Chemical Kinetics 1

Pseudo 1st order reactions

- The reactions which appears to be of higher order but actually follow first order are known as pseudo first order reactions
- \succ Consider general reaction A + B \rightarrow Products
- Rate of reaction = k[A][B] if reactant B is taken in excess so that its concentration remains practically constant then

Rate of reaction $g = k_0[A]$ here $k_0 = k[B]$

- Then the reaction becomes 1st order
 - 1. Hydrolysis of Ethyl acetate

- ***** Rate depends upon two concentration terms
- **Reactions involving one type of reactant**
- > Consider general reaction $2A \rightarrow$ Products
- > Rate of reaction α [A]² or = k[A]²

Reactions involving two different reactants

- > Consider general reaction A + B \rightarrow Products
- > Rate of reaction α [A][B] **or** =k[A][B]

U

- **Reactions involving one type of reactant**
- \succ Consider general reaction 2A \rightarrow Products
 - Initial conc. a Conc. after time t a-x
 - Rate of reaction $\frac{dx}{dt} \alpha (a-x)^2$
- > Upon integration, we get

x x is decrease in conc. Of A
or
$$\frac{dx}{dt} = k(a-x)^2$$
 or $\frac{dx}{(a-x)^2} = k dt$

$$\searrow \int \frac{dx}{(a-x)^2} = \int k \, dt$$

$$\ge \frac{(a-x)-2+1}{-2+1} \int \frac{d}{dx} (a-x) = k \int dt$$

$$\ge \frac{(a-x)-1}{-1} (-1) = kt + 1$$

$$\ge \frac{1}{a-x} = kt + 1$$
Now when t=0 then x=0 S0 I = $\frac{1}{a}$

Reactions involving one type of reactant

$$\ge \frac{1}{a-x} = kt + \frac{1}{a}$$

$$\ge \frac{1}{a-x} - \frac{1}{a} = kt$$
 Now take LCM and Solve

> kt =
$$\frac{a - (a - x)}{a(a - x)} = \frac{a - a + x}{a(a - x)} = \frac{x}{a(a - x)}$$

 $> K = \frac{1}{t} \left[\frac{x}{a(a-x)} \right]$

QReactions involving one type of reactant

> Alternative form of integral rate equation

> If Initial conc. $a = C_o$ & $a - x = C_t$ then we can write

$$\geq k = \frac{1}{t} \left[\frac{1}{a-x} - \frac{1}{a} \right] = \frac{1}{t} \left[\frac{1}{c_t} - \frac{1}{C_o} \right] = \frac{1}{t} \left[\frac{C_o - Ct}{C_t C_o} \right]$$

- ❑Reactions involving two different reactants
 ≻ Consider general reaction A + B → Products
 - Initial conc. a b 0 Conc. after time t a-x b-x x x is decrease in conc. Of A & B respectively
- > Rate of reaction $\frac{dx}{dt} \alpha$ (a-x)(b-x) or

Reactions involving two different reactants

$$> \frac{1}{(a-x)(b-x)} = \frac{(b-x)A + (a-x)B}{(a-x)(b-x)}$$

> Now from equation 3 & 1

> or
$$\frac{dx}{(b-a)(a-x)} + \frac{dx}{(a-b)(b-x)} = k dt$$
4

Now integrate

$$\searrow \int \frac{dx}{(b-a)(a-x)} + \int \frac{dx}{(a-b)(b-x)} = k \int dt$$

$$\geq \frac{1}{(b-a)} \int \frac{dx}{(a-x)} + \frac{1}{(a-b)} \int \frac{dx}{(b-x)} = k \int dt$$

$$\ge \frac{1}{(b-a)} \ln(a-x) \frac{d}{dx} (a-x) + \frac{1}{(a-b)} \ln(b-x) \frac{d}{dx} (b-x) = kt + I$$

$$> - \frac{1}{(b-a)} \ln(a-x) - \frac{1}{(a-b)} \ln(b-x) = kt + l$$

- \rightarrow Now at t = 0 x=0 So a-x = a and b-x = b
- >And I = $\frac{1}{(a-b)} \ln \frac{a}{b}$6

From equations 5 & 6

$$\ge \frac{1}{(a-b)} \ln \frac{(a-x)}{(b-x)} = kt + \frac{1}{(a-b)} \ln \frac{a}{b}$$

$$\ge \frac{1}{(a-b)} \ln \frac{(a-x)}{(b-x)} - \frac{1}{(a-b)} \ln \frac{a}{b} = kt$$

$$\geq \frac{1}{(a-b)} \left[\ln \frac{(a-x)}{(b-x)} - \ln \frac{a}{b} \right] = kt$$

$$\ge \frac{1}{(a-b)} \left[\ln \frac{(a-x)}{(b-x)} + \ln \frac{b}{a} \right] = kt \text{ or}$$

$$\ge \frac{1}{(a-b)} \ln \frac{(a-x)b}{(b-x)a} = kt \text{ or } kt = \frac{1}{(a-b)} \ln \frac{(a-x)b}{(b-x)a}$$

$$> k = \frac{1}{(a-b)t} \ln \frac{(a-x)b}{(b-x)a}$$
 or $K = \frac{2.303}{(a-b)t} \log \frac{(a-x)b}{(b-x)a}$

 $\searrow \text{ Alternatively}$ $\mathsf{K} = \frac{1}{(\mathsf{C}_{\mathsf{A}}^{\,\,o} - \mathsf{C}_{\mathsf{B}}^{\,\,o})\mathsf{t}} \quad \mathsf{In} \, \frac{\mathsf{C}_{\mathsf{A}}^{\,\,} \mathsf{C}_{\mathsf{B}}^{\,\,o}}{\mathsf{C}_{\mathsf{B}}^{\,\,} \mathsf{C}_{\mathsf{A}}^{\,\,o}} \quad \mathsf{or} \quad \mathsf{K} = \frac{2.303}{(\mathsf{C}_{\mathsf{A}}^{\,\,o} - \mathsf{C}_{\mathsf{B}}^{\,\,o})\mathsf{t}} \quad \mathsf{log} \, \frac{\mathsf{C}_{\mathsf{A}}^{\,\,} \mathsf{C}_{\mathsf{B}}^{\,\,o}}{\mathsf{C}_{\mathsf{B}}^{\,\,} \mathsf{C}_{\mathsf{A}}^{\,\,o}}$

Characteristics

1. Checking a reaction for second order kinetics

i. Substitution method

- The appropriate values of a, b, & x are substituted for the corresponding times in 2nd order rate equation
- If k comes out to be constant then it is said that the reaction follows second order kinetics

ii. Graphical method1/CtSlope = k> Consider equation $k = \frac{1}{t} \left[\frac{1}{ct} - \frac{1}{Co} \right]$ t> It can be rearranged as $kt = \frac{1}{ct} - \frac{1}{Co}$ or $\frac{1}{ct} = kt + \frac{1}{Co}$ This is equation of straight line> Plot a graph between $\frac{1}{Ct}$ & t, if a straight line is obtained then the reaction follows 2^{nd}
order kinetics

Characteristics

1. Checking a reaction for second order kinetics ii. Graphical method contd...

> Second equation can also be used in $K = \frac{2.303}{(C_A^o - C_B^o)t} \log \frac{C_A C_B^o}{C_B C_A^o}$

➢ It can be rearranged as ^k(C_A°-C_B°)t / 2.303 = log C_A + log C_B° / C_A° or = log C_A - log C_A° / C_B°
 ➢ or log C_A = ^k(C_A°-C_B°)t / 2.303 + log C_A° / C_B° This is equation of straight line ie y = mx + c
 ➢ Plot a graph between log C_A / C_B & t, if a straight line is obtained then the reaction follows 2nd order kinetics

$$\log \frac{C_A}{C_B}$$
Slope = $\frac{k(C_A^{\circ}-C_B^{\circ})}{2.303}$

Characteristics

2. Half life period of reaction

- > We can use the equation $K = \frac{1}{t} \left[\frac{x}{a(a-x)} \right]$
- > Now when t = $t_{1/2}$ then x = a/2 So put the respective values and solve, we get

$$K = \frac{1}{t_{1/2}} \left[\frac{a/2}{a(a-a/2)} \right] \text{ or } = \frac{1}{t_{1/2}} \left[\frac{a/2}{a(a/2)} \right] \text{ or } = \frac{1}{t_{1/2}} \frac{1}{a}$$

- So $t_{1/2} = \frac{1}{ka}$ or $t_{1/2} \alpha \frac{1}{a}$ Similarly other fractional lives can also be calcul
- Similarly other fractional lives can also be calculated

3. Units of second order rate constant

>
$$K = \frac{1}{t} \left[\frac{x}{a(a-x)} \right] = \frac{1}{s} \frac{\text{mol/L}}{\text{mol/L} \times \text{mol/L}} = \frac{1}{s} \frac{1}{\text{mol/L}} = L \text{ mol}^{-1} \text{ s}^{-1}$$

15

± ½ × = ? √ ± 3/4 × = ? √

Characteristics

- 4. If one of the reactants is taken in large excess then 2nd order rate equation changes to 1st order
- > We can use the equation $K = \frac{2.303}{(a-b)t} \log \frac{(a-x)b}{(b-x)a}$ to show it.
- > Now if B is in large excess then b >> a So (a-b) = -b & (b-x) = b
- Now equation 1 can be written as $K = \frac{2.303}{-bt} \log \frac{(a-x)b}{b.a} = \frac{2.303}{-bt} \log \frac{(a-x)}{a} = \frac{2.303}{bt} \log \frac{a}{(a-x)}$ $K.b = k = \frac{2.303}{t} \log \frac{a}{(a-x)}$ Now since B is in large excess so b is practically constant and k x b = constant

Saponification of ester

- ightarrow CH₃COOC₂H₅ + NaOH \rightarrow CH₃COONa + C₂H₅OH
- Kinetics of this reaction is followed by titrating the reaction mixture against standard acid solution using phenolphthalein as an indicator after different intervals of times
- At start of reaction at t=0 the volume of acid used (V_o) α Initial conc. Of NaOH ie 'a'
- > After time t the volume of acid used(V_t) α conc. Of NaOH at time t ie 'a-x'
- \succ Now a (a-x) = a a + x = x So $x = V_o V_t$

> Put values of x, a, a-x in the rate equation
>
$$K = \frac{1}{t} \left[\frac{x}{a(a-x)} \right]$$
 ie $K = \frac{1}{t} \left[\frac{V_o - Vt}{V_o, Vt} \right]$ 1.

Put values of V_o & V_t at different values of t in equation 1 and calculate k values, If values of k come out to be constant then the reaction follows 2nd order kinetics