOT_EMPTY and NOT_FULL to require execution in mutual
exclusion? Why? Why not? How about two concurrent executions of NOT_EMPTY and
GET?

Is it completely correct to say that the requires clause defined in Section 4.5.1.1 is part
of the interface of a concurrent module? Why? Why not?

Consider the module of Figure 4.19 and assume that the operatlons NOT_FULL and
NOT_EMPTY are exported by the module. Would the exported operations in Figure 4.19 pro-
vide any useful abstraction when they are called by the module’s clients? Why? Why not?
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- 4.69

- 4.70

4,71

What difficulties may be encountered if a monitor operation is allowed to use another
monitor operation (perhaps even exported by the same monitor)?

Study concurrency features in Ada, and provide a detailed description of the case
where any number of consumers (defined by a task type) and one producer may
access a given buffer to append characters to it and remove characters.

At the turn of the century, much attention was drawn to the so-called Y2K (“year 2000”)
problem. Most existing software was designed to handle dates by using two digits to
denote the year. This would have generated errors because, for example, “00” could have
been interpreted as the year 1900. Discuss the Y2K problem as a problem of software evo-

* lution. In particular, address the following issues: What was the source of the problem?

4.72

4.73

Could the problem have been anticipated? Why was it not? How would you detect such
errors in a program and how could you solve them?

Examine case study A in the Appendix. Show how the company would have been able to

deal with the different needs of different customers by exploiting some of the techniques
illustrated in this chapter.

Modify the class diagrams in Figure 4.25 and Figure 4.26 by specifying an association that
describes the team working in a project. The team is composed of a manager, an adminis-
trator, and a group of technicians.

_ HINTS AND SKETCHY SOLUTIONS

4.9

4.38

4.51

4.65

4.67

4.68

4.69
4.72

IS_COMPOSED_OF and IMPLEMENTS cannot be defined as mathematical relations on S
because they relate an element of s w1th a subset of elements of S.

Observe that the two statements are actually performed as a sequence of more elemen-
tary actions. It may happen, then, that both processes read TOT, then PRODUCER_1 .
increases the read value and stores it back inta TOT, and finally CONSUMER_2
decreases the read value and stores it back into TOT! '

A semantic equivalence relation between rnodules is useful for dec1d1ng whether-one
module can replace another during software evolution. As far as compilation ‘is con-
cerned, there can be order relations between modules,.of .the type “M,;must be compiled
before M,.” In distributed systems, there could be a relation statmg that two modules must .
be allocated to the same machine.

A different implementation might cache the descriptors of all visible idertifiers at block
entry, without caching the level. This would invalidate the proposed interface.

Strictly speaking, a concurrent module can be used properly even without “knowing” the
requires clause. The clause, however provndes useful information for a better under-
standing of the effect of the assgciated operations. It also has an impact on performance
analysis, since it helps find delays due to the mutual exclusion it enforces.

Clients cannot rely on the result they get back because other processes may change them

/in the meantime.

Such a feature may increase the risk of deadlock

By using, say, object-oriented design, the company could first have factored out from a few
modules all information and operations that are needed by all legal offices. Later, legal
offices could have been specialized by applying inheritance to cope with different classes

" of needs. This approach would also have supported an 1ncremental construction and deliv-

ery of the system.
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Also, by following the approach suggested by Example 4.5, the company could have concen-
trated both design and promotion efforts on the innovative features of the system.

BIBLIOGRAPHIC NOTES

The work of D.L. Parnas is the major source of msprratron of the view of design presented in
this book.
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Parnas [1972a] introduced the notion of module specification, which we address in the next
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- Britton et al. [1981] discusses abstract interfaces for device interface modules. Hester et al.
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- lected in Hoffman and Weiss [2001]. :
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Prieto-Diaz and Neighbors [1986]

“The notion of an abstract data type is rooted in the work of Dahl et al. [1972] and Liskov
and Zilles [1974]. Liskov and Guttag [1986] illustrates a methodrcal approach to software
construction based. on the recognition of abstractions. -

Lientz and Swanson [1980] discusses the causes of change in software and reports figures
showing the influence of various factors (such as a change in the data).

The TDN notation we used to illustrate designs is based on the programming languages

. Ada (see AJPO [1983]) and Modula-2 (see Wirth [1983]). The graphical representation we

use resembles the HOOD notation, defined by the European Space Agency. (see HOOD

[1989]). Wasserman et al. [1990] describes another proposal; Buhr [1984] provrdes a graphrcal
‘notation to describe Ada designs. :

The issue of application generators is discussed in Software [1990c] For conditional com-
pilation, see Babich [1986], which places it in the context of configuration management.

Object- -oriented design is illustrated by Booch [1986, 19874, and 1987b] in the context of -
-the Ada programming language and by Meyer [2000] in the context of the Eiffel program-
ming language. Wegner [1987] presents a clear explanation and classification of the issues
surroundmg object-oriented language designs. Szyperski [1998] gives a comprehensive dis-
cussion of various object-oriented technologres and the solutrons offered by component
orientation. '

Concurrent software des1gn was addressed by Brinch Hansen [1977], who defined the pro-
gramming language Concurrent Pascal. Rendezvous-based mechanisms were inspired by
Communicating Sequential Processes (CSP), defined by Hoare [1974] and found their sys-
- _ tematic application in the Ada programming language. Weihl [1989] discusses the use of abstract
data types in'a concurrent environment. '
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The issues of real-time systems are described by Wirth [1977] and Stankovic [1988].
Kopetz [1997] is a complete treatment of real-time systems with specific attention to time-
triggered systems. The design of distributed systems is discussed by Shatz and Wang [1989].

The guardian concept in the context of distributed systems is due to Liskov and is the
basis of the design of the ARGUS system (Liskov [1988]).

A design issue not specifically addressed in this book concerns user interfaces. The inter-
ested reader may refer to Schneiderman [1998] and the spec1a1 issue ‘of IEEE Software
[1989a]

For a view of programming languages and their support of software de51gn, refer to
Ghezzi and Jazayeri [1998].

Other approaches to design are described in various books on “structured design,” such as
Yourdon and Constantine [1979] and Myers [1978]. These approaches are based on the
notion of decomposition of a system into functional modules. The methods are part of a
larger methodology, called structured analysis/structured design (SA/SD); we will address
this methodology in Chapter 7. For a detailed discussion of the concepts of cohesion and cou-
pling, refer to Yourdon and Constantine [1979] and Myers [1978].

Surveys of early software design techniques are presented by Bergland [1981] and Yau
and Tsai [1986]. There are many books and papers on object-oriented design. Two ideas
that have received a lot of attention in the OO work are design patterns and frameworks.
Design patterns are recurring structures consisting of several components that appear.in
the design of many systems. Gamma et al. [1994] is the original source for this idea and
contains 23 such patterns. Frameworks are a set of related classes that are almost like a
skeleton for a particular application area or domain. We have used the word “frame-
work™ in this chapter in the generic sense. In the OO world, it has a strict definition. For
examples of frameworks, see the special issue of the Communications of the ACM edited
by Fayad and Schmidt [1997]. :

Although the term “architecture” was used even in the early 1980s by Parnas and Brinch
Hansen, the systematic investigation of software architecture as an independent subject of
study attracted attention only in the 1990s. Perry and Wolf [1992] argued for the systematic
study of the subject. Shaw and Garlan-[1996] is an initial systematic study of the field and
explores the notion of components and connectors as the basic structuring abstractions for
software architectures. Rechtin [1991] is an excellent source of commonsense ideas for sys-
tem structuring. It emphasizes the importance of simplicity as an architectural principle.

A number of books report different experiences with software architecture. Among these
are Bass et al. [1999]. Hofmeister et al. [1999]. and Jazayeri et al. [2000], which concentrates
on architecture for product families. Buschmann et al. [1996] reports patterns to be used with
software architecture. Kruchten {1995] is an influential paper that introduces the importance
of different views of a software architecture. Garlan [2000] reviews the major issues in soft-
ware architecture and predicts future develo,pments ’

" Novel architectural parad:gms are explored in many publications. Wolf and Rosenblum
[1997] discusses event-based architectures. and Hauswirth and Jazayeri [1999] surveys push-
based systems and compares them with event-based systems.

STL is deseribed in detail by Musser and Saini [1996] and is analyzed from a software

engineering viewpoint in Jazayeri [1995].

Fowler and Scott [1998] is a brief introduction to UML. Booch et al. [1999] is the original
source.

There are many books on CORBA. DCOM. and other middleware. For example see
Emmerich [2000] and Orfali et al. [1997).




CHAPTER 5

Specification

Every nontrivial engineering system must be specified. For instance, one can state that
a bridge must support at least 1,000 tons, must be 30 meters wide, etc. In this sense, the
specification is a precise statement of the requirements that the system—in this case,
the bridge—must satisfy. Of course, we may specify not only the requirements of the

final system, but also those of the subsystems and components that will be used to
make up the system. So the bridge designer will specify, in addition, the requirements
for the columns, the cables, the bolts, etc. Not only requirements, but also designs and
architectures must be specified. :

In traditional engmeermg disciplines, the word spec:ﬁcatzon has a precise mean-
ing. In software engineering, the term is used in several contexts with different mean-
ings. We ourselves have used it informally several times 1n the previous chapters.

In general, we can view a specification as the statement of an agreement between
a producer of a service and a consumer of the service or between an implementer and
a user. Depending on the context, the implementer and the user are different, and the
nature of the specification is different. A requirements specification is an agreement
between the end user and the system developer. A design specification—for example,
in terms of the USES hierarchy, a UML class diagram, or an IDL interface—is an
agreement between the system architect (or designer) and the implementers. A
‘module specification is an agreement between the programmers using the module and
the programmer implementing the module. For instance, the exports clause of the
‘modules in a TDN description can be viewed as a (syntactic) specification of those
modules. Similarly, class diagrams can be enriched by listing the signature of all the
exported operations.

As these examples show, the term “spemflcatlon” is used at different stages of
system development. Furthermore, a specification at some level states the require-
ments for the implementation at a lower level. Since the specification is an agreement
between the user and the implementer, we can view it as a definition of what the 1mple-
mentation must achieve.

This relationship between the spemflcatlon and the implementation is often
explained in terms of the what versus how dichotomy described in Chapter 1. The specifi-
cation states what a system should do; the implementer decides how to do it. In practice,
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however, the distinction between the two is often not so sharp. For instance, in some cases,
the decision as to whether to distribute a banking system throughout the bank’s branches
or to keep it centralized in the main branch and use remote terminals at the other
branches can be considered a design matter (i.e.,;a sow matter). So one can claim that the
physical distribution of the system is not a requirement, but an implementation issue. In
other cases, the user can explicitly require a distributed architecture, which then automat-
ically becomes part of the system specification. So an implementation that realizes all
required functions, but uses a single mainframe, would be rejected as incorrect.
Furthermore, sometimes a simple way to describe what one wants is just to give
an example of how it can be done. This implies not that it must be done in exactly that -

- way, but that it must behave as if it were done that way. For instance, one can state that

the execution of several concurrént transactions in an information system must be per-
formed as if each transaction were executed in a noninterruptible way. This does not
necessarily require the implementer to let each transaction run to completion before
starting another one—which would be highly inefficient in the case of long transac-
tions. Rather, the implementer is free to interleave the execution of different transac-

_ tions, as long as each is perceived by the user to have run without interruption.

- In principle, all desirable qualities should be specified, and the implementation
should ensure that all desirable qualities are achieved by the product (e.g., in terms of
functionality, usability, performance, portability, etc.). In this chapter, however, we con-

. centrate mostly on the specification of software functionality (i.e., on functional specifi-
. cations). We briefly address the specification of nonfunctional properties in Section 5.2.

The specification ‘activity is a crtical part of the whole design process.
Specifications themselves are the result of a complex and creative design activity; they
are subject to errors just as are the products of other activities, such as coding. As a
consequence, all the design principles discussed in Chapter 3 should be applied as well
to the specification process.

. In this chapter, we first analyze the uses of specifications. Next, we point out the
main specification qualities that should be kept in mind in writing specifications. Then
we analyze some of the most relevant techniques of writing specifications, by classify-
ing them according to different specification styles. We discuss the applicability of each |
class to various application areas. The role of specification throughout the develop-
ment process will then be taken up in Chapter 6. Finally, we discuss the problems in,
and the techniques for, managing the specifications of real systems, which inevitably

- tend to be complex and tedious.

THE USES OF SPECIFICATIONS

.Specifications can be created and used for dlfferent purposes Let us examine their
' IMajor uses.

A statement of user requirements. The primary purpose of a product is to meet its
user’s requirements. User requirements are often not clearly understood by the devel-
oper. If this is the case, a careful analysis, involving frequent interaction with the user,
should be devoted to clarifying, and documenting a clear statement of requirements, in

-order to uncover and avoid possible misunderstandings. Sometimes, at the beginning
of a project, even the user has no clear idea of exactly what the desired product is. For
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instance, a user with little previous experience with computer products may not appre-
ciate the degree to which his or her problems may be automated. It is likely that an ini-
tial description produced by an inexperienced user will lack even a premse formulation
of system functions and performance requirements.

Other times, however, the requirements can be very clear, and-their specification
may be straightforward. In traditional engineering, in fact, standard specifications exist
for such things as nails, screws, and tiles. Such standards enable-different produceis to
produce the “same” product. In software engineering, a programming language (and a
target architecture) can be viewed as a standard specification for a compiler. This also

‘enables different producers to build a product based on the same specification.

Many times, major failures occur because of misunderstandings between the producer
and the user.-Such misunderstandings are more likely to occur when the culture and the
“language” of the two are widely different—for instance, when the user is a lawyer or works
in the humanities. Case study A in the Appendix is an example of this problem

When misunderstandings occur, unfortunately, going back to the document that
specifies the requirements usually reveals an ambiguity that supports both the user’s
and the producer’s interpretation. This situation shows a need for the ability to verify
the specifications—for example, to check  whether they adequately define what the
product has to be—before implementing the product. For instance, submitting a speci-
fication document to the end user may help uncover previous misunderstandings of
actual user needs. This way, improper definitions may be ayoided by discovering them
early. We shall analyze the issue of verification of specifications in more depth in
Section 5.4. The .issue of involving the user in the verification will be discussed in

~ Section 5.7.3. We shall have more to say about the spec1flcatlon of user needs in

Chapters 6 and 7.

A statement of the interface between the machine and the controlled environment.
Computers interact with the external environment by receiving inputs (e.g., signals
from the sensors of a controlled plant or commands from a user) and providing out-

- puts (e.g,, control data to actuators or responses to user commands). A flawed spe01f1-

cation or a misunderstanding between software engineers and the experts in the given
domain who know all about the phenomena affecting the control function to be imple-
mented by software can have serious undesirable effects. Both may cause a later

~ redesign and reimplementation of a large part of the application, thus increasing devel-

opment costs. But—more seriously, in the case of a critical system—if these problems
are not caught and propagate to the implementation, they may cause disasters from
which it is impossible to recover. It is therefore necessary to specify the interface
between the machine and the controlled environment by describing precisely inputs,
outputs, and expected relationships, including perhaps a specrflcatlon of time con-
straints that the controller should satisfy.

This example and the previous one share a common essence. What the specifica-
tion aims at is a precise description of the borderline between the machine and the exter-
nal world with which the machine interacts. In the case of human-centered systems, the
external environment can be described and understood in terms of what the end user
expects in order to accomplish his or her tasks. In the case of embedded systems, the
external environment is the set of devices controlled by the machine.
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A statement of the requirements for the implementation. Specifications are used
as a reference point while the product is being implemented. In fact, the ultimate
goal of the implementation is to build a product that meets the specifications. Thus,
the implementer uses the specifications during the design phase to make design deci-
sions and during the verification activity to check that the implementation complies
with the specifications.

We have already remarked that the whole design process is a chain of definition-
implementation-verification steps. Thus, it is likely that several different specification doc-
uments will exist. As already mentioned, a specification that defines the external behavior
of the system is called a requirements specification, and a specification of the software
architecture, possibly at several levels of abstraction,is called a design specification.

In general, different uses of the specifications stress the required qualities in dif-
ferent—perhaps even contrasting—ways. For instance, if specifications must be used as
part of a contract, then all parties to the contract must be able to understand the speci-
fications. This may restrict the language used for writing them, since technical terminol-
ogy and notation may not be acceptable to many users. In contrast, the specification of,
say, a module interface, is more useful for guiding its implementation if it is written in a
formal notation of the type introduced in Chapter 4. '

A reference point during product maintenance. In Chapters 2 and 4, we saw that several
kinds of maintenance may occur during a product’s life cycle. All involve specifications.

In the case of corrective maintenance, usually only the implementation is
changed. Thus, specifications are needed to check whether the new implementation
corrects the errors contained in the previous version of the product. An exception
could be when the error is in the specification itself, but is not discovered until the
product is used. In this case, one must first correct the specification and then modify
the implementation accordingly.

Adaptive maintenance occurs because of changes in the reqmrements Among
such changes are modifications of the functionality of the product—say, coping with a
new tax law in a payroll system—and modifications in the operating environment—
say, a change in the automatic teller mechanisms in a banking system. In such cases, the
original specifications must be adapted to the new requirements. Then the new imple-
mentation must be checked against the specifications again for correctness. Sometimes
engineers try to reduce development time by changing the implementation, without
first updating the specifications. This practice, however, creates inconsistencies
between specification and implementation and leads to bigger problems in the future.
One of the worst examples of such an approach is when “patches” are applied to the
object code, as in Case Study A. The patches produce inconsistencies even between the
source code and the object code. '

In perfective maintenance, sometimes the functional requlrements do not
change. For example, one may wish to restructure the design of a product in an attempt
to gain an improvement in performance. In other cases, such as the inclusion of new
functions or the modification of an existing function, the functional requirements also
change. Again, what is important is the use of specifications to understand the impact
of the change clearly and to accomphsh the change reliably. Similar considerations
apply to changes that must be made to product modules. If a precise specification of a
module is available, it is possible to understand whether the change affects the module
implementation only, in which case the client modules are unaffected, or whether it
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affects the interface, too. In the former case, the burden of dealing with the change
rests only on the module’s developer 1n the latter, all the developers of the client mod-
ules also are involved.

SPECIFICATION 'QUALITIES.

Of course, one can write good specifications or bad ones. Most of the qualities listed in
Chapter 2 as general software qualities contribute to the production of good specifica-
tions. For instance, usability is a relevant feature for specifications as well as for the
whole software product. As with software, usability applied to specifications implies
different requirements, depending on who the user of the specification actually is (e.g.,
the end user or the implementer). Maintainability is ‘also desirable for specifications,
because, as we saw in the previous section, spemﬁcatlons are llkely to change duringa
product’s life as the product itself changes.

In this section, we discuss three qualities that are especially relev‘.nt to specifica-
tions. The first set of qualities required of specifications is that they should be clear,
unambiguous, and understandable. This claim sounds obvious, but it cannot be overem-
phasized. In particular, informal specifications, wntten in a natural language, are likely
to contain subtle ambiguities. :

For instance, consider the common example of a word processor providing a
select command, specified in the followmg way:! '

Selectlng is the process of designating areas of the document that you want to work on.
Most editing and formatting actions require two steps: first you select what you want to
work on, such as text or graphics; then you initiate the approprlate action.

Such a definition does not specify exactly what the term “area” means. It turns,
out that in most tools the definition implicitly assumes an area to be a “contiguous
sequence of characters.” A user unaware of this assumption might, however, interpret

the term “area” as the collection of scattered sequences of characters, so that one could

go through a text, selecting different, not necessarily contiguous, words and then, say,
italicizing all of them with a single command. This is not possible in traditional word

- processors. The main point, however, is that the original specification does not make

clear whether it is possible or not.
Another example is the following fragment of a specification taken from the doc-
umentation of a real project for a mission-critical system:

The message must be triplicated. The three copies must be forwarded through three differ-
ent physical channels. The receiver accepts the message on the basis of a two-out-of-three
voting policy.

Intuitively, this specification states that, for reasons of reliability, messages are trip-
licated. Upon receiving three copies of a message, the receiver determines the content by

‘comparing the copies: If two of them match, their content is assumed correct. It is not

clear, however, whether the message may, or should, be considered received as soon as
two identical copies have been received, without waiting for the third one, or whether the

“ receiver should wait for all three copies before comparing their contents. Since we are

! From the manual of Microsoft Word 4:0. ' , 4




166 ChapterS Specification -

talking about a real-time system this pornt can make a srgnlfrcant dlfference when it
comes to acting on the message.? , :

The application of rigor and formality can help significantly in achlevmg these
and many other qualities of specifications. For instance, the ambiguity in the voting
policy just mentioned was discovered because it was decided to formalize the informal
specification. Later in the chapter, we shall see how to formalize the voting pohcy to
remaove all amblgultres ' : :
. The second major quality requirement for specifications is conszstency For
instance, as regards a word processor, one could state that

. The whole text should be kept in hnes of equal length with the length speci-
fied by the user.

e Unless the user gives an explicit hyphenation command, a carriage return
should occur only at the end of a word.

This definition, however, does not cover the case where a particular word is
longer than the length specified for lines. In such a case, the specification is self-con-
tradictory, or inconsistent. Therefore, no implementation can satisfy it. The probability
of inadvertently including some inconsistency in a specification increases as the speci-
fication documents become longer and more complex which is often the case in real-
life projects. :

~ The third quahty requrrement for specifications is that they should be complete.
There are two aspects of completeness. First, the specification must be internally com-
plete. This means that the specification must define any new concept or terminology
that it uses. A glossary is often helpful for this purpose. For example, if the specification
of an elevator system states that “in the absence of any outstanding requests, the eleva-
tor enters a wait for—request state,” the specification must also define the meaning of
“wait-for-request state.” :

The second aspect (external completeness) refers to completeness with respect to
requrrements The specification must document all the needed requirements. In the
elevator example, if it is required that an elevator with no outstanding requests go to
the first floor and open its doors, this requirement must be stated explicitly and not left
to the designer’s discretion. External completeness implicitly refers to functional
requirements. Although normally functional requirements are the most crucial kinds
of requirements, they are not the only ones that matter. Nonfunctional, or quality,
requirements (usability, reliability, performance, etc.) are also quite important. For
example, response-time performance often is not specified for non-real-time systems
(e.g., word processors) Upon using the product, however the customer may complain
that the system is too slow. Exceptional cases also’are rarely specified, yet they are
quite relevant; for instance, one would not be very happy ifa  power fallure caused all
open files to be lost.

2By looking at the design documentation, we found that, actually, neither of the two suggested interpretations was
chosen by the implementer. In fact, the receiver polled the three channels periodically, so that an implicit time-out was
defined: If the three copies were received within a given period of time, all of them were compared; if, however, after
the given period of time, only two copies of the message were available and they matched, then the message was '
accepted without waiting for the third transmission.
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It is often unrealistic to ask for complete specifications in a strict sense. This is
because many requirements can be-identified clearly only after one gains some experi-
ence with the system. Moreover, too many details would need to be specified. More
realistically, some requirements are considered to be common to every system and are
assumed to be implicit in all spec1flcat10ns This assumption, in turn, may lead us to
accept some amount of imprecision and ambiguity. For instance; one will often be satis-
fied with sentences of the type “response times should be about two seconds” or “the
system should be robust with respect to power failures.” The aim, however, is to keep
such imprecision within limits that avoid the risk of dangerous ambiguities of the type
mentioned earlier. It is the responsibility of both the user and the producer to decide
when some imprecision can be accepted on a commonsense basis and when it must be
avoided as dangerous.

One might even argue that in many practical cases, including the examples we
have discussed in this section, specifications are stated informally on purpose, because

-the choice of which interpretation should be given to remove ambiguities is viewed as

an 1mplementat10n decision: One or another way of removing these ambiguities is
equally acceptable from the user’s standpoint. According to this view, providing a pre-
cise specification would overspec1fy the system and unduly constrain the implementer.
The weakness in this position is that-one does not ordinarily know whether the lack of
precision in the specification is deliberate or due to oversight. Moreover, the use of an
informal language does not help in highlighting the places where ambiguities- are hid-
den. Only when one tries to describe the requirements formally do the questions arise.
At that point, one can make a conscious and explicit decision: Either the specification
should precisely state what is to be done, or the resoluuon of the ambiguity should be
deferred to the implementation.

Because of the difficulties in achieving cornplete, precise, and unamblguous spec-
ifications, the use of the incrementality principle is especially important in deriving
specifications. That is, one may start off with a fairly sketchy specification document

and expand it through several steps, perhaps after some experience with early proto-

types. We shall see examples of this strategy later in the chapter. For similar reasons,
the modularlty principle is also 1mportant for spec1flcatlons

Exercises

5.1  Go through all the software qualities"ﬁs'teﬁd» in Chapter 2, and state clearly which are rele-
-vant for specifications and which are not. ‘

5.2 Give a precise specification for the justify function in a word processor.

i A , T

_ CLASSIFICATIO,N.OF SPECIFICATION STYLES

We may classify the many different styles of specxﬁcatxons according to two different,
independent criteria.

Specifications ‘can be stated formially. or mformally Informal" spemfncatlons are
written in a natural language; they can, however, also make use of figures, tables, and
other notations to provide more structure and help the understanding. They can also be

 structured in a standardized way. A notation that has a precise syntax and meaning is

called a formalism. We use formalisms to create formal specifications. It is also useful to
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talk of semiformal specifications, since, in practice, we sometimes use a notation without
insisting on a completely precise semantics for it. The TDN and GDN notations intro-
duced in Section 4.2.3.1 are an example of semiformal notations, since they put together
a formal syntactic description of module interfaces and an informal statement of their
meaning. We shall see later how the informal comments in our TDN module specifica-
tions can be made precise by formalizing the semantics of the operations. Similarly, UML
class diagrams can be used as a semiformal notation to describe a design. A formal lan-
guage called OCL is also available to provide precise semantics of classes.

The second major distinction between different specification styles is between
operational and descriptive specifications. Operational specifications describe the
intended system by describing its desired behavior, usually by providing a model imple-
mentation of the system (i.e., an abstract device that in some way can simulate its
behavior). By contrast, descriptive specifications try to state the deszred properties of
the system in a purely declarative fashion.

For example, suppose you give the following specification of a geometric flgure E:
Eis a geometric figure that can be drawn as follows:

1. Select two points P, and P, on a plane.
2. Select a string of a certam length and fix its ends to P, and P, respectlvely
~ 3. Position a pencil as shown in Figure 5.1.
4. Move the pen clockwise, keeping the string t1ghtly stretched, untﬂ you reach
the point where you started drawing.

What we have just given is an operational definition of the curve known in ‘

geometry as an ellipse with foci P, and P, An alternative definition of the same curve
could be given by providing its equatlon ax? + by + ¢ = 0,where a,b, and c are
suitable constants.

The example shows that an operational definition readily allows us to check
whether the specification describes the kind of curve that we had in mind when we
gave the specification. It is in fact easy to draw a curve with paper and pencil following
the specification and then examine whether the curve satisfies, say, the aesthetic
requirements we had in mind. Of course, the implementation of the curve might turn
out to be entirely different from what is given in the specification; for example, it might
be a curve to be displayed on a graphics terminal. Nevertheless, experimentation helps
us understand whether the specification we gave is correct. By contrast, if we want to
check whether, say, a given point P at position (x,, y;) lies on the curve, we can do
that more easily by referring to the equation, which might also help in assessing the
adequacy of the requirements: The curve might be the trajectory of a robot, point P

B N

FIGURE 5.1

Construction of an ellipse.
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might represent the site where a human should work, and safety reasons might require
that the robot never cross point P.

For a software example, consider the following informal operational specification
of the sorting of an array:

Let a be an array of n elements. The result of sorting a is an array b ofn elements that may
be built as follows:
1. Find the smallest element in a, and assign it as the first element in b.
. 2. Remove the element you found in step 1 from a, and find the smallest of the remaining
elements. Assign this element as the second element in b.
3. Repeat steps 1 and 2 until all elements have been removed from a.

This specification suggests a natural and simple (although not very efﬁcrent) way of
implementing the sorting of an array. The suggestion, however, does not imply that-a
sorting algorithm must sort a in that way: It must only produce the same result. Thus,
quicksort, for example, is a perfectly adequate implementation of the specification. The
problem with this kind of specification, however, is that it is difficult for the reader to
determine what it actually prescribes, what must be implemented, and what is not.

A possible descriptive specification of the sorting of a is the following:

The result of sorting a is an array b that is a permutation of a and is sorted.

If the concepts of permutation and being sorted are not considered to be clear enough, '
they can be further specified. If, on the other hand, they are deemed to be primitive
concepts, specification may be considered to be complete at this stage.
There are several trade-offs between descriptive and operational specification
styles. It is sometimes claimed that descriptive specifications are more abstract than
operational specifications, because they do not bias the reader towards any particular
‘implementation. Rather, they help focus on essential properties of the system without
modeling the behavior of any implementation. Although this is basically true, we must
recognize that some hidden implementation schema is present in any specification. For
instance, the foregoing descriptive specification of sorting an array suggests the follow-
ing trivial implementation: “Enumerate ali permutations of the original array. The first
permutation that is sorted is an acceptable output for a sorting algorithm.”
-One could also write specifications that are in some sense halfway between oper-
“ational and descriptive. For instance, one could define a new operation to be applied to
an array a in the following way: '

¢ First, a must be sorted, where the def1n1t10n of “sorted” is given in the previ-
ous descriptive way.

¢ Then, any duplicate elements of the sorted array must be deleted from the
' array.

This specification is operational in the sense that it specifies a sequence of two opera-
tions to be performed to obtain the desired result. But part of it—the meaning of the
term “sorted”—is given in a descriptive way.

In sum, the distinction between operational and descriptive specifications is not
always sharp and is sometimes subjective. It is, however, an adequate distinction for
categorizing different specification styles.

In this chapter, we develop a deeper understanding of specification styles, tech-
niques, and goals by describing and critically evaluating some sample specification tech-
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niques. While we have selected these techniques because they are important represen-
tatives of specification styles, it is not the particular choices that are our main subject. -
Since there is no style that is right for all circumstances, our purpose is to help the
reader develop the ability to analyze a specification technique or style critically and
then select or reject it, depending on the situation. The appropriate style or notation can
help a designer express a design or problem clearly. An inappropriate notation makes it
difficult to do so. Some notations, however, are gaining wide acceptance and are increas-
ingly being-adopted in practice. As a consequence, they have become subject to stan-

- dardization. The UML notation; which we introduced in Chapter 4 and which will be

further illustrated in this chapter, is a notable example of a standardized notation.

No style or notation, however, formal or informal, can guarantee that the
‘designer will come up with a good design or an insightful formulation of a problem.
Good specification and design require adequate skills, experience, taste, judgement,
and even creativity. Since so much in the design activity depends on subjective criteria,
it is important o0 develop a critical intuition that enables one to adapt the right specifi-
cation style techmque and notatlon to the problem at hand.

Ex‘ercises

53 Give a completely descriptive specification of the previous example that used a mix of
descriptive and operational styles to describe the construction of a sorted array with no
duphcates

5.4 Consider the opetational and descriptive specifications of the sort operation given in this
section: Are there amb1gu1t1es in these specifications? How are duplicate elements to be
i treated?

VERIFICATION OF SPECIFICATIONS

We have stated that one important use of specifications is to'serve as a reference against
which we can verify an implementation. But we also observed that the specification itself
must be verified. In Chapter 2, we saw that the correctness of an application does not
automatically imply that the functions performed by the application are exactly the ones
that were meant by the customer. The same observation holds for all software qualitits.
Even if the implementation eventually satisfies the specification, we may still end up with
a product that does not match the user’s expectations. It is thus important that specifica-
tions be verified prior to starting an implementation, in order to assess their correctness.
There are two general ways of verifying a speC1flcat10n One consists of observing
the dynamlc behavior of the specified system in order to check whether it conforms to
the intuitive understanding we had of the behavior of the ideal system. The other con- -
sists of analyzing the properties of the specified systém that can be deduced from the
specification. The properties that are deduced are then checked agamst the expected
properties of the system.
The effectiveness of both techmques increases as a functlon of the degree of for-
mality of the specification. In fact, in a completely formal setting, a way of observing
- the dynamic behavior of the specified system may consist of providing an interpreter
of the formal language in which the specifications are written and then executing for-
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mal specifications on sample input data Similarly, deducmg new properties from the
ones stated as part of the (descriptive) specification can be made mechanical in some
formal logic setting, as we shall see

In the example of an ellipse shown in Figure 5.1, the observation of the dynamic
system behavior can also be calléd simulation. Simulation is obtained by executing the
formal specification, and this, following the concepts-we introduced in Chapter 2, yields
a prototype of the speafled system, before any implementation has been started. In a
less - formal settmg, execution may be simulated in the human mind, rather than

mechanically, and this more easily accommodates informality. Similarly, property analy-

sis can be done by human inspection, especially if the specificaiions are not fully formal.
It is perhaps useful to compare software engineering with more traditional engi-

‘neering fields. There, descriptive specifications are often given in terms of (or on the

basis of) mathematical equations that model the system. Think of a bridge of a glven
shape connecting two banks of a river: The mathematical model provided by the engi-
neer supports a property analysis, iri terms of whether the bridge can or cannot sustain
a glven distribution of static or dynamlc forces. An operatlonal model of the system is
often built as a mock-up (a prototype, in oyr terminology), which is usually viewed not

as a specification, but rather as an aid in verifying the specifications. In both bridge

building and software building, an 1nadequate specification can lead to system failure.
Bridges have been known to collapse in-storms because the speaflcatlons did not take
into account unusual wind formations.

So far, we have discussed only the verification of functional speC1f1cat10ns It is
also important to verify the completeness and consistency of specifications. Again, with '
formal specifications, some of this verification may be done mechanically (e.g., verify-
ing that all terms used in the specification document are defined); some verification,
however, may require the use of more sophisticated proofs. Informial specifications are
harder to verify. automatxcally, but even for them, some mechanical checks are p0551b1e
and should be-used.

- We will take up the issues of the verlflcatlon of requlrements later in the chapter
and also in Chapters 6,7, and 9. ‘

OPERATIONAL SPECIFICATIONS -

In this section, we describe a few widely known and applied notations for giving speci-
fications in an operational style. We start from semiformal notations that are widely
adopted in practice for the description of information systems. Then we illustrate for-
mal notations that are suitable for describing contigi aspects in system modeling.

Data Flow Diagr'am’s: Specifying Functions of Information Systems

Data flow diagrams (DFDs) are a well-known and widely used notation for specifying
the functions of an information system and how data flow from functions to functions.
They describe systems as collections of functions that manipulate data. Data can be
organized in several ways: They can be stored in data repositories, they can flow in data

flows, and they can be transferred to or from the external environment.

- One of the reasons for the success of DFDs is that they can be expressed by
means of an attractive graphical notation that makes them easy to use.
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-The following are the basic elements of a DFD:3

.

Figure 5.2 gives examples of these graphical syrhbols. Figure 5.3 shows how the
symbols can be composed to form a DFD. The DFD describes the evaluation of the
arithmetic expression

assuming that the data a, b, c, and d are read from a terminal and the result is
printed. The figure shows that arrows can be “forked” to represent the fact that the
same datum is used in different places. .

FIGURE 5.2

The basic graphical symbols used to build data flow diagrams.

FIGURE 5.3

A data flow diagram for specifying the evaluation of
an arithmetic expression.

Specification

Functions, représented by bubbles.

Data flows, represented by arrows. Arrows going to bubbles represent input
values that belong to the domain of the function represented by the bubble.
Outgoing arrows represent the results of the function—that is, values that
belong to the range of the function. '

Data stores, represented by open boxes. Arrows entering (exiting) open boxes
represent data that are inserted into (extracted from) the data store. -

Input-output, represented by special kinds of I/O boxes that describe data
acquisition and generation during human-computer interaction.

(a + b) * (¢ +a * d),

@ The. fuhc_tién symbol The input device symbol

—— 'The‘data flow symbol

The data store symbol _ jThe output device symbol

:The DFD notation is not standardized. The literature contains several slightly different definitions.
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Example 5.1

Figure 5.4 describes a simplified information system for a public library. The data and
functions shown are not necessarily computer data or computer functions. The DFD
describes physical objects, such as books and shelves, together with data stores that are
likely to be, but are not necessarily, realized as computer files. Getting a book from the
shelf can be done either automatically—by a robot—or manually. In both cases, the
action of getting a book is represented by a function depicted by a bubble. The figure
could even represent the organization of a library with no computerized procedures.
The figure also describes the fact that, in order to obtain a book, the following
are necessary: an explicit user request consisting of the title, the name of the author
of the book, and the user’s name; access to the shelves that contain the book; a list of
authors; and a list of titles. These provide the information necessary to find the book.
- The way the book is actually obtained, however, is not at all mentioned in the
figure. If we did not use our previous experience about the way one borrows a book
from a library, there would be no way to deduce this information from the figure.
Thus, we should consider this DFD as a first approximation of the description of a
library information system. A finer description of how a book can be selected from
the library shelves is given in Figure 5.5, which can be seen as a refinement of (a part
of) Figure 5.4. Figure 5.5 is. still somewhat imprecise, in that it does not specify
whether both the title of the book and the name of the author are necessary to iden-
tify a book or whether only one of them is enough. We do know that, in general, one

Book Book request

by the user

__Shelves .

Title and author )
of requested book; name
of the user

Author

List of authors

Title
Book title;
user name

List of titles

List of books borrowed

List of topics

Display
of the list
of titles

List of titles
referring to .
Topic the topic

Topic request
by the user

FIGURE 5.4

A DFD describing a simplifiéd 1i'brary.information‘ system. - )
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Book

Shelves

Get
the book

Author

.Book

List of authors

Book

~ <shelf#, book #> reception

List of titles List of books borrowed

Title and author
- of requested book;

name of the user Book title;

. user name

Book request
-] by the user

FIGURE 5.5

Partial refinement of the function “Deliver a book” of Figure 5.4.

-is- sufficient, but occasionally, both are necessary. This distinction, however, is not
explained by the figure. : : : ‘ |

- In Example 5.1, Figures 5.4 and 5.5 provide an intuitive description of the system,
but they lack precision. This is true in general for DFDs, which lack a precise meaning,
chiefly for the following reasons: ‘

1. The semantics of the symbols used is specified only by the identifiers chosen
by the user. Sometimes this is sufficiently precise; for example, the symbol ‘+’
_clearly denotes the function “add,” and no further explanation is needed.
Other times, however, more explanation is necessary. For instance, the func-
tion “Find book position” of Figure 5.5 has some intuitive meaning, but does
not fully specify what happens if some information is missing. A realistic (but
still informal) definition could be the following:

If the user supplies both author name(s) and book title then
determine book position (if the book does not

) exist, give an appropriate message)

elsif only the author is given then
supply a list of all existing books by that
author and ask the user for a selection;

elsif only the title is given them... '

ena if
2. Control aspects are not definediby the model. For exémple, Figure 5.6 shows a.
simple DFD in which the outputs of three bubbles, A, B,and C, are inputs to D

and D’s two outputs are inputs to the bubbles E and F. By itself, this-diagram
does not specify clearly the way in which inputs are used an"‘d outputs are pro-
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duced by the function D. In particular, there are many dlfferent equally plausi-
ble alternatives for both input and output. For the inputs, -

¢ Dmay need all of A, B, and C; that is,D may be unable to execute. unless A,B,
and C are all present together.

* D may need only one of A, B, and C to execute; that is, the assoc1ated data
transformation could take place when only one of A, B, and C is present.

For the outputs,

* Dmay outputa result just to one of the two output bubbles E and F agam in
a nondeterministic, but exclusive, way. -

¢ D may output the same data to both E and F.

¢ D may output distinct data to E and F.

~ Other interpretations of D’s inputs and outputs are also compatible with Figure 5.6.
Another case where DFDs leave synchronization between components of a sys-
tem completely unspecified is shown in Figure 5.7, where two bubbles A and B are con-
nected by a single data flow, with A’s output being B’s mput There are at least two
possible interpretations of this DFD:

. A produces a datum and then waits until B has consumed it. (This is often
the case when A and B denote arithmetic operations on simple data.)

-« A and B are autonomous activities that have different speeds, but there is a
buffering mechanism between them (some sort of bounded queue or
unbounded pipe) which ensures that no data are lost or duplicated (for
instance, if A denotes computing the time spent by employees in their work
and B denotes computing a payroll). ‘

In sum, DFDs are an attractive graphical notation that is suitable for capturmg,
in a fairly immediate and intuitive way, the flow of data and the operations involved in
an information system. However, DFDs lack a precise semantics, Although the nota-
tion can be seen as operational, the behavior of the abstract machine corresponding to

FIGURE 5.6

A DFD that is ambiguous in its use of inputs and outputs.

O—0

A DFD that does not specify synchronization between modules.

FIGURE 5.7




-

176 Chapter5  Specification

a DFD is not fully specified. Rather, different interpretations are generally possible for

. the control regime associated w1th a DFD. ~

. These drawbacks have some negauve consequences. First, ifa rough description
of the system modeled is not sufficient, and we need a precise and detailed definition,
DFDs simply cannot do the JOb Second, nnagme that you want to build a machine to
simulate the system modeled, in order to test whether the specifications reflect the
user’s expectations. Such a machine cannot be derived directly from the DFD, because
no machine execution is possible without a precise semantics for the notation. A
human reader is able to fill the semantic gap thanks to the intuitive meaning of the
identifiers. But the machine, lackmg 1ntu1t10n will not be able to interpret a notation of
the type given in Figure 5.7. '

For these reasons, we say that traditional DFDs are a semlformal notation. Their
syntax—the way they compose bubbles; arrows, and boxes—is sometimes defined pre-
cisely, but their semantics is not.

Several methods have been des1gned to overcome these difficulties. They can be
classified roughly as follows: .

» Using a complementary notation to describe those aspects of the system that are
not captured adequately by DFDs. Thus, the complete system specification will
consist of the integration of different descriptions provided in different nota-
tions. We shall see examples of this technique later in the chapter.

 Augmenting the DFD model in order to cope with aspects that are not captured
by its traditional version. For instance, we can handle control aspects by intro-
ducing control flow arrows. A control flow arrow going to.a bubble means that
the computation of the function associated with the bubble may occur only
when a signal is. present in the arrow. Figure 5.8 shows the notation and an
example of the use of control flow arrows.

e Revising the traditional definition of a DFD to make it ﬁtlly formal For exam-
ple, one could define a formal DFD model that would make it possible to _
express all desirable interpretations of original DFDs in an unambiguous fash-
ion. Thus, one might use different notations to distinguish the case where the
arrow between two bubbles specifies the flow of a single datum from that
where the arrow represents a pipe. Or one could annotate the diagram to spec-
ify whether all input data flows are needed, or whether only one is required, to
compute the function performed by a given bubble. Finally, one could provr@
a notation that would formally specify the function performed by a bubble.

: Trigger
o

FIGURE 5.8

A partial DFD augmented with control
flow arrows. The trigger is a control ﬂow
arrow that is dashed rather thaf eontifiuous.
The function “sum” associated with the '
bubble is applied to all data existing in the dn
boxes as soon as a trigger occurs.




N

5.5.2

Section 5.5  Operational Specifications 177

Exercises

5.5 Give a more complete description ofa library information system, includin'g several other
operations, such as returning or reserving a book or doing a bibliographic search. Then,
refine the operations up to a level where all of them are explained in sufficient detail.

. 5.6 .Give a completely. detailed specification of a reasonably. powerful and realistic function,

“finding book position.” You are invited to reflect on how many details are involved in the
full specification of such a small and seemingly simple part of a seemingly simple informa-
tion system.

5.7 Provide a DFD description of how one can apply for admission to, and then become
enrolled in, your university.

UML Dlagrams for Specifying Behaviors

As we mentioned in Chapter 4, UML is a collection of languages that provide specific
notations to specify, analyze, visualize, construct, and document the artifacts of a software
system. The notations are used by software engineers to produce standardized blueprints
that contain a number of different diagrams, each enlightening a certain aspect of the soft-
ware system. In this section, we illustrate use case diagrams, sequence diagrams, and col-

"laboration diagrams, alt of which can be used to model the dynamic aspects of a system.

Use case diagrams provide a global view of the actors involved in a system and
the actions that the system performs, which in turn provide an observable result that is
of value to the actors. Use case diagrams describe the averall context of a system by
partitioning the system’s functionality into transactions that are useful to actors and
showing how actors interact with them. Actors are an abstraction of an external per-
son, process, or entity interacting with the system being described. Actors are linked to
use cases by associations, which represent the communication path between the actor
and the use case it participates in.

For example, consider the description of a library in Figure 5.9. The system allows
customers to borrow and return books. These actions involve both. customers and
librarians. Librarians can update the library by inserting copies of new books and elim-
inating copies of old ones. '

Sequence diagrams and collaboration dtagrams are two equlvalent notations that
can be used to describe how objects interact by exchanging messages. They provide a
dynamic view of a system by graphically displaying scenarzos that may occur at run
time when objects interact to accomplish certain tasks.

borrow
book

return
book

library
update

X

Customer Librarian

FIGURE 5.9

A use case diagram.
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As an example, the sequence diagram of Figure 5.10 illustrates a fragment of the
specification of a library system by describing one of the scenarios that may occur
when the customer of a library borrows a book. In the scenario, first the customer pro-
vides his or her membership card to the librarian, and then the librarian checks
whether the membership card is expired. If the card is valid, the catalogue is checked
to see whether the book is available. If it is, then finally the customer can borrow the
book. The sequence diagram visually indicates the progression of time in the vertical
direction and the temporal sequence of messages exchanged between objects (the cus-
tomer, the librarian, and the catalogue).

Figure 5.11 describes the same scenario by means of a collaboration diagram. The
diagram indicates the objects involved in the interaction and describes the temporal
sequence of events by numbering the relevant labels on the arcs connecting collaborat-
ing objects. As we mentioned, sequence diagrams and collaboration diagrams are
semantically equivalent, but syntactically different. The choice of which of the two to
use is a matter of personal taste. Collaboration diagrams make the structural proper-

-~ ties of a collaboration more evident, whereas sequence diagrams hlghhght the tempo-
ral evolution of the scenario.

The specifications of use cases and p0551b1e scenarios of the behav1or of the sys-
tem are quite useful in the requirements phase, when the software engineer interacts
with the expected user to elicit his or her expectations. The diagrams describe in a very
intuitive way a number of representative cases of the system behavior. By reading

" these diagrams, the expected user can confirm whether the specifications capture the
- expected behaviors faithfully.

Customer Librarian Catalogue

i

member card +

book request membership
_ .} OK :

.

book request time

-

book available

“book borrowed T

FIGURE 5.10 ‘ L

A séquence diagram.

1: member card + 2: membership OK

book request 3: book request
FIGURE 5.1 . | Customer Librarian Catalogue

" A collaboration diagram. ' 5:book borrowed 4:book available
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5.5.3 Finite State Machines: Describing Control Flow

In the description of information systems, the emphasis is on the organization of func-
tions and data flows. We saw, however, that to make specifications more precise, some
attention must be paid to control aspects as well. For instance, sooner or later, one may
wish to specify in a DFD whether the execution of a function must wait for all inputs or
whether it can start as soon as some of them are available. In a similar way, program-
ming languages have constructs both to describe data organization and to descrlbe the
flow of control.

In the specification of different systems, the balance between data and control
flow may be different. For instance, in a communication system, one might first like to
state requirements such as the following:

* One must not write into a full buffer or read from an empty one.
* One should not access a buffer while another process is writing into it.
* Reading from a buffer must have a higher priority than writing into it.

* Every message must be forwarded through some channel within 2 millisec- -
onds from its arrival.

Then, one could also attend to functiohal aspects such as the following:

* For each message received, the parity must be checked.

* For every 10 messages received, a new message is synthesized that is the con-
catenation of the 10 messages, preceded by a header that specifies the address
of the receiving station. '

Thus, both information systems and control systems—and, indeed, all other kinds of
systems—have functional and data aspects as well as control aspects. The models used,
however. could put different emphases on the two, according to the nature of the systems.

Finite state machines (FSMs) are a simple, widely known, and lmportant formal
notation for descrlbmg control aspects. An FSM consists of*

1. afinite set of states, Q;

2. afinite set of inputs, I;

3. atransition function 8: Q X I — Q. & can be a partial function; that is, it can be

undefined for some values of its domain.

An FSM may be shown by a graph whose nodes represent states; an arc labeled i
goes from g, to g, if and only if § (q;, 1i)= q,. Figure 5.12 shows a simple FSM.

As the term itself suggests, FSMs are suitable for describing systems that can be
in a finite set of states and that can go from one state into another as a consequence of
some event, modeled by an input symbol. For instance, a lamp can be either on or off
and can go from on to off as the consequence of an external action consisting of push-
ing a button on the attached switch. Pushing the button again causes the oppositggran-
sition. This simple system is described by the FSM of Figure 5.13. Another simple
example of the use of FSMs is given next.

1 More precisely. this is the definition of a deterministic finite-state machine.
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FIGURE 5.12

A finite state machine.

Push switch

FIGURE 5.13 ' ;

A finite state machine description of a )
lamp switch. . Push switch

Example 5.2

‘Consider the control of a (small part of a) chemical plant. Temperature and pressure
levels must be monitored for safety reasons. Sensors are installed to detect and gener-

ate appropriate signals when either of these:levels exceeds some predefined values. A
trivial policy for managing the plant is the following: When either one of the signals is
raised by the corresponding sensor, the control system shuts the plant off and raises an
alarm signal; the system is restarted manually when the cause of the failure has been
rectified. All this is-described by the FSM of Figure 5.14.

This simple policy is obvicusly inadequate. A better way of managing the plant is

~as follows: When one of the two signals is raised, the system enters a recovery state in

which it tries to apply a recovery action. If, after a while, the recovery action succeeds,
the system is automatically reset to the “normal” state, and a message, “everything

‘OK,” is issued to the external environment. Otherwise, the alarm signal must be raised

and the plant must be shut off. The system must also be switched off if it is trying to
recover from one kind of anomaly—temperature or pressure—and the other signal is

raised. It is assumed that the two signals cannot occur simultaneously. This new policy
is described by the FSM of Figure 5.15. _ [ ]

FSMs are often used to specify sets of acceptable strings of input symbols (i.e.;
formal languages). In such a case, they are augmented by defining an initial state q, € Q
and a subset F of Q, called the set of final or accepting states, graphically denoted by
doubly circled nodes. The set I is the set of characters used to form the input strings.
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High-pressure alarm
High-temperature alarm
y
Off

An FSM describing the control of a'chemical plant.

Pressure signal

Restart

Pressure >\ Temperature signal

Arecovey

FIGURE 5.15

A refined policy for the control of a
chemical plant described by an FSM.

Temperature signal

Successful Unsuccessful - -

recovery recovery
Normal )

Successful Unsuccessful

recovery recovery

Pressure signal

Temperature
recover

An input string is accepted by the FSM if and only if there is a path in its graphical rep-
resentation leading from g, to any final state such that the concatenation of the labels
of the edges of the path is the input string. For instance, the machine of Figure 5.16
accepts the words begin and end. The machine of Figure 5.17 accepts the valid identi-

fiers of a programming language.

Sometimes, FSMs are augmented with the possibility of producing output signals.

In this case, the transition function 6 is augmented as

0:QXI—>QXO,

where 0O is the finite set of output symbols. Graphically, the label <i /o> labels an arc
going from q, to g, ifand only if 6 (q;, 1)= <q,, o>.

" FSMs are a simple and widely used model. Their applications range from the specifi-
cation of control systems to compilation, pattern matching, protocol and hardware design,
and even applications outside of computer science. The simplicity of the model, however,
may become a weakness in some more intricate cases. We shall discuss the most relevant

. ones from the point of view of system specification, with primary reference to the specifi-
cation of control systems, which is one of the major fields of application of FSMs.

First, FSMs are finite-memory devices, as their name suggests. This implies that in
many cases their expressive power is limited. For instance, in Example 5.2, suppose
that, in response to abnormal temperature, a cooling effort is attempted that is propor-
tional to Di ffTemp, the difference between the present temperature and a reference
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FIGURE 5.16

An FSM accepting the keywords begin .
and end.

<digit>

<digit>

4 <letter> is an abbreviation for a set of arrows
rvem———s————-

L
cgen labeled a,b, ...,z, A,...,2Z, respectively

FIGURE 5.17

o o <digit> s an abbreviation for a set of arrows
An FSM accepting the identifiers of > labeled0,1,...,9, respectively

a programming language.

value. This effort cannot be modeled by a finite state device, because the p0951b1e cool-
ing states are infinite (one for each possible value of Di f £Temp):

Even when the range of possible values is finite—which is the case for many
physical quantities of practical interest—the description of the responses may become
extremely cumbersome. The previous natural-language description is a much better
specification than an FSM that uses a different arc for each distinct integer tempera-
ture value within, say, a 50-degree range. Similarly, even though the physical memory
of any computer is always finite, it consists of an unmanageably large number of states:
Describing an eight-bit register by means of an FSM requires 28 different states!

When such situations occur, we can cope with them in different ways:

* We may give up on descrlbmg all details of the system and be satisfied with an

~ approximation that ignores requirements of the type just discussed. After all,
Figure 5.14 provides some meamngful mformatxon even without specifying
the “amount of cooling effort.”

* We may complement the dlagram with 1nforma1 natural language comments.
" e We may change models. Actually, a large variety of other models has been pro-
posed to overcome this and other problems of FSMs. Some appear as modifi-
- .cations of the original FSM; others are totally different-models.
-.e. W€ may enrich the model by addmg new features to the deSCrlptlon to cope
W1th the new requlrement '
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t

~ For instance, in the system of Example 5.2, we can state, formally or informally,
that the transition from the “normal” state to the “temperature-recovery” state must

~ be accompanied by an action described as

Cooling_effort:= k*(present_temperature-standard_value)-

Also, one could add predicates (guards) to transitions. This means that the predi-
cate must be true in order for the state transitions to occur. For example, one could add
to the finite state machine of Figure 5.15 a transition from the state “normal” to the
state “off” and attach the following guard to it: '

.temp 2 very_dangerous_value

In addition, the following guard could be attached to the transition from the
“normal” state to the “temperature recovery” state:

temp < very_dangerous_value

Actually, if we carry such a way of enriching the original model to its logical
extreme, we end up with a full definition of a new FSM-like model. This was done sev-
eral times in the past, both for FSMs and for many other models, in order to provide
new ad hoc formal specification languages.S 4

FSM:s have another drawback that is somewhat typical of control system descrip-
tions. This shortcommg is illustrated in the next example.

Example 5.3

A producer process produces messages and puts them into a two-slot buffer. A consumer
process reads the messages and removes them from the same buffer. If the buffer is full, the
producer must wait until the consumer process has emptied a slot. Similarly, if the buffer is
empty, the consumer process must wait until the producer has inserted a message. The two
processes and the buffer may be described separately by the FSMs of Figure 5.18.

Although it can be useful to examine the three components separately, it is clear
that the two processes, together with the buffer, are a single, synchronized system that
must also be described as a whole.

A natural way of attacking this problem is to compose the different FSMs to
obtain a new FSM that describes the whole system. Intuitively, the resulting state set
should be the Cartesian product of the component state sets; furthermore, arcs denot-

I write @ consume e
produce : read
(a) ' (b)
write write
FIGURE 5.18 _ empty ( 0 ) (1) (2 )fun1
Three separate FSMs describing a producer- " .read read
consumer system. (a) Producer. (b) Consumer. _ _ ©
(c) Buffer. : .

$We shall see lat’er that the Statecharts language supports the definition of guards and actions assdc1ated with
transitions of a finite state machine. :
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ing the same action in different components should become single arcs in the resulting
graph. Applying this composition to Figure 5.18, we would obtain the result shown in
Figure 5.19. In this FSM, a state such as <0, p,, c,> corresponds to the buffer bemg
empty, the producer being in state p,, and the consumer being in state c,.

- The approach, however, is not without drawbacks. First, we see that, even in the
fairly simple case under consideration, the cardinality of the state space grows dramat-
ically: If we compose n subsystems, each W1th k, states, the resultmg system has a cardi-
nalityof k, - k,- ... k.. :

This ob)ectlon however, is mmgated somewhat by the consideration that what we
need is actually a complete description of the system, not a complete FSM describing
the system. Thus, we can argue that full information about the system is given by the
three components of Figure 5.18, augmented with precise—even algorithmic—rules
for composing FSM “modules” into “full FSMs,” with no need for the explicit descrip-
tion of Figure 5.19. In some sense, we have built a modular specification of the system,
leaving its integration to a straightforward “FSM linker.”
~ Still, there is a more serious objection to the use of FSMs for the description of sys-
tems that consist of several concurrent units. If we look at Figure 5.19, we realize that it
is an adequate description of the system under certain somewhat restrictive assump-
tions. Basically, the system described is always in a unique state and performs exactly
one action at any instant of time. There i is, however, no reason to impose a serialization
between production by the producer and consumption by the consumer, two actions
that are absolutely independent. '

A possible rebuttal to this objection is that the figure is still an adequate specifica-
tion of the concurrent system because the effect of two concurrent—and compatible—
actions, say a write and a consume, is the same as the effect of any serialization of
the two actions, either write followed by consume or consume followed by write.
TEis answer is partially true. It works fairly well if we can assume that the time for any
transition is short enough that, for example, at any instant t we can say “the present

1

write write

produce produce

<2,p;, Cy>)

FIGURE 5.19

An integrated FSM -

description of a pro- consume
ducer-consumer system. - <0,p;,C>
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state of the system is <1, p,, c,>.” Insuch a case, we could even define new transi-
tions that are the “parallel execution” of elementary transitions in order to cope with
truly simultaneous events.

Instead, suppose that the various operations take fairly different execution times; for
example, consuming is longer than producing, which in turn is far longer than reading
from and writing into the buffer. In this case, it may happen that the producer and con-
sumer start together (producing and consuming, respectively). After a while, the producer
is finished with producing and may start writing. This, again, may be finished before the
consumer is finished with its original operation, and a new instance of production may
start. Thus, we see that the transitions of the various components occur in an

,asynchrOnous way that is no longer described well by the FSM of Figure 5.19. ' - R

| Example 5.3 shows that FSMs are essentially a synchronous model. (At any time,

_ a global state of the system must be defined and a single transition must occur.) Other
~ models are more appropriate for describing systems consisting of concurrent and asyn-

chronous components, more so if timing aspects (i.e., stating time-constraints for the
completion of several transitions) are important. In the next section, we present and
evaluate an operational model that is explicitly aimed at describing concurrent systems.

Exercises

5.8 Using'FSMs, describe a lighting system consisting of one lamp and two buttons. If the lamp
is off, pushing either button causes the lamp to switch on, and conversely.

5.9 Describe a system with two lamps and one button. Wlen the lights are off, pushing the
button causes the first lamp to go on: Pushing the button again causes the second lamp to
go on and the first to go off. Pushing the button yet again causes both lamps to go on. and
pushing it once more switches both lamps off. N

5.10 Modify the specification given by the FSM of Flgure 5.15 in order to cope also with simul-
" taneous signals. .

5.11 Modify the specification given by the FSM of Figure 5.15 by considering the case where
temperature and pressure each have two different associated signals. one indicating a
slight. deviation from the acceptable value and the other a dangerous deviation from the

“acceptable value. In the latter case, the system must be shut off immediately.

Petri Nets: Specifying Asynchronous Systems

Petri nets are a formalism for specifying systems that contain parallel or concurrent
activities. They are defined by a quadruple (P, T, F, W).where

1. Ppis a finite set of places;

T is a finite set of transitions;

PUT = o R

Fc{P X T} UY{T X P} is the flow relation: and

W:F — N-{0} is the weight function, which associates a nonzero natural value
to each element of F. If no weight value is explicitly associated with a flow ele-
ment, the default value 1 is-assumed for the function.

IR
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A Petrinet (PN) can be given an appealing graphical representation, which makes
specifications intuitively understaridable. Places are represented by circles, transitions
by bars, and flow elements by arrows. Whenever useful, a bi-directional arrow connect-
ing a place P and a transition t will be considered as an abbreviation for a pair of

*arrows, one going from P to t, the other going from t to P. Figure 5.20 shows a sample

Petri net.
A PN is given a state by markmg its places. Formally, a markmg is a functlon M
. from places to natural numbers:
M:P—N o

A marking is represented graphically by inserting a number x of tokens in every
place of the net, such that x = M(p). Figure 5.21(a) shows one marking of the PN of
Figure 5.20. The evolution of a PN—that is, its progression through state changes, is

‘regulated by the rules explamed next.

A transition may have one or more input and output places If an arrow goes from
a place to a transition, the place is said to be one of the transition’s input places; if an
arrow goes from a transition to a place, the place is said to be one of the transition’s
output places. A place can be both an input and an output for a transition. A transition is
said to be enabled if each of its input places contains a number of tokens that is greater
than or equal to the weight of the flow element conngcting the input place to the transi-
tion. In the default case, where the weight of the flow element is one, each input place
must contain at least one token. A transition with no input places is always enabled.

An enabled transition may fire. The firing of transition t removes from each input
place p, a number of tokens that equals the weight of the flow element from p; to t and
then inserts into each output place q; a number of tokens equal to the weight of the
flow element from t to g,. In Figure 5.21(a), both t, and t, are enabled; no other tran-
sition is enabled. In such a case, the marking of the net may evolve in at least two differ-
ent ways: either by firing t, or by firing t,. Thus, the model is nondeterministic, in the
sense that, given an initial marking, different evolutions of the PN are possible. In the
case of Figure 5.21(a), the firing of t, produces the marking of Figure 5.21(b), whereas
the firing of t, produces the marking of Figure 5.21(c). Notice that, after t, fires, t, is
still enabled and could fire. Correspondingly, t, would still be enabled if t, fires first.
Transitions t, and t, can also fire in parallel. In any case, one would eventually reach
the marking of Flgure 5.21(d). At this point, t; and t, are both enabled, and either can
fire in a nondeterministic way. This time, however, the firing of one prevents the other
from firing. For example, if t, fires, t, will no longer be enabled.

FIGURE 5.20

A sample Petri net.




Section 5.5 Operational Specifications 187

FIGURE 5.21

Evolution of a Petri net. .
(a) Initial marking. (b) t, fires from initial marking.

- {¢) t, fires from initial marking. (d) t; and t, both fire from initial marking.

A firing sequence of a given PN with a given initial marking is a sequence of transi-
tion firings, denoted as a string of transition labels <t,, t,, ..., t,>,suchthatt, is
enabled in the initial marking, t, is enabled in the marking obtained by firing t,, and so
on. ' : -
Before going further into the analysis of the behavior of PNs, let us interpre.
them as a model for the description of concurrent systems. In a PN, a transition usually
models an event or an action, and its firing represents the occurrence of the event or
the execution of the action. Thus, a transition is enabled if the conditions are satisfied
that allow the occurrence of the modeled event or action. The presence of a token in a
place denotes the existence of some condition or state. For instance, a place may model
aresource, and the existence of one or more tokens in that place signifies the availabil-
ity of one or more instances of that resource.

Let us look at the net of Figure 5.21(a). We can interpret its two parts, consisting
of transitions t,, t,, tg, and t,, t,, t,, respectively, as two independent activities
flowing through the events modeled by the transitions. The two activities share a com-
mon resource, modeled by place P,. They could be two different programs using the
same CPU, two students sharmg a book etc.
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Initially, the two activities can proceed in an independent and asynchronous way. \
In fact, t; and t, are both enabled, and the firing of one does not prevent the other
from firing. In such a case, we say that the two transitions are concurrent. This arrange- /
ment could model, say, the independent editing of two programs at different terminals
or the reading of personal lecture notes by two students. After both transitions have
fired,s however, both activities are again enabled to proceed, but in mutual exclusion.

.This is shown in Figure 5.21(d). The resource modeled by P, is actually available, but
only for one of the two activities, the choice being nondetermmlstlc In thlS case, we say
that the two transitions are in conflict.

~ Suppose that the resource is given to the activity on the left-hand side of the fig-
ure. Then the net can proceed through t, and t,leaving the other activity temporarily
blocked. The firing of t, frees the resource, which is now available again for further
use. At this point, t, could fire. But it is also possible that, on the contrary, t, fires
again, and then the choice between t, and t, is resolved once more in favor of t,.This
sequence of events can be repeated forever.

The model does not impose any policy to resolve conflicts. In the concurrent system
terminology, the scheduling policy is not fair, and a process that never receives access to a_
needed resource is said to suffer starvation. Thus, a firing sequence where only transitions
t,, tj, tgoccurleads to starvation of the activity on the right-hand side of the figure.

Now;--aSsume that the initial marking of the PN has two tokens in P, instead of
one. This means that two indistinguishable resources.are available. As a consequence,
t, and t, are no longer in conflict, but are concurrent. If the two activities represent
computer processes, and two CPUs are available for them in a multiprocessor
machine, the two processes may be executed in parallel.

Figure 5.22 is a modification of Figure 5.21(a) that models the case where the two
activities need two identical copies of a resource to proceed. These copies are modeled
by two tokens in place R. After an activity—say, the leftmost—starts by firing t,, it may )
obtain any one of the available resources (firing t ) Then, it attempts also to obtain
the other resource (firing t ¥). Once the activity has obtained-both resources, execution ‘
can proceed, eventually releasing both (firing t5). : !

Consider, however, the firing sequence <t;, t}4, t,, t}>, which leads to a
marking wherein no transition is enabled. Thus, the net is prevented from any further
progress. Each of the activities has obtained one of the two resources and needs the
other one to go further. But this cannot happen, because the needed resource is owned
by the other activity, which is also waiting for one more resource.

This is a typical deadlock, which is modeled quite well by a PN. Formally, a PN
with a given marking is said to be.in deadlock if and only if no transition is enabled in

- that marking. A PN in Wthh no deadlock can ever occur starting from a glven marking
is said to be live. : ‘

Deadlocks lead to system “freezes.” Designers obviously try to avoid deadlocks, !

- but detecting them is difficult. Modeling formalisms such as Petri nets make it possible
to analyze properties-of the system. In this example, we were able to derive the dead-
lock property of a system by manually analyzing the PN that models the system.

sNotice that this does ot necessarily happen For example aﬁer ty has fired, t, could fire. Thls would disable t
until t fires. :
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FIGURE 5.22 R | FIGURE 5.23

A Petri net that can enter a deadlock state. - Amodification of the Petri net of Figure 5.22 that s live.

.FIGURE 5.24

A Petri net with partial starvation. -

Exercises

5 12 Show that the modlﬁcatlon of the PN of Figure 5 22 given in Flgure 523 is hve How do
you interpret the modification 1ntroduced‘7

5.13 "Consider the PN of Figure 5.24. Clearly, this PN is live. The activity modeled by transitions
t, and t,, however, can go into starvation. In fact, the net could reach a marking from
which the two transitions can never be .enabled. Comment briefly on the difference
between this type of starvation and the one illustrated before.
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Example 5.4

Let us go-back to the producer-consumer system modeled as an FSM in Example
5.3. We can use the PNs of Figure 5.25 to describe the three separate components of
‘the system. o ‘ . '

' Graphically, the composition of the three subsystems into a PN is shown in Figure
5.26.The figure shows that the major drawbacks of the corresponding FSM representa-
tion (given in Figure 5.19) are now resolved satisfactorily. First, the graphical complexity
of the figure is not based on multiplying the state space of the components, but is only
additive. In fact, in Figure 5.19 the number of nodes coincided with the number of states.
In Figure 5.26, the number of states is given by the number of possible markings. The
reader is invited to compare a PN describing a system of two producers and three con-
sumers using a four-position buffer with the corresponding FSM representation.

Second—and more important—in Figure 5.26, the concurrency of independent
activities is described properly. In fact, if the system is in the state <1, p,, c¢,> (i.e.,a
token is in each one of those places), both of the transitions produce and consume

write : consume

| |
P P :
! 2 N _ c, {
produce | read \
|
|
- read | read !
r I‘L |
0 1 2

write write . {

- FIGURE 5.25

Three separate Petri nets describing & producer-consumer system.” -
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write

produce

3
>

FIGURE 5.26

An integrated Petri net describing a producer-consumer system.

are enabled. That is, the two transitions are concurrent. They can be executed in paral-
lel without preventing each other from firing. Also, looking at the firing sequence

<produce, write, produce, read, consume, write, read, consume>

shows immediately which actions could happen concurrently and which ones have to
be serialized because the termination of one is necessary for the start of the other. M

Exercises

5.14 Give examples of firing sequences for the net of Figure 5.21(a).

5.15 Describe some of the systems previously described by FSMs by means of PNs. and com-
pare the different specifications.
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5.5.4.1 Limitations and extensions of Petri nets -

Even though PNs model certain aspects of systems quite well, their use in applications
has revealed some weaknesses when they are used for software specification. First, 4
they are—like FSMs—a control-oriented model. Tokens typically represent the flow of
control in the execution of several actions. The tokens, however, are anonymous. For
example the presence of a token in a place may denote only the presence of a message
in a buffer, not what the message says. '

This simplicity may be useful. Often—for example, when we are interested in
analyzing the flow of messages within a communication network—the important issue
is whether a message that has been produced somewhere will be delivered somewhere
else. In such cases, the actual content of the message may be an irrelevant detail.

But this is not always the case. For example, suppose you wish to specify a sys-
tem in which a message is to be forwarded through one of two different channels:
channel, is selected if the message is well formed; channel,—the “error” chan-
nel—is selected if the message is incorrect. The message is well formed if it contains
an even number of 1’s (i.e., if it has correct parity). : '

Figure 5.27 shows a tentative PN specification of such a system. ThlS net, how-

“ever, suggests that the choice between the two channels is nondeterministic when. a
message is ready to be forwarded (represented by a token in place P). The figure is not
an adequate description of the system we have described with words, since the choice
between the channels is dictated by the contents of the message. -

In our example, however, the firing of a transition should depend on what the mes-
sage says. But since the message is represented by the token, this is clearly impossible.
The token can denote only the presence of a message. We should be able to associate
what messages say (their values) with tokens, and we should be able to compute the
value of the tokens. Then, on receipt of a message, a station could modify the message
before forwarding it (e.g., by adding another address field). These problems are common
to all control-oriented models. :

Another drawback of PNs is the fact that, in the general case, it is not possible to
specify a selection policy between different transitions that are enabled. For instance,
going back to the net of Figure 5.21(a), we already noticed the possibility of the firing
sequence <t,, t;, ts> repeating indefinitely, starving the activity consisting of
<t,, t4, t¢>.Toavoid starvation in this case, we could enforce an alternation policy
by modifying the net slightly as shown in Figure 5.28. This mpdified net prevents t,
from firing a second time before t, has fired once.

It can be mathematically proven, however, that, in the general case, PNs do not
have the ability to describe a selection policy such as the following:

FIGURE 5.27

A portion of a Petri net describing the forwarding of :
messages through different channels, - Channel 1 Channel 2
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if transition t is enabled then
fire t;

else . . . :

fire the first enabled transition
according to.some ordering criterion

end if;

Timing issues are another critical aspect of some systems. As we have seen in

Chapters 2 and 4, in some real-time systems, the failure to compute an answer within

a given time has the same severe effect as not computing it at all or computing it
incorrectly. Also, the result of a computation may depend on the speed of execution of
some actions. , :

For instance, suppose that an external line sends messages to a computer at
some given speed. Every message that is received is put into a buffer and then
processed. If a message is not taken from the buffer before the next message arrives, it
is overwritten. Thus, the results of the processing may vary, depending on the arrival
times of the messages. _

Unfortunately, most models of computer systems, including PNs, do not take time
into account explicitly. The consequence is a lack of depth in modeling and analysis.

FIGURE 5.28

A modification of the Petri net of Figure 5.21(a), enforcing an alternation policy.
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For instance, consider again the PN of Figure 5.21(a). Let us assume that the actions
occur as soon as they are enabled. Let us also assume that the firing of a transition
occurs when the corresponding actions modeled by the transition ends. If the actions
. modeled by t,, t,,and t, take 1 second each to be completed, and the action mod-
eled by t, takes 5 seconds, then, clearly, the firing sequence <t;, t,, t;, tg, t,>is
not feasible, contrary to what is-suggested by the net. In fact, suppose that at time 0
‘both t, and t, start. At time 1, t, can start, but t2 is not completed. Thus, the fmng of
t, cannot occur before the fmng of t,.
_ Luckily, the flexibility of the Petri net model has allowed it to be extended in sev-
“eral directions while maintaining its original features. Let us review some fairly stan-
dard modifications of PNs that have proved useful in several circumstances. For
simplicity, we will assume the default case, where the weight is 1 for all elements of the
flow relation.

Assigning values to tokens. Tokens can be modified to carry a value of an appropri-
ate type: an integer, an array of bytes, or even a full environment consisting of several
variables and associated values. Transitions are also modified to have associated

_predicates and functions. The firing rule for transitions is now based on the values, as
‘well as the presence, of tokens. A transition with k input places and h output places is
enabled if there exists a k-tuple of tokens—one for each input place—such that the
predicate associated with the transition is satisfied by the values of the tokens of the
tuple. These tokens are together called a ready tuple.

Notice that the predicate is evaluated on exactly one token for each input place.
Thus, there could be more than one ready tuple for some transition; that is, the same
token could belong to different ready tuples. When an enabled transition fires, this
implies all of the following:

e the cancellation of all tokens that belong to a ready tuple from the input
places (if there is more than one ready tuple, its choice is nondeterministic);
e the evaluation of h new token values on the basis of the values of the ready
~tuple by applying the function associated with the transition (thus, such a func-
tion has a domain of k-tuples and a range of h-tuples);
* the production of one token for each output place—the value of the token is
computed by the function associated with the transition.

For instance, consider the PN of Figure 5.29, where tokens are assumed to carry
integer values. The notation is self-explanatory: The name of a place in a predicate or
~ function stands for-a token in that place. Both transitions t; and t, are enabled.
Transition t,; has two ready tuples, namely, <3, 7> and <3, 4>, since both tuples
satisfy the predicate P, > P,. Transition t, has one ready tuple, namely, <4, 4>,
which satisfies the predicate P, = P,.The token with value 1 in P, does not belong
to any ready tuple. Thus, the firing of t, by using the tuple <3, 4> would produce a
token with value 7 in P, and would therefore disable t,, since the tokens 3 and 4
would disappear from P, and P,, respectively Instead, the firing of t, by using
<3, 7> would produce the value 10 in P,. After that, t, could still f1re producmg
the values 0 in P, and 8 in P..
This first emrlchment to the PN model allows a natural and simple solution to the
- problem of Figure 5.27. In fact, it is sufficient to consider tokens as carrying a value of
the type of messages, say, sequences of bits. Then the predicate “P has an even number
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FIGURE 5.29

A Petri net whose tokens carry values. The
 predicate P, > P, and the function P, := P,
+ P, are associated with t; the predicate P,
= P; and the functions P,:= P, - ‘P,and

P,:= P, + P, are associated with t..

of 1’s” can be attached to transition channel 1»and similarly for transition channel,.
Also, if the forwarding of the messages through the channels implies some modifica-

tion of the message, this can be done in a natural way by adding appropriate functions
to the transitions.

Exercise

5.16 Use the foregoing PN extension to describe a message dispatciier that works along the fol-
lowmg lines: The dispatcher receives messages from two different channels and then
checks the parity of each message. If the parity is wrong, it sends a “nack” (negative
acknowledgment) through a reply channel (there is one such channel for e;ach input chan-
nel); if the parity is right, it places the received message into a buffer. The buffer may store
10 messages. When the buffer is full, the dispatcher sends the whole contents of the buffer
to a processing unit through another channel. No message can be placed into a full buffer.

Specifying scheduling policies. ‘When the pure nondeterminism of the Petri net
model is not adequate, we face the problem of specifying a policy for selecting a transi-
tion to fire among all the enabled transitions. A fairly simple way of doing this is to
attach priorities to transitions. Formally, they can be defined by a priority function pri
from transitions to natural numbers: S

pri:T-*N.

- Then we modify the firing rule in the following way: If, in some state, several tran-
sitions are enabled, only the ones with maximum priority are actually allowed to fire.
According to our definition, priorities are static. If tokens carry a value, however,
we could also define dynamic priorities whose values depend on the values of the
tokens of the input places of the transitions.

Exercise

5.17 Add suitable priorities to the PN you built to solve Exercise 5.16. If the dispatcher is in a
condition where it can receive a message from an input channel, send a “nack” reply, or
forward the contents of the buffer to the processor, then it must order its: priorities as fol-
lows: First get the message, then send the “nack”, and then forward the contents of the
buffer. ,
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Timed Petri nets. Subtle theoretical problems arise when one introduces time within

formal computation models. Such theoretical issues are beyond the scope of this text;
accordingly, we just mention that the notion of time has been added to Petri nets in
several ways. We describe one of the most simple and natural ways of introducing time
into PNs by scratching only the surface of this hard problem. '

Timed PNs are PNs in which a pair of constants <t_; , t...> is associated with

each transition. In more sophisticated models, it is also possible to define the temporal .

bounds so that they are computed as functions of the values of tokens at the input
- places. An initial marking is given at some value of time t,say t = 0.The.idea is that
once a transition is enabled, it must wait for at least t_;_ to elapse before it can fire.
Also, if enabled, it must fire before t,_, has elapsed, unless it is disabled by the firing of

another transition before t_,.. A timed PN is equivalent to an original PN if, for every

transition,t_; = 0 and t ., = O0.

Temporal and other modlflcatlons can obv1ous]y be combined. So if we attach
both times and priorities to transitions, care is needed in determining which transition
can or must fire at which time. A natural rule is that if several transitions can fire
according to the token-presence rule and the time-bound [t,;,, t...] Interval rule,
then only transitions with maximum priorities can actually fire, within a tlme that is
less than or equal to thelr ownt,..

For instance, con51der the net of Figure 5.30, with its mmal marking at time zero.
It may happen that t, fires within a time less than 2. If it does not fire within that time,
however, then it cannot fire anymore, because, at time t = 2, t, can fire, too, and it
has a higher priority than t,. Now, if at time t = 1 a token is produced into P, then,
during the interval 1 < t < 2, both t; and t, can fire, but t, cannot fire before t,
because it has lower priority. ‘

Now, let us go back to the problem of giving a precise meaning to the informal
specification »

The message must be triplicated. The three copies must be forwarded through three differ- -

ent physical channels. The receiver accepts the message on the basis of a two-out-of-three
voting policy.

which was discussed in Section 5.2. Timed PN, augmented with tokens carrying the |

values of messages, can easily provide a precise description of the possnble interpreta-
tions of this informal specification.

The first interpretation suggested in Section 5.2 was that the message should be
considered received as soon as two identical copies have been received. This interpreta-

tion is formalized by the PN of Figure 5.31. With this formulation, as soon as two tokens .
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t,
ot

min 2 t'-min
=3 Cmax

3 priority

FIGURE 5.30

1
min' 1

max max

1  priority

o
U o

A 'timed Petri net. _ .priority
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with identical values are present in P,, P,, or P, the corresponding transition fires. A
different interpretation of the informal requirements, based on the decision to wait until
all three copies have been recerved before perfonmng the comparison, is formahzed by
the net of Flgure 5.32.

This example of recervmg trlphcate messages shows that the use of a formal
model allows us to attach a precise meaning to a system specification. Furthermore, the
formal model may be the basis of a rigorous analysis. For instance, if we are interested
in determining the maximum time that may be spent to deliver an incoming message,
we can easily see thatitis k;, + k, in both cases. If, however, we assume that transmis-
sion of the copies through the three channels takes a time that is randomly distributed
within ¢, and k,, we find that the probability of receiving the message in place

‘Forwarded Message within time t (with ¢, + ¢, < t < k, + k,) is higher in the
case of Figure 5.31 than in the case of Figure 5.32.

Original message

t =X, . Message triplication

é) Message copies

Message copies transmission

votingl tvotingZ tvv:>ting3

tmm = O
tmax =0 L
for all three transitions

Forwarded Message
FIGURE 5.31

A possible formalization of message replication and selection through augmented Petri nets. The predicate
PC, = PC, is associated with t.oiing- The predicate PC, = PC, is associated with tq,,,. The predicate PC, =
PC, is associated with t,;..,. The predicate true is associated with all other transitions. The identity function
is associated with all transitions. ¢, and k, - (¢, and k,) are the lower (upper) bounds of the duration of
operation Message triplication (Message copies transmission).
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Now, assume that each channel has some probability of failure during transmis-
sion. (This state of affairs could be modeled by adding three more transitions, each
connected to the input places “message copies” places, whose firing would destroy the
tokens that represent the messages.) Then the model of Figure 5.31 would have a lower
probability of global failure (i.e., not forwarding the message to place Forwarded
Message) than the model of Figure 5.32. Since message trlphcatlon 1s apparently done
just to enhance the PN’s performance or fault tolerance, it is clear that such a differ-
ence between the two interpretations of the informal specification is quite useful.

The preceding analysis could have been made even more precise by further

- enriching the PN model with stochastic features, such as probabilistic distributions of
firing times and probabilistic distributions of the firing of enabled transitions. The inter-
ested reader can find models of this type in the literature suggested in the bibliographic

notes.
Originalv message
tmin =¢
Emax = ky Message triplication
Message copies
t..: = .
tmn = k2 - Message copies transmission
max 2 L -
PC,
PC,
Emin =0 . Y \ tooting
tmax = 0
R i . )
. OForwarded Message
FIGURE 5.32

* An alternative formalization of message replication and selection. The predicate PC, = PC, ox PC, = PC,
ox PC, = PC,is associated with t , ; .. The function“if PC, = PC, then PC, elsif PC, = PC, then
PC, elsif PC;, = PC, then PC, elme “ERROR” end if”is associated with t ., .. The predicate txue
is associated with all other transitions. The identity function also is associated with all other transitions.
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Let us now apply the Petri net model—and some of its variations—to describe a more
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Exercises

5.18 Give a formalization, in terms of augmented PN, of the third interpretation mentioned in
Section 5.2, in which the receiver polls the three channels periodically. If three copies are
received within a given time period, all of them are compared. If only two are received
within the given time period, and they are identical, then the message is accepted.

5._‘.l9v The formalization of Figure 5.31 has a minor flaw that may become relevant if the PN is
part of a cyclic system. Find and fix the error (i.e., modify the PN in such a way that it
behaves properly even if repeated cyclically).

5.5.4.2 A case study using Petri nets

complex and realistic system, namely, an elevator system. Consider the following infor-
mal specification, which has been proposed and used in the literature as a benchmark

for evaluating the applicability of spec1f1catlon techniques:

‘An n-elevator system is to be msta’lled in a bulldmg with m floors. The manufacturer sup-
plies the elevators and the control mechanisms. The. internal mechanisms of each are
assumed given. The problem concerns the logic to move elevators between floors accord-
ing to the following constraints:

1. Each elevator has a set of buttons, one for each floor. The buttons light up when
pressed and cause the elevator to visit the corresponding floor. The lights switch off
when the elevator visits that floor.

2. Each floor other than the ground floor and the top floor has two: buttons one to request

-an up elevator and one to request a down elevator. These buttons light up when pressed.
The lights switch off when the elevator visits the floor and either is moving in the desired
direction or has no outstanding requests. In the latter case, if both floor-request buttons
are pressed, only one is canceled. The algorithm to decide which to service first should
minimize the waiting time for both requests.

3. When an elevator has no requests to service, it should remain at its final destination
with its doors closed and await further requests.

4. All requests for elevators from floors must be serviced eventually, with all floors given

- equal priority.
5. All requests for floors within elevators must be serviced eventually, with floors being
_ serviced sequentially in the direction of the elevator’s travel.

6. Each elevator has an emergency button that, when pressed, causes a warning signal to
be sent to the site manager. The elevator is then deemed “out of service.” Each elevator
has a mechanism to cancel its “out of service” status.

Before translating these statements into a formal model, let us substantiate the
value of doing so. Although people are generally familiar with this type of system, the
specitications should be examined with some attention. It would be interesting for the
reader to postpone reading the comments that follow and first try to analyze and per-
haps formalize the specifications on his or her own.

Let us focus our attention on point 2. First, we read that every floor, except the
first and the last, has two buttons. Note that there is no implication here—or elsewhere
in the specifications—that rules out as incorrect an implementation in which the first
floor has nine buttons and the last one four. This remark, however, could appear to be
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overly critical: There is an “obviously correct” interpretation—that is, that the first
floor has only the button to go up and the last floor has only the button to go down. We

“make this interpretation because it is part of our ordinary knowledge about elevators
and we can easily integrate that knowledge into our design for the system with explic-
itly stated requirements. Indeed, we could even use the remark as an argument in favor
of informality in specifications: A. formal definition would have forced us to specify in
full detail even things that are perfectly understood, rcsultmg in wasted effort.

In general, formality is a tool for achieving precision whenever it is needed. Full
precision may be useless and even boring if the intended reader of the specifications is
a human being. Thus, it is the responsibility of the specifier to choose an appropriate
level of formality. Sometimes, the simplicity, immediateness, and generality of natural
language may be preferable to the semantic rigor of mathematical formalisms. Other
times, a—perhaps graphical—semiformal notation can give a quick and sufficiently
clear idea of the desired system. In still other cases, especially if the system is complex
or critical, the effort of going through a full formalization may be worthwhile. In gen-
eral, formality is required when we cannot afford the risk of being misinterpreted.

Now, let us go further into the analysis of point 2. The rule states that

The light associated with a button switches off when the elevator visits the requested floor
and is either moving in the desired dlrectlon or..

This sentence can be interpreted in at least two different ways. Consider an ele-
vator going up. (The case when the elevator is going down is symmetnc ) Then the rule
could mean either of the following:

¢ Switch off the up button as soon as the elevator reaches the floor, coming from
below. (This interpretation has an exception for the first floor).

e Switch off the up button after an elevator reaches the floor and starts moving
~in the up direction. _(’Ihls interpretation has an exception for the last floor).

By examining different elevators, we can see that both interpretations have been
used in practice. As we observed earlier, one might argue that the ambiguity was left in
the specification on purpose to allow the implementer to choose the best solution

" without unnecessary constraints. This might be an acceptable explanation in this case,
where one solution or the other does not make any dlfference In general, however,
one does not realize the amblgmty in a sentence until one builds a formal model of it.

Finally, notice the imprecision in the requirement

The algorithm to decide which floor to service flI'St should minimize the waiting time for
both requests.

__ What does “minimize the waiting time for both requests” mean? Here are two possible
A interpretations: ' ‘

¢ In no other way should it be p0551b1e to serve either request in a shorter time.
This 1nterpretat10n could be infeasible:- Mmumzmg the waiting ‘time of one
request could require a longer waiting time for the other request; :

e The sum of the two waiting times should be mlnlmlzed But why the sum?

Even worse, the waiting time that is forecast at the moment of making the deci-
sion could be changed by the initiation of other requests during the service. For exam-
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ple, imagine that an elevator moves from floor 2 to serve a request issued at floor 60.
While going up, the elevator stops to serve a new call issued at floor 40. This call could
not have been considered to “minimize” the waiting time when that SpClelC elevator
was chosen to serve the original request. ¢

Exercise -

5.20 Continue with the analysis of the preceding specifications, trying to discover ambiguous or
questionable points.

Let us try to specify the elevator system by means of a Petri net. Figure 5.33 gives

a sketchy initial view of the system. This description has some intuitive attraction: It
" provides a pictorial display of the elevators’ position-and of the events that determine:

the movement of the elevators. It stresses the fact that, in order to move from one floor
to an adjacent floor, some button must be 1llummated and that the movement in turn
is the result of pressing the said button.

The description in Figure 5.33, however, is far from satlsfactory. Here are a few of
its shortcomings:

1. The description is terribly incomplete: Many other facts must be taken into
account. There are not only internal, but also external, buttons. The movement
of the elevator can be caused by any of the buttons: Even an elevator at floor 1
can'move up when the down button of floor 40 is pushed. Nor does the net
explain how a button is reset. What about the case of an elevator that is going
from, say, floor 4 to floor 27, and the external up button of floor 20 is pressed
just when the elevator is crossing that floor? What is the latest acceptable call-
ing time in such a case?

2. The description shows 1mmed1ately that the full formalization of the system is
likely to be enormous and totally unmanageable Think of a system with 100
floors and seven elevators!

- 3. The description is clearly wrong in many of its details. For lnstance, the figure
suggests that a button lights up when it is pushed; this is modeled by the pres-
ence of a token in place “button illumination.” If the button is pressed twice
before it is reset, however, we have two tokens in that place, so that when the
request is eventually serviced and one token is consumed, the other token
remains, incorrectly indicating that the button is still lit up.

Exercise

5.21 Find other inadequacies and trouble spots in the foregoing initial formalization.

Despite its shortcomings, Figure 5.33 can be taken as a starting point to obtain a
correct and full specification of the system by means of Petri nets.

First, let us face the problem of managing the complexity of the system. Here, we
must recall that specification is a design activity and that a complete specification doc-
ument is, in general, the result of many trials and corrections. It is not a document that
is to be built from scratch and never modified. Thus, we must apply all of the design
principles illustrated in Chapters 3 and 4 to the design of the specifications as well.
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 FIGURE 5.3 at floor j

A first sketch of the elevator
button switching through a
Petri net.

* In particular, it is quite useful in this case to define suitable specification modules,
. intended as portions of a final PN. Each module describes a component of the system.
A complete description is the result of integrating all the modules together. In this
case, it seems natural to use different portions of the net to represent the elevators’
positions, on the one hand, and the settmg and resetting of internal and external but-
tons, on the other.

Also, we can observe that, with the exceptlon of the first and last floors, the
description of what happens at floor § will be identical to that of what happens at floor
k. And since the same will hold for elevators and buttons, this suggests a parameterized
specification that refers to generic floor 3, elevator m, button of floor h, etc., as was to
some extent already suggested in Figure 5.33. Thus, we obtain the following natural
structure for the specification. : :

System description. The overall specification is decomposed into modules. There are n
specification modules of type ELEVATOR and m specification modules of type FLOOR.
Each module is described by a suitably extended PN, with suitablé interconnections.
Each module of type ELEVATOR is decomposed into two submodules, one of.
type ELEVATOR_POSITION, which represents the position of the elevator, and the
other of type ELEVATOR_BUTTONS, which represents the state of buttons internal to
the elevator. More precisely, the latter can be decomposed into m modules of type
BUTTON, each of which represents one of the m buttons internal to each elevator.
Each module of type FLOOR, in turn, is decomposed into two modules of type
BUTTON, which represent the calls to elevators to go up or down. The modules repre-
- senting the first and last floor-are an exception, since they are described by only one
module of type BUTTON, representing calls to go up and down, respectively. -
- Now let us face individual problems of description, going problem by problem.
We start with the rules for lighting up buttons, which seem fairly simple, but contain an
apparent mistake in the first attempt. We will make use of timed PNs with priorities.
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Button description. Modules of type BUTTON may be described as in Figure 5.34.
Pushing a button is represented by the firing of transition Push, which is always-
enabled, to represent the fact that the button may be pushed at any time. If the button
is off (a token is in Of£) and Push fifes, then Set immediately fires (thus, t_; (Set)
= .. (Set)= 0) and sets the button to on (a token is in On). To prevent the mean-
ingless accumulation of tokens in P, one can set t,;, (Push)= 0.1 and t, (C)=
taax (C) = 0.005 (transition C acts as a token consumer).” In such a way, an on button
can be pushed many times (with a minimum idle time of 0. 1) without any undesirable
consequences.

The firing of transition Reset represents the resetting of the button. The way other
modules can reset a-module of type BUTTON will be described later. (This means that
other arrows not shown here will be connected to Reset for other specification modules.)

Exercise

5.22 Give an alternative specification for lighting up a button by using PNs augmented with
priorities, instead of timed PNs. Discuss the differences between the two representations.

‘Description of elevator position and movement. As a first rough approximation,
each module of type ELEVATOR_POSITION can be represented as in Figure 5.35.
Intuitively, the figure describes how an elevator can move from one floor to the next in
each direction. A token in place F,, -1 € i < m, represents an elevator standing at
floor i. A token in place DF, (UF,), 2 < i < m-1, represents an elevator passing
through floor i, moving downwards (upwards). Appropriate times should be associ-
ated with the transitions in order to account for the elevator’s speed.

_ We insist on the importance of describing complex facts in an incremental way.
"Thus, Figure 5.35 first gives an idea of elevator movement, by distinguishing
between the case of standing and moving elevators. In a more detailed view, the
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FIGURE 5.34

Switching the buttons on. , ‘ Reset

"By default, time is given in seconds. Note that any arbitrary value less than 0.1 can replace 0.00E'
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UFm-— 1

FIGURE 5.35

A first description of elevator movement.

conditions that cause an elevator to move upwards are expressed by the fragment of
net shown in Figure 5.36, with reference to an elevator initially standing at floor F;.
(The conditions that cause the elevator to move downwards can be modeled in
much the same way.) : ‘

Now, let h be any integer greater than j+1 and less than or equal to m. An eleva-
tor standing at floor j can move up if there is either an internal request to stop at floor

. j+1 or at some floor h or an external request at floor j+1 or any floor h. Such requests

are modeled by the presence of a token in the place On of the nets of type BUTTON that
represent internal and external buttons. In the figure, ILB,,, and ILB, are nets of type
BUTTON that represent the internal buttons for stops at floors j+1 and h, respectively.
Similarly, UP,,,, DOWN,,,, UP,, and DOWN, represent the buttons for external calls
from floors j+1 and h, to go up or down, as indicated.8 ‘ ,

The specification of Figure 5.36 uses two intermediate places, F} and F},
between F; and both F;,, and UF,,. The firing of transitions t, through t represents
the response of the elevator to a request to move up; as a consequence, a token enters

8Floors 1 and m are an exception, because they only have buttons UP, and DOWN_, respectively.
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place F 4. The firing of transition t between F and F } represents the time needed to
move from floor j to floor j+1;in fact, we defme tin ( t) = th..(t) = At,the time
" needed to move from one floor to an adjacent floor. (For simplicity, we ignore the
fact that such time is not constant because it may include a noninfinite acceleration.)
For every other transition shown in Figure 5.36, we set t,, .= t,..= 0. (This, again,
corresponds to the assumption that times taken to make a decision whether to stop
at some floor can be ignored. That assumption is an abstraction of the supposed real
situation, wherein the mechanism that governs the system (e.g., a microprocessor)
has negligible reaction times compared with the times that are required ‘by the
mechanical system.)

Transitions t, through t,, represent the (nondeterministic) choice among
requests for service. In this way, we model the fact that the elevator may also service
incoming requests concerning floor j+1, prov1ded that they occur during the transfer
time from floor j to floor j+1. ‘

The description of an elevator in transit through floor j+1 (represented by a
token in place UF;,,) can be given similarly (but not identically) to that just given.
Note that a token appears in place UF,,; only if there are pendmg (mternal or exter-
nal) requests for service to some higher floor h.

UP
- /<>— h ~
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U
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A more precise description of elevator movement.
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In our description, so far we have not made any assumptions about a decision
policy for selecting a request to be served if more than one request is pending. Thus.
at the stage we are now, the model is still highly nondeterministic. For example, the
model does not require the elevator to stop at floor j+1 if an internal request to
stop there is issued before passing floor j+1 in the upward direction. Our choice is
to concentrate all policy decisions within a SCHEDULER module, which is discussed
shortly.

Let us now browse through the specification of the remaining aspects of the ele-
vator system.

Switching the buttons off. Figure 5.37 models how an internal button ILB; is
switched off when the elevator reaches floor j. (We have drawn a dashed box around
the components of ILB; to clarify the module’s boundaries.) Transition Reset has
t.n = tmax= O and the highest priority, so we are guaranteed that the light is switched
off as soon as the elevator reaches the corresponding floor. Again, notice how the spec-
ification is built up in parts (i.e., incrementally and in a modular way). In the figure, we
are referring to place F; without repeating all the previous connections to it.

Figure 5.38 sketches how floor buttons UP; (1 < j < m-1) are switched off.
Transition t ! is the duplication of any transition t, (1 < i £ 6) of Figure 5.36.
(They are all treated identically.) Transitions t | also have t_; = t_, = 0, but have
higher priority than transitions t;; in this way, a transition t] is chosen to fire
instead of the corresponding t; if the floor button is to be switched. In other words,
both transitions t; and t | model the “decision” of the elevator to go up. In addition,
the latter transition models the resetting of the floor button. Transition Reset fires
to reset the button when there are no pending requests. We define t_;,, (Reset) =
t_.. (Reset) = dp,where dpis the delay time needed to model a person entering
the elevator and pushing a button. Floor buttons DOWN, (2 < i < m) are modeled
in the same way. As a consequence, both floor buttons are switched off if no internal
service request occurs in due time. Note that here we are changing the informal
requirements slightly. Note also that the formalization of Figure 5.38 disambiguates
the informal statement about switching the button off by choosing the second of the
two interpretations we suggested in analyzing the deficiencies of the informal

requirements. .

Exercises

5.23 Formalize the first of the two interpretations of the rule on switching the button off that
were discussed in our assessment of the informal specification.

5.24 Formalize the original rule of the informal specifications—that is, “in the latter case, if
both floor-request buttons are pressed, only one should be canceled,”—instead of the pre-
sent choice that switches both buttons off.

Decision policies. The model described so far is highly nondeterministic. In many
cases, nondeterminism is a desirable property of a specification, since it allows one to
specify a set of acceptable behaviors without restricting the model to one specific
behavior, which can be chosen later at implementation time—for example, for perfor-
mance reasons. Sometimes, however, nondeterminism would allow undesirable behav-
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‘FIGURE 5.37

Switching the internal buttons off. The dashed box shows the boundaries of module ILB,.
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FIGURE 5.38

Switching the floor buttons off.

iors that we wish to exclude at specification time. In our example, up to now we speci-

.fied only the mechanisms that govern the elevator’s movements; we did not specify the
policies involved. These policies, however, need to be specified if we wish to prove that
all requests are eventually serviced by the elevators. (See informal requirement 4.) We
decided to encapsulate all decision policies in a module called SCHEDULER. This is an
application of information hiding to specifications: Encapsulation of the decision poli-
cies will allow us to change such policies without affecting the mechanisms described
by the rest of the net; for example, we will be able to fine-tune the system’s perfor-
mance at the requirements specification level by simulating different pelicies in the
model.

Here, we simply sketch a simplest instance of SCHEDULER. The chosen policy dif-
fers from the fuzzy requirement of the informal specifications: It guarantees fairness
among the service requests; that is, it guarantees that every request will be served
eventually (but does not try to “minimize waiting times,” whatever that means). Thus, -
no request will ever suffer starvation.
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We assign each elevator a “direction state,” which is either U (up) or D (down).
(See Figure 5.39.) A token in U (D) means that the elevator direction is up (down). Our
policy consists-of keeping the direction state unchanged as long as there are calls that
would force the elevator to go in that direction. Otherwise, transitions U_D and D_U
fire when the direction of movement changes from up to.down and down to up, respec-
tively. U, denotes any transition of the overall net (e.g.,t,, ..., t,,)representingan

* upwards movement; and D, denotes any transition of the overall net representing a
downwards movement. (Remember that these transitions have t,;, = t,. = 0;that
is, they fire immediately as they are enabled.) Transitions U_D and D_U, conversely, rep-
resent actions that have a non null duration (i, they have t; = t .. = x msec),
where x'is non null). Such a duration represents the decision time taken by the sched-
uler to check whether there are requests to go up or down. Furthermore, in the por-
tion of the net of Figure 5.36, and in similar ones, we give higher priority to transitions .
t;, tg and t, than to transitions t,,, t,;, and t,,. This way, an elevator is forced to
stop at any floor if there are internal or external requests to serve that floor. As one
may easily observe, the elevator continues to move in a certain direction—say, up—as
long as there are pending requests to go up. If there are no more requests to serve in
that direction, after a certain time the elevator switches to the down mode of move-
ment if there are pending requests to go down. If there are no such pending requests,
the elevator keeps checking for them to become available.

A more general way of modeling scheduling policies consists of introducing a
place, SCHEDULER, which contains a distinguished token that carries information
about the overall state of the system. Suitable predicates can then be associated with
transitions in such a way that those transitions which are enabled are exactly those

“which are allowed to fire according to the scheduling policy. This general model is
sketched in Figure 5.40.

Once we have completed the formalization of the elevator system in terms of
PNs, we can analyze it to verify whether it defines the intended behavior properly. As
we anticipated in Section 5.4, one way to verify the adequacy of a specification is by
simulating it. In this case, simulation through PNs is quite natural: We just need to
apply the firing rules to the model, starting with an initial state, and then observe the
resulting behavior. '

For instance, we could consider an initial marking wherein an elevator is at floor
1 (i.e., a token is in place F,) and all of the internal and external buttons are off. Now
assume that somebody enters the elevator and pushes the internal button 2. This corre-
sponds to the firing of transition Push in the portion of the net describing the button.
(See Figure 5.34.) Then Set fires immediately, which corresponds to switching the but-
ton on. Thus, transition t, in the net of the type of Figure 5.36 is enabled and fires
immediately. After a time At, a token will be in F !, enabling transition t.. This transi-

- tion will fire immediately. Just after that, transition Reset for the internal button of
the elevator corresponding to floor 2 fires. (See Figure 5.37.) This simulation allows us
to conclude that, if an elevator is at floor 1 and no button is On when the elevator’s
internal button 2 is pushed, then after At seconds, the elevator will reach floor 2 and

" the button will be reset. Similarly, one could simulate external calls by using the rules.
formalized in Figures 5.34 and 5.38. This would make apparent the chosen interpreta-
tion for the informal requirement
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FIGURE 5.39

A simple scheduling policy.

FIGURE 5.40 SCHEDULER

A more general way of representing scheduling policies. Each
transition has a predicate of the type OK (Scheduler) (in con-
junction with other possible conditions). The token in SCHEDULER
stores all information about the state of the system that is useful
for the selection of which transition to fire. The token is “perma-

nent,” since it is always reproduced after the firing of any transi- all transitions
tion and, possibly, after being updated. -

The light associated with a button is switched off when the elevator visits the floor and is
either moving in the desired direction, or ... :

If it turns out that this is not the interpretation meant by the customer, the speci-
fication must be modified accordingly. (See Exercise 5.23.) ‘

The ability to create a simulation is a strong reason in favor of using a formal
model for specifications: Formal specifications can be simulated automatically with the
help of an interpreter for the model. The benefits of this approach should be quite obvi-
ous. The usefulness of simulation, however, depends on the model. Interpreting an
FSM—even a fairly complex one—is easy and efficient. Interpreting a PN is conceptu-
ally simple, but its efficiency is affected by the intrinsic nondeterminism of the model,
which may require the use of time-consuming backtracking techniques. In fact, suppose
you are executing a PN to check whether, from a given marking m, a different marking
m’ can be reached. During the interpretation, nondeterministic choices are made when-
ever several transitions are enabled. If it turns out that these choices do not produce the
marking m’, you must undo some of them to try different ones. We will comment fur-
ther on the use of models to verify specifications in Sections 5.6.2.4 and 5.7.3.

3

Exercise

5.25 Give reasonable interpretations of the phrase “minimize the waiting times” in the infor-
mally stated requirements of the elevator system. Formalize the chosen interpretations as
selection functions to be attached to a PN schema of the type of Figure 5.40. Check
whether your policy still guarantees that all requests will eventually be served.
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5.6

5.6.1

Chapter5.  Specification

- DESCRIPTIVE SPECIFICATIONS

As we stated in Section 5.3, descriptive specifications try to describe the desired
properties of a system rather than its desired behavior. In this section, we start a short
review of descriptive specification notations with a semiformal and widely used model.
Then we move to completely formal notations. We illustrate different notations that can
be used to specify systems at different stages of the development process. Some nota-
tions are suitable for use at the requirements level. Others are suitable for specifying the
semantics of module interfaces. Still others are suitable for specifying individual program
fragments. All of the notations, however, share the same flavor of the descriptive style.

A natural way of providing precise descriptive specifications is through the use of
mathematical formulas. Unlike natural language, mathematical formulas have a precise
syntax and semantics. Furthermore, they can be managed by automated tools as well as
formal operational models.

Many mathematical formalisms have been proposed for the description of sys-
tem properties. In this section, we will review two major approaches, one based on the
use of mathematical logic and the other based on the use of algebra.

Entity-Relationship Diagrams

We have seen that DFDs are a useful notationr for describing the operations used to
access and manipulate the data of a system—typically, an information system. However,
this is often not enough to specify all the interesting features of the system: A concep-
tual description of the structure of the data and of their relations is also necessary.
~Actually, it is unclear which of the two descriptions, of operations or of data

structures, should come first. On the one hand, understanding the operations to be pro-
vided by the system helps in understanding the logical structure of the data. On the
other hand, the logical structure holds irrespective of the operations performed on the
data. One may even argue that it represents our knowledge of the application area,
which is more stable than the operations provided by the application.

The two views are clearly complementary, and both are useful for undcrstanding
“and specifying an application. Therefore, we start our review of descriptive specifica-
tions with the entity-relationship (ER) model, a widely known and adopted notation
for describing the relations among the data of an information system.

The ER model was motivated by the need for a conceptual model of data suit-
able for specifying user views and logical requirements in information systems and,
more generally, in applications that are centered around large collections of interre-

" lated data. The model is based on three primitive concepts: entities, relations, and

attributes. The model has an associated graphical language, which is particularly easy to
understand; the descriptions given in the graphical language are called ER diagrams.
Figure 5.41 shows a simple example of an ER diagram that describes the entities
STUDENT and CLASS, with the relationship ENROLLED_IN, which may hold between a
STUDENT and a CLASS. An entity—represented by a box—stands for a collection of
items that share common properties; the concept is thus similar to that of a type in pro-
gramming languages. The properties of an entity are its attributes and the relations in
which it participates. Attributes are listed next to the entity, and relations are repre-
sented as diamond-shaped boxes. In our example, STUDENT is a collection of individu-
als; NAME, AGE, and SEX are attributes of STUDENT; and every student is
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c'haracter'ized,by a triple of values representing the student’s name, age, and sex. A

- relation on two entities such as STUDENT and CLASS is a set of pairs <a, b>,where a
is an element of STUDENT and b is an element of CLASS. The relation shown in Figure
5.41 could represent the fact that student a is enrolled in class b.

_ ER diagrams have not been standardized. This means that there is no official,
universally recognized version of the notation, and many variations exist in practice.
Some ER languages allow relations to be n-ary (i.e., they may relate any number of
entities); others support binary relations only. Also, some permit relations to have
attributes, while others do not. If attributes of relations were permitted, we could

. define the attribute PROFICIENCY to be associated with ENROLLED_IN. Then the

attribute associated with any given pair <a, b> in ENROLLED_IN would represent

the proficiency of student a in class b. Finally, some ER languages support a kind of

inheritance among entities, often called the IS_A relation in ER jargon. For example,
one could define UNDERGRADUATE and GRADUATE as two subentities of STUDENT,
inheriting the properties of STUDENT and adding new ones in terms of attributes and
participation in relations (UNDERGRADUATE IS_A STUDENT).

- Most ER languages allow relations to be partial; that is, not every element in

the related entities has to participate in the relation. In addition, they often allow the’
relation to be annotated as one to one, one to many, many to one, or many to many. If

a relation R between A and B is one to one, then, for any <a, b>in R, there exists no
a’ in Asuchthat<a’, b>isinRanda’ # ajand,in additibn, there existsno b’ in
B such that <a, b’>isinRand b’ # b.If R is many to one, it is required only that,
for any <a, b> inR,there exist no b’ in B such that <a, b’>isalsoinRand b’ #
b, etc. Graphically, this is represented as shown in Figure 5.42. We can see that the
relation ENROLLED_IN in Figure 5.41 is many to many.

The annotations in Figure 5.42 describe simple constraints'on the relatlonshlp In
practice, however, when we specify requirements, we would like to be able to state
more general and complex kinds of constraints on our data that might characterize

NAME
A[j AGE

STUDENT

SEX

> ENROLLED_IN

SUBJECT
FIGURE 5.41 CLass COURSE_ID
An ER diagram describing a relationship | MAX ENROLLMENT

between students and classes.
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some important properties of the world we are modeling. Unfortunately, the power of

. the ER language is rather limited, and more complex concepts must be expressed sep-

arately by using a different notation. For example, there is no way to specify graphi-
cally that a class can exist only if the number of enrolled students is greater than five
and that the number cannot exceed the value MAX_ ENROLLMENT that is an attribute of
each class. If we want, this constraint can be stated as a comment in natural language,
associated with the diagram as further documentation. _

According to the classification discussed in Section 5.3, ER diagrams are a semi-
formal notation, because their syntax and semantics are not stated precisely and
because their lack of expressive power forces us to add properties as informal com-
ments. Also, they are a descriptive notation, because they state what the entities and
their properties are in terms of attributes and participation in relations. In Section
5.6.2, we will comment on the relation between ER diagrams and the formal descrip-
tive notation provided by logic.

'The reader may have noticed that ER diagrams are similar to a simplified form
of class diagrams. In fact, class diagrams have been defined as an evolution of ER dia-
grams wherein data entities are modeled along with their operations in an object-ori-
ented style. In a conventional style, in which functions and data are defined separately,
ER diagrams are used to complement DFDs. In an object-oriented style, the two
aspects are clustered together in classes. ,

" ER diagrams are still widely used in practice especially in data-oriented applica-
tions. Since they are graphical, they are rather understandable even by nonspecialists. It
is also claimed that they are effective for the assessment of requirements, since end users
may be trained to understand them and thus may verify whether the description pro-
vided by the software engineer models the application’s domain adequately in terms of
the relevant entities and their relationships.

Exercises -

5.26 Suppose that your ER language does not support attributes associated with relations, but -
does support n-ary relations. Following the discussion in Section 5.6.1, how would you rep-
resent the students’ proficiency levels in a given class?
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5.27 Augment the ER diagram of Figure 5.41 by introducing the entity PROFESSOR and suit-
able relations TEACHES (with entity CLASS) and ADVISES (with entity STUDENT). How
can you specify a (funny) constraint like “a student cannot take a class that is taught by his
or her advisor”? '

Logic Specifications

A formula of a first-order theory (FOT) is an expression involving variables, numeric
constants, functions, predicates, and parentheses, as in traditional arithmetic. The usual
logical connectives—and, or, not, implies,and = (which denotes logical equiva-
lence) —are also used. The type of the result of a first-order-theory formula must be
Boolean. As opposed to the Boolean-valued formulas of many programming lan-
guages, however, FOT formulas may also use quantifiers—that is, the symbols exists
and for all that can be applied to variables.
The following are a few examples of FOT formulas: -

X >y and y > z implies x > z;

X=ysEy =%

for all x, v, z (x >y and y > z implies x > z);
X +'1 <x -1; ‘

for all x (exists y(y = x + z));

X >3 oxr x < ~6. ’

The semantics of such formulas should be sufficiently clear from the intuitive mean-
ings of the symbols used.

Notice that some of the preceding formulas are true, others are false, and still
others are true or false, depending on the values of the unquantified variables. So for-
mulas 1 and 2 are true regardless of the values of x, v, and z, formula 4 is false
regardless of the value of x, and formula 6 is true for some values of x and false for
others. )

A variable that occurs in a formula is said to be free in that formula if it is not
quantified; a variable that is not free is said to be bound. So x is free in formula 1 and is
bound in formula 3. If all variables in a formula are quantified, the formula is said to be
closed. Thus, formula 3 is closed. A closed formula is always either true or false. The
closure of a formula is obtained by quantifying all of its free variables with the for
all quantifier. So the closure of formula 4 is for allx(x + 1 < x - 1).If a for-
mula is true for all values of its free variables, so is its closure. Thus, the closure of for-
mula 1 is true, but the closure of formula 4 is false.

In some cases, the truth of a formula depends on the domain chosen for its variables.
For instance, the formula

7. for all x (x 2 1) or (x £ - 1) or (x = 0)

is true if x is an integer; it is false if x is a real number. In this book, however, we will
deal with variables whose domains should be understood without ambiguity. In partic-
ular, numeric variables will be assumed to be integers, unless stated otherwise.

Earlier, we observed that ER diagrams can be classified as a semiformal descrip-
tive notation. We can illustrate this property by showing that ER diagrams may be
easily restated in terms of logic; moreover, logic provides a formal notation to express
the constraints that are not expressible in terms of ER diagrams. For example, in the
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discussion relating to Figure 5.41, the constraint that “a class can exist only if the num-

ber of-enrolled students is greater than five, and the number cannot exceed the value

MAX_ENROLLMENT” can be stated as '
for all a in CLASS

5 < cardinality {b|< a, b > in ENROLLED_IN}<
a.MAX_ENROLLMENT

where we use the dot notation to denote the value of an entity’s attribute. Also, the func-
tion cardinality has been introduced to indicate the number of elements in a set.

We shall demonstrate the use of logical formulas in the style of the so-called
Floyd-Hoare program specification. First, we show how complete programs can be
specified by stating logical formulas that relate the program’s input and output. These
formulas are called input-output assertions. Next, we show the use of intermediate
assertions logical formulas that are used to specify fragments of a program by making
statements about the state of the program’s execution at particular points in the pro-
gram. We then briefly discuss how this specification style can be extended to object-
oriented design to specify classes. Finally, we use both types of spec1f1cat10n to present
the case study of the elevator system in terms of logical specifications.

Exercises

5.28 Build the closures of the i)receding formulas 1 through 7.

5.29 Ts the closure of formula 6 true?

Specifying complete programs: input-output assertions

We start with the simplest use of mathematical formulas to express software proper-
ties. Let P be a sequential program. Let <i;, i,, ..., i > denote the sequence of

P’sinput valuesand <o,, o,, ..., o,>thesequence of P’s output values. More pre-

cisely, assume that P reads all input values from, and writes all output values to,
sequential files;<i,, i,, ..., i,> isthe sequence of values stored in the input file

- in the order in which P reads them, and <o0,, o0,, ..., 'om> is the sequence in which

P writes its output.
A property, or requirement, for P is specified as a formula of the type

{Pre(i,, 1i,, ..., i)}

P

{Post(o,, 0y, ..., Oy iy, i, ..., i3)}
where Pre (i, i,, ..., i,) denotes a FOT formula having i,, i,, ..., i,as
free variables and Post (o;, 0,, ..., oy, 1, i,, ..., i,) denotesaFOT for-
mula having o,, o,, ..., o, and, possibly, i,, i,, ..., i, as free variables.

Pre is calléd the precondition of P, and Post is the postcondition of P. The preceding
formula is intended to mean that if Pre holds for the given input values before P’s exe-

. cution, then, after P finishes executing, Post must hold for the output and input values.

Let us give some simple exaxglples of program specifications in terms of pre- and

_ postconditions: .
1. {exists z(i, = z*i))}

{o, = i,/1,)
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This states that, if the input value i is a multiple of the input value i,, then the out-
- put must be the result of the division i,/1i,. A stronger requirement for a d1v1s1on
program is the following:
2, {1, > 1i,)

{i, = i,*0, + o, and 0, 2 0 and o, < i,}
This requirement is stronger in the sense that it imposes fewer constraints on the
input values and more constraints on the output values. A precondition of {true}
does not place any constraint on input values; it always holds, regardless of the
input values, implying that the program will achieve its result for all input values.
‘The specification : :
3 {true)
P :
{o'=1i, 0or 0o =1, and o £ i, and o < i,}

requires that P produce the greater of i, and i,.The specification

4. " {i;>0andi, >0}
P .
{(exists z,, z, (i, = o * z, and i, = o * z,)
and not ' :

(existsh (exists z,, z, (i;=h*z, and 12 h*z,) andh>o0))}
requires that P compute the greatest common divisor of i, and i,.

Assuming that n is a positive value denotmg the length of the input sequence, the
specification

5. {n > 0}
P

-2

requires that P compute the sum of the sequence. Finally, the spemﬁca’uon

6. {n >0}
P. :
{for all i (1 £1i < n) implies (o; = i,,,,)}

requires that P produce the reverse of its input sequence assumlng that the input
sequence is not empty.

Exercises

5.30 G_ive a logic specification for a program that reads a'sequence of n- + 1 values and checks
whether the first value also appears in the next n input values.

5.31 Give a logic specification for a program that, first, reads two- words (i.e., two sequences of
alphabetic characters, separated by a blank and terminated by the special character ‘#’).
The second word may be null; the first must not. Then, the program reads a sequence of
other words, separated by blanks and terminated by ‘#’, and rewrites the sequence, substi-
tuting all occurrences of the first word by the second. ' '

" You should just sketch the solution without going into all the details. Then you should go
back to the exercise after reading the rest of this section.
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The previous examples and exercises have shown that the formulas which are
needed to specify even simple problems may require many details and may be hard to
understand. We have already faced this inconvenience in our previous examples of
operational specifications. In Section 5.7, we shall consider the problem of managing
complex specifications in its full generality. We anticipate, however, some suggestions
for improving the readability of logic specifications, just as we did when we built non-
trivial specifications with PNs and FSMs.

Consider, for instance, the problem given in Exercise 5.31. The major source of
trouble is that.even simple and intuitive concepts, such as “word,” have no predefined
meaning in the FOT syntax. Thus, if we want to formalize a sentence such as “two words
are equal” or “one word is substituted by another one,” we have to go through many
details. This, however, can be done once and for all by the use of suitable definitions.

For example, we could introduce the predicate input_word (m, n) to state
that the sequence of characters in the input stream, from the mth through the nth posi-
tions, is a word. This notion is formalized by the formula

input_word (m, n)==(for all i (m € i £ n) :mel:l.es alphabetlc (c;))
where c, represents the ith input character and alphabetic (c) means that c is an
alphabetic character. (The formalization of this predicate is a trivial exercise.)

Now we can use the predicate input_word as a compact and understandable
abbreviation whenever it is needed. In particular, we can define the predicate

“input_text (m, n) to state that the sequence of elements of the input file from the

~ mth through the nth positions is a piece of text that is, a sequence of words separated

5.6.2.2

by a blank and bracketed by a pair of symbols, ‘#’. Precisely,

input_text (m,n) =
(i,='#' and i ='#' and
(exists k (forall j (1 < j < k) implies _
(exists h;, m; (input_word (m,, m; + h;) and
m =m+ 1 andm + h + 1 =n and
(L €3 < k)implies (m,,, = m; + h; + 2 and
ing + hy + 1=' "))))))

3

Once this definition is statéd, one can go on to define suitable predicates for the
output file and, eventually, an overall relation between input and output files based on

the previous definitions. We leave this task to the reader.

Exercise

5.32 Find some detail of the informal specification of Exercise 5.31 that was not defined pre-
cisely, and check it against the formal definition.

Specifying program fragments: intermediate assertions

In the previous section, we used pre- and postconditions on I/O values to specify
complete programs. Often, however, it is useful to specify just portions of programs. .
For instance, if we are building a library of general-purpose modules, we do not even .
know the context in which some procedures will be executed.’
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Such a generalization is quite straightforward, All we need to do is to allow
“expressions in pre- and postconditions to refer to program variables as well as to I/O
values. For instance, suppose you want to specify a procedure search with input para-
meters elenient, table (an array of integers), and n, the number of elements stored
in table.The procedure i is to check whether element exists in table. This can be

done as follows:?

7. {n > 0} -- n is a constant value
- . procedure search (table: in integer_array; n: in integer;

, element: in integer; found: out Boolean) :
{found = (exists i(l £ i <n and table(i) = element))}

Simi