

48 Chapter 3 Software Engineering Principles

Ideally, in software production we would like to be able to assemble new applica­
tions by taking modules from a library and combining them to form the required prod­
uct. Such modules should be designed with the express goal of being reusable. By using
reusable components, we may speed up both the initial system construction and its
fine-tuning. For example, it would be possible to replace a component by another that
performs the same function, but differs in computational resource requirements.

The capability of understanding and modifying a system are related to each other
as understanding is often the first step to applying modifications. We have stressed
evolvability as a quality goal because software engineers areoften required to go back
to previous work to modify it. If the entire system can be understood only in its
entirety, modifications are likely to be difficult to apply, and the result will probably be
unreliable. When it is necessary to repair a defect or enhance a feature, proper modu­
larity helps confine the search for the fault or enhancement to single components.
Modularity thus forms the basis for software evolution.

To achieve modular composability, decomposability, understandability, and mod­
ifiability, the software engineer must design the modules with the goal of high cohesion
and low coupling.

A module has high cohesion if all of its elements are related strongly. Elements
of a module (e.g., statements, procedures, and declarations) are grouped together in
the same module for a logical reason, not just by chance: They cooperate to achieve a
common goal, which is the function of the module.

Whereas cohesion is an internal property of a module, coupling characterizes a
module's relationship to other modules. Coupling measures the interdependence of
two modules (e.g., module A calls a routine provided by module B or accesses a vari­
able declared by module B). If two modules depend on each other heavily, they have
high coupling. Ideally. we would like modules in a system to exhibit low coupling,
because it will then be possible to analyze, understand, modify, test, or reuse them sep­
arately. Figure 3.2 provides a graphical view of cohesion and coupling.

A good example of a system that has high cohesion and low coupling is the elec­
tric subsystem of a house. Because it is made out of a set of appliances with clearly
definable functions and interconnected by simple wires, the system has low coupling.
Because each appliance's internal components are there exactly to provide the service
the appliance is supposed to provide, the system has high cohesion.

(a) (b)

FIGURE 3.2

Graphical description of cohesion and coupling. (a) A highly coupled structure. (b) A structure
with high cohesion and low coupling.

~tic­

mc­
>ing
~to

're­
:ion
n IS

ires
tern
f, in

1ify
oft­
leal
.hat

that

I in
.rce
ons
md
3ill,

ub­
her
are

~ft-

~s a
ttes
1er­
n a
1ro­
ent
hat
mt.
·all

•

Section 4.1 The Software Design Activity and its Objectives 77

members of the family jointly, rather than doing separate designs for each member of the
family, we avoid the cost of designing the common parts separately.

A good example of a product family is the mobile (cellular) phone. Manufacturers
want to sell their phones in different countries. While the basic functionality of the
phones are the same in different countries (placing calls, receiving calls, maintaining a
list of phone numbers, etc.), the phones may need to deal with different network stan­
dards, different natural languages for interaction with the user, different safety require­
ments, and so forth. The basic software that controls the phone is the same, but its
interface to the environment depends on the geographic location.

Another example is a database management system that is required to run on dif­
ferent machines, possibly on different operating systems, and for various configurations.

In both cases, we should identify commonalities among the different versions of
the software and delay the point at which any two versions start being different. The
more we stress commonality, the less work is done for each new version. This decreases
the chance of inconsistencies and reduces the combined maintenance effort expended
on all the products.

Earlier approaches to software and product development did not pay special atten­
tion to designing product families, but rather proceeded from version to version in a
sequential manner. A common mistake is illustrated by the very informal, but intuitive,
trees shown in Figure 4.2. Starting from the requirements, version 1 of the application
(corresponding to node 3 in Figure 4.2(a)) is developed through a sequence of design
steps (represented by directed edges). Nodes represented by circles stand for intermediate

Requirements Requirements Requirements

Version 1

(a)

Version2 Version 3

(b) (c)

FIGURE 4.2

Sequential design of a product family.

·,~:

11-
~"'

'

80 Chapter 4 Design and Software Architecture

The transitive closure of a relation captures the intuitive notion of direct and
indirect relationships. For example, for two modules A and B, A CALLS+ B implies
that either A CALLS B directly or A CALLS B indirectly through a chain of CALLS.

Mathematical concepts can usually be grasped more effectively and intuitively if
we can give them a graphical representation. Relations are a good example of this gen­
eral principle. A relation can be represented in graphical form as a directed graph
whose nodes are labeled by elements in s, and a directed arc exists from the node
labeled Mi to the node labeled Mj if and only if Mi r Mj.

A relation is a hierarchy if and only if there are no cycles in the graph of the rela­
tion; this type of graph is called a directed acyclic graph (DAG). Figure 4.3(a) illustrates
a generic graph, and Figure 4.3(b) represents a hierarchy (a DAG).

The next two subsections discuss two types of relations among modules that are
very useful for structuring software designs: USES and IS_COMPONENT_OF.

4.2.1.1 The USES relation

A useful relation for describing the modular structure of a software system is the so­
called USES relation. For any two distinct modules Mi and Mj, we say that Mi USES Mj

if Mj requires the presence of Mj, because Mj provides the resources that Mi needs to
accomplish its task. If Mi USES Mj, we also say that Mi is a client of Mj, since Mi

requires the services that Mj provides. Conversely, Mj is called the server. More con­
cretely, a USES relation is established if module Mi accesses a resource provided by
module Mj. For example, Mi USES Mj if Mi contains a call to a procedure contained in
module Mj or if Mi uses a type defined in Mj.

A good restriction to impose on the USES relation is that it should be a hierarchy.
Hierarchical systems are easier to understand than nonhierarchical ones: Once the
abstractions provided by used components are understood, client components may be
understood without looking at the internals of the used modules. In other words, sepa­
ration of concerns can be applied by traversing the USES structure, starting with the
nodes of the DAG that do not use any other nodes, up to the nodes that are not used
by any other node. When we encounter a node, the corresponding module may be

Mi, 2. 1. 1

FIGURE 4.3 (a) (b)

Graph representation of a relation among modules. (a) General graph. (b) Directed
acyclic graph (DAG).

I 84 Chapter 4 Design and Software Architecture

In design, once Mi is decomposed into the set Ms, i of its constituents, it is replaced
by them; that is, Mi is an abstraction that is implemented in terms of simpler abstrac­
tions. The only reason to keep Mi in the modular description of a system is to be able to
refer to it, thus making the design structure more clear and understandable. At the end
of the decomposition process, however, only the modules that are not composed of any
other modules can be viewed as composing the software system. The others are kept
just for descriptive purposes.

The relation IS_COMPONENT_OF can also be described by a directed graph, as
shown in Figure 4.4(a). The relation is irreflexive and is also a hierarchy. Therefore, in
this relation, we can define one module as being at a higher level than another module,
as we did in the case of the USES relation. In practice, it is more useful to introduce the
concept of level with reference to the relation COMPRISES. Figure 4.4(b) describes the
system of Figure 4.4(a) in terms of this relation.

The concept of level defined by IS_COMPOSED_OF is such that if Mi IS_COM­
POSED_OF {Mi,1'Mi, 2 , ••• , Mi,n}, then Mi is a higher level module than any of
Mi, 1 , Mi, 2 , ••• , Mi, n· Note that the concept of a level of abstraction used in design
descriptions is ambiguous, unless we explicitly specify whether it is intended as the level
with respect to the USES relation or the COMPRISES relation. In the case of USES, all
modules Mi, 1 , Mi, 2 , ••• , Mi, n used by a given module Mi are lower level modules
than Mi; thus, Mi provides the services it exports to its clients by using the services pro­
vided by the lower level modules Mi, 1 , Mi, 2 , ••• , Mi, n· In the case of COMPRISES,
all modules implementing a given module Mi are lower level modules than Mi: They
actually stand for Mi (i.e., Mi is refined by substitutingMi,l' Mi, 2 , ••• , Mi,n for it).

The graphical representation of IS_COMPONENT_OF also describes IS_COM­
POSED_OF, IMPLEMENTS, and COMPRISES. For example, in Figure 4.4, M2, M3, and M4
are components of M1 ; M1 IS_ COMPOSED_ OF {M2, M3 , M4}; {M2 , M3, M4}
IMPLEMENTS Mi; and Mi COMPRISES Mi' for 2 ~ i ~ 4. The entire software system is
ultimately composed of modules M4, Ms, M6 , M7 , Mg, and M9 • The other modules that
appear in the graph do not have a physical existence; their only purpose is to help describe
the modular structure in a hierarchical way.

For example, suppose that Figure 4.4 describes the modular structure of an applica­
tion in which M2 is the module providing input facilities, M3 is the heart of the system, pro­
viding all the processing, and M4 provides output facilities. In turn, module M2 is composed
of various modules (M7 , Mg, and M9), each providing certain input services, such as input
through digitalization of input forms, input through 1/0 terminals, etc. Module M3 1s

M1

/!~
M2 M3

/Ii i~
M7 Ms Mg Ms M6

(a) (b)
FIGURE 4.4

An example of the IS_COMPONENT_OF relation (a), and the corresponding
COMPRISES relation (b).

M4

I :

4.2.

~'

94 Chapter 4 Design and Software Architecture

Actually, the preceding statement is true for every field of engineering. For example.
electrical engineers produce blueprints in which complex appliances are described in
terms of interconnected iconic symbols representing elementary devices such as resistors,
capacitors, and transistors. These elementary devices may be viewed as standard compo­
nents that may be assembled to produce a new system. Suitable annotations describe the
types of elementary devices to be assembled-for example, the voltage to be supplied
between two given points or the value, in ohms. of resistors. The layout of such blueprints
is standardized, and no ambiguities arise when descriptions are interpreted in the con­
struction phase, when the circuit is built. (The blueprint may be analyzed to uncover
inconsistencies or errors before the implementation phase begins.) Similar considera­
tions apply to the case of civil or mechanical engineering: In all such cases, designs are
expressed in a standardized, graphical notation.

No standardized notation for expressing software designs has emerged yet,
although various proposals have been entertained and some have been adopted in
practice. The Unified Modeling Language (UML) is a combination of several earlier
notations and is being promoted as a universal standard for object-oriented design. In
the next two subsections. we illustrate two notations, one based on a programming-lan­
guage-like textual syntax (called TDN) and the other based on a graphical interface
(called GDN). These notations have many similarities to the notations used in practice.
The reason we chose our own notation is that we do not want to be distracted by details
of syntax that do not add much to the expressiveness of the notation. Later, when we
address object-oriented design, we will instead refer to the standard UML notation.

The notations we introduce next describe the software architecture by specifying
modules and their relationships. The notation is formal as far as the syntax of interfaces
is concerned. For example, it says, in a syntactically correct form, how to formulate a
request for a service exported by a module. But it does not formally specify the
semantics of the exported services (i.e., what a service actually accomplishes for the
clients, along with possible constraints or properties that clients need to know). The
semantics is described only informally, by means of comments. The issue of formally
specifying the semantics of modules is examined in Chapter 5.

4.2.3. 1 TDN: A textual design notation

In this section, we illustrate TDN, our textual design notation. It is somewhat
inspired by the syntax of traditional modular programming languages such as Ada or
Modula-2, but its aim is to focus on issues of modularization. Thus, some features are
added, and a large number of details typical of programming languages are deliber­
ately ignored. Also, some aspects of the language are deliberately left informal and
can be filled in by the designer, depending on his or her taste, in accordance with the
type of application being designed. the programming language that will be ultimately
used for implementation. etc. Above all, assuming that the reader knows a modular
programming language such as C++, Modula-2, Ada, or Java, the notation should be
self-explanatory.

We assume that a module may export any type of resource: a variable, a type, a
procedure, a function, or any other entity defined by the language. As we mentioned,
comments are used to provide semantic information about the exported services. In
particular, comments are used to specify the protocol to be followed by the clients so
that exported services are correctly provided. For example, the protocol might require

fl(

A

Ii

i

mrces
lically,
lodule
ldface
,byx.
eled M

JT OF

where

iables,
of the
imple­
ssified
iiform
•onent
iiform
1turity

i

Section 4.2 Modularization Techniques 101

of an engineering discipline. Categorization of modules is a step towards the develop­
ment of standard software engineering components.

In this section, we illustrate three standard categories: procedural abstractions,
libraries, and common pools of data. Two more general and abstract categories­
abstract objects and abstract data types-are illustrated in the sections that follow.

A commonly used type of module provides just a procedure or a function that
implements some abstract operation. In other words, such modules provide a
procedural abstraction and are used to encapsulate an algorithm. Typical examples are
sorting modules, fast Fourier transform modules, and modules performing translation
from one language into another. The usefulness of procedural abstractions has been
recognized since the early times of computing, and programming languages provided
special support for them via routines.

A module may also contain a group of related procedural abstractions. A typi­
cal and successful example is represented by libraries of mathematical routines.
Such libraries provide solutions to the most commonly encountered mathematical
problems, such as those involving gradients and derivatives. Another example is a
library of routines that provide algebraic operations on matrices. Still another is a
library of routines for manipulating graphical objects. Modules of this type are used
to package together a related set of routines. We use the term library to denote this
class of modules.

Another common type of module provides a common pool of data. Once the
need for sharing data among several modules is recognized, we can group such data
together in a common pool that is imported by all client modules, which are then
allowed to manipulate the data directly, according to the structure used to represent
the data, which is visible to them.

An interesting use of a common data pool module is one that groups system
configuration constants. For example, suppose that the supervisor of a control system
is parameterized with respect to the number of input lines and the length of buffers
in which inputs are temporarily stored. Each installation of the control system
requires constant values to be assigned to these parameters, which are accessed by
the modules that make up the supervisor. A typical solution consists of grouping all
configuration constants in a common pool of data that may be easily accessed for
configuration purposes.

In general, however, a common pool of data is a rather low-level type of module.
Such a module does not provide any form of abstraction: All details of the data are vis­
ible and manipulable by all clients. The ability to group shared data in a common block
only provides limited help in terms of readability and modifiability.

Establishing common pools of data is easily implemented in conventional pro­
gramming languages. For example, it can be done in FORTRAN by means of the
COMMON construct, or in C and Java with the use of static variables.

Most of the examples we gave in Sections 4.2.2 and 4.2.3, however, demand more
abstract modules that can hide particular data structures as secrets of the module. For
example, the symbol table module used in the interpreter (Example 4.1 and Example
4.2) and in the compiler (Example 4.6) of language MINI hides the specific data struc­
ture used to represent the table and exports the operations used to access it. This mod­
ule is an example of the important class of modules that package together both data
and routines, a class that is discussed in the next subsection.

I ,,
fl
M
11
(I
ii

Fi

i

l

104 Chapter 4 Design and Software Architecture

Would you classify this output module as a procedural abstraction or as an abstract
object? Sketch the TDN and GDN descriptions of the output module in the case where
physical output is performed by a (hardware) module that buffers up to 16 characters.

4.2.4.2 Abstract data types

In this section, we introduce modules defining abstract data types as another category
of modules that help in structuring our designs in a uniform and standard manner. We
use Example 4.7 to motivate the introduction of this new category. The example uti­
lized a stack abstract object. What if an application requires more than one stack? In
this situation, we need the ability to define a type and then generate instances of that
type. We also need a way to (a) associate a set of procedures with the type, in order to
manipulate instances of that type. and (b) encapsulate the details of the type in the
module, so that it can be changed without affecting the interface. Figure 4.12 illustrates
this kind of module, using our textual design notation

A new notational device is introduced in the figure: the "?" symbol. It is used to
export a type definition, leaving the details of the corresponding data structure hidden
in the implementation part of the module. The fact that a type is exported allows client
modules to declare variables of that type; the fact that the type definition is hidden.
however, implies that variables of that type can be manipulated solely by procedures
or functions exported by the module, since they are the only ones that "know" about
the secret. Client modules must pass variables of the type in question as parameters to
the exported routines for proper manipulation.

An abstract data-type module is a module that exports a type, along with the
operations needed to access and manipulate objects of that type; it hides the represen­
tation of the type and the algorithms used in the operations. Such a module can be
implemented directly in Ada by exporting a (limited) private type, in Modula-2 by
exporting an opaque type, and in Java and C++ by a class.

Instances of an abstract data type are abstract objects that behave exactly like
those discussed before. In particular, they can be manipulated only by the routines
implemented and exported by the abstract data-type module.6 Such routines may

module STACK_HANDLER
exports

type STACK = ?;
This is an abstract data-type module; the data structure
is a secret hidden in the implementation part.
procedure PUSH (S: in out STACK; VAL: in integer);
procedure POP (S: in out STACK; VAL: out integer);
function EMPTY (S: in STACK) : BOOLEAN;

end STACK_HANDLER

FIGURE 4.12

An abstract data-type module in TDN.

6The only syntactic difference in the case of an instance of an abstract data type is that the object to which an
operation must be applied is a parameter of the operation.

abstract
1se where
cters.

category
1ner. We
nple uti­
tack? In
s of that
order to
>e in the
lustrates

'used to
e hidden
ws client
, hidden,
xedures
rv" about
neters to

with the
epresen­
e can be
lula-2 by

1ctly like
routines

nes may

.;cture

,.

D

Section 4.2 Modularization Techniques 105

include those' needed to assign an abstract object to a variable and those needed to com­
pare two abstract objects for equality. To simplify the notation, instead of listing these
operators among exported routines, we use the conventional operators":=" and"=" for
them and list the operators after the"?" symbol in the type clause. Thus, writing

type A_TYPE: ? (:=, =);

in a module interface means that clients can assign an object of type A_TYPE to a
variable of the same type and can compare two objects of type A_ TYPE for equality. If
":="or"=" is missing in the type declaration, the corresponding operation would not
be available to clients.

Example 4.8

Suppose we are designing a simulation system for a gasoline station. The purpose of
the system is to find the "optimal size" (in terms of number of service lines, length of
lines, etc.) of the station, given the expected arrival rates of cars, together with their
requests for service. Each request for a service is characterized by a certain duration.

We represent each service line (gasoline, car wash, etc.) by an abstract object that
represents the cars waiting for their turn to be served. There will be an operation to
place a car in a service line, another to extract a car from the line, another to check
whether the line is empty, and another to merge two lines associated with the same
kind of resource, should the resource provided by one of them be exhausted. The pol­
icy is strictly first in, first out for all service lines.

We introduce an abstract data-type module FIFO_CARS that describes FIFO
queues of cars. We also assume that cars are described by another abstract data-type
module CARS, exporting type CAR, used by FIFO_CARS to perform operations on the
cars extracted from the queues. The following is a sketch of module FIFO_CARS:

module FIFO_CARS
uses CARS
exports

type QUEUE : ?;
procedure ENQUEUE (Q: in out QUEUE; C: in CARS);
procedure DEQUEUE (Q: in out QUEUE; C: out CARS);
function IS_EMPTY (Q: in QUEUE): BOOLEAN;
function LENGTH (Q: in QUEUE): NATURAL;
procedure MERGE (Ql, Q2: in QUEUE; Q: out QUEUE);
This is an abstract data-type module representing queues of cars,
handled in a strict FIFO way; queues are not assignable or checkable
for equality, since ":="and "="are not exported.

end FIFO_CARS

This module allows other modules to declare instances of type QUEUE, such as

gasoline_l, gasoline_2, gasoline_3: QUEUE;
car_wash: QUEUE;

and operate on them using the exported operations. For example, we might write

II·
~t

IJ
~~'

i' .

i1·~. ~· J ,,,
11
•I

J;,l
,/·{,

l!). ...
f'

'~·:' ~l
.!:

.,~. : , '

~~~ 
I • 

1. ' 
' . 







' 108 Chapter 4 Design and Software Architecture 

4.2.5 

Exercises 

4.24 Define precisely module GENERIC_FIFO_QUEUE, and instantiate a module that repre­
sents the abstract data type "queue of integer values." Show how you can then generate an 
abstract object instance. 

4.25 We have described a generic module as parameterized by types. Propose other possibili­
ties for parameterizing modules. 

4.26 Give an example of a module that allows an array of elements of any type to be sorted. The 
constraint is that it must be possible to compare elements of such a type to see which is bigger. 

Some Specific Techniques for Design for Change 

So far in this chapter, we have presented a body of general methods that may be used 
for designing well-structured software-software that can be easily understood and. 
most important, easily modified. These methods are valuable also for achieving the two 
significant goals of producing families of programs and generating reusable compo­
nents. Modularization via information hiding may be used to encapsulate the differ­
ences between family members, so that such differences are invisible outside the 
generic module. Similarly, the definition of simple, nonredundant, and clear interfaces 
can favor the reuse of modules: To understand whether a component is reusable, one 
should conform to its interface. As mentioned earlier, reusability is further enhanced 
by genericity. 

As a complement to the general principle of information hiding and the methods 
we have been discussing so far, the sections that follow illustrate some specific tech­
niques for implementing modules that accommodate change easily. 

4.2.5. 1 Configuration constants 

One difficulty with software modifications is that the specific information· which is 
going to change may be hard coded into, and spread throughout, the program. As a 
simple example, consider the size of an integer table that is initially set to 1 O, but is 
required to become 5 0. The initial system might contain declarations such as 

a: array (1 .. 10) of integer; 

if we want a to store a local copy of the table. If we want to check whether an integer k 
used as an index in the table does not exceed its bounds, the program might contain a 
statement like 

if k ~ 1 and k ~ 10 then 
perform indexing; 

else 
do other actions; 

end if; 





















118 Chapter 4 Design and Software Architecture 

Design, however, is a highly critical and creative human activity. Good designers 
do not proceed in either a strictly top-down or strictly bottom-up fashion. For example. 
should they decide to proceed from the top down, they also tend to pay attention to 
identifying commonalities and possible reusable components (i.e., they combine a pre­
dominantly top-down strategy with a bottom-up attitude). 

A typical design strategy may proceed partly from the top down and partly from 
the bottom up, depending on the phase of the design or the nature of the application 
being designed, in a way that might be called yo-yo design. As an example, we might 
start decomposing a system from the top down in terms of subsystems and, at some later 
point, synthesize subsystems in terms of a hierarchy of information-hiding modules. 

The top-down approach, however, is often useful as a way to document a design. 
Even though the design activity should not be constrained to proceed according to a 
fixed, rigid pattern, but should be a blend of top-down and bottom-up steps, we recom­
mend that the description of the resulting design be given in a top-down fashion. Such 
descriptions make it easier to understand the system because they give the big picture 
first before showing the supporting details. 

4.3 HANDLING ANOMALIES 

A systematic design approach followed by a rigorous and disciplined implementation is 
the best way of dominating the complexity of software development and building reli­
able products. Unfortunately, software products can be quite complex, subjecting soft­
ware production to human fallibility. No matter how careful we are during development. 
we cannot trust our software unconditionally. This lack of complete trust can be frustrat­
ing to the conscientious programmer who must be aware of the criticality of many appli­
cations, for which the effect of a program failure may lead to disastrous consequences. 

Any engineering product, from bridges to airplanes to software, is prone to fail­
ure. The designer must anticipate failures and plan to either avoid or tolerate them. 
That is, the designer must employ defensive design. He or she should try to shield the 
application from errors that may creep in during development or that may arise due to 
adverse circumstances during program execution. We must build robust systems: Our 
programs should continue to behave reasonably even in unexpected circumstances. 

We define a module to be anomalous if it fails to provide a service as expected 
and as specified in its interface. So far, our design descriptions-whether textual or 
graphical-are mainly syntactic in nature and do not support a formal description of 
the semantics of the services exported by a module. A semantic enrichment of the 
notation may be given according to the concepts we shall discuss in Chapter 5. For sim­
plicity, we assume here that semantics is specified by means of comments appearing in 
the interface, as explained in Section 4.2.3. We do, however, extend our design nota­
tions to associate a set of exceptions (defined next) with each service exported by a 
module. The exceptions associated with a service denote the anomalies that may occur 
while that service is being performed. For simplicity, we assume that the services 
exported by a module correspond to routines; what we say here, however, may be 
restated for other types of services. 

Either a module executes correctly, in which case it performs the requested ser­
vice and returns to the client in a normal way, or it enters an anomalous state. Defensive 
design requires that in the latter case the module should signal the anomaly by raising 
an exception to the client. In other words, we distinguish between the correct behavior 





120 Chapter 4 Design and Software Architecture 

FIGURE 4.15 

module L 
uses M imports p (X: INTEGER; .. ) 
exports 

procedure R ( ... ) 
raises INTEGER_OVERFLOW; 

implementation 

end L 

If INTEGER_OVERFLOW is raised when P is invoked, the 
exception is propagated 

A design fragment with a propagated exception. 

were the previous types of exceptions. In addition, it is possible to specify that certain 
conditions should be treated as exceptions that deserve special treatment on the 
client's side after they are detected by the server module. 

In the discussion that follows, we extend TDN interface descriptions so that a list 
of exception names may be associated with exported services. These are the names of 
exceptions that may be raised by the service to signal its anomalous completion. 

Let us give some examples. Suppose that when interfaces are defined, designers 
agree on certain restrictions that apply to parameters of a procedure P enclosed in 
some module M. For example, they might agree that P should receive a nonnegative 
value for parameter x. This decision is recorded in M's interface as a comment. (See 
Figure 4.14.) Of course, in a perfect world, there is no reason to suspect that client 
modules do not satisfy this requirement. Defensive design, however, requires that we 
not trust clients to behave properly and that we therefore protect M by sending back an 
exception if P is called with a negative value for x. 

As another example, consider Figure 4.15, in which module L uses module M of 
Figure 4.14. Should the exception INTEGER_OVERFLOW occur when procedure P is 
called by procedure R of L, we might decide that R's handler will do some cleanup and 
bookkeeping and then raise an appropriate exception (perhaps INTEGER_OVERFLOW 
again) to be handled by M's client. The same policy might also be followed by the client, 
and so on. Indeed, this can be a way of performing an organized shutdown of the sys­
tem as a consequence of an unrecoverable error. 

From the fragment of Figure 4.15, we observe that L does not raise an exception 
corresponding to the condition X_NON_NEGATIVE_EXPECTED, which may be raised 
by P. This means that either L guarantees that the exception never arises or L will 
recover from it. 

Exercises 

4.33 Define the interface of a module that implements the abstract data-type STACK, where 
operation pop raises an exception if called to operate on an empty stack. 

















128 Chapter 4 Design and Software Architecture 

Pascal or Java, mutual exclusion can be guaranteed directly by the language. If the lan­
guage does not provide any automatic way of enforcing mutual exclusion, then we 
must guarantee it in implementing our application. 

Of course, mutual exclusion in the execution of individual operations is not suffi­
cient to guarantee correctness in the access to shared objects. As we saw earlier, two 
consumers may invoke operation NOT_EMPTY to check whether the buffer is not 
empty, and both may be authorized to perform the removal of a character. If the buffer 
originally contained a single character, the second attempt to remove a character 
would generate an erroneous state. 

To solve problems of this kind, we extend our textual design notation by permit­
ting exported operations to be coupled with an optional requires clause. As viewed 
by clients, this clause is automatically checked when the operation is called. If its result 
is true, then the operation is executed normally, but in mutual exclusion. If the result 
is false, the process issuing the call is suspended and waits for the condition to 
become true. Suspension of the process releases the mutual exclusion that was previ­
ously acquired. so that other processes may be allowed to enter the monitor. At some 
point, a process executing some monitor operation might cause the condition on which 
other processes were suspended to become true. Such processes would then become 
eligible for resumption; when resumed, a process executes the operation in mutual 
exclusion, as if it had requested the operation just then. In this way, testing the 
requires clause and executing the associated operation result in an atomic action. 

If we choose-say-Java as a programming language, all the suspensions and 
resumptions needed to handle the requires clause properly are automatically pro­
vided by the monitor implementation. If we use a sequential programming language, 
mutual exclusion and the requires clause may be implemented by appropriate calls 
to the operating system. 

Figure 4.20 is an example of a monitor representing a buffer of characters. We sim­
ply add the keyword concurrent to specify the monitor's semantics for the module. 

Monitor types can be defined accordingly and can be generic. An example of a 
generic monitor type representing FIFO queues of any component type is illustrated 
in Figure 4.19. 

Operations exported by a monitor may raise exceptions, and the syntax for speci­
fying the exception associated with an operation is the same as before. For example, in 
the case of the CHAR_BUFFER monitor, suppose that the interface specifies that the 
character sent to PUT should satisfy some constraint. The specification of PUT would 
then be modified to read 

procedure PUT (C: in CHAR) requires NOT_FULL 
raises PAR_ERROR; 

where PAR_ERROR is the exception raised by PUT if the parameter does not satisfy the 
constraints specified in the interface. 

We conclude our brief discussion of monitors and monitor types at this point, 
without trying to add details to our design notation. Going into details would raise sev­
eral critical issues that would make our notation more intricate and more program­
ming-language oriented. 

E 



i; 

1e lan­
en we 

t suffi­
T, two 
is not 
buffer 
tracter 

,crmit­
riewed 
: result 
result 
ion to 
previ­

t some 
which 
ecome 
nutual 
ng the 
ti on. 
ns and 
ly pro­
tguage, 
te calls 

Ve sim-
1dule. 
>le of a 
strated 

r speci­
nple, in 
hat the 
'would 

isfy the 

s point, 
.ise sev­
·ogram-

FIGURE 4.19 

Section 4.5 Concurrent Software 

concurrent module CHAR_BUFFER 
This is a monitor (i.e., an abstract object module in a 
concurrent environment.) • 

uses ... 
exports 

procedure PUT (C: in CHAR) requires NOT_FULL; 
procedure GET (C: out CHAR) requires NOT_EMPTY; 
NOT_EMPTY and NOT_FULL are hidden Boolean 
functions yielding TRUE if the buffer is not empty and not 
full, respectively. They are not exported as operations, 
because their purpose is only to delay the calls to PUT and 
GET if they are issued when the buffer is in a state where it 
cannot accept them. 

end CHAR_BUFFER 

Example of a monitor in TDN. 

FIGURE 4.20 

generic concurrent module GENERIC_FIFO_QUEUE (EL) 
This is a generic monitor type (i.e., an abstract data type 
accessed in a concurrent environment.) 

uses ... 
exports 

type QUEUE: ?; 
procedure PUT (Ql:in out QUEUE; El: in EL) 

requires NOT_FULL (Ql: QUEUE); 
procedure GET (Q2:in out QUEUE; E2: out EL) 

requires NOT_EMPTY(Q2: QUEUE); 

end GENERIC FIFO_QUEUE (EL) 

~ 

Example of a monitor type in TDN. 

Exercise 

4.39 Extend GDN by providing a graphical notation for monitors and monitor types. 

-1.5.1.2 Guardians and the rendezvous 

129 

The monitor-based approach to the design of concurrent software views a software 
system as composed of two kinds of entities: active entities (i.e., processes), which have 
independent threads of control, and passive objects. Passive objects may be either 
instances of an abstract type or single-instance abstract objects. Passive objects may be 
shared among processes or may be used as private resources by a process. A shared 

r! 

l1 r 
.lit 

~'· 
I 
' 

• • 
' ~ •.: ,,.~ J 



I 

I• 

130 Chapter 4 Design and Software Architecture 

object must be either a monitor or an instance of a monitor type; otherwise, there 
would be no guarantee that access to the object would preserve a consistent state. 

As we anticipated, there are other paradigms for the design of a concurrent sys­
tem. One such paradigm is exemplified by the approach taken by the Ada program­
ming language. In this approach, private objects are the only passive entities of a 
system. Active objects come in two "flavors": processes, as before (called tasks in Ada), 
and guardians of shared resources. 

Guardians are themselves tasks whose sole purpose is to guarantee orderly 
access to a hidden secret representing an encapsulated resource, possibly a data struc­
ture. Guardians are never-ending tasks that await requests to perform some operation. 
A guardian may or may not accept a request, depending on some condition based on 
the internal state of the resource controlled by the guardian. A guardian accepts 
requests one at a time. 

A task issuing a request to a guardian becomes suspended until the guardian 
accepts the request and completes execution of the associated action Following Ada ter­
minology, this form of interaction between a task and a guardian is called a rendezvous. 

The same syntactic notation we gave before in the case of the monitor-based 
approach may be used to describe a rendezvous-based design approach. What changes, 
of course, is the semantics. As an example, take the concurrent module CHAR_BUFFER 

of Figure 4.20. If we interpret the design notation in the context of the rendezvous­
based approach, CHAR_BUFFER is a task that accepts requests to operate on its 
guarded state by performing either a GET or a PUT. A GET request is accepted only if 
the buffer is not empty; a PUT request is accepted only if the BUFFER is not full. A task 
issuing one of these requests (via a suitable call) is suspended until the request is ful­
filled by the guardian-that is, until the guardian finds the when clause true, decides to 
respond to the request, and executes the body of the request. The guardian repeatedly 
accepts valid requests in a never-ending loop. 

To clarify these issues, one may assume that, in a rendezvous-based language, the 
internals of module CHAR_BUFFER might look like the sketchy program of Figure 
4.21. The program, written in a self-explaining Ada-like style, describes the structure of 
a guardian implementing the CHAR_BUFFER concurrent module of Figure 4.20. The 
example shows that the guardian repeatedly checks for requests from clients. 

Both the monitor-based approach and the rendezvous-based approach provide 
nondeterministic solutions to concurrency problems. The CHAR_BUFFER guardian is 
specified as a server accepting requests to access the buffer, either to add new char­
acters to it or to remove characters from it. Requests to add new characters are 
accepted if the buffer is not full; similarly, requests to extract symbols from the buffer 
are honored if the buffer is not empty. From the client's viewpoint, when the buffer is 
neither full nor empty, pending requests (if any) are handled nondeterministically, as 
is suggested by the select ... or ... end select construct of Figure 4.21. Note 
that we do not specify what happens when several requests of the same kind 
(e.g., GET) are issued to the same guardian. Here, too, we may assume that the choice 
of which request to fulfill is made nondeterministically. 9 Similarly, in the monitor­
based approach, several processes may be waiting for the mutual exclusion condition 
to be released. Which of them is actually resumed when the monitor is freed? Finally, 

9 Actually, Ada says that these requests must be handled in a first-in, first-out fashion. 

























































































































































206 Chapter 5 Specification 

In our description, so far we have not made any assumptions about a decision 
policy for selecting a request to be served if more than one request is pending. Thus. 
at the stage we are now, the model is still highly nondeterministic. For example, the 
model does not require the elevator to stop at floor j + 1 if an internal request to 
stop there is issued before passing floor j + 1 in the upward direction. Our choice is 
to concentrate all policy decisions within a SCHEDULER module, which is discussed 
shortly. 

Let us now browse through the specification of the remaining aspects of the ele­
vator system. 

Switching the buttons off. Figure 5.37 models how an internal button ILBj is 
switched off when the elevator reaches floor j. (We have drawn a dashed box around 
the components of ILBj to clarify the module's boundaries.) Transition Reset has 
trnin = trnax= 0 and the highest priority, so we are guaranteed that the light is switched 
off as soon as the elevator reaches the corresponding floor. Again, notice how the spec­
ification is built up in parts (i.e., incrementally and in a modular way). In the figure, we 
are referring to place F j without repeating all the previous connections to it. 

Figure 5.38 sketches how floor buttons UPj (1 :::; j :::; m-1) are switched off. 
Transition t i is the duplication of any transition t 1 ( 1 :::; i :::; 6) of Figure 5.36. 
(They are all treated identically.) Transitions ti also have trnin = trnax= 0, but have 
higher priority than transitions ti; in this way, a transition ti is chosen to fire 
instead of the corresponding ti if the floor button is to be switched. In other words, 
both transitions ti and ti model the "decision" of the elevator to go up. In addition, 
the latter transition models the resetting of the floor button. Transition Reset fires 
to reset the button when there are no pending requests. We define tmin (Reset) = 

trnax (Reset) = dp, where dp is the delay time needed to model a person entering 
the elevator and pushing a button. Floor buttons DOWNi ( 2 :::; i :::; m) are modeled 
in the same way. As a consequence, both floor buttons are switched off if no internal 
service request occurs in due time. Note that here we are changing the informal 
requirements slightly. Note also that the formalization of Figure 5.38 disambiguates 
the informal statement about switching the button off by choosing the second of the 
two interpretations we suggested in analyzing the deficiencies of the informal 
requirements. 

Exercises 

5.23 Formalize the first of the two interpretations of the rule on switching the button off that 
were discussed in our assessment of the informal specification. 

5.24 Formalize the original rule of the informal specifications-that is, "in the latter case, if 
both floor-request buttons are pressed, only one should be canceled," -instead of the pre­
sent choice that switches both buttons off. 

Decision policies. The model described so far is highly nondeterministic. In many 
cases, nondeterminism is a desirable property of a specification, since it allows one to 
specify a set of acceptable behaviors without restricting the model to one specific 
behavior, which can be chosen later at implementation time-for example, for perfor­
mance reasons. Sometimes, however, nondeterminism would allow undesirable behav-































































































































































































6.9 is 
mbe 
~ma 

; and 
h can 
f. say. 
·con­
t that 

m be 
some 
acmg 
I pos-

input 
tried 
sepa­
. rue. 
:;e>, 

euse 

Section 6.3 Testing 301 

Exercises 

6.11 Consider a cause-effect graph in which you also represent constraints (e.g .. take the graph 
shown in Figure 6.6.). How can you represent constraints by means of a decision table? 

6.12 Give a mathematical definition of how the input-output specification of a program may be 
transformed into a Boolean function, as required by the cause-effect graph technique. 
State when this approach is ineffective and when it is not applicable at all. 

6.3.4.3 Testing Boundary Conditions 

We have based our testing criteria-both white box and black box-mostly on parti­
tioning the input domain of the program into suitable classes. on the assumption that 
the behavior of the program is "similar" for all elements of each class. Some typical pro­
gramming errors, however, just happen to be at the boundary between different classes. 

For instance, quite often programmers use ·<· instead of·::::·. or conYersely. This 
error is unlikely to be detected by applying any of the preYious techniques. It is als_Q__ 
one of the mai~ pure random testing works _p_om!y. ----- ---- - . -

More preci:ely, suppose that a program fragment is of the type 

if x > y then 
S1; 

else 
S2; 

end if 

Many of the white-box testing criteria would lead to selecting at least one pair of 
values for x and y such that x > y and at least one pair such that x ::;; y. This could 
easily miss a test case with x = y, which would be the most natural way to detect the 
error of writing'>· instead of'~'. 

The preceding remark leads to a natural suggestion: After having partitioned the 
input domain D into several classes. test the program using input values not only "inside" 
the classes, but also at their boundaries. Notice that the suggestion applies to white-box 
techniques as well as to black-box techniques. This natural way of complementing many 
of the previous testing criteria is usually called testing boundary conditions. 

In practice, the different testing criteria should always be applied in combination, 
because none is completely effective by itself We ask you to ponder this point in 
Exercise 6.61. 

Exercise 

6.13 Give an example of testing boundary conditions in black-box testing . 

6.3.4.4 Test Oracles 

So far, we have focused our attention mostly on building test cases-that is. input data 
to be supplied to the implemented software to verify whether it behaves properly or 
not. To achieve such a goal, however, selecting a meaningful test set is not enough: We 
must also guarantee that the test is accurate; that is, we must verify, by running our soft­
ware on the selected test set, that the results obtained do indeed comply with the soft­
ware goals, as stated in the specification. This raises the so-called oracle problem: How 

\' 

I; 

1·1!., 

iii'' 
it' 
:~~ 
l 

~·· 
~ 

















































on-

1 of 
ri of 

tent 
or 

ti on 
b.us, 
ti on 

can 

trbi­
tain 
6.23 

1· be 

( 

Section 6.4 Analysis 325 

The formula { x ?: 0} is a loop invariant for the loop. This can be seen in the fact 
that backward substitution through x : = x - 1 yields { x - 1 ?: 0}, which is 
implied by { x ?: 0 and x > 0}, since x is an integer. Thus, application of the rule 
gives the postcondition { x ?: 0 and not ( x > O ) } ; that is. { x = O}. 

We emphasize that this proof rule allows the derivation of a postcondition of a 
while loop that is guaranteed to hold at loop exit if the loop is ever exited. In other 
words, having proved the invariance of a loop assertion does not prove that the loop 
will eventually terminate, as is shown by the predicate 

{x > y} 
while x * 0 loop 

x := x - 2; 
y := y - 2; 

end loop; 
{x > y and x = O} 

which can easily be proven to hold on the basis of the loop proof rule. The loop, how­
ever, will never terminate if xis odd upon entry to it. 

As a consequence, the proofs that we are able to provide with this technique are 
called partial correctness proofs; that is, the validity of the formula 

{Pre} Program {Post} 

guarantees only that if the precondition Pre holds before the execution of Program, 
and if the program ever terminates, then the postcondition Post will be achieved. 

A total correctness proof, on the other hand, is a mathematical proof that Pre 
guarantees Program's termination and the truth of Post. Total correctness proofs 
require a termination proof in addition to a partial correctness proof. For termination 
proofs, we refer the reader to the more specialized literature in the bibliographic notes. 
In what follows, we focus on partial correctness proofs, assuming that termination is 
verified separately. 

We are now able to build correctness proofs of complete programs by applying 
the foregoing proof rules. Let us start with the following, simplest, case. 

Example 6.13 

Consider the following program and its assertions: 

le to .,_ '_ {input1 > O and input2 > 0} 
ond · begin 
is at · read (x) ; read (y) ; 

1nse- . . di V : = 0; 
loop ' 

1 

while x 2': y loop 
div := div + 1; 

end; 

x := x - y; 
end loop; 

write(div); write(x); 

{input1 = output1 * input2 + output2 and 0 ~ output2 < input2 } 

I!: 

Jil;· 
'.:f 

-= 























336 Chapter 6 Verification 

i : = 1; j : = 1; k : =1; 
while k ~ 2 * n loop 

if a(i) < b(j) then 
c(k) := a(i); 

i : i + l; 

else 
c(k) := b(j); 

j := j + l; 

end if; 
k := k + 1; 

end loop; 

Initially, a simple informal analysis could raise the question of whether the 
indexes i, j, and k are guaranteed to remain within the ranges 1 .. n, 1 .. n, an:: 
1 .. 2 * n, respectively. The question may be easily rephrased as whether the assertion 

I:{l ~ i ~ n and 1 ~ j ~ n and 1 ~ k ~ 2 * n} 

is a loop invariant. 
An attempt to prove this assertion invariant-with the aid of the further relation 

k = i + j - 1-would fail much more clearly in a formal than in an informal 
analysis. In fact, 

I and k = i + J- 1 

does not imply 

{1 ~ i + 1 ~ n and 1 ~ j + 1 ~ n and 1 ~ k + 1 ~ 2 * n} 

(i.e., it does not imply the result of the latter's backward substitution through the 
loop body). 

Actually, as we know, the program fragment is incorrect; after correcting it, we 
would be able to prove the assertion. The assertion, however, is not a complete spec­
ification of the fragment, but contains only facts that we consider critical. In reality, 
going through a complete specification and its related correctness proof would be 
quite complicated. (See Exercise 6.71.) But the example shows that we do not need 
to go through a complete specification and its correctness proof to assess the pro­
gram. If there are critical facts that we want to verify (in the example, indexing in 
the arrays), then we may still specify and prove them in a formal way. This is an 
instance of the principles of separation of concerns and abstraction, namely, deal 
with the critical issues only, and is particularly valuable when the program is large 
and complex. 

We should also emphasize that program assertions-pre- and postconditions and 
intermediate assertions--can be used as a formal way of expressing program comments. 
Accordingly, they can be used both to drive correctness proofs and to debug programs. 
In other words, the activity of formally specifying properties of the execution states at 
some critical points can be used both to help localize and repair errors (debugging) and 
to prove their absence (proving correctness). We will return to the topic of debugging, 
using assertions, in Section 6:8. 

The usefulness of formal analysis techniques can be enhanced further by the 
use of (semi-) automatic tools. In fact, in a formal correctness proof, there are a few 
critical points where ingenuity must be applied (typically, to invent loop invariants 

! i 

6. 

































































































































































































































448 Chapter 7 The Software Production Process 

versions of an executable piece of software contain certain versions of source module. 
so that the elimination of a defect in a module is properly propagated to all affected 
versions·? This is where the need for configuration management arises. 

A configuration of a product identifies the product's components, and also the 
specific versions of the components.. Configuration management is the discipline of 
coordinating software development and controlling the change and evolution of soft­
ware products and components. It is an old discipline that has traditionally been stud­
ied in the context of systems manufacturing. Its application to software, however, is 
more recent; in addition, software has special features that make it different from tra­
ditional manufacturing. Software adds complexity to configuration management, 
because changes occur much more frequently than in other kinds of products. 
Conversely, software configuration management is more amenable to automation, 
since all items may be stored on media that are accessible by the computer. 

Let us examine more closely some of the issues that are addressed by software 
configuration management. One class of problems has to do with multiple accesses to a 
common repository of components. Suppose that one of the software engineers on a 
team has developed a module (say, M) and put it in a centralized database of compo­
nents for use by other members of the team. For example, M implements some services 
that are needed by other subsystems, and it might be convenient to use M for develop­
ing and testing those subsystems. Suppose also that, for some reason, a member of the 
team picks up M from the database and modifies it. Finally, suppose that the modifica­
tion introduces an error and that other members of the team are not notified of the 
change. Then, when they use M later, it will probably fail to execute properly. To their 
surprise, the system might crash even if no modification was made to their modules 
and to the input data. They simply do not know that a change occurred in M! 

Another instance of the same problem will occur if two members of the team 
simultaneously check out the same component and modify it independently. After one 
checks the component back into the database. there is no guarantee that the same 
component will be retrieved through a later checkout. In fact, the changes made by 
one member of the team may be overwritten by another member of the team: Only the 
latest checked-in copy will be kept. 

The foregoing problems are due to sharing of components. The simple and nat­
ural way to prevent these problems is to give a private copy of M to each of M's poten­
tial users. But the difficulty is that each private copy will eventually diverge into a 
different component. 

Exercise 

7.11 Explain the preceding problems of component sharing by drawing an analogy with shared 
variables accessed by different tasks in a concurrent programming language like Ada or 
Java. How can you prevent these problems in the Ada or Java program? 

A second class of problems has to do with handling product families. The term 
"product family" is used instead. of "program family" to stress the fact that configura­
tion management deals not just with programs, but also with documentation, test data, 
user manuals, etc. Problems arise because, as a consequence of changes, a component 




























































































































































































































































































































